EXERCISE 5.2

Q.1 If $X = \{1, 3, 5, 7, ..., 19\}$ $Y = \{0, 2, 4, 6, 8, ..., 20\}$ $Z = \{2, 3, 5, 7, 11, 13, 17, 19, 23\}$, then find the following: (i) $X \cup (Y \cup Z)$ (ii) $(X \cup Y) \cup Z$ (iii) $X \cap (Y \cap Z)$ (iv) $(X \cap Y) \cap Z$ (v) $X \cup \cap Y \cap Z$) (vi) $(X \cup Y) \cap (X \cup Z)$ (vii) $X \cap (Y \cup Z)$ (viii) $(X \cap Y) \cup (X \cap Z)$ Solution: (i) $X \cup (Y \cup Z)$ $= X \cup (\{0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20\})$ \cup {2, 3, 5, 7, 11, 13, 17, 19, 23}) $\{1, 3, 5, 7, 9, 11, 13, 15, 17, 19\} \cup$ $\{0,2,3,4,5,6,7,8,10,11,12,13,14,$ 16, 17, 18, 19, 20, 23} $= \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,$ 14,15,16,17,18,19,20,23} (ii) $(X \cup Y) \cup Z$ $= (\{1,3,5,7,...,19\} \cup \{0,2,4,6,8,...,20\}) \cup Z$ $= \{0, 1, 2, 3, 4, 5, 6, 7, ..., 20\} \cup$ {2, 3, 5, 7, 11, 13, 17, 19, 23} $= \{0, 1, 2, 3, 4, 5, 6, 7, ..., 20, 23\}$ $(iii)X \cap (Y \cap Z)$ $= X \cap (\{0,2,4,6,8,...,20\} \cap$ {2, 3, 5, 7, 11, 13, 17, 19, 23}) $\{1, 3, 5, 7, ..., 19\} \cap \{2\}$ = φ (iv) $(X \cap Y) \cap Z$ $= (\{1.3.5.7, ..., 19\} \cap \{0.2.4.6, 8, ..., 20\}) \cap \mathbb{Z}$ $= \{ \} \cap \{2, 3, 5, 7, 11, 13, 17, 19, 23 \}$

=

(v) $X \cup (Y \cap Z)$ $= X \cup (\{0,2,4,6,8,...,20\} \cap$ {2, 3, 5, 7, 11, 13, 17, 19, 23}) $= \{1, 3, 5, 7, ..., 19\} \cup \{2\}$ $= \{1, 2, 3, 5, 7, ..., 19\}$ (vi) $(X \cup Y) \cap (X \cup Z)$ $X \cup Y = \{1,3,5,7,...,19\} \cup \{0,2,4,6,8,...,20\}$ ={ 0, 1, 2, 3, 4, 5, ..., 20} $X \cup Z = \{1,3,5,7,...,19\} \cup \{2,3,5,7,11,13,17,19,23\}$ $= \{1, 2, 3, 5, 7, 9, 11, 13, 15, 17, 19, 23\}$ $(X \cup Y) \cap (X \cup Z)$ $= \{0,1,2,3,4,\ldots,20\} \cap \{1,2,3,5,7,9,11,13,15,17,19,23\}$ $= \{1,2,3,5,7,9,11,13,15,17,19\}$ (vii) $X \cap (Y \cup Z)$ $X \cap (Y \cup Z)$ $= X \cap (\{0,2,4,6,8,\ldots,20\} \cup \{2,3,5,7,11,13,17,19,23\})$ $= \{1,3,5,7,...,19\} \cap \{0,2,3,4,5,6,7,8,10,11,$ 12,13,14,16,17,18,19,20,23} $= \{3, 5, 7, 11, 13, 17, 19\}$ (viii) $(X \cap Y) \cup (X \cap Z)$ $X \cap Y = \{1,3,5,7, ..., 19\} \cap \{0,2,4,6,8, ..., 20\}$ $= \{ \}$ $X \cap Z = \{1,3,5,7,...,19\} \cap \{2,3,5,7,11,13,17,19,23\}$ $= \{3, 5, 7, 11, 13, 17, 19\}$ $(X \cap Y) \cup (X \cap Z) = \{ \} \cup \{3,5,7,11,13,17,19\}$ $= \{3, 5, 7, 11, 13, 17, 19\}$ Q. 2. If $A = \{1, 2, 3, 4, 5, 6\}$ $B = \{2, 4, 6, 8\} \ C = \{1, 4, 8\}$ Prove the following identities: (i) $A \cap B = B \cap A$ (ii) $A \cup B = B \cup A$

