

## ture or Characteristics of the Roots (U.B + K.B)

Nature of a quadratic equation

 $ax^2 + bx + c = 0$ , when  $a, b, c \in Q$  and  $a \neq 0$  as:

- (i) If  $b^2 4ac = 0$ , then the roots are rational (real) and equal.
- (ii) If  $b^2 4ac < 0$ , then the roots are complex conjugate or imaginary.
- (iii) If  $b^2 4ac > 0$ , and is a perfect square, then the roots are rational (real) and unequal.
- (iv) If  $b^2 4ac > 0$ , and is not a perfect square, the roots are irrational (real) and unequal.

Note

## (K.B)

If given polynomial expression is a perfect square then discriminant is 0.

### Example 2: (Page # 19)

Using discriminant, find the nature of the roots of the following equation and verify the result by solving the equation.

 $x^{2}-5x+5=0$ (LHR 2015, GRW 2016 17, SWI 2017 RWP 2015, L.G. K 2017)

Solution:

Here a = 1, b = -5, c = 5Discriminant  $= b^2 - 4ac$  $= (-5)^2 - 4(1)(5)$ 

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
$$x = \frac{-(-5) \pm \sqrt{(-5)^2 - 4(1)(5)}}{2(1)}$$
$$x = \frac{5 \pm \sqrt{5}}{2}$$

Evidently, Roots are irrational (real) and unequal.

### Example 2: (Page # 21)

Find k, if the roots of the equation  $(k+3)x^2 - 2(k+1)x - (k+1) = 0$  are equal, if  $k \neq -3$  (A.B)

Solution:

$$(k+3)x^{2} - 2(k+1)x - (k+1) = 0$$
Here  

$$a = k+3, b = -2(k+1), c = -(k+1)$$
As roots are caual, historminan is zero  

$$\Rightarrow Disc = b^{2} - 4cc = 0$$

$$i-2((k+1)]^{2} - 4(k+3)[-(k+1)] = 0$$

$$4(k+1)^{2} + 4(k+3)(k+1) = 0$$

$$4(k+1)[(k+1) + (k+3)] = 0$$

$$4(k+1)(2k+4) = 0$$
Either  

$$k+1=0 \text{ or } 2k+4=0 \because 4 \neq 0$$

$$k = -1 \text{ or } 2k = -4$$

$$k = -2$$
Thus, roots will be equal if  $k = -1, -2$ 





As expression is a perfect square, the discriminant = 0  

$$\Rightarrow 4(1 + 2k - 3k^{2}) = 0$$

$$1 + 2k - 3k^{2} = 0 \quad \because 4 \neq 0$$

$$1 + 3k - k - 3k^{2} = 0$$

$$1 + 2k - 3k^{2} = 0 \quad \because 4 \neq 0$$

$$1 + 3k - k - 3k^{2} = 0$$

$$1 + 2k - 3k^{2} = 0 \quad \because 4 \neq 0$$

$$1 + 3k - k - 3k^{2} = 0$$

$$1 + 2k - 3k^{2} = 0$$

$$k = 1$$



$$\begin{aligned} &=b^{2} \left(c^{2} - 2ac + a^{2}\right) - 4ac \left(ab - b^{2} - ac + bc\right) \\ &=b^{2}c^{2} - 2ab^{2}c + a^{2}b^{2} + 4a^{2}b^{2} + 4ab^{2}c^{2} - 4abc^{2} \\ &=b^{2}c^{2} + a^{2}b^{2} + a^{2}b^{2} + 4a^{2}b^{2} - 2aa^{2}bc - 4a^{2}bc - 4a^{2}bc \\ &= b^{2}c^{2} + a^{2}b^{2} + a^{2}b^{2} + 2ab^{2}c - 4a^{2}bc - 4a^{2}bc \\ &= (bc)^{2} + (ab)^{2} - (2ac) + 2(2ac) + (a + b^{2}c)^{2} \\ &= (bc)^{2} + (ab)^{2} - 2(2ac) + 2(2ac) + (a + b^{2}c)^{2} \\ &= (bc)^{2} + a^{2}b^{2} - 2ab^{2} + 2ab$$



