

INTRODUCTION
 SHORT QUESTIONS

Q. 1 What was the contribution of Jabir Bin Haiyan t wardsacids? (K wodo. Base)

A famous Muslim Chemisi Jabirtbin itiy: n pryared:

- Niric acid (HNO_{3})
- Hyctrochloric acid (HCl)
- Sulphu-ia acia ($\mathrm{H}_{2} \mathrm{SO}_{4}$)
Q. 2 What wis the contribution of Lavoisier towards acids? (Knowledge Base) CONTRIBUTION OF LAVOISIER
In 1787, Lavoisier named binary compounds of oxygen such as CO_{2} and SO_{2} as acids which on dissolution in water gave acidic solutions.
Q. 3 Give the work of Sir Humphrey Davy towards acids. (Knowledge Base)

Ans: WORK OF SIR HUMPHREY DAVY
In 1815 , Sir Humphrey Davy gave the following countributions:

- He discovered that there are certain acids which are without oxygen. For example, HCl .
- He proved the presence of hydrogen as the main constituent of all acids.
Q. 4 Which acid is present in stomach and how is stomach acidity treated? (Understanding+Application Base)
Ans:

ACID PRESENT IN STOMACH

We all have little concentration of hydrochloric acid in our stomach, which helps to break down the food. Sometimes the amount of stomach acid becomes too much, which causes acidity.

Treatment of Stomach Acidity:

Stomach acidity is easily treated by taking an alkaline medicine. The alkali neutralizes the acid, producing a harmless chemical called a salt.

MULTIPLE CHOICE QUESTIONS

1. Nitric acid was prepared by: (K.B)
(A) Bu Ali Sina
(B) Jabir Bin Hayan
(C) Laviosier
(D) Humphrey
2. The first acid known to man was: (K.B)
(A) Hydrochloric acid
(B) Sulphuric acid
(C) Nitric acid
(D) Acetic avid
3. The word acid is derived from: (K.B)
(A) Acidic
(C) Acetie-
(E) Acidus
(SWL 2017)

Humplry D a y p o ed that main constituent of all acids is: (K.B)

(B) Oxygen
(c) I Ifrogen
(D) Chlorine
CO_{2} and SO_{2} are: (K.B)
(A) Base
(B) Acid
(C) Amphoteric compounds
(D) Neutral compounds
6. Which one gives acidic solution? (K.B)
(A) CO_{2}
(B) SO_{2}
(C) Both A and B
(D) MgO
7. Hydrochloric acid was prepared by: (K.B)

GGU2016 G-II)
(A) Alkhawarzmi
(C) Jabir Bin Hayan
(i3) Itncheshirn
8. The meany oftatim wer acidus is
(A) Sweel
(C) Sour
(B) Tasteless
(D) Salty
(K.)
(DGK 2016 G-II)

10.1 CONCEPTS OF ACIDS AND BASES

10.1.1 ARRHENIUS CONCEPT OF ACIDS AND BASES

LONG QUESTIONS

Q. 1 What is the comparison between acids and bases? (Knowledge Base) (DGK 2016 G-I) OR
Write down characteristic properties of acids and bases.
Ans: COMPARISON BETWEEN ACIDS AND BASES
Following are characteristics properties of acids and bases:

Ans:
(LFR :020, MTN 2016 G-II, 17, SGD 2016 G-II, 17, FSD 2016 G-I, 17) AI RHE US CONCEPT
This col cept was siven by Arrnenius in 1787.
Add:

- 4cid ls a substance which dissociates in aqueous solution to give hydrogen ions".

Examples:

- Hydrochloric acid (HCl)
- Nitric acid $\left(\mathbf{H N O}_{3}\right)$
- Sulphuric acid $\left(\mathbf{H}_{2} \mathbf{S O}_{4}\right)$
- Phosphoric acid $\left(\mathbf{H}_{3} \mathbf{P O}_{4}\right)$

General Reaction:

In general the ionization of acids, takes place as follows.

Expla@ion

Base:

(BWP 2017)
"Base is a substance which dissociates in aqueous solution to give hydroxide ions".

Examples:

- Sodium hydroxide ($\mathbf{N a O H}$)
- Potassium hydroxide (KOH)
- Calcium hydroxide $\left[\mathrm{Ca}(\mathbf{O H})_{2}\right]$
- Aluminium hydroxide $\left[\mathbf{A l}(\mathbf{O H})_{3}\right]$

General Reaction:

The general ionization of bases takes place as follows;

Explanation:

$$
\begin{array}{ccc}
\mathrm{BOH} & \stackrel{\text { water }}{\rightleftharpoons} & \mathrm{B}^{+}+ \\
& \mathrm{OH} \\
\mathrm{NaOH} & \stackrel{\text { water }}{\rightleftharpoons} & \mathrm{Na}^{+}+\mathrm{OH}^{-}
\end{array}
$$

Conclusion:

Thus, according to Arrhenius Concept:
Acid gives H^{+}in water and base gives OH^{-}in water.

Limitations:

(LHR 2014 2015, 2019. 202011

- Aqueous medium:

This concept is applicable (n) l y in eau eras nediunand does not explain nature of acids and bases in non $244 e$ medium.

- Nature of cenpouds.

According th his concept, acids and bases are only those compounds which conte in hydrogen $\left(\mathrm{H}^{+}\right)$and hydroxide $\left(\mathrm{OH}^{-}\right)$ions, respectively. It cant explain Che nature of compounds like $\mathbf{C O}_{\mathbf{2}}, \mathbf{N H}_{\mathbf{3}}$ etc., which are acid and base, respectively. Although this concept has limited scope yet, it led to the development of more general theories of acid-base behaviour.

10.1 CONCEPTS OF ACIDS AND BASES
 10.1.1 ARRHENIUS CONCEPT OF ACIDS AND BATES
 SHORI QUETJQNG

Q. 1 What are physical (chargateristiciproperties of acids? (Kirowledg, Base)
(GRV2010, 2015. bG. KHav 2017, BWP 2016 G-II)
Ans:
PHYEICAI PROLENIES CP ACIDS
The phyercl properties of acids are as toliuws:

- Acids heve sou laste. e.g. Unripe citrus fruits or lemon juices.

They tur Dlue litmus red.

- They are corrosive in concentrated form.
- Their aqueous solutions conduct electric current.

Examples:

- Hydrochloric acid (HCl)
- Sulphuric acid $\left(\mathbf{H}_{2} \mathbf{S O}_{4}\right)$
- Nitric Acid $\left(\mathrm{HNO}_{3}\right)$
Q. 2 What are physical (characteristic) properties of bases? (Knowledge Base) (GRW 2013, LHR 2015, BWP 2017)
Ans:

PHYSICAL PROPERTIES OF BASES

The physical properties of acids are as follows:

- Bases have bitter taste and feel slippery. e.g. Soap is slippery to touch.
- They turn red litmus blue.
- They are non-corrosive except concentrated forms of $\mathbf{N a O H}$ and $\mathbf{K O H}$.
- Their aqueous solutions conduct electric current.

Examples:

- Sodium hydroxide (NaOH)
- Potassium Hydroxide (KOH)
- Calcium hydroxide $\left[\mathrm{Ca}(\mathbf{O H})_{2}\right]$
Q. 3 What are limitations of Arrhenius concept of acids and bases? (Understanding Base) (GRW 2014, 15, DGK 2016 G-II, 17, MTN 2017, RWP 2017, FSD 2016 G-II)
Ans: Answer given on Page \# 43 (limitations)

10.1.1 MULTIPLE CHOICE QUESTIONS

1. Formula of phosphoric acid is: (K.B)
(A) $\mathrm{H}_{2} \mathrm{PO}_{3}$
(C) HPO_{4}
2. $\quad \mathrm{Al}(\mathrm{OH})_{3} \mathrm{i}: \cdot($ K.B $)$
(A) Ar arid
(B) $\mathrm{H}_{4} \mathrm{PO}_{3}$
(C) A si 1 lt
(B) A base

The ina product of Arrhenius concept is: (U.B)
(A) Salt $+\mathrm{H}_{2} \mathrm{O}$
(B) An adduct
(C) A conjugate acid base pair
(D) A salt only
4. Base turn red litmus to: (K.B)
(A) Blue
(B) Red
(C) White
(D) Yellow
5. Arrhenius concept was presente (iin: (K i?)
(BWP 2017)
(A) 1234
(C) 1787
(B) 145%
6. It is a subs ar ce which provides nydrogen ions: (K.B)
(A) A.cic
(B) Base
(0) Sal
(D) Adduct

It is a substance which provides hydroxide ions: (K.B)
(A) Acid
(B) Base
(C) Salt
(D) Adduct

10.1.2 BRONSTED LOWRY CONCEPT

LONG QUESTIONS

Q. 1 Explain Bronsted-Lowry Concept. Give its limitations. (Knowledge + Understanding Base)
(Ex-Q.1)(LHR 2019, FSD 2017)
OR
Define an acid a base according to Bronsted-Lowry concept and justify with examples that water is an amphoteric compound.
Ans:

BRONSTED-LOWRY CONCEPT

Introduction:

In 1923, the Danish Chemist Bronsted and the English Chemist Lowry independently presented their theories of acids and bases on the basis of proton transfer.
Acid:
"An acid is a substance (molecule or ion) that can donate a proton $\left(\boldsymbol{H}^{+}\right)$to another substance."

Examples:

- Hydrocholoric acid (HCl)
- Acetic acid $\left(\mathbf{C H}_{\mathbf{3}} \mathbf{C O O H}\right)$
- Nitric acid $\left(\mathbf{H N O}_{3}\right)$

Base:
"A ba.eis a ubstane thot cancrccpt a proton (H) from another substance." Exampe:

Amnonia (NH_{2})
hivaroside $\left(\mathbf{O H}^{-}\right)$
Explanation:
HCl acts as an acid while NH_{3} acts as a base

$$
\begin{array}{lcc}
\mathrm{HCl}+\mathrm{NH}_{3} \text { 日昍兆 } & \mathrm{NH}_{4}^{+} & + \\
\text {Acid + Base } & \text { Conjugate acid }+ \text { Conjugate base }
\end{array}
$$

Water as an Amphoteric Substance：（TEST YOU品ELE10． 1 qi i） （Understanding Base）
＂A substance that can act as ar acid le u ell as base is celled amphoteric specie＂．
－Veter as azo：
When HCl dissolve．in water； HCl acts as an acid and $\mathrm{H}_{2} \mathrm{O}$ as a base．

$$
\begin{aligned}
& \mathrm{VICl}_{4}+\mathrm{H}_{2} \mathrm{O} \text { 日 } \quad \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-} \\
& \text {Acid + Base } \quad \text { Conjugate acid + Conjugate base }
\end{aligned}
$$

－Water as an acid：
When ammonia dissolves in water， $\mathrm{H}_{2} \mathrm{O}$ acts as an acid and ammonia as a base．

$$
\begin{array}{lll}
\mathrm{H}_{2} \mathrm{O} & + & \mathrm{NH}_{3} \text { 日田 }
\end{array} \mathrm{NH}_{4}^{+}+\quad \mathrm{OH}^{-}+\quad \text { Conjugate acid + Conjugate base }
$$

Explanation：

It is a reversible reaction．In the forward reaction $\mathbf{H C l}$ is an acid as it donates a proton， whereas $\mathbf{H}_{2} \mathrm{O}$ is a base as it accepts a proton．In the reverse reaction Cl^{-}ion is a base as it accepts a proton from acid $\mathbf{H}_{3} \mathbf{O}^{+}$ion． Cl^{-}ion is called a conjugate base of acid HCl and $\mathbf{H}_{3} \mathbf{O}^{+}$ion is called a conjugate acid of base $\mathbf{H}_{2} \mathrm{O}$ ．It means every acid produces a conjugate base and every base produces a conjugate acid such that there is conjugate acid－base pair．

Conjugate Acid：

＂A conjugate acid is a specie formed by accepting a proton by a base＂．

Conjugate Base：

＂A conjugate base is a specie formed by donating a proton by an acid＂．

Examples：

－Conjugate means joined together as pair．

$$
\begin{aligned}
& \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \boxminus 4 \\
& \text { Acid } \\
& \text { Base }
\end{aligned}
$$

Condition：

According to Bronsta－Loury concept．aciu and base always，work together．That means， a subsfucte car ac as an acid proton donor）only when another substance simultar ecusly bela e．as d vase（proton acceptor）．

limitation：

It hat；Gen observed that there are certain substances which behave as acids though they do not have the ability to donate a proton，e．g．， SO_{3} ．Similarly， $\mathbf{C a O}$ behaves as a base but it cannot accept a proton．These observations prove the limitations of Bronsted－ Lowry concept of acids and bases．

Table 10.2 Conjugate Acid-Base Pairs of Common Species

PROBLEM 10.1

(Understanding + Application Base)
(a) What are conjugate bases of each of the following?
(DGK 2017, SWL 2017)

$$
\mathrm{HS}^{-}, \mathrm{H}_{3} \mathrm{O}^{+}, \mathrm{H}_{2} \mathrm{PO}_{4}^{-}, \mathrm{HSO}_{4}^{-}, \mathrm{HF}, \mathrm{CH}_{3} \mathrm{COOH},\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}
$$

(b) Give the conjugate acids of the following?

$$
\mathrm{OH}^{-}, \mathrm{HCO}_{3}^{-}, \mathrm{HPO}_{4}^{2-}, \mathrm{CH}_{3} \mathrm{NH}_{2}, \mathrm{CO}_{3}^{2-}, \mathrm{CH}_{3} \mathrm{COOH} .
$$

(c) Which of the following behave both as Bronsted acids and Bronsted bases?

$$
\mathrm{H}_{2} \mathrm{O}, \mathrm{HCO}_{3}^{-}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{HS}^{-}
$$

NUMERICAL EXAMPLE

Solution:
(a) Conjugate Bases:

(c) Bronsted Acids as Well as Bases:

- $\mathrm{H}_{2} \mathrm{O}$
- HCO_{3}^{-}
- HS^{-}

SHORT QUESTIONS
6.1 What is conjugate acid and conjugate base? (Knowledge Base + Understanding Base) (GRW 2013,2014,2015)
Ans: CONJUGATE ACID AND CON.JUGATE BASE

Conjugate Acid:

"A conjugate acid is a specie formed by accepting a proton by a base".

Conjugate Base:

"A conjugate base is a specie formed by donating a proton by an acid".
Examples:

- Conjugate means joined together as pair.

$$
\begin{array}{lc}
\mathrm{HCl}+\mathrm{NH}_{3} \text { 日肥 } & \mathrm{NH}_{4}^{+} \\
\text {Acid + Base } & +\quad \mathrm{Cl}^{-} \\
\text {Conjugate acid }+ \text { Conjugate base }
\end{array}
$$

Q. 2 What are limitations of Bronsted-Lowry concept of acids and bases? (Knowledge Base)
Ans: Answer given on Page \# 46 (limitations)

10.1.2 BRONSTED LOWRY CONCEPT MULTIPLE CHOICE QUESTIONS

1. Which one is amphoteric: (U.B)
(A) HCl
(C) NaOH
2. Bronsted Lowry acid: (K.B

(A) Gives H^{+}
(B) Is an electron pair acceptor
(C) Dorlates OH
(D) Is an electron pair

3 An Erorstod acius are: (U.B)
(1) Arrhenius acids
(B) Lewis acids
(C) Lewis bases
(D) Bronsted acids
4. Conjugate base of sulphuric acid is: (U.B)
(LHR 2014, BWP 2017)
(A) SO_{3}^{2-}
(B) SO^{2-}
(C) HSO_{3}^{-}
(D) $H S$
5. Acid is a substance that don donite ar. (F.B)
(A) $\operatorname{Pr} \pi \mathrm{H}^{2}$
(B) Eiectron
(C) $\mathrm{Nel} \operatorname{tr} \mathrm{Cl}_{1}$
(D) Positron
6. Bior sted-1. © wreoncept was presented in: (K.B)
(SWL 2017)
(1) 1923
(B) 1787
(C) 1823
(D) 1943
7. Bronsted-Lowry concept is based on transfer of: (K.B)
(A) Proton
(B) Electron
(C) Neutron
(D) Positron
8. Base is a substance that can accept a: (K.B)
(A) Proton
(B) Electron
(C) Neutron
(D) Positron
9. Substances that can behave as acid as well as base are called: (K.B)
(A) Bases
(B) Acids
(C) Amphoteric compounds
(D) Salts
10. Which one is not an acid? (K.B)
(MTN 2016 G-II)
(A) HCl
(B) NH_{3}
(C) $\mathrm{H}_{2} \mathrm{CO}_{3}$
(D) $\mathrm{H}_{2} \mathrm{SO}_{4}$

10.1.3 LEWIS CONCEPT OF ACIDS AND BASES LONG QUESTIONS

Q. 1 Explain Lewis Concept of acids and bases with suitable examples Krwonled Ba\&e + Understanding Base)
(LHR 2013, 2014, 20 (9) GRW 2013 , IMTI 216 (r-1 1, SGD 20 ± 1 EvFP 2016 G-II)
Ans:
LEWIS CONCE PT OFACDS AND EASES

Introduction:

The frricnila and Bron ted-Lewry concepts of acids and bases are limited to substan ee which contain protons. G.N. Lewis (1923) proposed a more general and hromier concent of acids and bases. According to this concept:
Acid:
*Irucid is a substance (molecule or ion) which can accept a pair of electrons"

Examples:

- Boron trifluoride $\left(\mathbf{B F}_{3}\right)$
- Hydrogen ion $\left(\mathbf{H}^{+}\right)$
- Sodium ion ($\mathbf{N a}^{+}$)
- Aluminium trichloride $\left(\mathbf{A l C l}_{3}\right)$

Base:

"A base is a substance (molecule or ion) which can donate a pain of eleetrons

Examples:

- Ammonia $\left(\mathbf{N H}_{\mathbf{3}}\right)$
- Dlorde ion (F)
- Evanide ion(CN
- Alcochol: (ROH)

Erime 1 .

(Resction between Boron Trifluoride and Ammonia):
A reaction between ammonia and boron trifluoride takes place by forming a coordinate covalent bond between ammonia and boron trifluoride by donating an electron pair of ammonia and accepting that electron pair by boron trifluoride.

Boron trifluoride + Ammonia
Ammonia boron trifluoride (adduct)

Examples 2:

(Reaction between H^{+}and Ammonia):

The cations (proton itself or metal ions) act as Lewis acids. For example, a reaction between H^{+}and NH_{3} where H^{+}acts as an acid and ammonia as a base:

Net inalizo io Reaction:
A neutial zation eactic neording to Lewis concept is donation and acceptance of an Fiect on pair to form a coordinate covalent bond in an adduct.
daracteristics of Lewis Acids:
According to Lewis concept, the following species can act as Lewis acids:
(i) Central Atom With Incomplete Octet:

Molecules in which the central atom has incomplete octet are Lewis acid. The central atom has only six electrons around it, therefore, these can accept an electron pair.

Examples:

- BF_{3}
- AlCl_{3}
- FeCl_{3}
(ii) Simple Cations:

Simple cations can act as Lewis ari is. All caticns act as Levis acids ince they are deficient in electuons.
Little 'sudeng
Some ca ta ns lave a verv itie tendency to accept electrons like:

- Ca^{2+} etc.

Greater Tendency to Accept Electrons:

Some cataions have a greater tendency to accept electrons like:

- H^{+}
- Ag^{+}etc.

Characteristics of Lewis Bases:

According to Lewis concept, the following species can act as Lewis bases:
(i) Electron Rich Species:

Neutral species having at least one lone pair of electrons act as Lewis bases because they contain a lone pair of electrons
Examples:

- Ammonia NH_{3}
- Aamines $\mathrm{R}-\mathrm{N̈H}_{2}$
- Alcohols

R-Ö-H

- Water

H-Ö-H.
(ii) Anions:

Negatively charged species or anions act as Lewis bases:

Examples:

- Chloride Cl^{-}
- Cyanide CN^{-1}
- Hydroxide ion OH^{-}
Q. 2 Give brief idea about three concepts of acids and bases. (Nwowe Ig e base)

Ans: CONCEPTS OF AC D $A N D$ B SES
A summary of three concept of acis, an or oses is as fylors.

