(d) Complement of a set:

If U is a universal set and A is a subset of U, then the complement of A is the set of those elements of U, which are not contained in A and is denoted by A' or A^c.

$$A' = U - A = \{x | x \in U \text{ and } x \notin A\}$$

For example, if $U = \{1, 2, 3, ..., 10\}$ and

$$A = \{2, 4, 6, 8\}, \text{ then }$$

$$A' = U - A$$

$$= \{1, 2, 3, ..., 10\} - \{2, 4, 6, 8\}$$

$$= \{1, 3, 5, 7, 9, 10\}$$

Example:

If
$$U = \{1, 2, 3, ..., 10\},\$$

$$A = \{2,3,5,7\}, B = \{3,5,8\}, \text{ then }$$

Find (i)
$$A \cup B$$
 (ii) $A \cap B$

ii) A
$$\cap$$
 F

$$(iii) A - B$$

(iii)
$$A - B$$
 (iv) A' and B'

Solution:

(i)
$$A \cup B = \{2,3,5,7\} \cup \{3,5,8\}$$

= $\{2,3,5,7,8\}$

(ii)
$$A \cap B = \{2,3,5,7\} \cap \{3,5,8\}$$

= $\{3,5\}$

(iii) A
$$-B = \{2,3,5,7\} - \{3,5,8\}$$

= $\{2,7\}$

(iv)
$$A' = U - A$$

= $\{1, 2, 3, ..., 10\} - \{2, 3, 5, 7\}$
= $\{1, 4, 6, 8, 9, 10\}$

$$B' = U - B$$

$$= \{1, 2, 3, ..., 10\} - \{3, 5, 8\}$$

$$= \{1, 2, 4, 6, 7, 9, 10\}$$

EXERCISE 5.1

- 0.1 If $X = \{1, 4, 7, 9\}$ and $Y = \{2, 4, 5, 9\}$ then find:
 - (i) $X \cup Y$ (ii) $X \cap Y$
 - (iii) $Y \cup X$ (iv) $Y \cap X$

Solution:

(i)
$$X \cup Y = \{1, 4, 7, 9\} \cup \{2, 4, 5, 9\}$$

= $\{1, 2, 4, 5, 7, 9\}$

(ii)
$$X \cap Y = \{1, 4, 7, 9\} \cap \{2, 4, 5, 9\}$$

= $\{4, 9\}$

(iii)
$$Y \cup X = \{2, 4, 5, 9\} \cup \{1, 4, 7, 9\}$$

= $\{1, 2, 4, 5, 7, 9\}$

(iv)
$$Y \cap X = \{2, 4, 5, 9\} \cap \{1, 4, 7, 9\}$$

= $\{4, 9\}$

Q.2 If X = Set of Prime numbers less than or equal to 17.

> Y = Set of first 12 natural numbers, then find.

- (i) $X \cup Y$ (ii) $X \cap Y$
- (iii) $Y \cup X$ (iv) $Y \cap X$

Solution:

$$X = \{2, 3, 5, 7, 11, 13, 17\}$$

 $Y = \{1, 2, 3, 4, ..., 12\}$

(i)
$$X \cup Y$$

= {2, 3, 5, 7, 11, 13, 17} \cup {1, 2, 3, 4,...,12}
= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 17}

(ii)
$$Y \cup X$$

= {1,2,3,4, ...,12} \cup {2,3,5,7, 11, 13,17}
= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 17}

