Formulas of Different Units

Unit \# 1

Quadratic Equations

- $\quad(a+b)^{2}=a^{2}+b^{2}+2 a b$
- $\quad(a-b)^{2}=a^{2}+b^{2}-2 a b$

Unit \# 2

Theory of Quadratic Equations

- Discriminant $=b^{2}-4 a c$
- $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
- $\quad 1+\omega+\omega^{2}=0$
- $\quad \omega^{3}=1$
- $\omega=\frac{1}{\omega^{2}}$ or $\omega^{2}=\frac{1}{\omega}$
- $\quad(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-y z-x z\right)=x^{3}+y^{3}+\mathrm{z}^{3}-3 x y z$
- $\quad S=-\frac{b}{a}=-\frac{\text { Coefficient of } x}{\text { Coefficent of } x^{2}}$
- $\quad P=\frac{c}{a}=\frac{\text { Constant term }}{\text { Coefficient of } x^{2}}$
- $x^{2}-S x+P=0 \quad$ Or
$x^{2}-$ (Sum of roots) $x+$ Product of roots $=0$
- \quad Function is Symmetric if $f(\alpha, \beta)=f(\beta, \alpha)$
- $\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta$
- $\quad \alpha^{3}+\beta^{3}=(\alpha+\beta)^{3}-3 \alpha \beta(\alpha+\beta)$
- $\alpha-\beta=\sqrt{(\alpha+\beta)^{2}-4 \alpha \beta}$
- Forit proporidnal: $d=\frac{k e}{a}$

Ihird proportional: $c=\frac{b^{2}}{a}$

- Mean proportional: $b^{2}=a c$
- Continued proportional: $b^{2}=a c$
- Invertedo Theorem. If $a: b=c: d$ then $b: a=d: c$

Formulas of Different Units

- Alternendo Theorem.

If $a: b=c: d$ then $a: c=b: d$

- Componendo Theorem

If $a: b=c: d$ then
(i) $a+b: b=c+d: d$
(ii) $a: a+b=c: c+d$

- Dividend 7 heorm

If $a: b=\cdot d$,hen
(i)

conpunendo-Dividendo Theorem

If $a: b=c: d$ then
(i) $a+b: a-b=c+d: c-d$
(ii) $a-b: a+b=c-d: c+d$

- K Method

Let $\frac{a}{b}=\frac{c}{d}=k$
Then,
$a=b k, c=d k$

Unit \# 5

Sets and Functions

- \quad Number of all possible subsets $=2^{n}$
- \quad Number of all possible proper subsets $=2^{n}-1$.
- Number of improper subsets $=1$
- Formula to find number of elements in the power set $=2^{n}$
- $A-B=\{x \mid x \in A$ and $x \notin B\}$
- If $\mathrm{A} \cap \mathrm{B}=\phi$, then A and B are disjoint sets.
- $\quad \mathrm{A}^{\prime}=\mathrm{A}^{\mathrm{c}}=U-A$
- Commutative property of Union
$A \cup B=B \cup A$
- Commutative property of intersection
$A \cap B=B \cap A$
- Associativaproperty of union
$A \cup(E)()=A \subset B) \subset C$
- Associative pioperty of inersection
$A \sim R(C)=(A \cap B) \cap C$
Distributive property of union over intersection
$A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$
- Distributive property of intersection over union
$A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$

Formulas of Different Units

- De-Morgan's laws
$(\mathrm{A} \cup B)^{\prime}=\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}$
$(\mathrm{A} \cap B)^{\prime}=\mathrm{A}^{\prime} \cup \mathrm{B}^{\prime}$
- $\quad A-B=A \cap B^{\prime}$
- $\quad(A-B)^{\prime}=A^{\prime} \cup B$
- Numb r drelements in Carlesian product $X y v=m \times n$
- Numbe of birary relations $=2^{m \times n}$
- If $A_{\uparrow}=B$, her $A \cup B=B$
(f $\triangle B$ ana $B \subseteq A$ then $A=B$
$A \cap A^{c}=\phi$
$-A \cup A^{c}=U$
- $\quad A \cup A^{c}=U$

