

NAV	NAPANA C	Title	Page No.	
90	15.1	Introduction to Genetics	168	
	15.2	Chromosomes and Genes	168	
	15.3	 Mendel's Laws of Inheritance Mendel's Law of Segregation Mendel's Law of Independent Assortment 	175	
	15.4	Co-Dominance and Incomplete Dominance	181	
	15.5	 Variations and Evolution Variations Lead to Evolution Artificial Selection 	6) 400) MA
N	NN .	 Review Questions Multiple Cheice Questions Short Questions Understanding the Concept The Terms to Know 	194	
0	*	 Assignment Let's Draw and Label Self Test 	196	

The **nitrogenous bases** are on the inside

of the **double helix**. In double **helix**, the nitrogenous bases of opposite **nucleotides** form pairs through **hydrogen bonds**.

Specific Nucleotides Pairing:

The **pairing** of nucleotides is **highly specific**. The nitrogenous base **adenine** of one nucleotide forms pair with the **thymine** of opposing nucleotide, while **cytosine** forms tain with **guanine**.

Hydrogen Bonds:

There are two hydrogen bonds between adenine and thy nine while there are three hydrogen bonds between cytosine and guanine.

Q.2 Describe DNA replication. (K.B.)

Ans:

DNA REPLICATION

<u>Entroduction</u>

Before a cell divides, its DNA is replicated (duplicated). It is done to **make the copies** of the chromatids of chromosomes.

MECHANISM OF REPLICATION

Uncoiling of DNA:

(GRW 2016, DGK 2015)

CHAPTER-15

During replication, the DNA double helix is unwound and the two strands are separated much like the two sides of a zipper.

Templates:

Each strand acts as a template to produce another strand.

Pairing of Nucleotides:

The DNA template introgenous bases make pairs with the nitrogenous bases bf new nucleotides. In this way, both template strands make new polynucleotide strands in front of them.

New DNA Molecule:

Each template and its new strand together then form a new DNA double helix, identical to the original.

Explain how does DNA of chromosome work? (U.B) Ans: WORKING OF DNA CHROMOSEMS

(LHR 2014)

Genetic Material:

0.3

DNA is the genetic material. It contains the instructions to direct all the functions of cells. It performs its role by giving instructions for the synthesis of specific proteins.

Some proteins perform structural roles while the others act as enzymes to control all biochemical reactions of cells.

DNA Control:

In this way, whatever a cell does is actually controlled by its **DNA**. In other words, DNA makes the characteristic or trait of cell or organism.

Expression of Trait:

The traits are made by specific proteins. Specific proteins have specific number and sequence of their amino acids. DNA controls this sequence of amino acids by the sequence of its nucleotides. During protein synthesis, the sequence of DNA nucleotides decides that what will be the sequence of amino acids

Transcription:

The specific sequence of DNA model is copied in the form of messenger RNA (mRNA) nucleotides. This process is called transcription.

Translation:

The mRNA carries the sequence of its nucleotides to ribosome. The ribosome reads this sequence and **join**: specific amino acids, according to it, to form protein. This step is known as manslation

The part of DNA (sequence of nucleotides) that contains the instructions for the synthesis of a particular protein is known as a gene, each chromosome contains thousands of genes.

Gene-Trait Relationship:

The part of DNA (sequence of nucleotides) that contains the instructions for the synthesis of particular protein is known as gene. DNA of each chromosome contains thousands of genes.

	Definition:		
	Parents pass characteristics to their young through	h gene transmission. Equal numbers of	
	chromosomes from each parent are combined during	fertilization. The chromosome ; carry the	
	units of inheritance called the genes.	75011000	
Q.6	What are homologous chromosomes' How many	homologous chromosanes are present	
A	in human body cells? $(U.B)$	(LHR 2014)	
Ans:	Pairs of chrones on a dirloid cell are known as	bomologous chromosomes	
	Example of Human:	nomotogous entomosomes.	
	In human boly cells, there are 23 pairs of homologou	is chromosomes for a total of 46 chromosomes.	
Q.7	Define nucleocomes (K.B)	(BWP2015, LHR 2016, 17)	
AIS:	NNO DE		
NN	Definition:		
,0	DNA wraps around histone proteins and forms	Nucleosome	
	round structures called nucleosomes DNA is also	DNA DIVA between nucleosomes	
	present between nucleosomes. In this way the		
	nucleosomes and the DNA between them look		
	"beads on a string".		
	The fibres consisting of nucleosomes condense into		
	compact forms and get the structure of chromosomes	Figure: Chemical Composition of Chromosome	
0.8	Define transcription and translation (KR)	LHR 2016	
Ans:	Page no 168.	LIIK 2010	
Q.9	Name nitrogenous bases found in DNA molecule.	(K.B) LHR 2017	
Ans:	Page no 168.		
Q.10	Describe two major processes of organic evolution	n. (<i>K</i> . <i>B</i>) LHR 2017	
Ans:	Page no 186.	\mathbf{p} (<i>V</i> D) (<i>I</i> HD 2016)	
Q.11	OR	II. (K.D) (LHK 2016)	
	What is meant by transcription? $(A.B)$	(GRW 2016)	
	OR		
	What is meant by translation? $(A.B)$	(GRW 2016)	
Ans:	The difference between transcription and translation	ION is as follows:	
	Transcription and translation	Translation	
	• The specific sequence of DNA • The	mRNA carries the sequence of its	
	nucleotides is copied in the form of nucleotides	leotides to ribosome. The ribosome	
	messenger RNA (mRNA) nucleotides. read	I this sequence and joins specific	
	This process is called transcription. ami	no acids, accordingly to it, to crm	
	prot	tein. This step is known as	
	DNA->mRNA	SIATION.	
0.12	Define central dogma? (U.B.)	nnnnn	
Ans:	Page no		
Q.13	Differentiste between gene and alleles. (LH	IR 2014, 16 MTN 2015, SWL 2015, DGK 2015)	
Ans:	<u>DIFFERENTIA</u>	TION	
	The differences between gene and alleles are as follo	WS:	
∇M	Gene De de la companya de la compa	Alleles	
NN	Definition	The alternate forme of a game and	
10	• The part of DNA (sequence of • nucleotides) that contains the instructions	alled alleles	
	for the synthesis of a particular protein is		
	known as a gene.		
	Example		
	Gene for Height	"A" and "a" are the two	

