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Discriminant   (BWP 2018) (U.B + K.B) 

“For a standard quadratic equation 
2 0ax bx c   , the value of the expression 

2 4b ac  is called discriminant.” 

 It is used to find the nature of roots without 

solving the equation.  

Nature or Characteristics of the Roots   

(U.B + K.B) 

Nature of a quadratic equation 
2 0ax bx c   , when , ,a b c Q  and 0a   as:  

(i) If 2 4 0b ac  , then the roots are 

rational (real) and equal.  

(ii) If 2 4 0,b ac   then the roots are 

complex conjugate or imaginary.  

(iii) If 2 4 0,b ac  and is a perfect 

square, then the roots are rational 

(real) and unequal.  

(iv) If 
2 4 0,b ac  and is not a perfect 

square, the roots are irrational (real) 

and unequal. 

Note     (K.B) 

If given polynomial expression is a perfect 

square then discriminant is 0. 

Example 2: (Page # 19) 

Using discriminant, find the nature of the 

roots of the following equation and verify 

the result by solving the equation. 
2 5 5 0x x    

(LHR 2015, GRW 2016, 17, SWL 2017, 

RWP 2015, D.G.K 2017) 
Solution: 

2 5 5 0x x    

Here 1, 5, 5a b c     

Discriminant = 2 4b ac  

                       
2( 5) 4(1)(5)    

                       25 20 5    

As discriminant > 0 but not perfect 

square, Roots are irrational (real) and 

unequal. 

Verification: 

Solving the equation by using 

quadratic formula 
2 4

2

b b ac
x

a

  
  

2( 5) ( 5) 4(1)(5)

2(1)
x

    
  

5 5

2
x


  

Evidently, Roots are irrational (real) 

and unequal. 

Example 2: (Page # 21) 

Find k, if the roots of the equation 
2( 3) 2( 1) ( 1) 0k x k x k       are 

equal, if 3k      (A.B) 

Solution: 
2( 3) 2( 1) ( 1) 0k x k x k       

Here 

3, 2( 1), ( 1)a k b k c k         

As roots are equal, discriminant is zero. 
2Disc. 4 0b ac     

2[ 2( 1)] 4( 3)[ ( 1)] 0k k k        
24( 1) 4( 3)( 1) 0k k k      

 4( 1) ( 1) ( 3) 0k k k      

 4( 1) 2 4 0k k    

Either 

1 0k      or    2 4 0k    4 0  

 1k        or    2 4k    

                          2k    

Thus, roots will be equal if 1, 2k     
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Exercise 2.1 

Q.1 Find the discriminant of the 

following given quadratic equations: 

Solution:  

(i) 22 3 1 0x x     (A.B) 

(GRW 2017, FSD 2016, MTN 2014, 

D.G.K 2016) 

 By comparing given equation with     
2 0ax bx c   , we get 

   2,  b 3,  c 1a      

 Disc  = 2 4b ac  

         = 
2(3) 4(2)( 1)   

  = 9 + 8 

  = 17 

(ii) 26 8 3 0x x     (A.B) 

(LHR 2016, SWL 2016, D.G.K 2015, 17) 

By comparing given equation with     
2 0ax bx c   , we get 

   6,  8,  3a b c     

 Disc = 2 4b ac  

  = 
2( 8) 4(6)(3)   

 = 64 – 72 

 =   8 

(iii) 29 30 25 0x x     (A.B) 

(LHR 2017, MTN 2015) 

By comparing given equation with     
2 0ax bx c   , we get 

  9,  b 30,  c 25a      

 Disc = 
2( 30) 4(9)(25)   

  = 900 – 900 

  = 0 

(iv) 24 7 2 0x x     (A.B) 

(GRW 2014, SGD 2017, MTN 2016) 

By comparing given equation with     
2 0ax bx c   , we get 

   4,  b 7,  c 2a       

 Disc = 2 4b ac  

  =
2( 7) 4(4)( 2)    

  = 49 + 32 

  = 81 

Q.2 Find the nature of the roots of the 

following given quadratic 
equations and verify the result by 

solving the equations: 

Solution:  

(i) 2 23 120 0x x     (A.B) 

By comparing given equation with     
2 0ax bx c   , we get 

  1, 23, 120a b c      

 Disc= 2 4b ac  

        = 2( 23) 4(1)(120)   

       = 529 – 480  
       = 49 

        = 72 
Since disc > 0 and perfect square, 
roots are rational (real) and unequal. 

           Verification:  

 2 23 120 0x x    

 
2 4

2

b b ac
x

a

  
  

    

2( 23) ( 23) 4(1)(120)

2(1)

    
  

    
223 7

2


  

 
23 7

2
x


  

 Either

 
23 7 23 7

or
2 2

x x
 

   

 
16 30

or
2 2

   

 8 15x x   

            Hence roots are rational and unequal. 

(ii) 22 3 7 0x x     (A.B) 

By comparing given equation with     
2 0ax bx c   , we get 

  2, 3, 7a b c     

 Disc = 2 4b ac  

  = 
2(3) 4(2)(7)  

  = 9 – 56 
  = 47 
            Since disc < 0, roots are complex 

and imaginary. 
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            Verification:  

 22 3 7 0x x    

 
2 4

2

b b ac
x

a

  
  

    = 

23 (3) 4(2)(7)

2(2)

  
 

    = 
3 9 56

4

  
 

   
3 47

4

  
  

   
3 47

4

i 
  

Hence roots are complex/imaginary 

and unequal. 

(iii) 216 24 9 0x x     (A.B) 

By comparing given equation with     
2 0ax bx c   , we get 

   16,  b 24,  c 9a      

 Disc = 2 4b ac  

  = 
2( 24) 4(16)(9)   

  = 576 – 576 

  = 0 

Since disc = 0, roots are rational 

(real) and equal. 

Verification:  

 216 24 9 0x x    

 
2 4

2

b b ac
x

a

  
  

  

2( 24) ( 24) 4(16)(9)

2(16)

    
  

 
24 0

32
x


  

 
24 0

32
x


  

 Either  

 
24 0

32
x


         or   

24 0

32
x


  

 
24

32
x    

24

32
x   

           Hence roots are rational and equal. 

(iv) 23 7 13 0x x     (A.B) 

By comparing given equation with     
2 0ax bx c   , we get 

 3, 7, 13a b c      

 Disc = 2 4b ac  

  2(7) 4(3)( 13)    

  = 49 + 156 
  = 205 

Since disc > 0, but not a perfect sq. 
roots are irrational and unequal. 

           Verification:  

 23 7 13 0x x    

 
2 4

2

b b ac
x

a

  
  

    

27 (7) 4(3)( 13)

2(3)

   
  

    
7 49 56

6

  
  

    
7 205

6

 
  

Either 

7 205 7 205
or

6 6
x x

   
   

        Hence roots are irrational and unequal. 
Q.3 For what value of k, the expression  

 2 2 2 1 4k x k x    is perfect 

square.  (A.B + K.B) 

Solution:  

   2 2 2 1 4 0k x k x     

By comparing given equation with     
2 0ax bx c   , we get 

  2 , 2 1 , 4a k b k c     

 Discriminant  = 2 4b ac  

      
2 22 1 4 4k k      

   
2 24 1 16k k    

   2 24 2 1 16k k k     

  2 24 8 4 16k k k     

  24 8 12k k    

   24 1 2 3k k    
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As expression is a perfect square, the 

discriminant = 0  

  24 1 2 3 0k k     

 21 2 3 0k k       4 0  

 21 3 3 0k k k     

    1 1 3 1 3 0k k k     

   1 3 1 0k k    

Either 

1 3 0k   or 1 0k   

3 1k     1k   

1

3
k      

Result 

1
1,

3
k    

Q.4 Find the value of k, if the roots of 

the following equations are equal. 

(A.B + K.B) 

Solution:  

(i) 2(2 1) 3 3 0k x kx     

 Here 2 1, 3 , 3a k b k c      

 Disc = 2 4b ac  

  
2(3 ) 4(2 1)(3)k k    

  29 24 12k k    

 Since roots are equal,  

 Disc = 0 

 29 24 12 0k k     

  
23(3 8 4) 0k k    

  23 8 4 0k k      3 0  

  23 6 2 4 0k k k     

  3 ( 2) 2( 2) 0k k k     

  (k – 2) (3k – 2) = 0 

Either 

2 0 or 3 2 0k k     

 2 or 3 2k k    

            
2

3
k   

 Result:     

 k = 2, 
2

3
 

(ii) 2 2( 2) (3 4) 0x k x k      

 Here  1, 2 2 , 3 4a b k c k       

 Disc = 2 4b ac  

 =  
2

2( 2) 4(1)(3 4)k k    

 = 24( 2) 4(3 4)k k    

 = 24(k 4 4) 4(3 4)k k     

 = 24 4 4 3 4k k k       

 = 24 k k    

 4 ( 1)k k   

 Since roots are equal, disc = 0 

  4 1 0k k    

 Either  

 4 0    1 0k or k     

 0k     or        1k     

 Result:    

   0, 1k    

(iii) 2(3 2) 5( 1) (2 3) 0k x k x k       

(A.B + K.B) 

            Here 

            3 2, 5 1 , 2 3a k b k c k         

 Disc  = 2 4b ac  

          =  
2

5( 1)k  - 4 (3k+2) (2k+3) 

    
2 225 1 – 4 6 9 4 6k k k k       

    2 225 2 1 4 6 13 6k k k k        

 2 2 25 50 25 – 24 – 52 – 24k k k k     

 2 – 2 1k k    

 Since roots are equal, disc = 0 

 2 – 2 1 0k k     

  
2

1 0k     

 Taking square root on both sides 

 1 0k     

 1k    

 Result: 

 1k   



 

  MATHEMATICS –10  42 

Unit–2 Theory of Quadratic Equations 

 
Q.5 Show that the equation  

 
22 2x mx c a    has equal roots, 

if  2 2 21c a m        (A.B + K.B) 

Proof            (FSD 2016) 

  
22 2x mx c a     

 2 2 2 2 22x m x mcx c a      

  2 2 2 21 2 0m x mcx c a       

 Here 

 2 2 21 , 2 ,A m B mc C c a       

 Disc= 2 4B AC   

     
2 2 2 22 4 1mc m c a      

  2 2 2 2 2 2 2 24 4m c c a m c a m       

         2 24m c 2 2 2 24 4 4c a m c   2 24a m  

 2 2 2 24 4 4c a a m      

 Disc  2 2 2 24 1 4 4a m a m     
 

 

                  2 2 21c a m   

        2 2 2 2 2 24 4 4a a m a a m         

        2 2 2 2 2 24 4 4 4a a m a a m      
        0  
 Disc=0 
 Roots are equal 

 Hence roots are equal, if  2 2 21c a m     

 Proved 
Q.6 Find the condition that the roots of 

the equation  
2

- 4mx + c ax = 0  are 

equal.          (A.B + K.B + U.B) 
Solution: 

 
2( ) 4 0mx c ax    

  2 2 22 4 0m x mcx ax c     

  
2 2 2(2 4 ) 0m x mc a x c     

 Here 
2 2,B 2 – 4 ,CA m mc a c     

 Disc = 2 4B AC  

          
2 2 22 – 4 – 4mc a m c   

      2 2 2 2 24 –16 16 – 4m c amc a m c    

      216 16amc a     

       16 –a mc a    

 Since roots are equal, disc = 0 
    16a (mc – a) = 0 

 Either  
 – 0mc a    or      16 0a   
 a mc    0a   

Roots of the given equation are equal  
If a mc  or a = 0 

Q.7 If the roots of the equation. 

     2 2 2 22 0c ab x a bc x b ac     

are equal, then 0a   or 
3 3 3 3a b c abc   . 

(A.B + K.B + U.B) 

Proof 

     2 2 2 22 – – 0c ab x a bc x b ac      

Here 

 2 2 2– , 2 – , –A c ab B a bc C b ac     

Disc = 2 4B AC  

  = 
2

2 2 22( ) 4( )( )a bc c ab b ac        

  2 2 2 2 3 3 24( ) 4( )a bc b c ac ab a bc       

  
4 2 2 2 2 2 3 3 24( 2 ) 4( )a a bc b c b c ac ab a bc        

   4 2 2 2 2 2 3 3 24 2 – –a a bc b c b c ac ab a bc       

   4 3 3 24 – 3a ab ac a bc     

   3 3 34 – 3a a b c abc     

 Since roots are equal, disc = 0 

  3 3 34 – 0a a b c abc     

 Either  

           
3 3 34 0 – 3 0a or a b c abc      

           0a    3 3 3 3a b c abc     

Roots are equal if either  
3 3 30  3a or a b c abc      

Q.8 Show that the roots of the following 

equations are rational. 

Proof. (A.B + K.B + U.B) 

(i)       2 0a b c x b c a x c a b        

Here 

     , ,A a b c B b c a C c a b       

Discriminant = 2 4B AC  

     
2

4b c a a b c c a b                

    
22 4b c a ac b c a b      
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   2 2 2 22 4b c ac a ac ab b ac bc        

2 2 2 2 2 2 2 2 2 22 4 4 4 4b c ab c a b a bc ab c a c abc      
2 2 2 2 2 2 2 2 24 2 4 4b c a b a c ab c a bc abc     

        
2 2 2

2 2bc ab ac bc ab    

     2 2 2 2ab ac ac bc     

 
22 2 2 2 2 2a b c ab bc ca a b c        

=  
2

2bc ab ac   

As discriminate > 0 and perfect square, roots 

are rational. 