Cencept	VAcid	1) - pase	Product
Ar-henjus	Ii gives $\mathrm{H}+\mathrm{ion}$	It gives OH^{-}	Salt $+\mathrm{H}_{2} \mathrm{O}$
3erncted Lowry	It donates H^{+}	It accepts H^{+}	Conjugate acid base pair.
- Lewis	It is electron pair acceptor	It is electron pair donor	Adduct.

10.1.3 LEWIS CONCEPT OF ACIDS AND BASES
 SHORT QUESTIONS

Q. 1 What are types of Lewis bases? (Knowle ig. Base)

Ans: \quad TYPE OF LFULSBSSS
According to Lewis conce, the the $\frac{10}{}$ iowsper es act as Levis bases:

(i) Electron Rich Spanies.

Neutral species inving ot least one lont pair ofelectrons act as Lewis bases because they contain a ne pair f electrons.

Examples

Ammoria NH_{3}

- Amines $\mathrm{R}-\ddot{\mathrm{N}}_{2}$
- Alcohols R-Ö-H
- Water

- Ethers

R-Ö-R
(ii) Anions:

Negatively charged species or anions act as Lewis bases:

Examples:

- Chloride Cl^{-}
- Cyanide CN^{-1}
- Hydroxide ion OH^{-}

Q. 2 What is an adduct? (Knowledge Base)

(SWL 2016 G-I, II)
Ans:

ADDUCT

Definition:

"The product of any Lewis acid-base reaction is a single specie, called an adduct".
Example:

Q. 3 All Bronsted bases are Lewis bases but a 11 Bronsted Icids arentrwacie. Jastify. (Understanding Base)
Ans:
It may 06 holed that 41 Bronsied bases are alsolewis bases but all Bronsted acids are not Lewis arnl. Justification:
Ascording to monstect concept, a base is a substance which can accept a proton, while ancordinat Lewis concept, a base is a substance which can donate a pair of electrons. Lews oases generally contain one or more lone pair of electrons and, therefore, they can also accept a proton (Bronsted base). Thus, all Lewis bases are also Bronsted bases. On the other hand, Bronsted acids are those which can give a proton. For example, HCl , $\mathrm{H}_{2} \mathrm{SO}_{4}$ are not capable of accepting a pair of electrons. Hence, all Bronsted acids are not Lewis acids.

10．1．3 LEWIS CONCEPT OF ACIDS AND BASES MULTIPLE CHOICE QUESTIONS

1．The product of any Lewis acid base reaction is a singlespecie caled（K．B）MND）
（A）A salt
（C）Salt $+\mathrm{H}_{2} \mathrm{O}$
（ B ）An adduc
（1）Conjusate acid ba e pair
2．In a reaction between am nona $\&$ b cottifionide，BF．
（A）Ar arid
（B）A oase
（C）A comiugate base
（D）An adduct

3．These can at as icewis acids．（K．B）
（A）Anicns
（B）Radicals
Cly C （in）
（D）Molecule

These can act as lewis bases：（K．B）
（A）Cations
（B）Anions
（C）Cations \＆anions
（D）Radicals

5．Which is a Lewis base？（K．B）
（GRW 2014，LHR 2015，2016，DGK 2017）
（A） AlCl_{3}
（B） H^{+}
（C） BF_{3}
（D） NH_{3}

6．Molecules in which central atom has incomplete octet is called：（U．B）
（A）Lewis base
（B）Lewis acid
（C）Amphoteric
（D）Salt

7．Substance which has unshared pair of electons act as：（U．B）
（A）Lewis base
（B）Lewis acid
（C）Amphoteric
（D）Salt

8．Substances which have empty orbital that can accommodate an electron pair are called： （U．B）
（A）Lewis base
（B）Lewis acid
（C）Amphoteric comopuds
（D）Adduct

9．Simple cations can act as：（U．B）
（A）Lewis base
（B）Lewis acid
（C）Amphoteric
（D）Adduct

10．Ammonia，amines and alcohols are examples of：（K．B）
（A）Lewis base
（B）Lewis acid
（C）Amphoteric
（D）Arrhenius acid

10．1 TEST YOURSELF

i．What is the difference between Arrhenius base and Bronsted－Lowry base？
（Understandins，se）
Ans：
DIFFERENTIATION

－A base ir a substamee which dissockap．in qqepu solntion io give proton $(H+)$ from another substance． hydrox de ons（ CH H）．

Examples

$\mathrm{Ca}(\mathrm{OH})_{2}$
NaOH 日䫏苞 $\mathrm{Na}^{+}+\mathrm{OH}^{-}$
－ AlCl_{3}
$\mathrm{HCl}+\mathrm{NH}_{3}$ 旦昭 $\mathrm{NH}_{4}^{+}+\mathrm{Cl}^{-}$
Acid Base
ii. What do you mean by neutralization reaction according to Arrhenius acid-base concept?
(Understandins, \mathbf{B} se)
Ans:

NEUTRALIZATION

According to Arrhernius acid base oncep during ne ralization reation nyd.ogen ions $\left(\mathrm{H}^{+}\right)$combine with the equal numbs of nydroxide ions and tothen nalize each other to form water

iii. Prove that water is an amphoteric specie. (Understanding Base)

Ans: Answer given on Page \# 46
iv. How can you justify that $\mathbf{N H}_{3}$ is Bronsted-Lowry base but not Arrhenius base? (Understanding Base)
Ans:

NH_{3} AS BRONSTED-LOWRY BASE

Ammonia $\left(\mathrm{NH}_{3}\right)$ is Bronsted -Lowry base because it has the ability to accept a proton $\left(\mathrm{H}^{+}\right.$ion) but not Arrhenius base because it does not produce hydroxide ions $\left(\mathrm{OH}^{-}\right)$in aqueous solution.

Example:

NH_{3} accepts a proton from water

$$
\begin{array}{lccc}
\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} & \text { 日明 } & \mathrm{NH}_{4}^{+}+ & \mathrm{OH}^{-} \\
\text {Base } & \text { Acid } & & \text { Conjugate } \\
\text { acid }
\end{array} \quad \begin{gathered}
\text { Conjugate } \\
\text { base }
\end{gathered}
$$

v. State and explain the neutralization reaction according to Lewis concept. (Knowledge Base)
Ans:

NEUTRALIZATION REACTION

Definition:

"A neutralization reaction according to Lewis concept is donation and acceptance of a electron pair to form a coordinate covalent bond in an adduct".

Example:

vi. Defintand give the charat teristics of ewisacid. (Understanding Base)

Ans: \quad IEWIS ACID
Definition:
"And cid is acesstance (molecule or ion) which can accept a pair of electrons".

xazopies:

- Boron trifluoride $\left(\mathrm{BF}_{3}\right)$
- Hydrogen ion $\left(\mathrm{H}^{+}\right)$
- Sodium ion $\left(\mathrm{Na}^{+}\right)$
- Aluminium trichloride $\left(\mathrm{AlCl}_{3}\right)$

Characteristics of Lewis Acids:

According to Lewis concept, the following species can act as Lewis ac as?

(i) Central Atom With Ingomplete Octet.

Molecules in which the central ata/ ha nompiee acet ate evis acid. The central atom as only sivelect ons arnatit hedefere, these cen accepi an electron pair.
Examp!es:

- $\mathrm{Al}_{3} \mathrm{Cl}_{3}$
(ii) Simple Cations:

Simple cations can act as Lewis acids. All cations act as Lewis acids since they are deficient in electrons.

Little Tentdency to Accept Electrons:

Some cataions have a very little tendency to accept electrons like:

- Na^{+}
- K^{+}
- Ca^{2+} etc.

Greater Tendency to Accept Electrons:

Some cataions have a greater tendency to accept electrons like:

- H^{+}
- Ag^{+}etc.
vii. What is an amphoteric specie according to Bronsted-Lowry concept? What is its nature according to Lewis concept? (Knowledge Base + Understanding Base)
Ans:
AMPHOTERIC SPECIE
Water is amphoteric specie according to Bronsted-Lowery concept because it behaves as an acid as well as base.

NATURE OF AMPHOTERIC SPEICE
According to Lewis concept water acts only as Lewis base because it has the ability to donate electron pair.

$$
\mathrm{H}_{2} \ddot{\mathrm{O}}+\mathrm{H}^{+} \longrightarrow\left(\mathrm{H}_{2} \ddot{O} \longrightarrow \mathrm{H}\right)^{+}
$$

Base Acid Adduct

Q. 1 Explanime chemican nrqeries of arids: ((Jiverstanding + Application Base)
(LHR 2016, GRW 2014,2017, DGK 2017)
Ans:
CHENILCAL PROPERTIES OF ACIDS
Thas cher ic al properties of acids are as follows:
(i) Keaction with Metals:
(LHR 2014)
Acids react explosively with metals like sodium, potassium and calcium. However, dilute acids $\left(\mathrm{HCl}, \mathrm{H}_{2} \mathrm{SO}_{4}\right)$ react moderately with reactive metals like, $\mathrm{Mg}, \mathrm{Zn}, \mathrm{Fe}$ and Al form respective salts and evolve hydrogen gas.

$$
\begin{gathered}
\mathrm{Zn}_{(\mathrm{s})}+\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})} \longrightarrow \mathrm{ZnSO}_{4}+\mathrm{H}_{2(\mathrm{~g})} \uparrow \\
2 \mathrm{Al}_{(\mathrm{s})}+6 \mathrm{HCl}_{(\mathrm{aq})} \longrightarrow 2 \mathrm{AICl}_{3(\mathrm{aq})}+3 \mathrm{H}_{2(\mathrm{~g})} \uparrow
\end{gathered}
$$

(ii) Reaction with Carbonates and Bicaronates: Te Trourvelf $0.2 q$ (1)

Acids react with carbonates and biarbenates to form conlesponding salts and evolve carbon dioxide gas.

$$
\mathrm{CaCl}_{3}+2 \mathrm{HCl} \longmapsto \mathrm{CaCl}_{2}+\mathrm{CO}_{2} \uparrow+\mathrm{H}_{2} \mathrm{O}
$$

C. Icil hm ca bonate)
$2 \mathrm{NariCO}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{CO}_{2} \uparrow+2 \mathrm{H}_{2} \mathrm{O}$
(Sodium Bicarbonate)

(iii)Reaction with Bases:

Acids react with bases (oxides and hydroxides of metal and ammonium hydroxide) to form salts and water. This process is called neutralization.

$$
\begin{aligned}
\mathrm{NaOH}_{(\mathrm{aq})}+\mathrm{HCl}_{(\mathrm{aq})} & \longrightarrow \mathrm{NaCl}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{a})} \\
\mathrm{CuO}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})} & \longrightarrow \mathrm{CuSO}_{4(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{a})}
\end{aligned}
$$

(iv) Reaction with Sulphites and Bisulphites: (Test Yourself 10.2 q ii)

Acids react with sulphites and bisulphites to form salts with liberation of sulphur dioxide
gas.

$$
\begin{aligned}
& \mathrm{CaSO}_{3(\mathrm{aq})}+2 \mathrm{HCl}_{(\mathrm{aq})} \longrightarrow \mathrm{CaCl}_{2(\mathrm{aq})}+\mathrm{SO}_{2(\mathrm{~g})} \uparrow+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \\
& \begin{array}{c}
\text { (Calcium Sulphite) } \\
\mathrm{NaHSO}_{3(\mathrm{aq})}+\mathrm{HCl}_{(\mathrm{aq})}
\end{array} \rightarrow \mathrm{NaCl}_{(\mathrm{aq})}+\mathrm{SO}_{2(\mathrm{~g})} \uparrow+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
\end{aligned}
$$

(Sodium Bisulphite)

(v) Reaction with Sulphides:

Acids react with metal sulphides to liberate hydrogen sulphide gas.

$$
\mathrm{FeS}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})} \longrightarrow \mathrm{FeSO}_{4(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{~S}_{(\mathrm{g})} \uparrow
$$

Q. 2 Write down uses of acids. Give some naturally occuring acids and their sources.
(Knowledge Base)(Do you know Pg. \# 29) (FSD 2016 G-I, BWP 2016 G-I, GRW 2017)
Ans:

USES OF ACIDS

Following are the uses of some important acids:

Sulphuric Acid ($\mathbf{H}_{2} \mathbf{S O}_{4}$): (Test Yourself 10.2 q iii)

It is used to manufacture fertilizers, ammonium sulphate calciun sune phosnhte, explosives, paints, dyes, drugs. It is also used as an Therroy in lead storage bateries. Nitric Acid ($\mathbf{H N O}_{3}$):
It is used in manufacturing of fertlize an on ol iun oitras), explosives, paints, drugs and etchingesignsom opper plates
Hydrompric de (1).
It is ased for clean ne metais, tanning and in printing industries.
Benzoic Acid $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$:
it is used in preservation of food.
Acetic Acid ($\mathrm{CH}_{3} \mathrm{COOH}$):
It is used in food preservation \& flavouring of food. It is also used to treat stings of wasps.

SOME NATURAL ACIDS AND THEIR SOURCES

10.1.4 GENERAL PROPERTIES OF ACIDS SHORT QUESTIONS

Q. 1 What are mineral acids? (Knowledge Base)
(Do you know Pg. \# 28)(GRW 2015)
OR
Write down the names and formulae of three mineral acids.
(GRW 2015, DGK 2017, RWP 2017)
Ans:
MINERAL ACIDS
Definitions:
"Acids having inorganic origin are called mineral acids".
Examples:

- Hydrochloric acid (HCl)
- Sulphuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$
- Nitric acid $\left(\mathrm{HNO}_{3}\right)$
Q. 2 How do acids react with metals? (Application Base)

Ans:

REACTION BETWEEN ACIDS AND METALS

Acids react explosively with metals like sodium, potassium and calcium. However, dilute acids $\left(\mathrm{HCl}, \mathrm{H}_{2} \mathrm{SO}_{4}\right)$ react moderately with reactive metals like, $\mathrm{Mg}, \mathrm{Zn}, \mathrm{Fe}$ and Al to form respective salts and evolve hydrogen gas.

Q. 3 Write domuses of hywoch oric acid (Knouledgo Dase)
(GRW 2013) (DGK 2017, RWP 2017)
Ans:

USES CT HYDROCHLORIC ACID

Itis $\sqrt{1} \mathrm{sec}:$
For cleaning metals

- For tanning
- In printing industries.

Q. 4 Write down sources of Maleic acid and Stearic acid. (Knowledge Base)

Ans:

SOURCES OF ACIDS

Following are the sources of acids:

- Maleic acid : Appie
- Stearic acid: Fats
Q. 5 Write surices of citric acid and lactic acia. (Knowledge Base)
(LHR 2014,2015)
Ans:
The lource of tric acid and lactic acid are as follows:
- Witric acid : Citrus fruits i.e. lemon, orange.
- Lactic acid : Sour milk.
Q. 6 Give the uses of sulphuric acid. (Knowledge Base)
(MTN 2016 G-I) Ans: USES OF SULPHURIC ACID

Sulphuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$ is used:

- To manufacture fertilizers, ammonium sulphate, calcium superphosphate, etc.
- To prepare explosives, paints, dyes, drugs.
- As an electrolyte in lead storage batteries.
Q. 7 Write down any two uses of acetic acid. (Knowledge Base)
(SWL 2016 G-I)
Ans:
USES OF ACETIC ACID
Acetic acid is used:
- In food preservation, flavouring of food.
- To treat stings of wasps.
Q. 8 Give four uses of nitric acid. (Knowledge Base)
(DGK 2016 G-II)

USES OF NITRIC ACID

It is used:

- In manufacturing of fertilizer (ammonium nitrate)
- In the manutectueing of explosives,
- To prepare of paints and drugs
- For etching designs on copper plates.
Q. 9 Write the name of acid present in (a) Vinegar (b) Ant sting. (Knowledge Base) (DGK 2016 G-I) Ans:

NAMES OF ACIDS
The names of acids present in vinegar ant sting are:

- Vinegar : Acetic acid
- Ant Sting : Formic acid

MCLipilfctotoE QUESTIONS

1. Nevaralzation s reaction of: (U.B)
(ANAcid vilu metals
(B) Acids with sulphides
(d) Dases with acids
(D) None of these

Acid used for food preservation is: (K.B)
(A) Nitric acid
(B) Benzoic acid
(C) Acetic acid
(D) Both B and C
3. Maleic acid is found from: (K.B)
(A) Apples
(B) Grapes
(C) Sour milk
(D) Fats
4. Acid reacts with metal sulphides to liberat: ($\boldsymbol{U} . \boldsymbol{R}^{\prime}$)
(A) Hydrogen gas
(C) Ammonia gas
(3) Carbon dipxide
5. Formola IT acetic aciu is: K B)
(L) Hudrogen sulpide as
(A) CH OOE
(B) $\mathrm{CH}_{2} \mathrm{O}$
(C) NaOH
(D) $\mathrm{CH}_{3} \mathrm{OH}$
6. Whith ont is found in stings of bee's and ants? (K.B)
(A) I acle acid
(B) Maleic acid
(C) Butyric acid
(D) Formic acid
7. It is used to cure sting of wasps: (K.B)
(A) Acetic acid
(B) Benzoic acid
(C) Nitric acid
(D) Sulphuric acid
8. When acids react with carbonates and bicarbonates, which gas evolves out? (U.B)
(LHR 2013,14, GRW 2014, SWL 2017)
(A) $\mathrm{H}_{2} \mathrm{~S}$
(B) CO_{3}
(C) CO_{2}
(D) CO
9. Uric acid is present in: (K.B)
(FSD 2016 G-I, SGD 2016 G-I)
(A) Fats
(B) Citrus fruits
(C) Apples
(D) Urine
10. When Na reacts with HCl the salt produced is: (U.B)
(A) NaCl
(B) NaOH
(C) $\mathrm{H}_{2} \mathrm{O}$
(D) NH_{3}
11. Citric acid is found in: (K.B)
(BWP 2017, FSD 2016 G-II)
(A) Urine
(B) Fast
(C) Lemon
(D) Sour milk
12. Acid present in sour milk is: (K.B)
(DGK 2016 G-I, 17)
(A) Lactic acid
(B) Formic acid
(C) Tartaric acid
(D) Uric acid
13. Name the acid used in lead storage batteries: (K.B)
(MTN 2017, SGD 2017)
(A) $\mathrm{CH}_{3} \mathrm{COOH}$
(B) HCl
(C) HNO_{3}
(D) $\mathrm{H}_{2} \mathrm{SO}_{4}$
14. Lactic acid is found in: (K.B)
(B) So n 1 TK
(A) Citrus fruits
(C) Rancid butter

 MOMADVESTIONS

Q. 1 Describe the ehencal properties of bases. (Understanding + Application Base)
(Cpy 20.4)

CHEMICAL PROPERTIES OF BASES

The chemical properties of bases are as follows:
(i) Reaction with Acids:

Bases react with acids to form salt and water. It is a neutralization reaction.

$$
2 \mathrm{KOH}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})} \longrightarrow \mathrm{K}_{2} \mathrm{SO}_{4(\mathrm{aq})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

(ii) Reaction with Ammonium Salts:

Alkalies react with ammonium salts to libe ate ammonitgas
(iii) Pr cip tat on of 1 dr drides (Reaction with Heavy Metal Salts): (LHR 2013, 2020)

Akaies pecigilate insoluble hydroxides when added to solutions of salts of heavy irctal s@ucin as copper, iron, zinc, lead and calcium.

$$
\mathrm{CuSO}_{4(\mathrm{aq})}+2 \mathrm{NaOH}_{(\mathrm{aq})} \longrightarrow \mathrm{Cu}(\mathrm{OH})_{2(\mathrm{~s})}+\mathrm{Na}_{2} \mathrm{SO}_{4(\mathrm{aq})}
$$

Blue ppt.

$$
\mathrm{ZnCl}_{2(\mathrm{aq})}+2 \mathrm{NaOH}_{(\mathrm{aq})} \longrightarrow \mathrm{Zn}(\mathrm{OH})_{2(\mathrm{~s})}+2 \mathrm{NaCl}_{(\mathrm{aq})}
$$

White ppt.

$$
\mathrm{FeCl}_{3(\mathrm{aq})}+3 \mathrm{NaOH}_{(\mathrm{aq})} \longrightarrow \mathrm{Fe}(\mathrm{OH})_{3(\mathrm{~s})}+3 \mathrm{NaCl}_{(\mathrm{aq})}
$$

Brown ppt.

$$
\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq})}+2 \mathrm{NaOH}_{(\mathrm{aq})} \longrightarrow \mathrm{Pb}(\mathrm{OH})_{2(\mathrm{~s})}+2 \mathrm{NaNO}_{3(\mathrm{aq})}
$$

White ppt.

$$
\mathrm{CaCl}_{2(\mathrm{aq})}+2 \mathrm{NaOH}_{(\mathrm{aq})} \longrightarrow \mathrm{Ca}(\mathrm{OH})_{2(\mathrm{~s})}+2 \mathrm{NaCl}_{(\mathrm{aq})}
$$

White ppt.

$$
\mathrm{FeSO}_{4(\mathrm{aq})}+2 \mathrm{NaOH}_{(\mathrm{aq})} \longrightarrow \mathrm{Fe}(\mathrm{OH})_{2(\mathrm{~s})}+\mathrm{Na}_{2} \mathrm{SO}_{4(\mathrm{aq})}
$$

Dirty Green ppt.

