

Tangent Rind
(K.B)
(I HR 20.4, 15, GRW 2014, FSD 2014, BUD 2G15, SWL 2014, SGD 2014)
A. Aine which has one point common with a circle is called tangent line.
Or

A straight line which touches the circumference of circle at one point only is called tangent line.

In the figure $\widehat{P I Q}$ is tangent line.

Secant Line

(K.B)
(FSD 2015, SGD 2014, 15, RWP 2014, D.G.K 2014)

A line which has two points common with a circle is called secant line.

Or
A straight line which cuts the circumference of a circle at two points.

In the figure, $\overline{P Q}$ is secant line.

Length of Tangent
(K.B)
(SWL 2014, RWP 2015, D.G.K 2014, 15)
If a tangent is drawn from a point out side a circle, then distance between that point and the point of contact of the circle is called length of tangent.

In the figure $m \overline{P A}=m \overline{P B}$ is length of tangent.

Concentric Circles
(K.B)

Circles having same centres and different radii are called concentric circles.

In the above figure, circles having centre O are concentric circles.

Theorem 1

10.1(i)

Statement:

If a line is drawn perpendicular to a redial segment of a circle at its outer end point, it is tangent to the circle at that ooint.
Given:
A circie with ceatre O and $\overline{Q C}$ is the radial segment. $\bar{A} \vec{\beta}$ id perpendicilat to $O \bar{C}$ at its outer and .
To Pioves
$\bar{A} \bar{B}$ is a tangent to the circle at C

Construction:

Take any point P other then C on $\overleftrightarrow{A B}$. Join O with P.
Proof:

Statements	Reasons
In $\triangle O C P$, $m \angle O C P=90^{\circ}$ and $m \angle O P C<90^{\circ}$ $m \overline{O P}>m \overline{O C}$ $\therefore P$ is a point outside the circle. Similarly, every point on $\overleftrightarrow{A B}$ except C lies outside the circle. Hence $\overleftrightarrow{A B}$ intersects the circle at one point C only. i.e., $\overleftrightarrow{A B}$ is a tangent to the circle at one point only.	$\overleftrightarrow{A B} \perp \overrightarrow{O C}$ (given) Acute angle of right angled Triangle. Greater angle has greater side opposite to it. $\overline{O C}$ is the radial segment.

Theorem 2

(A.B)
10.1(ii)

The tangent to a circle and the radial segment, joining the point of contact and the centre are perpendicular to each other,

Given:

In a circle with centre O and radius $\overline{2}$. Also $\overleftrightarrow{A B}$ he tangent to the circle at point ${ }^{-}$
To Prove:

$\overrightarrow{A B}$ and werderdicular to each other.
donstruction:
Take any point P other then C on the tangent line $\overleftrightarrow{A B}$. Join O with P so that $\overline{O P}$ meets the circle at D.

Proof:

Statements

$\overleftrightarrow{A B}$ is the tangent to the circle at point C. Whereas
$\overline{O P}$ cuts the circle at D.
$\therefore m \overline{O C}=m \overline{O D} \rightarrow(\mathrm{i})$
But $m \overline{O D}<\sqrt{\mathscr{O}}(\mathrm{i})$
$\therefore m \overline{O C}<m \bar{O} \bar{P}$
So radies $\bar{C} \bar{C}$;s thor est of all lines that can be drawn farn 0 the tangent line $\overleftrightarrow{A B}$
Also $\overline{O C} \perp \overleftrightarrow{A B}$
Hence, radial segment $\overline{O C}$ is perpendicular to the tangent $\overleftrightarrow{A B}$.

Corollary

(A.B + U.B)

There can only be one perpendicular draw to the radial segment $\overline{O C}$ at the point C of the circle. It follows that one and only one tangent can be drawn to the circle at the given point C on its circumference.

Theorem 3

(A.B)
10.1(iii)

Two tangents drawn to a circle from a point outside it, are equal in length.
Given:
Two tangents $\overrightarrow{P A}$ and $\overrightarrow{P B}$ are drawn from an external point P to the circle with centre O.
To Prove:
$m \overline{P A}=m \overline{P B}$
Construction:
Join O with A, B and P, so that we form
$\angle r t \Delta^{s} O A P$ and $O B P$.
Proof:

The length of a tangent to a circle is measured from the given point to the point of contact.

