

Physics of Solids

	(13)	The atoms of molecules in a crystalline so	lids are held together by	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
		(a) Cohesive forces	(b) Gravitational forces	
		(c) Adhesive forces	(d) Attractive forces	SICOUL
	(14)	The structure of NaCl is	1-nrally	$(0,]_0 \subseteq C$
		(a) Hexagonal	(b) Octagonal	
		(c) Cubical	(d) Tetraheora	
	(15)	The whole structure obtaining by the rep	ctition of unit cell is called	
		(a) crystal lattice	(b) polythene	
		(c) cubical lattice	(d) parabolic lattice	
	(16)	Glass is known as		
- 010	AN,	(r) sold gas	(b) solid liquid	
$\Delta M $	UU.	(c) liquid gas	(d) all of these	
00		PAST PAPEI		
	(17)	Which one of the following is a polymeric so		
		(a) glass	(b) nylon	
		(c) copper	(d) zinc	
	(18)	A solid having regular arrangement of m	olecules throughout its str	ucture is called SGD-2017 (G-I)
		(a) amorphous solid	(b) polymeric solid	56 D-2 017 (6-1)
		(c) glassy solid	(d) crystalline solid	
	(19)	The number of crystal systems are	· · · · · · · · · · · · · · · · · · ·	, LHR-2022 (G-I)
	(_>)	(a) three	(b) five	, 2002 (0 1)
		(c) seven	(d) fifteen	
	(20)	In cubical crystal, all the sides meet at:		LHR-2022 (G-II)
		(a) Acute angle	(b) Abtuse angle	
		(c) Right angle	(d) 45°	
		ENTRY TES	Т МСОЯ	
	(21)	Which of the following is an amorphous s	-	
	()	(a) Glass	(b) Diamond	
		(c) Salt	(d) Sugar	
	Topic	17.2:		
		Mechanical Prope		
	(22)	The force applied on a unit area to prod	uce any change in shape,	whene or length
		of a body is called	1-nrally	(0, 0)
		(a) tensile strain	(b) stress	
		(c) tensile stress	(d) strain	
	(23)	The measure of deformation of a solid wh		called
		(a) strain	(b) stress	
		(c) tensile sires	(d) shear stress	
	(24)	When the stress changes the length it is ca		
- OT	NN	(a) Strain	(b) stress	
$\langle M M \rangle$	UU	(c) tensile stress	(d) shear stress	
00	(25)	The unit of stress is $(2) N = 2^{2}$		
		(a) Nm^{-2}	(b) Nm	
		(c) Nm^{-1}	(d) no unit	
	(26)	The stress is expressed by a symbol of		

M

N.

(38)	The maximum stress which a bo	ody can bear is called
< - J	(a) yield stress	(b) elastic limit
	(c) plasticity	(\mathbf{d}) UTS (\mathbf{c})
(39)		d the yield stress and the specimen does not recover
()	its original shape, this kind of b	
	(a) proportional limit	7 (b) elastic limi
	(c) plasticity	(d) UTS
(40)		tic deformation until they break are known as
)	(a) brittle substances	(b) ductile substances
5	(c) elastic substances	(d) plastic substances
	Wrich one is the example of due	
N	(a) copper	(b) wrought iron
-	(c) lead	(d) all of these
42)		after the elastic limit are called
	(a) brittle substances	(b) ductile substances
	(c) elastic substances	(d) plastic substances
13)	The example of brittle substance	
T J)	(a) lead	(b) glass
	(c) high carbon steel	(d) both b and c
44)	Nm ⁻² is called	
**)	(a) Ohm	(b) Pascal
	(c) Volt	(d) Ampere
45)	The UTS is denoted by	(u) Ampere
13)	(a) $\sigma_{\rm m}$	(b) σ_p
	(a) \mathcal{O}_{m} (c) ε_{m}	$(\mathbf{d}) \varepsilon_{\mathbf{p}}$
16)		
46)	then the stress is known as	ire of length 'l' which results in an increase in length
	(a) tensile stress	(b) tensile deformation
	(c) shear stress	(d) volumetric stress
47)		pe of body is changed then the stress is said to be
47)	(a) tensile stress	(b) volumetric stress
1Q)	(c) compressional stress The normanian deformation is	(d) shear stress
(48)	The permanent deformation is ((a) elastic deformation	(b) tensile deformation
40)	(c) plastic deformation	(d) compressive deformation
49)	The strain energy can be obtain	
	(a) force – energy graph	(b) stress – strain graph
50)	(c) force stress graph	(d) force-extension graph
50)	The value of Young's Modulus $(-)$ so $(-1)^{5}$ Nu -2	
	(a) 80×10^9 Nn ⁻²	(b) zero (d) $2.2 \times 10^9 \text{ Nm}^{-2}$
ъſК	(c) $70 \times 10^9 \mathrm{Nrn^{-2}}$	(d) $2.2 \times 10^9 \text{ Nm}^{-2}$
\mathbb{N}	Young's modulus for copper is (a) 110×10^{9} Nm ⁻²	(b) $200 \times 10^{9} \text{N}^{-2}$
50	(a) $110 \times 10^{9} \text{Nm}^{-2}$	(b) $200 \times 10^{9} \text{Nm}^{-2}$
	(c) $70 \times 10^9 \text{Nm}^{-2}$	(d) 0
(57)		ST PAPER MCQS
(52)	Dimensions of strain are same a	
	(a) Stress	(b) Pressure