Unit \# 6

Basic Statistics

Formulas of Different Units

Formulas of Different Units

Unit \# 7

Introduction to Trigonometry

- $\quad 1^{\circ}=\frac{\pi}{180}$ radians
- $\quad x^{\circ}=\frac{x \pi}{130}$ aclians
- $\quad 1$ radian $=-\frac{80 c}{\pi}-$

- $\quad l=r \theta$
- $A=\frac{1}{2} r^{2} \theta$
- $\quad \theta \pm 360 k=\theta, k \in Z$
- $\sin (-\theta)=-\sin \theta$
- $\operatorname{cosec}(-\theta)=-\operatorname{cosec} \theta$
- $\cos (-\theta)=\cos \theta$
- $\sec (-\theta)=\sec \theta$
- $\tan (-\theta)=-\tan \theta$
- $\cot (-\theta)=-\cot \theta$
- Trigonometric table
- $\quad \sin \theta=\frac{y}{y}$
$\tan \theta=\frac{y}{x}$
- $\sin ^{2} \theta+\cos ^{2} \theta=1$
- $1+\tan ^{2} \theta=\sec ^{2} \theta$
- $1+\cot ^{2} \theta=\operatorname{cosec}^{2} \theta$

Formulas of Different Units

Unit \# 8

Projection of a Side of a Triangle

- $(\overline{B C})^{2}=(\overline{A B})^{2}+(\overline{A C})^{2}-2 m \overline{A B} \cdot m \overline{A C}$, whan angle pppositeto BC is ac ate.
- $\quad(\overline{B C})^{2}=(\overline{A C})^{2}+(\overline{A B})^{2}+2(n, \overline{A P},(\bar{m}, \bar{S})$, whh h angle poposite to $B C$ is obtuse.
- If $a^{2}+b^{2}=c^{2}, \Delta$ is angrangel Δ
- If $a^{2}+b^{2} c^{2} \quad \Delta$ is a ob use arglea 1
- If $a^{2}+b>$, Δ is a a ute angled Δ
yine e, ch is onges side

Unit \# 10

Tangent to a Circle

- If two circles touch each other externally then distance between their centers is equal to sum of radii.
- Two circles with centres C_{1} and C_{2}, radii of measure r_{1} and r_{2} such that $m \overline{C_{1} C_{2}}=r_{1}+r_{2}$
- If two circles touch each other internally then distance between their centers is equal to difference of radii.
- Two circles with centres C_{1} and C_{2}, radii r_{1} and r_{2} such that $m \overline{C_{1} C_{2}}=r_{1}-r_{2}$
- \quad Area of Circle $=\pi r^{2}$
- \quad Area of semi circle $=\frac{1}{2} \pi r^{2}$
- Perimeter or Circumference of Circle $=2 \pi r=\pi d$
- \quad Semi Perimeter or Half Circumference of Circle $=\pi r$

Unit \# 12

Chords and Arcs

- $m \angle A O C=2 m \angle A B C$, where $m \angle A O C$ is central angle and $m \angle A B C$ is circum angle.

The angle

- In a semi-circle is a right angle,
- In a segment greater than a semi circle is less than a right angle,
- In a segment less than a semi-circle is greatter than a right angle.
- $m \angle A+m \angle C=180^{\circ}$ and $m \angle B+m \angle D=180^{\circ}$, where $A B C D$ s $C y /$ li quadri ated
- $m \angle A C B=m \angle A D B$, where $m \angle A C B$ and $\angle A, D B$ are ingles of si me segment.

- \quad Perimetir di a regular polygon $=1 \times l$, where n is number of sides and l is length of a side.

Trae neal urelor the external angle of a regular hexagon is $\frac{\pi}{3}$.
The measure of the external angle of a regular octagon is $\frac{\pi}{4}$.
Formula for finding the angle subtended by the side of a n-sided polygon at the centre of the circle $=\frac{360^{\circ}}{n}$

