

MATHEMATICS -10

(A.B)

Theorem 1

12.1(*i*)

Statement:

The measure of a central angle of a minor arc of a circle, is double that of the angle subtended by the corresponding major arc.

Given:

AC is an arc of a circle with centre O. Where as

 $\angle AOC$ is the central angle and $\angle ABC$ is circum angle.

To Prove:

Construction:

 $m \angle AO$

Join *B* with *O* and produce it to meet the circle at *D*. Write angles $\angle 1, \angle 2, \angle 3, \angle 4, \angle 5$ and $\angle 6$ as shown in the figure.

Proof:

Statements	Reasons	
As $m \angle 1 = m \angle 3 \rightarrow (i)$	Angles opposite to equal sides in $\triangle OAB$	
And $m \angle 2 = m \angle 4 \rightarrow (ii)$	Angles opposite to equal sides in $\triangle OBC$	
Now $m \angle 5 = m \angle 1 + m \angle 3 \rightarrow (iii)$	External angle is the sum of internal opposite angles.	
Similarly $m \angle 6 = m \angle 2 + m \angle 4 \rightarrow (iv)$		
Again $m \angle 5 = m \angle 3 + m \angle 3 = 2m \angle 3 \rightarrow (v)$	Using (i) and (iii)	
And $m \angle 6 = m \angle 4 + m \angle 4 = 2m \angle 4 \rightarrow (vi)$	Using (ii) and (iv)	
Then from figure		
$\Rightarrow m \angle 5 + m \angle 6 = 2m \angle 3 + 2m \angle 4$	Adding (v) and (vi)	
$\Rightarrow m \angle AOC = 2(m \angle 3 + m \angle 4) = 2m \angle ABC$		
Theorem 2 (GRW 2016, SWL 2016, RWP 2016, MTN 2017, SGD 2017, BWP 2015) (A B)		
12.1(<i>ii</i>)		
Statement: Any two angles in the same segment of a circle are equal.		
Given:		
$\angle ACB$ and $\angle ADB$ are the circum angles in the same segment $\bigcirc \bigcirc \bigcirc$		
of a circle with centre <i>O</i> .		
To Prove: $m \angle ACB = m \angle ADB$		

Construction:

Join *O* with *A* and *O* with *B*. So that $m \angle AOB$ is the central angle.

B

À

Proof:

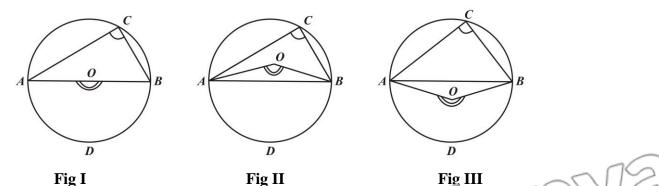
Statements	Reasons
Standing on the same arc <i>AB</i> of a circle.	
$\angle AOB$ is the central angle whereas	Construction
$\angle ACB$ and $\angle ADB$ are circum angles	Given The measure of a central angle of a
$\therefore m \angle AOB = 2m \angle ACB \rightarrow (i)$	minor are of a circle, is double that of the angle subtended by the corresponding major arc.
and $m \angle AOB = 2.n \angle ADB \rightarrow (ii)$	Same as above
$\Rightarrow 2m \angle ACB = 2m \angle ADB$	Using (i) and (ii)
Hence $m \angle ACB = m \angle ADB$	
Theorem 3 (LH	R 2016, MTN 2015) (A.B)

12.1(*iii*)

Statement:

The angle

- In a semi-circle is a right angle,
- In a segment greater than a semi circle is less than a right angle,
- In a segment less than a semi-circle is greater than a right angle.



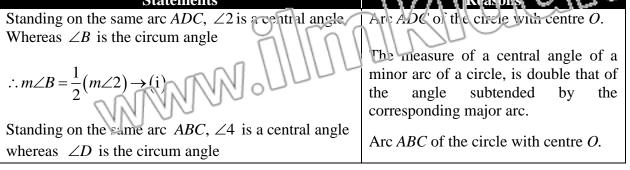
Given:

 \overline{AB} is the chord corresponding to an arc ADB. Whereas $\angle AOB$ is a control angle and $\angle ACB$ is a circum angle of a circle with centre Q.