Q. 2 Write down the uses of bases. (Knowledge Base)

(LHR 2013, 2015, 2017, 2018, 2020, GRW 2014, 2015, BWP 2017 MTN 2017, DGK 2017, SWL 2016 G-I)

Ans:

USES OF BASES

Following are the uses of some important bases:

Sodium Hydroxide ($\mathbf{N a O H}$):

It is used for manufacturing of soap.
Calcium Hydroxide $\mathrm{Ca}(\mathrm{OH})_{2}$:
It is used for manufacturiug gf beaching oowder, softenin. of hard water and neutrelizing acidic soil and lakes due dacid rain.
Potassing Hydxde (KO)
It is 1 sec ir akaline batteries.
In iagneinu Hydroxide $\mathbf{M g}(\mathbf{O H})_{2}$:
(LHR 2020)
it is used as a base to neutralize acidity in stomach. It is also used for the treatment of bee's stings.
Aluminium Hydroxide $\mathrm{Al}(\mathbf{O H})_{3}$:
It is used as foaming agent in fire extinguishers.

Ammonium Hydroxide ($\mathrm{NH}_{4} \mathbf{O H}$):

It is used to remove grease stains from clothes.

Q. 1 What are the uses of magne im hyd oride? (Knswlage Base)
(BWP 2016 G-I)

Ans:

Magne ium hy droxide is s sed

- As it base to neutralize acidity in stomach
. For the treatment of bee's stings
2.2 Ans:

Write down four uses of bases. (Knowledge Base) (LHR 2013) (GRW 2014,2015, MTN 2017) USES OF BASES
Bases are used for a number of purposes. The important uses of bases are:

- Potassium hydroxide is used in alkaline batteries and shaving creams.
- Magnesium hydroxide is used as a base to neutralize acidity in the stomach.
- Aluminum hydroxide is used as foaming agent in fire extinguishers.
- Ammonium Hydroxide $\left(\mathrm{NH}_{4} \mathrm{OH}\right)$ is used to remove grease stains from clothes.

10.1.5 GENERAL PROPERTIES OF BASES MULTIPLE CHOICE QUESTIONS

1. $\quad \mathrm{Fe}(\mathrm{OH})_{3}$ is: $($ K. B)
(A) An acid
(B) A base
(C) A salt
(D) A non-metallic oxide
2. It is used to treat bee's sting: (K.B)
(A) $\mathrm{Mg}(\mathrm{OH})_{2}$
(B) $\mathrm{Ca}(\mathrm{OH})_{2}$
(C) NaOH
(D) KOH
3. Which is found in alkaline batteries? (K.B)
(A) $\mathrm{Mg}(\mathrm{OH})_{2}$
(B) KOH
(C) NaOH
(D) $\mathrm{Ca}(\mathrm{OH})_{2}$
4. Alkalies react with ammonium salts to lipe ate waicirgas ($\mathrm{K} B$
(A) Hydrogen
(C) Carbon dioxide
(B) Sulphit dipxids (D) Anmona

Alkalies recipitate incollobe: (KE)
(A) Oxide
(B) Hydroxides
(C) Solven s
(D) Salts

Vh hi: 1 is used as foaming agent in fire extinguishers. (K.B)
(A) Aluminium Hydroxide
(B) Ammonium Hydroxide
(C) Potassium Hydroxide
(D) Sodium Hydroxide

10.2 TEST YOURSELF

i. When acids react with carbonates and bicarbonates, which gas eveles out?
(Understanding + Application Base)
Ans: Answer given on Page \# 56
ii. Which types of salts procuce S_{2} was reactir g with acids? (ln lerstanding + Application Base)
Ans: Answer given or Dage $\$ 50$
iii. Give the wes of ulpl ucid. actowledge Base)

Ans: Ansiner giver on Pagle $\# 5$
Write duwn the colours of the precipitates formed by reaction of aqueous caustic suda with solutions of copper, zinc and ferric salts. (Knowledge Base)
Ans:
COLOURS OF PRECIPITATES
When caustic soda (NaOH) reacts with copper salt, it gives blue precipitate of cupric hydroxide.

$$
\mathrm{CuSO}_{4_{(\mathrm{aq})}}+2 \mathrm{NaOH}_{(\mathrm{aq})} \longrightarrow \mathrm{Cu}(\mathrm{OH})_{2}+\mathrm{Na}_{2} \mathrm{SO}_{4_{(a q)}}
$$

(Blue ppt.)
When caustic soda (NaOH) reacts with zinc salt, it gives white precipitate of zinc hydroxide.

$$
\mathrm{ZnCl}_{2}+2 \mathrm{NaOH}_{(\text {aq) }} \longrightarrow \mathrm{Zn}(\mathrm{OH})_{2}+2 \mathrm{NaCl}_{(\mathrm{aq})}
$$

(White ppt.)
When caustic soda (NaOH) reacts with ferric salt, it gives brown precipitate of ferric hydroxide.

$$
\mathrm{FeCl}_{3(\mathrm{aq})}+3 \mathrm{NaOH}_{(\mathrm{aq})} \longrightarrow \mathrm{Fe}(\mathrm{OH})_{3(\mathrm{~s})}+3 \mathrm{NaCl}_{(\mathrm{aq})}
$$

(Brown ppt.)
v. Name an alkali used in alkaline batteries. (Knowledge Base)

Ans: \quad ALKALI USED IN ALKALINE BATTERIES
Potassium hydroxide (KOH) is an alkali used in alkaline batteries.

Science, Technology and Society (STOMACH ACIDITY)

LONG QUESTION

Q. 1 Write a detailed note on stomach acidity. (Knowledge Base)

Ans:

STOMACH \mathcal{C} IDITY

Definition:

"Sometimes stomach produces tormuchrad it aises stomarh acidity also called hyperacidity."
Compo tion ffomatsection:
Stomach searetes cher uials in a regular way to digest food. These chemicals mainly onnsist of hydrectioric acid along with other salts.
Prouection of Stomach from HCl:
Although hydrochloric acid is highly corrosive, but stomach is protected from its effect because it is lined with cells that produce a base. The base neutralizes stomach acid.

Functions of Acid:

- The important function of this acid is to breakdown chemical bonas of fand iil the digestion process. Thus big molecules of food are senver.ed into sriall dnes.
- It also kills the harmful bacteria of cer ain fo dis an tritks.

Symptoms of Hyperacidi y.

- Eeming burning sen;ation th or ghout the gastio intestinal tract.
- The fecling. of burning sensation sometimes extend towards the chest that is cal ed hear burnila.

P.evention of Hyperacidity:

Ine best prevention from hyperacidity is as follows:

- Avoiding over eating and staying away from the fatty acids and spicy foods.
- Simple and regular eating.
- Remaining in an upright position for 45 minutes after taking a meal
- Keeping the head elevated while sleeping.

Science, Technology and Society (STOMACH ACIDITY)

SHORT QUESTIONS

Q. 1 How we can prevent hyperacidity? (Knowledge Base)
(SWL 2017)
Ans:
PREVENTION OF HYPERACIDITY
Hyperacidity can be prevented:

- Avoiding over eating and staying away from the fatty acids and spicy foods.
- Simple and regular eating.
- Remaining in an upright position for 45 minutes after taking a meal
- Keeping the head elevated while sleeping.
Q. 2 What is hyperacidity? (Knowledge Base)
(DGK 2017)
Ans: HYPERACIDITY

Definition:

"Sometimes stomach produces too much acid. It causes stomach acidity also called hyperacidity."

Symptoms of Hyperacidity:

- Feeling burning sensation throughont the gastro intestiral tiact
- The feelings of burning sen ation sornetinges verd toyarls the conest that is called heart burnin r.

(Science, Technology and Society Pg. \# 32)
Ans:
ED CHING IT ART AND INDUSTRY
The process of ecchin on glass is carried out by using a wax stencil.
Ther tion stencil:
Siencil is placed on areas of glass or mirror that are to be saved from acid.
Method of Etching:
Stencil is placed on the areas of glass or mirror. The glass or mirror is dipped into hydrofluoric acid. The acid dissolves the exposed part of the glass thus ething it.

Drawback:

This process has been very dangerous because the acid would damage the skin an tissues of artist's body.

Advantage:

Athough it is dangerous to deal withat yet beching one with adid is very attractive as compared io using othereh micals.

Scienciatchipp fanteociety (STOMACH ACIDITY)

11 is 1 ©a in etching designs on copper plates: (K.B)
(LHR 2013)
(A) Sulphuric acid
(B) Acetic acid
(C) Hydrochloric acid
(D) Nitric acid
2. In etching process, the glass or mirror is dipped into: (K.B)
(A) Hydrochloric acid
(B) Sulphuric acid
(C) Nitric acid
(D) Hydrofluoric acid
3. Stomach acidity is also called: (K.B)
(A) Acidity
(B) Basicity
(C) Hyperacidity
(D) Hypoacidity

10.2 PH SCALE

LONG QUESTIONS

Q. 1 What is autoionization of water? How it is used to establish the pH of water? (Knowledge + Understanding +Application Base)
(Ex-Q.3)
OR
Write a note on pH scale.
Ans:

pH SCALE

Definition:

"A logarithmic scale which is used to determine the pH of a solution is called pH scale". pH is the negative logarithm of molar concentration of the hydrogen ions".

Basis of $\mathbf{p H}$ Scale:

Concentration of hydrogen ions $\left[\mathrm{H}^{+}\right]$in pure water is the basis for pH scale.
pH:
"pH is the negative logarithm of molar concentration of the hydrogen ins". $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
Autoionization or Self Ionization:-
 autoionization or self ionization."

> OERIVATIONOL DIS OCIANIC dONOTANT OF WATER:

The quilibrimexpiession of this reaction may be written as.

$$
\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{O}\right]}
$$

As concentration of water $\left(\mathrm{H}_{2} \mathrm{O}\right)$ is almost constant the above equation may be written as,

$$
\mathrm{K}_{\mathrm{c}}\left[\mathrm{H}_{2} \mathrm{O}\right]=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]
$$

A new equilibrium constant known as ionic product constant of water ' K_{w} ' is used instead
of product of equilibrium constant and $\left[\mathrm{H}_{2} \mathrm{O}\right]$. Therefore,

$$
\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=\mathbf{1 . 0} \times \mathbf{1 0}^{-\mathbf{1 4}} \text { at } \mathbf{2 5}^{\circ} \mathbf{C}
$$

As we know, one molecule of water produces one H^{+}iजा and one CH^{-}ion on dissociation. Therefore,

Takingsulare oot on ooth ides

$$
\left[-H^{+}\right]=1.0 \times 10^{-7} \mathrm{M} \text { at } 25^{\circ} \mathrm{C}
$$

$$
\left[\mathrm{H}^{+}\right]=1.0 \times 10^{-7} \mathrm{M}
$$

$$
\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-7} \mathrm{M}
$$

Conversion of Figures With Negative Exponents into Positive:

As it is difficult to deal with such small figures having negative exponents, so it is convenient to convert these figures into a positive using a numerical system. It is taking the common (base-10) logarithm of the figure and multiplying it with -1 .

Meaning of ' \mathbf{p} ':

'p' before a symbol means' negative logarithm of the symbol. So 'p' before H means negative logarithm of H^{+}.
Therefore, pH is the negative logarithm of molar concentration of the hydrogen ions. That is,

$$
\mathbf{p H}=-\log \left[\mathbf{H}^{+}\right]
$$

Range of pH Scale:

With reference to above equation, a scale develops according to the molar concentration of H^{+}ions that is called pH scale. It ranges from 0 to 14 .

To Prove That $\mathrm{pH}+\mathrm{pOH}=14$:

According to this scale, pH of water is calculated as:

$$
\begin{aligned}
& \mathbf{p H}=-\log \left[\mathbf{H}^{+}\right] \\
& \mathbf{p H}=-\log \left(1.0 \times 10^{-7}\right)=7
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& \mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right] \\
& \mathrm{pOH}=-\log \left(1.0 \times 10^{-7}\right)=7
\end{aligned}
$$

pH value normally varies from 0 to 14 .
Therefore:
The sum of pH and pOH of the solution is always 14 at $25^{\circ} \mathrm{C}$.

pH	0	1	2	3	$4 \bigcirc 5$	6	7 T $]^{3}$	9	10			13	14
pOH	14	13	12	21	$29] 9$	-3	$7-6$	5		3	2	1	0

Identificaion of Acids and Eas shy y . Cal :
pH scale can be used o ide ntipy the nafure of solutions as acid and base. A solution of a compound of, $\mathrm{F} \gamma$ or PCH is considered a neutral solution. Solutions of pH less than 7 are alidic ard inpore than $/$ are basic.
Qanelesors:
pH of a neutral solution is always 7 .

- Acidic solutions have pH less than 7.
- Basic solutions have pH value greater than 7 .
- pH and pOH values range from 0 to 14 .

Figure: pH Scale Showing Relation Among $\left[\mathrm{H}^{+}\right]$and pH and pOH Scale Showing Relation Among $\left[\mathrm{OH}^{-}\right]$and pOH

10.2 pH SGALE
 SHORT QUESTIONS

Q. $1 \quad$ What are uses of pH ? (Knowledge Base)
(GRW 2017, SWL 2016 G-II, 17) Ans:

USES OF pH

pH is used to:

- Determine acidic or basic nature of a solution.
- Produce medicines, culture at a microbiological particular concentration of H^{+} ion.
- Prepare solutions of required concentrations necessary for centain bivogeail reactions.
Q. 2 What is pH scale? Give fin of pure water. (Raowled Base)

Defini(ion:

"A logari, mic scale which is usedto determine the pH of a solution is called pH scale".
" $\mathrm{PF} \overline{\mathrm{F}}$ is the pegative lozarithm of molar concentration of the hydrogen ions".
3asil Oivi scale:
Concentration of hydrogen ions $\left[\mathrm{H}^{+}\right]$in pure water is the basis for the pH scale.
pH of pure water:
pH of pure water is 7 .

10.2 PH SCALE
 MULTIPLE CHOICE QUESTIONS

1. Concentration of \qquad in pure water is the basioior phsosic. (K)
(A) Hydrogen ion
(C) Potassium ion
2. Wateris:
(A) Weắ cle trolyte
(B) Strong electrolyte
(C) Non-electro, yt?
(D) None of these
3. Mater id nizes slightly into ions in a process called: (K.B)
(a) Neutralization
(B) Auto ionization
(C) Self ionization
(D) Both B \& C
4. " K_{w} " is known as: (K.B)
(A) Equilibrium constant
(B) Ionic product constant
(C) Specific rate constant
(D) All of these
5. The negative logarithm of molar concentration of hydrogen ions is: (K.B)
(A) pOH
(B) p
(C) pH
(D) None of these
6. The range of $\mathbf{p H}$ scale is from: (K.B)
(A) 10-14
(B) 1-14
(C) 0-14
(D) 14-0
7. The sum of $\mathbf{p H}$ and pOH is always: (K.B)
(LHR 2014, GRW 2014, DGK 2016 G-II)
(A) 14 at $26^{\circ} \mathrm{C}$
(B) 14 at $25^{\circ} \mathrm{C}$
(C) 13 at $25^{\circ} \mathrm{C}$
(D) 7 at $25^{\circ} \mathrm{C}$
8. A solution of a compound of pH 7 or pOH 7 is considered a/an: (U.B)
(A) Basic solution
(B) Neutral solution
(C) Acidic solution
(D) None of these
9. Solution of $\mathbf{p H}$ less than \qquad is acidic. (K.B)
(RWP 2016 G-I)
(A) 7
(B) 14
(C) 6
(D) 9
10. Solution of $\mathbf{p H}$ more than 7 is: (K.B)
(A) Acidic
(B) Neutral
(C) Basic
(D) Strong acidic
11. $\mathrm{pH}=$ \qquad :(K.B)
(A) $-\log \left[\mathrm{OH}^{-}\right]$
(C) $\log \left[\begin{array}{ll}{[1]}\end{array}\right.$
(E) $-0.2\left[\mathrm{H}^{+}\right]$
(D) Exth B \& C
12. A solutin of $p^{-1}=1$ ha; A times higher concentration of H^{+}than a solution or $\mathrm{PE}=2: U, B$
(A) 14 tilnes
(B) 100 times
(d)) 10 umes
(D) 20 times
13. pH of a neutral solution is always: (K.B)
(MTN 2017, SWL 2017)
(A) 14
(B) 0
(C) 7
(D) 1

10.2.1 INDICATORS

LONG QUESTIONS

Q. 1 Write a detailed note on the following. (knowlége + Undinstanc ing Das.

a. Indicators

b. Mensmitg pH ot a solution

(I HR 2015, SGD 2014)

Ans:

Definiton:

"Tho stabiances hick indicate the completion of a chemical reaction due to change in coleur are called indicators".
Properties of Indicators:
Indicators are the organic compounds. They have different colours in acidic and alkaline solutions.

Importance:

Indicators help in determining the acidic, basic and neutral nature of solutions.

Types of Indicators:

There are different types of indicators. Some of the indicators are given below:
(i) Litmus
(ii) Phenolphthalein
(iii)Methyl orange
(i) Litmus:

- Blue litmus turns red in acidic solution.
- Red litmus turns blue in alkaline solution.
(ii) Phenolphthalein:
- It is colourless in strongly acidic solution.
- It is red in strongly alkaline solution.
- It changes colour at pH about 9 .
- Phenolphthalein is colourless in solution with pH less than 9 .
- If the pH is above 9 then it gives pink colour.
(iii) Methyl Orange:
- It gives red colour at $\mathrm{pH}<4$.
- It gives yellow colour from $\mathrm{pH}>4$.

So, each indicator has a specific colour in acidic medinm which changes pH to another colour in basic medium.

A few commonly used indicators in titrations are given in table 10.3.
Table: 10.3 Few Important Indicators

b. MEASURING pH OF A SOLUTION

((i) Universal Indicator ($\mathbf{p H}$ indicator):

"The mixture of indicators which gives different colours at different pH values is called universal indicator or pH indicator".
It is used to measure the pH of a solution.

Procedure:

The pH of solution can be measured by dipping a piece of Universal Indicator paper in the solution. The pH is then found by comparing the colour obtained with a colour chart.

(ii) The $\mathbf{p H}$ Meter:
"A pH meter is an instrument which is used to measure the pH of a solution".

Construction:

It consists of a pH electrode connected to a meter.

Procedure:

The electrode is dipped into the solution and the meter shows the pH either on a scale or digitally.

Comparison with Universal Indicator:

It is much more reliable and accurate method of measuring pH tha inniversal I R1cator paper, though the latter is often more convenient.