U

	(c) Young's modulus	(d) Relative permitt	ivity
(53)	Which are the substance called	_	lastic deformation until
	they break.		(G-I), SGD-2022 (G-VE)
	(a) brittle	(b) ductile	VI(0.1090
	(c) amorphous	(d) polymeric	$\langle \rangle$
(54)	Which one is not a ductile material:	BWP-26	17 (G-I)
	(a) lead	(b) steel	
	(c) copper	(d) wrought iron	
(55)	The Young's Modulus of Mercury is:	BWP-2019	(G-II)
5	(a) 7)×10 ⁹ Nm ⁻²	(b) $15 \times 10^9 \text{ Nm}^{-2}$	
NI	(c) vero	(d) $91 \times 10^9 \text{ Nm}^{-2}$	
(56)	The crystalline structure of NaCl is.	MTN-2022	(G-I)
0	(a) tetragonal	(b) cubical	
	(c) hexagonal	(d) trigonal	
(57)	Example of a ductile material is.		BWP-2022 (G-I)
	(a) Glass	(b) Wood	
(50)	(c) Lead	(d) Diamond	
(58)	Which one is not a ductile material?	(b)	
	(a) lead	(b) copper (d) iron	RWP-2022 (G-II)
	(c) steel	(d) iron	
	ENTER TE		
(50)	ENTRY TE	ST MCQS	
(59)	Product of stress and strain is equal to		1 5
	(a) Energy density	(b) Twice of energy	•
	(c) Half of energy density	(d) Reciprocal of er	
(60)	Which of given is not correct for strain ener	gy per unit volume stor	ed in a deformed material
	(a) $\frac{1}{2}$ Stress×Strain	(b) $\frac{1}{2} \times y \times (\text{Strain})^2$	
	$\binom{a}{2}$	$\frac{1}{2} \frac{1}{2} \frac{y}{(3 \tan y)}$	
	$() 1 (2) (2)^2$		
	(c) $\frac{1}{2} \times y \times (Stress)^2$	(d) None of these	
(61)	For a perfectly rigid body Young's modulu	s is	
	(a) 0 (b) 1	(c) Infinity	(d) Minimum
			_ran
Topic	17.3:		CONTRACTOR
	Electrical Prope	rties Of Solids	
(62)	Those substances which have valence ele	ctrorstightly bound t	to the r atoms are called
	(a) conductors	(b) insulators	
	(c) super conductors	(d) semi conductors	
(63)	Those substances which have intermedi	ate range of conducti	vities are called
	(a) conductors	(b) insulators	
	(c) st per conductors	(d) semi conductors	8
(64)	The probability have conductivities range		
11/1	(c) i 0^{-1} and $10^{-20} (\Omega m)^{-1}$	(b) 10^{-10} and 10^{-20} ($(\Omega m)^{-1}$
00	(c) 10^{-6} and $10^{-4} (\Omega m)^{-1}$	(d) 10^7 and 10^{-1} (Ω_1	
(65)	The conductors have the conductivities		,
(00)	(a) $10^{-1} (\Omega m)^{-1}$	(b) $10^7 (\Omega m)^{-1}$	
	(c) $10^6 (\Omega m)^{-1}$	(d) $10^{3} (\Omega \text{m})^{-1}$	
		(4) 10 (22111)	

(66)	The semi-conductors have the conduct	
	(a) 10^{-1} and $10^{-20} (\Omega m)^{-1}$	(b) 10^{-10} and $10^{-20} (\Omega m)^{-1}$
	(c) 10^{-6} and $10^{-4} (\Omega m)^{-1}$	(d) 10^7 and $10^{-1} (\Omega m)^{-1}$
(67)	Which theory explain the electrical pro	operties of material
	(a) Rutherford atomic model theory	(b) Energy band theory
	(c) Bohr atomic model theory	(d) de Broglie theory
(68)	The number of bands necessary for ele	
	(a) 2	(b) 4
	(c) 5	(d) 3
(69)		between valance and conduction bands
	(a) which can occupied by electrons	(b) which cannot be occupied by electrons
UU	(c) which can occupied by neutrons	(d) which occupied by protons
(70)	· · · ·	ne addition of pentavalent substance is called
	(a) n-type substance	(b) p-type substance
	(c) p-n type substances	(d) n-p-n substances
(71)	P-type substances formed after	· · · •
	(a) addition of pentavalent substance	(b) addition of divalent substances
	(c) addition of trivalent substance	(d) addition of mono-valet substance
(72)	In which materials the valence electro	ons are bound very tightly to their atoms and
	are not free	
	(a) n-type semiconductors	(b) conductors
	(c) p-type semiconductors	(d) insulators
(73)	Conductors are those which have	
	(a) plenty of free electrons	(b) plenty of free protons
	(c) large number of free neutrons	(d) all of these
(74)	The band below the forbidden gap is c	alled
	(a) conduction band	(b) valence band.
	(c) empty band	(d) insulation band
(75)	In a solid the valance band of an atom	
	(a) is always filled with electrons	(b) is always empty
	(c) is never empty	(d) none of these
(76)	· · · ·	e there are no electrons in the conductions band
	(a) 0 K	(b) 373 K
/ `	(c) 273 K	(d) 310 K
(77)	Semi conductors are those materials w	
	(a) completely filled valence band	(b) very hick forhidden gap
	(c) partially filed conduction band	(cl) all of these
(78)	The forbidden gap in semiconductors i	
	(a) 5 eV	(b) 1 eV
	(c) 50 eV	(d) 10 eV
(79)	At CK the silicon becomes a	
	(a) conductor	(b) p-type semiconductor
UN.	(d) perfect insulator	(d) n-type semiconductor
(30)	The conduction band lies	can (b) below the veloces hand
	(a) between valance band and forbidden	
(Q1)	(c) above the forbidden gap	(d) below the forbidden gap
(81)	In insulators the energy gap is	(b) very perrow
	(a) very large	(b) very narrow

R

		(c) moderate	(d) does not present
	(82)		o of periodic table
	()	(a) 3 rd	$(\mathbf{b}) 4^{\text{th}}$
		(c) 5 th	
	(83)	A semiconductor in its extremely pure for	
	(05)	(a) intrinsic semi-conductors	(b) extrinsic insulators
		(c) extrins c semi-conductors	(d) intrinsic conductors
	(84)		of impurity into the pure semiconductors
	(04)	material is called	or impurity into the pure semiconductors
			(b) doning
	OT	(a) 1 ooping	(b) doping (d) seturating
N	11/11	(c) him h	(d) saturating
	<u>(85)</u>]	The doped semi-conductors materials are	
			(b) extrinsic insulators
	(0)	(c) extrinsic semi-conductors	(d) intrinsic conductors
	(86)	The ratio of doping atoms to the semicond	
		(a) $1:10^6$	(b) $1:10^9$
		(c) $10^6:1$	(d) $10^8:1$
	(87)	The pure Si and Ge at room temperature	
		(a) intrinsic semi-conductors	(b) extrinsic insulators
			(d) intrinsic conductors
	(88)	The intrinsic semi-conductor elements hav	
		(a) 3 valance electrons	(b) 8 valence electrons
		(c) 4 valence electrons	(d) 5 valence electrons
	(89)	Which of the following is the Pentavalent	
		(a) arsenic	(b) antimony
		(c) phosphorous	(d) all of these
	(90)	Conductivity of semi-conductor rises due	to
		(a) rise in temperature	(b) decrease in temperature
		(c) constant temperature	(d) none of these
	(91)	Which element is trivalent	
		(a) arsenic	(b) boron
		(c) phosphorous	(d) antimony
	(92)	In n-type semiconductors the majority cha	arge carriers are
		(a) holes	(b) free electrons.
		(c) diodes	(d) protons $\mathcal{O}(\mathcal{O})$
	(93)	The p-type semi-conductor is obtained by	doping with
		(a) trivalent impurity	(b) hexavalent impurity
		(c) divalent impurity \square	(d) pontavalent impurity
	(94)	When a battery is connected to a sern -con	ductor it establishes
		(a) an electric field	(b) gravitational field
		(c) magactic field	(d) all of these
	(95)	In semiconductors, the current flows due	to
	- 0	(2) holes	(b) electrons
N	NN	(c) both a & b	(d) none of these
	06	The kinds of charge carriers in semi-cond	uctors are
J	- /	(a) 1	(b) 3
		(c) 4	(d) 2
		PAST PAPER	
	(97)	At 0 K, semi conductors are:	LHR-2017 (G-I)
	· /	·	× /