To Prove:

In fig (I)if sector ACB is a serie circle then $m \angle ACB = 1 \angle rt$ In fig (II)it sector ACB is greater than a semi circle then $m \angle ACB < 1 \angle rt$ In fig (III)if sector ACB is less than s semi circle then $m \angle ACB > 1 \angle rt$

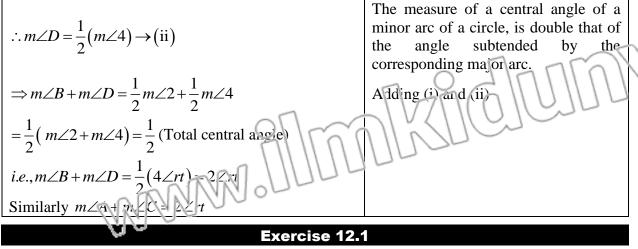
Proof:	1	
Statements	Reasons	
In each figure, \overline{AB} is the chord of a circle with		
centre $O. \angle AOB$ is the central angle standing	Given O Jan The Ves	
on an arc ADB. Whereas $\angle ACB$ is the circum		
angle	The manual of a partrai angle of a minor	
Such that $m \angle AOB = 2m \angle ACB \rightarrow (i)$	The measure of a central angle of a minor arc of a circle, is double that of the angle subtended by the corresponding major arc.	
Now in fig (I) $m \angle AOB = 150^{\circ}$	A straight angle	
$\therefore m \angle AOB = 2 \angle rt \rightarrow (ii)$	'	
$\Rightarrow m \angle ACB = 1 \angle rt$	Using (i) and (ii)	
In fig (II) $m \angle AOB < 180^{\circ}$	'	
$\therefore m \angle AOB = 2 \angle rt \rightarrow (iii)$	'	
$\Rightarrow m \angle ACB < 1 \angle rt$	Using (i) and (iii)	
In fig (III) $m \angle AOB > 180^{\circ}$	'	
$\therefore m \angle AOB > 2 \angle rt \rightarrow (iv)$		
$\Rightarrow 2m \angle ACB > 2 \angle rt$	Using (i) and (iv)	
$\Rightarrow m \angle ACB > 1 \angle rt$	<u> </u>	
Theorem 4	(A.B)	
12.1(<i>iv</i>)		
Statement: The opposite angles of any quadrilaterel inscribed in a circle are supplementary.		
Given:		
ABCD is a quadrilateral inscribed in a circle with centre O.		
$\begin{cases} m \angle A + m \angle C = 2 \angle rts \\ m \angle B + m \angle D = 2 \angle rts \end{cases} $		
1/1/4		
Construction:		
Draw \overline{OA} and \overline{OC} . Write $\angle 1, \angle 2, \angle 3, \angle 4, \angle 5$ and $\angle 6$ as shown in A		
the figure.	- M-MM/(9)	
Proof:		
Statements	1171 Reasons U. 14 W	



D

0

B



Q.1 Prove that in a given cyclic quadrilateral, sum of opposite angles is two right angles and conversely. (A.B)

Given:

ABCD is a quadrilateral inscribed in a circle with centre O.

To Prove:

$$\begin{cases} m \angle A + m \angle C = 2 \angle rts \\ m \angle B + m \angle D = 2 \angle rts \end{cases}$$

