

## Find L.C.M by Factorization.

## Q.1 $21a^4x^3y$ , $35a^2x^4y$ , $28a^3xy^4$

Sol

Factorization of 
$$21a^4x^3y = 3 \times 7 \times a \times a \times a \times a \times x \times x \times x \times y$$
  
Factorization of  $35a^2x^4y = 5 \times 7 \times a \times a \times x \times x \times x \times x \times y$   
Factorization of  $28a^3xy^4 = 2 \times 2 \times 7 \times a \times a \times a \times x \times x \times y \times y \times y$ 

Product of common factors = 
$$7 \times a \times a \times a \times x \times y \times x \times x$$
  
=  $7a^3x^3y$ .....(i)

Product of uncommon factors=  $3 \times 5 \times 2 \times 2 \times a \times x \times y \times y \times y$ =  $60axy^3$ ......(ii) L.C.M = (i) × (ii) =  $7a^3x^3y \times 60axy^3$ 

$$O.2 = 3a^4b^2c^3$$
,  $5a^2b^3c^5$ 

Sol:

Product of common factors=  $\mathbf{a} \times \mathbf{a} \times \mathbf{b} \times \mathbf{b} \times \mathbf{c} \times \mathbf{c} \times \mathbf{c}$ 

$$= a^2b^2c^3$$
 ...... (i)

 $=420a^4x^4v^4$ 

Product of uncommon factors=  $3 \times 5 \times a \times a \times b \times c \times c$ 

= 
$$15a^2bc^2$$
 ...... (ii)

L.C.M = (i) × (ii)  
= 
$$(a^2h^2c^3)(15a^2bc^2)$$
  
=  $15a^4b^3c^5$ 

## Q.3 2ab, 3ab, 4ca

Sol:

Factorization of 
$$2ab = \begin{bmatrix} 2 \\ \times \\ a \end{bmatrix} \times \begin{bmatrix} a \\ \times \\ b \end{bmatrix}$$
Factorization of  $3ab = 3 \times \begin{bmatrix} 2 \\ \times \\ a \end{bmatrix} \times \begin{bmatrix} a \\ \times \\ b \end{bmatrix} \times \begin{bmatrix} a \\ \times \\ a \end{bmatrix} \times \begin{bmatrix} b \\ b \\ c \end{bmatrix}$ 

Product of common factors=  $2 \times a \times b = 2ab$ .....(i)

Product of uncommon factors=  $3 \times 2 \times c = 6c$ .....(ii)

L.C.M = 
$$(i) \times (ii)$$
  
=  $(2ab)(6c)$   
=  $12abc$ 

Q.4  $x^2yz$ ,  $xy^2z$ ,  $xyz^2$ 

Sol:

Factorization of 
$$x^2yz = \begin{bmatrix} x \\ x \end{bmatrix} \times x \begin{bmatrix} y \\ y \end{bmatrix} \times \begin{bmatrix} z \\ z \end{bmatrix}$$
Factorization of  $xy^2z = \begin{bmatrix} x \\ x \end{bmatrix} \times \begin{bmatrix} y \\ y \end{bmatrix} \times \begin{bmatrix} z \\ z \end{bmatrix}$ 
Factorization of  $xyz^2 = \begin{bmatrix} x \\ x \end{bmatrix} \times \begin{bmatrix} y \\ y \end{bmatrix} \times \begin{bmatrix} z \\ z \end{bmatrix}$ 

Product of common factors=  $x \times y \times y \times z = xy^2z$ .....(i)

Product of uncommon factors=  $x \times z = xz$ ....(ii)

L.C.M = (i) × (ii)  
= 
$$xy^2z \times xz$$
  
=  $x^2y^2z^2$ 

Q.5  $p^3q^2 - pq^3$ ,  $p^5q^2 - p^2q^5$ 

Sol:

Factorization of 
$$p^3q - pq^3 = pq(p^2 - q^2)$$
  
=  $pq(p - q)(p + q)$ ....(i)

Factorization of  $p^5q^2 - p^2q^5 = p^2q^2(p^3 - q^3)$ 

$$= ppqq(p-q)(p^2+pq+q^2)....(ii)$$

In (i) and (ii)

Product of common factors= pq(p-q).....(iii)

Product of uncommon factors =  $pq(p+q)(p^2+pq+q^2)$ .....(iv)

L.C.M = (iii) × (iv)  
= 
$$[pq(p-q)][pq(p+q)(p^2 + pq + q^2)]$$
  
=  $p^2q^2(p-q)(p+q)(p^2 + pq + q^2)$   
Q. $a^3 + 64$ ,  $x^2 - 16$ 

Sol:

Factorization of 
$$x^3 + 64 = (x)^3 + (4)^3$$
  
=  $(x + 4) [(x)^2 - (x) (4) + (4)^2]$   
=  $(x + 4)(x^2 - 4x + 16)$ .....(i)

Factorization of 
$$x^2 - 16 = (x)^2 - (4)^2$$
  
=  $(x + 4)(x - 4)$ ....(ii)

In (i) and (ii)

Product of common factors = (x + 4).....(iii)