Corollary

(A.B + U.B)

If O is the centre of a circle and two tangents $\overrightarrow{P A}$ and $\overrightarrow{P B}$ are draw fram an mal point P then $\overline{O P}$ is the right bisector of the chord of ephract $\overline{A P}$.

Q. 1 Prove that the tangents orawn the edd of dameter in a given circle must beparaifit.
(A.B)

Given
In a circly wite centre ' O ', $\overline{A B}$ is a diameter, $\overrightarrow{L M}$ and $\overleftrightarrow{P Q}$ are two tongents passing through point A and B.
10 prove

$$
\overleftrightarrow{L M} \| \overleftrightarrow{P Q}
$$

Proof

Statements	Reasons	
$\overline{O A}$ and $\overline{O B}$ are radial segments	Given	
$\therefore m \angle O A L=90^{\circ} \rightarrow(\mathrm{i})$	Tangent is \perp to a radial segment.	
Similarly		
$\therefore m \angle O B Q=90^{\circ} \rightarrow($ ii $)$	As in (i)	
$\therefore m \angle O A L=m \angle O B Q$	From is (i) and (ii)	
Or $\overline{L M} \\| \overline{P Q}$	Alternate angles are congruent.	

Q. 2 The diameters of two concentric circles are 10 cm and 5 cm respectively. Look for the length of any chord of the outer circle which touches the inner one.

Solution:

From $\triangle O C B$,

$$
\begin{aligned}
(\mathrm{m} \overline{\mathrm{BC}})^{2} & =(\mathrm{m} \overline{\mathrm{OB}})^{2}-(\mathrm{m} \overline{\mathrm{OC}})^{2} \because(\text { hyp })^{2}=(\text { perp })^{2}+(\text { base })^{2} \\
& =(5)^{2}-(2.5)^{2} \\
& =25-6.25 \\
& =18.75
\end{aligned}
$$

Taking square root on hath sides $<$
$\mathrm{m} \overline{\mathrm{BC}}=\sqrt{18 \cdot \sqrt{5}}$

$$
x=4.33
$$

2. AJ

$$
\begin{aligned}
& =2(4.33) \\
& =8.66 \mathrm{~cm}
\end{aligned}
$$

\therefore Length of chord $=\mathrm{m} \overline{\mathrm{AB}}=8.66 \mathrm{~cm}$
Q. $3 \quad \overleftrightarrow{A B}$ and $\overleftrightarrow{C D}$ are the common tangents drawn to the pair of circles. If A and C are the points of tangency of $1^{\text {st }}$ circle where B and D are the points of tangency of $2^{\text {nd }}$ ciee, then prove that $\overline{A C} \square \overline{B D}$.
Given
Two circles with centre P and Q. $\underset{R 10}{A}$ and $\overrightarrow{C D}$ are cominon tangents of A is joined with and $B \cdots D$.
To prove
$\bar{A}=1 \overrightarrow{B L}$
onstrution
Join P with A and C and Q with B and D. Name the angles $\angle 1, \angle 2, \angle 3, \angle 4$ as shown in the figure.
Proof

Statement	Reasons
$\overline{A P} \perp \overleftrightarrow{A B} \rightarrow$ (i)	Theorem 10.2
$\overline{B Q} \perp \overleftrightarrow{A B} \rightarrow$ (ii)	
$\overline{A P} \square \overline{B Q}$	From (i),(ii)
$\angle 3 \cong \angle 1 \rightarrow$ (iii)	Corresponding angles
Similarly	
$\angle 4 \cong \angle 2 \rightarrow$ (iv)	Adding (iii) and (iv)
$m \angle 3+m \angle 4=m \angle 1+m \angle 2$	Sum of angles postulate
$m \angle A P C=m \angle B Q D$	
$\frac{m \overline{A P}}{m \overline{B Q}}=\frac{m \overline{P C}}{m \overline{Q D}}$	
$\therefore m \angle P C A=m \angle Q D B$	
Hence $\overline{A C} \square \overline{B D}$	

Theorem 4 (a)

(A.B)
10.1(iv)

If two circles touch externally then the distance between their centrs is tquato the sum of their radii.
Given:
Two circles with centres $\bar{\Gamma}$ and F respe tively oo ch each ather externally point C. So tha: $\bar{C} \bar{\sigma}$ and $\overline{C F}$ ore respectively the radii o the tuccircles.

