EXERCISE 4.1

Resolve into partial fractions.

Q.1
$$\frac{7x-9}{(x+1)(x-3)}$$

Solution:
$$\frac{7x-9}{(x+1)(x-3)}$$

Let
$$\frac{7x-9}{(x+1)(x-3)} = \frac{A}{x+1} + \frac{B}{x-3}$$
.....(i)

Multiplying equation (i) by (x + 1)(x - 3)

$$7x - 9 = A(x - 3) + B(x + 1)$$
 (ii)

As equation (ii) is an identity which is true for all values of x.

Put
$$x - 3 = 0$$
 i.e $x = 3$ and

Put
$$x + 1 = 0$$
 i.e $x = -1$

Putting x = 3 and x = -1 in (ii) we get

For
$$x = 3$$
 For $x = -1$
 $7(3)-9 = +B(3+1)$ $7(-1)-9 = A(-1-3)$
 $21-9 = 4B$ $-7-9 = -4A$
 $12 = 4B$ $-16 = -4A$
 $\Rightarrow B=3$ $A=4$

Putting the value of A and B in equation (i)

We get the required partial fractions as.

$$\frac{4}{x+1} + \frac{3}{x-3}$$

Thus
$$\frac{7x-9}{(x+1)(x-3)} = \frac{4}{x+1} + \frac{3}{x-3}$$

$$Q.2 \qquad \frac{x-11}{(x-4)(x+3)}$$

Solution:
$$\frac{x-11}{(x-4)(x+3)}$$

Let
$$\frac{x-11}{(x-4)(x+3)} = \frac{A}{x-4} + \frac{B}{x+3}$$
....(i)

Multiplying by (x-4)(x+3) on both sides, we get x-11 = A(x+3) + B(x-4)... (ii)

As equation (ii) is an identity which is true for all value of x.

Putting
$$x + 3 = 0$$
 i.e $x = -3$
and $x - 4 = 0$ i.e $x = 4$ in (ii) we get
For $x = -3$ | For $x = 4$
 $-3 - 11 = B(-3 - 4) | 4 - 11 = A(4 + 3)$
 $-14 = -7B$ | $-7 = 7A$
 $\Rightarrow B = 2$ | $\Rightarrow A = -1$

Hence the required partial fractions are

$$\frac{x-11}{(x-4)(x+3)} = \frac{-1}{x-4} + \frac{2}{x+3}$$

Q.3
$$\frac{3x-1}{x^2-1}$$

Solution: $\frac{3x-1}{x^2-1}$

$$\frac{3x-1}{x^2-1} = \frac{3x-1}{(x-1)(x+1)}$$

Let
$$\frac{3x-1}{(x-1)(x+1)} = \frac{A}{x-1} + \frac{B}{x+1} \dots (i)$$

Multiplying both sides by (x-1)(x+1), we get

$$3x - 1 = A(x + 1) + B(x-1)$$
(ii)

As equation (ii) is an identity which is true for all values of x.

Let
$$x + 1 = 0$$
 i.e $x = -1$ and $x - 1 = 0$ i.e $x = 1$

Putting x = -1 and x = 1 in (ii) We get

For
$$x = 1$$

$$3(1) - 1 = A (1 + 1)$$

$$3 - 1 = 2A$$

$$2 = 2A$$

$$\Rightarrow A = 1$$
For $x = -1$

$$3(-1) - 1 = B (-1 - 1)$$

$$-3 - 1 = -2B$$

$$-4 = -2B$$

$$\Rightarrow B = 2$$

Hence the required partial fractions are

$$\frac{3x-1}{(x-1)(x+1)} = \frac{1}{x-1} + \frac{2}{x+1}$$

Q.4
$$\frac{x-5}{x^2+2x-3}$$

Solution:
$$\frac{x-5}{x^2+2x-3} = \frac{x-5}{x^2+3x-x-3} = \frac{x-5}{x^2+3x-x-3} = \frac{x-5}{x(x+3)-1(x+3)} = \frac{x-5}{(x-1)(x+3)} = \frac{A}{x-1} + \frac{B}{x+3} \dots (i)$$

Multiplying both sides by
$$(x-1)(x+3)$$
, we get $x - 5 = A(x + 3) + B(x - 1)...$ (ii)

As equation (ii) is an identity which is true for all values of x.