	(a) conductor	(b) insulators
	(c) perfect conductors	(d) perfect insulators
(98)	In n-type material, minority charge car	
()0)	(a) free electrons	(b) holes
	(c) protons	(d) neson;
(00)		
(99)	In extrinsic semi-conductors, doping is of	
	DGK-2 $\hat{0}$ 17 (G-II), CRW-2019 (G-I), MT	(b) 1 atom to 10^8
	(a) 1 atom $0 \ 10^4$	
(100)	(c) 1 atom to 10^{16}	(d) 1 atom to 10^6
(100)	In V-type substances, the minority charge	
NNI	(a) uples	(b) protons
200	(c) electrons	(d) neutrons
(101)	Good conductors have conductivities of th	
	(a) $10^{-7} (\Omega m)^{-1}$	(b) $10^7 (\Omega m)^{-1}$
	(c) $10^2 (\Omega m)^{-1}$	(d) $10^{-2} (\Omega m)^{-1}$
(102)	Which one of the following is not semico	
	(a) Germanium	(b) Silicon
	(c) Aluminium	(d) Gallium arsenide
(103)	Which one belongs to trivalent group?	RWP-2019 (G-I)
	(a) Aluminium	(b) Antimoney
	(c) Phosphorous	(d) Arsenic
(104)	A semiconductor will behave as an insul	lator at temperature
		BWP-2022 (G-II), RWP-2022 (G-I)
	(a) 0 K	(b) 0° C
	(c) 10 K	(d) 10°C
	ENTRY TE	
(105)	1 0	
	(a) Behave as perfect conductor	(b) Contains no electron
	(c) Behave as perfect insulator	(d) Behaves as superconductor
(106)	A completely filled band is called:	
	(a) Conduction band	(b) Valence band
	(c) Forbidden band	(d) Core band
Topic	17.4:	
	Supercon	
(107)	The materials whose resistivity becomes	s zero at certain temperature are called (0)
	(a) conductors	(b) insulators
	(c) superconductors	(d) senicer ductor:
(108)	The first superconductor was discovered	Han () () () () () () () () () (
	(a) 1902	(b) 1964
	(c) 1911	(d) 1916
(109)	The critical temperature of tin is	
	(2) § 27K	(b) 7.2K
- n 1	(c) 13K	(d) 4.56K
	7.2K is the critical temperature of	
00	(a) tin	(b) aluminium
	(c) lead	(d) nickel
(111)	The practical use of superconductors	
	(a) fast computer chips	
	(a) rasi computer emps	