To Prove:

Point Clils on the join of centres D and F and $m \overline{D F}=m \overline{D C}+m \overline{C F}$

Gonstration:

Draw $\overleftrightarrow{A C B}$ as a common tangent to the pair of circles at C.

Proof:

Statements

Reasons

Both circles touch externally at C whereas $\overline{C D}$ is radial segment and $\overline{A C B}$ is the common tangent.
$\therefore m \angle A C D=90^{\circ}$ (i)
Similarly $\overline{C F}$, fadictsezement and $\overleftrightarrow{A C B}$ is the connen tangert
$\therefore M \angle A C X=90^{\circ}($ i $)$
20 $\angle A C$ I) $n \angle A C F=90^{\circ}+90^{\circ}$
$m \angle D C F=180^{\circ}$ (iii)
Hence $D C F$ is a line segment with point C between D and F and $m \overline{D F}=m \overline{D C}+m \overline{C F}$

Exercise 10.2

Q. $1 \quad \overline{A B}$ and $\overline{C D}$ are two equal chords in a circle with centre $O . H$ and K are respectively the midpoints of the chords. Prove that $\overline{H K}$ makes equal angles with $\overline{A B}$ AND $\overline{C D}$.
(A.B)

Given

In a circle with centre' O^{\prime}, H and K are midpoints of chord $\overline{\mathrm{AB}}$ and $\overline{C D}$ respectively.
Solution

$$
m \overline{A B}=m \overline{C D}
$$

To prove

$$
m \angle B K H=m \angle D H K
$$

Construction

Join O to H and K and name the angles as shown in the figure.

Proof

Q. 2 The radius of a circle is $2.5 \mathrm{~m} . \overline{\mathrm{AB}}$ and $\overline{\mathrm{CD}}$ are two chords 3.9 cm apart. If $m \overline{A B}=1.4 \mathrm{~cm}$, then find the measurement of other chord.

Solution:

In a circle with centre ' O ', $\overline{A B}$ and $\bar{C} D$ are iwh chords ard aistance betveen then $\overline{P Q}$ is 3.9 cm .

From the $\mathrm{g}, \overline{\mathrm{AD}}=\frac{14}{4}=0$.

From $\triangle \mathrm{OAP}$,
n $\overline{\mathrm{P}} \overline{\mathrm{P}})^{2}:=(\mathrm{mOA})^{2}-(\mathrm{m} \overline{\mathrm{AP}})^{2}$

$$
\begin{aligned}
& =(2.5)^{2}-(0.7)^{2} \\
& =6.25-0.49 \\
& =5.76
\end{aligned}
$$

Taking square root
$\mathrm{m} \overline{\mathrm{OP}}=\sqrt{5.76}$
$\Rightarrow \mathrm{m} \overline{\mathrm{OP}}=2.4$
$\mathrm{m} \overline{\mathrm{OQ}}=\mathrm{m} \overline{\mathrm{PQ}}-\mathrm{m} \overline{\mathrm{OP}}$

$$
\begin{aligned}
& =3.9-2.4 \\
& =1.5 \mathrm{~cm}
\end{aligned}
$$

From $\triangle \mathrm{OCQ}$,
$(\mathrm{m} \overline{\mathrm{CQ}})^{2}=(\mathrm{m} \overline{\mathrm{OC}})^{2}-(\mathrm{m} \overline{\mathrm{OQ}})^{2}$
$(\mathrm{m} \overline{\mathrm{CQ}})^{2}=(2.5)^{2}-(1.5)^{2}$
$=6.25-2.25$
$=4$
Taking square root
$\mathrm{mCQ} \quad=2$
Since chord $\overline{\mathrm{CD}}=2 \mathrm{~m} \overline{\mathrm{CQ}}$

$$
\begin{aligned}
& =2(2) \\
& =4
\end{aligned}
$$

Result:

Length of other chord $m \overline{\mathrm{CD}}=4 \mathrm{~cm}$
Q. 3 The radii of two intersfeting acles 10 cm and 8 cm . I the length of their common mitrd is forithen tiad the distance betwen the centers.
(A.B)

