

Geometry
(CHR 20.4
(K.B)

The Werd ge me ry il denived from two Greek x ids -160 (eath) and Matron (measurement). Therefore the word geometry means measurement of earth. It deals with the shape, size and position of geometrical figures.

Circumcircle

(K.B)

A circle passing through the vertices of a triangle is called circumcircle. Its radius is circumradius and centre is circumcentre. Circumcentre is denoted by ' O ' and circum radius by ' R '.

Inscribed Circle

(K.B)
(FSD 2015, D.G.K 2015) A circle which touches the three sides of a triangle internally is known as incircle. Its radius is in-radius and its centre is in-centre. In centre is denoted by I and in-radius by r.

A ciole tpich.ng orveside of a triangle extenaly allewo produced sides internally is callecescribed circle or e-circle. Its centre is represented by $\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{3}$ and radius by r_{1}, r_{2} and r_{3} and depending upon the vertex opposite to it.

Direct Common Tangent

(K.B)

If points of contact of common tangents to the two circles lie on the same side of line segment joining their centres then such tangents are called direct common tangents.

Transverse common tangents (K.B)

If the points of contact of common tangents to the two circles lie on opposite sides of line segment joining their centres, then pinitangents recelled

Note

Greeks Mathematicians contributed a lot, in particular "Euclid's Elements" have been taught.
Construction of a Circle
13.1(i) To locate the centre of: gi/en circle
Given:
A circle

Sters of Constiustion

1. Draw two chords $\overline{A B}$ and $\overline{C D}$.
2. Draw $E F G$ as perpendicular bisector of chord $\overline{A B}$
3. Draw $\overleftrightarrow{P Q R}$ as perpendicular bisect or of chord $\overline{C D}$.
Perpendicular bisectors $\overleftrightarrow{E F G}$ and $\overleftrightarrow{P Q R}$ intersect each other at $O . O$ is the centre of circle.
13.1(ii) Draw a circle passing through three given non-collinear points:
Given:
Three non-collinear points A, B and C .
Steps of Construction

4. Join A with B and B with C.
5. Draw $\overleftrightarrow{L M}$ and $\overleftrightarrow{P Q}$ right bisectors of $\overline{A B}$ and $\overline{D C}$ respective ly. $\overline{\angle M}$
and $\bar{P} O$ in te-sect a a point O.
radius $\overline{O A}=\overline{O B}=\overline{O C}$ having centre
at O, which is the required circle.

Page\# 223

(K.B)
13.1(iii-a) To complete the circle by finding the centre when a part of a circumference is given

Given:

$A B$ is Part of circumference of a circle

Steps of Construction

1. Let C, D, E and F be the four points on the given $\operatorname{arc} A B$.
2. Draw chord $\overline{C D}$ and $\overline{E F}$.
3. Draw $\overleftrightarrow{P Q}$ as perpendicular bisector $f^{f} \mathrm{CL}$ and IMa.
 points A, B, C, D, E and F. Complete the circle with centre O and radius $(\overline{O A}=\overline{O B}=\overline{O C}=\overline{O D}=\overline{O E}=\overline{O F})$. This will pass through all the points A, B, C, D, E and F on the given part of the circumference.

Exercise \# 13.1

Q. 1 Divide an arc of any length
(i) Part (i)
(ABB)

Steps of Construction

(i) Join A to B
(ii) Draw right bisector of $\overline{A B}$, which cuts $A B$ at point C.
Thus $A C \cong B C$
(ii) Part (ii)
(A.B)

Steps of Construction

1. Join A to B
2. Draw right bisector of $\overline{A B}$, we get point D on $A B$.
3. Draw right bisectors of $\overline{A D}$ and $\overline{B D}$, passing through points C and E on $A D$ and $B D$.
Thus $A C \cong C D \cong D E \cong E B$
Q. 2 Practically ind the centre of al $\operatorname{arc} A B=$

Steps of Construction

1. Mark two chords $\overline{A B}$ and $\overline{B C}$
2. Draw risc bisector of $\overline{A B}$ and $\overline{2}$

Thus () i. Centre of the arc.
Q
(i) If $|\overrightarrow{A B}|=3 \mathrm{~cm}$ and $|\overline{B C}|=4 \mathrm{~cm}$ are the lengths of two chords of an arc, then locate the centre of the arc

(ABB)

Steps of Construction

1. Draw two chords $\overline{A B}=3 \mathrm{~cm}$ and $\overline{B C}=4 \mathrm{~cm}$.
2. Draw right bisectors of $\overline{A B}$ and $\overline{B C}$.
3. Both cut each other at point ' O '.

Thus O is centre of the arc.
(ii) If $|\overline{A B}|=3.5 \mathrm{~cm}$ and $|\overline{B C}|=5 \mathrm{~cm}$ are the lengths of two chords of an arc, then locate the centre of the arc.
(ABB)

Steps of Construction

1. Draw two chords $A B=3.5 \mathrm{~cm}$ and $\overline{B C}=5 \mathrm{~cm}$.
2. Draw right bisectors of $\overline{A B}$ and $\overline{B C}$.
3. Both cut each other at point ' O '.

