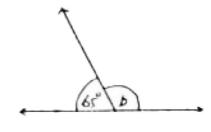
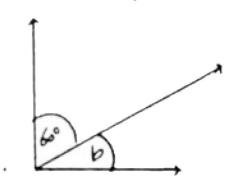

Write down the angles marked with letters. Write whether the angles are complimentary or supplementary?

Sol:


(i)
$$m\angle a + 50^{\circ} = 180^{\circ}$$

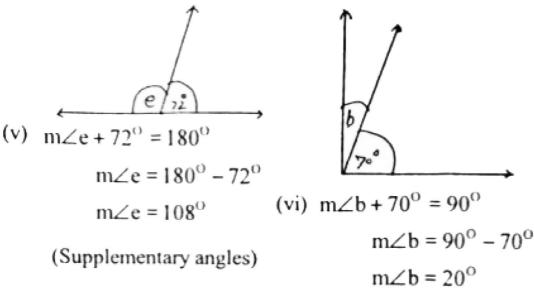
 $m\angle a = 180^{\circ} - 50^{\circ}$
 $m\angle a = 130^{\circ}$

(Supplementary angles)


(iii)
$$m\angle c + 138^{\circ} = 180^{\circ}$$

 $m\angle c = 180^{\circ} - 138^{\circ}$
 $m\angle c = 42^{\circ}$

(Supplementary angles)


(ii)
$$m \angle b + 65^{\circ} = 180^{\circ}$$

 $m \angle b = 180^{\circ} - 65^{\circ}$
 $m \angle b = 115^{\circ}$

(Supplementary angles)

(iv)
$$m \angle b + 60^{\circ} = 90^{\circ}$$

 $m \angle b = 90^{\circ} - 60^{\circ}$
 $m \angle b = 30^{\circ}$

(Complementary angles)

(Complementary angles)

Two angles are supplementary and the greater exceeds the smaller by 30°. How many degrees are there in each angle?

Sol: The size of small angle = x

Let

The size of large angle = $x + 30^{\circ}$

According to statement

$$x + (x + 30^{\circ}) = 180^{\circ}$$

$$x + x + 30^{\circ} = 180^{\circ}$$

$$2x + 30^{\circ} = 180^{\circ}$$

$$2x = 180^{\circ} - 30^{\circ}$$

$$2x = 150^{\circ}$$

$$x = \frac{150^{\circ}}{2}$$

$$x = 75^{\circ}$$

The size of small $sic = 75^{\circ}$

The size of large angle =
$$x + 30^{\circ} = 75^{\circ} + 30^{\circ} = 105^{\circ}$$

angles = 75° , 105°

3. If 40° is added to an angle, the resulting angle is equal to the supplement of the original angle. Find the original angle.

Sol: Let the required angle = xsize of the angle after adding = $x + 40^{\circ}$

The supplement of 1st angle = $180^{\circ} - x$

According to statement

$$x + 40^{\circ} = 180^{\circ} - x$$

$$x + x = 180^{\circ} - 40^{\circ}$$

$$2x = 140^{\circ}$$

$$x = \frac{140^{\circ}}{2}$$

$$x = 70^{\circ}$$

 The sum of two angles is 100°, and the difference between their supplements is 100°. Find the angles.

Let the size of 1st angle = x^0

The size of 2nd angle = $100^{\circ} - x^{\circ}$

The supplement of $x^0 = 180^0 - x^0$

The supplement of $100^{\circ} - x^{\circ} = 180^{\circ} - (100^{\circ} - x^{\circ})$ = $180^{\circ} - 100^{\circ} + x^{\circ}$

According to the statement

$$(180^{\circ}-100^{\circ}+x^{\circ})-(180^{\circ}-x^{\circ})=100^{\circ}$$

$$180^{\circ} - 100^{\circ} + x^{\circ} - 180^{\circ} + x^{\circ} = 100^{\circ}$$

$$2x^{O} - 100^{O} = 100^{O}$$

$$2x = 100^{O} + 100^{O}$$

$$2x = 200^{O}$$

$$x = \frac{200^{O}}{2}$$

$$x = 100^{O}$$

The size of 1st angle = 100°

The size of 2nd angle =
$$100^{\circ} - 100^{\circ}$$

= 0°

 The sum of two angles is 100°, the supplement of the first angle exceeds the supplement of the second angle 40°.
 Find the angles.

