

Practical L Geometry

L	_0	Geometin
		Construction of a Triangle
		Construction of a Quadrilateral
	46	Tangent to a Circle
		completing of this unit, the students will be able to:
5		uct a triangle having:
0		ides and the included angle.
\tilde{c}		de and two of the angles.
	the the	of its sides and angle opposite to one of them with all ee possibilities).
•	Draw:	•
0		bisectors. Q Altitudes.
C		ns of a given triangle and verify their concourrency.
>	Constr	ruct a rectangle when:
	0	Two sides are given.
	0	Diagonal and one side are given.
•	Constr	uct a square when its diagonal is given.
>	Constr	uct a parallelogram when two adjacent sides and the
	angle i	ncluded between them is given.
>	locate	the centre of given circle.
•	draw a	circle passing through three given non-collinear
	points.	
•	draw a	tangent to a given circle from a point P when P lies.
	0	On the circumference,
	0	Outside the circle.
•	Draw:	
	0	Direct common tangent or external tangent.
	0	Transverse common tangent or internal tangent to
		two equal circles.
	Draw	tangent to:

Draw a tangent to:

Two unequal touching circles.

Two unequal intersecting circles.

Q.2. Construct a ABC in which mBC = 4.6cm. $\angle B = 110^{\circ}$ and $m\overline{AB} = 5cm$. Draw the perpendicular bisectors of its sides.

Sol.

- (1) Draw a line segment $\overline{AB} = 5 \text{cm}$.
- (ii) At point B, draw an angle 110° with the help of compasses
- (iii) Cut $m\overline{BC} = 4.6cm$ at BP.
- (iv) Join "C" with A ABC is the required triangle.
- Draw perpendiculars I:F. GH and LM of the sides \overline{AB} , \overline{BC} and \overline{AC} respectively. They meet each other at point "O".

Q.3. Draw a equilateal A ABC in which

 $\overline{mAB} = m\overline{BC} = m\overline{AC} = 5cm$. Draw its altitudes and

measure their lengths are they equal?

Sol.

- (i) Draw a line segment $\overline{mBC} = 5cm$.
- (ii) Draw arcs of radius 5cm with taking centre B and C, which intersect eachother at A.
- (iii) Join A with B and C.ABC is the required equilateral.
- (iv) $AB \perp BC$, $BQ \perp CA$ and $AB \perp CR$ And
- (v) $m\overline{AP} = m\overline{BC} = m\overline{CR} = 4.2cm$ All the altitudes are equal in lengths.

Q.4. Construct a \triangle ABC in which $\overrightarrow{mBC} = 5.4cm$,

 $\angle B = 65^{\circ}$ and $m\angle C = 55^{\circ}$. Find the centroid of the triangle.

Sol.

Steps of Construction:

- (i) Draw a line segment \overline{BC} 5.4cm.
- (ii) Now draw an angle of 65° at point B & 55° at point C. \overrightarrow{BP} and \overrightarrow{CQ} intersect eachother at point A.
- (iii) ABC is the required triangle.
- (iv) M and N are the mid points of \overline{BC} and \overline{AC} .
- (v) \overline{AM} and \overline{BN} are the medians which intersect eachother at point G.

Thus point "G" is the required centroid of triangle.

Q.5. Draw an equilateral triangle each of whose sides is 5.3cm. Draw its medians. Are they equal?

Sol.

Steps of Construction:

- (i) Draw a line segment \overline{BC} 5.3cm.
- (ii) Taking B and C as centre draw two arcs which intersect eachother at point A.
- (iii) Join point A with B and C.

 ABC is the required equilateral.
- (iv) Draw medians of sides \overline{AB} , \overline{CA} , \overline{BC} at points P, Q & R.
- (v) Join A with P, B with Q and C with R. AP, BQ, CR are the required medians.
- (vi) $m\overline{AP} = m\overline{BQ} = m\overline{CR} = 4.5cm$

So that the medians are equal in lengths.

Q.6. Draw an equilateral triangle with length of each side 6cm.

Sol.

Steps of Construction:

- (i) Draw a line segment $\overline{AB} = 6$ cm.
- (ii) Taking A and B as centre draw two arcs of radius 6cm each. They intersect eachother at point C.
- Join point C with A and B.ABC is the required equilateral
- Q.7. Construct a triangle ABC with base length 5cm and the angles at both ends of the base are 45° and 60° respectively.

501.

Steps of Construction:

- (i) Draw a line segment $\overline{AB} = 5$ cm.
- (ii) Draw $m \angle BAP 60^{\circ}$ at point A.
- (iii) Draw an angle $m\angle ABQ = 45^{\prime\prime}$ at point B.
- (iv) AP and BQ intersect eachother at point C.

 ABC is the required triangle.
- Q.8. Draw an isosceles triangle with length of the equal sides 5cm and the angle included between them is 60°.

Sol.