J

 (c) powerful but small electric motors (d) all of these (112) The formula for Yttrium barium copper oxide is (a) Y₂Ba₂Cu₃ O₇ (b) YB₆₂Cu₃ O₇ (c) YBa₃Cu₂ O₇ (d) Y₂Ba₂Cu₃ O₇ (e) YBa₃Cu₂ O₇ (f) YBa₂Cu₃ O₇ (g) YBa₂Cu₃ O₇ becomes super conductor at (h) -110°C (c) 163 K (c) 163 K (d) both b and c (114) Yit frum bariu n copper oxide reported to become superconductor by (e) Prof. Yuan Lee (f) Khing Pyoung (g) Khing Pyoung (h) Prof: Yao Lian's Lee. (g) Ching Pyoung (h) boiling point of nitrogen (c) boiling point of nitrogen (c) boiling point of nitrogen (d) melting point of nitrogen (e) boiling point of hydrogen PAST PAPER MCQS (116) The critical temperature of mercury is: LHR-2021 (G-I) (a) 1.18 K (b) 4.2 K (c) 3.72 K (d) 7.2 K (117) Technological application of super conductor is. MTN-2022 (G-II)	2)/////
 (112) The infinitiation Furthing barrain copper of data is (a) Y₂Ba₂Cu₃ O₇ (b) YBa₂Cu₃ O₇ (c) YBa₃Cu₂ O₇ (d) Y₂Ba₂Cu₃ O₆ (113) The YBa₂Cu ₃ O₇ becomes superconductor at (a) 180°C (b) -110°C (c) 163 K (d) both b and c (114) Yet ium barium copper oxide reported to become superconductor by (a) Ching Pyoung (b) Prof: Yao Lian's Lee. (c) Prof. Yuan Lee (d) Prof: Ping Yun Lee (115) The temperature 77K is the (a) melting point of nitrogen (b) boiling point of nitrogen (c) boiling point of hydrogen PAST PAPER MCQS (116) The critical temperature of mercury is: (a) 1.18 K (b) 4.2 K (c) 3.72 K (d) 7.2 K (117) Technological application of super conductor is. MTN-2022 (G-II) 	
 (112) The infinitiation Furthing barrain copper of data is (a) Y₂Ba₂Cu₃ O₇ (b) YBa₂Cu₃ O₇ (c) YBa₃Cu₂ O₇ (d) Y₂Ba₂Cu₃ O₆ (113) The YBa₂Cu ₃ O₇ becomes superconductor at (a) 180°C (b) -110°C (c) 163 K (d) both b and c (114) Yet ium barium copper oxide reported to become superconductor by (a) Ching Pyoung (b) Prof: Yao Lian's Lee. (c) Prof. Yuan Lee (d) Prof: Ping Yun Lee (115) The temperature 77K is the (a) melting point of nitrogen (b) boiling point of nitrogen (c) boiling point of hydrogen PAST PAPER MCQS (116) The critical temperature of mercury is: (a) 1.18 K (b) 4.2 K (c) 3.72 K (d) 7.2 K (117) Technological application of super conductor is. MTN-2022 (G-II) 	
 (c) YBa₃Cu₂ O₇ (d) Y₂Ba₂Cu₃ O₆ (113) The Y5a₂Cu₃ O₇ becomes superconductor at (a) 180°C (b) -110°C (c) 163 K (d) both b and c (114) Artrium barium copper oxide reported to become superconductor by (a) Ching Pyoung (b) Prof: Yao Lian's Lee. (c) Prof. Yuan Lee (d) Prof: Ping Yun Lee (115) The temperature 77K is the (a) melting point of nitrogen (b) boiling point of nitrogen (c) boiling point of nydrogen (d) melting point of hydrogen (e) an 1.18 K (f) 3.72 K (g) 3.72 K (h) 7.2 K 	
 (113) The Y5a₂Ct₃ O₇ becomes superconductor at (a) 180°C (b) -110°C (c) 163 K (d) both b and c (114) Yet ium barium copper oxide reported to become superconductor by (i) Ching Pyoung (b) Prof: Yao Lian's Lee. (c) Prof. Yuan Lee (d) Prof: Ping Yun Lee (115) The temperature 77K is the (a) melting point of nitrogen (b) boiling point of nitrogen (c) boiling point of hydrogen (d) melting point of hydrogen (116) The critical temperature of mercury is: (b) 4.2 K (c) 3.72 K (d) 7.2 K (117) Technological application of super conductor is. MTN-2022 (G-II) 	
 (a) 180°E (b) -110°C (c) 163 K (d) both b and c (114) Yetrium barium copper oxide reported to become superconductor by (a) Ching Pyoung (b) Prof: Yao Lian's Lee. (c) Prof. Yuan Lee (d) Prof: Ping Yun Lee (115) The temperature 77K is the (a) melting point of nitrogen (b) boiling point of nitrogen (c) boiling point of hydrogen (d) melting point of hydrogen PAST PAPER MCQS (116) The critical temperature of mercury is: (b) 4.2 K (c) 3.72 K (d) 7.2 K (117) Technological application of super conductor is. MTN-2022 (G-II)	
 (c) 163 K (d) both b and c (114) At fium barium copper oxide reported to become superconductor by (e) Ching Pyoung (f) Ching Pyoung (g) Ching Pyoung (h) Prof: Yao Lian's Lee. (g) Prof. Yuan Lee (h) Prof: Ping Yun Lee (h) boiling point of nitrogen (h) boiling point of nitrogen (h) Past PAPER MCQS (116) The critical temperature of mercury is: (h) LHR-2021 (G-I) (a) 1.18 K (b) 4.2 K (c) 3.72 K (d) 7.2 K (117) Technological application of super conductor is. MTN-2022 (G-II)	
 (114) Yittium bariu n. copper oxide reported to become superconductor by (a) Charg Pyoung (b) Prof: Yao Lian's Lee. (c) Prof. Yuan Lee (d) Prof: Ping Yun Lee (115) The temperature 77K is the (a) melting point of nitrogen (b) boiling point of nitrogen (c) boiling point of hydrogen (c) a) 1.18 K (b) 4.2 K (c) 3.72 K (d) 7.2 K (117) Technological application of super conductor is. MTN-2022 (G-II) 	
 (a) Ching Pyoung (b) Prof: Yao Lian's Lee. (c) Prof. Yuan Lee (d) Prof: Ping Yun Lee (115) The temperature 77K is the (a) melting point of nitrogen (b) boiling point of nitrogen (c) boiling point of hydrogen (d) melting point of nitrogen (e) boiling point of hydrogen (f) The critical temperature of mercury is: (g) 1.18 K (g) 3.72 K (h) 4.2 K	
 (c) Prof. Yuan Lee (d) Prof: Ping Yun Lee (115) The temperature 77K is the (a) melting point of nitrogen (b) boiling point of nitrogen (c) boiling point of hydrogen (d) melting point of hydrogen PAST PAPER MCQS (116) The critical temperature of mercury is: LHR-2021 (G-I) (a) 1.18 K (b) 4.2 K (c) 3.72 K (d) 7.2 K (117) Technological application of super conductor is. MTN-2022 (G-II) 	
 (115) The temperature 77K is the (a) melting point of nitrogen (b) boiling point of nitrogen (c) boiling point of hydrogen (d) melting point of hydrogen PAST PAPER MCQS (116) The critical temperature of mercury is: LHR-2021 (G-I) (a) 1.18 K (b) 4.2 K (c) 3.72 K (d) 7.2 K (117) Technological application of super conductor is. MTN-2022 (G-II) 	
 (a) melting point of nitrogen (b) boiling point of nitrogen (c) boiling point of hydrogen (d) melting point of hydrogen PAST PAPER MCQS (116) The critical temperature of mercury is: LHR-2021 (G-I) (a) 1.18 K (b) 4.2 K (c) 3.72 K (d) 7.2 K (117) Technological application of super conductor is. MTN-2022 (G-II)	
 (c) boiling point of hydrogen (d) melting point of hydrogen PAST PAPER MCQS (116) The critical temperature of mercury is: LHR-2021 (G-I) (a) 1.18 K (b) 4.2 K (c) 3.72 K (d) 7.2 K (117) Technological application of super conductor is. MTN-2022 (G-II) 	
PAST PAPER MCQS (116) The critical temperature of mercury is: LHR-2021 (G-I) (a) 1.18 K (b) 4.2 K (c) 3.72 K (d) 7.2 K (117) Technological application of super conductor is. MTN-2022 (G-II)	
 (116) The critical temperature of mercury is: LHR-2021 (G-I) (a) 1.18 K (b) 4.2 K (c) 3.72 K (d) 7.2 K (117) Technological application of super conductor is. MTN-2022 (G-II)	
(a) 1.18 K (b) 4.2 K (c) 3.72 K (d) 7.2 K (117) Technological application of super conductor is. MTN-2022 (G-II)	
(c) 3.72 K (d) 7.2 K (117) Technological application of super conductor is. MTN-2022 (G-II)	
(117) Technological application of super conductor is. MTN-2022 (G-II)	
 (a) microwave oven (b) MRI (c) logic gates (d) transistors 	
(118) Curie temperature for iron is DGK-2022 (G-I, II	n
(110) Currle temperature for non is $(b) 1023 \text{ K}$	1)
(d) 1105 K (c) 750 K (d) 700 K	
ENTRY TEST MCQS	
(119) Magnetism in substances is caused by	
(a) Orbital motion of electrons only (b) Spin and orbital motion of electrons	
(c) Spin motion of electrons only (d) Hidden magnets	
(120) In MRI are used.	
(a) Semi conductor (b) Super conductor	
(c) Conductor (d) Insulators	
	\sim
Topic 17.5:	210111
Magnetic Properties of Solids	JUUE
(121) A substance in which the magnetic field produced by the orbital and spin motion of	of
electrons add up to zero is called	
(a) ferromagnetic substances (b) diamagnetic substances.	
(c) paramagnetic substances (d) normagnetic substances	
(122) Cobalt is an example of	
(a) ferromagnetic substances (b) diamagnetic substances	
(c) paramagnetic substances (d) nonmagnetic substances	
(123) A substance in which the atoms cooperate with each other in such a way to exhibit a	a
strong magnetic field is called	
(a) ferromagnetic substances (b) diamagnetic substances	
(c) paramagnetic substances (d) nonmagnetic substances	
(124) An atom in which there is a resultant magnetic field, behaves like a tiny magnet is called	
(a) magnetic tripole (b) magnetic dipole.	

