

the circle at D.

Proof: Statements Reasons \overrightarrow{AB} is the tangent to the circle at point C. Whereas Given Construction \overline{OP} cuts the circle at D. $\therefore m\overline{OC} = m\overline{OD} \rightarrow (i)$ Radii of the same circle But $m\overline{OD} < m\overline{OP}$ (i.) Point *P* is outside the circle. $\therefore m\overline{OC} < m\overline{OP}$ Using (i) and (ii) So radius $C\overline{C}$ is shortest of all lines that can be drawn from O to the tangent line \overrightarrow{AB} Also $OC \perp AB$ Hence, radial segment \overline{OC} is perpendicular to the tangent \overrightarrow{AB} .

Corollary

(A.B + U.B)

There can only be one perpendicular draw to the radial segment OC at the point C of the circle. It follows that one and only one tangent can be drawn to the circle at the given point C on its circumference.

Theorem 3

(A.B)

10.1(*iii*)

Two tangents drawn to a circle from a point outside it, are equal in length.

Given:

Two tangents \overrightarrow{PA} and \overrightarrow{PB} are drawn from an external point P to the circle with centre O. **To Prove:**

$$m\overline{PA} = m\overline{PB}$$

Construction:

Join *O* with *A*, *B* and *P*, so that we form $\angle rt\Delta^s OAP$ and *OBP*.

Proof:

The length of a tangent to a circle is measured from the given point to the point of contact.

Proof

Statements	Reasons
\overline{OA} and \overline{OB} are radial segments	Given
$\therefore m \angle OAL = 90^\circ \rightarrow (i)$	Tangent is \perp to a radial segment.
Similarly	
$\therefore m \angle OBQ = 90^\circ \rightarrow (ii)$	As in (i)
$\therefore m \angle OAL = m \angle OBQ$	From is(i) and (ii)
Or $\overrightarrow{LM} \ \overrightarrow{PQ}$	Alternate angles are congruent.

Q.2 The diameters of two concentric circles are 10 cm and 5 cm respectively. Look for the length of any chord of the outer circle which touches the inner one. (A.B)

Solution:

Unit-10

Q

Q.3 AB and CD are the common tangents drawn to the pair of circles. If A and C are the points of tangency of 1^{st} circle where B and D are the points of tangency of 2^{nd} circle, then prove that $AC \square BD$.

and

Q.

Given

Two circles with centre P \overline{CD} are common tangents of M is joined with Cand B with D.

To prove

onstruction

ACEBL

Join P with A and C and Q with B and D. Name the angles $\angle 1, \angle 2, \angle 3, \angle 4$ as shown in the figure.

C

AP and

Proof

Statement	Reasons
$\overrightarrow{AP} \perp \overrightarrow{AB} \rightarrow (i)$	Theorem 10.2
$\overline{BQ} \perp \overrightarrow{AB} \rightarrow (ii)$	
$\overline{AP} \Box \overline{BQ}$	From (i),(ii)
$\angle 3 \cong \angle 1 \rightarrow (iii)$	Corresponding angles
Similarly $\angle 4 \cong \angle 2 \rightarrow (iv)$	
$m \angle 3 + m \angle 4 = m \angle 1 + m \angle 2$	Adding (iii) and (iv)
$m \angle APC = m \angle BQD$	Sum of angles postulate
$\frac{m\overline{AP}}{m\overline{PO}} = \frac{m\overline{PC}}{m\overline{OD}}$	
mBQ mQD	
$\therefore m \angle PCA = m \angle QDB$	
Hence $AC \square BD$	
Theorem 4 (a)	(A B)

Гheorem 4 (a)

(A.B)

F

B

D

10.1(iv)

If two circles touch externally then the distance between their centers is equal to the sum of their radii. QÀ

Given:

Two circles with centres *D* and *F* respectively ouch each other externally point C. So that \overline{CD} and \overline{CF} are respectively the radii of the two circles.

To Prove:

Point C lies on the join of centres D and F and mDF = mDC + mCFConstruction.

Draw \overrightarrow{ACB} as a common tangent to the pair of circles at C.

Proof:StatementsBoth circles touch externally at C whereas \overline{CD} is radial segment and \overline{ACB} is the common tangent. $\therefore m \angle ACD = 90^{\circ}$ (i)Similarly \overline{CF} is radial segmentand \overline{ACB} is the common tangent $\therefore m \angle ACF = 90^{\circ}$ (i) $m \angle ACF = 90^{\circ}$ (i) $m \angle ACF = 90^{\circ} + 90^{\circ}$ <t< th=""><th>Radial segment $\overline{CP} \perp$ the Tangent line \overline{AB} Radial segment $\overline{CF} \perp$ the tangent line \overline{AB} Adding (i) and (ii) Sum of supplementary adjacent angles.</th></t<>	Radial segment $\overline{CP} \perp$ the Tangent line \overline{AB} Radial segment $\overline{CF} \perp$ the tangent line \overline{AB} Adding (i) and (ii) Sum of supplementary adjacent angles.
and $m\overline{DF} = m\overline{DC} + m\overline{CF}$	
	circle with centre $O.H$ and K are respectively \overline{HK} makes equal angles with \overline{AB} AND \overline{CD} . (A.B)
Given In a circle with centre'O', H and chord \overline{AB} and \overline{CD} respectively. Solution $m\overline{AB} = m\overline{CD}$ To prove $m \angle BKH = m \angle DHK$	K are midpoints of A K B D D
Construction Join <i>O</i> to <i>H</i> and <i>K</i> and name the angles as Proof Statements	s shown in the figure. C
$m\overline{OH} = m\overline{OK}$	$(\text{Given})(\overline{AB} \simeq \overline{CD})$