NUMERICAL EXAMPLE

PROBLEM 10.2(U.B+A.B)

A solution of hydrochloric acid is 0.01 M .
What is its pH value?
Solution:

Given Data:

Molarity of 10. Solution- 0.011
To Find:
pH of solution =?
Calcuntinn:
Hydronioncid is a strong acid so it ionizes conpletery that is:

$$
\mathrm{HCl}_{(\mathrm{aq})} \longrightarrow \mathrm{H}_{(a q)}^{+}+\mathrm{Cl}_{(\mathrm{aq})}^{-} .
$$

So, its solution also contains $0.01 \mathrm{M} \mathrm{H}^{+}$ions, i.e. $10^{-2} \mathrm{M}$.
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
By putting the values of H^{+}ions in the above equation

$$
\begin{aligned}
& \mathrm{pH}=-\log 10^{-2} \\
& \mathrm{pH}=2
\end{aligned}
$$

Result:
Thus, pH of $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution is 2.

PROBLEM 10.3(U.B+A.B)

Find out the pH and pOH of $\mathbf{0 . 0 0 1 M}$
solution of KOH.

Solution:

Given Data:

Molarity of KOH solution $=0.001 \mathrm{M}$
To Find:
pH of solution $=$?
pOH of solution $=$?

Calculations:

Potassium hydroxide solution is a strong base. It ionizes completely such that one mole of
KOH gives one mole of OH^{-}ions.
$\mathrm{KOH}_{(\mathrm{aq})} \longrightarrow \mathrm{K}_{(\text {(qq) }}^{+}+\mathrm{OH}_{(\text {aq })}^{-}$
Therefore, 0001 M or $10^{-3} \mathrm{M}$

Result:

Thus pH and po or gi en sofutomai
ari3 respect vely. \qquad
(830-1
Find the pH of $\mathbf{0 . 0 1 M}$ sulphuric acid.
Solution:

Given Data:

Sulphuric acid is a strong dibasic acid. It ionizes completely and its one mole produces 2 moles of hydrogen ions as presented in equation.

$$
\mathrm{H}_{2} \mathrm{SO}_{4_{(\mathrm{eq})}} \longrightarrow 2 \mathrm{H}_{(\mathrm{aq})}^{+}+\mathrm{SO}_{4}^{2-}
$$

Therefore; 0.01 M sulphuric acid will produce $2 \times 0.01 M$ hydrogen ions.

To Find:

pH of solution $=$?

Calculations:

Hence hydrogen ions concentration is:

$$
\begin{aligned}
& {\left[\mathrm{H}^{+}\right]=2 \times 10^{-2} \mathrm{M}} \\
& \mathrm{pH}=-\log \left(2 \times 10^{-2}\right) \\
& =-\left(\log 2+\log 10^{-2}\right) \\
& =-\log 2-\log 10^{-2}
\end{aligned}
$$

Where, $\left(-\log ^{-2} 10=2\right)$
Thus

$$
\mathrm{pH}=-\log 2+2
$$

Result:

Thus of given solution is 1.7.

10.2.1 INDICATORS
 SHORT QUESTIONS

Q. 1 What are indicators? Write names of of any two ind cators. (Kn un le dge Be e)

Ans: Answer given on Page \# 6 $\sqrt{6}$
Q. 2 What are universal indicators? Knoweaze Ease)

Ans: Answer given on Page \# 65
Q. 3 What are the ars work for analytical chemists? (Knowledge Base)
(Science and Technology Page\#38)

ANALYTICAL CHEMISTS

Analytical chemist examines substances qualitatively and quantitatively.

Areas of work:

- They identify substances and evaluate their properties.
- They have a wide area for working ranging from basic research in laboratories to analytical research in industries.
- They work in almost all industries including manufacturing, pharmaceuticals, healthcare, forensics and public protection where they test air, water, industrial waste, drugs and food to make sure they are safe.
- They ensure the quality of the products in industry.

10.2.1 INDICATORS

MULTIPLE CHOICE QUESTIONS

1. Indicators are: (K.B)
(A) Inorganic compounds
(B) Hydrocarbons
(C) Organic compounds
(D) Salts
2. in acidic or basic solution indicators have colour: (K.B)
(A) Same
(B) Different
(C) Light
(D) Green
3. It is a common indicator: (K.B)
(A) Litmus
(B) pH meter
(C) pH scale
(D) Both A and B
4. In strong acidic solution litmus is: (K.B)
(A) Blue
(C) Red
5. In strong alkaline solution Litrams is: (K. B)
(A) Redi
(B) biue
(C) Yelos
(D) Orange
6. Colour of Fhenolph thaleir in acidic solution is: (K.B)
(A) F. ed
(B) Blue
d. Venow
(D) Colorless

In alkaline solution methyl orange is: (K.B)
(A) Red
(B) Blue
(C) Yellow
(D) Orange
8. At which $\mathbf{p H}$ methyl orange changes color?
(A) 7
(B) 14
(C) 9
(D) 4
9. At which $\mathbf{p H}$ phenolphthalein changes cor? (K.R)
(A) 7
(C) 9
10. pH meter consists of $\cdot\left(\mathrm{N} . \mathrm{b}^{\prime}\right)$
(3) 4
(L) 0
(A) pH ede tr, de
(B) Positive electrode
(C) Negative elect o le
(D) None of these
11. Ftir nu hoo reliable and accurate method of measuring pH : (K.B)
(A) U1Oretsal indicator
(B) pH meter
(C) pH scale
(D) Litmus
12. A solution of $\mathbf{H C l}$ is 0.001 M , what is its pH value? (U.B)
(A) 3
(B) 12
(C) 2
(D) 14
13. What is pOH value of $\mathbf{0 . 0 0 1} \mathrm{M}$ solution of KOH ? (U.B)
(A) 14
(B) 13
(C) 11
(D) 3
14. What is $\mathbf{p H}$ value of 0.01 M sulphuric acid? (U.B)
(A) 7.1
(B) 1.7
(C) 1.0
(D) 0.3
15. Ionic product constant depends on: (K.B)
(A) Temperature
(B) Pressure
(C) Both
(D) None of these

10.3 TEST YOURSELF

i. Why pure water is not a strong electrolyte? (Understanding Base)
(SGD 2016 G-II, RWP 2016 G-I)
Ans:

PURE WATER AS ELECTROLYTE

Pure water is not a strong electrolyte because it ionizes very slightly into ions in a process called auto-ionization or self ionization.

$$
\mathrm{H}_{2} \mathrm{O} \text { 㽖 } \mathrm{H}^{+}+\mathrm{OH}^{-}
$$

The concentration of ions is very small i.e.

$$
\left.\begin{array}{l}
\text { is very small i.e. } \\
\left.\left[\mathrm{H}^{+}\right]=\mathrm{H}^{-}\right]= \\
.0
\end{array}\right) \times 10^{-7} \mathrm{M} .
$$

ii. $\quad \mathrm{HCl}$ and $\mathrm{F}_{22} \mathrm{O}_{4}$ are strong acids. Whie theiv solvtions are equimolar, they have different pH varus as (arcilat in preblen 10, 2 and 10.4. Why they have different pH values? (Under taldirg Base)
pH VALUES OF HCl AND $\mathbf{H}_{2} \underline{\underline{S O}}_{4}$
Equ: nolar solutions of HCl and $\mathrm{H}_{2} \mathrm{SO}_{4}$ have different pH values because when HCl ionized it produces one H^{+}ion, it is monobasic acid.
While $\mathrm{H}_{2} \mathrm{SO}_{4}$ is dibasic acid it produces two H^{+}ions.

$$
\mathrm{HCl} \text { 明 } \mathrm{H}^{+}+\mathrm{Cl}^{-}
$$

$\mathrm{H}_{2} \mathrm{SO}_{4}$ 日昭 $2 \mathrm{H}^{+}+\mathrm{SO}_{4}^{2-}$
pH of $\mathrm{HCl}=-\log \left[\mathrm{H}^{+}\right]$
pH of $\mathrm{H}_{2} \mathrm{SO}_{4}=-\operatorname{lng}[2] \times \mathrm{H}^{+}$
iii. Why ionic-product constant of waris tamprature del endont?
(Understanding Base)
Ans:
IPNIC-PRODUCRCONSTANT OF WATER
K_{w} is the ion ic product ocnstant of water.
F. $\mathrm{N}=\left[\mathrm{L}^{+}+\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}$ at $25^{\circ} \mathrm{C}$

Temperature dependence:

It is temperature dependent because it increases with the rise of temperature and vice versa.
iv. Differentiate between " p " and " pH ". (Understanding Base)

Ans:

DIFFERENTIATION

The difference between " p " and " pH " is as follows:

"p"	" pH "
"p" before the symbol means negative	pH is the negative logarithm of molar
logarithm of the symbol. So 'p' before	concentration of the hydrogen ions. H means negative logarithm of
H^{+}(hydrogen ion).	$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$

10.3 SALTS

10.3.1 PREPARATION OF SALTS

LONG QUESTIONS

Q. 1 What are the salts? Write down characteristic properties of salt. (Knowledge + Understanding Base)
(GRW 2013, BWP 2017 DGK 2017, RWP 2017)
Ans:

SALTS

Definition:

"Salts are ionic compounds generally formed by the neutralizativy af an acid with a base".

Composition of Salts:

Salts ar-1pade 1 p Of pastive icns (cations) and negative ions (anions).
Basi Radical \qquad
(1) atigue metallic ion derived from a base, therefore, it is called basic radical".
$\xrightarrow{\text { 1.cid Radical: }}$
"An anion is non-metallic ion derived from acid, therefore, it is called acid radical".
Salts are named from the name of the metal and the respective acid.
(SGD 2017)

Nomenclature:

A salt gets its name from the name of the metal and the acid as shown in the followit?

Phageterisic Properties of Salts:
(DGK 2016 G-I)
The characteristic properties of salts are as follows:

Ionic Compounds:

Salts are ionic compounds found in crystalline form.
Melting and Boiling Points:
They have high melting and boiling points.

Water of Crystallization:

Most of the salts contain water of crystallization which is responsible for the shape of the crystals. The number of molecules of water is specific for each salt and they are written with the chemical formula of a salt.

Example:

Copper sulphate $\mathbf{C u S O}_{\mathbf{4}} . \mathbf{5} \mathbf{H}_{2} \mathbf{O}$; Calcium sulphate $\mathbf{C a S O}_{\mathbf{4}} \cdot \mathbf{2} \mathbf{H}_{\mathbf{2}} \mathbf{O}$

(Gypsum)

Neutral Compound: (Test Yourself 10.4 q iii)

Salts are neutral compounds. Although, they do not compose of equal number of positive and negative ions, but have equal number of positive and negative charges.

$$
\begin{aligned}
\mathrm{NaCl} & \longrightarrow \mathrm{Na}^{+}+\mathrm{Cl}^{-} \\
\mathrm{CaCl}_{2} & \mathrm{Ca}^{2+}+2 \mathrm{Cl}^{-}
\end{aligned}
$$

Q. 2 Explain with examples that how soluble salts are prepared? Describe preparation of insoluble salts as well. (Understanding Base + Application Base)
(Ex-Q.5) (SGD 2014, LHR 2021)
Ans:

PREPARATION OF SOLUBLE SALTS

Salts may be water soluble or insoluble. The methods used for the pe paration of alto are based on their solubility in water.

General Methods for the Preparino ofsat:

There are filve general method, for the prenaration of salts. Four methods make soluble salts but or e prepazes niolublensatis.
(i) Preparation of Solnte Sas:
solvile fals are often prepared in water. Therefore, they are recovered by evaporation - - erystailization.
(a) By the Reaction of an Acid and a Metal (Direct Displacement Method):

This is direct displacement method in which hydrogen ion of acid is replaced by a reactive metal such as calcium, magnesium, zinc and iron

Examples:

$$
\begin{aligned}
\text { Acid }+ \text { Metal } \longrightarrow \text { Salt }+ \text { Hydrogen gas } \\
\mathrm{HCl}_{(\mathrm{aq})}+\mathrm{Mg}_{\text {a }} \longrightarrow
\end{aligned}
$$

(b) By the Reaction of AnA cid A. inase (Nevtialzan Met icd):

It is a nentralization reaction ib which acid and rase feact to produce a salt and water.
Exampte.

$$
\begin{aligned}
\text { Acid }+ \text { Base } & \longrightarrow \text { Salt }+ \text { Water } \\
\mathrm{HCl}_{(\mathrm{aq})}+\mathrm{NaOH}_{(\mathrm{aq})} & \longrightarrow \mathrm{NaCl}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
\end{aligned}
$$

(c) By the Reaction of an Acid and Metallic Oxide:

Mostly the insoluble metallic oxides react with dilute acids to form salt and water.

$$
\begin{gathered}
\text { Acid }+ \text { Metallic oxide } \longrightarrow \text { Salt + water } \\
\mathrm{H}_{2} \mathrm{SO}_{49 \mathrm{aq})}+\mathrm{CuO}_{(\mathrm{aq})} \longrightarrow \mathrm{CuSO}_{4(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{aq})}
\end{gathered}
$$

(d) By the Reaction of an Acid and a Carbonate:

Dilute acids react with metallic carbonates to produce salts, water and carbon dioxide gas.

$$
2 \mathrm{HNO}_{3(\mathrm{aq})}+\mathrm{Na}_{2} \mathrm{CO}_{3(\mathrm{aq})} \longrightarrow \mathrm{NaNO}_{3(\mathrm{qq)}}+\mathrm{H}_{2} \mathrm{O}_{(1)}+\mathrm{CO}_{2} \uparrow_{(\mathrm{g})}
$$

(ii) Preparation of Insoluble Salts:

In this method, usually solutions of soluble salts are mixed. During the reaction exchange of ionic radicals (i.e., metallic radicals exchange with acidic radicals) takes place to produce two new salts. One of the salts is insoluble and the other is soluble. The insoluble salt precipitates (solidify in solution).

$$
\begin{aligned}
& \mathrm{AgNO}_{3(\mathrm{aq})}+\mathrm{NaCl}_{(\mathrm{aq})} \longrightarrow \mathbf{A g C l}_{(\mathrm{s})}+\mathrm{NaNO}_{3(\mathrm{aq})} \\
& \mathrm{Na}_{2} \mathrm{CO}_{3(\mathrm{aq})}+\mathrm{CuSO}_{4(\mathrm{aq})} \longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4(\mathrm{aq})}+\mathbf{C u C O}_{3(\mathrm{~s})}
\end{aligned}
$$

10.3 SALTS

SHORT QUESTIONS

Q. 1 Write names of any two methods for the prepmationef alts (Kowng Base)
(LHR 2014)
Ans:

Two ir(ipg tant methods for the peeparation of salts are as follows:

- Firct displacemen inefhod

I Nen rali at on metinod
R2 Fonplele nd balance the equation. (Understanding Base)
(LHR 2013)

$$
\mathrm{Al}+\mathrm{HCl} \longrightarrow
$$

COMPLETE AND BALANCED EQUATION

$$
2 \mathrm{Al}_{(\mathrm{s})}+6 \mathrm{HCl}_{(\mathrm{aq})} \longrightarrow 2 \mathrm{AlCl}_{3(\mathrm{~s})}+3 \mathrm{H}_{2(\mathrm{~g})}
$$

10.3 SALTS

MULTIPLE CHOICE QUESTION:

1. Salts are: (K.B)
(A) Organic compounds
(C) Ionic compounds
(i3) Irorganic eo npound;
2. A catign is deriven fom: K.B)
(L) Pelar co mpounds
(A) Acio
(B) Base
(C) Molec lue
(D) Compound
3. Miefllic oride are: (K.B)
(A) Beses
(B) Acids
(C) Salts
(D) Organic compounds
4. An anion is derived from: (K.B)
(A) Acid
(B) Base
(C) Molecule
(D) All of these
5. When K reacts with $\mathbf{H C l}$ the salt produced is: (K.B)
(A) KCl
(B) NaOH
(C) $\mathrm{H}_{2} \mathrm{O}$
(D) NH_{3}
6. Salts have: (K.B)
(A) High M.P and low B.P
(B) High M.P and B.P
(C) Low M.P and low B.P
(D) Low M.P and high B.P
7. Copper sulphate has water of crystallization: (K.B)
(A) 5
(B) 2
(C) 6
(D) 24
8. Calcium sulphate has water of crystallization: (K.B)
(A) 5
(B) 2
(C) 6
(D) 24
9. Salts may be: (K.B)
(A) Water soluble
(B) Water insoluble
(C) Both A and B
(D) None of these
10. Reaction of acid and a metal is called reaction: (K.B)
(A) Partial displacement
(B) Direct displacement
(C) Incomplete displacement
(D) All of these
11. Mostly soluble metallic oxides form salt and water when they are treated with: (K.B)
(A) Dilute acids
(B) Concentrated acids
(C) Dilute bases
(D) None of these
12. In preparation of insoluble salts which a mixed: (1.B)
(A) Insoluble salts
(i) Soluble salts
(C) Insoluble and soluble salts,
(L) None of thes
13. When My reacts withncy the salt produed is. (N.B)
(A) $\mathrm{M} \subseteq \sum_{2}$
(B) NaOH
(C) $\mathrm{H}_{2} \mathrm{C}$
(D) NH_{3}
14. Gelile sa.t: arevecovered by: (K.B)
(A) IVapration
(B) Crystallization
(') Both 'A' and 'B'
(D) Boiling
15. There are \qquad general methods for preparation of salts. (K.B)
(A) 5
(B) 4
(C) 3
(D) 2

10.4 TEST YOURSELF

i. How the salts are named? (Understanding Base)

Ans:
NOMENCLATUPE OF SAITC
A salt gets its name from the names of he matal and the acid frcm which they are made of. Examples:

vichat	, 33	Salt Name
$\begin{aligned} & \text { Soaium (Na) } \\ & \text { f-atis@un (K) } \end{aligned}$	Hyarochloric acid (HCl) Nitric acid $\left(\mathrm{HNO}_{3}\right)$	Sodium chloride (NaCl) Potassium nitrate $\left(\mathrm{KNO}_{3}\right)$

ii. Name the salts which are formed when Zn metal reacts with following acids.
(Understanding Base)
(A) Nitric acid
(B) Phosphoric acid
(C) Acetic acid

Ans:

NAMES OF SALTS

$\mathrm{Zn}+$ nitric acid \longrightarrow Zinc nitrate
$\mathrm{Zn}+$ phosphoric acid \longrightarrow Zinc phosphate
Zinc + acetic acid \longrightarrow Zinc acetate
iii. How will you justify salts are neutral compounds? (Understanding Base)

Ans: Answer given on page 74.
iv. How many water of crystallization are present in $\mathbf{C u S O}_{\mathbf{4}} . \mathbf{5 H _ { 2 }} \mathbf{O}$ and $\mathrm{CaSO}_{\mathbf{4}} . \mathbf{2 H}_{\mathbf{2}} \mathrm{O}$?
(Understanding Base)
Ans:

WATER OF CRYSTALLIZATION

In $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$, there are 5 water molecules and in $\mathrm{CuSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ there are 2 water molecules attached with CuSO_{4} and CaSO_{4}, respectively as water of crystallization.
v. Name the type of reaction that takes place between an acid and a metal. Which gas would evolve in the reaction? Explain with an example. (Understanding Base)
Ans:

REACTION BETWEEN ACID AND METAL

When acid reacts with metal, salt and hydrozen gas are produced. Thip tyeo of regetion is called direct displacement reactior
Representation:

Gas Evolved:
Acid

Mteal \rightarrow Sol + Hydrogen gas

Frad grestroduced due to reaction between acid and metal will be hydrogen gas.
Example:

$$
2 \mathrm{HCl}_{(\mathrm{aq})}+\mathrm{Mg}_{(\mathrm{s})} \longrightarrow \mathrm{MgCl}_{2(\mathrm{aq})}+\mathrm{H}_{2(\mathrm{~g})} \uparrow
$$

10.3.2 TYPES OF SALTS

LONG QUESTIONS

Q. 1 Name the classes of salts? Explain them with hep of exan ples.

(RWP 2017)
Ans:
YYES ONS SI S
The main classes of saits act as follo vs
(i) Nor nal satt
(ii) Easic stlt
(iin Mi\%ed salts
(iv) Acidic salts
(v) Double salts
(vi) Complex salts
(i) Normal or Neutral Salts:
(LHR 2015)
"A salt formed by the total replacement of ionizable \boldsymbol{H}^{+}ions of an acid by a positive metal ion or $\mathbf{N H}_{4}^{+}$ions, is called normal or neutral salt".
Examples:

$$
\begin{aligned}
& \mathrm{HCl}_{(\mathrm{aq})}+\mathrm{KOH} \longrightarrow \mathrm{KCl}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \\
& \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{ZnO} \longrightarrow \mathrm{ZnSO}_{4}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \\
& \mathrm{H}_{3} \mathrm{PO}_{4}+3 \mathrm{NaOH} \longrightarrow \mathrm{Na}_{3} \mathrm{PO}_{4}+3 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \\
& \mathrm{HNO}_{3}+\mathrm{NH}_{4} \mathrm{OH} \longrightarrow \mathrm{NH}_{4} \mathrm{NO}_{3}+\mathrm{H}_{2} \mathrm{O}_{(1)}
\end{aligned}
$$

Properties:

Normal salts are neutral to litmus and have no effect on blue or red litmus paper.
(ii) Acidic Salts:
(LHR 2015, 2016, MTN 2017)
"These salts are formed by partial replacement of a replaceable \boldsymbol{H}^{+}ions of an acid, by a positive metal ion".

$$
\begin{gathered}
\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{KOH} \longrightarrow \mathrm{KHSO}_{4}+\mathrm{H}_{2} \mathrm{O} \\
\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{NaOH} \longrightarrow \mathrm{NaH}_{2} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O}
\end{gathered}
$$

Properties:

Aqueous solutions of these salts turn blue litmus red. Acidic salts react with bases to form normal salts.