	Gene for Intelligence	alternate forms of a gene and B and b are the alternate forms of
Q.14	Differentiate between genotype and phenoty	pe? (K.B)
Ans:	What do you know about genotype? (U.P.) DIFFERINTIA	(GRW 2016)
	The differences between geno ype and phenoty	pe are as follows:
YN	 The specific combination of gene in an individual is known as genotype. It is of two types. Homozygous Genotype Heterozygous Genotype 	 The expression of the genotype in the form of trait (in our example, being albino or having normal pigmentation) is known as the phenotype.
Q.15	What are homozygous and heterozygous gen	notype? (K.B)
Ans:	<u>DIFFERENTIA</u> The difference between homozygous and heter	DON Dozygous genotype is as follows:
	Homozygous genotype	Heterozygous genotype
ĺ	• The genotype in which the gene pair	• The genotype in which the gene pair
	contains two identical alleles (AA) is	contains two different alleles (Aa) is
0.16	What are dominant and recessive alleles? (I	LB) (SWL 2015)
Ans:	DIFFERI	ENTIATION
	The differences between dominant and recessive	ve alleles are as follows:
ſ	Dominant allele	Recessive allele
	Defin	nition
	• when in the heterozygous condition one allele masks or prevents the expression of	• The affele which is not expressed is called recessive allele
	the other, it is called the dominant allele.	
	Exa	mple
	• "R" allele is dominant over "r" allele for	• "r" allele is recessive for the shape of
·	Repres	entation
	• The dominant alleles are represented by	Recessive alleles are represented by
	capital letters.	lower case.
Q.17	Can dominant allele effect the nature of red	essive allele? (U.B)
Ans:	A domin intallele only suppresses the expression	<u>OI</u> recessive allele. It does not affect its nature.
Q.18	What is alb'r isin? Write its genotype? (A.B)	
Ans:	ALBINISM	<u>/</u>
MAN	Cordu opin which normal body pigments are	absent.
1000	Genotype:	
	It is also controlled by one pair of genes. "aa"	is a genotype of albinisim because it's a recessive trait in hur

Inheritance

	15.1 MU	LTIPLE CHOICE QUES	
1	The idea of transmission	of characteristic to off spring was	te exalgined by (k B)
	(A) Greger Mandel	(B) James V(atsu	
	(C) Fransis crick	(D) Jan Benjat D	e Lemark
2.	The branch of Biology th	at deals with inheritance. (K.B)	(DGK 2014, LHR 2015, SWL 2015)
	(A) Physiology	(B) Ecology	
	(C) Pharmacology	(D) Genetics	
20	Which of the following is	an example of inheritable traits ((U.B)
11/11	(A) Height	(B) Colour of eye	e
0 0	(C) Intelligence	(D) All	
4.	The chromosomes carry	the units of inheritance called	(K.B)
	(A) Genes	(B) Traits	
	(C) Alleles	(D) Genetics	
5.	Genes contains the specif	ic instructions for the synthesis o	f: (K.B)
	(A) Carbohydrates	(B) Vitamins	
	(C) Lipids	(D) Proteins	
6.	Which of the following st	atements regarding genes is false	? (U.B) (LHR 2013)
	(A) Genes are located an c	hromosomes	
	(B) Genes consist of a long	sequence of DNA	
	(C) A gene contains inform	nation for the production of a protei	n
	(D) Each cell contains a sin	ngle copy of every gene	
7.	In humans, pairs of home	ologous chromosomes are: (K.B)	(DGK 2015)
	(A) 21	(B) 22	
	(C) 23	(D) 24	
8.	DNA wraps around histon	e proteins and forms round struct	ures, called: (U.B) (BWP 2014)
	(A) Chromatin	(B) Chromosome	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	(C) Nucleolus	(D) Nucleosome	
9.	Watson and Crick propo	sed the DNA model in: (K.B)	(MT) 2615)
	(A) 1951	(B) 1953	
	(C) 1955	(P) 1957	$\square \square$
10.	According to Vatson and	crick/model of DNA the backbo	ne of DNA is formed of (U.B)
	(A) Sugar-M-Bases	(B) Phosphate-S	ugar
	(C) N-Base-Phosphare	(D) N-Base-Suga	ar –Phosphate
11	In DNA molecule, adenin	e always pairs with: (K.B)	
11/11	(A) Guanine	(B) Cytosine	
<u> </u>	(C) Thymine	(D) Uracil	
12.	How many hydrogen bon	ds are present between cytosine a	and guanine? (K.B)
	(A) One	(B) Two	
	(C) Three	(D) Four	

13.	The inside of helix is formed of (K.B)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	(A) N-Base	(B) Phosphates
	(C) Ribose	(D) Deoxyribose
14.	The locations or positions of genes on chr	romosomes: (k.B)
	(A) Loci	(B) Draits
	(C) Inheritance	(D) Nucleotides
15.	How many types of nucleotides are present	nt in DNA? (K.B)
		(B) 2
MM	(C) 3U OL L	(D) 4
1190	Ribosome reads the sequence of mRNA	a nucleotides and joins specific amino acids to
0	form proteins. This step is known as: (U.	.B) (LHR 201
	(A) Combination	(B) Replication
	(C) Transcription	(D) Translation
17.	Which of the following statement is	incorrect regarding to the process of DNA
	replication (U.B)	
	(A) Replication results into formation of tw	o identical nelixas of DNA from single Bond
	(B) Both strands of Double neitx in replicat	ion act as template
	(C) Replication occurs during initosis	a of the shuematide of shuemessames
10	(D) Replication means the creation of copie	es of the chromatids of chromosomes
18.	A specific combination of genes in an ind	(D) Phonetyme
	(A) Genotype	(D) Pagagaina
10	(C) Dominance	(D) Recessive $\mathbf{n} \mathbf{d} \mathbf{s}$ of geness (genetypes): (K B)
19.	Three possible combinations of pair (A as $(A) A A$ As as	$(\mathbf{P}) \land \land \land \land \land \circ \circ$
	(A) AA, Aa, aa (C) AA, BB, 22	(D) AA , Bh , aa
20	(c) AA, DD, aa Cytosine always make nair with (K B)	(1 HP 2016 DCK 2014)
20.	(A) Guanine	(B) Hydrogen
	(C) Adenine	(D) Thymine
21	Genotype in which gene pair contains two	o dontical silves is called: (I' B)/ HI 1015 CBW 2016)
21.	(A) Homozygous	(B) Fleterozycous
	(C) Hemizygeus	(L) Homologoas
22.	If organisms have genotype of AAbb, how i	namy types of gametes can it produce? (U.B)(LHR 2014)
	(A) 3	(B) 2
0	TCAT ILLUS	(D) 4
RA	The specific combination of gene in an in	dividual is known as: (K.B)
900	(A) Genotype	(B) Phenotype
	(C) Gene	(D) Allele
24.	The specific sequence of DNA nucleoti	de is copied in the form of messengers RNA

nucleotide, this process is called: (U.B)