# Unit-2









**Prove that** (K.B + U.B)Q.5 **Prove that** 0.3  $(1+\omega)(1+\omega^2)(1+\omega^3)(1+\omega^3)$  $x^{3}+y^{3}=(x+y)(x+\omega y)(x+\omega^{2}y)$ (K.B. + A.R. + U.B) (SGD 2015, BWP 2016) **Proof:** Proof: L.H.S R.H.S  $= (x+y)(x+\omega y)(x+\omega^2 y)$  $(1+\omega)(1+\omega^2)(1+\omega^4)(1+\omega^8)...2n$  factors  $= (x+y)(x^2+\omega^2xy+\omega^3y^2)$  $\therefore \omega^4 = \omega \times \omega^3 = \omega, \omega^8 = \omega^2 \times \omega^6 = \omega^2 \times (\omega^3)^2 = \omega^2 (1) = \omega^2$  $= (x+y) x^2 + (x^2 + \omega) xy + (1) y^2 ] : \omega^3 = 1$  $= (1 + \omega)(1 + \omega^2)(1 + \omega)(1 + \omega^2)...2n$  factors =  $[(1+\omega)(1+\omega)(1+\omega)....n$  factors]  $= (x+y) \left\lceil x^2 + (-1)xy + y^2 \right\rceil \because 1 + \omega + \omega^2 = 0$  $\left[ (1+\omega^2)(1+\omega^2)(1+\omega^2)....n \text{ factors} \right]$  $= (x+y) \left[ x^2 - xy + y^2 \right]$  $=(1+\omega)^n(1+\omega^2)^n$  $= x^{3} + v^{3}$  $=\left[\left(1+\omega\right)\left(1+\omega^{2}\right)\right]^{\prime}$ = L.H.SProved  $=(1+\omega+\omega^2+\omega^3)^n$ **Prove that**  $x^3 + y^3 + z^3 - 3xyz$ 0.4  $=(0+1)^n$  ::  $1+\omega+\omega^2=0, \omega^3=1$  $= (x + y + z)(x + \omega y + \omega^2 z)(x + \omega^2 y + \omega z)$  $=(1)^{n}$ (K.B + U.B)**Proof:** =1 R.H.S =R.H.SRelation between Roots and Co-efficient  $= (x + y + z)(x + \omega y + \omega^2 z)(x + \omega^2 y + \omega z)$ of a Quadratic Equation (K.B + U.B) $=(x+y+z)(x^{2}+\omega^{2}xy+\omega xz+\omega xy+\omega^{3}y^{2})$ Roots of standard quadratic equation  $+\omega^2 yz + \omega^2 xz + \omega^4 yz + \omega^3 z^2)$  $ax^2 + bx + c = 0$  are  $= (x + y + z)(x^{2} + \omega^{3}y^{2} + \omega^{3}z^{2} + \omega^{2}xy + \omega xy$  $\frac{-b+\sqrt{b^2-4ac}}{2a}$  and  $\frac{-b-\sqrt{b^2-4ac}}{2a}$  $+\omega^2 yz + \omega^4 yz + \omega xz + \omega^2 xz)$ If  $\alpha = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$  and  $\beta = -\frac{-b - \sqrt{b^2}}{2a}$  $=(x+y+z)(x^{2}+(1)y^{2}+(1)z^{2}+(\omega^{2}+\omega)xy$  $+(\omega^2+\omega^4)yz+(\omega+\omega^2)xz)$   $\therefore \omega^3=1$ Sum of roots  $= (x + y + z) \left[ x^{2} + y^{2} + z^{2} + (-1)xy + (\omega^{2} + \omega)yz + (-1)zy \right]$  $-b+\sqrt{b^2-4ac}+\frac{-b-\sqrt{b^2-4ac}}{2a}$  $\therefore \mathbf{1} + \alpha + \alpha^2 = 0 \ \omega^4 = \omega \ \omega^3 = \omega$  $= (x + y + z)(x^2 + y^2 + z^2 + y^2 + (-1)y^2 - xz)$  $=\frac{-b+\sqrt{b^{2}-4ac}+(-b)-\sqrt{b^{2}-4ac}}{2a}$  $-(x+y+z)(x^2+y^2+z^2-xy-yz-xz)$  $=\frac{-2b}{2a}$  $+y^{3}+z^{3}-3xyz$ = L.H.S $\Rightarrow S = -\frac{b}{c}$ Proved