(ii)         2+ 2 + 2 +2 =0a b x a + b +c x+ a c   

Here  

 2 ,B 2  ,C 2A a b a b c a c         

Disc= 2 4B AC  

      = [2(a + b + c)]2 – 4(a + 2b)(a +2c) 

         
2 24 – 4 2 2 4a b c a ac ab bc        

       2 2 24 2 2 2a b c ab bc ca       

        2–4 2 2 4a ac ab bc    

      
2 2 24( 2 2 2a b c ab bc ca        

          
2– – 2 – 2 – 4 )a ac ab bc  

       2 24 – 2b c bc    

       
2

4 –b c   

       
2

2 – 0b c      

Since disc is perfect square roots are 

rational. 

Q.9 For all values of k, prove that the 

roots of the equation. 

2 1
2 3 0, 0x k x k

k

 
     

 
 are real. 

Proof:   (A.B + U.B) 

 Here  

 
1

1, 2 , 3a b k c
k

 
     

 
 

 Disciriminat = 2 4b ac  

    
2

1
2 4 1 3k

k

  
     

  
 

 

2
1

4 12k
k

 
   

 
 

 2

2

1
4 2 12k

k

 
    

 
 

 2

2

1
4 2 3k

k

  
     

  
 

 2

2

1
4 1k

k

 
   

 
 

 2

2

1
4 2 1k

k

 
    

 
 

 

2
1

4 1k
k

  
    

   

 

> 0  

 As disc. > 0, roots are real. 

Q.10 Show that the roots of the equation 

     2 +b – c x c – a x+ a –b =0  

are real.       (A.B + U.B + K.B) 

Proof:  

      2 +b – c x c – a x+ a –b =0  

 Here  – ,B – ,C –A b c c a a b     

            Disc  = 2 4B AC  

             
2

– – 4 – –c a b c a b   

          2 2 2– 2 – 4 – –c ac a ab b ac bc     

         2 2 2– 2 – 4 4 4 – 4c ac a ab b ac bc      

         2 2 24 2 – 4 – 4c a b ac ab bc      

              
2 2 2

2 2 2 2 2 2c a b c a a b b c       

 
22 2 2 2 2 2a b c ab bc ca a b c       

 
2

– 2 0c a b     

Hence roots are real. 

Derivation of Cube Roots of Unity  

(A.B + K.B) 

Let 3 1x    

 Taking cube on both sides  

  3 1x   

 3 1 0x    

    
3 3

1 0x    
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   21 1 0x x x     

   21 1 0x x x       

 Either 

 –1 0x    or 2 1 0x x    

   1x   

Here 1, 1, 1a b c    

2 4

2

b b ac
x

a

  
  

    

 

2
1 1 4 1 1

2 1
x

  
  

  
1 1 4

2

  
  

   
1 3

2

  


1 3
1

2

i
i

 
    

            Either  

           
1 3

2

i
x

 
 ,  

1 3

2

i
x

 
  

                     2  

   Cube root of unity are 
21, ,   

Note     (K.B) 

We can write anyone complex cube root as 

  (Omega), then other will be 2 . 

Properties of Cube Root of Unity  

(i) Proving that each complex cube 

root of unity is the square of other.  

 i.e.

2

1 3 1 3

2 2

      
  

 
  

 and 

2

1 3 1 3

2 2

      
  

 
 

(LHR 2014, GRW 2017, FSD 2016, 17, 

SGD 2015, 16, BWP 2017, MTN 2017) 

(K.B + U.B + A.B) 

Proof: 

 We have to prove  

    

2

1 3 1 3
i

2 2

      
  

 
 

            Consider  

             

2

1 3

2

   
  
 

    

            
      

22
1 3 2 1 3

4

     
                                      

            
 1 3 2 3

4

   
  

 
1 3 2 3

4

  
  

 
2 2 3

4

  
  

 
 2 1 3

4

  
  

 
1 3

2

  
  

 

2

1 3 1 3
ii

2 2

      
  

 
 

            Now consider 

            

      

2

22

1 3

2

1 3 2 1 3

4

   
  
 

    


 

 
 1 3 2 3

4

   
  

 
1 3 2 3

4

  
  

 
2 2 3

4

  
   

 
 2 1 3

4

  
  

 
1 3

2

  
  

Thus, each of the complex cube roots 

of unity is the square of the other.  
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(ii) Proving that product of three cube 

root of unity is one.  

i.e.   21. . 1   (K.B + U.B) 

Proof: 

 L.H.S 21. .  

 By putting the values 

          
1 3 1 3

1
2 2

       
     

  
  

          =
   

22
1 3

4

  
 

          
 1 3

4

 
  

          
1 3

4


  

          
4

4
  

          = 1  

          = R.H.S 

 Proved  

(iii) Proving that sum of three cube 

roots of unit is zero. 

 i.e. 21 0     

(LHR 2016, GRW 2017, FSD 2015, 17, 

SGD 2015, 16, BWP 2016, RWP 2015) 

Proof: 

 L.H.S    = 21     

      (By putting values)  

  
1 3 1 3

1
2 2

     
      

  
 2 1 3 1 3

2

      
  

  
2 1 3 1 3

2

     
  

  
0

2
  

  = 0 

  = R.H.S   

 Proved 

Important Results  (K.B + U.B) 

(i) 21 0      

 21       

 21      

 2 1     

(ii) 21. . 1   

 3 1   

(iii) 21. . 1   
2. 1   

2

1



    or  2 1




  

Note:   Complex cube roots are reciprocal 

of each other. 

(iv) 4 3. 1.        

 5 3 2 2 2. 1.        

    
2 26 3 1 1     and so on 

16 2

16 15 3 5

1 1 1 1 1

( ) . 1.
 

      

        

Example 1: (Page # 25) 

Evaluate:    
8 8

1 3 1 3       (A.B) 

Solution: 

   
8 8

1 3 1 3        

8 8

1 3 1 3
2 2

2 2

           
          
         

   
88 22 2    

8 8 8 162 2    

 8 6 2 152 .      

    2 5
3 2 3256 .      

    2 52 3256 1 . 1 1      

 2256    

  2256 1 1 0       

256   
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Example 2: (Page # 25)  (A.B) 

To Prove 

 
3 3 2( )( )( )x y x y x y x y       

Proof:  
2R.H.S ( )( )( )x y x y x y      

          
2 2 3 2( )( )x y x xy xy y        

          
2 2 2( )( ( ) )x y x xy y              

2 2 2( )( ( 1) ) 1 0x y x xy y           
2 2( )( )x y x xy y     

3 3 L.H.Sx y    
Exercise 2.2 

Q.1 Find the cube roots of 1,8, 27,64  . 

(LHR 2015) (K.B + A.B) 

Solution:  

(i) Finding cube roots of 1 

 Let 3 1x    
 Taking cube on both sides 

 3 1x      

 3 1 0x     

              3 3 2 2( )( )a b a b a ab b      

    21 – 1 0x x x     

 Either 

  1 0x i    or  2 – 1 0x x ii     

 Equation (i)   
 1x     

 Equation  ii   

 
2( 1) ( 1) 4(1)(1)

2(1)
x

    
  

    
1 1 4

2

 
   

    
1 3

2

 
  

 Either  

            
1 3

2
x

 
    or      

1 3

2
x

 
  

           x = 
1 3

2

   
  
 

  
1 3

2
x

   
   

 
 

 = –  = – 2  

   Cube roots of 1  are
2–1, – , –    

(ii) Finding cube roots of 8  

(K.B + A.B) 

 Let 3 8x   

 Taking cube on both sides 

 3 8x    

 3 – 8 0x    

 3 3– 2 0x               

             
3 3 2 2( )( )a b a b a ab b      

   2– 2 2 4 0x x x     

 Either 

         – 2 0x i  or  2 2 4 0x x ii      

 Equation  i   

 2x   

 Equation  ii   

 
22 (2) 4(1)(4)

2(1)
x

  
  

    
2 4 16

2

  
  

    
2 12

2

  
  

    
2 2 3

2

  
    

 Either 

        
1 3

2
2

x
   

   
 

 or  
1 3

2
2

x
   

   
 

 

     = 2              22  

 Cube roots of 8 are 2, 
22 , 2    

(iii) Finding cube roots of –27 

(SGD 2014) (K.B + A.B) 
 Let  

 3 27x    
3 27 0x     

            3 3 2 2( )( )a b a b a ab b      
3 33 0x     

    23 – 3 9 0x x x     

Either 

          3 0 ( )x i   or
2 – 3 9 0 ( )x x ii     

        Equation  i        

 –3x     
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 Equation  ii   

   
      

 

2
3 3

 
4 1 9

2 1
x

    
  

      = 
3 9 36

2

 
 

      = 
3 27

2

 
 

      = 
3 3 3

2

 
 

      
1 3

3
2

   
    

 
 

Either 

1 3
3

2
 x

   
 


 


or 
1 3

3
2

 x
   

 


 


 

–3x    2–3x    

     Cube roots of –27 are –3, –3 , –3 2  

(iv) Finding cube roots of 64. 

(LHR 2015) (K.B + A.B) 
 Let  

 3 64x   

 Taking cube on both sides  

 3 64x    

 3 – 64 0x    

 3 3– 4 0x    

            
3 3 2 2( )( )a b a b a ab b      

   2– 4 4 16 0x x x     

 Either   

       – 4 0x i   or  2 4 16 0x x ii      

 Equation  i   

4x   

Equation  ii   

 
    

 

2
4 4 4 1 16

2 1
x

  
  

4 16 64

2
x 

  
 

4 48

2
x

  
  

4 4 3

2
x

  
   

1 3
4

2
x

   
  
 

  

Either 

 
1 3

4
2

x
   
  
 

 or 
1 3

4
2

x
   
  
 

  

 4x        or 24x     

         Cube roots of 64 are 
24,4 ,4    

Q.2 Evaluate:  (K.B + A.B) 
(FSD 2017, BWP 2016, RWP 2015, 
MTN 2014, 15, 17, D.G.K 2015, 17) 

(i) 2 71– –( )   

(ii)  
5

21 3 3     

(iii) (9 + 4 + 4 2)3 

(iv)   2 22 2 – 2 3 – 3  3      

(v)    
6 6

1 3 1 3        

(vi) 

9 9

1 3 1 3

2 2

      
      

   
 

(vii) 37 38 5    

(viii) 13 17     

Solution:  

(i) 2 71– –( )   

(GRW 2014, 16, 17, FSD 2016, BWP 2017, 
MTN 2017) 

  21     
 

 

 =  
7

1 1      2 1     

 = (1 + 1)7  
 = 27  
 = 128 

(ii)  
5

21 3 3    

 
5

21 3     
   

 
5

1 3 1       2 1     

 
5

1 3   

 
5

4  

1024  



 

  MATHEMATICS –10  48 

Unit–2 Theory of Quadratic Equations 

 
(iii) (9 + 4 + 4 2)3 

(GRW 2014, RWP 2017, FSD 2017, BWP 2016) 

 =  
3

29 4    
 

 

 =  
3

9 4 1     2 1     

 =  
3

9 4  

 = (5)3  

 = 125 

(iv)   2 22 2 – 2 3 – 3  3       

(SWL 2017) 

    2 232 1 – 1–          

 =    2 26 1 1           
 

 21 0     

 =   2 26          

   26 –2 –2   

            36(4 )  

 324    

 = 24(1)  3 1     

 = 24 

(v)    
6 6

1 3 1 3        

1 3

2


  
 ,

2 1 3

2


  
  

   
66 22 2    

6 6 6 122 2    

 6 6 122     

   
2 4

3 364    
  

 

   
2 4

64 1 1  
 

   
3 1   

 64 1 1   

  64 2  

128  

(vi) 

9 9

1 3 1 3

2 2

      
      

   
 

 
21 3 1 3

,
2 2

 
    

 

   
99 2    

    
9 18

    

    
3 6

3 3    

    
3 6

1 1   

 1 1   

 2  

(vii) 37 38 5    
(LHR 2015, SWL 2016, MTN 2015, 

D.G.K 2016, 17) 
36 2 36. . 5      

 2 36. 5      

   
12

31 5   
  

 

 
12

1 1 5   
 

   
3 1   

 1 1 5    

1 5    

6   

(viii) 13 17    

13 17

1 1

 
   

12 2 15

1 1

. .  
   

 

   
4 5

3 2 3

1 1

. .   
   

 
   

4 52

1 1

1 1 
 

3 1   

 
   2

1 1

1 1 
   

 
2

1 1

 
   

 2         
2. 1   

 1               
21 0     
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Q.3 Prove that   (K.B + U.B)

    3 3 2+ = + + +x y x y x y x y    

(SGD 2015, BWP 2016) 

Proof: 

R.H.S  

=      2y y yx x x     

=   2 2 3 2y xy yx y x x       

=      2 2 2y y 1 yx x x     
 

3 1   

=    2 2y 1 y yx x x     
21 0      

=   2 2y y yx x x      

3 3x y     

= L.H.S  

Proved 

Q.4 Prove that 
3 3 3+ + –3x y z xyz  

   2 2x y z x y z x y z          

(K.B + U.B) 

Proof: 

R.H.S  

   2 2x y z x y z x y z          

  2 2 3 2

2 2 4 3 2

y z ( y z y y

yz z yz z )

x x x x x

x

   

   

      

   
 

  2 3 2 3 2 2

2 4 2

y z ( y z y y

yz yz z z)

x x x x

x x

   

   

      

   
 

       

   

2 2 2 2

2 4 2 3

y z ( 1 y 1 z y

yz z) 1

x x x

x

 

    

      

    
 

       2 2 2 2y z y z 1 y yz 1 zx x x x            
 

 
2 4 31 0, .         