(iii)
$$X \cap Y$$

= {2,3,5,7,11,13,17} \cap {1,2,3,4,5,...,12}
= {2,3,5,7,11}

(iv)
$$Y \cap X$$

= {1,2,3,5, ...,12} \cap {2,3,5,7,11,13, 17}
= {2, 3, 5, 7, 11}

```
Q.3 If X = \phi, Y = Z^+, T = O^+, then find.
                                                                     X' \cap Y'
                                                             (ii)
(i) X \cup Y (ii) X \cup T (iii) Y \cup T
                                                             X' = U - X
(iv) X \cap Y (v) X \cap T (vi) Y \cap T
                                                             = \{4, 5, 6, 7, ..., 25\} - \{11, 13, 17, 19, 23\}
Solution:
                                                             = \{4,5,6,7,8,9,10,12,14,15,16,18,20,21,22,24,25\}
(i) X \cup Y = \phi \cup Z^+
                                                             Y' = U - Y
            = Z^+ = Y
                                                                      = \{4,5,6,7,\ldots,25\} - \{4,5,6,7,\ldots,17\}
(ii) X \cup T = \phi \cup O^+
                                                                      ={18, 19, 20, 21, 22, 23, 24, 25}
             = O^+ = T
(iii) Y \cup T = Z^+ \cup O^+
                                                             X' \cap Y' = \{4,5,6,7,8,9,10,12,14,15,16,18,20,21,
                                                                          22,24,25 \cap {18,19,20,21,22,23,24,25}
    = \{1, 2, 3, 4, 5, \ldots\} \cup \{1, 3, 5, 7, \ldots\}
    = \{1, 2, 3, 4, 5, ...\} = Z^{+} = Y
                                                                      = \{18, 20, 21, 22, 24, 25\}
(iv) X \cap Y = \phi \cap Z^+
                                                             (iii)
                                                                     (X \cap Y)'
             = \phi = X
                                                             X \cap Y = \{11,13,17,19,23\} \cap \{4,5,6,7,...,17\}
(v) X \cap T = \phi \cap O^+
                                                                    = \{11, 13, 17\}
             = \phi = X
                                                             (X \cap Y)' = U - (X \cap Y)
(vi) Y \cap T = Z^+ \cap O^+
                                                                     = \{4, 5, 6, 7, ..., 25\} - \{11, 13, 17\}
    = \{1, 2, 3, 4, 5, \ldots\} \cap \{1, 3, 5, 7, \ldots\}
                                                                      = \{4,5,6,7,8,9,10,12,14,15,16,
    = \{1, 3, 5, 7, ...\} = O^{+} = T
                                                                             18, 19, 20, 21, 22,23, 24,25}
        If U = \{x \mid x \in N \land 3 < x \le 25\}
0.4
         X = \{x \mid x \text{ is Prime } \land 8 < x < 25\}
                                                                     X' \cup Y'
                                                             (iv)
         Y = \{x \mid x \in W \land 4 \le x \le 17\}
                                                             X' = U - X = \{4,5,6,7,...,25\} - \{11,13,17,19,23\}
         then find the value of:
                                                                          ={4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16,
(i) (X \cup Y)' (ii) X' \cap Y'
(iii) (X \cap Y)' (iv) X' \cup Y'
                                                                                        18, 20, 21, 22, 24, 25}
Solution:
                                                             Y' = U - Y
        U = \{4, 5, 6, 7, ..., 25\}
                                                                      = \{4,5,6,7,...,25\} - \{4,5,6,7,...,17\}
        X = \{11, 13, 17, 19, 23\}
                                                                      = \{18, 19, 20, 21, 22, 23, 24, 25\}
        Y = \{4, 5, 6, 7, ..., 17\}
                                                             (i) (X \cup Y)'
                                                                          16, 18, 20, 21, 22, 24, 25\} \cup
X \cup Y = \{11,13,17,19,23\} \cup \{4,5,6,7,...,17\}
    =\{4,5,6,7,8,9,10,11,12,13,14,15,16,17,19,23\}
                                                                          {18, 19, 20, 21, 22, 23, 24, 25}
(X \cup Y)' = U - (X \cup Y)
                                                                      = \{4, 5, 6, 7, 8, 9, 10, 12, 14, 15, \dots \}
={4,5,6,7,...,25}-{4,5,6,7,8,9,10,11,12,}
                                                                          16,18, 19, 20, 21, 22,23, 24,25}
                         13,14,15, 16,17,19,23}
          =\{18, 20, 21, 22, 24, 25\}
```


Q.5

```
\Rightarrow x \in A and x \in B (by definition intersection of sets
\Rightarrow x \in B and x \in A
\Rightarrow x \in B \cap A
                                 ....(i)
    A \cap B \subseteq B \cap A
Now let y \in B \cap A
\Rightarrow y \in B and y \in A (by definition intersection of so
\Rightarrow y \in A and y \in B
\Rightarrow y \in A \cap B
     Therefore, B \cap A \subseteq A \cap B .....(ii)
    From (i) and (ii), we have A \cap B = B \cap A
     (by definition of equal sets)
(c) Associative property of union:
For any three sets A,B and C,(A \cup B) \cup C = A \cup (B \cup C)
is called associative property of union.
Proof: Let x \in (A \cup B) \cup C
\Rightarrow x \in (A \cup B) \text{ or } x \in C
\Rightarrow (x \in A or x \in B) or x \in C
\Rightarrow x \in A or (x \in B or x \in C)
\Rightarrow x \in A or x \in B \cup C
\Rightarrow x \in A \cup (B \cup C)
     (A \cup B) \cup C \subseteq A \cup (B \cup C)....(i)
Similarly A \cup (B \cup C) \subseteq (A \cup B) \cup C \dots (ii)
     From (i) and (ii), we have
     (A \cup B) \cup C = A \cup (B \cup C)
(d) Associative property of intersection:
     For any three sets A, B and C,
(A \cap B) \cap C = A \cap (B \cap C) is called
associative property of intersection.
Proof: Let x \in (A \cap B) \cap C
\Rightarrow x \in (A \cap B) and
                                  x \in C
\Rightarrow (x \in A and x \in B) and x \in C
\Rightarrow x \in A and (x \in B and \in C)
\Rightarrow x \in A and x \in B \cap C
\Rightarrow x \in A \cap (B \cap C)
 \therefore (A \cap B) \cap C \subseteq A \cap (B \cap C) \dots (i)
 Similarly A \cap (B \cap C) \subseteq (A \cap B) \cap C \dots (ii)
      From (i) and (ii), we have
     (A \cap B) \cap C = A \cap (B \cap C)
```

