- i. Let C, D, E and F be the four points on the given arc *AB*.
- ii. Draw chord \overline{CD} and \overline{EF} .
- iii. Draw \overrightarrow{PQ} as perpendicular bisector of \overrightarrow{CD} and \overrightarrow{LM} as perpendicular bisector of \overrightarrow{EF}
- iv. LM and PQ intersect at O. Therefore, O is equidistant from points A,B,C,D,E and F.
- v. Complete the circle with centre O and radius $(m\overline{OA} = m\overline{OB} = m\overline{OC} = m\overline{OD} = m\overline{OE} = m\overline{OF})$. This will pass through all the points A, B, C, D, E and F on the given part of the circumference.
- 4. To complete the circle without finding the center when a part of its circumference is given.

Given: \widehat{AB} is Part of circumference of a circle.

Steps of Construction:

- i. Take a chord CD of reasonable length on the arc AB.
- ii. Construct an internal angle of 120° at point D and draw a line segment \overline{DE} equal to the length of \overline{CD} .
- iii. At point E again construct an internal angle of 120° and from point E draw line segment \overline{EF} of length equal to \overline{CD} etc.
- iv. Continue this practice until we reach at the starting point.
- v. Now join the points D, E, F, G, H and C by arcs DE, EF and FG, GH and HC all having length equal to the length of arc CD.

As a result we get a circle including the given part of circumference.

EXERCISE 13.1

- Q.1 Divide an arc of any length
 - (i) Into three equal parts
 - (ii) Into four equal parts
 - (iii) Into six equal parts

Solution:

(i) Three equal parts

Steps of Construction:

- i. Take an arc AC of any length.
- ii. Take any point B on the arc AC and join A to B and B to C.
- iii. Draw right bisectors \overrightarrow{PQ} and \overrightarrow{LM} of \overrightarrow{AB} and \overrightarrow{BC} respectively, which meet each other at point "O". Point O is the centre of circle having the arc AC.
- iv. Join end points of arc AC with centre O to form central angle AOC.
- v. Measure the central angle and divide it into three equal central angles cutting the arc AC at points D and E.
- vi. Arcs of same radii corresponding to equal central angles are equal. Thus three equal parts of the arc ABC are $\widehat{mAD} = \widehat{mDE} = \widehat{mEC}$.

(ii) Four equal parts

- i. Take an arc AC of any length.
- ii. Take any point B on the arc AC and join A to B and B to C.
- iii. Draw right bisectors \overrightarrow{PQ} and \overrightarrow{LM} of \overrightarrow{AB} and \overrightarrow{BC} respectively, which meet each other at point "O". Point O is the centre of circle having the arc AC.
- iv. Join end points of arc AC with centre O to form central angle AOC.
- v. Measure the central angle and divide it into four equal central angles cutting the arc AC at points D, E and F.
- vi. Arcs of same radii corresponding to equal central angles are equal. Thus four equal parts of the arc ABC

are $\widehat{mAD} = \widehat{mDE} = \widehat{mEF} = \widehat{mFC}$.

(iii)Six equal parts

Steps of Construction:

- i. Take an arc AC of any length.
- ii. Take any point B on the arc AC and join A to B and B to C.
- iii. Draw right bisectors \overrightarrow{PQ} and \overrightarrow{LM} of \overrightarrow{AB} and \overrightarrow{BC} respectively, which meet each other at point "O". Point O is the centre of circle having the arc AC.
- iv. Join end points of arc AC with centre O to form central angle AOC.
- v. Measure the central angle and divide it into six equal central angles cutting the arc AC at points D, E, F, G and H.

Arcs of same radii corresponding to equal central angles are equal. Thus six equal parts of the arc ABC are $\widehat{mAD} = \widehat{mDE} = \widehat{mEF} = \widehat{mFG} = \widehat{mGH} = \widehat{mHC}$

Q.2 Practically find the centre of an arc ABC

Steps of Construction:

- i. We draw an arc ABC of any length.
- ii. We draw line segments \overline{AB} and BC.
- iii. We draw right bisectors of \overline{AB} and BC, intersecting each other at point O.
- iv. Point 'O' is the required centre of arc ABC.
- Q. 3 (i) If $|\overline{AB}| = 3cm$ and $|\overline{BC}| = 4cm$ arc the lengths of two chords of an arc, then locate the centre of the arc.