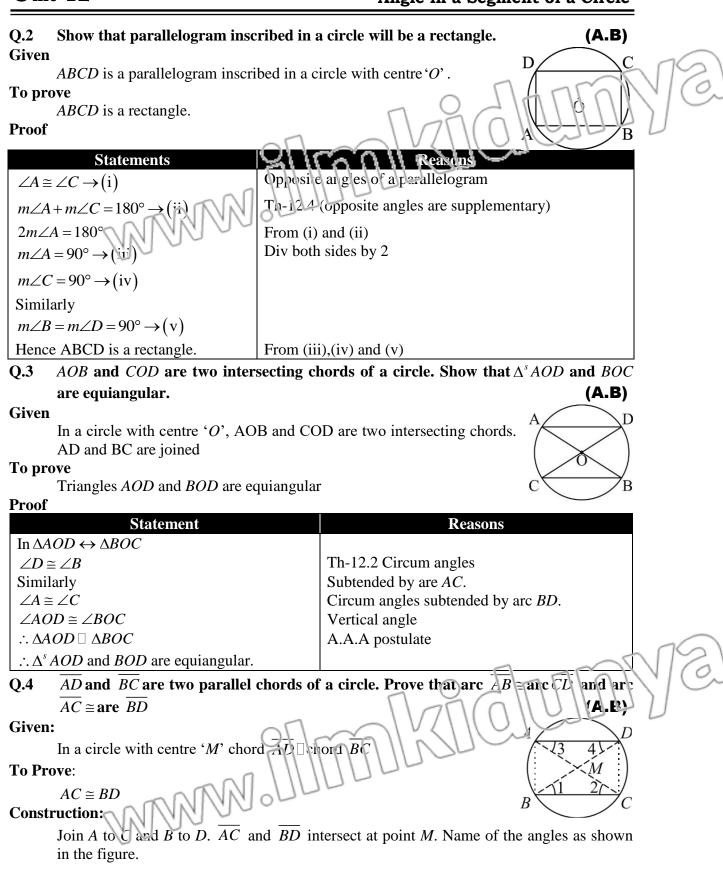
Construction:

Draw \overline{OA} and \overline{OC} . Write $\angle 1, \angle 2, \angle 3, \angle 4, \angle 5$ and $\angle 6$ as shown in the figure.

Proof:

Statements	Reasons
Standing on the same arc <i>ADC</i> , $\angle 2$ is a central angle	Arc ADC of the circle with centre O.
Whereas $\angle B$ is the circum angle	
$\therefore m \angle B = \frac{1}{2} (m \angle 2) \rightarrow (i)$	The measure of a central angle of a minor arc of a circle, is double that of the angle subtended by the corresponding major arc.
Standing on the same arc <i>ABC</i> , $\angle 4$ is a central angle	And ADC of the single with control O
whereas $\angle D$ is the circum angle	Arc <i>ABC</i> of the circle with centre <i>O</i> .
$\therefore m \angle D = \frac{1}{2} (m \angle 4) \rightarrow (ii)$	The measure of a central angle of a minor arc of a circle, is double that of the angle subtended by the corresponding major arc.
$\Rightarrow m \angle B + m \angle D = \frac{1}{2}m \angle 2 + \frac{1}{2}m \angle 4$	Adding (i) and (ii)
$=\frac{1}{2}(m\angle 2 + m\angle 4) \coloneqq \frac{1}{2}(\text{Fotal certral angle})$ i.e., $m\angle B + m\angle D = \frac{1}{2}(4\angle rt) = 2\angle rt$	
i.e., $m \angle B + m \angle D = \frac{1}{2} (4 \angle rt) = 2 \angle rt$	
Similarly $m \angle A + m \angle C = 2 \angle rt$	

MATHEMATICS -10



\mathbf{U}_{nit-12}

Proof:

Statement	Reasons
$\angle 1 \cong \angle 4 \rightarrow (i)$	Alternate angles
$\angle 2 \cong \angle 3 \rightarrow (ii)$	Alternate angles
$\angle 1 \cong \angle 3 \rightarrow (iii)$	Angles in the same segments
$\angle 3 = \angle 4$	From (i) and (iii)
In $\triangle AMD$, $\overline{AM} = \overline{LM} \rightarrow (iv)$	Opposite sides of \cong angles
Similarly	
$\overline{MC} \cong \overline{BM} \longrightarrow (v)$ m AM + mCM = mDM + mBM	Adding (iv) &(v)
$\overline{AC} \cong \overline{BD}$	
In $\triangle BCA \leftrightarrow \triangle BCD$	
$\overline{BC} \cong \overline{BC}$	Common
$\angle 1 \cong \angle 2$	From (i) and (ii)

Already proved

SAS postulate

Corresponding sides of $\cong \Delta^s$.