		(c) electric dipole	(d) dipole
ſ	125)		c co-operation of atoms in ferromagnetic
(120)	substance are called	e co-operation of atoms in re-romagnetic
		(a) ranges	(b) functions
		(c) poles \bigcirc	(d) don ains
(126)	The curie temperature of iron is	(c) upitulity
(120)	(a) 720°C	(b) 758°C
		(c) 890K	(d) 650K
C	127)		
(121)	(a) a ckel	(b) copper
ní	211	(c) water	(d) bismuth
\mathbb{N}	128)	Within each domain the magnetic fields o	
	.40)	(a) perpendicular to each other	(b) opposite to each other
		(c) parallel to each other	(d) at rest
ſ	120)	· · · •	
(.	129)		riented in a disorderly fashion, hence net
		magnetic effect of a sizeable specimen is	
		(a) maximum	(b) zero
(120)	(c) minimum	(d) remain constant
(.	130)	8 1	
		(a) high temperature	(b) very low temperature
		(c) ordinary temperature.	(d) absolute temperature
(.	131)	-	
		(a) electromagnet	(b) ferromagnetic
		(c) diamagnetic	(d) paramagnet.
(132)		al, a bar of that material such as iron is
		placed in	
		(a) alternating current toroid	(b) direct current solenoid
		(c) direct current toroid	(d) alternating current solenoid
(133)		ed from zero and reaches to a maximum
		value, then this stage is called	
		(a) retentivity	(b) coercivity
		(c) saturation	(d) hysteresis loss
(134)	The coercivity of iron is	$-\pi G (0) UUU$
		(a) less than steel	(b) more than copper
		(c) equal to steel \bigcirc	(d) its sthan copper
(135)	Large area of hysteresis loop shows the	
		(a) gain in energy	(b) large wastage of energy
		(c) small was age of energy	(a) no wastage of energy
(136)	The suitable material to make permanent	magnet is
	0	(a) popper	(b) steel
M	NN	Cicu (D)	(d) lead
$ \chi $	37)	During magnetization the energy dissipat	ed per cycle of AC for iron is
<u>ر</u>		(a) less than steel	(b) greater than steel
		(c) equal to steel	(d) none of these
(138)	The phenomenon in which magnetiza	ation reduce to zero by reversing the
		magnetizing current is called	

		 (a) saturation (b) coercivity (c) retentivity (d) hysteresis loss
	(139)	The value of reverse current which is required by a substance for its
		demagnetization is called
		(a) hysteresis loss (b) coercive current.
		(c) remancive current PAST PAPER MCQS
	(140)	Very weak magnetic field produced by brain can be detected by: LHR-2021 ((r.1))
NN	90	(a) Compass (b) Metallic needle
00		(c) Squid (d) Liquid
	(141)	The most suitable metal for making permanent magnetic is SGD-2017 (G-II)
		(a) iron (b) steel
	(142)	(c) copper(d) aluminiumA single domain in paramagnetic substance contains nearly:FSD-2019 (G-I)
	(142)	(a) $10^8 - 10^{10}$ atoms (b) $10^{15} - 10^{20}$ atoms
		(c) $10^{12} - 10^{20}$ atoms (d) $10^{12} - 10^{16}$ atoms (d) $10^{12} - 10^{16}$ atoms
	(143)	A device used to detect very weak magnetic fields produced by brain is named as:
		SGD-2022 (G-I)
		(a) MRI (b) CAT scanner
		(c) SQUIDS (d) CRO
	(144)	The substances in which the atoms do not form magnetic dipoles are called
		(a) diamagnetic DGK-2017 (G-I)
		(c) ferromagnetic (d) crystals
		ENTRY TEST MCQS
	(145)	Iron is preferred in the core of transformers because it
		(a) Is soft magnetic material (b) Has less hysteresis loss
	(146)	(c) Both a and b (d) Is hard magnetic material
	(140)	When ferromagnetic material is heated
		(a) It becomes paramagnetic above curie temperature(b) Thermal motion is decreased
		(c) Orderliness is attained
		(d) All of these
		ANSWER KIN
		(Topical Multiple Choice Questions)
		(Kips Exercise)
~	NA	B 21 A 41 D 61 C 81 A 101 B 121 D 141 B D 6 22 B 42 A 62 B 82 B 102 C 122 A 141 B
ANN	NN.	3 A 23 A 43 D 63 D 83 A 103 A 123 A 143 C
(JU)	0	4 B 24 C 44 B 64 B 84 B 104 A 124 B 144 A
		5 D 25 A 45 A 65 B 85 C 105 C 125 D 145 C
		6 A 26 B 46 A 66 C 86 A 106 D 126 B 146 A
		7 C 27 A 47 D 67 B 87 A 107 C 127 A 147

Physics of Solids

KIPS TOPICAL SHORT QUESTIONS

17.1 CLASSIFICATION OF SOLIDS

- (1) Why glass is also known as solid liquid?
- Ans: Glass is known as solid liquid because its molecules are irregularly arranged as in a liquid but fixed in their relative positions.
- (2) Define an t cell and give the number of basic crystal system.
- Ans: Unit Cer: A crystal ine solid consists of three dimensional basic pattern that repeats itself over & over again in that nate ial. This smallest basic three dimensional structure is called unit cell." The whole structure obtained by the repetition of unit cell is known as Crystal Lattice.

