EXERCISE 5.4

Q.1 If $A = \{a, b\}$ and $B = \{c, d\}$, then find $A \times B$ and $B \times A$

Solution:

$$A \times B = \{a, b\} \times \{c, d\}$$

= \{(a, c), (a, d), (b, c), (b, d)\}

$$B \times A = \{c, d\} \times \{a, b\}$$

= \{(c, a), (c, b), (d, a), (d, b)\}

O.2 If $A = \{0, 2, 4\}$, $B = \{-1, 3\}$, then find $A \times B$, $B \times A$, $A \times A$, $B \times B$

Solution:
$$A \times B = \{0, 2, 4\} \times \{-1, 3\}$$

$$= \{(0,-1),(0,3),(2,-1),(2,3),(4,-1),(4,3)\}$$

B × A = {-1, 3} × {0, 2, 4}

=
$$\{(-1,0),(-1,2),(-1,4),(3,0),(3,2),(3,4)\}$$

A× A = $\{0, 2, 4\} \times \{0, 2, 4\}$

$$= \{(0,0), (0,2), (0,4), (2,0), (2,2), (2,4), (4,0), (4,2), (4,4)\}$$

 $B \times B = \{-1, 3\} \times \{-1, 3\}$

Solution:

(i)
$$(a-4, b-2) = (2, 1)$$

$$a-4=2$$
 , $b-2=1$
 $a=2+4$, $b=1+2$

$$a = 2 + 4$$
 , $b = 1 - 4$, $b = 3$

(ii)
$$(2a + 5, 3) = (7, b - 4)$$

 $2a + 5 = 7$, $3 = b - 4$

$$2a + 3 = 7$$
, $3 = 6 = 4$
 $2a = 7 - 5$, $3 + 4 = b$

$$a = \frac{2}{2} \quad 1 \quad b = 7$$

$$a = \frac{2}{2} \quad b = 7$$

$$a = 1$$

$$(iii) (3 - 2a, b - 1) = (a - 7, 2b + 5)$$

$$3 - 2a = a - 7 \quad b - 1 = 2b + 5$$

$$3 + 7 = a + 2a \quad -1 - 5 = 2b - b$$

$$10 = 3a \quad -6 = b$$

$$\frac{10}{3} = a \quad b = -6$$

Q.4 Find the sets X and Y if

 $X \times Y = \{(a, a), (b, a), (c, a), (d, a)\}$

Solution:

$$X \times Y = \{(a, a), (b, a), (c, a), (d, a)\}\$$
 $X \times Y = \{a, b, c, d\} \times \{a\}\$
 $X = \{a, b, c, d\}\$
 $Y = \{a\}\$

Q.5 If $X = \{a, b, c\}$ and $Y = \{d, e\}$, then find the number of elements in

(i) $X \times Y$ (ii) $Y \times X$ (iii) $X \times X$

Solution:

No. of elements in X = 3

No. of elements in Y = 2

- (i) No. of Elements in $X \times Y = 3 \times 2 = 6$
- (ii) No. of Elements in $Y \times X = 2 \times 3 = 6$
- (iii) No. of Elements in $X \times X = 3 \times 3 = 9$

Binary Relation:

If A and B are any two non-empty sets, then a subset $R \subseteq A \times B$ is called binary relation from set A into set B, because there exists some relationship between first and second element of each ordered pair in R.

Domain of relation denoted by Dom R is the set consisting of all the first elements of each ordered pair in the relation.

Range of relation denoted by Rang R is the set consisting of all the second elements of each ordered pair in the relation.

$A=\{2, 3, 4, 5\}$ and $B=\{2, 4, 6, 8\}$

Form a relation

Example 1: Suppose

$$R:A \rightarrow B = \{x R y \mid y = 2x \text{ for } x \in A, y \in B\}$$

$$R = \{(2, 4), (3, 6), (4, 8)\}$$

Dom $R = \{2, 3, 4\} \subseteq A$ and

Rang R= $\{4, 6, 8\} \subseteq B$

Example 2: Suppose

 $A = \{1, 2, 3, 4\}$ and $B = \{1, 2, 3, 5\}$

Form a relation

$$R:A \rightarrow B = \{x Ry \mid x+y=6 \text{ for } x \in A, y \in B\}$$

$$R = \{(1, 5), (3, 3), (4, 2)\}$$

Dom R = $\{1, 3, 4\} \subseteq A$ and

Rang R = $\{2, 3, 5\} \subseteq B$

Function or Mapping:

(i) Suppose A and B are two non-empty sets, then relation $f: A \rightarrow B$ is called a function if

(i) Dom f = A (ii) every $x \in A$ appears in one and only one ordered pair in f.