Sol: Let the size of
$$1^{st}$$
 angle = x^0

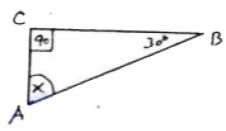
The size of 2nd angle =
$$100^{\circ} - x^{\circ}$$

The supplement of 1st angle =
$$180^{\circ} - x^{\circ}$$

The supplement of 2nd angle =
$$180^{\circ} - (100^{\circ} - x)$$

= $180^{\circ} - 100^{\circ} + x^{\circ}$
= $80^{\circ} + x^{\circ}$

According to the statement


$$180^{\circ} - x^{\circ} - 40^{\circ} = 80^{\circ} + x^{\circ}$$
$$-x^{\circ} - x^{\circ} = 80^{\circ} + 40^{\circ} - 180^{\circ}$$
$$-2x^{\circ} = -60^{\circ}$$

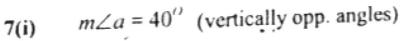
$$x^{(1)} = 30^{(1)}$$

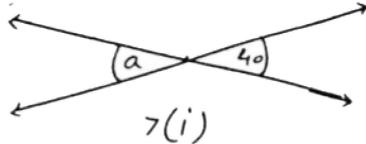
1st angle =
$$30^{\circ}$$

2nd angle =
$$100^{\circ} - 30^{\circ}$$

= 70°

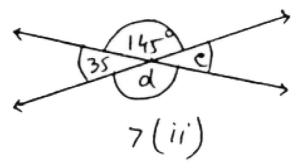
6. Write the equation for the given triangle and solve it.


Sol: The sum of angles of any triangles = 180°


The sum of angles of
$$\triangle ABC = x + 90^{\circ} + 30^{\circ}$$

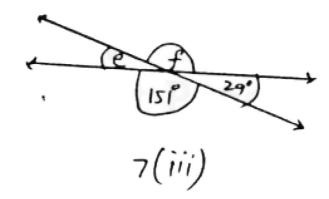
= $x + 120^{\circ}$

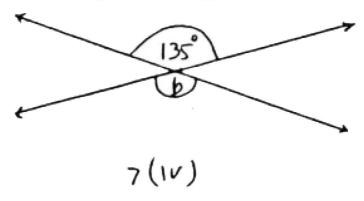
According to the statement

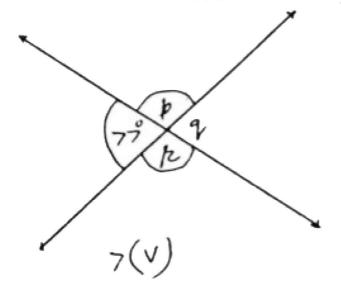

$$x + 120^{\circ} = 180^{\circ}$$

 $x = 180^{\circ} - 120^{\circ}$
 $x = 60^{\circ}$

Write down the angles marked with letters.