Let
$$x+3 = 0 \Rightarrow x = -3$$

and $x-1 = 0 \Rightarrow x = 1$

Putting x = -3 and x=1 in equation (ii) we get

For
$$x = -3$$

$$-3 - 5 = +B (-3-1)$$

$$-8 = -4B$$

$$B = \frac{-8}{-4}$$

$$B = 2$$
For $x = 1$

$$1 - 5 = A (1 + 3)$$

$$-4 = 4A$$

$$A = \frac{-4}{4}$$

$$A = -1$$

Hence the required partial fractions are

$$\frac{x-5}{x^2+2x-3} = \frac{-1}{x-1} + \frac{2}{x+3}$$

$$0.5 = \frac{3x+3}{x^2+2x-3}$$

$$Q.5 \qquad \frac{3x+3}{(x-1)(x+2)}$$

Solution: $\frac{3x+3}{(x-1)(x+2)}$

Let
$$\frac{3x+3}{(x-1)(x+2)} = \frac{A}{x-1} + \frac{B}{x+2}$$
....(i)

Multiplying both sides by (x-1)(x+2), we get 3x + 3 = A(x + 2) + B(x - 1).....(ii)

As equation (ii) is an identity which is true for all values of x.

Let
$$x-1=0$$
 i.e $x = 1$
and $x + 2 = 0$ i.e $x = -2$

Putting x = 1 and x = -2 in equation (ii) we get

For
$$x = 1$$
 $3(1) + 3 = A(1 + 2)$
 $3 + 3 = 3A$
 $6 = 3A$
 $A = \frac{6}{3}$

$$A = \frac{6}{3}$$
For $x = -2$
 $3(-2) + 3 = B(-2 - 1)$
 $-6 + 3 = -3B$

$$-3 = -3B$$

$$B = \frac{-3}{-3}$$

$$\Rightarrow \boxed{A = 2}$$

$$\Rightarrow \boxed{B = 1}$$

Hence the required partial fractions are

$$\frac{3x+3}{(x-1)(x+2)} = \frac{2}{x-1} + \frac{1}{x+2}$$

Q.6
$$\frac{7x-25}{(x-4)(x-3)}$$

Solution:
$$\frac{7x-25}{(x-4)(x-3)}$$

Let
$$\frac{7x-25}{(x-4)(x-3)} = \frac{A}{x-4} + \frac{B}{x-3}$$

Multiplying both sides by (x-4)(x-3), we get

$$7x - 25 = A(x - 3) + B(x - 4)....(ii)$$

As equation (ii) is an identity which is true for all values of x.

Let
$$x-3=0$$
 i.e $x=3$
and $x-4=0$ i.e $x=4$

Putting x = 3 and x = 4 in equation (ii) we get

For x = 3

$$7(3) - 25 = B(3 - 4)$$
 For x = 4
 $7(4) - 25 = A(4 - 3)$
 $21 - 25 = -B$ $28 - 25 = 1A$
 $-4 = -B$ $3 = A$
 $\Rightarrow B = 4$ $\Rightarrow A = 3$

Hence the required partial fractions are

$$\frac{7x-25}{(x-4)(x-3)} = \frac{3}{x-4} + \frac{4}{x-3}$$

Q.7
$$\frac{x^2+2x+1}{(x-2)(x+3)}$$

Solution: $\frac{x^2+2x+1}{(x-2)(x+3)}$ is an improper

fraction. First we resolve it into proper fraction.

By long division we get

$$x^{2} + x - 6\sqrt{x^{2} + 2x + 1}$$

$$\pm x^{2} \pm x + 6$$

$$x + 7$$

We have
$$\frac{x^2 + 2x + 1}{x^2 + x - 6} = 1 + \frac{x + 7}{x^2 + x - 6}$$
Let
$$\frac{x + 7}{(x - 2)(x + 3)} = \frac{A}{x - 2} + \frac{B}{x + 3} \dots (i)$$

Multiplying both sides by (x-2)(x+3), we get x + 7 = A(x+3) + B(x-2).....(ii)

As equation (ii) is an identity which is true for all values of x.

Let
$$x + 3 = 0$$
 i.e $x = -3$
and $x - 2 = 0$ i.e $x = 2$

Putting x = -3 and x = 2 in equation (ii) we get

For
$$x = -3$$

$$-3 + 7 = B(-3 - 2)$$

$$4 = -5 B$$

$$\Rightarrow B = -\frac{4}{5}$$
For $x = 2$

$$2 + 7 = A(2 + 3)$$

$$9 = 5A$$

$$\Rightarrow A = \frac{9}{5}$$

Hence the required partial fractions are

$$\frac{x^2 + 2x + 1}{(x-2)(x+3)} = 1 + \frac{9}{5(x-2)} - \frac{4}{5(x+3)}$$

$$Q.8 \qquad \frac{6x^3 + 5x^2 - 7}{3x^2 - 2x - 1}$$

Solution: $\frac{6x^3 + 5x^2 - 7}{3x^2 - 2x - 1}$ is an improper fraction.