  2 2 2y z y z y ( 1)yz zx x x x        

  2 2 2y z y z y yz zx x x x       

3 3 3y z 3 yzx x     

= L.H.S 

Proved 

Q.5 Prove that 

    2 4 81 1 1 1 ....2n        

(K.B + A.B + U.B) 

Proof: 

L.H.S 

    2 4 81 1 1 1 ...2 factors n         

   
2

4 3 8 2 6 2 3 2 2, 1                    

2 2(1 )(1 )(1 )(1 )...2 factorsn         

 
2 2 2

(1 )(1 )(1 )..... factors

(1 )(1 )(1 )..... factors

n

n

  

  

   

    

 

   21 1
nn

     

  21 1
n

    
   

 2 31
n

       

 0 1
n

        2 31 0, 1        

 1
n

  

1  

=R.H.S  

Relation between Roots and Co-efficient 

of a Quadratic Equation  (K.B + U.B) 

Roots of standard quadratic equation 
2 0ax bx c    are  

2 24 4
and

2 2

b b ac b b ac

a a

     
 

If 
2 24 4

and
2 2

b b ac b b ac

a a
 

     
   

Sum of roots  

2 24 4
+

2 2

b b ac b b ac
S

a a

     
  

      
 2 24 4

2

b b ac b b ac

a

      
  

          
2

2

b

a


  

  
b

S
a
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Product of roots  

2 24 4

2 2

b b ac b b ac
P

a a

       
   
  
  

 

    2 2a b a b a b     

 
   

 

2
2 2

2

4

2

b b ac

a

  
  

 
 2 2

2

4

4

b b ac

a

 
  

 
2 2

2

4

4

b b ac

a

 
  

2

4

4

ac

a
  

    
c

P
a

   

Note    (K.B + U.B) 

(i) 
2

Coefficientof 

Coefficent of 

b x
S

a x
     

(ii) 
2

Constant term

Coefficient of 

c
P

a x
   

Quadratic Equation with Given Roots 

(K.B + U.B) 
A quadratic equation whose roots are given 
can be obtained by using formula 

2 0x Sx P             Or 

 2 Sum of roots Product of roots = 0 x x   

Example 1: (Page # 26)  (A.B) 

Without solving, find the sum and 
product of roots of the equation 

23 5 7 0x x    
Solution: 

23 5 7 0x x    
Here 3, 5, 7a b c     

Sum of roots 
b

S
a

    

                       
5 5

3 3


    

Product of roots
c

P
a

   

                           
7

3
  

To find unknown values involved in 

a given Quadratic Equation 

Example 1: (Page # 27)  (A.B) 

Find the value of h, if the sum of 

roots is equal to 3-times the 

product of roots of the equation: 
23 (9 6 ) 5 0x h x h    . 

Solution: 
23 (9 6 ) 5 0x h x h     

Here 3, 9 6 , 5a b h c h     

Let ,  be the roots of given 

equation 

Then 
9 6 6 9

3 3

b h h

a
 

 
       

And        
5

3

c h

a
    

According to given condition 

Sum of roots = 3(Product of roots) 

3     
6 9 5

3
3 3

h h  
  

   
6 9 15h h 

 6 15 9h h   

9 9h   

1h    

Exercise 2.3 

Q.1 Without solving, find the sum and 

the product of the roots of the 

following quadratic equations.  

(i) 2 5 3 0x x       (MTN 2017) (A.B) 

Here 1, –5, 3a b c     

 Sum of roots     = 
b

a
  

      = 
( 5)

1


  

      = 5 

 Product of roots = 
c

a
 

      = 
3

1
 

      = 3 
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(ii) 23 7 11 0x x      (A.B) 

(LHR 2017, SWL 2017, SGD 2016, D.G.K 2014) 
 Here 

 3, 7, 11a b c     

 Sum of roots  = 
b

a
  

   
7

3
   

 Product of roots 
c

a
  

      
11

3


  

      
11

3
    

(iii) 2p q r 0x x     (A.B) 

(LHR 2014, GRW 2014, SWL 2016, MTN 

2017, SGD 2016) 
Here ,  – ,a p b q c r     

Sum of roots = 
b

a
  

   = 
( )q

p


  

   
q

p
  

 Product of roots = 
c

a
 

                                       = 
r

p
 

(iv)   2 0a b x ax b      (A.B) 

(BWP 2014, 17) 
Here 

            , – ,A a b B a C b      

 Sum of roots  = 
B

A
  

   = 
a

a b





 

   = 
a

a b
 

 Product of roots = 
C

A
 

     
b

a+b
  

(v)    2 1 0l m x m n x n         

            Here  
, ,a l m b m n c n l       

 Sum of roots  = 
b

S
a

   

   
m n

l m


 


 

 Product of roots = 
c

P
a

  

      
n l

l m





 

(vi) 27 5 9 0x mx n     (A.B) 
 Here  
            a = 7, b = –5 m, c = 9n  

 Sum of roots  = 
b

a
  

   = 
5m

7


  

   = 
5m

7
 

 Product of roots = 
c

a
 

      =
9

7

n
 

Q.2 Find the value of k, if  
(i) Sum of the roots of the equation 

22 3 4 0kx x k    is twice the 

product of the roots. (A.B) 
Solution: 
 Let ,  be the roots of equation 

 22 3 4 0kx x k    
            Here  

2 , 3, 4a k b c k     

b
S

a
      

 
 3

2k

 
  

 
3

2k
   

c
P

a
    

 
4

2

k

k
  

 2   
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According to given condition 

2S P   

3
2 2

2k
   

3 4

2 1k
   

3 1 4 2k     
3 8k  

3

8
k   

3

8
k   

(ii) Sum of the roots of the equation 

 2 3 7 5 0x k x k    is
3

2
times the 

product of the roots.  (A.B) 

Solution:  

 
2 (3 7) 5 0x k x k     

 Here, 1, 3 7, 5a b k c k     

 Sum of roots = S = 
b

a


 

      = 
3 7

1

k 
  

      –3 7k    

 Product of roots = P = 
c

a
 

      = 
5

1

k
 

      5k   
 According to given condition:  

  S = 
3

P
2

 

  
3

3k 7 5k
2

    

    2 3k 7 3 5k    

 –6k + 14 = 15k 
 14 = 15k + 6k  
 14 = 21k  

 
14

k
21

  

 
2

k
3
  

Or  
2

k
3

  

Q.3 Find k,  

(i) If sum of squares of the roots of 

the equation 24k 3k 8 0x x   is 2. 

Solution  (FSD 2015) (A.B) 

 24k 3k 8 0x x    

 Here a = 4k, b = 3k, c = –8  

 Let,  be the roots  

 Sum of roots =  +  = 
b

a
  

           = 
3k

4k
  

         +  = 
3

4
  

           Product of roots =  = 
c

a
 

  = 
8

4k


 

   = 
2

k


 

 According to given condition  

 2 2α β 2   

  
2

α β 2αβ     

 Putting the values  

 

2
3 2

2 2
4 k

   
      
   

 

 
9 4

2
16 k

   

 
4 9

2
k 16
   

 
4 32 9

k 16


  

 
4 23

k 16
  

 
k 16

4 23
  

 
64

k
23
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(ii) Sum of the squares of the roots of 

the equation  2 2 2 1 0x kx k     

is 6.    (A.B) 

Solution: 

            Here  

 1, 2 , 2 1a b k c k      

 Let, ,   be the roots of given 

 equation,        

           Then  

           Sum of roots 
b

a
      

           
2

1

k 
  

 
 

           = 2k  

 Product of roots 
c

a
   

    

2 1

1

2 1

k

k




 

 

 According to given condition  

 
2 2 6    

 Or  
2

2 6      

 Putting the values  

    
2

2 2 2 1 6k k    

 24 4 2 6 0k k     

 24 4 8 0k k    

  24 2 0k k    

 Or 2 2 0k k    

 2 2 2 0k k k     

    2 1 2 0k k k     

   2 1 0k k    

Either 

2 0k    or  2k   

1 0k    

1k    

Result  

2, 1k    

Q.4 Find p, if 

(i) The roots of the equation 
2 2 0x x p    differ by unity. 

(FSD 2015) (A.B) 

       Let ,   be the roots of given equation.  

 Here  21, 1,a b c p     

 Then  
b

a
     

              
1

1

 
  

 
 

             = 1  

       = 
c

a
 

2

1

p
  

 2p  

 According to given condition  

 1    

 Taking square on both sides  

  
2

1    

        
2 2(a b) ( ) 4a b ab     

  
2

4 1      

 Putting the values  

  
2 21 4 1p   

 
21 4 1p   

 
21 1 4 p   

 
20 4 p  

Or  

 
2 0p   

 By taking square root  

 p = 0  

Result:  

 p = 0 

(ii) The roots of the equation 
2 3 P 2 0x x     differ by 2.  

Solution:     (A.B) 

 2 3 P 2 0x x     

            Here 1, 3, – 2a b c P    

            Let roots of given equation are ,    
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           Then sum of roots 
b

-
a

     

         = 
3

1
  

       –3       

           Product of roots 
c

a
   

      = 
P 2

1


 

 According to given condition  

  – 2    

 Taking square of both sides 

  
2( – 4)    

  
2( ) 44     

       Putting the values  
  (–3)2 – 4(P – 2) = 4 
  9 – 4P + 8 = 4  
  9 + 8 – 4 = 4P  
  13 = 4P  

 Or  
13

P
4

  

Result: 
13

P
4

  

Q.5 Find m, if  

(i) The roots of the equation 
2 7 3m 5 0x x     satisfy the 

relation 3α 2β 4    (A.B) 

Solution:  

 2 7 3m 5 0x x     

 Here 1, –7, 3 – 5a b c m     

 Let ,   be the roots of given 

equation  

Then sum of roots =  +  = 
b

a
  

           = 
7

1


  

   7 i      

Product of roots =  = 
c

a
 

    = 
3m 5

1


 

   3 – 5 iim    

 According to given condition  

   3 +2 =4 iiiα β   

 Multiply equation (i) by ‘2’  

  2α 2β 14    (iv) 

 Sub. Equation (iii) & (iv) 

  
3 2 4

2 2 14

 

 

 

 
 

                    = –10 
 Put in equation (i)  

   +  = 7  

  –10 +  = 7 

   = 7 + 10 

   = 17 

Putting the values of  and  in equation (ii)  

  3 5m    

  –10(17) = 3m – 5 
  –170 + 5 = 3m  

  
165

m
3


  

 Or  m = –55  

            Result:  

            55m    

(ii) The roots of the equation 
2 7 3 5 0x x m     satisfy the 

relation 3 2 4     (A.B) 

 Let ,   be the roots of given 

equation  
 Here  

 1, 7, 3 5a b c m     

 Then  

7

1

7 ( )

b

a

i

 

 

  




   

 

3 5

1

c

a

m

 




 

3 5 ( )m ii      

 Also given  

 3 2 4 ( )iii     
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 Multiply equation (i) by 2 

 2 2 14 ( )iv      

 Adding equation (iii) and (iv)  

 3 2 4    

 2 2 14     

 5    10   

 
10

5
    

 2     

 Put in equation (i)  

 

7

2 7

7 2

5

 







  

   

  

 

 

          Now putting the values in equation (ii)  

 3 5m    

  2 5 3 5m     

 10 5 3m   

 15 3m  

 
15

3
m  

 5 m  

 Result:  

 5m   

(iii) 23 2 7m 2 0x x      (A.B) 

Here 3, –2, 7 2a b c m      

        Let ,   be the roots of given equation  

Then sum of roots =  +  = 
b

a
  

           = 
2

3


  

   +  = 
2

3
   (i)  

Product of roots =  = 
c

a
 

   = 
7m 2

3


(ii) 

 Also given  

 7α 3β 18 (iii)    

 Multiply equation (i) by ‘3’  

 3α 3β 2 (iv)    

 Adding equation (iii) and (iv)  

 

7 3 18

3 3 2

10 20

 

 



 

 



 

   = 2 
 Put in equation (i)  

 
2

α β
3

   

 2 +  = 
2

3
 

  = 
2

2
3
  

       = 
2 6

3


 

 
4

β
3


  

Now putting the values of  and  in  
equation (ii)  

 
4 7m 2

2
3 3

  
 

 
 

 –8 = 7m + 2 
 –8 – 2 = 7m 
 –10 = 7m  

 
10

m
7


  

 Result: 

  
10

m
7


  

Q.6 Find m, if sum and product of the 
roots of the following equations is 
equal to a given number . 

(A.B) 

(i)      22 3 7 5 3 10 0m x m x m       

Here 

           2 3, 7 5a m b m    and 3 10c m   

       Let ,   be the roots of given equation, 

Then    = 
b

a
  

   
7 5

2 3

m

m


 


 

   
5 7

2 3

m

m





 



 

  MATHEMATICS –10  56 

Unit–2 Theory of Quadratic Equations 

 

 And      = 
c

a
 

   = 
3 10

2 3

m

m




 

 According to given condition  

        

 (By using transitive property)  

      

 Putting the values  

 
5 7 3 10

2 3 2 3

m m

m m

 


 
 

Or  

 5 7 3 10m m    

 (By using cancellation property) 

 7 3 10 5m m      

 10 15m    

 
15

10
m





 

 
3

2
m   

Result:   
3

2
m   

(ii)    24 3 5m 9 17 0x x m      

(A.B) 

Here 

   4, – 3 5 , – 9 –17a b m c m      

 Let ,  be the roots 

 Then  +  = 
b

a
  

          =
 3 5m

4

 
  

          =
3 5m

4


 

 And       
c

αβ
a

  

                    = 
(9m 17)

4

 
 

 According to given condition:  

 α β λ and αβ λ    

 α β αβ   

  Transitive property of equality 

 Putting the values 

 
 9m 173 5m

4 4

 
  

  3 + 5m = –9m + 17 

 5m + 9m = 17 – 3 

 14m = 14 

 1m   

Result:  1m   

Symmetric Function of the Roots of 

Quadratic Equation  (K.B + U.B) 
(MTN 2014, FSD 2014) 

A function in which the roots involved are 

such that the value of the expression remains 

same, when roots are interchanged is called 

symmetric function.  i.e.     , ,f f     

Some symmetric functions are: 

2 2 3 3 1 1
, ,   

 
    

Example: (Page # 30) (K.B + U.B) 

Verify that  
2 2 2     is Symmetric 

Verification: 

 Let     2 2, 2 if          

            
2 2

, 2f         

                     
2 2 2      

                      2 2 2 ii       

From equation (i) and (ii) we get 

   , ,f f     

 Hence 
2 2 2     is symmetric 

Example: (Page # 30)  (A.B + U.B) 

Find the value of 
3 3 3    , if 

2, 1   . Also find the value of 
3 3 3     if 1, 2   . 