Proof: Let $x \in A \cap B$

(e) <u>Distributive property of union over</u> intersection:

If A,B and C are three sets then $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ is called distributive property of union over intersection

Proof: Let $x \in A \cup (B \cap C)$

$$\Rightarrow x \in A \text{ or } x \in B \cap C$$

$$\Rightarrow x \in A \text{ or } (x \in B \text{ and } x \in C)$$

$$\Rightarrow$$
 (x \in A or x \in B) and (x \in A or x \in C)

$$\Rightarrow$$
 x \in A \cup B and x \in A \cup C

$$\Rightarrow x \in (A \cup B) \cap (A \cup C)$$

$$\therefore A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)....(i)$$

Similarly, now let $y \in (A \cup B) \cap (A \cup C)$

$$\Rightarrow$$
 y \in (A \cup B) and y \in (A \cup C)

$$\Rightarrow$$
 (y \in A or y \in B) and (y \in A or y \in C)

$$\Rightarrow$$
 y \in A or (y \in B and y \in C)

$$\Rightarrow$$
 y \in A or y \in B \cap C

$$\Rightarrow$$
 y \in A or $(B \cap C)$

$$\Rightarrow$$
 y \in A \cup (B \cap C)

$$\Rightarrow (A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C).....(ii)$$

From (i) and (ii), we have

$$A \cup (B \cap C) = (A \cup C) \cap (A \cup C)$$

(f) <u>Distributive property of intersection</u> over union:

If A, B and C are three sets then

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ is called distributive property of intersection over union.

Proof: Let $x \in A \cap (B \cup C)$

$$\Rightarrow x \in A \text{ and } x \in B \cup C$$

$$\Rightarrow x \in A \text{ and } (x \in B \text{ or } x \in C)$$

$$\Rightarrow$$
 (x \in A and x \in B) or (x \in A and x \in C)

$$\Rightarrow$$
 (x \in A \cap B) or (x \in A \cap C)

$$\Rightarrow x \in (A \cap B) \cup (A \cap C)$$

Hence by definition of subsets

$$A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C).....(i)$$

Similarly

$$(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)....$$
 (ii)

From (i) and (ii), we have

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

(g) <u>De-Morgan's laws</u>:

If two sets A and B are the sub sets of U then De-Morgan's laws are expressed as

(i)
$$(A \cup B)' = A' \cap B'$$

(ii)
$$(A \cap B)' = A' \cup B'$$

Proof:

(i)
$$(A \cup B)' = A' \cap B'$$

Let
$$x \in (A \cup B)'$$

$$\Rightarrow x \notin A \cup B$$
 (by definition of complement of set)

$$\Rightarrow x \notin A$$
 and $x \notin B$

$$\Rightarrow$$
 x \in A' and x \in B'

$$\Rightarrow x \in A' \cap B'$$
 (by definition of intersection of sets)

$$\Rightarrow (A \cup B)' \subseteq A' \cap B' \dots (i)$$

Similarly
$$A' \cap B' \subseteq (A \cup B)'$$
.....(ii)

Using (i) and (ii), we have

$$(A \cup B)' = A' \cap B'$$

(ii)
$$(A \cap B)' = A' \cup B'$$

Let
$$x \in (A \cap B)'$$

$$\Rightarrow x \notin A \cap B$$

$$\Rightarrow x \notin A \text{ or } x \notin B$$

$$\Rightarrow x \in A' \text{ or } x \in B'$$

$$\Rightarrow x \in A' \cup B'$$

$$\Rightarrow (A \cap B)' \subseteq A' \cup B'....(i)$$

Let
$$y \in A' \cup B'$$

$$\Rightarrow$$
 y \in A' or y \in B'

$$\Rightarrow$$
 y \notin A or y \notin B

$$\Rightarrow$$
 y \notin A \cap B

$$\Rightarrow$$
 y \in (A \cap B)'

$$\Rightarrow A' \cup B' \subseteq (A \cap B)' \dots (ii)$$

From (i) and (ii) we have proved that

$$(A \cap B)' = A' \cup B'$$