## Unit-2

#### **Theory of Quadratic Equations**













Put the value of *l* in equation (i) (ii) +m=0 or  $1+m=0 \implies m=-1$ Thus l =and m =4 (A.B) Example 6: (Page By synthetic division, solve the  $x^4 - 49x^2 + 36x + 252 = 0$ equation having roots -2 and 6. (iii) Solution: Since -2 and 6 are the roots of the given equation  $x^4 - 49x^2 + 36x + 252 = 0$ . Then by synthetic division, we get -49 1 0 36 252 4 90 -252 -2-2 -45 126 0 6 24 -126 6 4 -21 0.2 1 0 The depressed equation is •:•  $x^2 + 4x - 21 = 0$ **(i)**  $x^{2} + 7x - 3x - 21 = 0$ x(x+7)-3(x+7)=0(ii) (x+7)(x-3)=0Either x + 7 = 0x - 3 = 0or (iii) x = 3x = -7or Thus -2,6-7 and 3 are the roots of Solution: the given equation. (i) Exercise 2.6 **Q.1** Use synthetic division to find the quotient and the remainder, when  $(x^2 + 7x - 1) \div (x + 1)$ (i) 2  $(4x^3-5x+15) \div (x+3)$ (ii)  $(x^3 + x^2 - 3x + 2) \div (x - 2)$ (iii) Since Solution:  $\vec{k} = 0$ **(i)** P(x) = $\Rightarrow$ (FSL 2010, 17) (A.B) -1 -6 1 6  $\therefore Q(x) = x + 6$ R = -7

 $P(x) = 4x^3 - 5x + 15$ (A.B) (SWL 2016, SCD 2017, MTN 2016)  $4x^{2} + 0x^{2}$ -5x+1515 36 -93 -1231 -78 $\therefore Q(x) = 4x^2 - 12x + 31$ R = -78 $P(x) = x^3 + x^2 - 3x + 2$ (A.B) (GRW 2017, FSD 2015, MTN 2017, D.G.K 2015) \_3 2 1 2 6 6 3 3 |8  $\therefore Q(x) = x^2 + 3x + 3$  $\mathbf{R} = \mathbf{8}$ Find the value of h using synthetic division, if (A.B) 3 is the zero of the polynomial  $2x^3 - 3hx^2 + 9$ 1 is the zero of the polynomial  $x^3 - 2hx^2 + 11$ -1 is the zero of the polynomial  $2x^3 + 5hx - 23$  $P(x) = 2x^3 - 3hx^2 + 9$ (SWL 2014) (A.B)  $= 2x^3 - 3hx^2 + 0x + 9$ -3hK 9/1-10  $\pm 54$ 3h - 6-9h + 18|-27h+63|3 is the zero of given polynomial, -27h + 63 = 0-27h = -63 $h = \frac{-63}{-27}$  $h = \frac{7}{3}$ 