First we resolve it into proper fraction.

$$3 x^{2} - 2 x - 1 \sqrt{6 x^{3} + 5 x^{2} - 7} \\
\pm 6 x^{3} + 4 x^{2} + 2 x \\
\hline
9 x^{2} + 2 x - 7 \\
\pm 9 x^{2} + 6 x + 3 \\
\hline
8 x - 4$$

$$\frac{6x^3 + 5x^2 - 7}{3x^2 - 2x - 1} = (2x + 3) + \frac{8x - 4}{(3x + 1)(x - 1)}$$

Now, Let
$$\frac{8x-4}{(3x+1)(x-1)} = \frac{A}{3x+1} + \frac{B}{x-1}$$

.....(i)

Multiplying both sides by (3x+1)(x-1), we get

$$8x - 4 = A(x - 1) + B(3x + 1)....(ii)$$

As equation (ii) is an identity which is true for all values of x.

Let
$$x-1 = 0$$
 i.e $x = 1$
and $3x + 1 = 0$ i.e $x = -\frac{1}{3}$

Putting x = 1 and $x = \frac{-1}{3}$ in equation (ii) we get

For
$$x = 1$$

$$8(1) - 4 = B [3(1) + 1]$$

$$-4 = 4B$$

$$4 = 4B$$

$$3 - 4 = A(-1 - 3)$$

$$-8 - 12$$

$$3 - 8(-1)$$

$$-8 - 4 = A(-1 - 3)$$

$$3 - 8 - 12$$

$$3 - 8 - 12$$

$$3 - 8 - 12$$

$$3 - 8 - 12$$

$$3 - 8 - 12$$

$$3 - 8 - 12$$

$$3 - 8 - 12$$

$$3 - 8 - 12$$

$$3 - 8 - 12$$

$$3 - 8 - 12$$

$$3 - 8 - 12$$

$$3 - 8 - 12$$

$$3 - 8 - 12$$

$$3 - 8 - 12$$

$$3 - 12$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$4 - 13$$

$$3 - 13$$

$$3 - 13$$

$$4 - 13$$

$$3 - 13$$

$$3 - 13$$

$$4 - 13$$

$$3 - 13$$

$$3 - 13$$

$$4 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$4 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 13$$

$$3 - 1$$

Hence the required partial functions are

$$\frac{6x^3 + 5x^2 - 7}{3x^2 - 2x - 1} = 2x + 3 + \frac{5}{3x + 1} + \frac{1}{x - 1}$$

Rule II:

Resolution of a fraction when D(x) consists of repeated linear factors:

If a linear factor (ax + b) occurs n times as a factor of D(x), then there are n partial fractions of the form.

$$\frac{A_1}{(ax+b)} + \frac{A_2}{(ax+b)^2} + \dots + \frac{A_n}{(ax+b)^n}, \text{ where}$$

 A_1, A_2, \ldots, A_n are constants and $n \ge 2$ is a positive integer.

$$\therefore \frac{N(x)}{D(x)} = \frac{A_1}{(ax+b)} + \frac{A_2}{(ax+b)^2} + \dots + \frac{A_n}{(ax+b)^n}$$

Example:

Resolve
$$\frac{1}{(x-1)^2(x-2)}$$
 into partial

fractions.

Solution: Let,

$$\frac{1}{(x-1)^{2}(x-2)} = \frac{A}{x-1} + \frac{B}{(x-1)^{2}} + \frac{C}{x-2}$$

Multiplying both sides by $(x-1)^2$ (x-2), we get

$$1=A(x-1)(x-2) + B(x-2)+C(x-1)^2$$

$$A(x^2-3x+2) + B(x-2) + C(x^2-2x+1) = 1....(i)$$

Since (i) is an identity and is true for all values of x

Put x - 1 = 0 or x = 1 in (i), we get

$$B(1-2) = 1$$

$$\Rightarrow$$
 -B = 1 or $\boxed{B = -1}$

Put x - 2 = 0 or x = 2 in (i), we get

$$C(2-1)^2 = 1$$

$$C(1) = 1 \Rightarrow C = 1$$

Equating coefficients of x2on both the sides of (i)

$$A + C = 0$$

$$\Rightarrow$$
 A = -C

$$A = -(1) \implies \boxed{A = -1}$$

Hence required partial fractions are

$$\frac{-1}{x-1} - \frac{1}{(x-1)^2} + \frac{1}{(x-2)}$$

Thus,
$$\frac{1}{(x-1)^2(x-2)} = \frac{1}{x-2} - \frac{1}{(x-1)} - \frac{1}{(x-1)^2}$$