EXERCISE 2.1

Q.1 Find the discriminant of the following given quadratic equation.

Solutions:

(i)
$$2x^2 + 3x - 1 = 0$$

$$As ax^2 + bx + c = 0$$

$$\Rightarrow$$
 a = 2, b = 3, c = -1

Disc. =
$$b^2 - 4ac$$

= $(3)^2 - 4(2)(-1)$
= $9 + 8$
= 17

(ii)
$$6x^2 - 8x + 3 = 0$$

$$As ax^2 + bx + c = 0$$

$$\Rightarrow a=6, b=-8, c=3$$

Disc. =
$$b^2 - 4ac$$

= $(-8)^2 - 4(6)(3)$
= $64 - 72$
= -8

(iii)
$$9x^2 - 30x + 25 = 0$$

$$As ax^2 + bx + c = 0$$

$$\Rightarrow a = 9, b = -30, c = 25$$

$$Dis = b^{2} - 4ac$$

$$= (-30)^{2} - 4(9)(25)$$

$$= 900 - 900$$

$$= 0$$

(iv)
$$4x^2 - 7x - 2 = 0$$

$$As ax^2 + bx + c = 0$$

$$\Rightarrow$$
 a = 4, b = -7, c = -2

Disc =
$$b^2 - 4ac$$

= $(-7)^2 - 4(4)(-2)$
= $49 + 32$
= 81

Q.2 Find the nature of the roots of the following given quadratic equations and verify the result by solving the equations

(i)
$$x^2 - 23x + 120 = 0$$

Solutions:

$$x^{2} - 23x + 120 = 0$$
As $ax^{2} + bx + c = 0$

$$\Rightarrow a = 1, b = -23, c = 120$$
Disc = $b^{2} - 4ac$

$$= (-23)^{2} - 4(1)(120)$$

$$= 529 - 480$$

$$= 49$$

$$= (7)^{2}$$

As Disc. is positive and perfect square, therefore roots of equation are real, rational and un equal.

Verification.

Now solving the Equation

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-(-23) \pm \sqrt{(-23)^2 - 4(1)(120)}}{2(1)}$$

$$x = \frac{23 \pm \sqrt{529 - 480}}{2}$$

$$x = \frac{23 \pm \sqrt{49}}{2}$$

$$x = \frac{23 \pm 7}{2}$$

$$x = \frac{23+7}{2}$$
 or $x = \frac{23-7}{2}$

$$x = \frac{30}{2} \qquad \text{or} \qquad x = \frac{16}{2}$$

$$x = 15 \qquad \text{or} \qquad x = 8$$

Thus roots are real, rational and unequal.

(ii)
$$2x^2 + 3x + 7 = 0$$

As $ax^2 + bx + c = 0$
 $\Rightarrow a = 2$, $b = 3$, $c = 7$
Disc = $b^2 - 4ac$
= $(3)^2 - 4(2)(7)$
= $9 - 56$
= $-47 < 0$

As Disc. is negative, therefore roots of the equation are imaginary(complex conjugates)

Verification

We verify the results by solving the equation.

$$2x^{2} + 3x + 7 = 0$$

$$a = 2, b = 3, c = 7$$

$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$x = \frac{-3 \pm \sqrt{(3)^{2} - 4(2)(7)}}{2(2)}$$

$$x = \frac{-3 \pm \sqrt{9 - 56}}{4}$$

$$x = \frac{-3 \pm \sqrt{-47}}{4}$$

Thus roots are imaginary.

(iii)
$$16x^2 - 24x + 9 = 0$$

As $ax^2 + bx + c = 0$
 $\Rightarrow a = 16$, $b = -24$, $c = 9$
Disc = $b^2 - 4ac$
= $(-24)^2 - 4(16)(9)$
= $576 - 576$
= 0

As Disc. = 0 therefore roots of equation are rational (real) and equal.

Verification:

We verify the result by solving the equation.

Here

$$a = 16$$
, $b = -24$, $c = 9$
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-(-24) \pm \sqrt{(-24)^2 - 4(16)(9)}}{2(16)}$$

$$x = \frac{24 \pm \sqrt{576 - 576}}{32}$$

$$x = \frac{24 \pm \sqrt{0}}{32}$$

$$x = \frac{24 \pm 0}{32}$$

$$x = \frac{24 + 0}{32} \quad \text{or} \quad x = \frac{24 - 0}{32}$$

$$x = \frac{24}{32} \quad \text{or} \quad x = \frac{24}{32}$$

$$x = \frac{3}{4} \quad \text{or} \quad x = \frac{3}{4}$$

Thus roots are rational (real) and equal.