$$\frac{(x-1)^2 + (2x-1+1)^2 = 8}{x^2 - 2x - 1 = 0}$$

$$5x^2 - 2x - 7 = 0$$

$$5x^2 - 2x - 2x$$

$$5x - 7 = 0$$

$$5x^2 - 7 = 0$$

$$5x^2 - 2 - 2x$$

$$y = -3$$

$$x - x^2 + 5x^2 = \frac{6x}{2} = 3x$$

$$y = -2\left(\frac{7}{5}\right) - 1$$

$$y = \frac{14}{5} - 1 = \frac{14 - 5}{5} = \frac{9}{5}$$

$$y = -3$$
Thus, the solution set is
$$\left\{\left(-1, -3\right), \left(\frac{7}{5}, \frac{9}{5}\right)\right\}$$
(A.B)  
Solve the equations  

$$x^2 + y^2 = 7$$

$$y = -2x$$
Thus, the solution set is
$$\left\{\left(-1, -3\right), \left(\frac{7}{5}, \frac{9}{5}\right)\right\}$$
(A.B)  
Solution:  
Given equations are
$$x^2 + y^2 = 7$$

$$x^2 + 3y^2 = 18$$
Solution:  
Given equations (i) from (i) fr















Dividing equation (*iii*) and (*iv*)  

$$\frac{x(x+y)}{y(x+y)} = \frac{5}{3}$$

$$\frac{x}{y(x+y)} = \frac{5}{3}$$
Solution:  

$$\frac{x}{y(x+y)} = \frac{5}{3}$$
Solution



The sum of squares of three **Q.4** The product of five less than three Q.2 times a certain number and one positive consecutive numbers is 77. less than four times the number Find the numbers. (A.B + K.B)is7. Find the number (SWL 2015) A.B + K.B) **Solution:** Solution: Let three consecutive numbers are 1 et the required number is xx, x+1, x+2Five less than three times the According to given condition: number = 3x - 5 $x^{2} + (x+1)^{2} + (x+2)^{2}$ One less than four times a number = 4x - 1 $-x^{2} - 2x + 1 + x^{2} + 4x + 4 - 77 = 0$ According to given condition  $3x^2 + 6x - 72 = 0$ (3x-5)(4x-1)=7 $3(x^2+2x-24)=0$  $12x^2 - 3x - 20x + 5 - 7 = 0$  $12x^2 - 23x - 2 = 0$  $x^{2} + 2x - 24 = 0$  $12x^2 - 24x + x - 2 = 0$  $x^{2}+6x-4x-24=0$ 12x(x-2)+1(x-2)=0x(x+6)-4(x-6)=012x(x-2)+1(x-2)=0(x+6)(x-4)=0(x-2)(12x+1)=0Either x + 6 = 0or x - 4 = 0Either x = -6x = 4x - 2 = 012x + 1 = 0or (Ignore negative value) 12x = -1x = 2Therefore. x = 4 $x = \frac{-1}{12}$ x+1=4+1=5 $\Rightarrow$ & x + 2 = 4 + 2 = 6**Result: Result:** Thus, required number is either 2 Thus required numbers are 4, 5 and 6. or  $-\frac{1}{12}$ . 0.3 The sum of five times a number and the square of the numbers is 0.5 The difference of a number and its 204. (A.B + K.B)reciprocal is  $\frac{15}{4}$ . Find the number. Solution: Let required number = x(A.B + K Five times of the number = 5xSolution: According to given condition: Let required number is x $x^{2} + 5x = 204$ Reciprocal of the number =  $x^{2} + 5x - 204 = 0$  $x^{2} + 17x - 12x - 204 = 0$ Difference of the numbers =  $\frac{15}{1000}$ x(x+1) - 12(x+17) =According to given condition -**m**7)(x  $x - \frac{1}{x} = \frac{15}{4}$ Eher x + 17 = 0x - 12 = 0or  $\frac{x^2-1}{x} = \frac{15}{4}$ x = -17x = 12**Result:** By cross multiplication Thus required number is either -17 or 12.