(iii)Ba (10 Salts:
(LHR 2016, DGK 2016 G-II)
"Basic rut a \cdot efomed by the incomalete neutralization of a polyhydroxy base by an acid".

$$
\mathrm{Alid} \mathrm{O})_{3}+\mathrm{HCl} \longrightarrow \mathrm{Al}(\mathrm{OH})_{2} \mathrm{Cl}+\mathrm{H}_{2} \mathrm{O}
$$

$$
\mathrm{Pb}(\mathrm{OH})_{2}+\mathrm{CH}_{3} \mathrm{COOH} \longrightarrow \mathrm{~Pb}(\mathrm{OH}) \mathrm{CH}_{3} \mathrm{COO}+\mathrm{H}_{2} \mathrm{O}
$$

$$
\mathrm{Zn}(\mathrm{OH})_{2}+\mathrm{HNO}_{3} \longrightarrow \mathrm{Zn}(\mathrm{OH}) \mathrm{NO}_{3}+\mathrm{H}_{2} \mathrm{O}
$$

Properties:
Aqueous solutions of these salts turn red litmus blue.

These salts further react with acids to form normal salts.

(iv)Double Satts:
"Double salts are formed by two normal salts when they are crystallized from a mixture of eq aimoln scuratea solutions".
Prerefies:
The individual salt components retain their properties. The anions and cations give their respective tests.

Examples:

- Mohr's salt $\mathrm{FeSO}_{4} \cdot\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$
- Potash alum $\mathrm{K}_{2} \mathrm{SO}_{4} \cdot \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 24 \mathrm{H}_{2} \mathrm{O}$
- Ferric alum $\mathrm{K}_{2} \mathrm{SO}_{4} \cdot \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 24 \mathrm{H}_{2} \mathrm{O}$
(v) Mixed Salts:
"Mixed salts contain more than one basic or acid radicals".

Example:

- Bleaching powder $\mathrm{Ca}(\mathrm{OCl}) \mathrm{Cl}$
(vi) Complex Salts:
"Complex salts on dissociation provide a simple cation and a complex anion or vice versa".
Only the simple ions yield the characteristic test for cation or anion.

Example:

- Potassium ferrocyanide $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ gives on ionization, a simple cation $\left(\mathrm{K}^{+}\right)$ and complex anion $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{-4}$.

10.3.2 TYPES OF SALTS

SHORT QUESTIONS

Q. 1 What are normal salts? (Knowledge Base)

Ans:

NORMAL OX NFI TVULSAITS

"A salt formed by the totol .eplacentent of idnizaule ritions of an acid by a positive metal wor h F $_{4}^{+}$ipns. is callex nownd or neutral salt".

Exeliples:

$$
\begin{gathered}
\mathrm{HCl}_{(\mathrm{aq})}+\mathrm{KOH} \longrightarrow \mathrm{KCl}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \\
\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{ZnO} \longrightarrow \mathrm{ZnSO}_{4}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
\end{gathered}
$$

Q. 2 Define acidic salts? Write one chemical equation of their reaction with bases. (Understanding Base)
(GFW/215 (LIP2015)
Ans:

ACIDIC SAI Ti

These salts are formed by nartial roplacement of H^{+}ion of an acid br a positive metal ion.
Exampies:

- Patassirmndorer suphates: KHSO_{4}

5. Sodilum hydrogen sulphate: NaHSO_{4}

Ghenigel Lauation:
Acruic salts react with bases to form normal salts.

$$
\mathrm{KHSO}_{4(\mathrm{aq})}+\mathrm{KOH}_{(\mathrm{aq})} \rightarrow \mathrm{K}_{2} \mathrm{SO}_{4(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{i})}
$$

Q. 3 Define double salts. Give two examples. (Knowledge Base)
(GRW 2013)
Ans:

DOUBLE SALTS

Definition:

"Double salts are formed by two normal salts when they are crystallized from a mixture of equimolar saturated solutions."
Examples:

- Mohr's salt $\mathrm{FeSO}_{4} \cdot\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$
- Potash Alum $\mathrm{K}_{2} \mathrm{SO}_{4} \cdot \mathrm{~A} \ell_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 24 \mathrm{H}_{2} \mathrm{O}$
Q. 4 Give formulas of potash alum and ferric alum. (Knowledge Base)
(SWL 2017)
Ans: \quad FORMULAS OF SALTS
The formulas of potash alum and ferric alum are as follows:
- Potash alum $\mathrm{K}_{2} \mathrm{SO}_{4} \cdot \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 24 \mathrm{H}_{2} \mathrm{O}$
- Ferric alum $\mathrm{K}_{2} \mathrm{SO}_{4} \cdot \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 24 \mathrm{H}_{2} \mathrm{O}$
Q. 5 Name any four types of slats. (Knowledge Base)
(SWL 2016 G-I)
Ans:

FOUR TYPES OF SALTS

Following are the four types of salts:
(i) Normal salts
(ii) Basic salt
(iii)Mixed salts
(iv) Acidic salts

$\mathrm{HC}_{\cdot}+\mathrm{KOH} \rightarrow-\mathrm{KCl}_{\mathrm{C}}-\mathrm{H}_{2} \mathrm{O}$ is an example of: (U.B)
(A) Nectital salt
(B) Acidic salt
(2) Basic salt
(D) Complex salt
2. $\mathbf{H}_{3} \mathrm{PO}_{4}+2 \mathrm{NaOH} \longrightarrow \mathrm{Na}_{2} \mathbf{H P O}_{4}+2 \mathrm{H}_{2} \mathrm{O}$ is an example of: $(\boldsymbol{U} . \boldsymbol{B})$
(A) Acidic salt
(B) Basic salt
(C) Double salt
(D) Normal salt
3. Which litmus turns into red in acidic salts? (K.B)
(A) Blue
(B) Orange
(C) Yellow
(D) Green
4. $\quad \mathrm{FeSO}_{4} \cdot\left(\mathrm{NH}_{4}\right)_{2} \mathbf{S O}_{4} \cdot \mathbf{6 H}_{2} \mathrm{O}$ is: $(\mathrm{K} . \mathrm{B}$
(A) Mohr's salt
(C) Ferric âtum
(1), Potash clun
(D) Chrome alum
5. Doublectits are fermed by tro: (A
(A) Aci lic :alis
(B) Neutral salts
(C) Fasic shits
(D) Mixed salts

The io mula of bleaching powder is: (K.B)
(A) CaCl
(B) $\mathrm{Ca}(\mathrm{OCl}) \mathrm{Cl}$
(C) CaCl_{2}
(D) $\mathrm{Ca}(\mathrm{OCl})$
7. Washing soda has water of crystallization: (K.B)
(A) 24
(B) 6
(C) 5
(D) 10
8. There are how many types of salts? (K.B)
(A) 4
(B) 6
(C) 5
(D) 7
9. $\mathrm{HBr}+\mathrm{KOH} \longrightarrow \mathrm{KBr}+\mathrm{H}_{2} \mathrm{O}$ is an example of formation of: (K.B)
(A) Neutral salt
(B) Acidic salt
(C) Basic salt
(D) Complex salt
10. Which litmus turn into blue in basic salts? (K.B)
(A) Blue
(B) Orange
(C) Yellow
(D) Red
11. $\quad \mathrm{K}_{2} \mathrm{SO}_{4} \cdot \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3} . \mathbf{2 4 H}_{2} \mathrm{O}$ is: (K.B)
(A) Mohr's salt
(B) Potash alum
(C) Ferric alum
(D) Chrome alum
12. A neutral salt is not composed of: (K.B)
(GRW 2015)
(A) A metallic cation
(B) Non-metallic anion
(C) An anion of a base
(D) An anion of an acic
13. Which one of the following is acidic salt? (K.B)

(A) KHSO_{4} (C) NaCl
(MTN 2017)
(A) Mix ed Sait
(B) Acidic Salt
(C) I ouile Salt
(D) None of these
15. Ca(OC)Cl is an example of: (K.B)
(FSD 2017 G-I)
(A) Normal salts
(B) Double salts
(C) Mixed salts
(D) Complex salts

10.3.3 USES OF SALTS

LONG QUESTIONS

Q. 1 Write down the uses of salts. (Knowledge Base)

Ans: \quad USE OTAAI SS
Salts have vast applicatiors in masties and in our dily life. Scme common salts and their uses re given beow.

Name of	\} 1,3 common and Industrial Uses
Sodiand oride (NaCD GEW 2017)	It is commonly used as a table salt and for cooking purposes. It is also used for de-icing roads in winter and for the manufacture of sodium metal, caustic soda, washing soda.
Sodium carbonate($\mathrm{Na}_{2} \mathrm{CO}_{3}$) Soda ash	It is used for the manufacture of glass, detergents, pulp, paper and other chemicals.
Sodium carbonate $\left(\mathbf{N a}_{2} \mathrm{CO}_{3} \cdot \mathbf{1 0 H}_{2} \mathrm{O}\right)$ Washing soda	It is used as cleaning agent for domestic and commercial purposes, for softening of water, in manufacture of chemicals like caustic soda $(\mathbf{N a O H})$, borax, glass, soap and paper.
Sodium sulphate $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$	It is used for the manufacture of glass, paper and detergents
Sodium silicate $\left(\mathrm{Na}_{2} \mathrm{SiO}_{3}\right)$	It is used for the manufacture of detergents, cleaning agents and adhesives.
Sodium chlorate $\left(\mathrm{NaClO}_{3}\right)$	It is used for manufacture of explosives, plastics and other chemicals.
Sodium tetraborate $\left(\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \cdot \mathbf{1 0 \mathrm { H } _ { 2 } \mathrm { O })}\right.$	It is used for manufacture of heat resistance glass (pyrex), glazes and enamels, in leather industry for soaking and cleaning hides.
Calcium chloride $\left(\mathbf{C a C l}_{2}\right)$	It is used for de-icing roads in winter, as a drying agent of chemical reagents and as freezing agent.
Calcium oxide (CaO) Quick lime	It is used as drying agent for gases and alcohowd in stest making. ate treatment and other cheinicals like rakd lime, beafing powder, calcium candide. Soda Lime: Friñ purification of ugar, a mix ture of CaO and NaOH called soda lime is use (t) rengre calbon dioxide and water vapours from air.
Calcium stlpt ate $\left.1-\mathrm{CO}_{4} 2 \mathrm{H}_{2} 3\right)$	Gy pawn is used as fertilizer, to prepare plaster of Paris which is used for making statues, casts, etc.
$\begin{aligned} & \text { Potassium Nitrate } \\ & \left(\mathrm{KNO}_{3}\right) \end{aligned}$	It is used as fertilizer and for the manufacture of flint glass.

Q. 2 What are neutralization reactions? (Knowledge Base)

Definition:

"A reaction between an acid and a base is called a molralization Ne a ton It podines a salt and water." Examples:
A few bal whed chemicaire actions re giver here Acidt Base \longrightarrow Salt + Water

$$
\begin{aligned}
& \text { incl }_{(\mathrm{aq})}+\mathrm{NaOH}_{(\text {(q) })} \longrightarrow \mathrm{NaCl}_{(\text {aq) }}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \\
& \mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq)}}+2 \mathrm{NaOH}_{(\mathrm{aq})} \longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4_{(\mathrm{aq})}} 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \\
& \mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{aq})}+\mathrm{NaOH}_{(\mathrm{aq})} \longrightarrow \mathrm{CH}_{3} \mathrm{COONa}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
\end{aligned}
$$

10.3.3 USES OF SALTS
 SHORT QUESTIONS

Q. 1 What are uses of calcium sulphate? (Knowledge Base)
(RWP 2017)
Ans:

USES OF CALCIUM SULPHATE

Calcium sulphate (Gypsum) is used:

- As fertilizer
- To prepare Plaster of Paris which is used for making statues, casts, etc.
Q. 2 What are uses of washing soda? (Knowledge Base)

Ans:

USES OF WASHING SODA

Washing soda $\left(\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}\right)$ also called sodium carbonate is used:

- As cleaning agent for domestic and commercial purposes
- For softening of water
- In manufacture of chemicals like caustic soda (NaOH), borax, glass, soap and paper.
Q. 3 Write down the use of sodium chlorate (NaClO_{3}). (Knowledge Base)
(LHR 2014)
Ans:

USES OF SODIUM CHLORATE

It is used for manufacture of:

- Explosives
- Plastics and other chemicals.
Q. 4 Give the uses of calcium chloride ($\mathrm{aCl} \frac{1}{2}$ (k nov ledge Base)
(GRW 2013) Ans:

It is used.

- cor
de-icirg roads in win
- As a drvng agett oi chemical reagents
D. $2 \sqrt{2}$ rine uses of CaO. (Knowledge Base)
(SWL 2017, RWP 2017, SGD 2017)

The four uses of CaO are as follows:
(i) As drying agent for gases and alcohol
(ii) In steel making, after treatment and other chemicals like slaked lime, bleaching powder, calcium carbide.
(iii) For preparation of bleaching powder
Q. 6 Write down the use of sodium chlaride. Ki owlec, se Base,

Ans:
It is commonly used:

- As a table rat and for cooking purposes
- It is ally used fipr de-cipgrocus in winter
- For the r hanufacture of sodium metal, caustic soda, washing soda.
Q. 7 How acid 1ain is tormed? Give effects of acid rain. (Knowledge Base)
(Science and Technology Page\#44)
Ans.

FORMATION OF ACID RAIN

Acid rain is formed by dissoving acidic air pollutants like oxides of sulphur and nitrogen by rain water.

Effects:

- pH of the rain water decreases and it becomes too acidic.
- When this acid rain falls down, it damages animals, plants, buildings, water bodies and even soil.

10.3.3 USES OF SALTS
 MULTIPLE CHOICE QUESTIONS

1. Which salt is used to dry the gas: (K.B) (LHR 2014, 2015, BWP 2017)
(A) CaCl_{2}
(B) NaCl
(C) CaO
(D) $\mathrm{Na}_{2} \mathrm{SiO}_{3}$
2. Gypsum is also known as: (K.B)
(A) Calcium carbonate
(B) Calcium chloride
(C) Calcium sulphate
(D) Calcium bi-carbonate
3. $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \mathbf{1 0 \mathrm { H } _ { 2 } \mathrm { O }}$ is called: (K.B)
(A) Baking soda
(B) Washing soda
(C) Detergent
(D) Soda ash
4. $\quad \mathrm{Na}_{2} \mathrm{CO}_{3}$ is called: (K.B)
(A) Baking soda
(B) Washing soda
(C) Detergent
(D) So亩a『h
5. It is used as fertilizer and for the manacture ffint glass: K. B
(A) Potassium nitrate
(B) Sovilu vincate
(C) Cálcialn srionde
(B) Soda ash
6. A reacion hetwen an acid and anose is called: (K.B)
(A) I isplacempit
(B) Decomposition
(C) Iydruysis
(D) Neutralization

Soda lime is a mixture of: (K.B)
(A) $\mathrm{CaCl}_{2}, \mathrm{KOH}$
(B) $\mathrm{NaOH}, \mathrm{CaO}$
(C) $\mathrm{NaCl}, \mathrm{CaO}$
(D) $\mathrm{Ca}(\mathrm{OH})_{2}, \mathrm{CaO}$

10.5 TEST YOURSELF

i. Name the types of salts. (Knowledge Base)

Ans:
TYPES OF SULS
Following are the main types of salts

- Normal salts
- Daric salt
- vixed salts
- Ac dic salt

Louble sails
Complex salts
$\mathrm{H}_{3} \mathrm{PO}_{4}$ is a weak acid but its salt $\left(\mathrm{Na}_{3} \mathrm{PO}_{4}\right)$ with strong base NaOH is neutral. Explain it. (Understanding Base)

Ans:

NEUTRAL SALT OF $_{3} \underline{\underline{P O}}_{4}$

Three moles of strong base (NaOH) release $3 \mathrm{OH}^{-}$ions that neutralize acid $\mathrm{H}_{3} \mathrm{PO}_{4}$. So neutral salt is obtained.

$$
\begin{aligned}
& { }_{\mathrm{H}_{3} \mathrm{PO}_{4(\mathrm{aq)}}+3 \mathrm{NaOH}_{\text {(aq) }} \longrightarrow}^{(\text {weak acid })} \begin{array}{l}
\text { (strong base) }
\end{array} \mathrm{Na}_{3} \mathrm{PO}_{4(\mathrm{aqq})}+3 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \\
& (\text { Neutral salt) })(\text { water })
\end{aligned}
$$

iii. How the basic salts turn into normal salts? Explain with an example. (Understanding Base)

Ans:

BASIC SALTS FORM NORMAL SALTS

Basic salts turn into normal salt by the removal of OH group when they are treated with acid. Example:

$$
\underset{\text { (Basic salt) }}{\mathrm{Zn}(\mathrm{OH}) \mathrm{NO}_{3}}+\underset{\text { (Acid) })}{\mathrm{HNO}_{3}} \longrightarrow \underset{\text { (Normal salt) })}{\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}}+\underset{\text { (Water) }}{\mathrm{H}_{2} \mathrm{O}}
$$

iv. What are complex salts? (Knowledge Base)
(SGD 2017)
Ans:

COMPLEX SALTS

Definition:

"Complex salts on dissociation produce a simple cation and a complex aninnor visa vens
These are the simple ions which give characteristic test for cution er arion.
Example:
Potassium ferrocyanide, K, Fergiviel gives on ionization, a silar le cation $\left(\mathrm{K}^{+}\right)$and complex antion ($\mathrm{Fe}(\mathrm{CN})^{10}{ }^{-4}$
v. $\mathrm{Na}_{2} \mathrm{SO}^{2}$ eutal silt. What are ts uses? (Knowledge.Base)

Ans:
USES OF Na $\underline{\underline{S O}}_{4}$
$\mathrm{Na}_{2} \mathrm{SC}_{(4)} 1 \mathrm{~S} 1$ seu for the manufacture of:

- Glass
- Paper
- Detergents

Science, Technology and Society (PRESERVATIVES IN FOOD)

LONG QUESTIONS

Q. 1 What are preservatives? Why preservatives are med infood? (inn ledge pose'

Scienc., echnelogy ans society Pg. \# 44)
Ans:
KOOTPRESTVENS
"Those chemicals which arevised to pieve ford sonage are calied preservatives." Cause of 1 ocd spoilage:
Food spoiling riay te due to micrivial actions or chemical reactions.
Prig ip of pese cat ves:
Pe eseryaives serve as anti-microbial or antioxidants.
Uses.
The important uses of preservatives are as follows:

- Manufacturers add preservatives to prevent spoilage during transportation and storage of foods for a long period of time.
- Natural food preservatives efficiently control the growth of bacteria in food. They are used to preserve meat and fish. Natural preservatives include salts, sugar, alcohol, vinegar.
Science, Technology and Society (PRESERVATIVES IN FOOD

SHORT QUESTIONS

Q. 1 Why tears, perspiration and blood taste salty? (Knowledge Base)
(Interesting Information Pg. \# 43)
Ans: TASTE OF TEARS, PERSPIRATION AND BLOOD
There are many kinds of salt solutions inside our body, which come from the food we eat as a result of chemical reactions. So, tears, perspiration and blood are salty because they contain slat in solution.