	(A) Translation	(B) Transcription
	(C) Transmission	(D) None
25.	In DNA molecule, guanine always pairs w	ith: (K.B)
	(A) Adenine	(B) Cytosine
	(C) Thymine	(D) Uracil
26.	A DNA molecule consists of	pelynucleotide strands. (K.B)
200	(A) Two	(B) Four
	(C) Three	(D) One
27	Alternate form of gene is called: (U.B)	(LHR 2016, 17)
17/N	(A) DNA	(B) Gamete
] _	(C) Chromosomes	(D) Allele
28.	Transmission of characters (triats) from p	parent to offspring is called: (K.B)
	(A) Inheritance	(B) Mutation
	(C) Regeneration	(D) Reproduction
29.	These are the unit of inheritance: (K.B)	(GRW 2017)
	(A) Genes	(B) Alleles
	(C) Phenotype	(D) Genotype
30.	Align the given events w.r.t the synthesis	of protein
	DNA→protein (nucleus)	
	DNA→mRNA (nucleus)	
	mRNA→protein (cytoplasm) (U.B)	
	(A) 1&3	(B) 2&7
	(C) 2&3	(D) 3&2

15.3 MENDEL'S LAWS OF INHERITANCE

LONG QUESTIONS

Q.1 Why did Mendel select pea plant? (A.B)

Ans:

SELECTION OF PEA PLANT

Introduction:

Gregor Mendel was a monk (priest) in Austria. He developed the fundamental principles of genetics.

Mendel proposed that there are "special factors" in organisms, which control the expression of traits and their transmission to next generations. These factors were eventually termed genes.

Pea Plant:

Mendel selected pea plant (Fisum sativum) to carry out a large number of experiments. He argued that an organism for genetic experiments should have the following features:

Different Traits:

There should be a **number** of **different traits** that can be studied.

Contrasting Traits:

The organism should have **contrasting traits**. Each trait studied in pea plant had two distinct forms.

Example:

The trait of height there should be only two very different phenotypes i.e. tallness and dwarfness. **DIFFERENT TRAITS AND THEIR PHENOTYPES STUDIFD BY MENDEL**

Traits 🔿	Phenoytpes
Seed Shape	Round and Wrinkled
Seed Colour	Yellow and Green.
Flower Colour	Purple and White
Fod Shape	Flat and Constricted
Poa Colour	Green and Yellow
Flower position	Axial and Terminal
Stem Length	Long and Short

<u>Self-Fertilizing Plant:</u>

The organism (if it is a plant) should be **self-fertilizing** but **cross fertilization** should also be possible.

Life Span:

The organism should have a short but fast life cycle.

Cross Fertilization:

Normally, the **flowers** of pea plant allow **self-pollination**. **Cross pollination** can also be done by **transferring** the **pollen grains** from the flower on one plant to the flower on another plant. **Mendel's Success:**

Mendel's **succeeded** in his work not only because he selected the **right organisms** for his experiments but also because he **analyzed** the results by using the **principles of statistics** (ratios).

Q.2 State and explain Mendel's Law of Segregation. (Understanding the Concept Q.3) (K.B) (LHR 2016)

Ans:

MENDEL'S LAW OF SEGREGATION

Statement:

"In each **organism**, the **genes** are present in **pairs**. During **gamete formation**, **the genes** (alleles) **of each pair segregate from each other** and each **gamete** receives **one gene** from the pair. When the **gametes** of male and female parents **unite**, the resulting **offspring** again gets the **genes in pairs**".

Introduction:

Gregor Mendel was a monk (priest) in Austria. He developed the fundamental principles of genetics.

Selection of Plant:

Mendel selected pea plant (Pisum siturum) to carry out a large number of experiments.

Selection of Phenotype:

Mendel studied the inheritance of seed shape first.

Monohybrid Cross:

He crossed two plants having one contrasting trait i.e. seed shape. A cross, in which only one trait is studied at a time, is called as a monohybrid cross.

Cross Fortlization of True Breeding:

Mendel crossed a true-breeding round-seeded plant with a true-breeding wrinkled seeded plant.

P1 and F1 Generation:

The **parental generation** is denoted as P1 generation. The **offspring** of **P1 generation** are **F1** generation (first filial).

Result:

All **resulting seeds** of the next generation were **round**.

Conclusion:

Experiments on Tall and Short Plants:

Similarly, when "true-breeding" tall plants were crossed with "true**breeding**" **short plants**, all offspring of F1 were tall plants i.e. tallness a **dominant trait**. was When members of F1 generation were selffertilized, Mendel got the ratio of tall to short plants in F2 as 3:1.

Conclusion:

Mendel concluded that the traits under study were controlled by discrete (separable) factors or genes.

0.3 State and explain Mendel's Law of Independent Assortment, (K.B.

OR

Explain how Mendel proved the law clinder endent assortment. (U.B (Understanding the Concept Q.3)

MENDEL'S LAW OF INDEPENDENT ASSORTMENT

Statement:

Ans:

The alleles of a gene pair segregate (get separated and distributed to gametes) independently from the eleies of other gene pairs".

Introduction:

Gregor Mendel was a monk (priest) in Austria. He developed the fundamental principles of genetics.

DCK 2014)

Selection of Plant:

Mendel **selected** pea **plant** (Pisum sativum) to carry out a large number of experiments.

Dihybrid Cross:

Mendel studied two contrasting mails at a time. Such crosses are called dihybrid crosses

Selection of Phenotypes

He performed experiments on two seed traits: Seed Shape:

The trait of **round seeds**, (controlled by allele \overline{R}), was **parental dominant** over **wrinkled** controlled by allele r) **seeds**.

Seed Colour:

Yellow seed colour (controlled by Y) was dominant over green controlled by y.

Cross Fertilization of True Breeding:

Mendel **crossed** a **true- breeding** plant-that had **round yellow seeds** (RRYY) with a **true breeding** plant having **wrinkled green** seeds (rryy).

Results:

All seeds in F1 generation were round yellow.

Self-Fertilization of F1:

When F1 seeds grew into plants, they were self-fertilized.

<u>Results</u>:

This cross produced seeds with four phenotypes.

Round yellow seeds = 315.

Round green seeds = 108

Wrinkled yellow seeds = 101

Wrinkled green seeds

Phenotypic Ratio:

The ratio of these phenotypes was 9.3:3:1.

<u>Conclusion:</u>

Meddel concluded that the two traits i.e. seed shape and seed colour, are not tied with each other. The segregation of 'R' and 'r' alleles happens independently of the segregation of 'Y' and 'y' alleles. From this, Mendel concluded that different traits are inherited independently of one another.