|        | Miscel                                                                 | llaneous Exercise 2                  |                                                       |  |  |  |
|--------|------------------------------------------------------------------------|--------------------------------------|-------------------------------------------------------|--|--|--|
| Q.1    | Multiple Choice Questions                                              |                                      |                                                       |  |  |  |
|        | Four possible answers are given f                                      | for the following question. Tick (   | () the correct answer                                 |  |  |  |
| (i)    | If $\alpha$ , $\beta$ are the roots of $3x^2 + 5x$ .                   | $-2=0$ , then $\alpha + \beta$ is;   | () () () () () () () () () () () () () (              |  |  |  |
|        | (LHR 2017, SV                                                          | WL 2014, MTN 2015, 17, SGD 2015, 1   | 7, R WP 2016, D.G.K 2016                              |  |  |  |
|        | $(3)\frac{5}{2}$                                                       |                                      | D                                                     |  |  |  |
|        | $\left(\frac{a}{3}\right)$                                             | 5                                    |                                                       |  |  |  |
|        |                                                                        | $(1)^{-2}$                           |                                                       |  |  |  |
|        |                                                                        | ( <b>d</b> ) $\frac{1}{3}$           |                                                       |  |  |  |
| (in)   | If $\alpha$ , $\ell$ are the roots of $7x^2 - x +$                     | $4 = 0$ , then $\alpha\beta$ is:     | (K.B + U.B)                                           |  |  |  |
| UNY    | 0.0                                                                    | (LHR 2014, GRW 2014,                 | , 15, FSD 2016, BWP 2016                              |  |  |  |
| $\cup$ | (-) -1                                                                 | 4                                    |                                                       |  |  |  |
|        | (a) $\frac{-}{7}$                                                      | <b>(B)</b> $\frac{-}{7}$             |                                                       |  |  |  |
|        |                                                                        | -4                                   |                                                       |  |  |  |
|        | (c) $\frac{1}{4}$                                                      | (d) ${7}$                            |                                                       |  |  |  |
| (iii)  | <b>Roots of the equation</b> $4x^2 - 5x +$                             | 2 = 0 are:                           | (K.B + A.B)                                           |  |  |  |
| ()     | (a) Irrational                                                         | ( <b>b</b> ) Imaginary               | ()                                                    |  |  |  |
|        | (c) Rational                                                           | (d) None of these                    |                                                       |  |  |  |
| (iv)   | Cube roots of $-1$ are:                                                |                                      | (K.B + U.B)                                           |  |  |  |
|        | (LHR 2017, GRW 2017, SWL 2017, MTN 2014, 17, SGD 2015, 16, D.G.K 2017) |                                      |                                                       |  |  |  |
|        | (a) $-1, -\omega, -\omega^2$                                           | <b>(b)</b> $-1, \omega, -\omega^2$   |                                                       |  |  |  |
|        | (c) $-1, -\omega, \omega^2$                                            | ( <b>d</b> ) $1, -\omega, -\omega^2$ |                                                       |  |  |  |
| (v)    | Sum of the cube roots of unity i                                       | is•                                  | $(\mathbf{K}_{\mathbf{B}} + \mathbf{A}_{\mathbf{B}})$ |  |  |  |
| (•)    | (a) 0                                                                  | (h) 1                                |                                                       |  |  |  |
|        | (a) = 0                                                                | (d) 3                                |                                                       |  |  |  |
| (vi)   | Product of cube roots of unity i                                       | (a) 5                                | $(\mathbf{K}_{\mathbf{B}} + \mathbf{A}_{\mathbf{B}})$ |  |  |  |
| (1)    | (LHR                                                                   | 2016, GRW 2014, 16, SGD 2015, 17.    | BWP 2016, 17, RWP 2017                                |  |  |  |
|        | (a) 0                                                                  | <b>(b)</b> 1                         | ··· · · · · · · · · · · · · · · · · ·                 |  |  |  |
|        | (c) -1                                                                 | ( <b>d</b> ) 3                       |                                                       |  |  |  |
| (vii)  | If $b^2 - 4ac < 0$ , then the roots of                                 | $ax^2 + bx + c = 0$ are; (GRW)       | 2014) (K.B + A.B)                                     |  |  |  |
|        | (a) Irrational                                                         | (b) Rational                         |                                                       |  |  |  |
|        | (c) Imaginary                                                          | (d) None of these                    |                                                       |  |  |  |
| (viii) | If $b^2 - 4ac > 0$ , but not a perfect                                 | t square then roots of $ax^2 + b$ :  | c = () a re; (K.B)                                    |  |  |  |
|        | (LHK 2014, BWP 2017)                                                   |                                      |                                                       |  |  |  |
|        | (a) Imaginary                                                          | (b) Rational                         | D                                                     |  |  |  |
|        | (c) Irrational                                                         | (d) None of these                    |                                                       |  |  |  |
| (ix)   | $\frac{1}{-}$ + $\frac{1}{-}$ is equal to;                             |                                      | (K.B + U.B)                                           |  |  |  |
|        |                                                                        |                                      |                                                       |  |  |  |
| NI     | VN 0 UUU (LHR 201                                                      | 14, 15, GRW 2016, FSD 2017, BWP 20   | 017, RWP 2016, SGD 2017                               |  |  |  |
| UN.    |                                                                        | (b) $\frac{1}{-1} - \frac{1}{2}$     |                                                       |  |  |  |
| 0 -    | α                                                                      | $\alpha \beta$                       |                                                       |  |  |  |
|        | (c) $\frac{\alpha - \beta}{\beta}$                                     | (d) $\frac{\alpha+\beta}{\beta}$     |                                                       |  |  |  |
|        | V' all                                                                 | ( all                                |                                                       |  |  |  |