Basic Crystal Systems: There are seven different crystal systems based on the geometrical arrangement of atoms of crystalline solids. These systems are known as

(i) Cubic
(ii) Triclinic
(iii) Tetragonal
(iv) Hexagonal
(v) Trigonal
(vi) Rhombic
(vii) Monoclinic systems

(3) What are glassy solids? Do they possess property of flow?

Ans: Glassy Solids: "These are in fact amorphous solids having no definite and repetitive pattern of arrangement of atoms."

In them, atoms are randomly arranged like in liquids, but that random pattern is frozen. Ordinary glass is an example of glassy solids.

Property of Flow: Glassy solids do not flow like liquids, but over an extended period of time, their molecules show movement. For example, glass window becomes thicker at the bottom if it remains vertical for a long time.

(4) Distinguish between elasticity and plasticity.

Ans: Elasticity is the property of solid by which material returns to its original shape on removal of stress on it."

Plasticity is the property of material by which material does not return to its original shape on removal of stress on it.

(5) Define until cell and crystal lattice.

Ans: The minimum number of particles arranged in three dimensional pattern that repeats itself over & over again, that represents the structure of entire crystal is called unit cell. The whole structure obtained by the repetition of unit cell is called crystal lattice. e.g. NaCl is cubical. In a cubic crystal all the sides meet at right angles.

(6) Define polymeric solid's and give example.

Ans: If the structure lies between crystalline solids and amorphous solids, then it is called polyiners. These are partially or poorly crystalline solids.

Polymers are made from synthetic or naturally occurring materials. e.g.

Synthetic rubbers, nylons & plastics are the polymers. They are formed by polymerization reaction.

LHR-2017 (G-F)

SGD-2017 (G-U)

DGK-2017 (G-I)

DGK-2017 (G-II)

BWP-2022 (G-II)

MIRPUR (AJK) 2017

PAST PAPER SHORT QUESTION

- What are polymeric solids? Give an example. (7)
- (8) Define (i) crystal lattice or solid (ii) unit cell.
- (9) What are crystalline solids?
- Define until cell and crystal lattice. (10)
- (11) Define polymeric solids and give example.
- What are crystallite solids? Give few examples of crystallite solids. (12)**BWP-2019 (G-II)**
- Disting rish bet weer crystalline and amorphous solid. DGK-2022 (G-I), FSD-2022 (G-II) (13)**BWP-2022 (G-I)**
- What is Crystal Lattice? What is its significance? (14)
- (15)Distinguish between Amorphous and polymeric solids.

17.2 MECHANICAL PROPERTIES OF SOLIDS

- How energy is stored in a deformed materials? (16)
- When a material in the form of wire is stretched, atoms of the material are displaced Ans: against the cohesive force i.e work is being done against the cohesive force which is stored as strain energy in the deformed materials.
- Which is more elastic, steel or rubber? Why? (17)
- Elasticity is measured as the ratio of stress to strain. For a given stress, strain is much Ans: smaller in steel than rubber, which results high elasticity of steel.
- Differentiate between brittle and ductile substances. (18)
- Brittle substances: The substances which break just after the elastic limit is reached are Ans: known as brittle substances. Glass and high carbon steel are brittle. Ductile substances: Substances which undergo plastic deformation until they break, are known as ductile substances. Lead, copper and wrought iron are ductile.

(19) Differentiate between tensile and volumetric strain.

Tensile Strain: "It is the change in the length per unit original length, denoted by the Ans: symbol ε , and has no dimensions."

$$\epsilon = \frac{\Delta l}{l}$$

Tensile strain is also called one dimensional strain that occurs in wire.

Volumetric Strain: It is the change in volume per unit original volume, and has no dimensions."

$$\therefore$$
 volumetric strain = $\frac{\Delta}{V}$

Volumetric strain is also called three dimensional strain that occurs in built material.

Thus

"Both tensile and volumetric strains represent change in shape of material under stress, and has no dimensions.'

What are ductile and britile substances? Give an example of each. (20)

Brittle substances. Ans:

The substances which break just after the elastic limit is reached are called brittle e.g. glass and high carbon steel.

Ductile substances:

The Substances which undergo plastic deformation until they break are called ductile e.g. lead and copper.

	(21)	Describe difference between proportional limit and elastic limit.	7
	Ans:	In initial stage of deformation, stress increases linearly with $\begin{bmatrix} c_{\sigma,A} \\ g_{k\sigma,\sigma} \end{bmatrix}$ $(c_{\sigma,a})$	L
		strain till we reach point A on the curve. This is celled a kar	
		proportional limit (σ_p)	
		Hook's law is obeyed in this region OA	
		From A to B stress and strain are not propertional, but if load is Strain (c)	
		removed at any point between $\mathbb{O} \otimes \mathbb{R}$, he curve will be retraced and the material returns to its original length.	
	0	The point B is called yield point and the value of stress at this point B is called elastic	
R	NN	linut (@)	
ЯĿ	UU	PAST PAPER SHORT QUESTION	
\cup	(22)	Differentiate between ductile and brittle substances. Give an example of each.	
		LHR-2019 (G-II)	
	(23)	Define stress and strain, what are their SI units. MIRPUR (AJK) 2017, LHR-2019 (G-II)	
	(24)	Distinguish between elastic deformation and plastic deformation.	
		GRW-2019 (G-II)	
	(25)	Differentiate between young modulus Y and bulk modulus K.	
	(20)	BWP-2019 (G-II), LHR-2021 (G-I), FSD-2022 (G-II)	
	(26)	Define Bulk modulus and give its units. SGD-2017 (G-II)	
	(27)	Differentiate between ductile and brittle substances. Give an example of each.	
	(=-)	SGD-2017 (G-II), RWP-2019 (G-I), LRH-2022 (G-II)	
	(28)	Differentiate between ductile and Brittle substances. SWL-2017, MTN-2019 (G-I & II)	
	(29)	Which is more elastic, steel or rubble? Why? MTN-2019 (G-II)	
	(2) (30)	Draw a stress-strain curve for a ductile material and then define the terms:	
	(30)	(i) Elastic limit. (ii) Ultimate tensile stress. LRH-2022 (G-I)	
	(31)	Show that units of modulus of elasticity and stress are the same. LRH-2022 (G-II)	
	(32)	Define elastic limit and yield point. DGK-2022 (G-I)	
	(33)	Define modulus of elasticity. Write down its three kinds. RWP-2022 (G-II)	
	(34)	Define the term yield point and ultimate tensile stress. FSD-2022 (G-I)	
	(35)	What is meant by strain energy.FSD-2022 (G-II)	5
		17.3 ELECTRICAL PROPERTIES OF SOLIDS	
	(36)	Discuss the nature of energy gap between a conduction and valuate band in semi-	
		conductors?	
	Ans:	In semi-conductors valance band and conduction band has very small energy gap. At	
		room temperature electors jump from valance to conduction band. This energy is	
	(27)	supplied by room temperature.	
	(37)	What is neant by valance band and conduction band?	
	Ans:	Vala ice Blund	