 $(iii)A \cap (B \cap C) = (A \cap B) \cup (A \cap C)$

 $(iv)A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Solution:

(i)
$$A \cap B = B \cap A$$

$$L.H.S = A \cap B$$

$$= \{1, 2, 3, 4, 5, 6\} \cap \{2, 4, 6, 8\}$$

$$= \{2, 4, 6\}$$

$$R.H.S = B \cap A$$

$$=$$
{2, 4, 6, 8} \cap {1, 2, 3, 4, 5, 6}

$$= \{2, 4, 6\}$$

$$L.H.S = R.H.S$$
, so

$$A \cap B = B \cap A$$

(ii) $A \cup B = B \cup A$

$$L.H.S = A \cup B$$

$$= \{1, 2, 3, 4, 5, 6\} \cup \{2, 4, 6, 8\}$$

$$= \{1, 2, 3, 4, 5, 6, 8\}$$

$$R.H.S = B \cup A$$

$$= \{2, 4, 6, 8\} \cup \{1, 2, 3, 4, 5, 6\}$$

$$= \{1, 2, 3, 4, 5, 6, 8\}$$

$$L.H.S = R.H.S,$$

So,
$$A \cup B = B \cup A$$

(iii) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

$$L.H.S = A \cap (B \cup C)$$

$$= A \cap (\{2, 4, 6, 8\} \cup \{1, 4, 8\})$$

$$= \{1, 2, 3, 4, 5, 6\} \cap \{1, 2, 4, 6, 8\}$$

$$= \{1, 2, 4, 6\}$$

$$R.H.S = (A \cap B) \cup (A \cap C)$$

$$A \cap B = \{1,2,3,4,5,6\} \cap \{2,4,6,8\}$$

$$= \{2, 4, 6\}$$

$$A \cap C = \{1, 2, 3, 4, 5, 6\} \cap \{1, 4, 8\}$$

$$= \{1, 4\}$$

$$(A \cap B) \cup (A \cap C) = \{2, 4, 6\} \cup \{1, 4\}$$

$$= \{1, 2, 4, 6\}$$

$$L.H.S = R.H.S$$

So,
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

(iv)
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

L.H.S =
$$A \cap (B \cap C)$$

= $A \cup (\{2, 4, 6, 8\} \cap \{1, 4, 8\})$
= $\{1, 2, 3, 4, 5, 6\} \cup \{4, 8\}$

$$= \{1, 2, 3, 4, 5, 6, 8\}$$

$$R.H.S = (A \cup B) \cap (A \cup C)$$

$$A \cup B = \{1, 2, 3, 4, 5, 6\} \cup \{2, 4, 6, 8\}$$

$$=$$
{1, 2, 3, 4, 5, 6, 8}

$$A \cup C = \{1, 2, 3, 4, 5, 6\} \cup \{1, 4, 8\}$$

$$= \{1, 2, 3, 4, 5, 6, 8\}$$

$$(A \cup B) \cap (A \cup C)$$

$$= \{1,2,3,4,5,6,8\} \cap \{1,2,3,4,5,6,8\}$$

$$= \{1, 2, 3, 4, 5, 6, 8\}$$

$$L.H.S = R.H.S$$
,

So,
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Q.3 If
$$U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$

A =
$$\{1, 3, 5, 7, 9\}$$
, B = $\{2, 3, 5, 7\}$ then

verify the De Morgan's laws i.e.,

$$(A \cup B)' = A' \cap B'$$
 and $(A \cap B)' = A' \cup B'$

Solution:

(i)
$$(A \cup B)' = A' \cap B'$$

$$L.H.S = (A \cup B)'$$

$$A \cup B = \{1, 3, 5, 7, 9\} \cup \{2, 3, 5, 7\}$$

 $= \{1, 2, 3, 5, 7, 9\}$

$$(A \cup B)' = U - (A \cup B)$$

$$=\{1,2,3,4,\ldots,10\} - \{1,2,3,5,7,9\}$$

$$= \{4, 6, 8, 10\}....(i)$$

$$R.H.S = A' \cap B'$$

$$A' = U - A$$

$$= \{1, 2, 3, 4, ..., 10\} - \{1, 3, 5, 7, 9\}$$

$$= \{2, 4, 6, 8, 10\}$$

$$B' = U - B$$

 $X = \{1, 3, 7, 9, 15, 18, 20\}$ $Y = \{1, 3, 5, ..., 17\}$ then show that, (i) $X-Y = X \cap Y'$ (ii) $Y-X = Y \cap X'$

Verification of Fundamental Properties of Sets

(a) Commutative Property of Union i.e., $A \cup B = B \cup A$

For example A =
$$\{1, 3, 5, 7\}$$
 and B = $\{2, 3, 5, 7\}$

Then
$$A \cup B = \{1, 3, 5, 7\} \cup \{2, 3, 5, 7\}$$

= $\{1, 2, 3, 5, 7\}$

and
$$B \cup A = \{2, 3, 5, 7\} \cup \{1, 3, 5, 7\}$$

= $\{1, 2, 3, 5, 7\}$

Hence, verified that $A \cup B = B \cup B$

(b)Commutative property of intersection

i.e.,
$$A \cap B = B \cap A$$

For example
$$A = \{1, 3, 5, 7\}$$
 and

$$B = \{2, 3, 5, 7\}$$

Then
$$A \cap B = \{1, 3, 5, 7\} \cap \{2, 3, 5, 7\}$$

= $\{3, 5, 7\}$

and
$$B \cap A = \{2, 3, 5, 7\} \cap \{1, 3, 5, 7\}$$

= $\{3, 5, 7\}$

Hence, verified that $A \cap B = B \cap A$

(c) Associative Property of Union

i.e.,
$$(A \cup B) \cup C = A \cup (B \cup C)$$
.

Suppose A=
$$\{1, 2, 4, 8\}$$
, B = $\{2, 4, 6\}$ and C = $\{3, 4, 5, 6\}$ then

L.H.S =
$$(A \cup B) \cup C$$

= $(\{1, 2, 4, 8\} \cup \{2, 4, 6\}) \cup \{3, 4, 5, 6\}$

$$= \{1, 2, 4, 6, 8\} \cup \{3, 4, 5, 6\}$$

$$= \{1, 2, 3, 4, 5, 6, 8\}$$

and R.H.S =
$$A \cup (B \cup C)$$

$$= \{1, 2, 4, 8\} \cup (\{2, 4, 6\} \cup \{3, 4, 5, 6\})$$

$$= \{1, 2, 4, 8\} \cup \{2, 3, 4, 5, 6\}$$

$$= \{1, 2, 3, 4, 5, 6, 8\}$$

L.H.S = R.H.S

Hence, union of sets is associative

(d) Associative Property of intersection

i.e.,
$$(A \cap B) \cap C = A \cap (B \cap C)$$

Suppose
$$A = \{1, 2, 4, 8\}$$

$$B = \{2, 4, 6\}$$

and
$$C = \{3, 4, 5, 6\}$$

Then L.H.S =
$$(A \cap B) \cap C$$

$$= (\{1,2,4,8\} \cap \{2,4,6\}) \cap \{3,4,5,6\}$$

$$= \{2, 4\} \cap \{3, 4, 5, 6\}$$

$$= \{4\}$$

and R.H.S =
$$A \cap (B \cap C)$$

$$= \{1,2,4,8\} \cap (\{2,4,6\} \cap \{3,4,5,6\})$$

$$= \{1, 2, 4, 8\} \cap \{4, 6\}$$

$$= \{4\}$$

$$L.H.S = R.H.S$$

Hence, intersection of sets is associative law.