Solution:
In $\triangle A C P$
$2 \cdot \bar{A} \bar{C})^{2}=\left(n^{-} A P^{2}\right)-(m \overline{P C})^{2}$
$(m \overline{A C})^{2}=(10)^{2}-(3)^{2}$
$(m \overline{A C})^{2}=100-9$

$$
\begin{aligned}
& (m \overline{A C})^{2}=91 \\
& (m \overline{A C})^{2}=\sqrt{91}
\end{aligned}
$$

In $\triangle B C P$

$(m \overline{B C})^{2}-(8)^{2}-(\rho)^{2}$
$\left(m \bar{\beta} \overline{\bar{c}^{2}}\right)^{2}=5 \cdot 4$
$(m \bar{B} \bar{C})^{2}=55$
$(m \overline{B C})^{2}=\sqrt{55}$
Distance between centers $=m \overline{A B}=m \overline{A C}+m \overline{B C}$

$$
\begin{aligned}
& =\sqrt{91}+\sqrt{55} \\
& =16.96 \mathrm{~cm}
\end{aligned}
$$

Q. 4 Show that greatest chord in a circle is its diameter.

In a circle with centre. ' O '

Given

$\overline{A B}$ is a diameter and $\overline{C D}$ is a chord.

To prove

$m \overline{A B}>m \overline{C D}$
Construction
Draw $\overline{O L} \perp \overline{C D}$ and join O to C .

Proof

Statements

Reasons

$\overline{O L} \perp \overline{C D}$
$\therefore \mathrm{L}$ is midpoint of $\overline{C D}$.
In $\triangle O L C$
$m \angle O L C=90$
$m \angle C O L \angle 90$
$\therefore m \angle O L C>m \angle C O L$
$\therefore m \overline{O C}>m \overline{C L}$
$2 m \overline{O C}>2 m \overline{C L}$
Diameter $>m C D$
$\therefore m \overline{A B}>m \bar{C} \overline{\bar{b}}$

Theorem 4 (b)

10.1(v)

If two circles touch each other internally, then the point of con act lies on the line segment through their centres and distance betreen their
centres is equal to the diffe ence of ate ir rauni.
Given:
Two circies, ith sentres D anu F touch eacin otler
Internality at ppint C. So hat $\bar{C} \bar{D}$ and $\bar{C} \bar{F}$ are the radii of two circles.

To Prove:
Parn Elied on the join of centres D and F extended and $m \overline{D F}=m \overline{D C}-m \overline{C F}$ aenstrection:

Draw $\overleftrightarrow{A C B}$ as the common tangent to the pair of circles at C.
Proof:

Statements	Reasons
Both circles touch internally at C whereas $\overleftarrow{A C B}$ is the common tangent and $\overline{C D}$ is the radial segment Of the first circle.	
$\therefore m \angle A C D=90^{\circ}$ (i)	Radial segment $\overline{C D} \perp$ the tangent line
Similarly $\overleftarrow{A C B}$ is the common tangent and $\overline{C F}$	
is the radial segment of the second circle.	
$\therefore m \angle A C F=90^{\circ}$ (ii)	Radial segment $\overline{C F} \perp$ the tangent line
$\Rightarrow m \angle A C D=m \angle A C F=90^{\circ}$	Using (i) and (ii)
Where $\angle A C D$ and $\angle A C F$ coincide each other	
with point F between D and C.	
Hence $m \overline{D C}=m \overline{D F}+m \overline{F C}$	
i.e., $m \overline{D C}-m \overline{F C}=m \overline{D F}$	
Or $m \overline{D F}=m \overline{D C}-m \overline{F C}$	

 with radius? 2.5 cm touching the far t pair externally.
To const uct
A circle actirs...icm ouchirg given two circles externally.
Construction
Step; of constuction
i, With centre A, draw an arc of radius $7.5 \mathrm{~cm}(5+2.5=7.5)$
(ii) With centre B, draw an arc of radius
(iii) Both arcs cut each other at point C.
(iv) With centre C, draw a circle of radius 2.5 cm .

Q. 2 If the distance between the centres $6.5 \mathrm{~cm}(4+2.5=6.5)$ of two circles is the sum or the difference of their radii they will touch each other.