Thus O is centre of the arc.
Q. 4 For an arc draw two perpendicular bisectors of the chords $\overline{P Q}$ and $\overline{Q R}$ of this arc, construct a circle through P, Q and R.
(A.[3)

Steps of Construction

1. Draw two chords $\overline{P Q}$ and $\overline{Q R}$, s.t $\overline{P Q} \perp \overline{Q R}$.
2. Draw right bisectors of $\overline{P Q}$ and $\overline{Q R}$. They intersect each other at point O.
3. With centre O, draw a circle of radius $\overline{O P}$.
Q. 5 Describe a circle of radius 5 cm passing through points A and B, 6 cm apart. Also find distance from the centre to the line segment $A B$.
(A.B)

Gitus of Construction

1. Draw a circle of radius 5 cm .
2. Take a point A on circle and draw an arc of radius 6 cm to get point B.
3. Draw right bisector of $\overline{A B}$, passing through point ' M '.
4. Measure O to M. k is cm .
$0.6 \quad \overline{A B}=4 \mathrm{~cm}$ and $\overline{B C}=50 n$, such that $A \bar{B}$ i. perpendicular to $\overline{B C}$ canstruct a circle through A, B and C. Also measure its radius. (A.B)

CIRCLES ATTACHED TO POLYGONS
13.2(i) Circumscribe a circle about a given triangle.
(A.B)

Given:
Triangle $A B C$.

Steps of oonstruction

1. Dia $L \cdot \vec{M} \mid \cdot$ as verpundicular bisecto $\frac{c}{2}$ side $\frac{A}{B}$.
2. Draw $P \overparen{Q} R$ as perpendicular
bisector of side $\overline{A C}$.
3. $\quad \overleftrightarrow{L N}$ and $\overleftrightarrow{P R}$ intersect at point O.
4. With centre O and radius

$$
m \overline{O A}=m \overline{O B}=m \overline{O C} \text {, draw a circle. }
$$

This circle will pass through A, B and C whereas O is the circumcentre of the circumscribed circle.

Remember:

The circle passing through he vertices of triangle $A B C$ is khomas circumainc its radius as cinculered dius and cerite as circurncertre.

Page \# 225

(A.B)
13.2(i)] nar ibe a circlein a given
uliagie:
Given:
A triangle $A B C$.

Steps of Construction

1. Draw $\overrightarrow{B E}$ and $\overleftrightarrow{C F}$ to bisect the angles $A B C$ and $A C B$ respectively. Rays $\overleftrightarrow{B E}$ and $\overleftrightarrow{C F}$ intersect each other at point O.
2. O is the centre of the inscribed circle.
3. From O draw $\overleftrightarrow{O P}$ perpendicular to $\overline{B C}$. With centre O and radius $\overline{O P}$ draw a circle.
This circle is the inscribed circle of triangle $A B C$.

Remember:

A cirre which wowes the three sides at a tiagle enternallo known as iachrle ts redius as in$12 d i u s$ ard cente as in-centre.

(A.B)
13.2(iii) Escribe a circle to given triangle: Given:

A triangle $A B C$.

1. Produce the sides $\overline{A B}$ and $\overline{A C}$ of $\triangle A B C$
2. Draw bisectors of exterior angles $A B C$ and $A C B$.
There bisectors of exterior angles meet at I_{1}.
3. From I_{1} draw perpendicular on side $\overline{B C}$ of $\triangle A B C$. Which $\overline{I_{1} D}$ intersect $\overline{B C}$ at $D \cdot I_{1} D$ is the radius of the escribed circle with centre at I_{1}.
4. Draw the circle with radius $\overline{I_{1} D}$ and centre at I_{1} that will touch the side $B C$ of the $\triangle A B C$ externally and the produced sides $A B$ and $A C$.
Page \# 226
(A.B)
13.2(iv) Circumscribe an equilateral triangle about a given circle
Given:
A circle with centre O of reasonable radius.

Steps of Construction

1. Draw $\overline{A B}$, the diameter of the circle for locating.
2. Draw an arc of radius $m \overline{O A}$ with centre at A for locating points $F \sim i d$ D on the rcle.
3. Join O to he prins C arld D
4. Dray tangents to he circle at points 3. 4 and D.

These tangents intersect at points E, F and G.

Page 226

(A.B)
13.2(v) Inscribe an equilateral triangle in a given circle.

Given:

A circle with centre O.

Steps of Construction

1. Draw any diameter $\overline{A B}$ of the circle.
2. Draw an arc of radius $\overline{O A}$ from point A. The arc cuts the circle at points C and D.
3. Join the points B, C and D to form straight line segments $\overline{B C}, C \bar{P}$ $\overline{B D}$.
Triangleac D i the required
inscribed equilateral triangre.
(A.B)
13.2 vi, Circumscribe a square about a given circle.

Given:

A circle with centre O.

Steps of Construction

1. Draw two diameter $\overline{P R}$ and $\overline{Q S}$ of the circle which bisect each other at right angle.
2. At points P, Q, R and S draw tangents to the circle.
3. Produce the tangents to meet each other at A, B, C and $D . A B C D$ is the required circumscribed square.
13.2(vii) Inscribe a square in a given circle Given:

A circle, with centre at O.