MULTIPLE CHOICE QUESTIONS

1. The substances used to preserve food are called: (K.B)
(A) Preservatives
(B) Oxidants
(C) Microbial
(D) Degradative
2. Natural food preservatives added to food efficiently control the gwath oip (K PR
(A) Bacteria
(B) Plants
(C) Algae
(fi ye tenates
3. Tears, perspiration and lood tagte salt hecause of: (K.B)
(A) Hydroch oric acid
(B) Sodium chloride and other salts
(C) Suichuric acio
(D) Sugar
4. Which oollithats d cle ease the $\mathbf{p H}$ of rain water? (K.B)
(A) I asi coxides
(B) Normal oxides
(c), cicidic oxides
(D) None of these

Preservatives serve as: (K.B)
(A) Oxidants
(B) Anti-oxidants
(C) Anti-microbial
(D) Both B and C

ANSWER KEY

MULTIPLE CHOIC: QUESFOLS NTSDPchith

NO:1.1 ARRHENIUS CONCEPT OF ACIDS AND BASES

$\mathbf{1}$	D	6	A
$\mathbf{2}$	B	7	B
	A		
4	A		
	A		
	C		

10.1.2 BRONSTED LOWRY CONCEPT

1	D	6	A
2	A	7	A
3	A	8	A
4	D	9	C
$\mathbf{5}$	A	10	B

10.1.3 LEWIS CONCEPT OF ACIDS AND BASES

1	B	$\mathbf{6}$	B
2	A	7	A
$\mathbf{3}$	C	$\mathbf{8}$	B
$\mathbf{4}$	B	$\mathbf{9}$	B
\mathbf{y}	D	10	A

10.1.4 GENERAL PROPERTIES OF ACIDS

EXERCISE SOLUTION

MULTIPLE CHOIGE QUEFTXIS

1. A base is a substance which neatralizes acid. Which of th re sulstances s not a base? (K.B) (GRV201, LWP 2017, mtn 2016 G-I)
(a) Aqueovis ummsnia
(b) Soulum chloride
(c) Sodul carborate
(d) Calcium oxide
2. Levis acic-base corcepi inas the following characteristics except: (K.B)
(a) Farmation of an adduct
(b) Formation of a co-ordinate covalent bond
(c) Donation and acceptance of an electron pair (d) Donation and acceptance of a proton

Acetic acid is used for: (K.B)
(RWP 2016 G-I, 17, FSD 2016 G-I, BWP 2016 G-I)
(a) Flavouring food
(b) Making explosive
(c) Etching designs
(d) Cleaning metals
4. A salt in not composed of: (K.B)
(a) A metallic cation
(b) Non-metallic anion
(c) An anion of a base
(d) An anion of an acid
5. If a liquid has a $\mathbf{p H}$ of $\mathbf{7}$ then it must:
(RWP 2016 G-II, GRW 2015)
(a) Be a colourless and odourless liquid
(b) Freeze at $0^{\circ} \mathrm{C}$ and boil at $100^{\circ} \mathrm{C}$
(c) Be neutral
(d) Be a solution containing water
6. A salt always: (K.B)
(a) Contains ions
(b) Contains water of crystallization
(c) Dissolves in water
(d) Forms crystals which conduct electricity
7. Dilute acids react with carbonates to produce the given products except: (K.B)
(LHR 2013, GRW 2013, DGK 2017, MTN 2016 G-II)
(a) Salt
(b) Water
(c) Carbon dioxide
(d) Hydrogen
8. In the preparation of insoluble salts, which one of the facts is incorrect? (U.B)
(a) Two soluble salts are mixed
(b) Two soluble salts are produced
(c) One of the salts produced is insoluble
(d) Both of the salts produced are insoluble
9. A reaction between an acid and base produces: (K.B)(SGD 2014, RW/ 2517, 1 SD 2017 (-I)
(a) Salt and water
(c) Salt and an acid
b) Salt antiga
(b) Salt arda a base
10. The conjugate acid of HPO \int_{4}^{-2} is/ (U.B)
(LHR 2015,2017)
(a) PO_{4}
(b) $\mathrm{H}_{2} \mathrm{PO}^{-}$
(c) $\mathrm{H}_{2} \mathrm{PO}$
(d) $\mathrm{H}_{3} \mathrm{PO}_{4}$
11. What is the polt of $0.02 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$? (U.B)
(b) 1.397
(d) 1.698
(c) 12.31
(d) 12.61
(GRW 2014)
12. Which one of the following species is not amphoteric? (U.B) (LHR 2013, FSD 2016 G-II)
(a) $\mathrm{H}_{2} \mathrm{O}$
(b) NH_{3}
(c) HCO_{3}^{-}
(d) $\mathrm{SO}_{4}{ }^{2-}$
13. The product of Lewis acid-base reaction is called adduct. The ? betwern the adduct specie is: (K.B)
(a) Ionic
(b) ©oralert
(c) Metallic
(d) Ccor linate covalent
14. The water of crystallization is responible on the: (n.B)
(a) Meitigg points of orystich.
(b) Boiling points of crystals
(c) Shapes of cr stal.;
(d) Transition point of crystals
15. Ton wat t d d y a gas which one of the following salt you will use: (K.B)
(IIHI 2v13, 14, 15, BWP 2016 G-I, 17, FSD 2017 G-II, SWL 2016 G-I, MTN 2016 G-I, DGK 2016 G-I)
(a) CaCl_{2}
(b) NaCl
(c) CaO
(d) $\mathrm{Na}_{2} \mathrm{SiO}_{3}$
16. Ferric hydroxide $\mathrm{Fe}(\mathrm{OH})_{3}$ is precipitated out of solution when aqueous sodium hydroxide solution is added to ferric chloride $\left(\mathrm{FeCl}_{3}\right)$: (K.B)

$$
\mathrm{FeCl}_{\mathbf{3}_{(\mathrm{aq})}}+3 \mathrm{NaOH}_{(\mathrm{aq})} \longrightarrow \mathrm{Fe}(\mathrm{OH})_{3(\mathrm{~s})}+3 \mathrm{NaCl}_{(\mathrm{aq})}
$$

Colour of the precipitate is:
(a) Green
(b) Blue
(c) Dirty green
(d) Brown
17. Which ion is the conjugate base of sulphuric acid? (K.B)
(LHR 2014, BWP 2016 G-I, 2017, SWL 2016 G-I, II)
(a) SO_{3}^{-2}
(b) S^{-2}
(c) HSO_{3}^{-1}
(d) HSO_{4}^{-1}
18. Which one of the following is a Lewis base? (K.B)
(GRW 2014, LHR 2015, SGD 2014, 16 G-I RWP 2017, SWL 2016 G-II, FSD 2017 G-II)
(a) NH_{3}
(b) BF_{3}
(c) H^{+}
(d) AlCl_{3}
19. According to the Lewis concept, acid is a substance which can: (K.B) (LHR 2014)
(a) Donate a proton
(b) Donate a pair of electron
(c) Accept a proton
(d) Accept a pair of electron
20. Given $\mathrm{K}_{\mathrm{c}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}$ at $25^{\circ} \mathrm{C}$. What is the concentraisof H^{+}iथuce water at $\mathbf{2 5}^{\mathbf{0}} \mathbf{C}$? (K.B)
(a) $1 \times 10^{-7} \mathrm{~mol} \mathrm{dm}^{-3}$
(c) $1 \times 10^{-14} \mathrm{~mol} \mathrm{dm}^{-3}$

$\mathbf{1}$	b	$\mathbf{6}$	a	$\mathbf{1 1}$	b	$\mathbf{1 6}$	d
$\mathbf{2}$	d	$\mathbf{7}$	d	$\mathbf{1 2}$	d	$\mathbf{1 7}$	d
$\mathbf{3}$	a	$\mathbf{8}$	b	$\mathbf{1 3}$	d	$\mathbf{1 8}$	a
$\mathbf{4}$	c	$\mathbf{9}$	a	$\mathbf{1 4}$	c	$\mathbf{1 9}$	d
$\mathbf{5}$	c	$\mathbf{1 0}$	c	$\mathbf{1 5}$	c	$\mathbf{2 0}$	a

EXERCISE SHORT QUESTIONS

1. Name three common household substances having (Knowledge Base)
(a) pH value greater than
(b) pH value less than 7
(c) pH value equal to 7

Ans:

COMMO HO SE HOLDSBSANESS

(a) pH Vau Crearerthan :

White wa. 1 , spap. sha nioo, detergeit etc
(b) cH Hates than 7 .

Vine sar, cirres fruts, butter, apple etc
(1) eH Value Equal to 7:

Water, sodium chloride, sugar etc
2. Define a base and explain all alkalies are bases, but all bases are not alkalies.
(Understanding Base)
Ans:

BASE

Definition:

"A base is a substance that can release $\mathbf{O H}^{\text {i }}$ ions in aqueous solution, accepts a proton or donates an electron pair is called base".
Examples:

- Sodium hydroxide : NaOH
- Potassium hydroxide : KOH

All Alkalies are Bases but All Bases are not Alkalies:
Water soluble base is called an alkali but some bases are not soluble in water, so all alkalies are bases but all bases are not alkalies.
3. Define Bronsted-Lowry base and explain with an example that water is a Bronsted Lowry base. (Knowledge Base)
(SGD 2017, FSD 2017)
Ans:

BRONSTED-LOWRY BASE

Definition:

"Bronsted Lowry base is a substance that can accept a proton $\left(H^{+}\right)$from another substance".

Water as Bronsted-Lowry Base:

When HCl dissolves in water HCl acts as an acid and $\mathrm{H}_{2} \mathrm{O}$ as a base because it takes proton from HCl . In this reaction water is a base.

$$
\mathrm{HCl}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{aq})} \text { 明 } \mathrm{H}_{3} \mathrm{O}_{(\mathrm{aq})}^{+}+\mathrm{Cl}^{-}{ }_{(\mathrm{aq})}
$$

4. How can you justify that Bronsted-Lowzy concent reacia and ba se iepppleaide to non-aqueous solutions? (Applicaton Base)
Ans:

According to Bronsted Iowry looicept
Acids:
"An acid is a ribstance that can conate a proton $\left(\mathrm{H}^{+}\right)$".

Pase:

'ryace uvstance that can accept a proton $\left(H^{+}\right)$".
This concept does not require an aqueous medium for an acid and base to ionize. This concept requires only two substances. One acts as an acid and the other acts as a base. It means an acid and base work together to transfer a proton.

$$
\mathrm{HCl}_{(\mathrm{aq})}+\mathrm{NH}_{3(\mathrm{aq})} \square \quad \mathrm{NH}_{4(\mathrm{aq})}^{+}+\mathrm{Cl}_{(\mathrm{aq})}^{-}
$$

5. Which kind of a bond forms between a Lewis acid and a base? (Understanding Base) Ans:

KIND OF BOND

Coordinate covalent bond is formed between Lewis acidanu base oform an addues In this case Lewis base donates inelectron pai- and eevis acit acepto that electron pair.

Lewis acid Lewis base
6. Why H ${ }^{+}$ion acts as a Lewis acid? (Understanding Base)
(SGD 2017, MTN 2016 G-II) Ans:

H ${ }^{+}$ION ACTS AS A LEWIS ACID

H^{+}ion acts as a Lewis acid because it has an empty orbital that can accommodate a pair of electron.

7. Name two acids used in the manufacture of fertilizers. (Knowledge Base)
(FSD 2016 G-II, SGD 2016 G-I)
Ans:

ACIDS TO MANUFACTURE OF FERTILIZERS

Acids used in the manufacture of fertilizers are:
(i) Nitric acid HNO_{3}
(ii) Sulphuric acid $\mathrm{H}_{2} \mathrm{SO}_{4}$
8. Define pH . What is the pH of pure water? (Knowledge Base) (LHR 2013, BWP 2017, SGD 2017, FSD 2017, MTN 2016 G-I, II)
Ans:

pH

Definition:

" $p H$ is the negative logarithm of notar con cen ration of tre hy drage ians. Mathematically,

$$
\angle \mathrm{PH}=\log \mathrm{H}
$$

pH of ore Votem

How many ines a solution of $\mathbf{p H}=1$ will be stronger than that of a solution having $\mathrm{P}=\mathrm{I}=$ (Understanding Base)

STRENGTH OF SOLUTION

A solution of $\mathrm{pH}=1$ will be stronger than that of a solution having $\mathrm{pH}=2$ because the pH scale is logarithmic. A solution of $\mathrm{pH}=1$ has 10 times higher concentration of $\left[\mathrm{H}^{+}\right]$than that of a solution of $\mathrm{pH}=2$.
10. Define the following: (Knowledge Base)
(LHR 2013)
i. Normal salt ii. Basic salt

Ans:

DEFINITIONS

(i) Normal Salt:

"A salt formed by the total replorament of ipnizable $1 r^{+}$ions of ajl acid by a positive metal ion $\mathrm{pr}^{2} \mathrm{NH}_{4}^{+}$ion is called norma or neutial sal"."
These spats haveroeffect on li rusuarer.
Example:

$$
\begin{aligned}
& \mathrm{HCl}_{\mathrm{aq}}+\mathrm{KOH}_{\mathrm{aq}} \longrightarrow \mathrm{KCl}_{\mathrm{aq}}+\mathrm{H}_{2} \mathrm{O} \\
& \text { Acid Base }
\end{aligned}
$$

(ii) Basic Salt:
"A salt formed by the incomplete neutralization of a polyhydroxy base by an acid.,

Example:

$$
\begin{aligned}
& \mathrm{Al}(\mathrm{OH})_{3(\mathrm{aq})}+\mathrm{HCl}_{\mathrm{aq}} \longrightarrow \mathrm{Al}(\mathrm{OH})_{2} \mathrm{Cl}_{(\mathrm{aqq})}+\mathrm{H}_{2} \mathrm{O} \\
& \text { Base Acid }
\end{aligned}
$$

11. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ is a neutral salt while NaHSO_{4} is an acid salt. Justify. (Understanding Base)

Ans:

NEUTRAL SALT AND ACIDIC SALT

Justification:

$\mathrm{Na}_{2} \mathrm{SO}_{4}$ is a neutral salt because it is formed by complete replacement of H^{+}ions from an acid while NaHSO_{4} is an acidic salt because it has one H^{+}ion and is formed by the partial replacement of H^{+}ions from an acid.
12. Give a few characteristic properties of salts. (Knowledge Base)
(BWP 2016 G-II, DGK 2016 G-I)
Ans:

PROPERTIES OF SALTS

The characteristic properties of salts are as follows:

Ionic Compounds:

Salts are ionic compounds found in crystalline form.

Melting and Boiling Points:

They have high melting and boiling points.

Water of Crystallization:

Most of the salts contain water of crystall zation vimeris respensitic for the shape of the crystals. The number of molecrles of water is specific for farh salt and they are written with the chemical forruale of a salt

Example

Copper su phate $\mathrm{Cu} \mathrm{O} . . \mathrm{H} 2 \mathrm{O}$, Calcium sulphate $\mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
13. Fev the sclube salts are recovered from water? (Understanding Base)

RECOVERY OF SOLUBLE SALTS
The soluble salts are recovered from water by evaporation and crystallization. When salt solution is evaporated, water vaporizes leaving behind salt.
14. How the insoluble salts are prepared? (Knowledge Base)
(SGD 2017, FSD 2016 G-W, BWP 2016 ᄃ-TI
Ans:
PREPARATION OF INSOLUBLE SALTS
Insoluble slats are prepared by mixing solutions of soluble alts. Darir greaction exchange of ionic radicals takes (piace to prut ceno now salts. One of the salt is insoluble and other is solume. The tanolable sali precip thtes (solidifiss in solution).
Example:
15. Why a ait is neutril, ex plain with an example? (Understanding Base) (FSD 2016 G-I)

Ans:
SALT IS NEUTRAL
Salds 2(1) neural compounds although they do not contain equal member of positive and negative ions but they have positive and negative charges e.g.

$$
\begin{aligned}
& \mathrm{NaCl} \longrightarrow \mathrm{Na}^{+}+\mathrm{Cl}^{-} \\
& \mathrm{CaCl}_{2} \longrightarrow \mathrm{Ca}^{2+}+2 \mathrm{Cl}^{-}
\end{aligned}
$$

16. Name an acid used in the preservation of food. (Knowledge Base) (SGD 2017, FSD 2016 G-I)

Ans: \quad ACID TO PRESERVE FOOD
These are the acids used in preservation of food.

- Benzoic acid is used for food preservation
- Acetic acid is also used for preservation of food i.e. in pickles.

17. Name the acids present in: (Knowledge Base)
(FSD 2017, SGD 2017 G-I)
i. Vinegar

Ans:
ii. Ant sting iii. Citrus fruit
iv. Sour milk

SOURCES OF ACIDS
Following are the sources of acids:

Sr.No.	Source	Acid
(i)	Vinegar	Acetic acid
(ii)	Ant sting	Formic acid
(iii)	Citrus fruit	Citric acid
(iv)	Sour milk	Lactic acid

18. How can you justify that $\mathrm{Pb}(\mathrm{OH}) \mathrm{NO}_{3}$ is a basic salt? (Application Base) (SGD $2016 \mathrm{G}-1$) Ans:

$$
\underline{\mathrm{Pb}(\mathrm{OH}) \mathrm{NO}_{3} \mathrm{IS}^{\text {IS A BASIC SALT }}}
$$

$\mathrm{Pb}(\mathrm{OH}) \mathrm{NO}_{3}$ is a basic slat because it is formed by the incomplete neutralization of a polyhydroxy base by an acid and it contains replaceable OH^{-1} ions.
Examples:

$$
\begin{aligned}
& \mathrm{Pb}(\mathrm{OH})_{2(\text { aq })}+\mathrm{HNO}_{3(\text { aq) }} \longrightarrow \mathrm{Pb}(\mathrm{OH}) \mathrm{NO}_{3}+\mathrm{H}_{2} \mathrm{O} \\
& \mathrm{~Pb}(\mathrm{OH}) \mathrm{NO}_{3}+\mathrm{HNO}_{3} \longrightarrow \mathrm{~Pb}\left(\mathrm{NO}_{3} \frac{1}{2}+\mathrm{Hi}_{2}\right.
\end{aligned}
$$

19. You are in a need of an acidic salt. How an op preare it? (Applicaize Base)

Ans:

An acidic salt is formed by prtal replacernent of vipiaceable $\mathrm{H}^{\text {rons }}$ of an acid by a positive metal ion. Examples:

$$
\begin{aligned}
\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})}+\mathrm{KOH}_{(\mathrm{aq})} & \longrightarrow \mathrm{KHSO}_{4(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \\
\mathrm{H}_{3} \mathrm{PO}_{4(\mathrm{aq})}+\mathrm{NaOH}_{(\mathrm{aq})} & \mathrm{NaH}_{2} \mathrm{PO}_{4(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(l)}
\end{aligned}
$$

27. Which salt is used to prepare Plaster of Paris? (Knowledge Base)
(SGD 2016 G-II, 17, FSD 2016 G-I, 17)
Ans:

SALT USED FOR PLASTER OF PARIS

Calcium sulphate or gypsum $\left(\mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right)$ is used to prepare plaster of paris.