			15	.3 SHORT Q	UESTIONS		man
Q.1 Differentiate between monohybrid and dihybrid cross? (K.B)			$r \in \mathcal{C}(0)$	1100			
	Ange	(LHR 2	2014, SWL 2015, DGK 2	2015) Diffedentia	TON TON	1665	2
	AIIS:	The di	fferences between m	DIFFERENTIA	<u>nor</u> whrid cross are as follow:	1000	
		Mono	hybrid Cross		Dihyheid Cross		
		Defini	tign				
		A cros	s, in which only one	trail is studied at	A cross, in which two t	raits are studied at a	
		a time	is called as a monoh	ybria cross.	time, is called as a dihy	brid cross.	
_	201	Exam	ple UUU				
N	NN	In law	of segregation, Men	del chose only	In law of independent a	assortment, Mendel	
UU	0	shapes	s of seed to check his	results. (Round	chose shapes and colou	Ir of seeds to check	
		seeded	and wrinkled seeded	i plants)	wrinkled+Green seed n	llow seeu allu	
	0.2	Define	e transcription. (K.	B)	willikieu i Green seeu p	GRW 2017	
	Ans:	Page n	168.				
	0.3	What	are the total contras	sting traits observ	ed by Mendel in his ex	periment? (K.B)	
	•			0	•	(DGK 2014)	
	Ans:			CONTRASTIN	<u>NG TRAITS</u>		
		There	are seven contrasting	trait observed by I	Mendel in his experimen	t are as follows:	
		•	Seed Shape	\Rightarrow Round, Wrin	kled		
		٠	Seed Color	\Rightarrow Yellow, gree	n		
		•	Flower Color	\Rightarrow Purple, white	2		
		•	Pod Shape	\Rightarrow Flat, Constric	cted		
		٠	Pod Colour	⇒Green, Yello	W		
		•	Flower Position	⇒Axial, Termi	nal		
		٠	Stem Length	\Rightarrow Long, Short			
	O.4	State]	Mendel's law of seg	regation. (K.B)	(LH	R 2015, 17, GRW 2016, 17)	1
	Ans:	Page n	io 157.	0			
	Q.5	Differ	entiate between Pur	nett square and o	checker board? (K.B)	(DGK 2015, LHR 2016)	\sim
	Ans:			DIFFERENTIA	TION		mini
		The di	fference between Pur	nnett square and ch	ecker board is as follows	751(CO)	000
	Punne	ett Squa	are		hecker Board	$\Pi(\mathcal{O}) \otimes \mathcal{O}$	
	• Tł	e Punn	ett square is a diagrai	n that is used	A checker board is us	ec to cross all the	
	t0 br	predict	an outcome of a part	ic list cross or	possible gametes of o	ne parent with all the	
	Pu	innett (a	an Erglish mathemati	cian) The	biologist can find all t	the possible genotypes	
	ga	metes o	of both parents having	al possible	of offspring.	possione genotypes	
	ge	netics s	etups are determined		1 0		
	R.F.	State	Medel's law of ind	ependent assortm	ent. (K.B)		
NN	And:	Page n	no 176.				
00	Q.7	Differ	entiate between self	and cross fertiliz	ation. (K.B)		
	Ans:	Page n	io 175.				

15.3 MULTIPLE CHOICE QUESTIONS How many plants were used by Mendel in his experiments? (K.B) 1. (B) 28,000 (A) 26,000 (D) 32,000 (C) 30.000 2. The term true breeder means (K.B) (B) Genetype (A) Heterozygous (C) Phenetype (D) Homozygous 3. Mendel optained how many round seeds in monohybrid cross? (A.B) (B) 5474 A) 4784 (C) 7454 (D) 4555 Which of the following genes will be termed as homozygous recessive: (K.B) (LHR 2014) (A) RRYY (B) RrYy (C) RrYY (D) rryy 5. Phenotypic ratio of monohybrid cross: (K.B) (A) 3:1 (B) 2:1 (C) 9:3:3:1 (D) 1:2:1 6. Genotypic ratio of monohybrid cross: (K.B) (B) 2:1 (A) 3:1 (C) 9:3:3:1 (D) 1:2:1 7. Phenotypic ratio of dihybrid cross: (K.B) (B) 2:1 (A) 3:1 (D) 1:2:1 (C) 9:3:3:1 Number of round yellow seeds obtained in dihybrid cross: (K.B) 8. (A) 32 (B) 108 (C) 101 (D) 315 9. Number of round green seeds obtained in dihybrid cross: (K.B) (B) 108 (A) 32 (C) 101 (D) 315 10. Number of wrinkled yellow seeds obtained in dihybrid cross: (K.B) (A) 32 (B) 108 <u>C(0)N</u> (C) 101 (D) 315 11. Number of wrinkled green seeds obtained in dihybrid cross: (K.B) (A) 32 (B) 108 (D) 315 (C) 101 12. A couple can produced more than genetically different children. (A.B) (A) 60 trillion (B) 40 trillion (D) 100 trillion (C) 70 trillion 13. A cross in which one character is studied at a time is called: (K.B) (GRW 2016) (A) Menchybrid cross (B) Dihybrid cross (C) Text cross (D) Back cross When both the alleles of a gene pair in an organism are same the organism would be for that gene (U.B) (GRW 2016) (A) homozygote (B) heterozygote (C) homozygous (D) heterozygous

15. If a homozygous tall (TT) is crossed with a homozygous short (tt), the F1 plants wo		omozygous short (tt), the F1 plants would be $(U.B)$
	(A) all tall	(B) 50% tall and 50% short
	(C) all short	(D) 75% tall and 25% short
16.	If a tall heterozygote (Tt) is crossed with	a short homozygote (it), the F1 off pring would
	comprise of (U.B)	
	(A) all tall	(1) 50% to'll and 50% short
	(C) all short	(D) 75% tall and 25% short
17.	A possible method used to predict an outco	me of a particular cross or breeding experiment is
	(K.B)	
- ((A) Pur nett square	(B) monohybrid cross
MM	(C) ain/trid cross	(D) test cross
18.	The trait that appears in F1 after a cross i	s made between two true breeding plants is called
	(K.B)	
	(A) dominant	(B) recessive
	(C) Monohybrid	(D) dihybrid
19.	Mendel formulated Law of Independent Asso	ortment with the help of (K.B)
	(A) monohybrid cross	(B) dihybrid cross
	(C) test cross	(D) all of these

15.4 CO-DOMINANCE AND INCOMPLETE DOMINANCE

LONG QUESTIONS

Q.1 Write a note on co-dominance. (K.B)

OR

What do you mean by co-dominance? Give an example. (Understanding the Concept Q.6)

Ans:

DOMINANCE

Definition:

"Dominance is a physiological effect of an allele over its partner allele on the same gene locus".