Steps of Construction

1. Through G aravr wo dianneters e) and $\overline{E D}$ which tisect eadh other at ligh angle.
2. Joiv 1 with B, with C, C with D, and D with $A . A B C D$ is the required square inscribed in the circle.
Page \# 228
(A.B)
13.2(ix) Inscribe a regular hexagon in a given circle:

Given:

A circle, with centre at O.

Steps of Construcion

1. Take ary yoin 4 on the circle na point with 0
E. om point A, draw an arc of radius $\overline{O A}$ which intersects the circle at point B and F.
2. Join O and A with points B and F.
3. $\triangle O A B$ and $x \triangle O A F$ are equilateral triangles therefore $\angle A O B$ and $\angle A O F$ are of measure 600 i.e., $m \overline{O A}=m \overline{A B}=m \overline{A F}$
4. Produce $\overline{F O}$ to meet the circle at C. Join B to C. Since in $\angle B O C=60$ therefore $m \overline{B C}=m \overline{O A}$.
5. From C and F, draw arcs of radius $O A$, which intersect the circle at points O and E.
6. Join C to D, D to E and E to F
ultimately.
We have
$m \overline{O A}=m \overline{O B}=m \overline{O C}=m \overline{O D}=m \overline{O E}=m \overline{O F}$ Thus the figure $A B C D E F$ is a regular hexagon inscribed in the ci cl?

triangle $A B C$ vith sides
$-\left|v_{1}\right|=5 \mathrm{~cm},|B C|=3 \mathrm{~cm}$ and
$|\overline{C A}|=4 \mathrm{~cm}$ Also measure its circum radius.
(A.B)

7. Construct $\triangle A B C$ with given information.
8. Draw right bisectors of $\overline{A C}$ and $\overline{A B}$. Both cut each other at point O .
9. With centre ' O ', draw a circle of radius $\overline{O A}$.
Thus required circumscribed circle is formed.
Radius of the circle is 3.4 cm .
Q. 2 Inscribe a circle in a triangle $A B C$ with \quad sides $|\overline{A B}|=5 \mathrm{~cm},|\overrightarrow{B C}|=3 \mathrm{~cm}$ and $|\overline{C A}|=3 \mathrm{~cm}$. Also measure its in-radius.
(A.B)

Stens of constuction

1. Con:trucl $\triangle A E C$ with given iniormation.
Draw bisectors of $\angle A$ and $\angle B$, both cut each other at point I.
2. From point I, draw $\overline{I P} \perp \overline{A B}$.
3. With centre I, draw a circle of radius $\overline{I P}$.
Thus required inscribed circle is formed.
Q. 3 Escribe a circle opposite to vertex A to a triangle $A B C$ with sides
$|\overline{A B}|=6 \mathrm{~cm},|\overline{B C}|=4 \mathrm{~cm}$ and
$|\overline{C A}|=3 \mathrm{~cm}$. Find its radius also.

Steps of Construction

1. Construct $\triangle A B C$ with given information.
2. Draw external bisectors of $\angle B$ and $\angle C$, both cut each other at point I_{1}.
3. From point I_{1}, draw $\overline{I_{1} M} \perp \overline{A C}$ produced.
4. With centre I_{1}, draw a circle of radius $I_{1} M$.
Thus required ascribed circle is formed.
Q. 4 Circumscribe a circle about an equilateral triangle $A B C$ with each side of length 4 cm .
(ABB)

Construct $\triangle A B C$ with given information.
2. Draw right bisectors of $\overline{A C}$ and $\overline{B C}$. Both cut each other at point O .
3. With centre ' O ', draw a circle of radius $\overline{O C}$.
Thus required a roumscribed ard formed.
Inscribe a circle in an equilateral triangle $A B C$ with each side of length 5 cm .

Steps of Construction

1. Construct $\triangle A B C$ with given information.
2. Draw bisectors of $\angle A$ and $\angle B$, both cut each other at point I.
3. From point I , draw $\overline{I M} \perp \overline{A B}$.
4. With centre I, draw a circle of radius $\overline{I M}$.
Thus required inscribed circle is formed.
Q. 6 Circumscribe and inscribe circles with regard to a right angle triangle with sides, $3 \mathrm{~cm}, 4 \mathrm{~cm}$ and 5 cm . (A.B)
Method-I

Method-II

Circumcircle

Incircle

Steps of Construction

1. Construct $\triangle A B C$ with given information.
2. Draw right bisectors of $\overline{A C}$ and $\overline{A B}$. Both cut each other at point O.
3. With centre ' O ', draw a circle of radius $\overline{O A}$.
Thus requited circumsci:ibed circle s formed
4. Draw bisectors of $-A$ and $<B$, buth ceat eich other at pointi.
A. On in I, draw $\overline{I P} \perp \overline{A B}$.

