EXERCISE 13.2

Q. 1 Circumscribe a circle about a triangle ABC with sides $|\overline{AB}| = 6 \text{cm}$, $|\overline{BC}| = 3 \text{cm}$ and $|\overline{CA}| = 4 \text{cm}$. Also measure its circum radius. Solution:

Data: $|\overline{AB}| = 6cm$, $|\overline{BC}| = 3cm$, $|\overline{CA}| = 4cm$

Steps of construction:

- i. We construct triangle ABC according to given condition.
- ii. We draw right bisectors \overrightarrow{OP} , \overrightarrow{OQ} and \overrightarrow{OR} of sides \overrightarrow{AB} , \overrightarrow{BC} and \overrightarrow{CA} respectively, concurrent at point 'O'.
- iii. Taking 'O' as centre and radius equal to mOA or mOB or mOC, we draw a circle passing through the vertices A, B and C.
- iv. This is the required circum circle, whose radius is measured to be 3.3 cm.
- Q. 2 Inscribe a circle in a triangle ABC with side $|\overline{AB}| = 5 \text{cm}$, $|\overline{BC}| = 3 \text{cm}$ and $|\overline{CA}| = 3 \text{cm}$. Also measure its in-radius.

Solution:

Data: $|\overline{AB}| = 5cm$, $|\overline{AB}| = 5cm$, $|\overline{CA}| = 3cm$

Steps of construction:

- i. We construct triangle ABC according to given condition.
- ii. We draw bisectors of ∠A and ∠B intersecting each other at point 'O'.
- iii. From point O, we draw \overrightarrow{OP} perpendicular to \overrightarrow{AB} .
- iv. Taking 'O' as centre and radius equal to $\overline{\text{mOP}}$, we draw a circle, touching three sides of triangle internally.
- v. This is the required in-circle whose radius is measured to be 0.8 cm.
- Q. 3 Escribe a circle opposite to vertex A to a triangle ABC with sides $|AB| = 6 \, \text{cm}$, $|BC| = 4 \, \text{cm}$ and $|CA| = 3 \, \text{cm}$. Find its radius also. Solution:

Data: |AB| = 6 cm, |BC| = 4 cm, |CA| = 3 cm

Steps of construction:

- i. We construct a triangle ABC according to given condition.
- ii. We produce the sides \overline{AB} and \overline{AC} beyond B and C respectively.
- iii. We draw, bisectors of exterior angles at points B and C, intersecting each other at point I₁.
- iv. From point I_1 , we draw $\overrightarrow{I_1P}$ perpendicular to \overrightarrow{AB} produced.
- v. Taking I_1 , as centre and radius equal to I_1P , we draw a circle, touching one side of ΔABC externally and other two produced sides internally.
- vi. This is the required escribed circle, whose radius is measured to be 2.2 cm.

Q. 4 Circumscribe a circle about an equilateral triangle ABC with each side of length 4cm.

Solution:

Data: $m\overline{AB} = m\overline{BC} = m\overline{CA} = 4cm$

Steps of construction:

- i. We construct equilateral triangle ABC with each side 4cm long.
- ii. We draw right bisectors \overrightarrow{PQ} and \overrightarrow{RS} of side \overrightarrow{BC} and \overrightarrow{AC} respectively intersecting each other at point O.
- iii. Taking O as centre and radius equal to mOA or mOB or mOC, we draw a circle passing through the points A, B and C.
- iv. This is our required circum circle whose radius is measured to be 2.3 cm.
- Q. 5 Inscribe a circle in an equilateral triangle ABC with each side of length 5cm. Solution:

Data: $m\overline{AB} = m\overline{BC} = m\overline{CA} = 5cm$

Steps of construction:

- i. We construct equilateral triangle ABC with each side 5cm long.
- ii. We draw bisectors of ∠A and ∠B intersecting each other at point 'O'.
- iii. From point O, we draw \overrightarrow{OP} perpendicular to \overrightarrow{AB} .
- iv. Taking 'O' as centre and radius equal to \overline{OP} , we draw a circle, touching three sides of triangle internally.
- v. This is the required in-circle whose radius is measured to be 1.4 cm.
- Q. 6 Circumscribe and inscribe circles with regard to a right angle triangle with sides 3cm, 4cm and 5cm.