Alternate Definition:

Suppose A and B are two non-empty sets, then relation $f: A \rightarrow B$ is called a function if (i) Dom f = A (ii) $\forall x \in A$ we can associate some unique image element $y = f(x) \in B$.

Domain, Co-domain and Range of Function:

If $f: A \rightarrow B$ is a function then A is called the domain of f and B is called the co-domain of f.

Domain f is the set consisting of all first elements of each ordered pair in f and range f is the set consisting of all second elements of each ordered pair in f.

Example:

Suppose $A = \{0,1,2,3\}$ and $B = \{1,2,3,4,5\}$

Define a function $f: A \rightarrow B$

$$f = \{(x, y) \mid y = x + 1 \ \forall \ x \in A, y \in B\}$$

$$f = \{(0, 1), (1, 2), (2, 3), (3, 4)\}$$

Dom
$$f = \{0, 1, 2, 3\} = A$$

Rang $f = \{1, 2, 3, 4\} \subseteq B$.

The following are the examples of relations but not functions.

g is not a function, because an element $a \in A$ has two images in set B.

And h is not a function because an element $d \in A$ has no images in set B.

Demonstrate the following:

(a) Into function:

A function $f: A \rightarrow B$ is called an into function, if at least one element in B is not an image of some element of set A i.e, Range of $f \subset \text{set } B$.

For example, we define a function $f:A \rightarrow B$ such that.

f: A \rightarrow B such that f = {(0, 1), (1, 1), (2, 3), (3, 2) where A = {0, 1, 2, 3} and B = {1, 2, 3, 4} f is an into function.

(b) One- one function:

A function $f: A \rightarrow B$ is called one – one function, if all distinct elements of A have distinct images in B, i.e:

$$f(x_1) = f(x_2)$$
 $x_1 = x_2 \in A$ or $\forall x_1 \neq x_2 \in A$ $f(x_1) \neq f(x_2)$
For example, if $A = \{0, 1, 2, 3\}$ and $B = \{1, 2, 3, 4, 5\}$, then we define a function $f: A \rightarrow B$ such that $f = \{(x, y) \mid y = x + 1, \forall x \in A, y \in B\}$ $= \{(0, 1), (1, 2), (2, 3), (3, 4)\}$

f is one-one function

(c) Into and one - one function: (Injective function)

The function f discussed in (b) is also an into function. Thus f is an into and one-one function.

(d) An onto or surjective function:

A function $f: A \rightarrow B$ is called an onto function, if every element of set B is an image of at least one element of set A i.e, Range of f = B

For example, if $A = \{0, 1, 2, 3\}$ and $B = \{1, 2, 3\}$, then $f : A \rightarrow B$ such that $f = \{(0, 1), (1, 2), (2, 3), (3, 2)\}$ Here Rang $f = \{1, 2, 3\} = B$ Thus f so defined is an onto function.

(e) Bijective function or one to one correspondence:

A function $f: A \rightarrow B$ is called bijective function if function f is one- one and onto. e.g., if $A = \{1, 2, 3, 4\}$ and $B = \{2, 3, 4, 5\}$

We define a function $f: A \to B$ such that $f = \{(x, y) \mid y = x + 1, \forall x \in A, y \in B\}$ Then $f = \{(1, 2), (2, 3), (3, 4), (4, 5)\}$ Evidently this function is one-one because distinct elements of A have distinct images in B. This is an onto function also because every element of B is the image of at least one element of A.

Note: (1) Every function is a relation but converse may not be true.

- (2) Every function may not be one one.
- (3) Every function may not be onto.