With centre I, draw a circle of radius $\overline{I P}$.
Thus required inscribed circle is formed.
Q. 7 In and about a circle of radius 4 cm

Steps of Construction

1. Draw a circle of radius 4 cm .
2. Draw two diameters $\overline{A C}$ and $\overline{B D}$ which bisect each other at right angle.
3. Join B to C, C to D, D to A and A to B. Thus required inscribed square is formed.
4. At point A, B, C and D draw tangents, which intersect each other at points $B^{\prime}, C^{\prime}, D^{\prime}$ and A^{\prime}.
Thus circumscribed square is formed.
Q. 8 In and about a circle of radius 3.5 cm describe a regular hexagon.

Steps of Construction

1. Draw any diameter $\overline{A D}$.
2. From point A draw an arc of radius $A O$ (the radius of the circle), which cuts the circle at points B and F.
3. Join B with O and extend it to racet the circle at E.
4. Join F with D and extond it to meet the circe at C
5. Draw tangents to the circie at points $A B C, D, E$ and \bar{T} intersecting one ayctle at points $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}, E^{\prime}$ and F^{\prime} respectively.
Thus $A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime} F^{\prime}$ is the circumscribed regular hexagon.
Q. 9 Circumscribe a regular hexagon about a circle of radius 3 cm .
(A.B)

Steps of Construction

1. Draw any diameter $\overline{A D}$.
2. From point A draw an arc of radius $A O$ (the radius of the circle), which cuts the circle at points B and F.
3. Join B with O and extenc 1t to meer the circle at E.
4. Join F with Dandextend to meet the circeat C
5. Draw tangents to the clircie at points $A B C, D, E$ and F intersecting one a) 1 去her at points $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}, E^{\prime}$ and F^{\prime} respectively.
Thus $A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime} F^{\prime}$ is the circumscribed regular hexagon.

13.3 TANGENT TO THE CIRCLE

13.3(i) To draw a tangent ív a givom without using the cente th (ugh: given paint P :

Given:
P is the mid-point of an arc $A B$.

Steps of Construction

1. Join A and B, to form the chord $\overline{A B}$.
2. Draw the perpendicular bisector of chord $\overline{A B}$ which passes through mid-point P of $A B$ and mid-point R of $\overline{A B}$.
3. At points P construct a right angle TPR.
4. Produce $\overrightarrow{P T}$ in the direction of P beyond point S. Thus $\overparen{T P}$ is the required tangent to the $\operatorname{arc} A B$ at point P.
Page \# 229
(A.B)

Case (ii)
When P is at end point of the arc
Given:
P is the en a point of arg $P R E$. 102

Steps of Construction

1. Take a point A on the arc $P Q R$.
2. Join the points A and P.
3. Draw perpendicular g at A which intersects the arc $P Q R$ at B
4. Join the points B and P.
5. Draw $P D$ of measure ec val to that of
Now

$$
\begin{aligned}
\sqrt[n]{n \cdot I P D} & =n \angle B D+m \angle a P D \\
& =m \angle B P A+m \angle A B P \\
& =90^{\circ}
\end{aligned}
$$

Thus $\overleftrightarrow{P D}$ is the required tangent.
Page \# 230
13.3(ii-a)

To draw a tangent to a circle from a given point P at a given point on the circumference:

Given:

A circle with the centre O and some point P lies on the circumference.

Steps of Construction

1. Join point P to the centre O, so that $\overline{O P}$ is the radius of the circle.
2. Draw a line $T P S$ which is perpendicular to the radius $\overline{O P}$.
$\therefore \quad \overrightarrow{T P S}$ is the required tangent to the circle

To drear a tangent to a circle from a given point p which lies outside the circle:

Given:

A circle with centre O and some point P outside the circle.
(ARB)

Steps of Construction

1. Join point P to the centre O.
2. Find M, the mid-point of $\overline{O P}$.
3. Construct a semi-circle on diameter $\overline{O P}$, with M as its centre. This semicircle cuts the given circle at T.
4. Join P with T and produce $\overline{P T}$ on both sides, then $\overleftrightarrow{P T}$ is the required tangent.

Page \# 231

13.3(iii)
(ABB)
To draw two tangents to a circle meeting each other at a given angle:

Given:

A circle with centre $O, \angle M N S$ is a given angle.

Steps of Construction

1. Take a point A on the circumference of circle having centre O.
2. Join the points O and A.
3. Draw $\angle C O A$ of measure equal to that of $\angle M N S$.
4. Produce $\overline{C O}$ to meet the circle at B.
5. $m \angle A O B=180^{\circ}-m \angle C O A$
6. Draw $\overparen{A D}$ perpendicular to $\overline{O A}$.
7. Draw $\overleftrightarrow{B E}$ perpendicular to $\overline{O B}$.
8. $m \angle A O B+m \angle A P B=180^{\circ}$, that is, $m \angle A C \bar{D}=180^{\circ}-\cdots \angle \widehat{A P B}$
9. From stap a d itep 9, We have 180°
$\angle C O A+80^{\circ}-m \angle A B P \Rightarrow m \angle C O A=m \angle A P B$ $\angle N P=m \angle M N S \quad(\because m \angle C O A=m \angle M N S)$
$\overrightarrow{A P}$ and $\overleftrightarrow{B P}$ are the required tangents meeting at the given $\angle M N S$.

Page \# 232

(A.B)
13.3(iv-a)

To draw direct or (external) common tangents to equal circles:

Given:
Two circles of equal radii with centres O and O^{\prime} respectively.