EXERCISE LONG QUESTIONS

Q. 1 Define an acid and a base according to Bronsted-Lowry concent ana justif, inin examples that water is an amphoteric compound.
Ans: See the LQ. 1 (Topic 10.1.2)
Q. 2 Explain the Lewis concept of acits and hases

Ans: See the LQ. 1 (Topic 10.1.?)
Q. 3 What is azio-ionization of water? Hov is it used to establish the pH of water?

Ans: See th: LQ. 1 (Fovic 1f.2)
Q. 4 Define asalt ind give the charaeteristic properties of salts.

Ans: See the 4.1 (Tppic 10 3),
Q. 5 Pplain withexamples that how soluble salts are prepared?

Aus: 3 ee the LQ. 2 (Topic 10.3.1)
0.6 Give the characteristics of an acidic salt.

Ans: See the LQ. 1 (Topic 10.3.2)
Q. 7 Give four uses of calcium oxide.

Ans: See the SQ. 1 (Topic 10.3.3)
Q. 8 You are having a strong acid $\left(\mathrm{HNO}_{3}\right)$ and strong base $(\mathbf{N a O H})$ on mixing
a. What type of salt you will have?
b. What type of this reaction will be?
c. Will it be soluble or insoluble?
d. If it is soluble, how it will be recovered?

Ans: a. When strong acid $\left(\mathrm{HNO}_{3}\right)$ and strong base (NaOH) react together normal or neutral slat is formed.

$$
\mathrm{HNO}_{3}+\mathrm{NaOH} \longrightarrow \mathrm{NaNO}_{3}+\mathrm{H}_{2} \mathrm{O}
$$

b. This reaction will be neutralization reaction.
c. It will be a soluble salt.
d. This salt can be recovered by evaporation and crystallization process.
Q. 9 Explain why:
a. HCl forms only one series of salts.
b. $\mathrm{H}_{2} \mathrm{SO}_{4}$ from two series of salts.
c. $\mathrm{H}_{3} \mathrm{PO}_{4}$ form three series of slats.

Give necessary equations.
Ans: a. HCl forms only one series of salts because it contains one ionizeable hydrogen ion.

$$
\begin{aligned}
& \mathrm{HCl}_{(\mathrm{aq})} \longrightarrow \mathrm{H}_{(\mathrm{aq})}^{+}+\mathrm{Cl}^{-} \\
& \mathrm{HCl}_{(\mathrm{aq})}+\mathrm{NaOH}_{(\mathrm{aq})} \longrightarrow \mathrm{NaCl}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{~S}_{(\mathrm{l})}
\end{aligned}
$$

b. $\mathrm{H}_{2} \mathrm{SO}_{4}$ forms two series of salts be eause t on ant ins tho ol iz able 1yargen ions.

Exampes

$$
\begin{aligned}
& \mathrm{KOH}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})} \longrightarrow \mathrm{KHSO}_{4(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(1)} \\
& \mathrm{KHSO}_{4(\mathrm{aq})}+\mathrm{KOH}_{(\mathrm{aq})} \longrightarrow \mathrm{K}_{2} \mathrm{SO}_{4(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
\end{aligned}
$$

c. HCl forms only one series of salts because it contains one ionizeable hydrogen ion.

$$
\mathrm{H}_{2} \mathrm{PO}_{4(\mathrm{aq})} \longrightarrow \mathrm{H}_{(\mathrm{aq})}^{+}+\mathrm{H}_{2} \mathrm{PO}_{4(\mathrm{aq})}^{-}
$$

$$
\begin{aligned}
\mathrm{H}_{2} \mathrm{PO}_{4(\mathrm{aq})}^{-} & \longrightarrow \mathrm{H}_{(\mathrm{aq})}^{+}+\mathrm{HPO}_{4(\mathrm{aq})}^{-2} \\
\mathrm{HPO}_{4(\mathrm{aq})}^{-2} & \longrightarrow \mathrm{H}_{(\mathrm{aq})}^{+}+\mathrm{PO}_{4(\mathrm{aq})}^{-3}
\end{aligned}
$$

Examples:

$$
\begin{aligned}
& \mathrm{NaOH}_{(a q)}+\mathrm{H}_{3} \mathrm{PO} \rightarrow \mathrm{NaH}_{2} \mathrm{PO}_{4}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}_{(1)} \\
& \mathrm{NaH}_{2} \mathrm{PO}_{-1 \mathrm{q},}+\mathrm{Nar}\left(\mathrm{~F}(\text { (ac) })-\mathrm{Na}_{2} \mathrm{HrO}_{4(\text { aq) }}+\mathrm{H}_{2} \mathrm{O}_{(1)}\right. \\
& \mathrm{Ni}_{2} \mathrm{HPO}_{4(\mathrm{a})}+\mathrm{NaCHE} \text { (aa) } \rightarrow \mathrm{iva}_{3} \mathrm{PO}_{4(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(1)}
\end{aligned}
$$

Q. 10 Classify the floving salts as soluble or insoluble salts:
(i) Sudium chloride
(ii) Silver nitrate
(iii) Lead chloride
(iv) Copper sulphate
(v) Danum sulphate (vi) Ammonium chloride
(vii) Sodium carbonate (viii) Calcium carbonate
(ix) Ferric chloride (x) Magnesium sulphate

Ans:

Sr. No.	Name of Salt	Solubility in Water
(i)	Sodium chloride	Soluble
(ii)	Silver nitrate	Soluble
(iii)	Lead chloride	Insoluble
(iv)	Copper sulphate	Soluble
(v)	Barium sulphate	Insoluble
(vi)	Ammonium chloride	Soluble
(vii)	Sodium carbonate	Soluble
(viii)	Calcium carbonate	Insoluble
(ix)	Ferric chloride	Soluble
(x)	Magnesium sulphate	Soluble

Q. 11 Complete and balance the following equations:

- Aluminium + Hydrochloric acid. \longrightarrow Aluminium chloride + Hydrogen gas
- Copper oxide + Sulphuric acid. \longrightarrow Copper sulphate + water
- Iron sulphide + Sulphuric acid. \longrightarrow Iron sulphate + hydrogen sulphide
- Ammonium chloride + Sodium hydroxide. \longrightarrow Sodium chloride + water + ammonia gas
- Ferric chloride + Sodium hydroxide. \longrightarrow Ferric hydroxide + sodium chloridit

Ans:

- Aluminium + Hydrochloric acid. \rightarrow Aluminian criorid +Hy yroger ge $2 \mathrm{Al}+2 \mathrm{HCl} \longrightarrow 2 \mathrm{AlC} C^{\prime}+\mathrm{H}_{2} \uparrow$
- Copper oxide + Sulphuric afiol $-\rightarrow$ Copper sulbente + wate
$\mathrm{Cu}\left(\mathrm{O}-\mathrm{H}_{2} \mathrm{SO} \xrightarrow{-} \mathrm{Cl}_{4} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{C}\right.$
- Iror stlphicle - Sulphuric aria \longrightarrow Iron sulphate + hydrogen sulphide
$\mathrm{FeS}+\mathrm{H}_{2} \mathrm{SO}_{4} \xrightarrow{\longrightarrow} \mathrm{FeSO}_{4}+\mathrm{H}_{2} \mathrm{~S} \uparrow$
\&/-r@nonium chloride + Sodium hydroxide \longrightarrow Sodium chloride + water + ammonia gas
$\mathrm{NH}_{4} \mathrm{Cl}+\mathrm{NaOH} \longrightarrow \mathrm{NaCl}+\mathrm{NH}_{3} \uparrow+\mathrm{H}_{2} \mathrm{O}$
- Ferric chloride + Sodium hydroxide \longrightarrow Ferric hydroxide + sodium chloride
$\mathrm{FeCl}_{3(\mathrm{aq})}+3 \mathrm{NaOH}_{(\mathrm{aq})} \longrightarrow \mathrm{Fe}(\mathrm{OH})_{3}+3 \mathrm{NaCl}_{(\mathrm{aq})}$

EXERCISE NUMERICALS

(i) Calculate the pH and pOH of 0.2 M $\mathrm{H}_{2} \mathrm{SO}_{4}$.

Solution:

Given Γ ata

Molarity of $\mathrm{H}_{2} \mathrm{SO}$, solution $=0.2 \mathrm{Ni}$ TeFind:

$$
\begin{array}{ll}
\mathrm{AH} \text { (t) } \mathrm{H}_{2} \mathrm{SO}_{4} \text { solution } & =? \\
\text { pOH of } \mathrm{H}_{2} \mathrm{SO}_{4} \text { solution } & =?
\end{array}
$$

Calculations:

Ionization of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in aqueous solution is as:
$\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})} \longrightarrow 2 \mathrm{H}^{+}{ }_{(\mathrm{aq})}+\mathrm{SO}_{4 \text { (aq) }}^{-2}$
$1 \mathrm{M} \quad 2 \mathrm{M} \quad 2 \mathrm{M}$
Therefore, 0.2 M sulphuric acid will produce $2 \times 0.02 \mathrm{M}$ hydrogen ions.
Hence molar concentration of H^{+}ions,
$=\left[\mathrm{H}^{+}\right]$
$=2 \times 0.2 \mathrm{M}$
$=2 \times 2 \times 10^{-1} \mathrm{M}$
$=4 \times 10^{-1} \mathrm{M}$
To find pH
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
$=-\log 4 \times 10^{-1}$
$=-\log 4+\log 10^{-1}$
$=-\log 4-\log ^{-1} 10$
$=-\log 4+1$
= $1-0.602$
$\mathrm{pH}=0.398$
To find pOH
$\mathrm{pH}+\mathrm{pOH}=14$
$\mathrm{pOH}=17-\mathrm{PH}$
$=14$. 39 ?
$\mathrm{peH}=3.5 \mathrm{p} 2$
hus $\mathbf{~ p H}$ and $\mathbf{~ p O H}$ of solution are 0.398 and 13.602 respectively.
(ii) Calculate the pH of 0.1 MOH ?

SuIt on:

given Data:

Molarity of KOH solution $=0.1 \mathrm{M}$

To find:

$$
\mathrm{pH}=?
$$

Calculations:

Ionization of KOH in aqueous solution is as follows.

$$
\mathrm{KOH} \longrightarrow \mathrm{~K}^{+}+\mathrm{OH}^{-1}
$$

$$
1 \mathrm{M} \quad 1 \mathrm{M} \quad 1 \mathrm{M}
$$

$$
\begin{aligned}
\text { Concentration of } \mathrm{KOH} & =0.1 \mathrm{M} \\
\text { Concentration of } \mathrm{OH}^{-1} & =0.1 \mathrm{M} \\
& =1 \times 10^{-1} \mathrm{M}
\end{aligned}
$$

In case of alkali or base first we have to calculate pOH of solution and then we calculate pH of solution.

$$
\begin{aligned}
& \mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right] \\
& =-\log 1 \times 10^{-1}(0.1) \\
& =-\log 10^{-1} \\
& \mathrm{pOH}=-(-1) \log 10 \\
& \mathrm{pOH}=1
\end{aligned}
$$

To find pH
PH F-Pr $H=14$
$\mathrm{HH}=14+\mathrm{nOH}$
$\mathrm{pH}=14-1$
$\mathrm{pH}=13$
Result:
Thus $\mathbf{p H}$ of solution is 13 .
(iii) Calculate the pOH of 0.004 M HNO_{3}

Solution:

Given Data:

Molarity of HNO_{3} solution $=0.60 / \mathrm{rl}$
To find:
pOH

Calcuetions

theinatio(1)d $\frac{1 N_{N O}}{}$ in aqueous solution is as follows:

$$
\begin{array}{ll}
\mathrm{HNO}_{3} \longrightarrow & \mathrm{H}^{+}+\mathrm{NO}_{3}^{-1} \\
1 \mathrm{M} & 1 \mathrm{M} 1 \mathrm{M}
\end{array}
$$

Therefore, $0.004 \mathrm{M} \mathrm{HNO}_{3}$ will produce $1 \times 0.004 \mathrm{M} \mathrm{H}^{+}$ions.

$$
\begin{aligned}
& {\left[\mathrm{HNO}_{3}\right]=0.004 \mathrm{M}} \\
& =4 \times 10^{-3} \mathrm{M}
\end{aligned}
$$

$$
\left[\mathrm{H}^{+}\right] \quad=0.004 \mathrm{M} \text { or }
$$

$$
=4 \times 10^{-3} \mathrm{M}
$$

In case of an acid first we have to calculate the pH of solution.

$$
\begin{aligned}
& \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] \\
& =-\log \left[4 \times 10^{-3}\right] \\
& =-\left(\log 4+\log 10^{-3}\right) \\
& =-\log 4-\log 10^{-3} \\
& =-\log 4+3 \log ^{10} \\
& =-\log 4+3 \\
& =3-\log 4 \\
& =3-0.602 \\
& \mathrm{pH}=2.398
\end{aligned}
$$

To find pOH
$\mathrm{pH}+\mathrm{pOH}=14$
$\mathrm{pOH}=14-\mathrm{PH}$
$=14398$
$\mathrm{pOH}=11.6 \mathrm{c} 2$
(iv) Complete the following table.

$\begin{aligned} & \text { Sr. } \\ & \text { No } \end{aligned}$	Solution concentration	$\left[\mathrm{II}^{+}\right]$			
(i)	9.1. 1 H				-
(ii)	($04-1 \mathrm{~K} \overline{\mathrm{PH}}$		-	-	-
(i)	$0.020 \mathrm{MDa}(\mathrm{OH})_{2}$		-	-	-
(iv)	$0.00030 \mathrm{M} \mathrm{HClO}_{4}$	-	-	-	-
(v)	0.55 M NaOH	-	-	-	
(vi)	0.055 M HCl	-	-	-	
(vii)	$0.055 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$	-	-	-	-

Ans:

(i) $\mathbf{0 . 1 5 ~ M ~ H I : ~}$

Solution:

Given Data:

Molarity of HI solution $=0.15 \mathrm{M}$
To find:
$\left[\mathrm{H}^{+}\right]=$?
$\mathrm{pH}=$?
$\mathrm{pOH}=$?

Calculations:

Ionization of HI in aqueous solution as follows.

Hydrogen iodide produce one $\mathrm{H}+$ ion.
To find $\left[\mathrm{H}^{+}\right]$

$$
\begin{aligned}
& {\left[\mathrm{H}^{+}\right]=0.15 \mathrm{M}} \\
& =15 \times 10^{-2} \mathrm{M}
\end{aligned}
$$

To find pH
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
$=-\log \left[15 \times 10^{-2}\right]$
$=-\left(\log 15+\log 10^{-2}\right)$
$=-\log 15-\log 10^{-2}$
$=-\log 15+2 \log 10$
$=\log 15+2$
$\begin{aligned} & =2-1 \\ & \text { pl } \\ & =15\end{aligned}=2-1.18$
$\mathrm{OH}=0.9$?
find now
$\mathrm{pH}+\mathrm{pOH}=14$
$\mathrm{pOH}=14-\mathrm{POH}$
$=14-0.82$
$\mathrm{pOH}=13.12$

Result:

Thus $\left[\mathrm{H}^{+}\right]$is $15 \times 10^{-\mathbf{2}} \mathrm{M}$ and its pH and pOH values are 0.82 and 13.12 , respectively.
（ii） 0.040 M KOH

Solution：

Given Data：

Molarity of KOH solution $=0.040 \mathrm{M}$

To find：

$\left[\mathrm{H}^{+}\right]$？ $[\mathrm{OH}]=$ ？
$\mathrm{Al}=$ ？

Calculations：

Ionization of KOH in aqueous solution is as follows．

KOH	日昍	K^{+}	
1 M		1 M	

Therefore 0.040 M KOH produces $1 \times 0.040 \mathrm{M} \mathrm{OH}^{-}$ions
To find $\left[\mathrm{OH}^{-1}\right]$
$[\mathrm{KOH}]=0.040 \mathrm{M}$
$\left[\mathrm{OH}^{-1}\right]=0.040 \mathrm{M}$ or $4.0 \times 10^{-2} \mathrm{M}$
To find pOH

$$
\begin{aligned}
& \mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right] \\
& =-\log \left[4 \times 10^{-2}\right] \\
& =-\left(\log 4+\log 10^{-2}\right) \\
& =-\log 4-\log 10^{-2} \\
& =-\log 4+2 \\
& 2-\log 4 \\
& \mathrm{pOH}=2-0.602 \\
& \mathrm{pOH}=1.40
\end{aligned}
$$

To find pH
$\mathrm{pH}+\mathrm{pOH}=14$
$\mathrm{pH}=14-\mathrm{POH}$
$=14-40$
$\mathrm{pH}=12.00$

Thus $\left.\mathrm{OH}^{-1}\right] 0.040 \mathrm{M}$ or $4.0 \times 10^{-2} \mathrm{M}$ and its pHi and pOH values are 12.60 and 1.40 ， respectively．
（iii）$\quad \underline{0.020 ~ M ~ B a}(\mathbf{O H})_{2}$ ：

Solution：

Given Ia a ：

Mclarity of $\mathrm{Ba}(\mathrm{OH})_{2}$ scution $=0.020 \mathrm{M}$
a find：

$$
\begin{aligned}
& {\left[\mathrm{OH}^{-}\right]=?} \\
& \mathrm{pH}=? \\
& \mathrm{pOH}=?
\end{aligned}
$$

Calculations：

Ionization of $\mathrm{Ba}(\mathrm{OH})_{2}$ in aqueous solution is as follows．

$$
\mathrm{Ba}(\mathrm{OH})_{2} \text { 日 } \mathrm{Ba}^{2+}+\mathrm{OH}
$$

Therefore $0.020 \quad \mathrm{M} \quad \mathrm{Ba}(\mathrm{OH})_{2}$ produces $1 \times 0.020 \mathrm{M} \mathrm{OH}^{-}$ions．

To find $\left[\mathrm{OH}^{-}\right]$
$\left[\mathrm{Ba}(\mathrm{OH})_{2}\right]=0.020 \mathrm{M}$
$\left[\mathrm{OH}^{-}\right]=2 \times 2.0 \times 10^{-2}$
$=4 \times 10^{-2}$
To find pOH

$$
\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]
$$

$=-\log \left[4 \times 10^{-2}\right]$
$=-\left(\log 4+\log 10^{-2}\right)$
$=-\log 4-\log 10^{-2}$
$=-\log 4+2$
$=2-\log 4$
$\mathrm{pOH}=2-0.602$
$\mathrm{pOH}=1.40$
To find oH
$\mathrm{PH}+\mathrm{p} \mathrm{CH}=14$
$\mathrm{pH}-14-\mathrm{nO}_{1}$
$\mathrm{pH}=12.60$
Result：
Thus［ OH^{-1} ］is $4 \times 1 \mathbf{1 0}^{-2} \mathrm{M}$ and its pH and pOH values are 12.60 and 1．40， respectively．
（iv） $0.00030 \mathrm{M} \mathrm{HClO}_{4}$ ：

Solution：

Given Data：

Molarity of HClO_{4} solution $=0.00030$
To find：
［ H^{+}］
pH
$\mathrm{PCH}=$ ？

Calculations：

Ionization of HClO_{4} in aqueous solution is as follows．

$$
\begin{array}{lll}
\mathrm{HClO}_{4} \text { 日昭 } & \mathrm{H}^{+}+ & \mathrm{ClO}_{4}^{-} \\
1 \mathrm{M} & 1 \mathrm{M} & 1 \mathrm{M}
\end{array}
$$

Therefore $0.00030 \mathrm{M} \mathrm{HClO}_{4}$ produces $1 \times 0.00030 \mathrm{M} \mathrm{H}^{+}$ions

To find $\left[\mathrm{H}^{+}\right]$

$$
\begin{aligned}
& {\left[\mathrm{H}^{+}\right]=0.00030 \mathrm{M}} \\
& =3 \times 10^{-4} \mathrm{M}
\end{aligned}
$$

To find pOH

$$
\begin{aligned}
& \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] \\
& =-\log \left[3 \times 10^{-4}\right] \\
& =-\left(\log 3+\log 10^{-4}\right) \\
& =-\log 3-\log 10^{-4} \\
& =-\log 3+4 \log 10 \\
& =\log 3+4 \\
& =4-0.4771 \\
& \mathrm{pH}=3.5229
\end{aligned}
$$

To find pOH
$\mathrm{pH}+\mathrm{pOH}=14$
$\mathrm{pOH}=14-\mathrm{pH}$
$\mathrm{pOH} \cong 14-3.5220$
$\mathrm{pOH}==0.4771$

Result

Nhan H （10） 0.0030 M or $3 \times 1 \mathbf{1 0}^{-4} \mathrm{M}$ and its $\mathrm{pH}=$ na pOH values are 3.5229 and 10．4771， respectively．
（v） $0.55 \mathrm{M} \mathrm{NaOH}:$

Solution：

Civen Dat：

Mallari y of Na ）H sclution $=0.55 \mathrm{M}$

To find．

$$
[\mathrm{OH}]=?
$$

$$
\mathrm{pH}=?
$$

$$
\mathrm{pOH}=?
$$

Calculations：

Ionization of NaOH in aqueous solution is as follows．

NaOH 明 $\mathrm{Na}^{+}+\mathrm{OH}^{-}$

Therefore 0.55 M NaOH produces 0.55 M
OH^{-}ions
To find $\left[\mathrm{OH}^{-}\right]$
$\left[\mathrm{OH}^{-}\right]=0.55 \mathrm{M}$
$\mathrm{OH}^{-}=0.55 \times 10^{-2}$
To find pOH

$$
\begin{aligned}
& \mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right] \\
& =-\log \left[55 \times 10^{-2}\right] \\
& =-\left(\log 55+\log 10^{-2}\right) \\
& =-\log 55-\log 10^{-2} \\
& =-\log 55+2 \\
& =2-\log 55 \\
& \mathrm{pOH}=2-1.74 \\
& \mathrm{pOH}=0.26
\end{aligned}
$$

To find pH

$\mathrm{pH}=13.74$

Result：

Thus［ OH^{-}］of solution is $0.55 \times 10^{-2} \mathrm{M}$ and its pH and pOH values are 13.74 and 0.26 ， respectively．
(vi) $\underline{0.055 ~ M ~ H C l}:$

Solution:

Given Data:

Molarity of HCl solution $=0.055 \mathrm{M} 4$
Fo Find:
$\left[\mathrm{H}^{+}\right]=$?
$\mathrm{pH}=$?
pOH

Caleniaios:

ionization of HCl in aqueous solution is as follows.