Steps of Construction:

- i. We draw $|\overline{AB}| = 3cm$ and $|\overline{BC}| = 4cm$, inclined at any angle.
- ii. We draw right bisectors of \overline{AB} and \overline{BC} intersecting each other at point O, which is the required centre of arc ABC.
- iii. Taking centre 'O', we draw an arc ABC of radius $\overline{mOA} = \overline{mOB} = \overline{mOC}$
- (ii) If $|\overline{AB}| = 3.5 \text{ cm}$ and $|\overline{BC}| = 5 \text{ cm}$ are the lengths of two chords of an arc, then locate the centre of the arc.

- . We draw $|\overline{AB}| = 3.5cm$ and $|\overline{BC}| = 5cm$, inclined at any angle.
- ii. We draw right bisectors of \overline{AB} and \overline{BC} intersecting each other at point O, which is the required centre of arc ABC.
- iii. Taking centre 'O', we draw an arc ABC of radius $m\overline{OA} = m\overline{OB} = m\overline{OC}$.
- 4. For an arc draw two perpendicular bisectors of the chords \overline{PQ} and \overline{QR} of this arc, construct a circle through P, Q and R.

Steps of construction:

- i. We take an arc PQR of any length.
- ii. We take two chords PQ and QR of any lengths of arc PQR.
- iii. We draw right bisectors of \overline{PQ} and \overline{QR} , intersecting each other at point 'O', which is the centre of arc PQR.
- iv. Taking 'O' as centre, we complete the required circle passing through P, Q and R.
- 5. Describe a circle of radius 5 cm passing through points A and B, 6 cm apart. Also find distance from the centre to line AB.

Steps of Construction:

- i. We draw a line segment \overline{AB} of length 6cm.
- ii. We draw right bisector of AB intersecting it at point 'C'.
- iii. From points A and B we draw arcs of radius 5cm each, intersecting the bisector at point O.
- iv. Taking 'O' as centre we draw a circle of radius 5 cm passing through the points A and B.
- v. To find the distance of centre O from \overline{AB} , we consider right angle ΔOAC .

By Pythagorean Theorem

$$(m\overline{OC})^{2} + (m\overline{AC})^{2} = (m\overline{OA})^{2}$$
$$(m\overline{OC})^{2} + (3)^{2} = (5)^{2}$$
$$(m\overline{OC})^{2} = 25 - 9$$
$$(m\overline{OC})^{2} = 16$$

 $= 4 \text{ cm } m\overline{OC}$

6. If $|\overline{AB}| = 4cm$ and $|\overline{BC}| = 6cm$, such that \overline{AB} is perpendicular to \overline{BC} , construct a circle through points A, B and C. Also measure its radiu

- i. We draw \overline{AB} and \overline{BC} , 4 cm and 6 cm long respectively, perpendicular to each other.
- ii. We draw right bisectors of AB and BC, intersecting each other at point 'O'.
- iii. Taking 'O' as centre we draw a circle of radius $m\overline{OA} = m\overline{OB} = m\overline{OC}$ passing through the points A, B and C.
- iv. The radius of this circle is measured to be 3.6 cm.
- v. By Pythagoras theorem $r^2 = 2^2 + 3^2$

$$r^2 = 2^2 + 3^2$$

$$r^2 = 4 + 9$$

$$\sqrt{r^2} = \sqrt{13}$$

r = 3.6cm

CIRCLES ATTACHED TO **POLYGONS**

1. Circum circle:

The circle passing through the vertices of triangle ABC is known as circum circle, its radius as circum radius and centre as circum centre.

Circumscribe a circle about a given triangle.

Given: Triangle ABC

Steps of Construction:

- i. Draw LMN as perpendicular bisector of side AB.
- ii. Draw PQR as perpendicular bisector of side \overline{AC} .
- iii. LN and PR intersect at point O.
- iv. With centre O and radius $m \overline{OA} = m \overline{OB} = m \overline{OC}$, draw a circle.

This circle will pass through A, B and C whereas O is the circum centre of the circumscribed circle.

2. Inscribed circle or In-circle:

A circle which touches the three sides of a triangle internally is known as in-circle, its radius as in-radius and centre as in-centre.

Inscribe a circle in a given triangle.