Steps of Construction

1. Join the centres O and O^{\prime}.
2. Draw diameter $A O B$ of the first circle so that $\overline{A O B} \perp \overline{O O}^{\prime}$.
3. Dow diameter $A^{\prime} O^{\prime} B^{\prime}$ of the seconor circle or $\overline{A^{\prime} \cap^{\prime} D^{\prime}} 10 \bar{O}$
4. Draw \bar{A} and $\overline{B B}$ vhicharethe required cornmondangents.
$13.3(\mathrm{v}-\mathrm{a})$
To Draw direct or (external) common tangents to (two) unequal circles:

Given: Two unequal circles with centres O, O^{\prime} and radii $r . r^{\prime}\left(r>r^{\prime}\right)$ respectively.

Steps of Construction

1. Join the centres O and O^{\prime}.
2. On diameter $\overline{O O}^{\prime}$, construct a new circle with centre M, the midpoint of $\overline{O O}^{\prime}$.
3. Draw another circle with centre at O and radius $=r-r^{\prime}$ cutting the circle with diameter $\overline{O O}^{\prime}$ at P and Q.
4. Produce $\overline{O P}$ and $\overline{O Q}$ to meet the first circle at A and B respectively.
5. Draw $\overline{O^{\prime} A^{\prime}} \square \overline{O A}$ and $\overline{O^{\prime} B^{\prime}} \square \overline{O B}$
6. Join $A A^{\prime}$ and $B B^{\prime}$ which are the required direct common tangents.
Thus $\overrightarrow{A A}^{\prime}$ and $\overrightarrow{B B}^{\prime}$ are the required common tangents.

Page \# 233

(A.B)
13.3(v-b) To draw to transverse or internal common tangents

Given:
Two unequal circles with centres O, O^{\prime} and radii r, r^{\prime} respectively.

Steps of Construction

1. Join the centres O and O^{\prime} का he given circles.
2. Find midepint $M \sigma \sigma^{\prime}$.
3. On diarhete. Od C^{\prime}, construct anew cicicle with cienire M.
Dite ©ouler circle with centre at 0 and radius $=r+r$ intersecting the circle of diameter $O O^{\prime}$ at P and Q.
4. Join O with P and $Q . \overline{O P}$ and $\overline{O Q}$ meet the circle with radius r at A and B respectively.
5. Draw $\overline{O^{\prime} B^{\prime}} \square \overline{O A}$ and $\overline{O^{\prime} A^{\prime}} \square \overline{O B}$.
6. Join A with B^{\prime} and A^{\prime} with B. Thus $\overleftrightarrow{A B}^{\prime}$ and $\overleftrightarrow{A^{\prime} B}$ are the required transverse common tangents.
Page \# 234
13.3(vi-a)

To draw a tangent to two unequal touching circles:
Case-I

Given:

Two unequal touching circles wiii.) centres O and O^{\prime}.

Steps of Constriction

1. Join O vit C an Pordace $\bar{D} Q^{\prime}+\infty$ meet the cirilep at he dome A where these circle toucin each other.
Eg.
Tangent is perpendicular to the line segment $O A$.

Draw perpendicular to $\overline{O A}$ at the point A which is the requirct tangent.

Given:

Two unequal touching circles with centres O and O^{\prime}

Steps of Construction

1. Join O with $O^{\prime} \cdot \overline{O O^{\prime}}$ intersects the circles at the point B where these circles touch each other.
See Fig. 2
2. Tangent is perpendicular to line segment containing the centres of the circles.
3. Draw perpendicular to $\overline{O O}^{\prime}$ at the point B which is the required tangent.

Page \# 235

(A.B)
13.3 (vii-a) To draw a circle which touches both the arms of a given angle:

Given:
An angle $\angle B A C$.

Steps of Construction

1. Draw $\overrightarrow{A D}$ bisecting $\angle B A C$.
2. Take any point E on $\overrightarrow{A D}$
3. Draw $\overrightarrow{E T}$ perpendicular to $\overrightarrow{A C}$ intersecting $\overrightarrow{A C}$ at the poilt ${ }^{F}$
4. Draw acicle with centre E and radius min
This circle ouche woth the arms of $\triangle B A C$.

NJNJPxercise 13.3

Q. 1 In an arc $A B C$ the length of the chord $|\overline{B C}|=2 \mathrm{~cm}$. Draw a secant $|\overline{P B C}|=8 \mathrm{~cm}$, where P is the point outside the arc. Draw a tangent through point P to the arc. (A.B)

Steps of Construction

1. Draw an arc.
2. Draw a secant line $P B C$, such that $m B C=2 \mathrm{~cm}$.
3. Find the mivilpoint M of $\bar{P} \bar{C}$
4. With ceme id araw inen ciecle of radius $P M$
5. DaN $B L$ perper difula to $P C$.
6. Wiob ©itre P, draw an arc radius $D D$. It cut the circle at point T.
Join P to T produce it.
Thus required tangent line is formed.
Q. 2 Construct a circle with diameter 8 cm . Indicate a poini -5 cm ay $\sqrt{2}$ from its cincumeract. Ibay tangent fiom ont to the circle without using its centre.
(A.B)

Steps of Construction

1. Draw a circle of radius 4 cm .
2. Take a point $C, 5 \mathrm{~cm}$ away from the circumference of circle.
3. Take a secant line $C A$.
4. Find the mid-point M of $\overline{C A}$.
5. With centre M, draw a semi circle of radius $A M$.
6. Draw $B D$ perpendicular to $A C$.
7. With centre C, draw an arc of radius $C D$. It cut the circle at point E.
8. Join C to E produce it.