Example:

Round seed shape is dominant over wrinkled seed shape in cross fertilization.

Explanation:

After the **discovery** of **Mendel's work**, scientists began **experiments** on the genetics of various organisms. These experiments **proved** that all the t alts in organisms **do not follow Mendel's laws**. For example, it was found that there are many traits which are **controlled by more than one pair of genes**. Similarly for many traits there are more than **two alleles** in a **gene pair**.

Types of Donin ance:

There are two types of dominance relationships.

Co-Dominance

• In-Complete Dominance

Co-Dominance:

"The situation where **two different alleles** of a gene pair **express themselves completely**, **instead** of showing a **dominant-recessive relationship** is called co-dominance".

Phenotype of Heterozygous:

As a result, the **heterozygous organism** shows a **phenotype** that is **different** from both **homozygous parents**.

Example:

Expression of human blood group AB;

The ABO blood group system is controlled by the gene I This gene has three alleles:

• 10

Bicod Group A:

The allele I^A produces antigen A in blood and the phenotype is blood group A.

Blood Group B:

The allele I^B produces antigen B in blood and the phenotype is blood group B.

Blood Group O:

The allele i does not produce any antigen and the phenotype is blood group O.

Blood Group AB:

The alleles I^A and I^B are dominant over i. When there is a heterozygous genotype of $I^A I^B$, each of the two alleles produces the respective antigen and neither of them dominates over the other.

Genotype	Antigen Produced	Phenotype	Relationship Between Alleles
I ^A I ^A or I ^A i	Antigen A	Blood Group A	Allele I ^A is dominant over i
I ^B I ^B or I ^B i	Antigen B	Blood Group B	Allele I ^B is dominant over i
Ii	No Antigen	Blood Group O	Alleie I is recessive
I ^A I ^B	Antigen A. & Antigen B	Blood Group AB	Alleles $\stackrel{.}{\cdot}$ and I^{B} are co-dominant

Q.2 Write a note on incomplete dominance (K.B)

Explain the phenomena of incomplete dominance with the help of example. (Understanding the Concept Q.5)

OR

INCOMPLETE DOMINANCE

Definition:

"The situation where, in **heterozygous genotypes**, both the **alleles express as a blend** (mixture) and **neither** allele is **dominant** over the other, is called incomplete dominance".

Example:

In Four 0 Clock plants, there are three flower colours:

- Red
- Pink
- White

There is **no specific gene** responsible for **producing pink flowers.**

Explanation:

In four O clock plant, the trait of flower colour is **controlled** by two alleles 'R and r'.

- The true breeding red flower plants have RR alleles.
- The **true breeding white flower** plants have rr alleles.

Cross Fertilization of True Breeding:

A homozygous red flowered plant (RR) is crossed with homozygous white flowered plant (rr).

Result:

The he erozygous (Rr) plants of F1 generation produce pink flowers.

Coreu son:

Pink is a **blend** of red and white colours. This result clearly indicates that **neither** of the red **flower** allele (R) and **white flower** allele (r) is **dominant**.

Self-Fertilization of F1:

When two heterozygous plants with pink flowers (Rr) are crossed, F2 generation shows phenotypes of red, pink and white flowers in the ratio 1:2:1. 15.4 SHORT QUESTION How co-dominance is difference form incomplete dominance? (K.B. 0.1 (GRW 2017) DR. What is co-donunance? Give an example (LHR 2014, GRW 2017, MTN 2015) OR Define in-complete dominance. (MTN 2015, DGK 2015) **DIFFERENTIATION** The differences between co-dominance and incomplete dominance are as follows: **Co-Dominance In-Complete Dominance** Definition Co-dominance is the situation where In-complete the • dominance is two different alleles of a gene pair situation where in heterozygous express themselves completely, genotypes, both the alleles express as instead of showing a dominanta blend (mixture) and neither allele is recessive relationship. dominant over the other. The heterozygous organisms show a This blending an intermediate phenotype that is different from both phenotype is expressed. homozygous parents. Example Human blood group AB In Four 0 Clock plants, there are three • flower colours:)(O) Red Winne Fink (In-complete Dominance) There is no specific gene responsible for producing pink flowers

Write the genetic bases of blood group "O" (U.B)

Page no 181.

Q.3 Blood AB is a example of co-dominaie explain (U.B)

Ans: Page no 181.

Q.4 Blood groups A&B are example of complete dominance explain. (U.B)

	Ans:	Page no 181.		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
		15.4 MULTIPLE CH		COMU
	1.	The situation where two different alleles	of a gene pair express then selves co	mpletely is
		called: (K.B)		
		(A) Co-dominance	(B) Over dominance	
		(C) Incompie e dominance	(D) Dominance	
	2.	Whick genotype represents blood group a	A? (K.B)	
	201	RAIN OLULIS	(B) I ^A i	
N	MG	(C) I ^A I ^A , I ^A i	(D) I ^b i	
JU	3.	Genotype of blood group B: (K.B)		
		(A) $I^A I^A$	(B) I ^A i	
		(C) $I^B I^B$	(D) AB	
	4.	Person with genotype-ii has blood group:	: (K.B)	(LHR 20
		(A) AB	(B) B	
		(C) O	(D) A	
	5.	What will be the colour of flowers produc	ced as a result of cross between red a	nd white
		flowered 4 o'clock plants: (K.B)		(SWL 2015)
		(A) Pink	(B) Red	
		(C) White	(D) Purple	
	6.	Example of co-dominance is: (K.B)		(LHR 2017)
		(A) Blood group B	(B) Blood group A	
		(C) Blood group AB	(D) Blood group O	
	7.	Phenotype ratio in incomplete dominance	e is: (K.B)	(LHR 2017)
		(A) 1 : 3 : 3	(B) 3 : 1	
		(C) 1 : 3	(D) 1 : 2 : 1	-ran
	8.	The pink coloured flowers in Four O' clo	ck is an example of	C(0)
		(A) co-dominance	(B) complete dominance	000
		(C) in-complete dominance	(D) Law of independent Assorument	
	9.	The situation in which heterozygous gene	bypes both the alleles express as a blo	end and
		neither allele is dominant over the other	is called	
		(A) in-complete dominance	(B) co-dominance	
_	201	C nor-disjunction.	(D) miss-match crosses	
N	16V	What is the dominance relationship betw	een blood group alleles l ^A and I ^B ?	
		(A) co-dominance	(B) in complete dominance	
		(C) complete dominance	(D) non-disjunction	