Solution:  

When 2, 1    
3 3 3 33 (2) (1) 3(2)(1)        

                        8 1 6 15     

 When 1, 2    
3 3 3 33 (1) (2) 3(1)(2)        

                        1 8 6 15     
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Note  

 Expression 3 3 3     

represents a symmetric function. 

Exercise 2.4 

Q.1 If ,  are roots of the equation 
2 p q 0x x   , then evaluate 

(i) 2 + 2    

(ii) 3 3α β αβ  

(iii) 
α β

β α
  

(i) Solution:   (A.B + U.B) 

 2 p q 0x x    

Here a = 1,  b = p,   c = q 
Roots of given equation are ,    

Then  

 +  = 
b

a
  

 = 
p

1
  

            p   

      
c

αβ
a

  

           = 
q

1
 

           = q 

(i) Now  
22 2α β α β 2αβ     

   
22 2α β 2 qp     

 = p2 – 2q 

(ii) 3 3α β αβ = 
2 2αβ(α β )  (A.B) 

     = 2αβ (α β) 2αβ     

    = 2q ( ) 2(q)p     

 
3 3 2α β αβ q(p 2q)     

(iii) 
2 2α β α β

β α αβ


    

(LHR 2015) (K.B + U.B) 

  = 
2(α β) 2αβ

αβ

 
 

  = 
2( ) 2(q)

q

p 
 

 
2α β 2q

β α q

p 
    

Q.2 If ,  are the roots of the equation 
24 5 6 0x x   , then find the value of  

(i)  
1 1

α β
   (K.B + A.B) 

(ii) 2 2α β   (A.B + U.B) 

(iii) 
2 2

1 1

α β αβ
  (U.B + A.B) 

(iv) 
2 2α β

β α
  (K.B + U.B) 

(LHR 2016, GRW 2014, SWL 2016, MTN 

216, SGD 2015, D.G.K 2014) 
Solution:  

 24 5 6 0x x    

 Here 4, 5, 6a b c      

Since ,  be the roots of the given 

equation  

 Then  

 
b

a
     

  
 5

4


   

  
5

4
  

 
c

a
   

  
6

4
  

  
3

2
  

(i) 
1 1  

  


   

  
 




  

  

5

4
3

2

  

  
5 2

4 3
   

 
1 1 5

6 
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(ii) 2 2α β = 2(αβ)  

   = 

2
3

2

 
 
 

 

 2 2 9
α β

4
   

(iii) 
2 2 2 2

1 1  

    


   

         
 

2

 




  

                     
2

5

4

3

2


 
 
 

 

          

5

4
9

4

  

                     
5 4

4 9
   

2 2

1 1 5

9  
    

(iv) 
2 2 

 


3 3 




  

 
   

3
3    



  
  

 Putting the values 

 

3
5 3 5

3
4 2 4

3

2

    
    

      

 

125 45

64 8
3

2



  

 
125 360 2

64 3


   

 
235 2

64 3


   

 
2 2 235

96

 

 
     

Q.3 If ,  are the roots of the equation 
2 m n 0lx x     0l  , then find 

the values of  

(i) 3 2 2 3α β α β  (A.B + U.B) 

(ii) 
2 2

1 1

α β
  (K.B + U.B) 

Solution: 

 2 m n 0lx x    
 Roots of given equation are ,    

 Then  
b

α β
a

   = 
m

l
  

   = 
c

a
 

        = 
n

l
 

(i) Now  3 2 2 2 2 2α β α β α β α β    

      =    
2

αβ α β  

     

2
n m

l l

   
     
   

 

                          
2

2

n m

l l

 
   

 
 

 
2

3 2 2 2

3

mn
α β α β

l
     

(ii) 
2 2

2 2 2 2

1 1 β α

α β α β


   

(FSD 2017, SWL 2017, BWP 2014, D.G.K 2017) 

   = 
 

2 2

2

α β

αβ


 

    = 
 

 

2

2

α β 2αβ

αβ

 
 

    = 

2

2

m n
2

n

l l

l

   
    
   

 
 
 

 

    = 

2

2

2

2

m 2n

l l
n

l



 

    = 
2 2

2 2

m 2 n

n

l l

l


  



 

  MATHEMATICS –10  59 

Unit–2 Theory of Quadratic Equations 

 

 
2

2 2 2

1 1 m 2 n

α β n

l
    

Exercise 2.5 

Q.1 Write the quadratic equations 
having following roots.  

(a) 1, 5  (K.B + A.B) 

(b) 4, 9  (K.B + A.B) 

(c) –2, 3   (K.B + A.B) 

(d) 0, –3   (K.B + A.B) 

(e) 2, –6   (K.B + A.B) 

(f) –1, –7  (K.B + A.B) 

(g) 1 , 1i i   (K.B + A.B)  

(h) 3 2, 3 2  (K.B + A.B) 

Solution:  
(a) Roots of required equation are 1, 5 
 Then sum of roots = S = 1 + 5 = 6 

 And product of roots = P = 1  5 = 5 

  Required quadratic equation is:  

  2 P 0x Sx    

  2 6 5 0x x    
(b)       (FSD 2016, 17, RWP 2017, RWP 2017) 

Roots of required equation are 4, 9  
 Then sum of roots = S = 4 + 9 = 13 

And product of roots 4 9 36P     

  Required quadratic equation is:  

 2 P 0x Sx    

 2 13 36 0x x    
(c) (LHR 2014, 16, GRW 2016, 17, SGD 

2017, D.G.K 2017) 
Roots of required equation are –2, 3  

 Then sum of roots = S = –2 + 3 = 1 
And product of roots = P = –2(3) = –6  

  Required quadratic equation is:  

  

2

2

2

P 0

1 6 0

6 0

x Sx

x x

x x

  

   

  

 (K.B + A.B) 

(d)   (SGD 2014, BWP 2017) 
Roots of required equation are 0, –3  
Then sum of roots = S = 0 + (–3) = –3 
And product of roots = P = 0(–3) = 0 

 Required quadratic equation is:  

 2 P 0x Sx    

  2 3 0 0x x     (K.B + A.B) 

 2 3 0x x   

(e) (LHR 2014, 16, GRW 2016, 17, SGD 

2017, D.G.K 2017) 
Roots of required equation are 2, –6  

 Sum of roots = S = 2 + (–6) = –4 

 Product of roots = P = 2(–6) = –12 

 Required quadratic equation is: 

 2 S P 2x x    

    2 4 12 0x x       

 2 4 12 0x x    (K.B + A.B) 

(f)            (LHR 2015, 17, RWP 2016) 
Roots of required equation are –1, –7 

 Sum of roots = S = –1 + (–7) = –8 

 Product of roots = P = –1(–7) = 7 

  Required quadratic equation is: 

 2 S P 0x x    

  2 8 7 0x x     (K.B + A.B) 

 2 8 7 0x x    

(g)   (D.G.K 2014, SGD 2017) 

1 , 1i i    (K.B + A.B) 

Roots of the required equation are 

1 , 1i i    

Sum of roots     1 1S i i      

 1 1i i     

 2   

Product of roots   1 1P i i     

                                
2 2

1 i   

                             21 i   

                                       1 1    

                             1 1   

                             2  
Required quadratic equation is  

 2 0x Sx P    
2 2 2 0x x    

(h) Roots of required equation are 

3 2, 3 2   (K.B + A.B) 

 Sum of roots  =    3 2 3 2    

   = 3 2 3 2    

   = 6 

 Product of roots =   3 2 3 2   
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     =    
22

3 2  

    = 9 – 2  

    = 7 

  Required quadratic equation is  

         2 0x Sx P    

         2 6 7 0x x    

Q.2 If ,  are the roots of the equation 
2 3 6 0x x   . Form equations whose 

roots are   

(a) 2α 1, 2β 1    

(b) 2 2α ,β    

(c) 
1 1

,
α β

   

(d) 
α β

,
β α

   

(e) 
1 1

α β,
α β

    

Solution:    (K.B + A.B) 

 2 3 6 0x x    

 Here 1, –3, 6a b c     

 Roots of given equations are ,   

 Then  +  = 
b

a
  

         = 
3

1


  

         = 3 

               = 
c

a
 

          = 
6

1
 

         = 6 
(a) Roots of required equation are 

2 1, 2β 1      

(FSD 2015) (K.B + A.B) 

 Sum of roots = S =   2α 1 2β 1   

   = 2α 1 2β 1    

   = 2α 2β 2   

   =  2 α β 2   

   = 2(3) + 2 
   = 6 + 2 
   = 8 

Product of roots = P =   2α 1 2β 1   

   = 4αβ 2α 2β 1    

   = 4(6) + 6 + 1 
    = 24 + 7= 31 

 Required quadratic equation is:  

 
2

2

S P 0

8 31 0

x x

x x

  

  
 

(b) Roots of required equation are 2, 2  

 Sum of roots = S = 2 + 2  

   =  
2

α β 2αβ   

   = (3)2 – 2(6)  
   = 9 – 12 

   = –3  (K.B + A.B) 

 Product of roots = P = 
2 2α β  

   =  
2

αβ  

   = (6)2  
   = 36 

  Required quadratic equation is:  

  2 S P 0x x    

   2 3 36 0x x     

  2 3 36 0x x    

(c) Roots of required equation are 
1 1

,
α β

 

(K.B + A.B) 

Sum of roots = S = 
1 1

α β
  

       = 
β α

αβ


 

       = 
α β

αβ


 

       = 
3

6
 

       = 
1

2
 

 Product of roots = P = 
1 1

.
α β

 

           = 
1

αβ
 

           = 
1

6
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  Required quadratic equation is: 

  

2

2

S P 0

1 1
0

2 6

x x

x x

  

  
 

 Multiply by ‘6’  

  26 3 1 0x x    

(d) Roots of required equation are ,
 

 
 

(K.B + A.B) 

S
 

 
    

2 2 




   

    
 

2
2  



 
  

     
   

2
3 2 6

6


  

      
9 12

6


  

3

6


  

          
1

2
S    

P
 

 
    

         1P   

 Required quadratic equation is  

       
2 0x Sx p    

Or 2 1
1 0

2
x x

 
    
 

 

 2 1
1 0

2
x x      (Multiplying by 2) 

 22 2 0x x    

(e) Roots of required equation, 

1 1
, 
 

    (K.B + A.B) 

 
1 1

S  
 

 
    

 
 

  
 

 


 
    

 
 

  
 

 


 
    

 
 

 
3

3
6

 
18 3

6


  

21

6


7

2
  

  
1 1

P  
 

 
   

 
 

     
 

 


 
   

 
  

    
3

3
6

 
  

 
  

     
1

3
2

 
  

 
 

 
3

2
P   

 Required equation is   

 2 0x Sx P    

 2 7 3
0

2 2
x x    

 Multiplying by (2) 

 22 ` 7 3 0x x    

Q.3 If ,  are the roots of the equation 
2 p q 0x x    form equations whose 

roots are: 

(a) 2 2α ,β   (FSD 2015) 

(b) 
α β

,
β α

 

Solution:   

 
2 q 0x px    

 Here 
 1, ,a b p c q     

 Roots of given equation are ,    

 Then –
b

p
a

       

 αβ =q
c

a
  

(a) Roots of required equation are 
2 2α ,β  

(K.B + A.B) 

 Sum of roots = S = 
2 2α β  

       =  
2

α β 2αβ   

       =  
2

P 2q   

       = p2 – 2q  
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 Product of roots = P = 2 2α β  

            =  
2

αβ  

            = 2(q)  

            = q2  
 Required quadratic equation is  

 2 0x Sx P    

  2 2 22 0x p q x q     

(b) Roots of required equation are 
α β

,
β α

 

(K.B + A.B) 

 Sum of roots = S = 
α β

β α
  

       = 
2 2α β

αβ


 

       = 
2 2q

q

p 
 

 Product of roots = P = 
α β

.
β α

 

    = 1 
  Required quadratic equation is: 

  2 S P 0x x    

 
2

2 2q
1 0

q

p
x x


     

 Multiply by ‘q’ 

  2 2q 2q q 0x p x     

Synthetic Division  (K.B) 
It is the process of finding the quotient and 
remainder, when a polynomial is divided by 
a linear polynomial. 
It is a short cut of long division. 

Example 3: (Page # 35)  (A.B) 
Use synthetic division, divide the 

polynomial   4 35 3P x x x x    by 

2x  .  
Solution:  

   4 3 25 0 3 0P x x x x x      

 Here 2 2x a x x      
 5 1 0 - 3 0 

2   10 22 44 82 

 5 11 22 41 82  

   3 25 11 22 41Q x x x x      

 82R   

Example 3: (Page # 36)  (A.B) 
Using synthetic division, find the 
value of h . If the zero of polynomial 

  23 4 7p x x x h    is 1. 

Solution:  

  23 4 7p x x x h    and its zero is 1. 

Then by the synthetic division. 