Thus required tangent line is formed.
Q. 3 Construct a circle of radius 2 cm . Draw two tangents nakio m

Steps of Construction

1. Draw a circle of radius 2 cm .
2. Draw diameter $\overline{A T^{\prime}}$.
3. At point T^{\prime}, draw $\overleftrightarrow{P T^{\prime}} \perp \overline{O T^{\prime}}$.
4. At centre ' O ', draw $\angle A \sigma T=60^{\circ} \circ$ get radial $\varepsilon_{\varepsilon}$ ment $O T$
5. At pointr, diaWPT $\perp \overrightarrow{O T}$

Thus required tangents are jormed.
Q. 4 Frev tyo per dicular tangents an a idele of radius 3 cm .
(A.B)

Steps of Construction

1. Draw a circle of radius 3 cm .
2. Draw diameter $\overline{A B}$.
3. At point A, draw $\overline{A P} \perp \overline{O B}$.
4. At centre ' O ', draw $\angle A O C=90^{\circ}$ to get radial segment $O C$.
5. At point C, draw $\overleftrightarrow{P C} \perp \overline{O C}$. Thus required tangents are formed.
Q. 5 Two equal circles are at 8 cm apart. Draw two direct common tangents of this pair of circles.
(A.FS)

Steps of Construction

1. Draw a line segment $\overline{O O^{\prime}}$ of measure 8 cm .
2. With centres O and O^{\prime} draw circles of radii 2 cm .
3
3. At points C aili O^{\prime}
d.aw perperaiculars $\bar{A} \bar{C} \operatorname{ar} \bar{\beta} \bar{D}$, meeting he circles at peir ts A, B, C and D.
4. oiil A to B ance to D.

Thus required tangents $\overleftrightarrow{A B}$ and $\overleftrightarrow{C D}$ are formed.
Q. 6 Draw two equal circles of each radius 2.4 cm . If the distance between their centres is 6 cm , then draw their transverse tangents.
(A.B)

Steps of Construction

1. Draw a line segment $\overline{O O^{\prime}}=6 \mathrm{~cm}$
2. Draw circles with centres as O and O^{\prime} having radii 2.4 cm .
3. Find mid-point M of $\overline{O O^{\prime}}$.
4. Find mid-point N of $\overline{M O^{\prime}}$.
5. Taking point N as centre and equal to $m N N$ daw a circt indersectine he circle with entre O^{\prime} at points P and P.
6. Dralu aline thogh the points M and P touching the second circle at the point Q.
7. Draw a line through the points M and P^{\prime} touching the second circle at the point Q^{\prime}.
Thus $\overleftrightarrow{P Q}$ are $\overparen{P^{\prime} Q^{\prime}}$ the required transverse common tangents to the given circles.
Q. 7 Draw two circles with radii 2.5 cm and 3 cm . If their centres are 6.5 m apart, then draw two direct common tangents.

Case-II

Circles touch each other internally

Steps of Construction

Case-I

(Circles touch each other externally)

1. Draw a line segment $\overline{A B}$ of measate 6 cm (sum of radii).
2. With centre Arand B, draw wo circles of 1 adius 3.5 m ar d 0.5 cm .
Fracy tgich eaun other at point M.
At point M , draw $\overleftrightarrow{P Q} \perp \overline{A B}$.

Thus required common tangent is formed.

Case-II
(Carcles touch a a-h other internally)
4. Draw a line segment $\overline{A B}$ of measure

1 cm (difference of radii).
5. With centre A and B, draw two circles of radius 3.5 cm and 2.5 cm .

They touch each other at point M.
6. At point M , draw $\overleftrightarrow{P Q} \perp \overrightarrow{A M}$.

Thus required common tangent is formed.
Q. 10 Draw two common tangents to two intersecting circle of radii 3 cm and 4 cm .
(A.B)

Steps of Constructis

Steps of Constructise Tike mine segr ent $-\frac{2}{2} d m_{\text {measure }}$ 6 cm .
2 Draw two circles of radii 3 and 2.5 with centres at A and B respectively.
3. Taking centre at A, draw a circle of radius $3-2.5=0.5 \mathrm{~cm}$.
4. Bisect the line segment $A B$ at point M.
5. Taking centre at M and radius $m A M$, draw a circle intersecting the circle of radius 0.5 cm at C and D.
6. Join the point A with C and produse it to meet the circle yrimincenve A at P. Also Join A vi h D ard pooduce it to niet the circle witin centre A at R.
17. Draw $\overrightarrow{B Q}$ parallel to $A P$.
8. Draw a line joining the P to Q and R to S.