MAN MARION

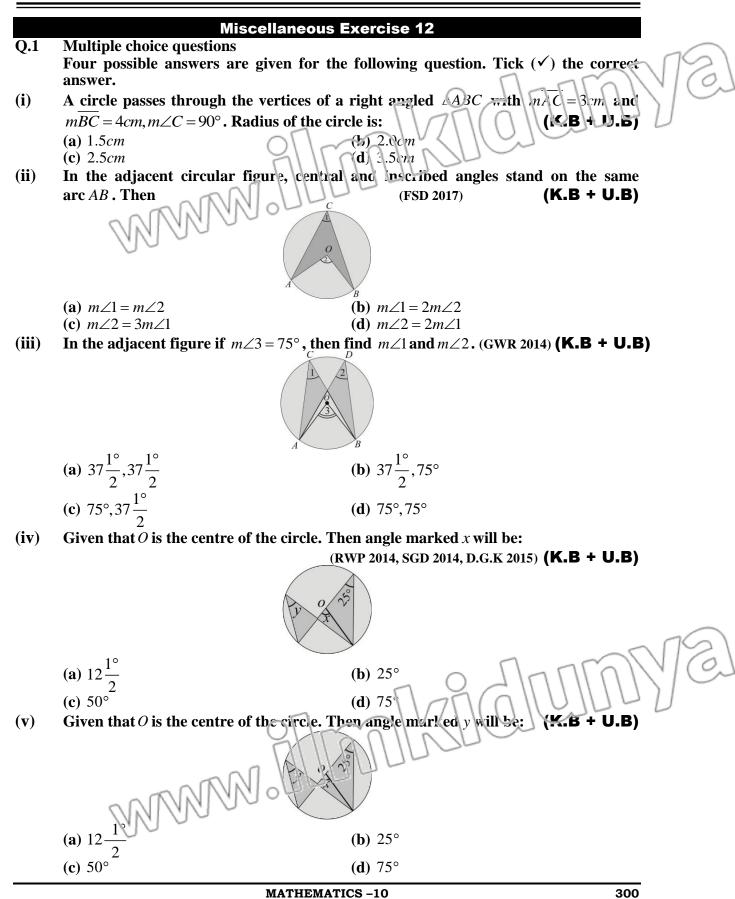
Hence $AB \cong CD$

 $\therefore \Delta BCD \cong \Delta BCA$

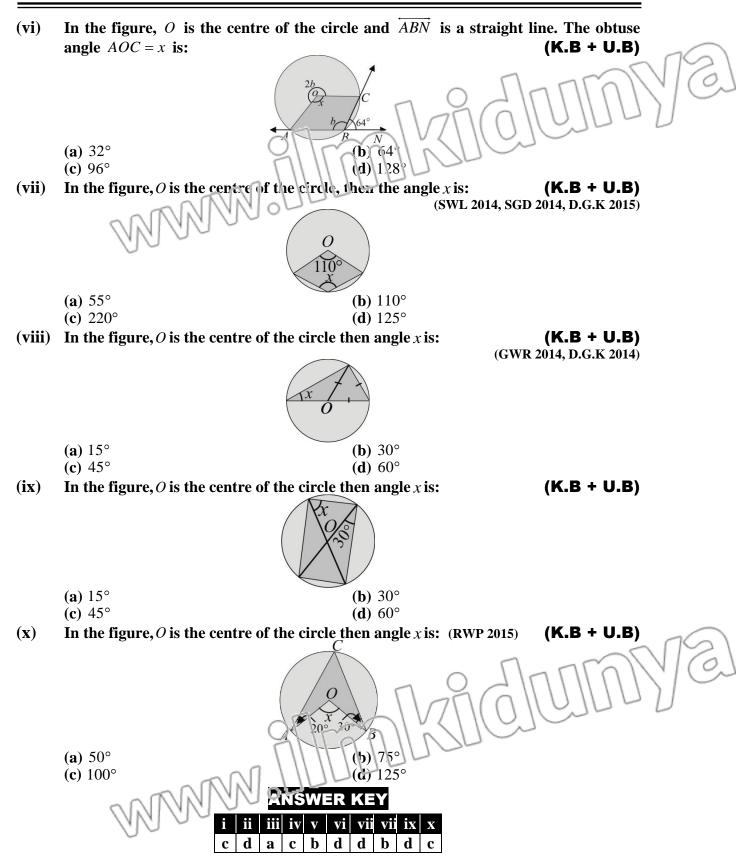
 $\overline{AC} \cong \overline{BD}$

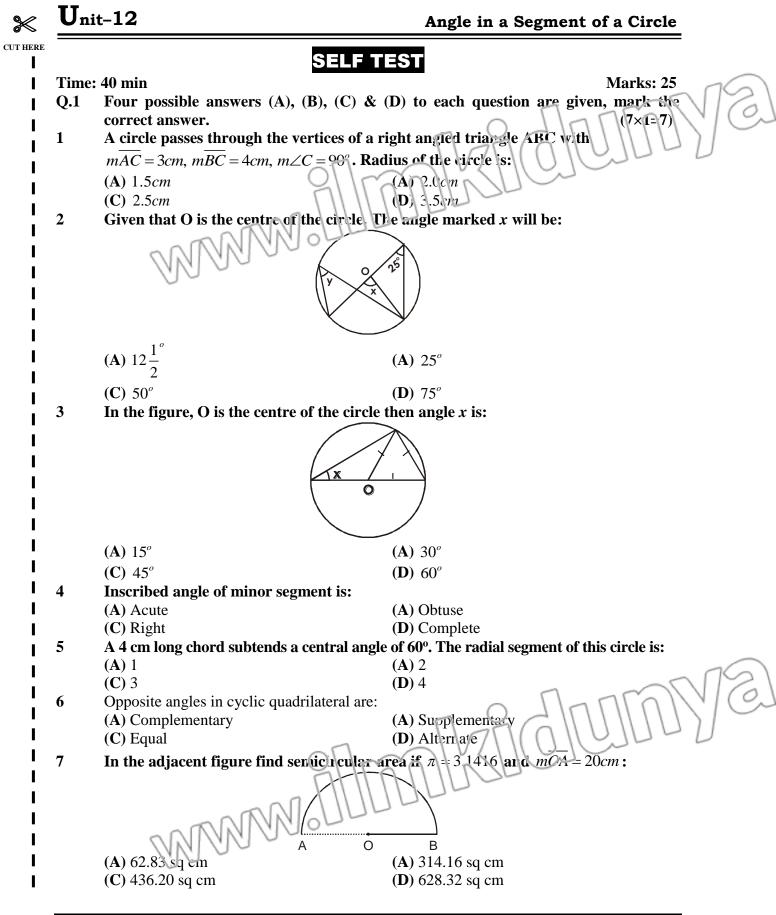
 $\overline{AB} \cong \overline{CD}$

6



\mathbf{U}_{nit-12}





CUT HERE **Give Short Answers to following Questions.** (i) Define cyclic quadrilateral.

(ii) Define circum angle or inscribed angle.

(iii) Define congruent arcs.

Unit-12

×

- (iv) Define length of tangent.
- of the circle and \overrightarrow{ABN} is a straight line. Then find obtuse **(v)** In the figure, O centre angle AOC = x.

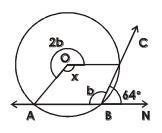
Q.2 **Prove that,**

Prove that the measure of a central angle of a minor arc of a circle, is doubled that of the angle subtended by the corresponding major arc.

NOTE: Parents or guardians can conduct this test in their supervision in order to check the skill

of students.

(8)



(5×2=10)