EXERCISE 12.1

Q.1 Prove that in a given cyclic quadrilateral, sum of opposite angles is two right angles and conversely.

Given:

A circle with centre "O"

ABCD is a cyclic quadrilateral

To Prove:

 $m\angle B + m\angle D = 180^{\circ}$

 $m\angle BCD + m\angle DAB = 180^{\circ}$

Construction: Join O with A and C

Proof:

11001.	В	
Statements	Reasons	
$m\angle 1 = 2m\angle D(i)$	$\angle 1$, $\angle 2$ are central angles and $\angle D$, $\angle B$ are	
$m\angle 2 = 2m\angle B(ii)$	circum angles in Arcs	
$m\angle 1 + m\angle 2 = 2m\angle D + 2m\angle B$	Adding (i) and (ii)	
$m\angle 1 + m\angle 2 = 2(m\angle D + m\angle B)$		
or $2(m\angle D + m\angle B) = m\angle 1 + m\angle 2$	By symmetric property	
$2(m\angle D + m\angle B) = 360^{\circ}$	Sum of all central angles is 360°	
$m\angle D + m\angle B = \frac{360^{\circ}}{2}$	Dividing by 2	
$m\angle D + m\angle B = 180^{\circ}$		
Similarly m∠BCD + m∠DAB=180°		

Q.2 Show that parallelogram inscribed in a circle will be a rectangle.

Given: ABCD is a parallelogram inscribed in the circle with centre "O"

$$m\overline{AB} = m\overline{DC}$$
 and $\overline{AB} \parallel \overline{DC}$
 $m\overline{AD} = m\overline{BC}$ and $\overline{AD} \parallel \overline{BC}$

To Prove:

ABCD is a rectangle

Construction: Join A with C

Proof:

Statements	Reasons
In $\triangle ABC \leftrightarrow \triangle ADC$	
$m\overline{AC} = m\overline{AC}$	Common
$m\overline{AB} = m\overline{DC}$	Given
$m\overline{BC} = m\overline{AD}$	Given
$\triangle ABC \cong \triangle ADC$	$S.S. S \cong S. S. S$
Thus, $m \angle B = m \angle D$ (i)	Corresponding angles of congruent triangles
$m\angle B + m\angle D = 180^{\circ}(ii)$	Opposite angles of parallelogram
\Rightarrow m\(B = m\(D = 90^\circ\)	From (i)
Similarly $m\angle BAD = m\angle BCD = 90^{\circ}$	From (i) and (ii)
Hence ABCD is rectangle	

Q.3 AOB and COD are two intersecting chords of a circle. Show that Δ^s AOD and BOC are equiangular.

Given: In a circle \overrightarrow{AOB} and \overrightarrow{COD} are two intersecting chords at point O.

To Prove: \triangle AOD and \triangle BOC are equiangular

Construction: Join A with C and D. Join B with C and D.

Proof:

Statements	Reasons
$m \angle 1 \cong m \angle 2(i)$	Vertical angles
\overline{AC} is chord and angles $\angle 3$, $\angle 4$ are in the same segment.	
$\angle 3 \cong \angle 4(ii)$	
Now \overline{BD} is chord and angles $\angle 5$, $\angle 6$ are in the same	
segments	
Therefore $\angle 5 \cong \angle 6$ (iii)	
Thus, ΔAOD and ΔBOC are equiangular	From (i), (ii) and (iii)

Q.4 AD and \overrightarrow{BC} are two parallel chords of a circle prove that arc $\overrightarrow{AB} \cong \overrightarrow{are}$ CD and arc $\overrightarrow{AC} \cong \overrightarrow{arc}$ BD.

Given: A circle with centre "O". Two chords \overline{AD} and \overline{BC} are such that $\overline{AD} \parallel \overline{BC}$.

To Prove: arc $AB \cong arc CD$ and $arc AC \cong arc BD$

Construction: Join A to B and C. Join D to B and C. \overline{AC} and \overline{BD} intersect each other at point E. some angles are named as $\angle 1, \angle 2, \angle 3, \angle 4, \angle 5, \angle 6$.

Proof:

1001.			
	Statements		Reasons
	$m\angle 1 = m\angle 3$.	(i)	Angles inscribed by an arc in the same segment
	$m\angle 2 = m\angle 4$.	(ii)	are equal.
		(iii)	Alternate angles are congruent $(\overline{AD} \parallel \overline{BC})$
		(iv)	\ /
	$m\angle 1 = m\angle 2$.	(v)	From (i) and (iii)
In	$\triangle AEB \leftrightarrow \triangle DEC$		From (ii) and (iii)
	$\overline{AE} \cong \overline{ED}$		Side opposite to equal angles (v)
	$m\angle 5 = m\angle 6$		vertical angles
	$\overline{\mathrm{BE}}\cong\overline{\mathrm{EC}}$		Sides opposite to equal angles (iv)
·:.	$\triangle AED \cong \triangle DEC$		$S.A.S \cong S.A.S$
	$\overline{AB} \cong \overline{CD}$		Corresponding sides of congruent.
Thus	$arc AB \cong arc CD$ (Hence Proved)	Arcs corresponding to congruent chords are
	$\widehat{mBC} \cong \widehat{mCB}$		congruent.
	$\widehat{mBA} + \widehat{mAC} = \widehat{mCD} +$	· mDB	Self congruent
	$\widehat{\text{mAB}} + \widehat{\text{mAC}} = \widehat{\text{mAB}}$	+mRD	Son congraent
		+ IIIDD	AD a ma CD asset
	$\widehat{MAC} = \widehat{MBD}$		\therefore arc AB \cong arc CD proved
or	arc AC≅arcBD (Hence proved)	