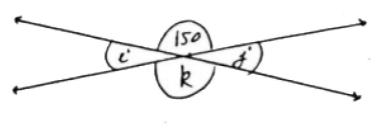

7(ii) $m \angle c = 35^{\circ}$ (vertically opp. angles) $m \angle d = 145^{\circ}$ (vertically opp. angles)


7(iii) $m\angle e = 29^{\circ}$ (vertically opp. angles) $m\angle f = 151^{\circ}$ (vertically opp. angles)

7(iv) $m \angle b = 135^{\circ}$ (vertically opp. angles)

7(v)
$$m \angle q = 70^{\circ}$$
 (vertically opp. angles)
 $m \angle p = 180 - 77^{\circ}$ (supplementary angles)
 $= 103^{\circ}$

(vertically opp. angles) $m \angle r = m \angle p$

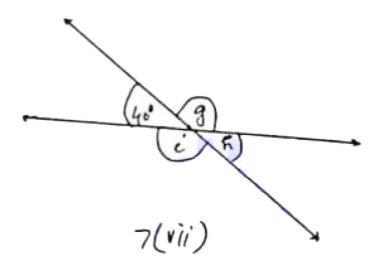

$$=103^{\circ}$$

7(vi)

(vertically opp. angles)
$$m \angle k = 150^{\circ}$$

(supplementary angles) $m\angle i + 150^{\circ} = 180^{\circ}$

$$m \angle i = 180^{\circ} - 150^{\circ}$$


$$m\angle i = 30^{\circ}$$
 (i)

(vertically opp. angles) $m \angle j = m \angle i$ and

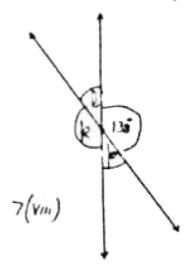
from (i)
$$m \angle j = 30^{\circ}$$

7(vii)

(vertically opp. angles)
$$m \angle h = 40^{\circ\prime}$$

(supplementary angles) $m \angle 40 + \angle g = 180^{\circ\prime}$
 $m \angle g = 180^{\circ\prime} - 40$

$$m \angle g = 140^{\prime\prime} \tag{i}$$


(vertically opp. angles) $m\angle i = m\angle g$ and

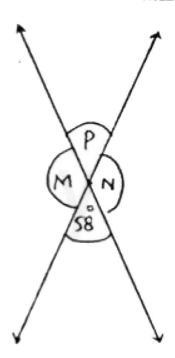
from (i) =
$$140^{\circ}$$

(vertically opp. angles) $m \angle k = 138^{\circ\prime}$ 7(viii)

(supplementary angles)
$$m\angle p + 138'' = 180''$$

$$m \angle p = 180^{\prime\prime} - 138^{\prime\prime}$$

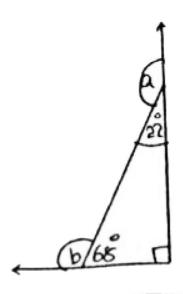
$$m \angle p = 42^{\circ}$$
 (i)


(vertically opp. angles) $m \angle l = m \angle p$ and

from (i) $m \angle l = 42^{\prime\prime}$

(vertically opp. angles) $m \angle P = 58^{\prime\prime}$ 7(ix)

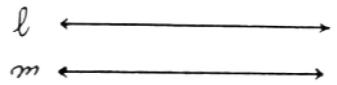
(supplementary angles) $m \angle N + 58^{\prime\prime} = 180^{\prime\prime}$


 $m \angle N = 180^{\circ} - 58$

$$m \angle N = 122^{O}$$
 (i)

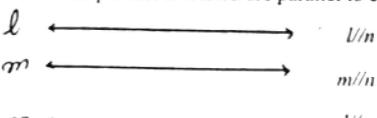
(vertically opp. angles) $+ m \angle M = m \angle N$ and from (i) $= 122^{O}$

7(x)

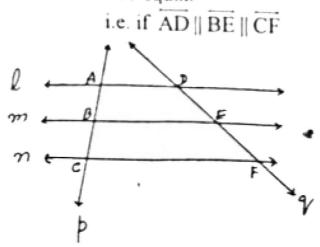


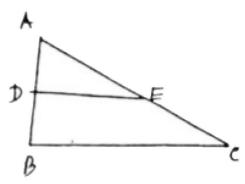
(supplementary angles)
$$m\angle a + 22^{\circ} = 180^{\circ}$$