Q.2 The radius of a circle is 2.5m.
$$\overline{AB}$$
 and \overline{CD} are two chords 3.9 cm apart.
 $\mathbf{H}^{mAB} = 1.4cm$, then find the measurement of other chord.
Solution:
In a circle with centre 'O', \overline{AB} and \overline{CP} are two chords and distance between then \overline{PQ} is
 $3.9cm$.
From the fig. $\overline{AB} = \frac{1.4}{2} + 0.7$ ' $\cdot 0.091.468$
From $A DAP$.
 $\overline{POP}_{12}^{-1} + (mAD)^{-1} + (mAP)^{-2}$
 $= (2.5)^{-1} - (0.7)^{-1}_{-1} = (0.5)^{-1}_{-$

10.1(v Given To Pr	If two circles touch each other internally, the on the line segment through their centres a centres is equal to the difference of their radii : Two circles with centres D and F touch each Internality at point C. So that \overline{CD} and \overline{CF} at	In 1 distance between their D = D = D re the radii of two circles.
Drocf	Draw \overrightarrow{ACB} as the common tangent to the pa	air of circles at C.
Proof	: Statements	Reasons
Both	circles touch internally at C whereas \overrightarrow{ACB}	
	common tangent and \overline{CD} is the radial	
segm	•	
	e first circle.	
∴ <i>m</i> ∠	$\angle ACD = 90^{\circ}(i)$	Radial segment $\overline{CD} \perp$ the tangent line \overline{AB}
	larly \overrightarrow{ACB} is the common tangent and \overrightarrow{CF} radial segment of the second circle.	
∴ <i>m</i> ∠	$\angle ACF = 90^{\circ}$ (ii)	Radial segment $\overline{CF} \perp$ the tangent line \overline{AB}
$\Rightarrow m$	$\angle ACD = m \angle ACF = 90^{\circ}$	Using (i) and (ii)
	re $\angle ACD$ and $\angle ACF$ coincide each other	
	point F between D and C .	
Heno	cemDC = mDF + mFC	
i.e., <i>n</i>	$m\overline{DC} - m\overline{FC} = m\overline{DF}$	
Or <i>m</i>	$\overline{nDF} = \overline{mDC} - \overline{mFC}$	$\sim 151(C(0))$
	Exercise	Manna VICeso
Q.1		each other externally. Draw another circle
	with radius 2.5cm touching the farst pair e	externally. (A.B)
(ii) (iii) (iv)	To construct A circle of racius 25 cn nouching given two Construction Steps of construction With centre A, draw an arc of radius 7.5 cm With centre B, draw an arc of radius Both arcs cut each other at point C. With centre C, draw a circle of radius 2.5 cm	$5+2.5=7.5$) 7.5×6.5

N

W

Q.2 If the distance between the centres $6.5cm(4-$	+2.5=6.5) of two circles is the sum or
the difference of their radii they will touch ea	
Solution:	
(i) Given	n n n n N V Cuo
Two circles with centres C and C_2 , radii of me	asure r_1 and r_2
such that $p(C_1 C_2 = r_1 + r_2)$	
To prove	
Circles touch each other externally	$\left(\begin{array}{c c} c_1 & r_1 & A \\ \hline c_1 & r_1 & A \\ \hline c_2 \\ \end{array} \right)$
Construction	
Uraw TS tangent to the circle with centre C_1 at A	\downarrow_T
Proof	
Statements	Reasons
TA is tangent to circle 3 with centre C_1	
$\therefore m \angle C_1 AT = 90^\circ$	
$m \angle C_2 AT = 180^\circ - 90^\circ$	$\therefore C_1 A C_2$ is a straight line
$m \angle C_2 AT = 90^\circ$	
TA is perpendicular to radial segment AC_2	
So TA is tangent to the circle with centre C_2	
\therefore TA is common tangent at A	
Hence circles touch each other externally	
(ii) Given	(A.B) ∱ _™
Two circles with centres C_1 and C_2 , radii r_1 and r_2 suc	ch that $m\overline{C_1C_2} = r_1 - r_2$
To prove	
Circles touch each other internally	$C_1 \overset{\prime}{\leftarrow} L$
Construction	$C_1 \xrightarrow{C_2 r_2} L$
Produce C_1C_2 to meet the circle with centre C_1 at	
Draw TS tangent to the circle with centre C_1 at L	
Proof	
Statements	Construction
As <i>TLS</i> is tangent to the circle with centre C_1	
$C_1L \perp TL$	Tangent L radial segment
$\therefore m \angle C_1 LT = 90^{\circ}$	
But $C_1 C_2 L$ is a straight line $\therefore m \angle C_2 LT = 90^\circ$	
i.e $C_2 L \perp T L$ $\therefore IS$ is tangent to the circle with centre C_2	
\therefore TL is common tangent	
Hence circles touch each other internally	
0	