Thus required direct common tangents are formed.
Q. 11 Draw circles which touches both the arms of angles
(A.B)
(i) 45°
(ii) 60°
(i) 45°

Steps of Construction

1. Draw an angle $A O B$ of measure 45°.
2. Draw CPthe bisector or $\angle 40 B$
3. Take any pontlen $\overrightarrow{\sigma C}$. From point draw $P M \perp \overrightarrow{O A}$.
4. With centre P , draw a circle of radius
$\overline{P M}$ which touches both arns of arg gle 45°.
Thas required vircle is formed. 60°

Steps of Construction

5. Draw an angle $A O B$ of measure 60°.
6. Draw $\overrightarrow{O C}$ the bisector of $\angle A O B$.
7. Take any point P on $\overrightarrow{O C}$. From point P draw $\overline{P M} \perp \overrightarrow{O A}$.
8. With centre P , draw a circle of radius $\overline{P M}$ which touches both arms of angle 60°.

Thus required circle is formed.

Miscellaneous Exercise 13

Q. 1 Multiple choice questions

Four possible answers are given for the following question. Tick (\checkmark) the orrect an we-:
(i) The circumference of a circle is called
(ii) A line intersecting a circie is callou

(a) Tangent
(b) Secayt
(c) Churd
(K.B)
(iii) The prrtion of a/irlobet veen tw radii ond an arc is called
(iv) Angle inscribad in : senidele is
(a) 2
(b) $\frac{\pi}{3}$
(c) $\frac{\pi}{4}$
(1)) The length of the diameter of a circle is how many times the radius of the circle
(a) 1
(b) 2
(c) 3
(vi) The tangent and radius of a circle at the point of contact are
(a) Parallel
(b) Not perpendicular
(c) Perpendicular
(vii) Circles having three points in common
(c) Coincide
(viii) If two circles touch each other, their centres and point of contact are
(a) Coincident
(b) Non-collinear
(c) Collinear
(ix) The measure of the external angle of a regular hexagon is (GRW 2014)
(a) $\frac{\pi}{3}$
(b) $\frac{\pi}{4}$
(c) $\frac{\pi}{6}$
(x) If the incentre and circumcentre of a triangle coincide, the triangle is
(a) An isosceles
(b) A right triangle
(c) An equilateral
(xi) The measure of the external angle of a regular octagon is
(LHR 2015, FSD 2018)
(a) $\frac{\pi}{4}$
(b) $\frac{\pi}{6}$
(c) $\frac{\pi}{8}$
(xii) Tangents drawn at the end points of the diameter of a circle are
(a) Parallel
(b) Perpendicular
(c) Intersecting
(xiii) The length of two transverse tangents to a pair of circles are
(a) Unequal
(b) Equal
(c) Overlapping
(xiv) How many tangents can be drawn from a point outside the circle?
(a) 1
(b) 2
(c) 3
(xv) If the distance between the centres of two circles is equal to the sum of their radii, then the circles will
(a) Intersect
(b) Do not intersect
(c) Touch each other ex te naly
(xvi) If the two circles touches externally, then the distancetween the reent
(b) S.m of he ir adii
(a) Difference of their radir
(c) Product of their radii
(xvii) How rany compon tangents can be drann for two touching circles?
(a) 2
(b) :
(c) 4
(xviii) How many common thents can be drawn for two disjoint circles
(a) 2
(b) 3
(c) 4
ANSWER KEY

w_{i}	c	Iv	a	vii	d	x	c	xiii	b	xvi	b
ii	b	V	b	viii	c	xi	a	xiv	b	xvii	b
iii	a	Vi	c	ix	a	xii	a	xv	c	xviii	c

Q. 2 Define and draw the following geometric figures:
(i) Define and draw the following geometric figures:
(a) The segment of a circle.

Ans:

Segment of aricle

"A chos divides two parts called segıent of a-ircle". In he gi en figure, $A B$ divides the ejreil foro two segments.
Major segment
(ii) Minor segment

Minor Segment

(K.B)
"Circular region bounded by a chord and minor arc is called minor segment". In the given figure, shaded part is minor segment.

Major Segment

(K.B)
"Circular region bounded by a chord and major arc is called major segment". In the given figure, non shaded part is major segment.
(b) The tangent to a circle.

Ans:

Tangent Line

A line which has one point common with a circle is called tangent line.

Or
A straight line which touches the circumference at one point only is called tangent.
(c) The sector of a circle.

Ans:
Sectorgforite
(K.B)
"clifcula region ooundeu by an arc and it two crrresponding radial segments is calned sector in the given figure, $A O B$ is a sector of the circle.

(d) The inscribed circle.

Ans: See definition page \# 304
(e) The circumscribed circle.

