corresponding angles?

- 8. Are all similar figures congruent? Explain why?
- Sol: All similar figures are equal in size and shape. Therefore, similar figures are congruent.
- 9. Are all congruent figures similar? Explain why?
- All congruent figures have same shape but differ in size. Sol: Therefore, congruent figures are not similar.

- Fill in the blanks. 1.
- If $\triangle ABC \cong \triangle FDE$, then (a)
- (ii) $\overline{BC} =$ (i)
- (iii)
- *m∠B* = _____ (v) ·
- In ΔPQR , the angle included between side PR and QR is (b)

- (c) In, the side included between ∠E and ∠F is _____

(d) If
$$\overline{AB} = \overline{QP}$$
, $m \angle B = m \angle P$, $\overline{BC} = \overline{PR}$, then by ______
condition. $\Delta ABC \cong \Delta QPR$

(e) If
$$m \angle A = m \angle R$$
, $m \angle B = m \angle P$, $\overline{AB} = \overline{RP}$ then by congruence condition. $\Delta ABC \cong \Delta RPQ$.

Answers:

(a)

(i)
$$\overline{AB} \cong \overline{FD}$$
 (ii) $\overline{BC} \cong \overline{DE}$

(iii)
$$AC \cong \overline{FE}$$
 (iv) $\angle A \cong \angle F$

(v)
$$\angle B \cong \angle D$$
 (vi) $\angle C \cong \angle E$

mid angle $\angle R$

mid side
$$\overline{FE}$$

$$m\angle A = m\angle R$$

$$m\angle B = m\angle P$$

$$\overline{AB} = \overline{RP}$$

$$B \leftarrow B$$

$$A \leftarrow B$$

$$A \leftarrow B$$

$$B \leftarrow B$$

$$A \leftarrow B$$

$$\triangle ABC \cong \triangle RPQ$$
 $ASA \cong ASA$

2. In figure, the pairs of corresponding equal parts in a pair of triangles are shown with similar markings. Specify the two triangles which become congruent. Also, write the congruence of two triangles in symbolic form.

Sol:

(i)
$$\Delta ABC \cong \Delta DEF = SSS \cong SSS$$

(ii)
$$\Delta NTZ \cong \Delta DFE$$
 RHS \cong RHS

(iii)
$$\Delta ABC \cong \Delta CDA$$
 ASA \cong ASA

(iv)
$$\Delta PQT \cong \Delta SRT$$
 SAS \cong SAS

3. In figure, ABC and DBC are two triangles on a common base \overline{BC} such that $\overline{AB} = \overline{DC}$ and, where A and D lie on the same side of BC. In $\triangle ADB$ and $\triangle DAC$, state the corresponding parts so that $\triangle ADB = \triangle DAC$.

Which condition do you use to establish the congruence?

If
$$m \angle DCA = 40^{\circ}$$
 and $m \angle BAD = 100^{\circ}$.

Find $\angle ADB$

Sol: Now $\triangle ABC$ and $\triangle DBC$

common
$$\overline{BC} \cong \overline{BC}$$
given $\begin{cases} \overline{AB} \cong \overline{DC} \\ \overline{AC} \cong \overline{DB} \end{cases}$

Now
$$\triangle ADB$$
 and $\triangle DAC$

$$\overline{DA} \cong \overline{AD}$$
 $\overline{DB} \cong \overline{AC}$
 $\overline{BA} \cong \overline{CD}$

$$\Delta ADB \cong \Delta DAC$$

$$m\angle DCA = 40^{\circ}$$
 now

$$m \angle BAD = 100^{\circ}$$
 and

$$m\angle ABD = 40^{\circ}$$
 therefore

$$m \angle ADB = 180^{\circ} - 100^{\circ} - 40^{\circ}$$
$$= 180^{\circ} - 140^{\circ}$$

$$=40^{0}$$

4. Identify the following figure as congruent, similar or neither.

Sol:

- (i) congruent
- (ii) congruent
- (iii) congruent

No one is similar

5. Identify the corresponding parts in ΔMNO and ΔPQR .

- (i) $\overline{MN} \leftrightarrow \square$
- (ii) $\overline{NO} \leftrightarrow \square$
- $(iii) \quad \overline{PR} \quad \longleftrightarrow \quad \square$
- (iv) $\triangle 1 \leftrightarrow \square$

Answers:

- (i) $\overline{MN} \leftrightarrow \overline{PQ}$
- (ii). $\overline{NO} \leftrightarrow \overline{QR}$
- (iii) $\overline{PR} \longleftrightarrow \overline{MO}$
- (iv) $\angle 1 \leftrightarrow \angle 4$

Quadrilaterals:

A quadrilateral is a polygon with four sides.

Parallelogram:

A parallelogram is a quadrilateral with two pairs of parallel sides.

Rectangle

A rectangle is a parallelogram containing a right angle.

Square

A square is an equilateral rectangle.

Properties of Congruency

Four Sides of a Square are Equal

ABCD is a square. Measure \overline{AB} , \overline{BC} , \overline{CD} and \overline{DA} . We find that.

$$\overline{mAB} = \overline{mBC} = \overline{mCD} = \overline{mDA} = 2.8$$
cm.

Four Angles of a Square are Right Angles

ABCD is a square. Measure angle A, B, C, D with

protractor. We find that

$$m \angle A = m \angle B = m \angle C = m \angle D = 90^{\circ}$$

Diagonals of a Square Bisect Each Other:

Consider a square ABCD, the diagonals and intersect at

'O'. We find that

$$m\overline{OA} = m\overline{OC} = 1.9cm$$
 and

$$m\overrightarrow{OB} = m\overrightarrow{OD} = 1.9cm$$

7.5.2 Opposite Sides of a Rectangle are Equal

Consider Rectangle

Let us consider a rectangle ABCD,

AB,CD and $\overline{AD},\overline{BC}$ are opposite pairs of rectangle ABCD.

We find that $m\overline{AB} = m\overline{CD} = 4.5cm$ and

$$m\overline{AD} = m\overline{BC} = 2.8cm$$

$$m\overline{AB} = m\overline{DC}$$
 (i)

$$\overline{mAD} = \overline{mBD}$$
 and \cdot

$$m\angle A = m\angle B = m\angle C = m\angle D = 90^{O}$$
 (ii)

(iii)

$$m\overline{OA} = m\overline{OC},$$

 $m\overline{OB} = m\overline{OD}$
 $m\overline{OA} = m\overline{OC} = m\overline{OB} = m\overline{OD}$

Properties of Parallelogram

The opposite sides of a parallelogram are equal.

ABCD is a parallelogram. \overline{AB} , \overline{CD} and \overline{AD} , \overline{BC} are pairs of opposite sides.

We find that

$$m\overline{AB} = m\overline{CD} = 3.9cm$$
 and $m\overline{AD} = m\overline{BC} = 2.0cm^{-1}$

The opposite angles of a parallelogram are equal.

ABCD is a parallelogram. $\angle A, \angle C$ and $\angle B, \angle D$ are pairs of opposite angles.

We find that

$$m \angle A = m \angle C = 70^{\circ}$$
 and

$$m \angle B = m \angle D = 110^{\circ}$$

The diagonals of a parallelogram bisect each other.

A parallelogram ABCD, the diagonals \overline{AC} and \overline{BD} intersect at O. We find that

$$m\overrightarrow{OA} = m\overrightarrow{OC} = 2.5cm$$

and
$$m\overrightarrow{OD} = m\overrightarrow{OB} = 2.5cm$$