15.5 VARIATIONS AND EVOLUTION LONG QUESTIONS 0.1 Define variations. Discuss sources of variations. (A B) Ans: VARIATIONS Definition: "The differences among the in livia als of the same species are called variations". Examples: Variations are also caused by Variations in human heights different combinations of Variations in skin colour of rats chromosomes in gametes and then Explanation Security reproduction produces variations in the next generation. No two individuals resulting from separate in zygote. In the case of humans, the possible number of chromosomal combinations fertilizations are genetically identical. at **<u>ŠOURCES OF VARIATIONS</u>** fertilization is 70,368,744,177,664. The **main sources** of variations in sexually reproducing In other words, a couple can populations are as follow: produce more than 70 trillion Genetic Recombination: genetically different children. The genetic recombination produced through crossing over occurring during meiosis results in gametes with variations. **Mutations**: **Mutations** which are the sudden changes in the structure of DNA are important source of variations. Mutations also happen during gametes formation through meiosis. **Random Fertilization of Gametes:** During **fertilization**, one of the millions of sperms combines with a single egg. The chance involved in this **combination** also act as the source of **variations**. Gene Flow: The movement of genes from one population to another is called as gene flow. It is also an important source of variations. Different Combinations of Chromosomes: Variations are also caused by **different combinations** of **chromosomes** in gametes and then in zygote. In the case of humans, the possible number of chromosomal combinations at fertilization is 70,368,744,177,664. In other words, a couple can produce more than 70 trillion genetically different children. **O.2** Differentiate between discontinuous and continuous variations. (K.B) (BWP 2015) Ans: **DIFFERENTIATION** The differences between discontinuous and continuous variations are as follows: **Discontinuous Variations Continuous Variations Phenotypes** The individuals of a population either have In continuous variations, the phenotypes • • distinct phenotypes, which can be easily show a complete ringe of n easurements distinguished from each other. from one extreme to the other. Genos Discontinuous variations are controlled Communicus variations are controlled by • by the alleles of a single gene pain. many genes. Environmental Effect Continuous variations are often affected The environment has **intle effect** on this type • of variations. by environmental factors. Example Blood Croups. In human population, an Height: In every human population, the rdividual has one of the four distinct individuals have a range of heights (from very small to tall). No population can show phenotypes of blood groups (A, B, AB or O) only two or three distinct heights. and cannot have in between. **Other Examples Tongue rolling** Weight •

•

Q.3 Prove that variations lead evolution.

OR

How would you prove that variations lead to evolution? (A.P.) (Understanding the Concept Q.4)
<u>VARIATION (LEAD TO EVOLUATION</u>

Evolution:

Ans:

"Organic evolution (biological evolution) is the change in the characteristics of a population or species of organisms over the course of generations".

Evolution ary Changes:

The evolutionary changes are always inheritable. The changes in an individual are not considered as evolution, because evolution refers to populations and not to individuals.

Process of Organic Evolution:

Organic evolution includes two major processes.

- Alterations in genetic characteristics (traits) of a type of organism over time
- **Creation** of **new types** of **organisms** from a single type

Theories:

The study of **evolution** determines the **ancestry** and **relationships** among **different kinds** of **organisms**. Following are the **two theories** related to the **creation** of **living organisms**.

- Theory of Special Creation
- Theory of Evolution

Theory of Special Creation:

"The anti-evolution ideas support that all living things had been created in their current form only a few thousand years ago. It is known as the Theory of Special Creation".

Theory of Evolution:

But the scientific work in **eighteenth century** led to the idea that "**living things might** change as well".

Charles Darwin (1809-1882) proposed the **mechanism** of **organic evolution** in **1838**. It was called as "The **theory of natural selection**". Darwin proposed this theory after his 5-year voyage on the HMS (His Majesty's Ship) Beagle. He also published a book "On the Origin of **Species by means** of **natural selection**" in **1859**.

Limitations of Darwin's Theory of Evolution:

Darwin's theory of evolution was not widely accepted because of lack of sufficient evidence.

Modern Evolutionary Theory:

Modern evolutionary theory began in the late 1920's and early 1930's. Some scientist proved that the theory of natural selection and Mencelian genetics are the same ideas just as Darwin had proposed.

Mechanism of I'volution:

Almost every **population** contains **several variations** for the characteristics of its members. In other words, there are **morphological** and **physiological variations** in all populations.

Different populations face different environments and they have to adapt to different conditions.

Natural Selection:

"Natural selection is the process which the better genetic variations become more common in the successive generations of a population".

Survival for the Fittest:

The central concept of natural selection is the evolutionary fitness of an organism. Fitness means an organism's ability to survive and reproduce. Organisms produce more offspring than can survive and these offspring vary in fitness. These conditions produce struggle for survival among the organisms of population. The organisms with favorable variations are able to reproduce and pass these variations to their next generations. On the other hand, the cate of the transmission of unfavorable to next generations is low.

Selection of Variations:

The **favorable variations** are "selected for" their **transmission** to next generations, while the unfavorable variations are "**selected against**" their **transmission** to next generations.

First Example:

Natural Selection in Rats:

A mouse population with variations in skin colour.

- Light coloured
- Medium coloured
- Dark coloured

Favourable and Unfavourable Variations:

Cat preys upon light and medium coloured mouse. In first generation, light coloured mouse is preyed upon by cat. Only medium and dark coloured mouse can make their next generations. In next generation, population again contains light, medium and dark coloured mouse. Cat preys upon the light and medium coloured mouse. Now only the dark coloured mouse make new generation. If this happens in many generations the dark coloured

(favourable variation, mouse in the population.

Results of Natural Selection:

As a result of natural selection, the allele that gives more fitness of characteristics (favourable variations) than other alleles becomes more common within population. So, the individuals

with favourable variations become a major part of population while the individuals with harmful or unfavourable variations become rarer.

Second Example:

Natural Selection In Moths:

In England, the moths had two variations:

- Dark coloured moths
- White coloured moths

Favouable and Unfavourable Variations:

The moths used to rest on the light coloured tree trunks on which white lichens had grown. In the 19th century when industries were established in England, the lichens on tree trunks died due to polluted air and the naked tree trunks turned dark. Now the white moth variation became harmful because a white moth resting on a dark tree trunk was easily visible to the predatory birds. The natural selection selected dark moths to reproduce. In this way dark coloured moth became more

 ight Coourd (aratio)
 Dark Coloured Variation

 ight Coourd (aratio)
 interval

 ight Tree Trunk
 interval

common and at last the white moths disappeared from population. In this case, the dark colour variation in moth may be considered an adaptation to environment.

15.5 SHORT QUESTIONS

Q.1 What is Theory of Special Creation? (K.B)

Ans: Page no 186.

Q.2 State Darwin's theory of evolution. (K.B)

Ans: Page no 186.