Example: Suppose
$$A = \{1, 2, 3\}$$

 $B = \{1, 2, 3, 4, 5, 6\}$

We define a function

f: A
$$\rightarrow$$
 B = {(x, y) | y=2x, \forall x \in A, y \in B}
Then f = {(1, 2), (2, 4), (3, 6)}

Evidently this function is one-one but not an onto.

Examine whether a given relation is a function:

A relation in which each $x \in$ its domain, has a unique image in its range, is a function.

Differentiate between one-to-one correspondence and one-one function:

A function f from set A to set B is one-one if distinct elements of A has distinct images in B. The domain of f is A and its range is contained in B.

In one-to-one correspondence between two sets A and B, each element of either set is assigned with exactly one element of the other set. If the sets A and B are finite, then these sets have the same number of elements, that is, n(A) = n(B).

EXERCISE 5.5

Q.1 If $L = \{a, b, c\}$, $M = \{3, 4\}$, then find two binary relations of $L \times M$ and $M \times L$.

Solution:
$$L = \{a, b, c\}, M = \{3, 4\}$$

$$L \times M = \{a, b, c\} \times \{3, 4\}$$

=
$$\{(a, 3), (a, 4), (b, 3), (b, 4), (c, 3), (c, 4)\}$$

Two binary Relations:

$$R_1 = \{(a, 3), (a, 4)\}$$

$$R_2 = \{(b, 4), (c, 3), (c, 4)\}$$

$$M \times L = \{3, 4\} \times \{a, b, c\}$$

$$=\{(3, a), (3, b), (3, c), (4, a), (4, b), (4, c)\}$$

Two binary Relations:

$$R_1 = \{(3, a), (3, b)\}$$

$$R_2 = \{(4, b), (4, c)\}$$

Q.2 If $Y = \{-2, 1, 2\}$, then make two binary relations for $Y \times Y$. Also find their domain and range.

Solution:
$$Y = \{-2, 1, 2\}$$

$$Y \times Y = \{-2, 1, 2\} \times \{-2, 1, 2\}$$

$$=\{(-2,-2),(-2,1),(-2,2),(1,-2),(1,1),(1,2),$$

$$(2,-2,)(2,1),(2,2)$$

$$R_1 = \{(-2, 1), (-2, 2), (1, -2)\}$$

Domain
$$R_1 = \{-2, 1\}$$

Range
$$R_1 = \{1, 2, -2\}$$

$$R_2 = \{(1, 1), (2, -2), (2, 2)\}$$

Domain
$$R_2 = \{1, 2\}$$

Range
$$R_2 = \{1, -2, 2\}$$

Q.3 If $L = \{a, b, c\}$ and $M = \{d, e, f, g\}$, then find two binary relations in each.

Solution:
$$L = \{a, b, c\}$$
, $M = \{d, e, f, g\}$

(i)
$$L \times L = \{a, b, c\} \times \{a, b, c\}$$

$$L \times L = \{(a,a),(a,b),(a,c),(b,a),(b,b),(b,c),\\ (c,a),(c,b),(c,c)\}$$

Two binary Relations:

$$R_1 = \{(a, a), (a, b), (a, c)\}$$

$$R_2 = \{(b, c), (c, a), (c, b)\}$$

(ii) L×M

$$L \times M = \{a, b, c\} \times \{d, e, f, g\}$$

$$= \{(a,d),(a,e),(a,f),(a,g),(b,d),(b,e),(b,f),\\(b,g),(c,d),(c,e),(c,f),(c,g)\}$$

Two binary Relations:

$$R_1 = \{(a, d), (a, e), (a, f)\}$$

$$R_2 = \{(b, d), (b, e), (b, f)\}$$

(iii) M×M

$$M \times M = \{d, e, f, g\} \times \{d, e, f, g\}$$

$$= \{ (d,d), (d,e), (d,f), (d,g), (e,d), (e,e), (e,f), (e,g), \\ (f,d), (f,e), (f,f), (f,g), (g,d), (g,e), (g,f), (g,g) \}$$

Two binary Relations:

$$R_1 = \{(d, e), (d, f), (d, g)\}$$

$$R_2 = \{(f, d), (g, d)\}$$

Q.4 If set M has 5 elements then find the number of binary relations in M.