|     | ( <b>x</b> )                                                                                                               | $\alpha^2 + \beta^2$ is equal to;<br>(LHR 2014, 15, G                                               | <b>(U.B + A.B)</b><br>RW 2014, 17, FSD 2016, BWP 2915, RWP 2010 17                                                                              |  |  |  |  |
|-----|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|     |                                                                                                                            | (a) $\alpha^2 - \beta^2$<br>(c) $(\alpha + \beta)^2 - 2\alpha\beta$                                 | (b) $\frac{1}{\alpha^2} + \frac{1}{\beta^2}$<br>(c) $\alpha + \beta$                                                                            |  |  |  |  |
|     | (xi)                                                                                                                       | Two square roots of unity are;<br>(1.HR 2015, 16 GRW 2014, FSD :<br>(a) 1 -1<br>(c) 10              | (U.B + A.B)<br>2015, 16, MTN 2016, SGD 2016, D.G.K 2015, 16, 17)<br>(b) $1, \omega$<br>(d) $\omega, \omega^2$                                   |  |  |  |  |
| M   | (iit)                                                                                                                      | Roots of the equation $4x^2 - 4x + 1 = 0$ are;<br>(LHR 2015, GRW<br>(a) Real equal<br>(c) Imaginary | (U.B + A.B)<br>2017, FSD 2016, BWP 2015, MTN 2017, SGD 2016)<br>(b) Real unequal<br>(d) Irrational                                              |  |  |  |  |
|     | (xiii) If $\alpha$ , $\beta$ are the roots of $px^2 + qx + r = 0$ , then sum of the roots $2\alpha$ and $2\beta$ is; (K.B) |                                                                                                     |                                                                                                                                                 |  |  |  |  |
|     |                                                                                                                            | (a) $\frac{-q}{p}$                                                                                  | <b>(b)</b> $\frac{r}{p}$                                                                                                                        |  |  |  |  |
|     |                                                                                                                            | (c) $\frac{-2q}{p}$                                                                                 | (d) $-\frac{q}{2p}$                                                                                                                             |  |  |  |  |
|     | (xiv)                                                                                                                      | If $\alpha$ , $\beta$ are the roots of $x^2 - x - 1 = 0$ , then I                                   | $x-x-1=0$ , then product of the roots $2\alpha$ and $2\beta$ is; <b>(U.B)</b>                                                                   |  |  |  |  |
|     |                                                                                                                            | (a) -2                                                                                              | (b) 2                                                                                                                                           |  |  |  |  |
|     |                                                                                                                            | ( <b>c</b> ) 4                                                                                      | ( <b>d</b> ) -4                                                                                                                                 |  |  |  |  |
|     | (xv)                                                                                                                       | The nature of the roots of equation $ax^2 + b$                                                      | $c^{2}$ equation $ax^{2} + bx + c = 0$ is determined by; (A.B)<br>(GRW 2016, SWL 2015, 2017, MTN 2015)                                          |  |  |  |  |
|     |                                                                                                                            | (a) Sum of the roots                                                                                | (b) Product of the roots<br>(d) Discriminant                                                                                                    |  |  |  |  |
|     | (xvi)                                                                                                                      | The discriminant of $ax^2 + bx + c = 0$ is;<br>(LHR 2016, FSD 2017, SWL 2016, 17,                   | 'initiant of $ax^2 + bx + c = 0$ is;       (K.B + A.B)         (LHR 2016, FSD 2017, SWL 2016, 17, RWP 2014, 16, SGD 2016, MTN 2015, D.G.K 2016) |  |  |  |  |
|     |                                                                                                                            | (a) $b^2 - 4ac$                                                                                     | <b>(b)</b> $b^2 + 4ac$                                                                                                                          |  |  |  |  |
| NNN | M                                                                                                                          | (c) $-b^2 + 4ac$                                                                                    | (d) $-b^2 - 4ac$<br>(d) $-b^2 - 4ac$<br>(d) $(xiii)$ c<br>(x) c $(xiv)$ d<br>(xi) a $(xv)$ d<br>(xi) a $(xv)$ d<br>(xi) a $(xv)$ a              |  |  |  |  |
| UU  | $\bigcirc$                                                                                                                 |                                                                                                     |                                                                                                                                                 |  |  |  |  |