1 
3 

 
4 -7h 

 
  3 7 

  3   7 7-7h 
Remainder 7 7h    
Since 1 is the zero of the polynomial, 
therefore, 
Remainder 0 , that is 
 7 7 0h    

  
7 7

1

h

h



 
  

Example 4: (Page # 36)  (A.B) 
Using synthetic division, find the 
values of l  and m , if 1x   and 1x   
are the factors of the polynomial 

  3 23 1P x x lx mx      

Solution: 
Since 1x   and 1x   are the factors 

of   3 23 1P x x lx mx      

Therefore, 1 and –1 are zeros of 

polynomial  P x . 

Now by synthetic division 

 1 
1 3l  m  –1 

  1  3 1l   3 1l m   

 1 3 1l   3 1l m   3l m  
 

Since 1 is the zero of polynomial, 
therefore, remainder is zero, that is,  
3 0 ( )l m i    

And 

–
1 

1 3l  m  –1 

  1  3 1l   3 1l m   

 1 3 1l   3 1l m   3 2l m   
Since 1 is the zero of polynomial, 
therefore, remainder is zero, that is,  
3 2 0 ( )l m ii     

Adding equations (i) and (ii), we get 
  6 2 0l     

  
2 1

6 2
6 3

l l      
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Put the value of l  in equation (i) 

1
3 0

3
m

 
  

 
  or     

1 0 1m m       

Thus  
1

3
l      and  1m     

Example 6: (Page # 38)  (A.B) 

By synthetic division, solve the 

equation 4 249 36 252 0x x x     
having roots 2  and 6. 

Solution: 
Since –2 and 6 are the roots of the given 

equation 4 249 36 252 0x x x    . 
Then by synthetic division, we get 

–2 

1 0 –49 36 252 

  –2 4 90 –252 

6 

1 –2 –45 126 0 

 6 24 –126  

 1 4 –21 0  
  The depressed equation is 

 2 4 21 0x x     

 2 7 3 21 0x x x      

    7 3 7 0x x x     

   7 3 0x x     

Either 7 0x     or  3 0x     

          7x      or  3x    

Thus 2,6 7   and 3 are the roots of 

the given equation. 

Exercise 2.6 

Q.1 Use synthetic division to find the 
quotient and the remainder, when  

(i)    2 7 1 1x x x        

(ii)    34 5 15 3x x x     

(iii)    3 2 3 2 2x x x x      

Solution: 

(i)   2P 7 1x x x    

(FSD 2016, 17) (A.B) 

 
–1 

1 7 –1 

 –1 –6 

 1 6 7  

 Q(x) = x + 6 
          R= –7  

(ii)   3P 4 5 15x x x     (A.B) 

(SWL 2016, SGD 2017, MTN 2016) 

          = 3 24 0 5 15x x x    

 

–3 

4 0 –5 15 

 –12 36 –93 

 4 –12 31 78  

    2Q 4 12 31x x x    

  R = –78  

(iii)   3 2P 3 2x x x x     (A.B) 

(GRW 2017, FSD 2015, MTN 2017, D.G.K 2015) 

 

2 

1 1 –3 2 

 2  6 6 

 1 3  3 8  

    2Q 3 3x x x    

  R = 8 

Q.2 Find the value of h using synthetic 

division, if    (A.B) 

(i) 3 is the zero of the 

polynomial 3 22 3h 9x x   

(ii) 1 is the zero of the 

polynomial 3 22h 11x x   

(iii) –1 is the zero of the 

polynomial 32 5h 23x x   

Solution:  

(i)   3 22 3 9P x x hx     

(SWL 2014) (A.B) 

          = 3 22 3 0 9x hx x    

 2 3h   0 9 

3    6 9 18h    27 54    

 2 3 6h   9 18h   27 63h   

Since 3 is the zero of given polynomial, 

0R   

   –27h + 63 = 0 

  –27h = –63 

        h  = 
63

27




 

         h = 
7

3
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(ii)   3 2P 2h 11x x x     (A.B) 

                   = 3 22h 0 11x x x    

 

1 

1 –2h         0      11 

    1    –2h+1 –2h+1 

 1 –2h+1    –2h+1 2h 12   

Since 1 is zero of given polynomial, R = 0 

   –2h + 12 = 0 

  –2h = –12 

      h = 
12

2




 

      h = 6 

 Result: 

  h = 6 

(iii)   3P 2 5h 23x x x     (A.B) 

          = 3 22 0 5h 23x x x    

 

–1 

2  0    5h      –23 

 –2     2      –5h–2  

 1 –2h+1    –2h+1   5h 25   

Since 1 is zero of given polynomial, R = 0 

 –5 – 25 0h    

  –5 25h    

   
25

5
h   5   

 Result:  

  5h    

Q.3 Use synthetic division to find the 

values of l and m, if   (A.B) 

(i) (x + 3) and (x – 2) are the 

factors of the polynomial 
3 24 2 mx x l    

(ii) (x – 1) and (x + 1) are the 

factors of the polynomial 
3 23 2m 6x lx x    

Solution:  

(i)   3 2P 4 2 mx x x lx     (A.B) 

 

–3 

1  4    2l        m 

 –3    –3      –6l–9 

 

2 
1  1    2l–3   6 m 9l    

  2      6 

 1  3   2 3l   

 
 Since x – 2 is a factor, R = 0  

   2l + 3 = 0 

  2l = –3 

  l = 
3

2


 

 Also 3x   is a factor, R = 0  

   6 m 9 0l     

      
3 3

6 m 9 0
2 2

l
  

     
 

 

  9 + m + 9 = 0 

  m + 18 = 0 

  m = –18 

 Result  

           
3

2
l


 , m = –18  

(ii)   3 2P 3 2m 6x x lx x     (A.B) 

 

1 

1 –3l    2m         6 

   1    –3l+1  –3l+2m+1 

 

-1 
1  –3l +1    –3l+2m+1  3 2m 7l    

  –1      3l 

 1  –3l   2m 1  

 Since 1x  is a factor, R = 0  

  2m + 1 = 0 

  2m = –1  

 m =  
1

2


 

Also x – 1 is a factor, R = 0 

 3 2m 7 0l     

1 1
3 2 7 0

2 2
l m

 
       

 
 

–3l – 1 + 7 = 0 

–3l +6 = 0 

–3l = –6 

  l = 2 

 Result  

  l = 2 , m = 
1

2
  

Q.4 Solve by using synthetic division, if  

(i) 2 is the root of the equation 
3 28 48 0x x    

(ii) 3 is the root of the equation 
3 22 3 11 6 0x x x     

(iii) –1 is the root of the equation 
3 24 11 6 0x x x     
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Solution:  

(i)   3P 28 48x x x     (A.B) 

          = 3 20 28 48x x x    

 

2 

1 0 –28   48 

 2    4  –48 

 1 2 –24 0  

  

          Depressed equation is: 

 2 2 24 0x x    

 2 6 4 24 0x x x     

    6 4 6 0x x x     

   6 4 0x x    

 Either       

 6 0x         or  4 0x    

 6x      4x   

Thus 2, 4 and –6 are the roots of the 

given equation.  

 SolutionSet 2,4, 6    

(ii) P(x) = 2x3 – 3x2 – 11x + 6 (A.B) 

 

3 

2 –3 –11    6 

   4   9   –6 

 2   3  –2    0  

  Depressed equation is:  

 22 3 2 0x x    

 22 4 2 0x x x     

    2 2 1 2 0x x x     

   2 2 1 0x x    

 Either    
 2 0x    Or 2 1 0x    
 2x      2 1x   

    
1

2
x   

Solution Set
1

3, 2,
2

 
  
 

 

(iii)   3 24 11 6P x x x x     (A.B) 

 
–1 

4 –1 –11    –6 

 –4    5      6 
 4 –5 –6    0  

 Depressed equation is 
24 5 6 0x x     
24 8 3 6 0x x x     

   4 2 3 2 0x x x      

  2 4 3 0x x     

Either  
2 0x    or 4 3 0x     
2x       4 3x     

3

4
x    

Thus 
3

1,2,
4

  are the roots of the 

given equation. 

Solution Set
3

1, 2,
4

 
   
 

 

Q.5 Solve by using synthetic division, if  
(i) 1 and 3 are the roots of the 

equation 4 210 9 0x x    
(ii) 3 and –4 are the roots of the 

equation 
4 3 22 13 14 24 0x x x x      

Solution:     (A.B) 

(i)   4 3 20 10 0 9x xP x xx      

1 
1 0 –10 0 9 

 1 1 –9 –9 

3 
1 1 –9 –9 0   

 3 12 9  

 1 4 3 0    

 Depressed equation is  

 2 4 3 0x x    

 2 3 3 0x x x     

    3 1 3 0x x x     

   3 1 0x x    

 Either      

 3 0x    or 1 0x    

 3x      1x      

Solution Set  3, 1    

(ii)   4 3 2P 2 13 14 24x x x x x      

 

3 

1 2 –13    –14         24 

 3   15         6       –24 

 

–4 
1 5    2      –8           0  

 –4   –4        8  

 1  1    –2        0  

  Depressed equation is:  
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2 2 2 0

2 1 2 0

x x x

x x x

   

   
 

    2 1 2 0x x x     

   2 1 0x x    

 Either   

 2 0x    or 1 0x    

 2x      1x   

Thus –2, –4, 1 and 3 are the roots of 

the given equation.  

Solution Set  2, 4,1,3    

Simultaneous Equation   (K.B) 

A system of equations having a common 

solution is called a system of simultaneous 

equations. 

For example 2 3, 2 1x y x y     

having same solution (1,1). 

Solution Set   (K.B) 

The set of all the ordered pairs  ,x y , which 

satisfies the system of equations is called the 

solution set of the system. 

Ordered Pair   (K.B) 

An ordered pair of real numbers x and y is a 

pair  ,x y in which elements are written in 

specific order. 

For example:  ,x y is an ordered pair in 

which first elements (abscissa) is x and 

second element (ordinate) is y. 

Note     (K.B) 

   , ,x y x y . For example  2,3  and 

 3,2  are two different ordered pairs. 

Example 1 (Page # 39)   (A.B) 

Solve the system of equations 

3 4x y    and  
2 23 52x y  . 

Solution:  

The given equations are 

 3 4 ix y    

 2 23 52 iix y    

From equation (i)  4 3 iiiy x     

Put value of y in equation (ii) 

 
223 4 3 52x x    

2 23 16 24 9 52 0x x x       
212 24 36 0x x     

 212 2 3 0x x    

2 2 3 0 12 0x x      

By factorization 
2 3 3 0x x x      

   3 1 3 0x x x      

  3 1 0x x     

Either  

3 0x    or  1 0x     

3x     or 1x     

Put the values of x is equation (iii) 

When 3x     when 1x     

4 3y x     4 3y x    

 4 3 3y       4 3 1y      

   4 9       4 3   

5y      7y    

  ordered pairs are  3, 5  and 

 1,7   

 Thus, the solution set is     3, 5 , 1,7    

Example 2 (Page # 40)  (A.B) 

 Solve the equations 

    
2 2 2 8x y x    and    

2 2
1 1 8x y      

Solution: 

The given equation are  

 2 2 2 8 ix y x      

     
2 2

1 1 8 iix y        

From equation (ii), we get 
2 22 1 2 1 8x x y y        

Or 
2 2 2 2 6 ( )x y x y iii       

Subtracting equation (iiii) from 

equation (i) we have 

4 2 2x y       or        2 1x y    

2 1y x    

Put the value of y in equation (ii)  
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2 2
1 2 1 1 8x x       

2 22 1 4 8 0x x x       
25 2 7 0x x     

5 7 5 7 0x x x      

   5 7 1 5 7 0x x x      

  5 7 1 0x x     

Either  
5 7 0x     or  1 0x    
5 7x    or  1x    

7

5
x    

Now putting the values of x in 
equation (iv), we have 

When 
7

5
x    when 1x     

7
2 1

5
y

 
  

 
   2 1 1y     

14 14 5 9
1

5 5 5
y


      

 3y     

 Thus, the solution set is 

  
7 9

1, 3 , ,
5 5

  
   

  
  

Example 3 (Page # 41)  (A.B) 

Solve the equations  
2 2 7x y   and 

2 22 3 18x y    

Solution: 
Given equations are  

2 2 7x y    (i) 
2 22 3 18x y    (ii) 

Multiply equation (i) with 3 
2 23 3 21x y    (iii) 

Subtracting equations (ii) from (iii) 
2 3 3x x      

When 3,x   then from equation (i) 
2 2 7x y   or  

2 23 7 4 2y y y        

When 3,x    then 2y     

Thus, the required solution set is 

  3, 2 .     

Example 4 (Page # 41)  (A.B)  

Solve the equations 
2 2 20x y      (i) 

2 26 0x xy y     (ii) 

The equation (ii) can be written as  
2 26 0y xy x     

     
2 24 1 6

2 1

x x x
y

       
 


  

 
2 2 224 25

2 2

x x x x x  
    

5

2

x x
   

We have 
5 6

3
2 2

x x x
y x


     

Or 
5 4

2
2 2

x x x
y x

 
      

Substituting 3y x  in the equation (i), we get  

 
22 3 20x x    

2 29 20x x    
210 20x    

2 4 2x x      

When  2, 3 2 3 2x y    and 

when  2, 3 2 3 2x y       

Substituting 2y x   in the equation (i), we have  

 
22 2 22 20 or 4 20x x x x       

2 25 20 4 2x x x         

When  2 2 2 4x y        

when  2 2 2 4x y         

Thus, the solution is 

        2,3 2 , 2, 3 2 , 2, 4 , 2,4 .     