No. of binary relations in $M=2^{5\times5}=2^{25}$

Q.5 If
$$L = \{x | x \in \mathbb{N} \land x \le 5\},\$$

 $M = \{y | y \in P \land y < 10\}$, then make the following relations from L to M. Also write Domain and Range of each Relation.

(i)
$$R_1 = \{(x, y) \mid y < x\},$$

(ii)
$$R_2 = \{(x, y) \mid y = x\}$$

(iii)
$$R_3 = \{(x, y) \mid x + y = 6\}$$

(iv)
$$R_4 = \{(x, y) \mid y - x = 2\}$$

Solution

$$L = \{1, 2, 3, 4, 5\},\$$

$$M = \{2, 3, 5, 7\}$$

$$L \times M = \{1, 2, 3, 4, 5\} \times \{2, 3, 5, 7\}$$

$$= \{(1,2),(1,3),(1,5),(1,7),(2,2),(2,3),(2,5),$$

$$(2,7),(3,2),(3,3),(3,5),(3,7),(4,2),(4,3),(4,5),$$

(i)
$$R_1 = \{(x, y) \mid y < x\}$$

$$R_1 = \{(3, 2), (4, 2), (4, 3), (5, 2), (5, 3)\}$$

Domain
$$R_1 = \{3, 4, 5\}$$

Range
$$R_1 = \{2, 3\}$$

(ii)
$$R_2 = (x, y) | y = x$$

$$R_2 = \{(2, 2), (3, 3), (5, 5)\}$$

Domain
$$R_2 = \{2, 3, 5\}$$

Range
$$R_2 = \{2, 3, 5\}$$

(iii)
$$R_3 = \{(x, y) \mid x + y = 6\}$$

$$R_3 = \{(1, 5), (3, 3), (4, 2)\}$$

Domain
$$R_3 = \{1, 3, 4\}$$

Range
$$R_3 = \{5, 3, 2\}$$

(iv)
$$R_4 = \{(x, y) \mid y - x = 2\}$$

$$R_4 = \{(1, 3), (3, 5), (5, 7)\}$$

Domain
$$R_4 = \{1, 3, 5\}$$

Range
$$R_4 = \{3, 5, 7\}$$

Q.6 Indicate relations, into function, oneone function, onto function, and bijective function from the following. Also find their domain and the range.

$$R_1 = \{(1, 1), (2, 2), (3, 3), (4, 4)\}$$

Domain
$$R_1 = \{1, 2, 3, 4\}$$

Range
$$R_1 = \{1, 2, 3, 4\}$$

It is a bijective function.

(ii)
$$R_2 = \{(1, 2), (2, 1), (3, 4), (3, 5)\}$$

Domain $R_2 = \{1, 2, 3\}$

Range $R_2 = \{1, 2, 4, 5\}$

It is a relation. As 3 has no distinct image.

(iii)
$$R_3 = \{(b, a), (c, a), (d, a)\}$$

Domain $R_3 = \{b, c, d\}$

Range $R_3 = \{a\}$

It is an onto function.

(iv)
$$R_4 = \{(1, 1), (2, 3), (3, 4), (4, 3), (5, 4)\}$$

Domain $R_4 = \{1, 2, 3, 4, 5\}$

Range $R_4 = \{1, 3, 4\}$

It is an onto function.

(v)
$$R_5 = \{(a, b), (b, a), (c, d), (d, e)\}$$

Domain $R_5 = \{a, b, c, d\}$

Range $R_5 = \{a, b, d, e\}$

It is a bijective function.

(vi)
$$R_6 = \{(1, 2), (2, 3), (1, 3), (3, 4)\}$$

Domain
$$R_6 = \{1, 2, 3\}$$

Range
$$R_6 = \{2, 3, 4\}$$

It is a relation. As 1 has no distinct image.

(vii)
$$R_7 =$$

Domain $R_7 = \{1, 3, 5\}$

Range $R_7 = \{p, r, s\}$

R₇ is one-one function.

Domain $R_8 = \{1, 3, 7\}$

Range $R_8 = \{a, b, c\}$

It is a relation. As 5 has no distinct image.