Solution:

(i) Given

Two circles with centres C and C Tad of med sure r_{1} and, such thar $\sqrt{C_{1}} \overline{C_{2}}=r_{1} \sqrt{r_{2}}$
To prove
Circles touch each other coeternally
Cont ruction
$\sqrt{\text { Draw }}$ IS tangent to the circle with centre C_{1} at A
居

Proof

Statements

Reasons
TA is tangent to circle 3 with centre C_{1}
$\therefore m \angle C_{1} A T=90^{\circ}$
$m \angle C_{2} A T=180^{\circ}-90^{\circ}$
$m \angle C_{2} A T=90^{\circ}$
TA is perpendicular to radial segment $A C_{2}$
So $T A$ is tangent to the circle with centre C_{2}
$\therefore T A$ is common tangent at A
Hence circles touch each other externally
(ii) Given
(ABB)
Two circles with centres C_{1} and C_{2}, radii r_{1} and r_{2} such that $m \overline{C_{1} C_{2}}=r_{1}-r_{2}$
To prove
Circles touch each other internally

Construction

Produce $\overline{C_{1} C_{2}}$ to meet the circle with centre C_{1} at L
Draw TS tangent to the circle with centre C_{1} at L

Proof

Statements

As $T L S$ is tangent to the circle with centre C_{1}
$C_{1} L \perp T L$
$\therefore m \angle C_{1} L T=90^{\circ}$
But $C_{1} C_{2} L$ is a st aibptme
$\therefore m \angle C_{2} L T=90^{\circ}$
i.e $f \operatorname{con}^{2} \downarrow$.

ITS is argent to the circle with centre C_{2}
$\therefore T L$ is common tangent
Hence circles touch each other internally

Miscellaneous Exerciser 10

Q. 1 Multiple choice questions

Four possible answers are given for the following question. Tich (T) the cortect alswes
(i) In the adjacent figure of the circle, the line

(a) An arc
(b) A chord
(c) A tangent
(d) A secant
(ii) In a circle with centre O,if $\overline{O T}$ is the radial segment and $\overleftrightarrow{P T Q}$ is the segment line, then

(a) $\overline{O T} \perp \overleftrightarrow{P Q}$
(b) $\overline{O T} \not \subset \overleftrightarrow{P Q}$
(c) $\overline{O T} \square \overleftrightarrow{P Q}$
(d) $\overline{O T}$ is right bisector of $\overleftrightarrow{P Q}$
(iii) In the adjacent figure, find semicircular area if $\pi \square 3.1416$ and $m \overline{O A}=20 \mathrm{~cm}$. (K.B)
(GRW 2014)

(a) 62.83 sq cm
(b) 314.16 sq cm
(c) 436.20 sq cm
(d) 628.32 sq cm
(vi) A line which has only one point in common with a circle is called: (K.B) (D.G.K 2014)
(a) Sine of a circle
(b) Cosine of circle
(c) Tangent of a circle
(d) Secant of a circle
($-3 . B$
(vii) Two tangents drawn to a circle from a pint outsid itare of .. n length.
(a) Half
(b) Equal
(c) Double
(viii) A circle his only one:
(c) Tliple
(K.B)
(a) Secant
(b) Chord
(c) Dianne er
(d) Centre
(ix) Atingent line intorsects the circle at:
(K.B)
(a) Thoe puints
(b) Two points
(d) Single point
(d) No point at all
(x) Tangents drawn at the ends of diameter of a circle are ... to each other.
(K.B)
(LHR 2015)
(a) Parallel
(b) Non-parallel
(c) Collinear
(d) Perpendicular
(xi) The distance between the centres of two congruent touching circles externally is:
(a) Of zero length
(b) The Radius of each circle
(c) The diameter of each circle
(d) Twice the diameter of each circle
(xii) In the adjacent circular figure with centre O and radius 5 cm , the length of the chord intercepted at 4 cm away from the centre of this circle is:
(K.B)

(a) 4 cm
(b) 6 cm
(c) 7 cm
(d) 9 cm
(xiii) In the adjoining figure, there is a circle with centre O. If $\overline{D C} \square$ diameter $\overline{A B}$ and $m \angle A O C=120^{\circ}$, then $m \angle A C D$ is:
(a) 40°
(a) $\bar{\sigma} 0^{\circ}$
(b) 30°
NO
(d) 60°

ANSWER KEY

i	c	iv	b	vii	b	x	a	xiii	b	b
ii	a	v	d	viii	d	xi	c			
iii	d	vi	c	ix	c	xii	b			