Given: A Triangle ABC

Steps of Construction:

- i. Draw \overrightarrow{BE} and \overrightarrow{CF} to bisect the angles ABCand ACB respectively. Rays \overrightarrow{BE} and \overrightarrow{CF} intersect each other at point O.
- ii. O is the centre of the inscribed circle.
- iii. From O draw \overrightarrow{OP} perpendicular to \overrightarrow{BC} .
- iv. With centre O and radius *OP* draw a circle. This circle is the inscribed circle of triangle ABC:

3. Escribed Circle:

The circle touching one side of the triangle externally and other two produced sides internally is called escribed circle (e-circle). The centre of e-circle is called e-centre and radius is called e-radius.

Escribe a circle to a given triangle,

Given: A Triangle ABC

Steps of Construction:

- i. Produce the sides \overline{AB} and \overline{AC} of ΔABC .
- ii. Draw bisectors of exterior angles *EBC* and *FCB*. These bisectors of exterior angles meet at I₁
- iii. From I_1 draw perpendicular on side \overline{BC} of ΔABC intersecting \overline{BC} at D. $\overline{I_1D}$ is the radius of the escribed circle with centre at I_1 .
- iv. Draw the circle with radius $\overline{I_1D}$ and centre at I_1 that will touch the side BC of the ΔABC externally and the produced sides AB and AC internally.
- 4. Circumscribe an equilateral triangle about a given circle.

Given: A circle with centre O of reasonable radius.

Steps of Construction:

- i. Draw \overline{AB} the diameter of the circle for locating.
- ii. Draw an arc of radius mOA with centre at A, to locate points C and D on the circle.
- iii. Join O to the points C and D.
- iv. Draw tangents to the circle at points B, C and D.

- v. These tangents intersect at point E, F and G. Thus Δ EFG is required equilateral triangle.
- 5. Inscribe an equilateral triangle in a given circle.

Given: A circle with centre at O.

Steps of Construction:

- i. Draw any diameter AB of circle.
- ii. Draw an arc of radius $m\overline{OA}$ from point A. The arc cuts the circle at points C and D.
- iii. Join the points B, C and D to form straight line segments \overline{BC} , \overline{CD} and \overline{BD} .
- iv. Triangle BCD is the required inscribed equilateral triangle.
- 6. Circumscribe a square about a given circle.

Given: A circle with centre at O.

Steps of Construction:

- i. Draw two diameters \overline{PR} and \overline{QS} which bisect each other at right tangle.
- ii. At points P, Q, R and S draw tangents to the circle.
- iii. Produce the tangents to meet each other at A, B, C and D. ABCD is the required circumscribed square.
- 7. Inscribe a square in a given circle.

Given: A circle with centre at *O*.

- i. Through O draw two diameters \overline{AC} and \overline{BD} which bisect each other at right angle.
- ii. Join A with B, B with C, C with D, and D with A.
- **iii.** ABCD is the required square inscribed in the circle.
- 8. Circumscribe a regular hexagon about a given circle.

Given: A circle, with centre at O.

Steps of Construction:

- i. Draw any diameter \overline{AD} .
- ii. From point A, draw an arc of radius \overline{OA} which intersects the circle at points B and F.
- iii. Join B with O and extend it to meet the circle at E.
- iv. Join F with O and extend it to meet the circle at C.

- v. Draw tangents to the circle at points A, B, C, D, E and F intersecting one another at points P, Q, R, S, T and U respectively.
- vi. Thus PQRSTU is the circumscribed regular hexagon.
- 9. Inscribe a regular hexagon in a given circle:

Given: A circle, with centre at O.

Steps of Construction:

- i. Take any point A on the circle with centreO.
- ii. From point A, draw an arc of radius \overline{OA} which intersects the circle at point B and F.
- iii. Join O and A with points B and F.
- iv. $\triangle OAB$ and $\triangle OAF$ are equilateral triangles therefore $\angle AOB$ and $\angle AOF$ are of measure 60° i.e., $m\overline{OA} = m\overline{AB} = m\overline{AF}$.
- v. Produce FO to meet the circle at C. Join B to C. Since $m\angle BOC = 60$ therefore $m\overline{BC} = m\overline{OA}$.
- vi. From C and F, draw arcs of radius \overline{OA} , which intersect the circle at points D and E.
- vii. Join C to D, D to E to F. So, we have mOA = mOB = mOC = mOD = mOE = mOFThus the figure ABCDEF is a regular hexagon inscribed in the circle.