(iv)
$$3x^2 + 7x - 13 = 0$$

As $ax^2 + bx + c = 0$
 $\Rightarrow a = 3, b = 7, c = -13$
Disc = $b^2 - 4ac$
= $(7)^2 - 4(3)(-13)$
= $49 + 156$
= 205

Therefore roots of equation are real, irrational, and unequal.

Verification:

We verify the result by solving the equation.

$$3x^{2} + 7x - 13 = 0$$

$$a=3, b=7, c = -13$$

$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$x = \frac{-7 \pm \sqrt{(7)^{2} - 4(3)(-13)}}{2(3)}$$

$$x = \frac{-7 \pm \sqrt{49 + 156}}{6}$$

$$x = \frac{-7 \pm \sqrt{205}}{6}$$

Thus roots are real, irrational and unequal.

Q.3 For what value of k, the expression $k^2x^2 + 2(k+1)x + 4$ is perfect square.

Solution:

$$a = k^{2}, b = 2(k+1), c = 4$$

$$b^{2} - 4ac = [2(k+1)]^{2} - 4(k^{2})(4)$$

$$= 2^{2}(k+1)^{2} - 16k^{2}$$

$$= 4(k^{2} + 2k + 1) - 16k^{2}$$

$$= 4k^{2} + 8k + 4 - 16k^{2}$$

$$= -12k^{2} + 8k + 4$$

As given that expression is perfect square therefore

$$Disc = 0$$

$$-12k^{2} + 8k + 4 = 0$$

$$-4(3k^{2} - 2k - 1) = 0$$

$$3k^{2} - 2k - 1 = 0 \qquad (\because -4 \neq 0)$$

$$3k^{2} - 3k + k - 1 = 0$$

$$3k(k - 1) + 1(k - 1) = 0$$

$$(k - 1)(3k + 1) = 0$$

$$k - 1 = 0 \qquad \text{or} \qquad 3k + 1 = 0$$

$$k = 0 + 1 \qquad \text{or} \qquad 3k = 0 - 1$$

$$k = 1 \qquad \text{or} \qquad k = \frac{-1}{3}$$

So values of k are 1 and $\frac{-1}{3}$

Q.4 Find the value of K, if the roots of the following equations are equal.

Solution:

(i)
$$(2k-1)x^2 + 3kx + 3 = 0$$

As $ax^2 + bx + c = 0$
 $a = 2k-1$, $b = 3k$, $c = 3$
Disc. $= b^2 - 4ac$
 $= (3k)^2 - 4(2k-1)(3)$
 $= 9k^2 - 12(2k-1)$
 $= 9k^2 - 24k + 12$

As the roots of given equation are equal, So Disc. = 0

$$9k^2 - 24k + 12 = 0$$

$$3(3k^2 - 8k + 4) = 0$$

$$3k^{2} - 8k + 4 = 0 \qquad (\because 3 \neq 0)$$

$$3k^{2} - 6k - 2k + 4 = 0$$

$$3k(k-2) - 2(k-2) = 0$$

$$(k-2)(3k-2) = 0$$
Either $k-2=0$ or $3k-2=0$

$$k=2 \text{ or } 3k=2$$

$$or \quad k = \frac{2}{3}$$
So values of k are 2 and $\frac{2}{3}$

So values of k are 2 and $\frac{2}{3}$

(ii)
$$x^2 + 2(k+2)x + (3k+4) = 0$$

Solution:

As
$$ax^2 + bx + c = 0$$

 $a = 1$, $b = 2(k+2)$, $c = 3k+4$
Disc. $= b^2 - 4ac$
 $= [2(k+2)]^2 - 4(1)(3k+4)$
 $= 4(k+2)^2 - 4(3k+4)$
 $= 4(k^2 + 4k + 4) - 12k - 16$
 $= 4k^2 + 16k + 16 - 12k - 16$
 $= 4k^2 + 4k$
 $= 4k(k+1)$