A cance occupied by valance electrons is known as valance band. It may be completely or partially filled.

Conduction Band

A band which lies above the valance band. It may be partially filled or empty.

(38) How the conductivity of Semiconductor can be raised?

	Ans:	Conductivity of semiconductor can be raised by the process of d suitable atoms in controlled amount, in the intrinsic semicon- ductivity of a semiconductor can also be increased by the effort of	onductor. Moreover,
	(20)	conductivity of a semiconductor can also be increased by the effect of What is the difference between intrinsic and extrinsic semicondu	
	(39)	Intrinsic Semiconductor	Closs
	Ans:		
		A semiconductor in its purest form is called intrinsic semiconductor.	
		Example. Pure Si & Ge are intrinsic semiconductors. Extrinsic Service aductor	
		If impurity is added to the vern conductor, then it is called extrinsic semic	conductor
	-	There are two types:	conductor.
3	ANA.	(z) n – type	
	UV	(b) $p - type$	
J	(40)	Give the order of conductivity of (i) conductors (ii) semiconductor	ors.
	Ans:	(i) Conductors have conductivities of the order of $10^7 (\Omega m)^{-1}$	
		(ii) Semiconductors have conductivities of the order of 10^{-6} to 10^{-4}	$\left(\Omega m\right)^{-1}$.
	(41)	How the conductivity of a conductor can be raised?	
	Ans:	As the temperature of the conductor decreases, the amplitude of vib	ration of the atoms in
		the lattice decreases. The probability of their collisions with free ele	ectrons also decreases
		and hence conductivity increases.	
	(42)	What is meant by energy band theory?	
	Ans:	The theory based in the wave mechanical model which explain the	e vast diversity in the
		electrical behavior of insulator, semiconductor and conductors is called	energy band theory.
	(43)	Distinguish a donor atom from an acceptor atom.	
	Ans:	Donor atoms: If we add the impurity atoms from the 5^{th} group of el	
		semiconductor, then the four electrons of the impurity atom combi	
		semiconductor, and one electron is left free. So that it can donate	
		impurity is known as donor impurity and the atom is called donor ato	
		Accepter atom: If we add the impurity with the 3^{rd} group of ele	
		electrons of impurity atom combines with the three holes and one h	
		accept an electron such impurity is known as acceptor impurity an	nd the atom is called
	(44)	acceptor atom. Describe briefly the formation of energy bands in semi-conducto	
	Ans:	Semiconductors are those materials which at room temperature have	
		(i) partially filled conduction band (ii) partially filled valence can	d (i i) a very narrow
		forbidden energy gap (of the order of shout 1 eV) between the co	n luction and valence
		bands.	
		PAST PAPER SHORT QUESTION	
	(45)	Distinguish between intrinsic and extrinsic semi-conductors. Ho	w would you obtain
	OF	n-type and p type materials from pure silicon?	
N	11/11		I), GRW-2019 (G-II)
Ľ	(46)	Why charge carriers are not present in the depletion region?	LHR-2021 (G-I)
	(47)	Differentiate between N-type and P-type substances.	LHR-2021 (G-II)
	(48)	Distinguish between a valence and conduction band.	SGD-2017 (G-I)

	(49)	What is mechanism of electrical conduction by holes and electrons in a pure semiconductor element?
	(50)	Distinguish between intrinsic and extrinsic semiconductors?
	(21)	DGK-2017 (G-II), f WP-2022 (G-I), R WP-2022 (G-I)
	(51)	How would you obtain N-type and P-type material from pure silicon? Illiterate it by schematic diagram SWL-2019
	(52)	Describe energy band picture of insulator? LHR-2022 (G-I)
	(53)	What is deping? Why Intrinsic semiconductors are doped? DGK-2022 (G-II)
N	M	Mollul 17.4 SUPERCONDUCTORS
$ \rangle$	(54)	What do you mean by curie temperature?
)	Ans:	Such a temperature at which domains of ferromagnetic material start losing their
		orderliness is called curie temperature. At the temperature above the curie temperature
		the material is para magnetic. For example, iron has curie temperature of 750°C.
	(55)	What do you mean by high temperature super conductor?
	Ans:	Any super conductor with a critical temperature above 77K, the boiling point of liquid
		nitrogen, is referred as a high temperature super conductor.
	(56)	Why Si or Ge show semiconductor behavior at room temperature?
	Ans:	At 0K, there are no electrons in the conduction band of pure Ge and Si materials and their
		valance band are completely filled. It means that, at 0K a piece of Ge and Si is a perfect
		insulator. However, with increase in temperature, some electrons possess sufficient
		energy to jump across small energy gap from valance to conduction band. This transfers
		some free electrons in the conduction band. The vacancy of electron in the valance band
		is known as a hole. It behave like positive charge. Thus at room temperature, Ge and Si
	/ \	becomes a semiconductor.
	(57)	What are superconductors? Define their critical temperature.
	Ans:	Super Conductors: "These are the solid materials whose resistivity is exactly equal to zero.
		Below a certain temperature"
		Critical Temperature: "The temperature of a conductor
		at which its resistivity drops to exactly zero and becomes a superconductor is called critical temperature as shown $\rho(\Omega_{(0)})$
		a superconductor is cancel critical temperatide, as showing
		below in graph. $T_c = 1.18$ K for aluminium
		$T_{c} = 3.72 \text{ K for tin.}$ $T_{c} = 162 \text{ K for complex crystalline structure known as} \xrightarrow{0 T_{c} \rightarrow T}$
		yttium Barium copper oxide (YBa2Cu3O7)
	(58)	Define super conductors. Write down its two technological applications.
N	Ans:	The materials, whose resistivity is zero below a certain temperature are called super

- conductor".
- (i) Magnetic Resonance Imaging (MRI). Magnetic resonance Imaging (MRI) uses strong magnetic field produce by super conducting material for scanning. Computer processing produces the image identifying tumors and inflamed tissues.

