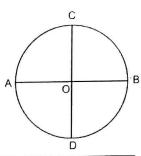
EXERCISE 9.1

Q. 1 Prove that, the diameters of a circle bisect each other.

Given: A circle with centre O. Two diameters \overline{AB} and \overline{CD} .

To Prove: Two diameters \overline{AB} and \overline{CD} bisect each other.

Proof:



Statements	Reasons
\overline{AB} and \overline{CD} intersect each other at point O.	\overline{AB} and \overline{CD} are non-parallel.
$\overline{OA} \cong \overline{OB}$ (i)	Radii of the same circle
O is the midpoint of \overline{AB} thus \overline{CD} bisects the \overline{AB} at O.	from (i)
Similarly	
$\overline{OC} \cong \overline{OD}$ (ii)	Radii of the same circle
O is the midpoint of \overline{CD} thus \overline{AB} bisects the \overline{CD} at O.	from (ii)
Hence, two diameters \overline{AB} and \overline{CD} bisect each other.	

Q. 2 Two chords of a circle do not pass through the centre. Prove that they cannot bisect each other.

Given:

A Circle with centre "Q". Two different chords \overline{AB} and \overline{CD} not passing through the centre, intersect each other at point E.

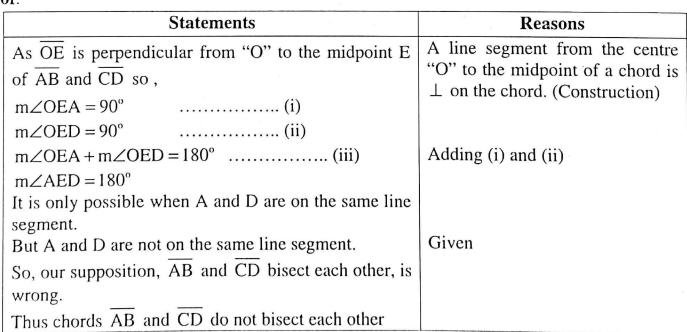
To Prove:

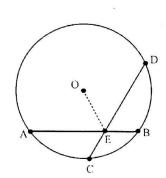
 \overline{AB} and \overline{CD} do not bisect each other, i.e.

E is not midpoint of \overline{AB} and \overline{CD} .

Construction:

Suppose chords \overline{AB} and \overline{CD} bisect each other at point E i.e. E is the common midpoint of \overline{AB} and \overline{CD} . Join O to E.





Q. 3 If length of the chord $\overline{AB} = 8$ cm. Its distance from the centre is 3 cm, then find the diameter of such circle.

Solution:

Given:

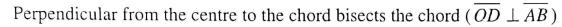
Length of chord = $m\overline{AB}$ = 8cm

Distance from centre = $m\overline{OD}$ = 3cm

To Find: Diameter = 2r

Calculations:

$$m\overline{AB} = 8cm$$
 (Given)



$$\overline{MAD} = \frac{1}{2} \overline{MAB} = \frac{1}{2} (8cm) = 4cm$$

In right angled $\triangle ADO$ by Pythagoras theorem

$$(m\overline{OA})^2 = (m\overline{AD})^2 + (m\overline{OD})^2$$

$$r^2 = (4cm)^2 + (3cm)^2$$

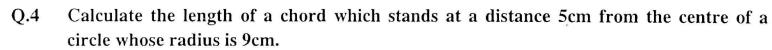
$$r^2 = 16cm^2 + 9cm^2$$

$$r^2 = 25cm^2$$

$$\sqrt{r^2} = \sqrt{25 \text{cm}^2}$$

$$r = 5cm$$

We know that diameter = 2r = 2(5cm) = 10cm



Given:

In a circle with centre O radius = 9cm,

$$m\overline{OD} = 5cm$$

To find:

Length of chord AB

Calculations:

In right angled ΔADO , by Pythagoras theorem

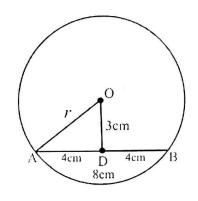
$$\left(m\overline{OA}\right)^2 = \left(mAD\right)^2 + \left(mOD\right)^2$$

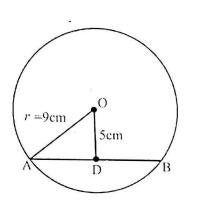
$$(9cm)^2 = (m\overline{AD}) + (5cm)^2$$

$$81cm^2 = \left(m\overline{AD}\right)^2 + 25cm^2$$

$$81cm^2 - 25cm^2 = \left(m\overline{AD}\right)^2$$

$$56cm^2 = \left(m\overline{AD}\right)^2$$





$$\sqrt{\left(m\overline{AD}\right)^2} = \sqrt{56cm^2}$$
$$m\overline{AD} = \sqrt{56cm}$$

We know that

 $m\overline{AD} = \frac{1}{2}m\overline{AB}$ (Perpendicular from the centre to the cord bisects the chord)

$$\Rightarrow m\overline{AB} = 2m\overline{AD}$$

$$= 2 \times \sqrt{56}cm$$

$$m\overline{AB} = 14.966cm$$
or
$$m\overline{AB} = 14.97cm$$

MHBORBMZ

If two chords of a circle are congruent then they will be equidistant from the centre.

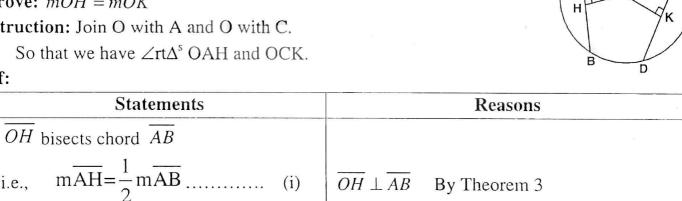
Given: \overline{AB} and \overline{CD} are two equal chords of a circle with centre at O.

So that $\overline{OH} \perp \overline{AB}$ and $\overline{OK} \perp \overline{CD}$.

To Prove: $m\overline{OH} = m\overline{OK}$

Construction: Join O with A and O with C.

Proof:



Similarly \overline{OK} bisects chord \overline{CD}

i.e.,
$$m\overline{CK} = \frac{1}{2} m\overline{CD}$$
....(ii)

$$But \quad mAB = mCD \qquad \qquad (iii)$$

Hence
$$\overline{mAH} = \overline{mCK}$$
 (iv)

Now in
$$\angle rt \Delta^s OAH \leftrightarrow OCK$$

hyp.
$$\overline{OA} = \text{hyp. } \overline{OC}$$

 $m\overline{AH} = m\overline{CK}$

$$\Delta OAH \cong \Delta OCK$$

$$\Rightarrow$$
 mOH=mOK

$$\overline{OK} \perp \overline{CD}$$
 By Theorem 3

Given

Using (i), (ii) and (iii) Both are half of equal segment

Given $\overline{OH} \perp \overline{AB}$ and $\overline{OK} \perp \overline{CD}$

Radii of the same circle

Already proved in (iv)

 $H.S \cong H.S$

Corresponding sides of congruent triangles.