As roots of given equation are equal, so

Disc. =
$$0$$

 $4k(k+1) = 0$

Either
$$4k = 0$$
 or $k+1=0$
As $4 \neq 0$ or $k = -1$
 $\Rightarrow k = 0$

So values of k are 0 and -1

(iii)
$$(3k+2)x^2 - 5(k+1)x + (2k+3) = 0$$

Solution:

As
$$ax^2 + bx + c = 0$$

 $a = (3k+2) \ b = -5(k+1), c = 2k+3$
Disc $= b^2 - 4ac$
 $= [-5(k+1)]^2 - 4(3k+2)(2k+3)$
 $= (-5)^2(k+1)^2 - 4(6k^2 + 9k + 4k + 6)$
 $= 25[k^2 + 2(k)(1) + 1^2] - 4(6k^2 + 13k + 6)$

$$= 25k^{2} + 50k + 25 - 24k^{2} - 52k - 24$$

$$= k^{2} - 2k + 1$$

$$= k^{2} - k - k + 1$$

$$= k(k-1) - 1(k-1)$$

$$= (k-1)(k-1)$$

As root of given equation are equal Disc = 0

$$(k-1)(k-1) = 0$$

$$k - 1 = 0$$
 or $k - 1 = 0$

$$k = 1$$
 or $k = 1$

So values of k is 1

Q.5 Show that the equation $x^2 + (mx + c)^2 = a^2$ has equal roots if $c^2 = a^2(1 + m^2)$

Solution: We have given

$$x^{2} + (mx + c)^{2} = a^{2}$$

$$x^{2} + (mx)^{2} + (c)^{2} + 2(mx)(c) = a^{2}$$

$$x^{2} + m^{2}x^{2} + c^{2} + 2mcx - a^{2} = 0$$

$$(1 + m^{2})x^{2} + 2mcx + c^{2} - a^{2} = 0$$

$$Ax^{2} + Bx + C = 0$$

$$A = (1 + m^{2}), B = 2mc, C = c^{2} - a^{2}$$

Disc =
$$B^2 - 4AC$$

= $(2mc)^2 - 4(1+m^2)(c^2 - a^2)$
= $4m^2c^2 - 4(c^2 - a^2 + m^2c^2 - a^2m^2)$
= $4m^2c^2 - 4c^2 + 4a^2 - 4m^2c^2 + 4a^2m^2$
= $-4c^2 + 4a^2 + 4a^2m^2$

As roots of the equation are equal,

So Disc = 0

$$-4c^{2} + 4a^{2} + 4a^{2}m^{2} = 0$$

$$-4\left[c^{2} - a^{2} - a^{2}m^{2}\right] = 0$$
As $-4 \neq 0$, so $c^{2} - a^{2} - a^{2}m^{2} = 0$

$$c^{2} = a^{2} + a^{2}m^{2}$$

$$c^{2} = a^{2}(1 + m^{2})$$

Hence proved

Q.6 Find the condition that the roots of the equation $(mx+c)^2 - 4ax = 0$ are equal Solution: We have given

$$(mx+c)^2 - 4ax = 0$$

$$(mx^2)+(c)^2+2(mx)(c)-4ax=0$$

$$m^2x^2 + c^2 + 2mcx - 4ax = 0$$

$$m^2x^2 + (2mc - 4a)x + c^2 = 0$$

$$Ax^2 + Bx + C = 0$$

$$A = m^2$$
, $B = 2mc - 4a$, $C = c^2$

Disc. =
$$B^2 - 4AC$$

$$=(2mc-4a)^2-4(m^2)(c^2)$$

$$= (2mc)^{2} + (4a)^{2} - 2(2mc)(4a) - 4m^{2}c^{2}$$

$$=4m^2c^2+16a^2-16acm-4m^2c^2$$

$$=16a^2-16acm$$

$$=16a(a-mc)$$

As root of the equation are equal,

So
$$Disc = 0$$

$$16a(a - mc) = 0$$

Either
$$16a = 0$$
 or $a - mc = 0$

As
$$16 \neq 0$$
 So $a = 0$ or $a = mc$

Thus required condition is a=0 or a=mc

Q.7 If the roots of the equation $(c^2 - ab)x^2 - 2(a^2 - bc)x + (b^2 - ac) = 0$ are equal, then a = 0 or $a^3 + b^3 + c^3 = 3abc$ Solution: We have given

$$(c^{2} - ab)x^{2} - 2(a^{2} - bc)x + (b^{2} - ac) = 0$$
$$Ax^{2} + Bx + C = 0$$