(e) Distributive Property of Union over Intersection

i.e.,
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup B)$$
:

Suppose
$$A = \{1, 2, 4, 8\}$$

$$B = \{2, 4, 6\}$$
 and

$$C = \{3, 4, 5, 6\}$$

Let L.H.S=
$$A \cup (B \cap C)$$

$$= \{1, 2, 4, 8\} \cup (\{2, 4, 6\} \cap \{3, 4, 5, 6\})$$

$$= \{1, 2, 4, 8\} \cup \{4, 6\}$$

$$= \{1, 2, 4, 6, 8\}$$

$$R.H.S = (A \cup B) \cap (A \cup C)$$

$$(A \cup B) = (\{1, 2, 4, 8\} \cup \{2, 4, 6\})$$

$$= \{1, 2, 4, 6, 8\}$$

$$(A \cup C) = (\{1, 2, 4, 8\} \cup \{3, 4, 5, 6\})$$

= $\{1, 2, 3, 4, 5, 6, 8\}$

$$(A \cup B) \cap (A \cup C)$$

$$=\{1,2,4,6,8\} \cap \{1, 2, 3, 4, 5, 6, 8\}$$

$$= \{1, 2, 4, 6, 8\}$$

$$L.H.S = R.H.S$$

(f) Distributive Property of Intersection over Union

i.e.,
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

Suppose

$$A = \{1, 2, 3, 4, 5, ..., 20\}$$

$$B = \{5, 10, 15, 20, 25, 30\}$$

$$C = \{3, 9, 15, 21, 27, 33\}$$

 $L.H.S = A \cap (B \cup C)$

$$= A \cap (\{5,10,15,20,25,30\} \cup \{3,9,15,21,27,33\})$$

$$= \{1.2.3,4,5,\ldots 20\} \cap$$

L.
$$H.S = \{3, 5, 9, 10, 15, 20\}$$

$$R.H.S = (A \cap B) \cup (A \cap C)$$

$$(A \cap B) = \{1,2,3,4,...,20\} \cap \{5,10,15,20,25,30\}$$

= $\{5,10,15,20\}$

$$(A \cap C) = \{1,2,3,4,5,...,20\} \cap \{3,9,15,21,27,33\}$$

= $\{3,9,15\}$

 $(A \cap B) \cup (A \cap C)$

$$= \{5, 10, 15, 20\} \cup \{3, 9, 15\}$$

$$= \{3, 5, 9, 10, 15, 20\}$$

L.H.S = R.H.S

(g) De Morgan's laws

If set A and B are the subsets of universal set

U then De Morgan's laws are expressed as.

(i)
$$(A \cup B)' = A' \cap B'$$

(ii)
$$(A \cap B)' = A' \cup B'$$

Proof:

(i)
$$(A \cup B)' = A' \cap B'$$

Suppose

$$U = \{1, 2, 3, 4, ..., 10\}$$

$$A = \{2, 4, 6, 8, 10\} \Rightarrow A' = \{1, 3, 5, 7, 9\}$$

From (i) and (ii)

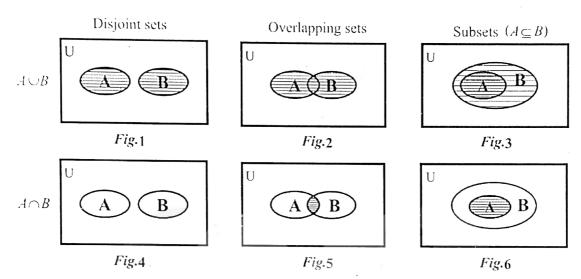
L.H.S = R.H.S

Venn Diagram

British mathematician John Venn (1834–1923) introduced rectangle for a universal set U and its subsets A and B as closed figures inside this rectangle.

Use Venn diagrams to represent:

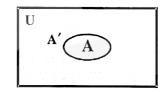
(a) Union and intersection of sets



Regions shown by horizontal line segments in figures 1 to 6 shows $A \cup B$ and $A \cap B$

(b) Complement of a set

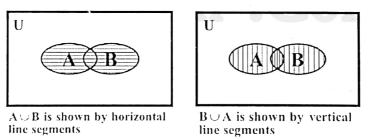
U - A = A' is shown by Shaded area.



Use Venn diagram to verify:

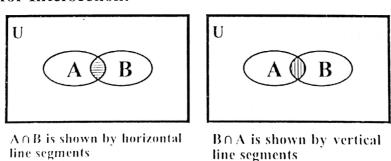
Commutative law for union and intersection of sets.

• Commutative Law for Union:



The region shown in both cases are equal. Thus $A \cup B = B \cup A$.