Solution:

Let

 $\overline{MAB} = 3cm$, $\overline{MBC} = 4cm$ and $\overline{MCA} = 5cm$

a. Circum Circle:

Steps of construction:

- i. We construct right angle triangle ABC with sides 3cm, 4cm and 5cm.
- ii. We draw right bisectors \overrightarrow{PQ} and \overrightarrow{RS} of side \overrightarrow{AB} and \overrightarrow{BC} respectively intersecting each other at point O.
- iii. Taking O as centre and radius equal to mOA or mOB or mOC, we draw a circle passing through the points A, B and C.
- iv. This is our required circum circle whose radius is measured to be 2.5 cm.

b. Inscribed Circle

Steps of construction:

- i. We construct right angle triangle ABC according to given condition.
- ii. We draw bisectors of ∠A and ∠B intersecting each other at point 'O'.
- iii. From point O, we draw \overrightarrow{OP} perpendicular to \overrightarrow{AB} .
- iv. Taking 'O' as centre and radius equal to \overline{OP} , we draw a circle, touching three sides of triangle internally.
- v. This is the required in-circle whose radius is measured to be 1 cm.
- Q. 7 In and about a circle of radius 4 cm describe a square.

Solution:

a. Square in the Circle

Steps of construction:

- i. We draw a circle with centre 'O' of radius 4cm.
- ii. We draw two diameters \overline{AC} and \overline{BD} of circle perpendicular to each other.
- iii. By joining points A with B, B with C, C with D and D with A, we get the required square inscribed in the given circle.

(b) Square about the Circle

Steps of Construction:

- i. We draw a circle with centre "O' and a radius 4cm.
- ii. We draw two diameters PR and QS of circle perpendicular to each other.
- iii. We draw tangents to the circle at points P, Q, R and S.
- iv. We produce the tangents to meet each other at point A, B, C and D.
- v. ABCD is the required circumscribed square.
- Q. 8 In and about a circle of radius 3.5 cm describe a hexagon.
 - a. Hexagon in the Circle:

Steps of Construction:

- i. We draw a circle with centre 'O' of radius 3.5 cm.
- ii. We take a point A anywhere on the circle and draw the radial segment \overline{OA} .
- iii. From point A, we draw an arc of radius \overline{OA} which intersects the circle at point B.
- iv. By joining 'O' with A and B we get an equilateral triangle OAB, so that the angle subtended by the chord at the centre is 60°.
- v. From point B, we draw an arc of same radius intersecting the circle at point C, then joining B to C we get another chord \overline{BC} .
- vi. We continue to draw the arcs, which cut the circle at points D, E and F, such that $m\overline{OA} = m\overline{AB} = m\overline{BC} = m\overline{CD}$ $= m\overline{DE} = m\overline{EF} = m\overline{FA}$
- vii. We draw end to end on the circle the \overline{six} chords \overline{AB} , \overline{BC} , \overline{CD} , \overline{DE} , \overline{EF} and \overline{FA} , which completes the required hexagon

b. Hexagon about the Circle:

Steps Construction:

- i. We draw a circle with centre 'O' of radius 3.5 cm.
- ii. We take a point A anywhere on the circle and draw the radial segment \overline{OA} .
- iii. From point A, we draw an arc of radius \overline{OA} , which intersects the circle at point B.

- iv. From point B, we draw an arc of same radius intersecting the circle at point C.
- v. We continue to draw the arcs, which cut the circle at points D, E and F.
- vi. We draw the diameters \overline{AD} , \overline{BE} and \overline{CF} .
- vii. We draw tangents at points A, B, C, D, E and F to the circle.
- viii. We produce the tangents to meet each other at points P, Q, R, S, T and U.
- ix. PQRSTU is the required circumscribed hexagon.
- Q. 9 Circumscribe a regular hexagon about a circle of radius 3 cm.

Steps Construction:

- i. We draw a circle with centre 'O' of radius 3 cm.
- ii. We take a point A anywhere on the circle and draw radial segment \overline{OA} .
- iii. From point A, we draw an arc of radius \overline{OA} , which intersects the circle at point B.
- iv. From point B, we draw an arc of same radius intersecting the circle at point C.
 - v. We continue to draw the arcs, which cut the circle at points D, E and F.
 - vi. We draw diameter \overline{AD} , \overline{BE} and \overline{CF} .
 - vii. We draw tangents at points A, B, C, D, E and F to the circle.
 - viii. We produce the tangents to meet each other at points P, Q, R, S, T and U.
 - ix. PQRSTU is the required circumscribed hexagon.