Product of uncommon factors =  $(x - 4)(x^2 - 4x + 16)....(iv)$ 

L.C.M = (iii) × (iv)  
= 
$$(x + 4)(x - 4)(x^2 - 4x + 16)$$
  
Q#  $x^2 - x - 2$ ,  $x^2 + x - 6$ ,  $x^2 - 3x + 2$ 

Factorization of 
$$x^2 - x - 2 = x^2 - 2x + x - 2$$
  
=  $(x^2 - 2x) + (x - 2)$   
=  $x(x - 2) + 1(x - 2)$   
=  $(x - 2)(x + 1)$ .....(i)

Factorization of 
$$x^2 + x - 6 = x^2 + 3x - 2x - 6$$
  
=  $(x^2 + 3x) - (2x + 6)$ 

$$= x(x + 3) - 2(x + 3)$$

$$= (x + 3)(x - 2)......(ii)$$
Factorization of  $x^2 - 3x + 2 = x^2 - x - 2x + 2$ 

$$= (x^2 - x) - (2x + 2)$$

$$= x(x - 1) - 2(x - 1)$$

$$= (x - 1)(x - 2)......(iii)$$
In (i), (ii) and (iii)
Product of common factors =  $(x - 2).....(iv)$ 

Product of uncommon factors = (x + 1)(x + 3)(x - 1)....(v)

L.C.M = (iv) × (v)  
= 
$$(x-2)(x+1)(x+3)(x-1)$$

Q.8 
$$y^2 - 9$$
,  $(y+3)^2$ ,  $y^2 + y - 6$ 

Sol:

Factorization of 
$$y^2 - 9 = (y)^2 - (3)^2$$
  
=  $(y + 3)(y - 3)$ ....(i)

Factorization of  $(y + 3)^2 = (y + 3)(y + 3)$ ....(ii)

Factorization of 
$$y^2 + y - 6 = y^2 + 3y - 2y - 6$$
  
=  $(y^2 + 3y) - (2y + 6)$   
=  $y(y + 3) - 2(y + 3)$   
=  $(y + 3)(y - 2)$ ......(iii)

In (i), (ii) and (iii)

Product of common factors = (y + 3)....(iv)

Product of uncommon factors = (y-3)(y+3)(y-2).....(v)

L.C.M = (iv) × (v)  
= 
$$(y + 3)(y - 3)(y + 3)(y - 2)$$

$$Q.9 \quad 1-\chi^2, \chi^3+1, 1-\chi^2-2\chi^2$$

Factorization of 
$$1 - y^2 = (1)^2 - (y^2)^2$$
.

 $= (x + y)(x - y)(x^2 + y^2)$ 

$$(x^2 - xy + y^2)(x^2 + xy + y^2)$$

$$= (x + y)(x - y)(x^2 + y^2)$$

$$(x^4 + x^2y^2 + y^4)$$

Q.11 
$$x^3 + 1$$
,  $x^4 + x^2 + 1$ ,  $(x^2 + x + 1)^2$ 

Sol:

Factorization of 
$$x^3 + 1 = (x)^3 + (1)^3$$
  
=  $(x+1)(x^2-x+1)$ ....(i)

Factorization of 
$$x^4 + x^2 + 1 = x^4 + 2x^2 + 1 - x^2$$
 (completing square)  

$$= (x^2 + 1)^2 - (x)^2$$

$$= (x^2 + 1 + x)(x^2 + 1 - x)$$

$$= (x^2 + x + 1)(x^2 - x + 1).....(ii)$$

Factorization of  $(x^2 + x + 1)^2 = (x^2 + x + 1)(x^2 + x + 1).....(iii)$ In (i), (ii) and (iii)

Product of common factors =  $(x^2 + x + 1)(x^2 - x + 1)....(iv)$ 

Product of uncommon factors =  $(x + 1)(x^2 + x + 1)....(v)$ 

L.C.M = (iv) × (v)  
= 
$$(x^2 + x + 1)(x^2 - x + 1)(x + 1)(x^2 + x + 1)$$
  
=  $(x + 1)(x^2 - x + 1)(x^2 + x + 1)^2$ 

Q.12 
$$x^3 + y^3$$
,  $x^4 - y^4$ ,  $x^6 + y^6$ 

Sol:  
Factorization of 
$$x^3 + y^3 = (x + y)(x^2 - xy + y^2)$$
.....(i)  
Factorization of  $x^4 - y^4 = (x^2)^2 - (y^2)^2$   

$$= (x^2 + y^2)(x^2 - y^2)$$

$$= (x^2 + y^2) \left[ (x^2) - (y)^2 \right]$$

$$= (x^2 + y^2)(x + y)(x - y)$$
.....(ii)

Factorization of 
$$x^6 + y^6 = (x^2)^3 + (y^2)^3$$
  
=  $(x^2 + y^2)[(x^2)^2 - (x^2)(y^2) + (y^2)^2]$   
=  $(x^2 + y^2)(x^4 - x^2y^2 + y^4)$ .....(iii)

In (i), (ii) and (iii)