$$A = (c^2 - ab), B = -2(a^2 - bc), C = (b^2 - ac)$$

Disc. =
$$B^2 - 4AC$$

$$= \left[-2(a^2 - bc) \right]^2 - 4(c^2 - ab)(b^2 - ac)$$

$$= (-2)^{2} (a^{2} - bc)^{2} - 4(c^{2} - ab)(b^{2} - ac)$$

$$=4[(a^2)^2+(bc)^2-2(a^2)(bc)]-4(b^2c^2-ac^3-ab^3+a^2bc)$$

$$=4(a^{4}+b^{2}c^{2}-2a^{2}bx)-4(b^{2}c^{2}-ac^{3}-ab^{3}+a^{2}bx)$$

$$=4a^4 + 4b^2c^2 - 8a^2bc - 4b^2c^2 + 4ac^3 + 4ab^3 - 4a^2bc$$

$$= 4a4 + 4ac3 + 4ab3 - 12a2bc$$
$$= 4a(a3 + b3 + c3 - 3abc)$$

If roots of given equation are equal, then

Disc. = 0

$$4a(a^3 + b^3 + c^3 - 3abc) = 0$$

 $4a = 0$ or $a^3 + b^3 + c^3 - 3abc = 0$
 $4 \neq 0$, or $a^3 + b^3 + c^3 = 3abc$
 $a = 0$

Q.8 Show that the roots of the following equations are rational

Solution:

As

So.

(i)
$$a(b-c)x^2 + b(c-a)x + c(a-b) = 0$$

 $Ax^2 + Bx + C = 0$
 $A = a(b-c)$, $B = b(c-a)$, $C = c(a-b)$
Disc. $= B^2 - 4AC$
 $= [b(c-a)]^2 - 4[a(b-c)c(a-b)]$
 $= b^2(c-a)^2 - 4[ac(b-c)(a-b)]$
 $= b^2(c^2 + a^2 - 2ac) - 4ac(ab-b^2 - ca+bc)$
 $= b^2c^2 + a^2b^2 - 2ab^2c - 4a^2bc + 4ab^2c + 4c^2a^2 - 4abc^2$
 $= a^2b^2 + b^2c^2 + 4c^2a^2 + 2ab^2c - 4abc^2 - 4a^2bc$

By using formula

$$(A+B+C)^{2} = A^{2} + B^{2} + C^{2} + 2AB + 2BC + 2CA$$
So,
$$= [(ab) + (bc) + (-2ca)]^{2}$$

$$= (ab+bc-2ca)^{2} > 0$$

+2(bc)(-2ca)+2(-2ca)(ab)

 $=(ab)^{2}+(bc)^{2}+(-2ca)^{2}+2(ab)(bc)$

As Disc. is perfect square so the roots of equations are rational.

(ii)
$$(a+2b) x^2 + 2(a+b+c) x + (a+2c) = 0$$

Solution:

$$A = a+2b$$
, $B=2(a+b+c)$, $C=(a+2c)$
Disc. $=B^2-4AC$
 $= [2(a+b+c)]^2-4(a+2b)(a+2c)$

$$= 4[a^{2}+b^{2}+c^{2}+2ab+2bc+2ca]-4(a^{2}+2ac+2ab+4bc)$$

$$= 4a^{2}+4b^{2}+4c^{2}+8ab+8bc+8ca-4a^{2}-8ac-8ab-16bc$$

$$= 4b^{2}+4c^{2}+8bc-16bc$$

$$= 4b^{2}+4c^{2}-8bc$$

$$= (2b)^{2}+(2c)^{2}-2 (2b) (2c)$$

$$= (2b-2c)^{2} > 0$$

As Disc. is perfect square therefore roots, are rational (real and unequal)

Q.9. For all values of K, Prove that the Roots, of the Equation.

