

Sets and Functions

- Number of all possible subsets = 2^n
- Number of all possible proper subsets = $2^n 1$.
- Number of improper subsets = 1
- Formula to find number of elements in the power set = 2^n
- $A B = \{ x \mid x \in A \text{ and } x \notin B \}$
- If $A \cap B = \phi$, then A and B are disjoint sets.
- $A' = A^c = U A$
- **Commutative property of Union** $A \cup B = B \cup A$
- **Commutative property of intersection** $A \cap B = B \cap A$
- Associative property of union $A \cup (B \cup C) = A \cup B) \cup C$
- Associative property of intersection

 $A \cap (B \subset C) - (A \cap B) \cap C$

Distributive property of union over intersection $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

• **Distributive property of intersection over union** $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ Z].CO

- De-Morgan's laws
 - $(\mathbf{A} \cup B)' = \mathbf{A}' \cap \mathbf{B}'$
 - $(\mathbf{A} \cap B)' = \mathbf{A}' \cup \mathbf{B}'$
- $A-B=A \cap B'$
- $(A-B)' = A' \cup B$
- Number of elements in Cartesian product $X \times V = m \times r$
- Number of bin ary relations = $2^{m \times n}$
- If $A \subseteq B$, then $A \cup B = A$

If
$$A \subseteq B$$
 and $B \subseteq A$ then $A = B$

$$\bigvee A \cap A^c = \phi$$

•
$$A \cup A^c = U$$

Unit # 6 Basic Statistics

Z].COM

Introduction to Trigonometry

- $1^{\circ} = \frac{\pi}{180}$ radians
- $x^{\circ} = \frac{x\pi}{180}$ actians
- 1 radian = $\frac{180^{\circ}}{\pi}$ • x radians = $\frac{x(180^{\circ})}{\pi}$

•
$$l = r\theta$$

•
$$A = \frac{1}{2}r^2\theta$$

- $\theta \pm 360k = \theta, k \in \mathbb{Z}$
- $\sin(-\theta) = -\sin\theta$
- $\cos ec(-\theta) = -\cos ec\theta$
- $\cos(-\theta) = \cos\theta$
- $\sec(-\theta) = \sec\theta$
- $\tan(-\theta) = -\tan\theta$
- $\cot(-\theta) = -\cot\theta$
- Trigonometric table

	1	1						
	0 °	30°	45°	60°	90°	180°	270°	
sin	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1	0	-1	
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	-1	0	
tan	0	$\frac{1}{\sqrt{3}}$		D 13	uncefined	р	Uncefined	
$\sin\theta = (\cos\theta) = \frac{1}{2}$		M	IN	μe				
$\tan \theta =$	$\frac{y}{r}$							
$\sin^2 \theta$ -	$+\cos^2\theta = 1$							
$1 + \tan^2$	$1 + \tan^2 \theta = \sec^2 \theta$							
$1 + \cot^2$	$1 + \cot^2 \theta = \csc^2 \theta$							

Unit # 8

Projection of a Side of a Triangle

- $\left(\overline{BC}\right)^2 = \left(\overline{AB}\right)^2 + \left(\overline{AC}\right)^2 2m\overline{AB}.m\overline{AC}$, when angle opposite to BC is acute.
- $(\overline{BC})^2 = (\overline{AC})^2 + (\overline{AB})^2 + 2(n(\overline{AP}), (\overline{mAD}))$, when angle opposite to BC is obtuse.
- If $a^2 + b^2 = c^2$, Δ is a right angle Δ
- Δ is a obtuse angled If $a^2 + b^2$
- If $a^2 + b^2 > c^2$, Δ is a acute angled Δ
- whele, c is longest side <u>세신 O</u>

Unit # 10

Tangent to a Circle

- If two circles touch each other externally then distance between their centers is equal to sum of radii.
- Two circles with centres C_1 and C_2 , radii of measure r_1 and r_2 such that $m\overline{C_1C_2} = r_1 + r_2$
- If two circles touch each other internally then distance between their centers is equal to difference of radii.
- Two circles with centres C_1 and C_2 , radii r_1 and r_2 such that $m\overline{C_1C_2} = r_1 r_2$
- Area of Circle = πr^2
- Area of semi circle = $\frac{1}{2}\pi r^2$
- Perimeter or Circumference of Circle $= 2\pi r = \pi d$
- Semi Perimeter or Half Circumference of Circle = πr

Unit # 12

Chords and Arcs

- $m \angle AOC = 2m \angle ABC$, where $m \angle AOC$ is central angle and $m \angle ABC$ is circum angle. The angle
- In a semi-circle is a right angle,

п

- In a segment greater than a semi circle is less than a right angle,
- In a segment less than a semi-circle is greatter than a right angle.
- $m \angle A + m \angle C = 180^{\circ}$ and $m \angle B + m \angle D = 180^{\circ}$, where ABCD is cyclic quadri ateral
- $m \angle ACB = m \angle ADB$, where $m \angle ACB$ and $m \angle ADB$ are angles of same segment.

Angle in a Segment of a Circle

Perimeter of a regular polygon = $n \times l$, where *n* is number of sides and *l* is length of a side.

"we measure of the external angle of a regular hexagon is $\frac{\pi}{2}$.

The measure of the external angle of a regular octagon is $\frac{\pi}{4}$.

Formula for finding the angle subtended by the side of a n-sided polygon at the centre of the circle = $\frac{360^{\circ}}{1000}$