- Q.3 Write limitation of Darwin's theory of evolution. (K.B)
- Ans: Page no 186.
- Q.4 When the work of modern evolutionary theory was started? (K.B)
- Ans: Page no 186.
- Q.5 Define organic evolution? (KB)

Ans:

Definition

"Organic evolution (biological evolution) is the change in the characteristics of a population on species of organisms over the course of generations".

What are the two major processes of organic evolution? (A.B)

(LHR 2017, MTN 2015)

Ans:

MAJOR PROCESSES OF ORGANIC EVOLUTION

Organic evolution includes two major processes.

• Alteration in genetic characteristics (traits) of a type of organism over time

ORGANIC EVOLUTION

(LHR 2017)

COM

		Creation of new types of organism from a single type.		
J	Q.7 Ans: Q.8 Ans:	Define gene flow. (K.B) GENE FLOW Definition: "Gene flow is the movement of gene from one population to another". What a re the findings of C.de Buffoon and J. de Lamarck in evolution? (K.B) C. DE BUFFOON AND J.DE LAMARCK French biologist C. de Buffon (1707–1788) was the first to hint at evolution. His countryman, J.de Lamarck (1744–1829) was the first to propose a mechanism of evolution. Lamarck's		
		ideas were soon rejected due to the vaguene	ss of the mechanisms he proposed.	
	Q.9	Define natural selection. (A.B)		
	Ans:	Page no 186.		
	Q.10	Differentiate between contenous and Disc	contenous variation.	
	Ans:	Page no 185.		
	Q.11	Explain Anti-Evolutiony idea or theory.	(MTN 2015)	
	Ans:	Page no 186.		
		15.5 MULTIPLE CH	OICE QUESTIONS	
	1.	Year of death of Charles Darwin: (K.B)		
		(A) 1880	(B) 1882	
		(C) 1884	(D) 1886	
	2.	Year of death of C. de Buffon: (K.B)		
		(A) 1780	(B) 1784	
		(C) 1788	(D) 1790	
	3.	In humans, possible number of chromoso	mal combinations at fertilization is: (K.B)	
		(A) 70,368,744,177,664	(B) 75,364,644,177,664	
		(C) 71,368,744,177,664	(D) 73,368,744,177,664	
	4.	Which one is an example of discontinuous	s = ariation? (K.E)	
		(A) Height	(E) Veight	
	5	Which one is not an example of continuou	(L) Slood group	
	J.	(A) Height	(B) Weight	
1	nn	(C) Intelligence	(D) Blood group	
J	2 M	Darwin published his book in: (K.B)	(-) 8F	
U		(A) 1853	(B) 1855	
		(C) 1857	(D) 1859	
	7.	Modern evolutionary theory began in late	e: (K.B)	

(LHR 2016)

	(A) 1920	(B) Early 1930			
	(C) 1940	(D) 1920, early 1930			
8.	Charles Darwin proposed the mechanism of organic evolution in: (K.B)				
	(A) 1937	(B) 1838			
	(C) 1824	(D) (23)			
9.	The anti-evolution ideas support the theory of: (K.B)				
	(A) Special creation	(B) Organic evolution			
	(C) Natura' selection	(D) Evolution			
N	Variat on in human skin color is: (K.B)				
UV	(A) Discontinuous	(B) Continues			
	(C) Variable	(D) None			
11.	Discontinuous variations are controlled by	(D) None are controlled by: (K.B) (B) Multiple gene			
	(A) Single gene pair	(B) Multiple gene			
	(C) Many gene	(D) No any gene			
12.	Continuous variation are controlled by: (K.B)				
	(A) Single gene pair	(B) Many gene pair			
	(C) No gene	(D) Two genes			
	15.5.2 ARTIFICIAL SELECTION				

LONG QUESTION

Q.1 Describe artificial selection. (K.B)

Ans:

ARTIFICIAL SELECTION

Definition:

"The intentional breeding between individuals for certain traits or combination of traits is called artificial selection or selective breeding".

The term "artificial selection" was expressed by the Persian scientist Abu Rayhan Biruni in the 11th century. Charles Darwin also used this term in his work on natural selection.

Darwin's Observations:

Darwin noted that many **domesticated animals and plants** had **special properties** that were **developed** by:

- Intentional breeding a norg incividuals with desirable characteristics
- Discouraging the breeding of individuals with iess desirable characteristics

In artificial selection, humans favor specific variations for selection while in natural selection the environment selects or rejects variations.

Advantages of Selective Breading:

Selective breeding has revolutionized **agricultural** and livestock production throughout the world. Animals or plants having **desirable characteristics** are selected for **breeding**. In this way, many **new generations** with **desirable characteristics** are produced.

Breeds:

The bred **animals** are as **breeds** in **artificial selection** are called breeds.

Cultivars: The bred plants in artificial selection are known as varieties or cultivars. **Examples:** Numerous breeds of the following animals have been produced by artificial selection: Sheep for wool • Goat for meat Cow for milk Hen for eggs Plant Varieties: Similarly many plant varieties (cultivars) have been produced for better quantity Cabbage and quality of: • Cereals Kale Broccoli **Fruits** Vegetables **Plants Varieties of Wild Mustard:** Kohlrabi Further varieties Cauliflower Kale • Cauliflowe [†] Kohlrabi Cabbage Wild Mustrad **Broccoli Figure: Plant Varieties Produced through Artificial** Cauliflower Selection in Wild Mustard 15.5.2 SHORT QUESTIONS 0.1 Define artificial selection. Give an example. (K.B) (MTN 2015, GRW 2017) Page no 190. Ans: What are breed and cultivars? Give examples. (K.B) Q.2 OR Differentiate between breed and cultivars. (LHR 2016) Page no 190. Ans: Name three different plant varieties produced through artificial selection of wild mustard? 0.3 (**A.B**) Page no 191. Ans: 15.5.2 MULTIPLE CHOICE QUES The term artificial selection was expressed by: (K.B) 1. (3) Ali Ibn-e-Isa (A) Abu Rayhan Biruni (D) Musa Bin Nasin (C) Jabir Bin Hayan 2. Abu Rayhan Liruni introduced term artificial selection in: (K.B) (A) 10th century (B) 11^{th} century (C) 12^{th} cent uv (D) 13^{th} century The bred annuals are known as: (K.B) 3. (A) Cultiva:s (B) Varieties (C) Breed (D) Recominant organism The bred plants are known as: (K.B) (A) Breed (B) Cultivars (C) Recombinant organism (D) Sheeps Plant varieties produced through artificial selection in wild mustard are: (K.B) 5. (A) Broccoli (B) Cauliflower