Chapter–17

B

D

(b) Hysteresis loop of soft nor

(ii) Magnetic levitation Trains: A bullet train is lifted above the rails due to magnetic effect, thus friction is reduced to minimum and speed can be increased up to 500 kmh^{-1} .

PAST PAPER SHOPT OUESTION LAR-2021 (G-II), RWF-2022 (G-I)

- (59) Write a note on superconductors.
- Define super conductor and critical temperature. **M**: **RPUR (AJK) 2017** (60)
- What do you mean by Carie temperature? Whit the Carie temperature of iron (61) SWL-2019, RWP-2022 (G-I)
- What are conductors and surer conductors? Give one example for each. BWP-2019 (G-II) (62)
- What are super conductors? Give two uses of super conductors. (63)**BWP-2022 (G-I) BWP-2022 (G-II)**

Define critical temperature and curie temperature. (64)

17.5 MAGNETIC PROPERTIES OF SOLIDS

How domains are formed in ferromagnetic materials? (65)

There are some materials F_e, Co, Ni, chromium dioxide and Alnico called ferromagnetic Ans: materials. In these substances there are small regions in which atoms cooperate with each other in such a way so as to exhibit a strong magnetic effect. These regions are called domains. The domains are of macroscopic size of the order of millimeters or less but large enough to contain 10^{12} to 10^{16} .

(66) Define coercivity.

- Ans: To demagnetize the material, the magnetizing current is reversed. Current increase till magnetization reduces to zero. This reverse current is called coercive current represented by C on the curve.
- (67) Define saturation and remanence of hysteresis loop.

Ans: **Saturation**

(69)

Ans:

The magnetic flux density increases from zero & reaches a maximum value. Now material is magnetically saturated. It is shown by point A on graph.

Remanence or Retantivity

When the current is reduced to zero, the material still remains strongly magnetized shown by the point R. It is due to the tendency of domains to stay partly in line, once they have been aligned.

- What is meant by hysteresis loop? (68)
- Hysteresis Loop: "It is a graph of magnetic flux density E for a material versus the Ans: magnetizing current, and is in the form of a closed loop". It is show below Area of this loop is a measure of the energy needed to magnetize and demagnetize the specimen during one cycle of magnetizing current I.

What is meant by magnetic resonance imaging (MRI)?

is technique in which strong magnetic field is produced by super conducting material for scanning computer processing. This scanning produces the image identifying tumors and inflamed tissues.

(70)What is meant by hysteresis loss?

- Ans: The area of the hysteresis loop measures the energy required to magnetize & demagnetize the substance in each cycle. This energy is required to do work against internal friction of the domains. This energy appears as heat dissipated and is called hysteresis loss.
- (71) What is meant by coercive current?
- Ans: The reverse current which is need to demagnetize a material is know as coercive current.
- Coercivity of steel is more than iron? Why? (72)
- Becaule more current is need to magnetize steel than iron, when the material becomes Ans: magnet, magnatization curve never passes through the origin.
- (73)Energy dissipated per cycle for steel is more as compared to iron. Why?

Ans: Steel is difficult to magnetize or demagnetize Hence, area of loop is large for steel while energy loss per cycle for iron is small.

- (74) What are soft magnetic material and why?
- Iron is a soft magnetic material because its domain can arranged easily. Ans:
- (75) What is meant by domain?
- A small region of a substance, where 10^{12} to 10^{16} atoms are present in lmm portion is Ans: called domain. Each domain acts like a separate magnet.
- (76) What is squid and where is it used?
- Ans: Squids (or super conducting quantum interference devices) are used to detect very weak magnetic field such as produced by the brain.
- With reference to energy, distinguish between orbital electrons and free electrons. (77)
- The electron that revolve in an orbit about the nucleus of an atom is called orbital Ans: electron.

When a valence electron of a metal gets energy at room temperature then it can freely move in lattice called free electron.

- (78) What are ferromagnetic substances?
- Ferromagnetic Substances: "These are the substances whose magnetic dipole moments are Ans: fully aligned parallel to each other." Examples are: Fe, Co, Ni, Alnico, Chromium oxide.
 - (i) They exhibit large magnetism as compared to all other substances.
 - **(ii)** They preserve the orderliness of their dipole moments at ordinary temperatures.
- (79) What are the responsible factors for production of magnetic field in an atom:
- Ans: Spinning and orbital motion of an electron in an atom generates magnetic field. The charged nucleus itself spin giving rise to a magnetic field but it is much weaker than orbital electrons.

FAST PAPER SHORT QUESTION

What is meant by hysteresis loss? Explain briefly. (80)LHR-2017 (G-I) Distinguish between elastic deformation and plastic deformation. (8N) **GRW-2019 (G-II)** What is meant by para, dia and ferromagnetic substances? LHR-2021 (G-I) **32)** (83) What is meant by hysteresis loss? How is its used in the construction of a transformer? LHR-2021 (G-II) **DGK-2017 (G-I)**

(84) Define and explain the term of 'coercivity'. GWR 2014

MMM

- (85) What do you mean by hysteresis and hysteresis loss? How it is used in construction transformer.
 DGK-2017 (G-I), SWL-2017, 2019 FSD-2022 (G-F)
- (86) Distinguish between soft and hard magnetic material with examples.
 - MTN-2019 (G-II), R. VP-2022 (G-II) FSD-2022 (G-I)
- (87) What is meant by hysteresis loss? **EW P-2522** (C-II), **L** B **R** · 2022 (C-II), **DGK-2022** (G-I)

