

Grip ha ing differ ai centres but same radii are called congruent circles.

In the given figure, circles with centre A and C are congruent, if $m \overline{A B}=m \overline{C D}$.

Congruent Arcs

Two arcs of same circle or of different circles are congruent, if their central angles are congruent.

In the given figure, arcs $B C$ and $Q R$ are congruent, if $\angle C A B \cong \angle R P Q$.

Theorem 1

11.1(i)

Statement:

If two arcs of a circle (or of congruent circles) are congruent then the corresponding chords are equal.
Given:
$A B C D$ and $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ are circles respective y. sd tia. $n A D C$

To Prove:

Construction:
Join O with A, O with C, O^{\prime} with A^{\prime} and O^{\prime} with C^{\prime}. So that we can form $\Delta^{s} O A C$ and $O^{\prime} A^{\prime} C^{\prime}$

Proof:

Statements	Reasons
In two equal circles $A B C D$ and $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ with centres O and O^{\prime} respectively. $\begin{aligned} & m A D C=m A^{\prime} D^{\prime} C^{\prime} \\ & \therefore m \angle A O C=m \Rightarrow A^{\prime} D C \end{aligned}$ Now in $\triangle \triangle O C{ }^{\prime} \leftrightarrow A^{\prime} \mathrm{C}^{\prime} C^{\prime}$ $\begin{aligned} & m \angle A C=m \angle A^{\prime} O^{\prime} C^{\prime} \\ & m \overline{O C}=m \overline{O^{\prime} C^{\prime}} \\ & \therefore \triangle A O C \cong \Delta A^{\prime} O^{\prime} C^{\prime} \end{aligned}$ and in particular $m \overline{A C}=m \overline{A^{\prime} C^{\prime}}$ Similarly we can prove the theorem in the same circle.	Given Cii ent equal circles. Radii of equal circles Already Proved Radii of equal circles $S . A . S \cong S . A . S$

Theorem 2

11.1(ii)

Statement:
If two chords of a circle (or of congruent circles) are equal, then their corresponding arcs (minor, major or semi-circular) are congruent. In equal circles or in the same circle, if two chords are equal, they cut off equal arcs.
Given:
$A B C D$ and $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ are two congruent circles with centres O and O^{\prime} respectively. So that $m \overline{A C}=m \overline{A^{\prime} C^{\prime}}$.

To Prove:

$m A D C=m A^{\prime} D^{\prime} C^{\prime}$
Construction:
Join O with A, O with C, O^{\prime} with A^{\prime} and O^{\prime} with C^{\prime}.
Proof:

Statements

In $\triangle A O C \leftrightarrow \Delta A^{\prime} O^{\prime} C^{\prime}$

Rad i d eçual cireles
Radie of equal circles
Given
S.S.S $\cong S . S . S$
$\Rightarrow m \angle A O C=m \angle A^{\prime} O^{\prime} C^{\prime}$
Hence $m A D C=m A^{\prime} D^{\prime} C^{\prime}$

Corresponding angles of congruent triangles
Arcs corresponding to equal chords in a circle.

Theorem 3

11.1(iii)

Statement:

Equal chords of a circle (or of congruent circles) suhtariemal angles at the cen(1) (ai the corresponding centres).
Given:
$A B C$ and $\bar{A} B^{\prime} C^{\prime}$ are two codgruent circles with centes orid O^{\prime} esplecivelys that $\overline{A C}=\bar{A} \bar{C}$
To Foyc. $A O \cong \angle A^{\prime} O^{\prime} C^{\prime}$

Construction:
Let if possible $m \angle A O C \neq m \angle A^{\prime} O^{\prime} C^{\prime}$ then consider $\angle A O C \cong \angle A^{\prime} O^{\prime} D^{\prime}$
Proof:

Statements	Reasons
$\angle A O C \cong \angle A^{\prime} O^{\prime} D^{\prime}$	Construction Arcs subtended by equal Central angles in congruent circles Equal chords of a circle (or of congruent circles) subtend equal angles at the centre (at the corresponding centres).
$\overline{A C} \cong \overline{A^{\prime} \mathrm{D}^{\prime}} \rightarrow(\mathrm{ii})$	Given
But $\overline{A C} \cong \overline{A^{\prime} D^{\prime} C^{\prime}} \rightarrow($ i $)$	Using (ii) and (ii)
$\therefore \overline{A^{\prime} C^{\prime}}=\overline{A^{\prime} D^{\prime}}$	
Which is only possible, if C^{\prime} coincides with D^{\prime}.	
Hence $m \angle A^{\prime} O^{\prime} C^{\prime}=m \angle A^{\prime} O^{\prime} D^{\prime} \rightarrow($ iv $)$	Construction
But $m \angle A O C=m \angle A^{\prime} O^{\prime} D^{\prime} \rightarrow(\mathrm{v})$	Using (iv) and (v)
$\Rightarrow m \angle A O C=m \angle A^{\prime} O^{\prime} C^{\prime}$	

Corollary 1

In congruent circles or in the same circle, if central angles are equal then corresponding, sectors are equal.

Corollary 2

In congruent circles or in the sameciscle, med ar as wili st bt end ur equl central angles.