Inheritance

	REVIE	W QUESTIONS		
	MOLTIN			
1.	An organism's expressed physica	Arrait, such as seed colour or pod shape, is called		
	its;			
20	CK BU	(GRW 2017)		
11/11	(a) Karvotype	(d) Physical type		
9,0	A n angonism has two different alle	(u) Flysical type		
۷.	An organism has two different alles	(b) Hotorographics		
	(a) Homozygous	(d) Henele sous		
2	(c) Hemizygous	(d) Homologous		
з.	In the cross-pollination between a	a true-breeding yellow pod plant and true-breeding		
	green pod plant, where green pod colour is dominant, the resulting offspring (F1			
	(a) $\frac{1}{4}$ green $\frac{3}{4}$ vellow	(b) All vellow		
	(a) $\frac{1}{4}$ yellow $\frac{3}{4}$ groop	(d) all groop		
4	(c) ¹ / ₄ yellow, ¹ / ₄ green	(d) all green		
4.	now many geneticany unterent Kin	ius of gametes an individual with genotype AAbb can		
	(a) 1	(\mathbf{b}) 2		
	$\begin{pmatrix} a \end{pmatrix} 1$	$\begin{pmatrix} 0 \\ 2 \\ (d) \\ 8 \end{pmatrix}$		
5	(C) 4 Which of the following statements	$(\mathbf{U}) \circ$		
5.	(a) Canad are la acted on abromasamas			
	(a) Genes are located on chromosomes (b) Genes consist of a long converse of DNA			
	(b) Genes consist of a long sequence of DNA			
	(c) A gene contains information for t	ne production of a protein		
((d) Each cell contains a single copy of	i every gene		
0.	Mendel's primary contribution to our understanding of inheritance was: (U.B)			
	(a) The idea that genes are found on (chromosomes		
	(b) Explanation of the patterns of inn	eritance		
	(c) The discovery of alleles			
_	(d) Determining that informations co	ntained in DNA are for proteix synthesis		
7.	A purple-flowered pea plant has	the genotype PP, which of the following statements		
	about this plant is FALSE? (F. P)			
	(a) Its phenotype will be white flowers			
	(b) It has Tremprygo is dominant ge	notype		
	(c) When orea to a white-flow ered pl	ant, all offspring will be purple flowered		
	(d) All the gametes produced will have	ve the same flower colour allele		
1 ISAN	Charles Darwin proposed that	organism produce many more offspring than can		
90	possible survive on the limited an	nount of resources available to them. According to		
	Darwin, the offspring that are mos	t likely to survive are those that:		
	(a) Are bern tiret and grow testest	(b) Are largest and most aggressive		
	(a) Are born first and grow fastest			

1.

2.

3.

4.

•

0.1

<u>@\/2</u>|

0.3

ANSWER KEY 2(0)[1 b 2 b 3 d 4 a 5 d 6 b 7 <u>a</u> 👌 d SHORT QUES Define genotype and phenotype. (K.B)/ GENOTYPE AND PHENOTYPE Ans: Genotype: The specific combination of gene in an individual is known as genotype. It is of two types. Homozygous Genotype Heterozygous Genotype Phenolype: The expression of the genotype in the form of trait (in our example, being albino or having normal pigmentation) is known as the phenotype. What do you mean by dominant and recessive alleles? (K.B) Ans: **DOMINANT AND RECESSIVE ALLELES Dominant Alleles:** When in the heterozygous condition one allele masks or prevents the expression of the other, it is called the dominant allele. **Example:** "R" allele is dominant over "r" allele for the shape of seed. • **Recessive Alleles:** The allele which is not expressed is called recessive allele. **Example:** "r" allele is recessive for the shape of seed. What are the homozygous and heterozygous genotypes? (K.B) HOMOZYGOUS AND HETEROZYGOUS GENOTYPES Ans: **Homozygous Genotype:** The genotype in which the gene pair contains two identical alleles (AA) is called homozygous genotype. **Heterozygous Genotype:** The genotype in which the gene pair contains two different alleles (Aa) is called the Heterozygous genotype. Differentiate between natural and artificial selection. (K.B) Ans: DIFFERENTIATION The differences between natural selection and artificial selection are as follows: **Natural Selection** Artificial Selection Natural selection is the process by which • Artificial selection or selective breeding the better genetic variations become more bleeding means intentional between common in successive generations of a individuals certa n foi traits, or population. combination of traits. selection foi Artificial selection is intentional breeding Natural is necessary ar long individuals with desirable characteristics. evolutionary process UNDERSTANDING THE CONCEPT Describe the structure of chromatin. (K.B) AIS See I.Q.1 (Topic 15.1, 15.2) Describe Mendel's law of segregation. (K.B) Ans: See LQ.2 (Topic 15.3) Explain how Model proved the law of independent assortment. (U.B)

- Ans: See LO.3 (Topic 15.3)
- Q.4 How would you prove that variations lead to evolution? (U.B)
- Ans: See LQ.3 (Topic 15.5)

THE WATSON AND CRICK MODEL OF DNA

\gg	Сни	APTER-15	Inheritance		
CUT HERE					
i	Time: 40 min				
I	Q.1 Four possible answers A, B, C and D to each question are given, mark the correct				
I		answer. $(6\times 1=6)$			
	1.	How many types of nucleotides are present in DNA? (K.B)			
i		(A) 1	(B) 2		
I		(C) 3	(D) 4		
- 0					
NN	101	(A) Heterozygous	(B) Genotype		
\lor		(C) Phenotype	(D) Homozygous		
	3. Genotype of blood group B: (U.B)				
		(A) I ^A I ^A	(B) I ^A i		
I		(C) $I^{B}I^{B}$	(D) AB		
	4. The specific combination of gene in an individual is known as: (K.B)				
		(A) Phenotype	(B) Genotype		
Ī		(C) Gene	(D) Allele		
	5. The anti-evolution ideas support the theory of: (K.B)				
		(A) Special creation	(B) Organic evolution		
i		(C) Natural selection	(D) Evolution		
I	6.	6. An organism's expressed physical trait, such as seed colour or pod shape, is called its: (K.B)			
		(A) Genotype	(B) Phenotype		
i		(C) Karyotype	(D) Physical type		
I	Q.2 Give short answers to following questions. (5		s. (5×2=10;		
(i) What is P1 generation and F1 and F2 generation? (K.B)		tion? (K.B)			
i	 (ii) What is albinism and its genotype? (A.B) (iii) Give some example of traits in human. (K.B) 				
I					
	(iv)	(iv) Define in-complete dominance. (K.B)			
i	(v) What is the theory of special creation? (K.B)				
Q.3 Answer the following questions in detail. (5+4=					
 (a) Describe Watson and Crick model of DNA. (K.B) (b) Why did Mendel select pea plant? (A.B) NOTE: Parents or guardians can conduct this test in their supervision in order to check the skill of 			(K.B)		
			in their supervision in order to check the skill of		
	the students.				