Example 5 (Page # 42)   (A.B) 

 Solve the equations 

        
2 2 40x y    and 

2 23 2 80x xy y     

Solution: 

Given equations are 

 2 2 40 ix y     
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 2 23 2 80 iix xy y      

Multiplying equation (i) by 2, we have 

 2 22 2 80 iiix y     

Subtracting the equation (iii) from 

equation (ii), we get 

 2 22 3 0 ivx xy y      

The equation (iv) can be written as  

2 23 3 0x xy xy y      

   3 3 0x x y y x y      

  3 0x y x y     

Either 3x y  or 0x y    

3 ( )x y v    or   ( )x y vi     

Put in equation (i), 

Equation (i)  
2 23 40y y     

      210 40y    

         
2 4y     

         2y      

 

2

eq.( )

3 2

6

y

v

x

x









           
 

2

3 2

6

y

x

x

 

 

 

 

Equation (i)  
2 2 40y y     

              

2

2

2 40

20

2 5

y

y

y





 

    

 

2 5

.( )

2 5

2 5

y

eq vi

x

x





 

 

    
 

2 5

2 5

2 5

y

x

 

  



  

  The solution set is 

        6,2 , 6, 2 , 2 5, 2 5 , 2 5,2 5     

Exercise 2.7 

Solve the following simultaneous equations.  

Q.1 5x y     (A.B) 

 2 2y 14 0x     

Solution: 

 5 (i)x y       
2 2y 14 0 (ii)x      

 From equation (i)  

 5 (iii)y x    

 Put in equation (ii)  

 2 2y 14 0x     

  2 2 5 14 0x x     

 2 10 2 14 0x x     

 2 2 24 0x x    

 2 6 4 24 0x x x     

    6 4 6 0x x x     

   6 4 0x x    

 Either   

6 0x    or 4 0x    

  6x      4x   

 Put in equation (iii)  

 y 5 x    y 5 x   

    = 5 – (–6)     = 5 – 4  

    = 5 + 6     = 1 

    = 11 

Solution Set =     6,11 , 4,1  

Q.2 3 2 1x y     (A.B) 

 
2 2 1x xy y    

Solution: 

  3 2 1 ix y    

 and  2 2 1 iix xy y     

 From equation  i    

 3 2 1x y   

 3 2 1x y   

  
2 1

iii
3

y
x


    

 Now put in equation (ii)  

 
2 2 1x xy y    



 

  MATHEMATICS –10  69 

Unit–2 Theory of Quadratic Equations 

 

 

2

21 2 1 2
1

3 3

y y
y y

    
     

   
 

 
2 2

21 4 4 2
1

9 3

y y y y
y

  
    

 Multiplying both sides by LCM  

 We get  

  2 2 21 4 4 3 2 9 9y y y y y       

 2 2 21 4 4 3 6 9 9 0y y y y y        

 2 7 8 0y y    

 
2 8 8 0y y y     

    8 1 8 0y y y      

   8 1 0y y    

 Either    

 8 0y    or 1 0y   

 8y      1y   

 Putting values in equation (iii)  

 When 8y     

 
1 2

3

y
x


  

  
1 2( 8)

3
x

 
  

 
1 16

3
x


  

 
15

3
x


  

 = 5x     

 When  =1y  

 
1 2

3

y
x


  

 
 1 2 1

3
x


  

 
3

3
x   

 1x   

Solution Set =     5, 8 , 1,1   

Q.3 7x y     (A.B) 

 
2 5

2
x y
    

Solution: 

  7 ix y    

  
2 5

2 ii
x y
    

 From equation  ii  

 
2 5

2
x y
   

 Multiple by xy   

 2 5 2y x xy   

 2 5 2 0y x xy    

  2 2 5 0 iiiy xy x     

 From equation (i)  

  7 ivx y    

 Put in equation (iii)  

     2 2 7 5 7 0y y y y      

 
22 14 2 5 35 0y y y y      

22 17 35 0y y     

  22 17 35 0y y     

 
22 17 35 0y y     

 
22 10 7 35 0y y y     

    2 5 7 5 0y y y     

   5 2 7 0y y    

 Either   

 5 0y    or 2 7 0y   

  5y                   
7

2
y


   

 Now put in equation (i)  

 when 5y    

  5 7x     

 5 7x    

 7 5x    

 2x   

 when 

 
7

2
y
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7

7
2

x
 

  
 

 

 
7

7
2

x   

 
7

7
2

x    

 
14 7

2
x


  

 
7

2
x   

        Solution Set =  
7 7

2, 5 , ,
2 2

   
  

  
 

Q.4 x y a b      (A.B) 

 2
a b

x y
   

Solution: 

 (i)x y a b      

2 (ii)
a b

x y
    

From equation (ii)  

2
a b

x y
   

Multiply by‘ xy ’ 

ay b 2 y (iii)x x    

 From equation (i)  

 y a bx    

  – – ivy a b x   

 Put in equation (iii)  

    a a b b 2 a bx x x x       

 2 2a ab a b 2a 2b 2x x x x x       

           2 22 a 2a b 2b a ab 0x x x x x        

 2 22 3a b a ab 0x x x      

    2 22 3a b a ab 0x x      

        Here   22, 3 ,A B a b C a ab       

 Using quadratic formula 

 
2 4

2

B B AC
x

A

  
   

      
 

2 2
3a b 3a b 4 2 a ab

2 2
x

       



      
  

   
2 23a b 3a b 8 a ab

4
x

    
  

    = 
2 2 23a b 9a 6ab b 8a 8ab

4

     
 

    = 
2 23a b a 2ab b

4

   
 

    =
 

2
3a b a b

4

  
 

    = 
 3

4

a b a b  
 

Either 

3

4

a b a b
x

  
  or 

3

4

a b a b
x

  
  

   = 
4a

4
      = 

2 2

4

a b
 

x = a   
2

x
a b




 

 Put in equation (iv) 

– –y a b a    
–

– –
2

y a b
a b

  

y = – b     y = 
 2a 2b a b

2

  
 

   y = 
a b

2


 

 Solution Set =  
a b a b

, , ,
2 2

a b
    

  
  

  

Q.5  
22 y 1 10x      (A.B) 

 
2 2y 4 1x x    

Solution: 

  
22 y 1 10 (i)x        

 
2 2y 4 1 (ii)x x     

Equation  i   

2 2y 2y 1 10x      
2 2y 2y 9 (iii)x      
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 Subtract equation (ii) and (iii)  

 

2 2

2 2

4 1

2 9

4 2 8

x y x

x y y

x y

  

 

  

 

 2 2 y 8x    

2 y 4x    

4 2 (iv)y x     

Put in equation (ii)  

 
22 4 2 4 1x x x      

 
22 4 2 4 1x x x        

 
22 4 2 4 1x x x     

2 216 16 4 4 1 0x x x x       
25 2 15 0x x    

 25 4 3 0x x    

         2 4 3 0 5 0x x     

 2 3 3 0x x x     

    3 1 3 0x x x     

   3 1 0x x    

 Either  

 3 0x    or  1 0x    

 3x           1x    

 Put in equation (iv)  

y = – 4 – 2 (–3)     y = – 4 – 2 (–1) 

y = – 4 + 6       y = – 4 + 2 

y = 2        y = –2  

 Solution Set=     3, 2 , 1, 2    

Q.6    
2 2

1 1 5x y      (A.B) 

  
2 22 5x y    

Solution: 

      
2 2

1 1 5x y i       

    
2 22 5 iix y     

 From equation  i    

 

2 2

2 2

2 1 2 1 5

2 2 3

x x y y

x y x y

     

   
 

 
2 2 2 2 3 (iii)x y x y      

  
2 22 5x y    

 2 24 4 5x x y     

  2 2 4 1 ivx y x     

 Sub equation (iii) and (iv)  

 2 2 2 2 3x y x y      

 2 2 4 1x y x     

  2 2 2x y    

  1x y    

 1 (v)y x    

 Put in equation (iv)  

  
22 1 4 1x x x     

 2 2 2 1 4 1x x x x      

 22 6 0x x   

  2 3 0x x    

 Either   

 2 =0x   or 3 0x     

 0x     3x      

 Put in equation (v)  

 When 0x   

 y = 1 + 0  

 y = 1  

 When 3x     

 1 3y    

 2y     

 Solution Set     0,1 , 3, 2    

Q.7 2 22y 22x      (A.B) 

 
2 25 y 29x    

Solution: 

 
2 22y 22 (i)x       

2 25 y 29 (ii)x     

Multiply equation (ii) by ‘2’ 
2 210 2y 58 (iii)x     

Subtract equation (i) and (iii)  
2 2

2 2

2

10 2 58

2 22

9 36

x y

x y

x

 

  



 

    2 4x       (Div both sides by 9) 

Taking square root on both sides  
2x    
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Put x2 = 4 in equation (ii)  
5(4) + y2 = 29 
20 + y2 = 29 
y2 = 29 – 20  
y2 = 9  
Taking square root  

y 3   

Solution Set =   2, 3   

Q.8 2 24 5y 6x      (A.B) 

 2 23 y 14x    

Solution: 

  2 24 5y 6 ix     

 
2 23 y 14 (ii)x     

Multiply equation (ii) by 5 
2 215 5y 70 (iii)x     

Adding equation (i) and (iii)  
2 24 5y 6x    

2 215 5 70x y   

219 76x   

2 76

19
x   

2 4x   
Taking square root 

x =  2 

Put 2 4x  in equation (ii) 

  23 4 y 14   

y2 = 14 – 12  
y2 = 2 
Taking square root 

y = 2  

Solution Set =   2, 2   

Q.9 2 27 3 4x y     (A.B) 

 
2 22 5 7x y   

Solution: 

  2 27 3 4 ix y     

 2 22 5 7 iix y    

 Multiply equation (i) by '5'  

  2 235 15 20 iiix y    

  Multiply equation (ii) by  '3'  

  2 26 15 21 ivx y    

 Add equation (iii) and (iv)  

 

2 2

2 2

2

35 15 20

6 15 21

41 41

x y

x y

x

 

 



 

 2 1x   

 On taking square root, we get  

 1x    

 Put 2 1x   in equation (ii)  
2 22 5 7x y   

   22 1 5 7y   

 
22 5 7y   

 
25 5y   

 2 5

5
y   

 
2 1y   

 On taking the square root, we get  

 1y    

Solution Set   1, 1    

Q.10 2 23 3x y     (A.B) 

 
2 24 5 0x xy y    

Solution: 

  2 23 3 ix y    

  2 24 5 0 iix xy y     

 Equation (ii)    

 
2 24 5 0x xy y    

 
2 25 5 0x xy xy y     

    5 5 0x x y y x y     

   5 0x y x y    

 Either    

 5 0x y   or 0x y   

  5 iiix y     ivx y    

 Put 5x y   in equation (i)  

 
2 22 3x y   

  
2 25 2 3y y    

 
2 225 2 3y y   

 
227 3y   
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 2 3

27
y   

 2 1

9
y   

 On taking square root, we get  

1

3
y    

Putting in equation (iii)  

When  

1

3
y   

1
5

3
x

 
   

 
 

5

3
x    

When 
1

3
y    

1
5

3
x

 
   

 
 

5

3
x   

Put x y  in equation (i)  

2 22 3x y   

2 22 3y y   

23 3y   

2 1y   

On taking square root, we get  

1y    

Put in equation (iv)  

When y = 1  

 1x   

When 1y    

 1x    

 Solution Set  

    
5 1 5 1

1,1 , 1, 1 , , , ,
3 3 3 3

    
        

    
 

Q.11 2 23 y 26x      (A.B) 

 2 23 5 y 12y 0x x    

Solution: 

 2 23 y 26 (i)x     

 2 23 5 y 12y 0 (ii)x x     

Equation (ii)  2 23 5 y 12y 0x x    
2 23 9 y 4 y 12y 0x x x     

   3 3y 4y 3y 0x x x     

  3 3 4 0x y x y    

Either 

 3y 0x a     or    3 4y 0x b    

Equation    3 iiix ya    

Put in equation (i)  

 
2 23 3 – 26y y    

 2 23 9 – 26y y    

27y2 – y2 = 26 

26y2 = 26 

y2 = 1 

  y = 1 

Put in equation (iii)  

When y = – 1 

x = 3(–1) 

x = –3 

When y = 1 

x = 3(1) 

x = 3 

Equation  b  3 4y 0x   

3x = –4y 

4
y (iv)

3
x


   

Put in equation (i)  
2

24
3 y y 26

3

 
  

 
 

2 216
y y 26

3

 
  

 
 

2 216y 3y
26

3


  

213y 26 3   
2y 6  
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6y   

Put in equation (iv)  

When – 6y    

 4
6

3
x


   

4 6

3
x   

When 6y    

 4
6

3
x


  

4 6

3
x


  

Solution Set 

   
4 6 4 6

3, 1 , 3,1 , , 6 , , 6
3 3

     
          
     

 

Q.12 2 5x xy     (A.B) 

 
2 3y xy   

Solution: 

  2 5 ix xy    

  2 3 iiy xy    

Multiply equation (i) by ‘3’ and 

equation (ii) ‘5’  

 23 3 15 iiix xy    

 25 5 15 ivy xy    

Subtraction equation (iii) and (iv)  
23 3 15x xy   
25 5 15y xy   

 2 23 2 5 0 vx xy y      

Equation (v)  
2 23 5 3 5 0x xy xy y     

   3 5 3 5 0x x y y x y     

  3 5 0x y x y    

Either    

3 5 0x y   or  0x y   

  
5

vi
3

y
x          viix y     

 Put 
5

3

y
x   in equation (i) 

 

2
5 5

5
3 3

y y
y

   
    

   
 

2
225 5

5
9 3

y
y    

2 225 15
5

9

y y
  

2 225 15 45y y   
240 45y   

2 9

8
y   

On taking square root, we get.  