- (i) Draw a line segment $\overline{BC} = 5cm$.
- (ii) At point B, draw $m\angle ABC = 60^{\prime\prime}$ using compasses.
- (iii) Cut $m\overline{BA} = 5cm$.
- (iv) Join point A with C.

 ABC is the required isosceles.

Q.9. Construct a rectangle whose adjacent sides are 4cm and 3cm.

Sol.

Steps of Construction:

- (i) Draw a line segment $\overline{AB} = 4cm$.
- (ii) At points A and B, draw right angles with the help of compasses.
- (iii) Cut $m\overline{AD} = m\overline{BC} = 3cm$.
- (iv) Join point C with D.

ABCD is the required rectangle.

Q.10. Construct a rectangle whose one side is 6cm and an adjacent diagonal of 9cm.

Sol.

- (i) Draw a line segment $\overline{AB} = 6cm$.
- (ii) Draw right angle at points A and B.
- (iii) Taking centre as A draw on arc of radius 9cm which intersect $B\vec{P}$ at C.
- (iv) Cut mBC, mAD at AQ.
- (v) Join point C with D.ABCD is the required rectangle.

Q.11. Construct a square whose one side is 5cm.

Sol.

Steps of Construction:

- (i) Draw a line segment $\overline{AB} = 5cm$.
- (ii) At points A and B, draw right angle with the help of compasses.
- (iii) Cut $m\overline{BC} = m\overline{AD} = 5cm$ at \overline{AQ} and \overline{BP} .
- (iv) Join C with D

ABCD is the required square.

Q.12. Construct a square whose one side is 3.5cm.

Sol.

Steps of Construction:

- (i) Draw a line segment $\overline{AB} = 3.5cm$.
- (ii) At points A and B, draw right angle with the help of compasses.
- (iii) Cut $m\overline{BC} = m\overline{AD} = 3.5cm$ at \overline{AQ} and \overline{BR} .
- (iv) Join C with D.

ABCD is the required square.

Q.13. Construct a rectangle whose two adjacent sides measure 5cm and 4cm and their included angle is 90°.

Sol.

Steps of Construction:

- (i) Draw a line segment $\overline{AB} = 5cm$.
- (ii) At point A, draw right angle with the help of compasses.
- (iii) Cut $m\overline{BC} = m\overline{AD} = 4cm$ at \overline{AR} and \overline{BP} .
- (iv) Join C with D.

ABCD is the required rectangle.

Q.13. Construct a rectangle whose two adjacent sides measure 5cm and 4cm and their included angle is 90°.

Sol.

Steps of Construction:

- (i) Draw a line segment $\overline{AB} = 5cm$.
- (ii) At point A, draw right angle with the help of compasses.
- (iii) Cut $m\overline{BC} = m\overline{AD} = 4cm$ at \overline{AR} and \overline{BP} .
- (iv) Join C with D.

ABCD is the required rectangle.

Q.14. Draw a rectangle whose one side is 8cm and the length of each diagonal is 10cm.

Sol.

- (i) Draw a line segment $\overline{AB} = 6cm$.
- (ii) At point A and B, draw right angle with the help of compasses.
- (iii) Draw an arc of radius 10cm with taking centre point "A" which intersect \overline{BP} at point C.
- (iv) Now, draw an arc of radius cm again with taking centre at point B. Which intersect \overrightarrow{AQ} at point D.
- (v) Joint point C with D.ABCD is the required rectangle.

Q.15. Draw a rectangle ABCD in which mAB = 6.5 cm and mAD = 4.8 cm and $m\angle BAD = 90^{\circ}$. Measure its diagonals.

Sol.

- (i) Draw a line segment $\overline{AB} = 6.5$ cm.
- (ii) At point A and B, draw right angle with the help of compasses.
- (iii) Intersect $m\overline{BC} = m\overline{AD} = 4.8cm$ at \overline{AP} and \overline{BQ} .
- (iv) Join C with D.
- (v) ABCD is the required rectangle.

Q.16. Name the following quadrilaterals when:

	Answers	
(1)	The diagonals are equal and the adjacent sides are unequal.	Rectangle
(11)	The diagonals are equal and the adjacent sides are equal.	Square
(111)	All the sides are equal and one angle is 90°.	Square
(N)	All the angles are equal and the adjacent sides are unequal	Rectangle

Q.17. Construct a rectangle with sides 10cm and 6cm.

Sol.

- (i) Draw a line segment $\overline{AB} = 10cm$.
- (ii) At point A and B, draw right angle with the help of compasses/
- (iii) Intersect $m\overline{BC} = m\overline{AD} = 6cm$ at \overline{AQ} and \overline{BP} .
- (iv) Join C with D.ABCD is the required rectangle.

Q.18. Construct a square with side of length 6cm.

Steps of Construction:

- (1) Draw a line segment $\overline{AB} = 6$ cm.
- (ii) Points A and B, draw right angle with the help of compasses.
- (iii) Cut $\overrightarrow{AP} = \overrightarrow{BR} = 6$ cm at \overrightarrow{AD} and \overrightarrow{BC} .
- (iv) Join C with D.ABCD is the required square.