$$x^{2}-2\left(k+\frac{1}{k}\right)x+3=0, \ k\neq 0 \ \text{are real}$$

Solution. a=1,
$$b-2\left(k+\frac{1}{k}\right)$$
, $c=3$

Disc. =
$$b^2 - 4ac$$

= $\left[-2\left(k + \frac{1}{k}\right) \right]^2 - 4(1)(3)$
= $4\left(k + \frac{1}{k}\right)^2 - 12$
= $4\left[\left(k + \frac{1}{k}\right)^2 - 3\right]$
= $4\left[k^2 + \frac{1}{k^2} + 2(k)\left(\frac{1}{k}\right) - 3\right]$
= $4\left[k^2 + \frac{1}{k^2} + 2 - 3\right]$
= $4\left[k^2 + \frac{1}{k^2} - 1\right]$
= $4\left[(k)^2 + \left(\frac{1}{k}\right)^2 - 2 + 1\right]$
= $4\left[(k)^2 + \left(\frac{1}{k}\right)^2 - 2(k)\left(\frac{1}{k}\right) + 1\right]$
= $4\left[\left(k - \frac{1}{k}\right)^2 + 1\right] > 0$

As Disc. is positive so roots of the given equation are real.

Q.10. Show that the roots of the equation $(b-c)x^2+(c-a)x+(a-b)=0$ are real.

Solution:
$$(b-c)x^2+(c-a)x+(a-b) = 0$$
 are real.
Solution: $(b-c)x^2+(c-a)x+(a-b) = 0$
 $Ax^2 + Bx + C = 0$
 $A = (b-c)$, $B = (c-a)$, $C = (a-b)$
Disc= $B^2 - 4AC$
= $(c-a)^2-4(b-c)(a-b)$
= $(c^2+a^2-2ca)-4$ $(ab-b^2-ca+bc)$
= $c^2+a^2-2ca-4ab+4b^2+4ca-4bc$
= $c^2+a^2+4b^2+2ca-4bc-4ab$
= $a^2+4b^2+c^2-4ab-4bc+2ca$
= $(a)^2+(-2b)^2+(c)^2+2(a)(-2b)+2(-2b)(c)+(c)(a)$
= $(a-2b+c)^2$

Perfect square shows that the roots of the given equation are real.

Cube Roots of Unity:

Solution:

Let a number x be the cube root of unity

i.e.,
$$x = (1)^{\frac{1}{3}}$$

or $x^3 = 1$
 $\Rightarrow x^3 - 1 = 0$
 $(x^3) - (1)^3 = 0$
 $(x-1)(x^2 + x + 1) = 0$
[Using $a^3 - b^3 = (a-b)(a^2 + ab + b^2)$]
Either $x - 1 = 0$ or $x^2 + x + 1 = 0$
 $\Rightarrow x = 1$

Now we solve $x^2 + x + 1 = 0$ by formula

a = 1 , b = 1 , c = 1

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-1 \pm \sqrt{(1)^2 - 4(1)(1)}}{2(1)}$$

$$x = -1 \pm \sqrt{1 - 4} = -1 \pm \sqrt{-3} = -1 \pm i\sqrt{3}$$

$$2 = -1 \pm i\sqrt{3}$$

:. Three cube roots of unity are

1,
$$\frac{-1+i\sqrt{3}}{2}$$
 and $\frac{-1-i\sqrt{3}}{2}$, where $i = \sqrt{-1}$

Recognise complex cube roots of unity as

ω and ω^2

The two complex cube roots of unity are $-1+\sqrt{-3}$ and 2 and 2

If we name anyone of these as ω (pronounced as omega), then the other is ω^2 .

Properties of cube root of unity

(a) Prove that each of the complex cube roots of unity is the square of the other.

Proof: The complex cube roots of unity are

$$-1+\sqrt{-3}$$
 and $-1-\sqrt{-3}$

We prove that

Thus, each of the complex cube root of unity is the square of the other, that is,

If
$$\omega = \frac{-1+\sqrt{-3}}{2}$$
, then $\omega^2 = \frac{-1-\sqrt{-3}}{2}$ and if $\omega = \frac{-1-\sqrt{-3}}{2}$, $\omega^2 = \frac{-1+\sqrt{-3}}{2}$

(b) Prove that the product of three cube roots of unity is one.

Proof: Three cube roots of unity are

1.
$$\omega = \frac{-1 + \sqrt{-3}}{2}$$
 and $\omega^2 = \frac{-1 - \sqrt{-3}}{2}$

The product of cube roots of unity

$$1.\omega.\omega^2 = (1) \begin{pmatrix} -1+\sqrt{-3} \\ 2 \end{pmatrix} \begin{pmatrix} -1-\sqrt{-3} \\ 2 \end{pmatrix}$$

$$1.\omega.\omega^{2} = \frac{(-1)^{2} - (\sqrt{-3})^{2}}{4}$$

$$1.\omega.\omega^{2} = \frac{1 - (-3)}{4} = \frac{1 + 3}{4} = \frac{4}{4} = 1$$
i.e., (1) $(\omega)(\omega^{2}) = 1$ or

(c) Prove that each complex cube root of unity is reciprocal of the other.