Theorem 4

11.1(iv)

Statement:

In the anges subtenaed by two chords of I cire (or congruent circles) at the centre (corresponding centres) are equal, the chords are equal.
(A.B)

Given:

$A B C D$ and $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ are two congruent circles with centre O and O^{\prime} respectively. and $\overline{A^{\prime} C^{\prime}}$ are chords of circles $A B C D$ and $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ respective (na $m \angle A O C=m \angle A^{\prime} O^{\prime} C^{\prime}$
To Prove:
Proof:

Exercise 11.1

Q. 1 In a circle two equal diameters $\overline{A B}$ and $\overline{C D}$ intersect each other. Prove that $m \overline{A D}=m \overline{B C}$.
(A.B)

Given
In a circle with centre ' O ', two chords $\overline{A B}$ and $\overline{C D}$ intersect each other, such that $\overline{A B} \cong \overline{C D}$.
To prove

$$
m \overline{A D}=m \overline{B C}
$$

Proof

Q. 2 In a circle prove that the arcs between two parallel and equal chords are equal.

Given
In a circle with centre ' O ', $\overline{A B}$ and $\overline{C D}$ are wo chord 5 , such int $\overline{A B} \cong \overline{C D}$ and $\overline{A B} \square \overline{C D}$
To prove
$m A C=m$
Construction
Join A to C and B o D.

Proof

NINNOEstatements
$\left\{\begin{array}{l}m \bar{A} \bar{B}=m \overline{C D} \\ \text { Also } \\ \overline{A B} \| \overline{C D}\end{array}\right\}$
$\therefore A B C D$ is a $\|^{g m}$

$$
m \overline{A C}=m \overline{B D}
$$

$\therefore m A C=m B D$

Reasons

Given
(A quadrilateral having two
\{ sidesparallel and congruent
is a parallelogram.
Opposite sides of a parallelogram
Th-11.2 (chords area equal)

Q. 3 Give a geometric proof that a pair of bisecting chords are the diameters of a circle.

(A.B)

Given

In a circle with centre ' O ', two chords $\overline{A B}$ and $\overline{C D}$ bisect each other at point ' P '. i.e $m \overline{P C}=m \overline{P D}$ and $m \overline{P B}=m \overline{P A}$.

To prove

Chords $\overline{A B}$ and $\overline{C D}$ pass through point ' O '.
Construction
Draw $\overline{O M} \perp \overline{C D}$ and $\overline{O L} \perp \overline{A B}$
Proof

Q. $4 \quad$ If C is the mid point of an arc $A C B$ in a circle with centre O. Show that line segment $\overline{O C}$ bisects the chord $A B$.

Given

In a circle with centre ' O ', C mid peint o' $A B C$ ' $\bar{C} \bar{C} C$ infersect $\bar{A} \bar{B}$ at poin (L)

To prove
$-D=B D$

Construction

Join O to A and B

Proof

| Statements | Reasons |
| :--- | :--- | :--- |
| Chen $A C \cong B C$ | Given |
| $\therefore \angle A O C \cong \angle B O C$ | |
| Or $\angle A O D \cong \angle B O D$ | |
| In $\triangle O A D \leftrightarrow \triangle O B D$ | |

Miscellaneous Exercise 11

Q. 1 Multiple choice questions

Four possible answers are given for the following question. Tick (o) the corsect answer.
(1) A 4 cm long chord subtends a central ang of 60°. The radial eement of this circle is:
(a) 1
(b
(d) 4
(2) The lergth of a chort and the radial segment of a circle are congruent, the central angl: made by be chord will be:
(FSD 2014, RWP 2015)
(K.B)
(d) 300
(b) 45°
(c) 60°
(d) 75°
(3) Out of two congruent arcs of a circle, if one arc makes a central angle of 30° then the other arc will subtend the central angle of: (LHR 2015, SWL 2014)
(K.B)
(a) 15°
(b) 30°
(c) 45°
(d) 60°
(4) An arc subtends a central angle of 40° then the corresponding chord will subtend a central angle of: (LHR 2015, GRW 2014, FSD 2014, D.G.K 2014, 15)
(K.B)
(a) 20°
(b) 40°
(c) 60°
(d) 80°
(5) A pair of chords of a circle subtending two congruent central angles is:
(K.B)
(a) Congruent
(b) Incongruent
(c) Over lapping
(d) Parallel
(6) If an arc of circle subtend a central angle of 60°, then the corresponding chord of the arc will make the central angle of:
(a) 20°
(b) 40°
(c) 60°
(d) 80°
(7) The semi circumference and the diameter of a circle both subtend a central angle of:
(K.B)
(a) 90°
(b) 180°
(c) 270°
(d) 360°
(8) The chord length of a circle subtending a central angle of 180° is always:
(K.B)
(D.G.K 2014)
(a) Less than radial segment
(b) Equal to the radial segment
(c) Double of the radial segment
(d) None of these
(9) If a chord of a circle subtend a central angle of 6 no nee the length of che cord and the radial segment are:
(a) Congruent

(b) In oag. Lent
(c) Paraller
d) Rerpendicular
(10) The are opposite to inconerient cen rat angles of a circle arc always:
(a) Fonsruent
(b) Incongruent
(a) Parallel
(d) Perpendicular

ANSWER KEY

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
\mathbf{d}	\mathbf{c}	\mathbf{b}	\mathbf{b}	\mathbf{a}	\mathbf{c}	\mathbf{b}	\mathbf{c}	\mathbf{a}	\mathbf{b}