3

2 2
y    

Put 
3

2 2
y   in equation (vi) 

5 3

3 2 2
x    

5

2 2
x    

Now put 
3

2 2
y


  in equation (vi)  

5 3

3 2 2
x

 
  

 
 

5

2 2
x


  

Now put x y   in equation (i)  

     
2

5y y y     

2 2 5y y   

0 5  
But 0 5  

Solution Set 
5 3 5 3

, , ,
2 2 2 2 2 2 2 2

     
     

    
 

 Alternate Method  

  2 5 ix xy    

  2 3 iiy xy    

 ( )eq i   

   5 ( )x x y iii    

 ( )eq ii   

   3 ( )y x y iv    
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 Dividing equation (iii) and (iv) 

 
 
 

5

3

x x y

y x y





 

 
5

3

x

y
  

 
5

3

y
x   

 Put 
5

3

y
x   in equation (i) 

 

2
5 5

5
3 3

y y
y

   
    

   
 

2
225 5

5
9 3

y
y    

2 225 15
5

9

y y
  

2 225 15 45y y   

240 45y   

2 9

8
y   

On taking square root, we get.  

3

2 2
y    

Put 
3

2 2
y   in equation (vi) 

5 3

3 2 2
x    

5

2 2
x    

Now put 
3

2 2
y


  in equation (vi)  

5 3

3 2 2
x

 
  

 
 

5

2 2
x


  

Solution Set 
5 3 5 3

, , ,
2 2 2 2 2 2 2 2

     
     

    
 

Q.13 2 2 y 7x x     (A.B) 

 
2y 3y 2x    

Solution: 

 
2 2 y 7 (i)x x    

 2y 3y 2 (ii)x     

Multiply equation (i) by ‘2’ and 

equation (ii) by ‘7’  
22 4 y 14 (iii)x x    

27 y 21y 14 (iv)x     

 Subtract equation (iii) and (iv) 
22 4 y 14x x   

27 y 21y 14x    

2 22 11 y 21y 0x x    
2 22 14 y 3 y 21y 0x x x     

   2 7y 3y 7y 0x x x     

  7y 2 3y 0x x    

Either 

7y 0x           or   2x + 3y = 0 

x = 7y (v)  
3

y (vi)
2

x


   

Put in equation (ii) Put in equation (ii) 

  27 3 2y y y   23
y y 3y 2

2

 
  

 
 

7y2 + 3y2 = 2  
2 23y 6y

2
2

 
  

10y2 = 2  3y2 = 4 

5y2 = 1   2 4
y

3
  

2 1
y

5
    

2
y

3
   

1
y

5
    Put in equation (vi) 

Put in equation (v) when y = 
2

3


 

when 
1

y
5

   3 2

2 3
x

  
  

 

 

1
7

5
x

 
  

 
  

3

3
x   
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7

5
x


   3x   

when  

1
y

5
     when 

2
y

3
  

1
7

5
x

 
  

 
  

3 2

2 3
x

  
  

 
 

7

5
x    3x    

Solution Set     

7 1 7 1 2 2
, , , , 3, , 3,

35 5 5 5 3

 
 
        
        
        

 

Problems Leading to Quadratic 

Equations         (A.B + K.B + U.B) 

Example 1: (Page # 43) 

Three less than a certain number 

multiplied by 9 less than twice the 

number is 104. Find the number. 

Solution: 

Let the required number x  

Then, three less than the 

number 3x   

And, 9 less than twice the 

number 2 9x   

According to given condition 

( 3)(2 9) 104x x    

22 9 6 27 104 0x x x      
22 15 77 0x x    
22 22 7 77 0x x x     

2 ( 11) 7( 11) 0x x x     

( 11)(2 7) 0x x    

Either 

11 0x    or 2 7 0x    

11x    or  
7

2
x    

Result: 

Thus, required number is either 11 or 
7

2
  

Example 2: (Page # 44)  (A.B) 

The length of rectangle is 4cm more 

than its breadth. If the area of 

rectangle is 45cm2. Find its sides. 

Solution: 

Let breadth of rectangle x  

Then, length of rectangle 4x   

Area of rectangle 245cm  

According to given condition 

( 4) 45x x   
2 4 45 0x x    
2 9 5 45 0x x x     

( 9) 5( 9) 0x x x     

( 9)( 5) 0x x    

Either 

9 0x     or  5 0x    

9x     or  5x   

(Neglecting –ve value) 

4 5 4 9x      

Result: 

Thus, the breadth is 5cm and length is 9cm 

Exercise 2.8 

Q.1 The product of two positive 

consecutive numbers is 182. Find the 

numbers.   (A.B) 

Solution: 

Let two positive consecutive 

numbers are , 1x x   

 According to given condition:  

  1 182x x    

 2 –182 0x x    

 2 14 –13 –182 0x x x    

    14 –13 14 0x x x     

   14 –13 0x x    

 Either  

 14 0x    or 13 0x    

 14x     13x   

 (Ignore negative value)  

 Therefore,  

 13x   

  1 13 1x    =14 

 Result:  

Thus, required Numbers are 13 and 14.  
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Q.2 The sum of squares of three 

positive consecutive numbers is 77. 

Find the numbers. (A.B + K.B) 
(SWL 2015) 

Solution: 

 Let three consecutive numbers are 

 , 1, 2x x x   

 According to given condition:  

    
2 22 1 2 77x x x      

2 2 22 1 4 4 77 0x x x x x         
23 6 72 0x x    

 23 2 24 0x x    

2 2 24 0x x    
2 6 4 24 0x x x     

   6 4 6 0x x x     

  6 4 0x x    

Either  

6 0x    or 4 0x    

6x      4x   

(Ignore negative value) 

Therefore,      x = 4 

  1 4 1 5x      

&  2 4 2 6x      

 Result: 

Thus required numbers are 4, 5 and 6.  

Q.3 The sum of five times a number 

and the square of the numbers is 

204.   (A.B + K.B) 

Solution: 

 Let required number = x 

 Five times of the number 5x  

 According to given condition:  

 2 5 204x x   

            2 5 204 0x x    

            2 17 12 204 0x x x     

               17 12 17 0x x x     

              17 12 0x x    

 Either  

 17 0x    or 12 0x    

 17x     12x    

 Result: 

Thus required number is either –17 or 12. 

Q.4 The product of five less than three 
times a certain number and one 
less than four times the number 
is7. Find the number. 

(A.B + K.B) 
Solution: 
 Let the required number is x  
 Five less than three times the 
 number 3 5x    
 One less than four times a 
 number 4 1x    
 According to given condition  

   3 5 4 1 7x x    

 212 3 20 5 7 0x x x      
212 23 2 0x x    
212 24 2 0x x x     

   12 2 1 2 0x x x     

 
   

  

12 2 1 2 0

2 12 1 0

x x x

x x

   

  
 

 Either   

 2 0x    or 12 1 0x    

 2x     12 1x    

    
1

12
x


  

 Result: 
Thus, required number is either 2 

 or
1

12
 . 

Q.5 The difference of a number and its 

reciprocal is
15

4
. Find the number. 

(A.B + K.B) 

Solution: 
 Let, required number is x 

 Reciprocal of the number
1

x
  

 Difference of the numbers
15

4
  

 According to given condition  

 
1 15

4
x

x
   

 
2 1 15

4

x

x


  

 By cross multiplication  
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 24 4 15x x   

 24 15 4 0x x    

 24 16 4 0x x x      

    4 4 1 4 0x x x     

   4 4 1 0x x    

 Either   
 4 0x    or  4 1 0x    
 4x     4 1x    

    
1

4
x


  

 Result: 

Thus, required number is either 4 or 
1

4


 

Q.6 The sum of a number of two digits 
of a positive integral number is 65 
and the number is 9 times the sum 
of its digits. Find the number. 

(A.B + K.B) 
Solution: 
 Let unit’s digit = x  
 And ten’s digit = y  

  Required number 10y x   

 According to given condition (I)  

 2 2 65 (i)x y    

 According to condition (II) 
 10y + x = 9(x + y) 
 10y + x = 9x + 9y  
 10y – 9y = 9x – x 

 y = 8x (ii)  

 Put in equation (i)  

  
22 8 65x x   

 2 264 65x x   

 265 65x   

 2 1x   
 Taking positive square root  
 x = 1 
 Put in equation (ii)  
 y = 8(1) 
 y = 8 
 Required number 10y x   

       10 8 1    

      = 80 + 1 
      = 81 
 Result: 
 Thus, required number is 81 

Q.7 The sum of the co-ordinates of a 

point is 9 and sum of their squares 

is 45. Find the co-ordinates of the 

point.   (A.B + K.B) 

Solution: 

 Let required point is (x, y)  

 According to condition I  

 x + y = 9 (i)  

 According to condition II  

 2 2y 45 (ii)x     

 Equation (i)  

 x = 9 – y (iii)  

 Put in equation (ii)  

 (9 – y)2 + y2  = 45 

 81 – 18y + y2 + y2 = 45 

 22y 18y 81 45 0     

 22y 18y 36 0    

  22 y 9y 18 0    

 
2y 9y 18 0    

 
2y 6y 3y 18 0     

    y y 6 3 y 6 0     

   y 6 y 3 0    

 Either  

 y – 6 = 0 or y – 3 = 0 

 y = 6   y = 3 

Put in equation (iii) 

 x = 9 – 6  x = 9 – (3) 

 x = 3   x = 9 – 3  

    x = 6 

 Result: 

Thus, required point is either 

(3,6)  or    (6,3)  
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Q.8 Find two integers whose sum is 9 

and the difference of their squares 

is also 9.  (A.B + K.B) 

Solution: 

 Let two integer are x and y  

 According to condition I  

 x + y = 9 (i)  

 According to condition (ii)  
2 2y 9 (ii)x     

Equation (i)  y = 9 – x (iii)  

Put in equation (ii)  

 
22 9 9x x    

 2 281 18 9x x x     

2 281 18 9x x x     

18 9 81x    

  x = 5  

Put in equation (iii)  

y = 9 – 5 = 4 

 Result: 

 Thus, required numbers are 5 and 4. 

Q.9 Find two integers whose difference 

is 4 and whose squares differ by 

72.   (A.B + K.B) 

Solution:  

 Let the integers are x and y  

 According to condition-I 

 y 4 (i)x    

 According to condition-II 

 2 2y 72 (ii)x     

 Equation (i)    4x y  (iii)  

Put in equation (ii)  

 
2 2y 4 y 72    

2 2y 8y 16 y 72     

8y = 72 – 16  

8y = 56 

y = 7  

Put in equation (iii)  

x = 7 + 4 
 11x   

       Result: 

      Thus, required integers are 11 and 7. 

Q.10 Find the dimensions of a rectangle, 

whose perimeter is 80cm and its 

area is 2375cm  (K.B + A.B) 

Solution: 

 Let length of rectangle = x cm 

 And width of rectangle = y cm  

 According to condition-I 

 2(x + y) = 80 

         perimeter=2(length+ width) 

 x + y = 40 (i)  

  Area = length × width 

 According to condition-II 

 xy = 375 (ii)  

 From equation (i)  

 y = 40 – x (iii)  

 Put in (ii)  

  40 375x x   

240 375  0x x    

2 40 375 0x     

2 40 375 0x x     

2 25 15 375 0x x x     

   25 15 25 0x x x     

   25 15 0x x    

Either x – 25 = 0 or x – 15 = 0 

        x = 25          x = 15 

Put in equation (iii) 

 y = 40 – 25   y = 40 – 15  

 y = 15   y = 25 

Result: 

Dimension of rectangle are either 25cm by 

15cm or 15cm by 25cm. 
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Miscellaneous Exercise 2 

Q.1 Multiple Choice Questions 
Four possible answers are given for the following question. Tick () the correct answer. 

