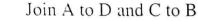
DXBRCISE 11

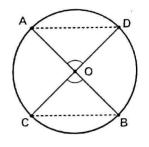
Q.1In a circle two equal diameters \overline{AB} and \overline{CD} intersect each other. Prove that mAD = mBC.

Given: A circle with centre "O". Two diameters

 \overline{AB} and \overline{BC} , intersecting at point O.

mAD = mBCTo Prove:





Proof:

Construction:

Statements	Reasons
In $\triangle AOD \leftrightarrow \triangle BOC$	
$\overline{OA} \cong \overline{OB}$	Radii of the same circle
∠AOD ≅ ∠BOC	Vertical angles are congruent
$\overline{OD} \cong \overline{OC}$	Radii of the same circle
$\therefore \Delta AOD \cong \Delta BOC$	$S. A. S \cong S. A. S$
$\overline{AD} \cong \overline{BC}$	Corresponding sides of congruent triangle
Or $m\overline{AD} = \overline{mBC}$	

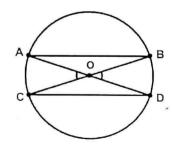
Q.2. In a circle prove that the arcs between two parallel and equal chords are equal.

A circle with centre O. Two chords AB and CD Such that

 $\overline{AB} \parallel \overline{CD}$ and $\overline{mAB} = \overline{mCD}$

To Prove: $\widehat{MAC} = \widehat{MBD}$

Construction: Join A to D and B to C. Such that AD and $\overline{\text{CD}}$ intersect each other at central point O.



Proof:

Statements	Reasons
AD and BC are line segment intersecting at centre O.	
∠AOC and ∠BOD are central angles.	Angle subtended at centre.
m∠AOC = m∠BOD	Vertical angles
$\widehat{\text{mAC}} = \widehat{\text{mBB}}$	Within the same circle arcs opposite
mAC = mBB	to the equal central angles are equal.

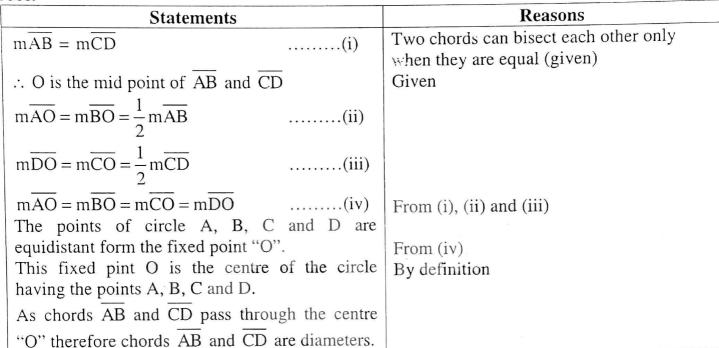
Q.3. Give a geometric proof that a pair of bisecting chords are the diameters of a circle.

Given: A circle and two chords AB and CD bisecting each other at point O. i.e.

$$\overline{\text{mAO}} = \overline{\text{mOB}}$$
 and $\overline{\text{mCO}} = \overline{\text{mOD}}$

To Prove: Chords AB and CD are diameters.

Proof:



O.4. If C is the midpoint of an arc ACB in a circle with centre O. Show that line segment OC bisects the chord AB.

Given: A circle with centre "O" ACB is an arc with C as its midpoint and $\widehat{MAC} = \widehat{MCB}$. Center "O" is joined with C such that \overline{OC} meets \overline{AB} at M.

To Prove: $\overline{MAM} = \overline{MBM}$

Construction: Join center "O" with A and B to make central angle AOB.

Proof:	C
Statements	Reasons
∠AOB is central angle	Construction
$\therefore m \angle 1 = m \angle 2 \dots (i)$	C is the midpoint of \widehat{ACB} (Given)
In $\triangle AOM \longleftrightarrow \triangle BOM$ $\overline{OM} \cong \overline{OM}$ $\angle 1 \cong \angle 2$ $\overline{OA} \cong \overline{OB}$ $\triangle AOM \cong \triangle BOM$ $\overline{AM} \cong \overline{BM}$	Common Proved Radii of the same Circle $S.A.S \cong S.A.S$ Corresponding sides of congruent triangles.
Hence $mAM = mBM$	