Product of common factors =  $(x + y)(x_x^2 + y^2)$ .....(iv)

Product of uncommon factors =  $(x^2 - xy + y^2)(x - y)(x^4 - x^2y^2 + y^4)..(v)$ 

L.C.M = (iv) × (v)  
= 
$$(x + y)(x^2 + y^2)(x^2 - x + y^2)(x - y)$$
  
 $(x^4 - x^2y^2 + y^4)$   
=  $(x + y)(x - y)(x^2 + y^2)$   
 $(x^2 - xy + y^2)(x^4 - x^2y^2 + y^4)$ 

Q.13  $2x^2 + 5x + 3$ ,  $x^2 + 2x + 1$ ,  $2x^2 + 9x + 9$ 

Sol:

Factorization of 
$$2x^2 + 5x + 3 = 2x^2 + 2x + 3x + 3$$
  
=  $(2x^2 + 2x) + (3x + 3)$   
=  $2x(x + 1) + 3(x + 1)$   
=  $(x + 1)(2x + 3)$ .....(i)

Factorization of  $x^2 + 2x + 1 = x^2 + x + x + 1$ =  $(x^2 + x) + (x + 1)$ = x(x + 1) + 1(x + 1)= (x + 1)(x + 1)....(ii)

Factorization of  $2x^2 + 9x + 9 = 2x^2 + 3x + 6x + 9$ =  $(2x^2 + 3x) + (6x + 9)$ = x(2x + 3) + 3(2x + 3)= (2x + 3)(x + 3).....(iii)

In (i), (ii) and (iii)

Product of common factors = (x + 1)(2x + 3).....(iv)

Product of uncommon factors = (x + 1)(x + 3)....(v)

Q.14 
$$x^4 + x^3 - 6x^2$$
,  $x^4 - 9x^2$ ,  $x^3 + x^2 - 6x$ 

Sol: ·

Factorization of 
$$x^4 + x^3 - 6x^2 = x^2(x^2 + x - 6)$$
  

$$= x^2(x^2 + 3x - 2x - 6)$$

$$= x^2[(x^2 + 3x) - (2x + 6)]$$

$$= x^2[x(x + 3) - 2(x + 3)]$$

$$= x^2(x + 3)(x - 2).....(i)$$

Factorization of  $x^4 - 9x^2 = x^2(x^2 - 9)$ =  $x^2[(x^2 - 3^2)]$ 

$$= x^2(x+3)(x-3)$$
....(ii)

Factorization of 
$$x^3 + x^2 - 6x = x(x^2 + x - 6)$$
  
=  $x(x^2 + 3x - 2x - 6)$   
=  $x[x(x + 3) - 2(x + 3)]$   
=  $x(x + 3)(x - 2)$ .....(iii)

In (i), (ii) and (iii)

Product of common factors =  $x^2(x + 3)(x - 2)$ .....(iv)

Product of uncommon factors = (x - 3).....(v)

L.C.M = (iv) × (v)  
= 
$$x^2(x + 3)(x - 2)(x - 3)$$

Q.15 
$$x^2 + 4xy + 4y^2$$
,  $x^2 + 3xy + 2y^2$ ,  $x^2 + 2xy + y^2$ 

Factorization of 
$$x^2 + 4xy + 4y^2 = x^2 + 2xy + 2xy + 4y^2$$
  

$$= (x^2 + 2xy) + (2xy + 4y^2)$$

$$= x(x + 2y) + 2y(x + 2y)$$

$$= (x + 2y)(x + 2y).....(i)$$

Factorization of 
$$x^2 + 3xy + 2y^2 = x^2 + xy + 2xy + 2y^2$$
  

$$= (x^2 + xy) + (2xy + 2y^2)$$

$$= x(x + y) + 2y(x + y)$$

$$= (x + y)(x + 2y).....(ii)$$

Factorization of 
$$x^2 + 2xy + y^2 = x^2 + xy + xy + y^2$$
  

$$= (x^2 + xy) + (xy + y^2)$$

$$= x(x + y) + y(x + y)$$

$$= (x + y)(x + y).....(iii)$$

In (i), (ii) and (iii)

Product of common factors = (x + 2y)(x + y).....(iv)

Product of uncommon factors = (x + 2y)(x + y).....(v)

L.C.M = (iv) × (v)  
= 
$$(x + 2y) (x + y) (x + 2y) (x + y)$$
  
=  $(x + y)(x + y)(x + 2y)(x + 2y)$   
=  $(x + y)^2(x + 2y)^2$ 

## Relationship between HCF and LCM

If A and B are two algebraic expressions and H.C.F and L.C.M of these is represented by H and L respectively, then the relation among them can be expressed as:

$$A \times B = H \times L$$

It is called a formula between L.C.M and H.C.F.

**PROOF:** Suppose that

Since there is no common factor between x and y.

Therefore L = H. x. y HL = H (H.x.y) (multiplying both the sides by H) = (Hx). (Hy)HL = A.B.

$$(i) L = \frac{A \times B}{H}$$

$$(ii) H = \frac{A \times B}{L}$$

$$(iii) A = \frac{H \times L}{B}$$