Commutative Law for Intersection:



The regions shown in both cases are equal. Thus $A \cap B = B \cap A$

(c) De Morgan's laws

(i)
$$(A \cup B)' = A' \cap B'$$

(ii)
$$(A \cap B)' = A' \cup B'$$

(i)
$$(A \cup B)' = A' \cap B'$$

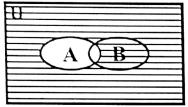


Fig. 1: A'is shown by horizontal line segments

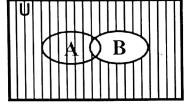


Fig. 2: B' is shown by vertical line segments

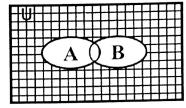


Fig. 3: A'∩B' is shown by squares

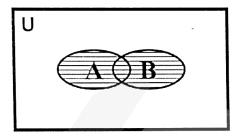


Fig. 4: A \cup B is shown by horizontal line segments

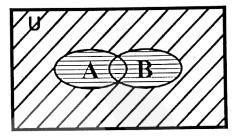
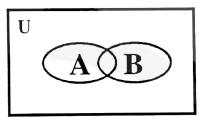


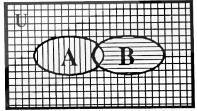
Fig. 5: $(A \cup B)'$ is shown by slanting line segments

Regions shown in figure 3 and 5 are equal thus $(A \cup B)' = A' \cap B'$.

(ii) $(A \cap B)' = A' \cup B'$



 $U-)A \cap B(=)A \cap B($ is shown by shading



 $A' \cup B'$ is shown by squares, horizontal and vertical line segments.

Regions shown in fig. 6 and fig. 7 are equal.

Thus $(A \cap B)' = A' \cup B'$

- (d) Associative law of Union and Intersection:
- (i) Associative law of Union: $(A \cup B) \cup C = A \cup (B \cup C)$

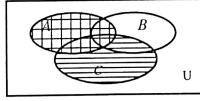


Fig-1

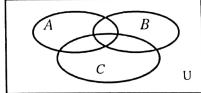


Fig-2

 $(A \cup B) \cup C$ is shown in the above Fig-1.A \cup (B \cup C) is shown in the above Fig-2. Regions shown in Fig. 1 and Fig. 2 by different ways are equal.

Thus
$$(A \cup B) \cup C = A \cup (B \cup C)$$

(ii) Associative law of Intersection: $(A \cap B) \cap C = A \cap (B \cap C)$

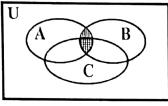


Fig. 3

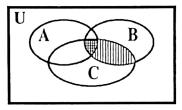


Fig. 4

 $(A \cap B) \cap C$ is shown in figure 3 by double crossing line segments.

 $A \cap (B \cap C)$ is shown in figure 4 by double crossing line segments.

Regions shown in Fig 3 and Fig. 4 are equal.

Thus $(A \cap B) \cap C = A \cap (B \cap C)$

(e) Distributive law:

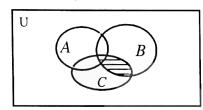


Fig. 1

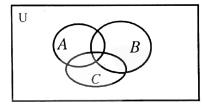


Fig. 2

Fig. 1: $A \cup (B \cap C)$ is shown by horizontal line segments in the above figure 1.

Fig. 2: $A \cup B$ is shown by horizontal line segments in the fig. 2.

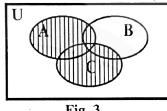


Fig. 3

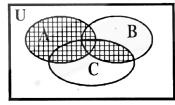


Fig. 4

Fig. 3: AUC is shown by vertical line segments in fig.3

Fig. 4: $(A \cup B) \cap (A \cup C)$ is shown by double crossing line segments in fig. 4.

Regions shown in fig 1 and Fig.4 are equal. Thus $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Distributive Law of Intersection over Union:

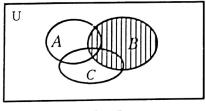


Fig.5

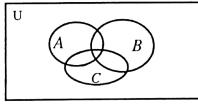


Fig.6

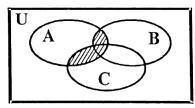


Fig. 7

Fig. 5: $B \cup C$ is shown by vertical line segments in Fig 5.

Fig. 6: $A \cap (B \cup C)$ is shown in Fig.6 by vertical line segments.

Fig. 7: $(A \cap B) \cup (A \cap C)$ is shown in fig. 7 by slanting line segments.

Regions displayed in Fig. 6 and Fig. 7 are equal.

Thus $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$