(i) If ,  are the roots of 23 5 2 0x x   , then  is;   (K.B + A.B) 

(LHR 2017, SWL 2014, MTN 2015, 17, SGD 2015, 17, RWP 2016, D.G.K 2016) 

(a) 
5

3
  (b) 

3

5
  

(c) 
5

3


  (d) 

2

3


  

(ii) If ,  are the roots of 27 4 0x x   , then is;    (K.B + U.B) 

(LHR 2014, GRW 2014, 15, FSD 2016, BWP 2016) 

(a) 
1

7


  (b) 

4

7
  

(c) 
7

4
  (d) 

4

7


  

(iii) Roots of the equation 24 5 2 0x x   are;     (K.B + A.B) 

(a) Irrational (b) Imaginary 

(c) Rational (d) None of these 

(iv) Cube roots of 1  are;       (K.B + U.B) 
(LHR 2017, GRW 2017, SWL 2017, MTN 2014, 17, SGD 2015, 16, D.G.K 2017) 

(a) 
21, ,     (b) 

21, ,    

(c) 21, ,    (d) 21, ,    

(v) Sum of the cube roots of unity is;      (K.B + A.B) 

(a) 0 (b) 1 

(c) 1  (d) 3 

(vi) Product of cube roots of unity is;      (K.B + A.B) 
(LHR 2016, GRW 2014, 16, SGD 2015, 17, BWP 2016, 17, RWP 2017) 

(a) 0 (b) 1 

(c) 1  (d) 3 

(vii) If 2 4 0b ac  , then the roots of 2 0ax bx c   are; (GRW 2014) (K.B + A.B) 

(a) Irrational (b) Rational 

(c) Imaginary (d) None of these 

(viii) If 2 4 0b ac  , but not a perfect square then roots of 2 0ax bx c   are; (K.B) 
(LHR 2014, BWP 2017) 

(a) Imaginary (b) Rational 

(c) Irrational (d) None of these 

(ix) 
1 1

 
  is equal to;        (K.B + U.B) 

(LHR 2014, 15, GRW 2016, FSD 2017, BWP 2017, RWP 2016, SGD 2017) 

(a) 
1


  (b) 

1 1

 
   

(c) 
 




 (d) 
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(x) 2 2  is equal to;        (U.B + A.B) 

(LHR 2014, 15, GRW 2014, 17,  FSD 2016, BWP 2015, RWP 2016, 17) 

(a) 2 2   (b) 
2 2

1 1

 
   

(c)  
2

2      (d)    

(xi) Two square roots of unity are;      (U.B + A.B) 
(LHR 2015, 16, GRW 2014, FSD 2015, 16, MTN 2016, SGD 2016, D.G.K 2015, 16, 17) 

(a) 1, 1   (b) 1,   

(c) 1,    (d) 2,   

(xii) Roots of the equation 2 4 4 1 0x x    are;     (U.B + A.B) 
(LHR 2015, GRW 2017, FSD 2016, BWP 2015, MTN 2017, SGD 2016) 

(a) Real equal (b) Real unequal 

(c) Imaginary (d) Irrational 

(xiii) If ,  are the roots of
2 0px qx r   , then sum of the roots 2 and 2 is; (K.B) 

(a) 
q

p


  (b) 

r

p
  

(c) 
2q

p


  (d) 

2

q

p
   

(xiv) If ,  are the roots of 2 1 0x x   , then product of the roots 2 and 2 is; (U.B) 

(FSD 2014, 17, BWP 2016, D.G.K 2015, 16, 17) 
(a) 2  (b) 2 

(c) 4 (d) 4  

(xv) The nature of the roots of equation 2 0ax bx c   is determined by;  (A.B) 
(GRW 2016, SWL 2015, 2017, MTN 2015) 

(a) Sum of the roots (b) Product of the roots 

(c) Synthetic division (d) Discriminant 

(xvi) The discriminant of 2 0ax bx c   is;     (K.B + A.B) 
(LHR 2016, FSD 2017, SWL 2016, 17, RWP 2014, 16, SGD 2016, MTN 2015, D.G.K 2016) 

(a) 2 4b ac   (b) 2b +4ac   

(c) 2 4b ac   (d) 2 4b ac   

 

 

 

ANSWER KEY 
 
 

(i)  c (v)  a (ix)  d (xiii)  c 

(ii)  b (vi)  b (x)  c (xiv)  d 

(iii)  b (vii)  c (xi)  a (xv)  d 

(iv)  a (viii)  c (xii)  a (xvi)  a 
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Q.2  
(i) Discuss the nature of the roots of 

the following equations.  (A.B) 
Solution: 

(a) 2 3 5 0x x    
 Here  1a  , 3b  , 5c    
 Disc  = b2 – 4ac 
  = (3)2 – 4(1)(5) 
  = 9 – 20  
  = –11 
  < 0  
 Roots are complex conjugate or imaginary.  

(b) 22 7 3 0x x     (A.B) 
(GRW 2016, SGD 2014, RWP 2017, D.G.K 2016) 

Here 2, –7, 3a b c     

 Disc  = b2 – 4ac  
  = (–7)2 – 4(2)(3) 
  = 49 – 24  
  = 25 
Since disc >0 and perfect square roots are 
rational and unequal.  

(c) 2 6 1 0x x      (A.B) 
 Here  1, 6, –1a b c      

 Disc  = b2 – 4ac  
  = (6)2 – 4(1)(–1) 
  = 36 + 4 
  = 40 
Since Disc. >0 and not a perfect square roots 
are irrational and unequal.  

(d) 216 8 1 0x x     (FSD 2017) (A.B) 
Here 16, –8, 1a b c     

 Disc. = 2 4b ac  

  =     
2

8 4 16 1   

  = 64 – 64  
  = 0 

Since, Disc. = 0, roots are rational and 
equal.  

(ii) Find 2 , if 
1 3

2


  
  (A.B) 

(GRW 2017, SGD 2014, BWP 2016) 
Solution:  
 Here 

 
1 3

2


  
  

 Square both sides 

  

2

2 1 3

2


   
   
 

 

 
      

 

22

2

2

1 3 2 1 3

2


     


 
 2

1 3 2 3

4


   
  

 2 2 2 3

4


  
  

 2 1 3
2

4


   
   

 
 

 2 1 3

2


  
  

(iii) Prove that the sum of all cube 

roots of unity is zero. (A.B + K.B) 
Ans.    See property of cube roots Page # 45 
(iv) Find the product of complex cube 

roots of unity.  (A.B + K.B) 
Ans.    See property of cube roots Page # 44 
(v) Show that: 

   3 3 2x y x y x y x y       

(A.B + K.B) 
Ans.    See Exe-2.2 Q.3 Page # 47 

(vi) Evaluate:  37 38 1    

(A.B + K.B) 
Solution: 

37 38 1    

 = 36 36 2. . 1      

 =    
12 12

3 3 2. . 1      

 =    
12 12 21 . 1 . 1    

 =   +  2 + 1 
 = 0 

37 38 1 0      

(vii) Evaluate  
6

21– +    

(A.B + K.B) 
Solution: 
 (1 –   +  2)6  
 = [1 +  2 –  ]6  
 = (–   –  )6  
 = (–2 )6  
 = (–2)6 6  
 = 64( 3)2 
 = 64(1)2 
 = 64(1) 
 = 64 
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(viii) If   is cube root of unity, form an 
equation whose roots are 3  and 

3 2.    (A.B + K.B) 
Solution: 
Roots of required equation are 3  and 3 2.  
 Sum of roots = S = 3  + 3 2  
   = 3(  +  2) 
   = 3(–1) 
   = –3 
 Product of roots = P = (3 )(3 2) 
   = 9 3  
   = 9(1) 
   = 9 
           Required quadratic equation is  

  2 – 0x Sx P    

  
 2

2

3 9 0

3 9 0

x x

x x

   

  
 

(ix) Use synthetic division, find the 
remainder and quotient when 

   3 2+ 3 + 2  2÷ –x x x .  (A.B) 

Solution:  

   3 2P 3 2x x x    

        3 23 0 2x x x     
 
2 

1 3 0 2 
 2 10 20 

 1 5 10 22  

  Remainder = 22 
 Q(x) = x2 + 5x +10 

(x) Use synthetic division, show that 

–2x  is the factor 3 2+ – 7 + 2x x x . 

Solution:   (A.B + K.B) 

  3 2+ – 7 +P  2x x xx   

 

2 

1 1 –7 2 

 2  6 –2 

 1 3 –1 0  

Since remainder is zero, x – 2 is a 
factor of given polynomial.  

(xi) Find the sum and product of the 
roots of the equation 

22P 3q 4r 0x x    (A.B + K.B) 

Solution: 

 
22P 3q 4r 0x x    

 Here  2 , 3 , –4a P b q c r     

 Sum of roots  = 
b

a


 

   = 
3q

2P
  

 Product of roots = 
c

a
 

   = 
4r

2P


 

   = 
2r

P
  

(xii) Find 
2 2

1 1

α β
  when ,  are of the 

roots of the equation 
2 4 3 0x x   .  (A.B + K.B) 

Solution: 
2 4 3 0x x    

 Here  1, –4, 3a b c     

Let roots of given equation are ,  

Then sum of roots =  +  = 
b

a
  

          = 
4

1


  

          = 4 

Product of roots =  = 
c

a
 

        
3

αβ
1

  

         = 3 
Consider  

 
2 2

2 2 2 2

1 1 β α

α β α β


   

  = 
 

2 2

2

α β

αβ


 

  = 
 

 

2

2

α β 2αβ

αβ

 
 

  = 
   

 

2

2

4 2 3

3


 

  = 
16 6

9


 

2 2

1 1

 
      = 

10

9
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(xiii) If ,  are the roots of 
24 – 3 + 6 = 0  x x , find  (A.B) 

(a) 2 2α β  

(b) 
α β

β α
  

(c)  –  
Solution: 

24 – 3 6 0x x    
 Roots of given equation are ,  

  +   = 
3

4


  

  = 
3

4
 

        = 
6

4
 

  = 
3

2
 

(a)  
22 2α β α β 2αβ     (A.B) 

  = 

2
3 3

2
4 2

   
   

   
 

  = 
9

3
16

  

  = 
9 48

16


 

2 2    = 
39

16


 

(b) 
2 2α β α β

β α αβ


    (A.B) 

  = 

39
16

3
2



 

  = 
39 2

16 3


  

 

 
   = 

13

8


 

(c)  
2

α β α β     (A.B) 

=  
2

α β 4αβ   

= 

2
3 3

4
4 2

   
   

   
 

= 
9

6
16

  

= 
9 96

16


 

= 
87

16
  

        = 
87

4


 

(xiv) If ,  are the roots of 
2 – 5 + 7 = 0x x , find an equation 

whose roots are    

(a) – , –  

(b) 2, 2 

Solution: 

 2 – 5 7 0x x    

 Roots of given equation are ,   

  +   = 
5

1


  

  = 5 

  = 
7

1
 

 = 7 

(a) Roots of required equation are 

,      (A.B) 

 Sum of roots = S = – + (–) 
       = – ( + )  
       = – 5 
 Prod. Of roots = P = (–)(–) 
        =   
        = 7 
  Required equation is:  

  2 0x Sx P    

   2 5 7 0x x     

  2 5 7 0x x    
(b) Roots of required equation are 

2 ,2      (A.B) 

 Sum of roots = S = 2 + 2  
       = 2( + )  
       = 2(5) 
       =10 
 Prod. Of roots = P = (2)(2)  
         = 4 
         = 4(7)  
         =28 
 Required quadratic equation is: 

 2 S P 0x x    

 2 10 28 0x x    
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Q.3 Fill in the blanks 

(i) The discriminant of 2 0ax bx c    is ________.     (K.B) 

(ii) If 2 4 0b ac  , then roots of 2 0ax bx c   are ________.    (K.B) 

(iii) If 2 4 0b ac  , then the roots of 2 0ax bx c   are ________.   (K.B) 

(iv) If 2 4 0b ac  , then the root of 2 0ax bx c   are ________.   (K.B) 

(v) If 2 4 0b ac  and perfect square, then the roots of 2 0ax bx c    are________. (K.B) 

(vi) If 2 4 0b ac  and not a perfect square, then roots of 2 0ax bx c    are________. (K.B) 

(vii) If ,  are the roots of 2 0ax bx c   , then sum of the roots is________.  (K.B)  

(viii) If ,  are the roots of 2 0ax bx c   , then product of the roots is________. (K.B)  

(ix) If ,  are the roots of 27 5 3 0x x   , then sum of the roots is________.  (K.B) 

(x) If ,  are the roots of 25 3 9 0x x   , then product of the roots is________. (K.B) 

(xi) For a quadratic equation 2 0ax bx c   , 
1


is equal to ________.  (K.B) 

(xii) Cube roots of unity are________.       (K.B) 

(xiii) Under usual notation sum of the roots of unity is________.    (K.B) 

(xiv) If
21, ,  are the cube roots of unity, then 7 is equal to________.   (K.B) 

(xv) If ,  are the roots of the quadratic equation, then the quadratic equation is written as 

________. 

(xvi) If 2 and 22 are the roots of an equation, then equation is________. 

ANSWER KEY 
 

(i) 2 4b ac   

(ii) Equal 

(iii) Real 

(iv) Imaginary 

(v) Rational 

(vi) Irrational  (real) 

(vii) 
b

a
  

(viii) 
c

a
  

(ix) 
5

7
 

(x) 
9

5


  

(xi) 
a

c
  

(xii) 21, ,   

(xiii) Zero 

(xiv) 2   

(xv)  2 0x x        

(xvi) 2 2 4 0x x    
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SELF TEST 
Time: 40 min  Marks: 25 

Q.1 Four possible answers (A), (B), (C) & (D) to each question are given, mark the 

correct answer.  (7×1=7) 

1 7 ________   is: 

 (A) 2                (B)   

            (C) 1 (D) 0 

2 Which is not a symmetric function?  

 (A) 
2 2   (B) 

2 2    

 (C) 
3 3   (D) 

1 1

 
  

3 If
3 1

,
2 2

are the roots of a quadratic equation, then required quadratic equation is: 

 (A) 22 2 3 0x x    (B) 24 8 3 0x x     

 (C) 2 4 3 0x x    (D) 24 8 3 0x x    

4 If roots of a quadric equation
2 0x qx p   are the additive inverse of each other, 

then: 

 (A) 0, 0p q   (B) 0p    

 (C) 0q   (D) 1, 1p q   

5 What will be the remainder if 34 5 15x x   is divided by 3x  ? 

 (A) 78 (B) 139  

 (C) –78 (D) 125 

6 Cube roots of 1 are: 

(A)
21, ,     (B)

21, ,    

(C) 
21, ,    (D)

21, ,   
7 Roots of the equation 24 5 2 0x x   are: 

(A) Irrational (B) Imaginary 

(C) Rational (D) None 

Q.2 Give Short Answers to following Questions.  (5×2=10) 

(i) Evaluate:  
5

21 3 3   . 

(ii) Prove that each complex cube root of unity is reciprocal of the other. 

(iii) Show that the roots of the equation   2 0p q x px q    are rational. 

(iv) If is a cube root of unity, form an equation whose roots are 2 and 22 . 

(v) Use synthetic division to find the quotient and the remainder when the polynomial 
4 210 2x x x   is divided by 3x  . 

Q.3 Answer the following Questions.  (4+4=8) 

(a) Prove that 
3 3 3+ + –3x y z xyz    2 2x y z x y z x y z          

(b) Find two integers whose sum is 9 and the difference of their squares is also 9. 

NOTE: Parents or guardians can conduct this test in their supervision in order to check the skill 

of students. 

    
    CUT HERE 