Ans: See definition page \# 304
(f) The escribed circle.
(K.B)

Ans: See definition page \# 304
(ii) The length of each side of a regular octagon is 3 cm . Measure its perimeter.
(K.B)

Ans: Length of each side of
octagon $=3 \mathrm{~cm}$
Sides of a octagon $=8$
Perimeter of Octagon $=8 \times 3 \mathrm{~cm}$
\therefore Perimeter $=\mathrm{n} \times l$,

$$
=24 \mathrm{~cm}
$$

(iii) Write down the formula for finding the angle subtended by the side of a n-sided polygon at the centre of the circle.
Ans: Formula for finding the angle subtended by the side of a n-sided polygon at the centre st the circle
$=\frac{360^{\circ}}{\sim}$
The length of the side of a regular per tagon is 4 cm what is its perimeter?
(K.B)

Ans: Length of each side of octagon $=5 \mathrm{~cm}$ Sides of a pentagon $=5$
Perimeter of pentagon $=5 \times 5 \mathrm{~cm}$
\therefore Perimeter $=\mathrm{n} \times l$,

$$
=25 \mathrm{~cm}
$$

Q. 3 Fill in the blanks

(i) The boundary of a circle is called \qquad .
(ii) The circumference of a circle is called \qquad of the circle
(15,3)
(iii) The line joining the two points of circle is ral ed

(iii) The line joining the two points of circle is val ed
(iv) The point of intersection of perpendiculat visedtors of an is called the \qquad .

(v) Circles hy ing three onint
(vi) The dis ande of a poin insile the ciecie from its centre is \qquad than the radius. (K.B)
(vii) The tistance of a point ouside the circle from its centre is \qquad than the radius.
\qquad centre.
One and only one circle can be drawn through three \qquad points.
(iv) Ane and only one circle can be draw \qquad angle.
(xi) If two circles touch each other, the point of \qquad and their \qquad are collinear. (K.B)
(xii) If two circles touch each other, their point of contact and centres are \qquad . (K.B)
(xiii) From a point outside the circle \qquad tangents can be drawn.
(xiv) A tangent is \qquad to the radius of a circle at its point of contact.
(xv) The straight line drawn \perp to the radius of a circle is called the \qquad to the circle. (K.B)
(xvi) Two circles can not cut each other at more than \qquad points.
(xvii) The \perp-bisector of a chord of circle passes through the \qquad .
(xviii) The length of two direct common tangents to two circles are \qquad to each other.
(xix) The length of two transverse common tangents to two circles are \qquad to each other.
($\mathbf{x x}$) If the in-centre and circum-centre of a triangle coincide the triangle is \qquad (K.B)
(xxi) Two intersecting circles are not \qquad .
(xxii) The centre of an inscribed circle is called \qquad .
(xxiii) The centre of a circumscribed circle is called \qquad .
(xxiv) The radius of an inscribed circle is called \qquad .
(xxv) The radius of a circumscribed circle is called \qquad .

ANSWER KEY

(i) Circumference
(ii) Boundary
(iii) Chord
(iv) Centre
(v) Coincide
(vi) Less
(vii) Greate
(viii) One
(ix) Non-collinear
(x) Rign.
(1) Coutace, centres

Collinear
(xiii) Two

SELF TEST

Time: 40 min
Q. 1 Four possible answers $(A),(B),(C) \&(D)$ to each daestion art given, mark tive correct answer.
1 A line intersecting a circie is calle:
(A) Tangent
(C) Cr or l
(B) Secant
(D) Radius

2 Angle insc-ibed in a serni circle is.
(A)
(B) $\frac{\pi}{3}$
(C) $\frac{\pi}{4}$
(D) $\frac{\pi}{6}$

3 If two circles touch each other, their centres and point of contact are:
(A) Coincident
(B) Non-collinear
(C) Collinear
(D) None of these

4 The measure of the external angle of a regular hexagon is:
(A) $\frac{\pi}{3}$
(B) $\frac{\pi}{4}$
(C) $\frac{\pi}{6}$
(D) $\frac{\pi}{2}$

5 If the incentre and circumcentre of a triangle coincide, the triangle is:
(A) An isoscenes
(B) A right triangle
(C) An equilateral
(D) Scalene

6 If the distance between the centers of two circles is equal to the sum of their radii, then the circles will:
(A) Intersect
(B) Do not intersect
(C) Touch each other externally
(D) None of these

7 How many common tangents can be drawn for two touching circles?
(A) 2
(B) 3
(C) 4
(D) 1
Q. 2 Give Short Answers to following Questions.
(1) The length of the side of a regular pentagon is 5 cm what is its perimeter?
(2) If $|\overline{A B}|=3 \mathrm{~cm}$ and $|\overline{B C}|=4 \mathrm{~cm}$ are the lengths of two chords of ar acc, then loette the centre of the arc.
(3) Draw circles which touches both the rms af angles 50 .
(4) Define and draw the folloving genineric figur of the itecrbed cirels.
(i) Draw two pe pendicular targents to a ci cle of adadies 3 cm .
Q. 3 Answerche folowing Questions in detai!. $(4+4=8)$
(a) Escribe a ci cle opposite to ve..ex A to a triangle ABC with
$\operatorname{side} S|A B|=|\operatorname{ccm}| C C|=4 \mathrm{~cm},|C A|=3 \mathrm{~cm}$. Find its radius also.
Drev eor 0 circles with radii 3.5 cm and 2 cm of their centers are 6 cm apart then draw two transverse common tangents.
NOTE: Parents or guardians can conduct this test in their supervision in order to check the skill of students.