Proof: We know that

$$\omega^3 = 1$$
 \Rightarrow ω . $\omega^2 = 1$, so $\omega = \frac{1}{\omega^2}$ or $\omega^2 = \frac{1}{\omega}$

Thus, each complex cube root of unity is reciprocal of the other.

(d) Prove that the sum of all the cube roots of unity is zero.

i.e.,
$$1 + \omega + \omega^2 = 0$$

Proof: The cube roots of unity are

1,
$$-1+\sqrt{-3}$$
 and $-1-\sqrt{-3}$

If
$$\omega = \frac{-1 + \sqrt{-3}}{2}$$
, and $\omega^2 = \frac{-1 - \sqrt{-3}}{2}$

The sum of all the roots

$$1 + \omega + \omega^{2} = 1 + \frac{-1 + \sqrt{-3}}{2} + \frac{-1 - \sqrt{-3}}{2}$$

$$= \frac{2 - 1 + \sqrt{-3} - 1 - \sqrt{-3}}{2}$$

$$= \frac{2 - 2}{2} = \frac{0}{2} = 0$$
Thus, $1 + \omega + \omega^{2} = 0$

Use of properties of cube roots of unity to solve appropriate problems.

We can reduce the higher powers of ω into 1, ω and ω^2 .

e.g.,
$$\omega^7 = (\omega^3)^2$$
. $\omega = (1)^2$. $\omega = \omega$
 $\omega^{23} = (\omega^3)^7$. $\omega^2 = (1)^2$. $\omega^2 = \omega^2$
 $\omega^{63} = (\omega^3)^{21}$. $(1)^{21} = 1$

$$\omega^{-5} = \frac{1}{\omega^5} = \frac{1}{\omega^3} = \frac{\omega^3}{\omega^2} = \omega$$

$$(::\omega^3=1)$$

$$\omega^{-16} = \frac{1}{\omega^{16}} = \frac{1}{\omega^{15}.\omega} = \frac{1}{\left(\omega^3\right)^5.\omega}$$
$$= \frac{1}{\left(1\right)^5.\omega} = \frac{\omega^3}{\omega} = \omega^2$$

$$\omega^{-27} = \frac{1}{\omega^{27}} = \frac{1}{(\omega^3)^9} = \frac{1}{(1)^9} = 1$$

Example 1: Evaluate $(-1+\sqrt{-3})^8+(-1-\sqrt{3})^8$.

Solution:
$$(-1+\sqrt{-3})^8+(-1-\sqrt{3})^8$$

$$= \left[2\left(\frac{-1+\sqrt{-3}}{2}\right) \right]^{8} + \left[2\left(\frac{-1-\sqrt{-3}}{2}\right) \right]^{8}$$

$$= (2\omega)^{8} + (2\omega^{2})^{8}$$

$$= 256 \omega^{8} + 256 \omega^{16}$$

$$= 256 \left[(\omega^{8} + \omega^{16}) \right]$$

$$= 256 \left[(\omega^{3})^{2} \cdot (\omega^{2} + (\omega^{3})^{5} \cdot (\omega)) \right] (\because \omega^{3} = 1)$$

$$= 256 \left[(\omega^{2} + \omega) \right] (\omega + \omega^{2} = -1)$$

= 256 (-1) = -256Example 2: Prove that

$$\frac{1}{x^3 - y^3} = (x - y)(x - \omega y)(x - \omega^2 y)$$

Solution: $x^3 - y^3 = (x - y)(x - \omega y)(x - \omega^2 y)$.

R.H.S =
$$(x - y) (x - \omega y) (x - \omega^2 y)$$

= $(x - y) [x^2 - \omega^2 xy - \omega xy + \omega^3 y^2]$
= $(x - y) [x^2 - xy (\omega^2 + \omega) + (1)y^2]$
= $(x - y) [x^2 - xy (-1) + y^2]$
= $(x - y) [x^2 + xy + y^2]$
= $x^3 - y^3 = \text{L.H.S}$