 $m\angle a = 180^{\circ} - 22^{\circ}$
 $m\angle a = 158^{\circ}$
(supplementary angles) $m\angle b + 68^{\circ} = 180^{\circ}$
 $m\angle b = 180^{\circ} - 68$
 $m\angle b = 112^{\circ}$

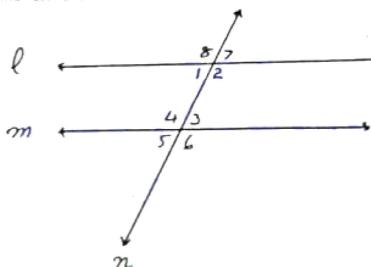

(i) PARALLEL LINES

Parallel lines are two straight lines in the same plane which never meet.


The lines a and b are parallel, we write $a \parallel b$.


- (ii) Properties of Parallel Lines
- (a) Two lines parallel to a third are parallel to each other.

(b) If three parallel lines are intercepted by two transversals in such a way that the two intercepts on one transversal are equal to each other, the two intercepts on the second transversal are also equal.

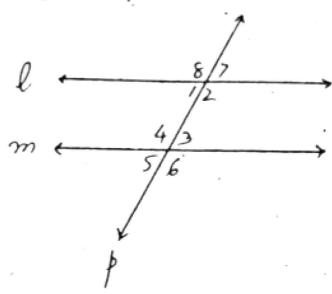

(c) If a line bisects one side of a triangle and is parallel to a second side, then it bisects the third side.

i.e. if $\triangle ABC$ with $\overline{BD} \cong \overline{DA}$, $\overline{DE} \parallel \overline{BC}$ then $\overline{AE} \cong \overline{CE}$

Transversal

A transversal is a line that intersects two lines in differnt points.

If a transversal "t" intersects two parallel lines a and b, the angles formed are identified as follows:


- 1. Four interior angles $: \angle 1, \angle 2, \angle 3, \angle 4$
- 2. Four exterior angles : $\angle 5, \angle 6, \angle 7, \angle 8$
- Two pairs of alternate interior angles ∠1 and ∠3; and ∠4
- Two pairs of alternate exterior angles ∠5 and ∠7; ∠6 and ∠8
- Two pairs of interior angles on the same side of the transversal: ∠2 and ∠3;∠1 and ∠4.
- Four pairs of corresponding angles: ∠3 and ∠7;∠4 and ∠8;∠2 and ∠6;∠1 and ∠5.

Relation Between the Pairs of Angles

If two parallel lines are cut by a transversal, the corresponding angles are equal.

$$[\angle 1 = \angle 2, \angle 2 = \angle 3, \angle 1 = \angle 3]$$

d) If two parallel lines are cut by a transversal, the alternate interior angles are equal.

a || b, lines a and b are cut by the transversal c at point M and N to form the pairs of alternate interior angles.

$$(\angle 1, \angle 2)$$
 and $(\angle 3, \angle 4)$

$$\angle 1 = \angle 2, \angle 3 = \angle 4$$

e) If two parallel lines are intercepted by a transversal, then pairs of interior angles on the same side of transversal are supplementary.

 $AB \parallel CD$, lines are cut by the transversal t, angles a, b, c and d are formed.

$$(i) m \angle 2 = m \angle 4$$
$$m \angle 1 = m \angle 3$$

(ii)
$$m \angle 3 = m \angle 7$$

 $m \angle 4 = m \angle 8$
· $m \angle 6 = m \angle 2$

$$m \angle 5 = m \angle 1$$

(iii)
$$m \angle 7 = m \angle 5$$

 $m \angle 6 = m \angle 8$

(iv)
$$m \angle 2 + m \angle 3 = 180^{\circ}$$

 $m \angle 1 + m \angle 4 = 180^{\circ}$

(v)
$$m \angle 5 + \dot{m} \angle 8 = 180^{\circ}$$

 $m \angle 6 + m \angle 7 = 180^{\circ}$