Q.19. Name the following triangles.

Questions	Answers Equilateral triangle
(i) With all the three sides equal in length.	
(ii) With two sides equal in length.	Isosceles triangle
(iii) None of the sides is equal to the other.	Scalene triangle

Q.20. Draw a circle with centre O and radius 5cm. Explain the steps necessary to draw a segment of the circle.

Sol.

Steps of Construction:

- (i) Take any point O.
- (ii) Taking centre with "O", draw an arc of radius 5cm.
- (iii) Now, take any diameter \overline{PQ} .

Conclusions: \overline{PQ} has divided the circle into two parts. The major segment part and minor segment part.

Q.21. Draw a circle with center O and any radius. Draw the diameter AB and shade one semicircular region.

Sol.

Steps of Construction:

- (i) Take any point O.
- (ii) With taking "O" as centre, draw a circle with suitable radius.
- (iii) Draw AOB as diameter.

Conclusion: The circle has divided into two parts. Now, shaded the half part.

Q.22. Show four angles in a semi-circular region of question 21.

Sol.

Steps of Construction:

- (i) Draw a circle with suitable radius and marks its centre as "O".
- (ii) Draw a diameter \overline{AOB} .
- (iii) Take a point C, D, E, F at half curved area.
- (iv) Join these points with A and B.

Conclusion: $\angle ACB$, $\angle ADB$, $\angle AEB$, $\angle AFB$ are the required four angles.

Q.23. Draw a circle of radius 2cm with center O. Draw a chrod and shade the portion showing major arc.

Sol.

Steps of Construction:

- (i) Take any point O.
- (ii) With taking "O" as centre, draw a circle with radius 2cm.
- (iii) Take \overline{AB} as chord.

Thus, \widehat{ACB} is the major arc.

(iv) In figure \widehat{ACB} (major arc) is quite prominent.

Q.24. Draw a circle of radius 2.5cm with center at O. Draw a chrod and shade the portion showing the minor are of the circle.

Sol.

Steps of Construction:

- (i) Take any point "O".
- (ii) With taking "O" as centre, draw a circle with radius 2.5cm
- (iii) Draw \overline{AB} as chord.
- (iv) The major arc \widehat{ACB} is quite prominent in the figure.
- ().25. Draw a semi-circle with diameter 4cm and center at O.

Sol.

Steps of Construction:

- (i) Draw a line segment $\overline{AB} = 4cm$.
- (ii) Now take "O" as centre, draw a semi-circle with radius $m\overline{AO}$ or $m\overline{OB}$.
- (iii) With taking "O" as centre $m\overline{OA}$ or $m\overline{OB}$.
- (iv) ACB is the required semi-circle.
- Q.26. Draw a circle passing through the vertices of a square of side 3cm.

Sol.

- (i) Draw a line segment $\overline{AB} = 3$ cm.
- (ii) At points A and B, draw right angles at each ($\therefore m\overline{AD} = m\overline{BC} = 3cm$)
- (iii) Join C with D.
- (iv) Draw two diagonals \overline{AC} and \overline{BD} which intersect eachother at O.
- (v) Taking "O" as centre, draw a circle with radius $m\overline{OB}$ or $m\overline{OA}$ or $m\overline{OC}$ or $m\overline{OD}$.

Q.27. In a right triangle ABC, m/1B = 3cm and mBC = 4cm with right angle at B. Draw a circle through A, B and C.

Sol.

Steps of Construction:

- (i) Draw a line segment $\overline{AB} = 3cm$.
- (ii) At point B, draw right angle with the help of compasses.
- (iii) Cut $m\overline{BC} = 4cm$.
- (iv) Join C with A.ABC is the required triangle.
- (v) Now, draw perpendicular bisector of sides \overline{AB} and \overline{BC} which cut eachother at point "O".
- (vi) With taking "O" as centre draw a circle with radius $m\overline{OB}$ or $m\overline{OC}$ or $m\overline{OA}$ respectively.

Conclusion: The circle is passing through the vertices (A, B and C)

Q.28. Draw a circle passing through the three vertices of an equilateral triangle with length of each side 4cm.

Sol.

- (i) Draw a line segment $\sqrt[n]{AB} = 4cm$.
- (ii) Taking A and B as centre, draw two ares of radius 4 cm each. They intersect eachother at point "C".
- (iii) Join C with points A and B.ABC is the equilateral triangle.
- (iv) Now, draw a perpendicular bisectors \(\overline{RT}\) and \(\overline{PQ}\) of sides \(\overline{AB}\) and \(\overline{BC}\) respectively.
 They meet eachother at point "O".
- (v) With taking "O" as centre, draw a circle with radius $m\overline{OC}$ or $m\overline{OA}$ or $m\overline{OB}$ respectively.
- Conclusion: The circle is passing through the vertices (A, B, C) of triangle.