HCl	昰	H^{+}	+
1 M		Cl^{-}	
1 M	1 M		

Therefore 0.055 M HCl produces 0.055 M H^{+}ions
Hydrochloric acid produces one $\mathrm{H}+$ ion.
To find $\left[\mathrm{H}^{+}\right]$

$$
\begin{aligned}
& {\left[\mathrm{H}^{+}\right]=0.055 \mathrm{M}} \\
& =5.5 \times 10^{-2} \mathrm{M}
\end{aligned}
$$

To find pH

$$
\begin{aligned}
& \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] \\
& =-\log \left[5.5 \times 10^{-2}\right] \\
& =-\left(\log 5.5+\log 10^{-2}\right) \\
& =-\log 5.5-\log 10^{-2} \\
& =-\log 5.5+2 \log 10 \\
& =\log 5.5+2 \\
& =2-0.74 \\
& \mathrm{pH}=1.26 \\
& \mathrm{pH}=1.26
\end{aligned}
$$

To find pOH

$$
\mathrm{pH}+\mathrm{pOH}=14
$$

$\mathrm{pOH}=14-\mathrm{pH}$
$\mathrm{pOH}=14-1.26$
pOH

Result:

 it AR anOPOH values are 1.26 and 12.74 , respectively.
(vii) $\quad \underline{0.055 M \mathrm{Ca}(\mathrm{OH})_{2}}$:

Solution:

Given Dat::

MPlarity of $\mathrm{Ca}(\mathrm{CH})$ sslution $=0.055 \mathrm{M}$

To tind.

$$
\begin{aligned}
& {\left[\mathrm{OH}^{-}\right]=?} \\
& \mathrm{pH}=? \\
& \mathrm{pOH}=?
\end{aligned}
$$

Calculations:

Ionization of $\mathrm{Ca}(\mathrm{OH})_{2}$ in aqueous solution is as follows.

$$
\mathrm{Ca}(\mathrm{OH})_{2} \text { 日 } \mathrm{Ca}^{2+}+\mathrm{OH}^{-}
$$

Therefore $0.055 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$ produces $0.055 \mathrm{M} \mathrm{OH}^{-}$ions

To find $\left[\mathrm{OH}^{-}\right]$
$\left[\mathrm{Ca}(\mathrm{OH})_{2}\right]=0.055 \mathrm{M}$
$\left[\mathrm{OH}^{-}\right]=2 \times 5.5 \times 10^{-2}$
$=11 \times 10^{-2} \mathrm{M}$
To find pOH
$\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$
$=-\log \left(11 \times 10^{-2}\right)$
$=-\left(\log 11+\log 10^{-2}\right)$
$=-\log 11-\log 10^{-2}$
$=-\log 11+2$
$=2-\log 11$
$\mathrm{pOH}=2-1.04$
$\mathrm{pOH}=0.96$
To find nH

$\mathrm{p}-\mathrm{F}+\mathrm{H} \mathrm{CH}=14$
$\mathrm{pH}_{2}=1 \mathrm{~N}=\mathrm{pOH}$
$=14-0.96$
$\mathrm{pH}=13.04$

Result:

Thus [OH^{-}] of solution is 11×10^{-2} and its $\mathbf{~} \mathrm{HH}$ and pOH values are 13.04 and 0.96 , respectively.

ADDITIONAL CONCEPTUAL QUESTIONS

Q. $1 \quad$ Why it is preferable to use $\mathbf{p H}$ meter over universal indicator?

Ans:

Preference to pH meter

Althrough universal indicator is oftan mole conier ien pererence is givents pH meter because it is much more reliable and accurne method of reasuring pH . The pH meter consists of pH electrode connented to meter which hous p-I cither un scale or digidily when dipped into the solution atds, ve prezise yalue.
Q. 2 Why HCl car n:ke ny one type oi salt whereas $\mathrm{H}_{2} \mathrm{SO}_{4}$ can make two series of salts?

$\underline{\mathrm{HCl}}$ vs H$_{2} \underline{\mathrm{SO}}_{4}$

dil is modasic acid i.e it has only one replaceable H^{+}ion, therefore it gives only one type i salt.

For example.

$$
\mathrm{HCl} \square \quad \mathrm{H}^{+}+\mathrm{Cl}^{-}
$$

Conversely, $\mathrm{H}_{2} \mathrm{SO}_{4}$ is dibasic acid i.e. it has two replaceable H^{+}ions. It dissocates in two stages.

$$
\begin{array}{ll}
\text { (i) } \mathrm{H}_{2} \mathrm{SO}_{4(a q)} \square & \mathrm{H}^{+}+\mathrm{HSO}_{4}^{-} \\
\text {(ii) } \mathrm{HSO}_{4(a q)}^{-} \square & \mathrm{H}^{+}+\mathrm{SO}_{4}^{-2}
\end{array}
$$

Hence, it gives two series of salts.
Example:

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{SO}_{4(a q)}+\mathrm{KOH}_{(a q)} \rightarrow \mathrm{KHSO}_{4}+\mathrm{H}_{2} \mathrm{O} \\
& \text { (Acidic salt) } \\
& \mathrm{KHSO}_{4(a q)}+\mathrm{KOH}_{(a q)} \rightarrow K_{2} \mathrm{SO}_{4(a q)}+\mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

(Normal salt)
Q. 3 Why NaOH can make only one type of salt whereas $\mathrm{Al}(\mathrm{OH})_{3}$ can make three series of salts?
Ans:

$\underline{\mathrm{NaOH}}$ vs $\mathrm{Al}(\mathrm{OH})_{3}$

NaOH has only " 1 " replaceable hydroxide ion $\left(\mathrm{OH}^{-}\right)$which results in formation of one type of salt.

$$
\begin{array}{ll}
& \mathrm{NaOH} \square \quad \mathrm{Na}^{+}+\mathrm{OH}^{-} \\
\text {Eg. } & \mathrm{NaOH}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}
\end{array}
$$

Conversely, $\mathrm{Al}(\mathrm{OH})_{3}$ is a polyhydroxy base. It has 3 replaceable OH^{-}ions. It dissociates as follows:
$\mathrm{Al}(\mathrm{OF})$
Therefore, it gives three series of spits.

Q. 4 Why the precipate of same heavy metal give different colours?

Ans: Heavy metals are transition elements. There hydroxides give different colpाr: 01 precipitates at different oxidation states.
E.g

$$
\mathrm{FeSO}_{(a q)}+2 \mathrm{NaOH} H_{(a q)}-\mathrm{Na} a_{2} \mathrm{So}_{4(a q}+\mathrm{F}_{\text {Dirty green }} \mathrm{p}_{1}
$$

Dirty green ppt.

$$
\mathrm{Fe}_{\mathrm{Cl}}^{3(a q)} 503 \mathrm{NaOH}_{(a q)} \rightarrow 3 \mathrm{NaCl}_{(a q)}+\mathrm{Fe}(\mathrm{OH})_{3(s)}
$$

Brown ppt.

Q. 5 Differentiate between Acid and Basic radical.

Ans:

DIFFERENTIATE

Acid Radical	Basic Radical
Definition: An anion is non-metallic ion derived from acid, therefore, it is called acid radical.	Definition: A cation is metallic ion and derived from a base, therefore, it is called basic radical.
Example: $\mathrm{NaOH}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$ In this reaction Cl^{-}is an acid radical.	Example: $\mathrm{NaOH}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$ In this reaction Na^{+}is a basic radical.

Q. 6 Why Bronsted acids are not lewis acids?

Ans: Bronsted acids can donate a proton to another substance whereas lewis acids are those that can accept a pair of electrons. All bronsted acids are not lewis acids because all proton donating species do not have tendency to accept electron pair.

Example:

- $\mathrm{H}_{2} \mathrm{SO}_{4}$
- HNO_{3}
- HCl

They can dissociate to givip coton pul canne accent an electron pair.
Q. 7 Find pH of O .01 M of $\mathrm{H}_{2} \mathrm{SO}_{4}$ add $0.001 \mathrm{M} 0 \mathrm{H}_{3} \mathrm{SO}_{4}$ - Which solution is more concentrated tho why?
Ans: pH of $\mathrm{H}_{2} \mathrm{SO}_{4}$
givendt
(i) $\mathbf{0 . 0 1} \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$
(ii) $0.001 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$

Required: $\mathbf{p H}=$?

Calculation:

(i) For $0.01 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$

$$
\mathrm{H}_{2} \mathrm{SO}_{4} \square \quad 2 \mathrm{H}^{+}+\mathrm{SO}_{4}^{-2}
$$

$$
2\left[\mathrm{H}^{+}\right]=2 \times 0.01=2 \times 10^{-2} \mathrm{M}
$$

$$
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]
$$

$$
=2-0.3010
$$

$$
=1.7
$$

$$
\begin{aligned}
& \text { (ii) For } 0.001 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4} \\
& \mathrm{H}_{2} \mathrm{SO}_{4} \square \quad 2 \mathrm{H}^{+}+\mathrm{SO}_{+}^{-2} \\
& \begin{array}{l}
\mathrm{H}_{2} \mathrm{SO}_{4} \square 2 \mathrm{H}^{+}+\mathrm{SO}_{+}^{-2} \\
2+17=\left[2 \times 0.001=2 \times 10^{-3} \mathrm{M}\right. \\
\mathrm{H}=-10:\left[1 \mathrm{H}^{+}\right] \\
=-100[2 \times 10]^{-3}
\end{array} \\
& =-\log [2 \times 10]^{-3} \\
& =-\log 2+3 \log 10 \\
& =3 \log 10-\log 2 \\
& =3-0.3010 \\
& =2.7
\end{aligned}
$$

Conclusion

- $0.01 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ is more concentrated due to larger value of molarity compared to 0.001 M solution.
- Smaller value of pH of $0.01 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ make it more concentrated then 0.001 M $\mathrm{H}_{2} \mathrm{SO}_{4}$.

Q. 8 Differentiate between to the Acidic Salt and Basic Salt.

Ans:

DIFFERENTIATE

Acidic Salt	Basic Salt
Definition:	Definition:
These salts are formed by partial	These salts are formed by the incomplete
replacement of replaceable H^{+}ions of an acid by a positive metal ion.	neutralization of polyhydroxy base by an acid.
Presence of Ion:	Presence of Ion:
H^{+}ion is present in it.	OH^{-}ion is present in it.
Example:	Example:
- KHSO_{4} - NaHPO_{4}	- $\mathrm{Al}(\mathrm{OH})_{2} \mathrm{Cl}$ - $\mathrm{Zn}(\mathrm{OH}) \mathrm{NO}_{3}$

Q. 9 Differentiate between to the Double Salt and Complex Salt.

 Ans:
DIFFERENTIATE

Q.10 Why salts have high melting and boiling points?

Ans: Salts have high melting and boiling points because there exist strong electrostatic force of attraction between opposite charged ions.

Q. 11 What is Soda lime? For what purpose it is used?

Ans: Mixture of CaO and NaOH is called Soda lime. For purification of sugar $\boldsymbol{i} \mathrm{i}$ used to remove carbon dioxide and water vapours from air.
Q. 12 Differentiate between Conjugate Acid ard Conjuc̃ât base.

Ans:

OIEFEDNTIE TE

Conjugataddy	- Conjugate Base
Definiton: A con, ugate a cid is a specie formed by acepting a proor by a base. 12x nome.	Definition: A conjugate base is a specie formed by donating a proton by an acid. Example:
- $\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} \square \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-}$	- $\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} \square \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-}$
Acid Base Conjugate Acid	Acid Base $\begin{gathered}\text { Conjugate } \\ \text { Base }\end{gathered}$

NOTE: Every acid produces a Conjugate Base and every base produces a conjugate acid.
Q. 13 Why $\mathbf{H S}^{-1}$ is amphoteric but SO_{4}^{2-} is not?

Ans: Amphoteric substance can act as acid as well as base. HS^{-1} is amphoteric because it can act as acid by donating H^{+}ion and become S^{2-} whereas, it can also accept H^{+}ion and act as base to form $\mathrm{H}_{2} \mathrm{~S}$, on the other hand SO_{4}^{2-} cannot donate a proton therefore it cannot act as an acid. It can only act as a base therefore it is not amphoteric substance.
Q. 14 Give conjugate base of $\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ and conjugate acid of $\mathbf{H P O}_{4}^{2-}$.

Ans: Conjugate Base of $\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}: \quad\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{OH}\right]^{2+}$
Conjugate Acid of $\quad \mathrm{HPO}_{4}^{2-} \quad: \quad \mathrm{H}_{2} \mathrm{PO}_{4}^{1-}$

Q. 15 Justify bronsted bases are also lewis bases.

Ans: Bronsted bases are also lewis bases, For example $\mathrm{NH}_{3} \cdot \mathrm{NH}_{3}$ is bronsted base as it can accept a proton, it is also lewis base as NH_{3} contains lone pair of electrons and according to lewis concept, base is a substance which cn donate a pair of electrons, hence we call say that all bronsted bases are also lewi bases.
Q. 16 Define water of crytallization.

Ans: The number of water molecules nresent in the riys als of a ubstance are called water of crystallizaron.
Exampie $\mathrm{C}, \mathrm{O} \& \mathrm{H} \mathrm{C}$
Q. 17 Ho acidi sa t aréurned into normal salts?

Ans: Adid çaits are turned into normal salts by the reaction of acidic salts with its parent base.

$$
\mathrm{KHSO}_{4(\mathrm{aq})}+\mathrm{KOH}_{(\mathrm{aq})} \rightarrow \mathrm{K}_{2} \mathrm{SO}_{4(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

TERMS TO KNOW

Terms	Definitions
Arrhenius Acid	Acid is a substance whin dissociates in aquequs ?/Wio in sive hydrogen ions.
Arrhenius Bse	Base is a substa ce wlich pissciats: in aque u s solution to give hydroxice ions.
Bronsted-Lov Acid	An acid is slibstance (molecule or ion) that can donate a proton $\left(\mathrm{H}^{+}\right)$ to another substance.
$\begin{aligned} & \text { Bincidadowry } \\ & \text { Base } \end{aligned}$	A base is a substance that can accept a proton $\left(\mathrm{H}^{+}\right)$from another substance.
Amphoteric Specie	A substance that can act as an acid as well as a base is called amphoteric specie.
A Conjugate Acid	A conjugate acid is a specie formed by accepting a proton by a base.
A Conjugate Base	A conjugate base is a specie formed by donating a proton by an acid.
Lewis Acid	An acid is a substance (molecule or ion) which can accept a pair of electrons
Lewis Base	A base is a substance (molecule or ion) which can donate a pair of electrons.
Lewis Concept of Neutralization	A neutralization reaction according to Lewis concept is donation and acceptance of a electron pair to form a coordinate covalent bond in an adduct.
pH Scale	A logarithmic scale which is used to determine the pH of a solution is called pH scale. pH is the negative logarithm of molar concentration of the hydrogen ions.
pH	pH is the negative logarithm of molar concentration of the hydrogen ions.
Autoionization	Water is a weak electrolyte because it ionizes very slightly into ions in a process called autoionization or self ionization.
Universal Indicator	The mixture of indicators which gives different colours at different pH values is called universal indicator or pH indicator.
pH Meter	A pH meter is an instrument which is used to measure the pH f solution.
Salts	Salts are ionic compound generally fomed by the nel trelzation of an acid with a base.
	A cation is meralit an (er ved frem a tade, therefore, it is called basic ratical.
Acid Radical	An arig s striver faum acid, therefore, it is called acid radical.
	These sat are formed by partial replacement of a replaceable H^{+}ions oi an acid, by a positive metal ion.
Curbie Salts	Double salts are formed by two normal salts when they are crystallized from a mixture of equimolar saturated solutions.
Mixed Salts	Mixed salts contain more than one basic or acid radicals.
Complex Salts	Complex salts on dissociation provide a simple cation and a complex anion or vice versa.

Chapter-10

Time: 35 Minutes
Q. 1 Four possible answers (A), (B), (C) and (D) to each question ane given, mark the correct answer.

1. Acetic acid is used for:
(A) Flayniming food
(B) Maling explosives
(C) Etcing dosig s
(D) Cleaning metals

2. What is the pOH of $0.02 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$?
(A) 1.698
(B) 1.397
(C) 12.31
(D) 12.61
3. Which one is a Lewis acid?
(A) BF_{3}
(B) AlCl_{3}
(C) FeCl_{3}
(D) All of above
4. $\quad \mathbf{p H}$ value normally varies from:
(A) $0-14$
(B) $1-14$
(C) $7-14$
(D) $10-14$
5. Which salt is used as a table salt?
(A) NaCl
(B) NaCO_{3}
(C) $\mathrm{Na}_{2} \mathrm{SiO}_{3}$
(D) NaHCO_{3}
6. Which is used as cleaning agent for domestic and commercial purposes?
(A) NaCl
(B) $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}$
(C) NaHCO_{3}
(D) $\mathrm{Na}_{2} \mathrm{SiO}_{3}$
Q. 2 Give short answers to the following questions.
(i) Prove that water is an amphoteric specie.
(ii) How can you prepare hydrogen sulphide gass?
(iii) Describe the reaction of basos with zonmकाium saits.
(iv) Define the ast. What is $n H$ of gare vater?
(v) What H^{+}act is Lewis acid.
Q. 3 Answer the forlowing questions in detail.

的x lainthe preparation of salts.
Explain the Lewis concept of acids and bases.
NOTE: Parents or guardians can conduct this test in their supervision in order to check the skill of students.

