

Congruent Arcs

Two arcs of same circle or of different circles are congruent, if their central angles are congruent.

In the given figure, arcs *BC* and *QR* are congruent, if $\angle CAB \cong \angle RPQ$.

Theorem 1

(A.B)

11.1(*i*) Statement:

If two arcs of a circle (or of congruent circles) are congruent then the corresponding chords are equal.

Given:

Join O with A, O with C, O' with A' and O' with C'. So that we can form $\Delta^s OAC$ and O'A'C'

Unit-11

Proof:

Unit-11

Theorem 3 (A.B) 11.1(*iii*) Statement: Equal chords of a circle (or of congruent circles) subten i equal angles at the centre (at the corresponding centres). В B' Given: ABC and AB'C' are two congruent circles ó 0 with centres and O'respectively. So that AC = ACTo Freve. $\angle AOC \cong \angle A'O'C'$ D

Construction:

Let if possible $m \angle AOC \neq m \angle A'O'C'$ then consider $\angle AOC \cong \angle A'O'D'$

Proof:

Statements	Reasons
$\angle AOC \cong \angle A'O'D'$	Construction
$\therefore AC \cong A'D' \to (i)$	Arcs subtended by equal Central angles in congruent circles
$\overline{AC} \cong \overline{A'D'} \to (ii)$	Equal chords of a circle (or of congruent circles) subtend equal angles at the centre (at the corresponding centres).
But $\overline{AC} \cong \overline{A'C'} \rightarrow (iii)$	Given
$\therefore \overline{A'C'} = \overline{A'D'}$ Which is only possible, if C' coincides with D'. Hence $m \angle A'O'C' = m \angle A'O'D' \rightarrow (iv)$	Using (i) and (ii)
But $m \angle AOC = m \angle A'O'D' \rightarrow (v)$	Construction
$\Rightarrow m \angle AOC = m \angle A'O'C'$	Using (iv) and (v)

Corollary 1

In congruent circles or in the same circle, if central angles are equal then corresponding sectors are equal.

Corollary 2

In congruent circles or in the same circle, mechal arcs will subtend ur equal central angles.

Theorem 4

11.1(iv)

Statement:

If the angles subtended by two chords of a circle (or congruent circles) at the centre (corresponding centres) are equal, the chords are equal.

(K.B)

KOPA

(A.B)

\mathbf{U}_{nit-11}

Unit-11

If C is the mid point of an arc ACB in a circle with centre O. Show that line segment Q.4 \overline{OC} bisects the chord AB. (A.B Given In a circle with centre 'O', C is mid point of \overline{ABC} . \overline{CC} intersect \overline{AB} at point DTo prove

Construction

Join O to A and B

= BD

Proof

Statements	Reasons	
C is mid point of ACB	Given	
Then $AC \cong BC$		
$\therefore \angle AOC \cong \angle BOC$	{Central angles of congruent arcs.	
$Or \ \angle AOD \cong \angle BOD$		
$\mathrm{In}\Delta OAD \leftrightarrow \Delta OBD$		
$\overline{OA} \cong \overline{OB}$	Radii of same circle	
$\angle AOD \cong \angle BOD$	Proved	ſĨ
$\overline{OD} \cong \overline{OD}$	Common Color	/ L
$\therefore \Delta OAD \cong \Delta OBD$	S.A.S postulate	
$\overline{AD} \cong \overline{BD}$	Corresponding sides of congruent triangles	
MNODDA		
J		

	Unit	t-11	Chords and Arcs			
		Miscellaneous Exer	cise 11			
	Q.1	Multiple choice questions Four possible answers are given for the following question. Tick (2) the cor				
	(1)	60°. The radial segment of this circle (SWL 2015) (K.B)				
	(2)	(a) 1 (b) 2 (c) 3 The length of a chard and the radial segment of a circle are congruent, the centre				
	(2)	angle mide by the chord will be:	(FSD 2014, RWP 2015) (K.B)			
NAV	M	(a) $\frac{30}{60^{\circ}}$ (b) (c) $\frac{60^{\circ}}{60^{\circ}}$ (d)	45° 75°			
00	(3)	Out of two congruent arcs of a circle, if one all other arc will subtend the control angle of:	The makes a central angle of 30° then the (LHP 2015 SWI 2014) (K B)			
		(a) 15° (b)	(LHK 2015, SWE 2014) (K.B) 30°			
		(c) 45° (d)	60°			
	(4)	An arc subtends a central angle of 40° then the	ne corresponding chord will subtend a			
		central angle of: (LHR 2015, GRW 2014, FSD	2014, D.G.K 2014, 15) (K.B)			
		(a) 20° (b)	40°			
		(c) 60° (d)	80°			
	(5) A pair of chords of a circle subtending two congruent central angles is:					
		(a) Congruent (b)	Incongruent			
	(6)	(c) Over lapping (d).	Parallel			
	(6) If an arc of circle subtend a central angle 0100° , then the corresponding chores the arc will make the control angle of:					
		(a) 20° (b)	40°			
		(c) 60° (d)	80°			
	(7)	The semi circumference and the diameter of a	circle both subtend a central angle of:			
	(К.В)					
		(a) 90° (b)	180°			
		(c) $2/0^{\circ}$ (d)	360°			
	(8) The chord length of a circle subtending a central angle of 180° is always: (K.B)					
		(a) Less than radial segment (b)	Equal to the radial segment	111		
		(c) Double of the radial segment (d)	None of these	500		
	(9)	If a chord of a circle subtend a central angle of	f 60° ner the length of the chord and			
	the radial segment are: (K.B)					
		(a) Congruent (c) Parallel	Perpendicular			
	(10)	The arcs opposite to in congruent cen ral angle	es of a circle arc always: (K.B) (D.G.K 2014)			
. 00	NR	(a) Congruent (b) (c) Paraliel (d)	Incongruent Perpendicular			
M)	AN .	ANSWER KE	Y			
-		1 2 3 4 5 6 7 d c b b a c b	8 9 10 c a b			