| $\gg$      | Uni                                                                                                         | t-2                                                                                               | Theory of Quadratic Equ                    | ations    |  |  |  |  |
|------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------|-----------|--|--|--|--|
| CUT HERE   |                                                                                                             |                                                                                                   |                                            |           |  |  |  |  |
| I          | SELECTEST                                                                                                   |                                                                                                   |                                            |           |  |  |  |  |
| I          | Time: 40 min<br>$O_1$ Four possible engineer (A) (B) (C) $\mathcal{C}$ (D) to each support of the marked by |                                                                                                   |                                            |           |  |  |  |  |
| 1          | <b>Q.1</b>                                                                                                  | correct answer.                                                                                   | b) to each gaes on are given, i            | (7×1=7)   |  |  |  |  |
|            | 1 $\omega^{-7} =$ is:                                                                                       |                                                                                                   |                                            |           |  |  |  |  |
|            |                                                                                                             | $\mathbf{I} \qquad \boldsymbol{\omega} = \underline{\qquad} \mathbf{I} \mathbf{S}.$               |                                            |           |  |  |  |  |
|            | $(\mathbf{C}) 1 (\mathbf{D}) 0$                                                                             |                                                                                                   |                                            |           |  |  |  |  |
| 1          | 2 Which is not a symmetric function?                                                                        |                                                                                                   |                                            |           |  |  |  |  |
| 1          |                                                                                                             | (A) $\epsilon t^2 - \beta^2$                                                                      | <b>(B)</b> $\alpha^2 + \beta^2$            |           |  |  |  |  |
| ant        | 1NI)                                                                                                        | (1) $\alpha^3 + \beta^3$                                                                          | ( <b>D</b> ) $\frac{1}{1} + \frac{1}{1}$   |           |  |  |  |  |
| MM.        | 00                                                                                                          |                                                                                                   | $(\mathbf{D}) \alpha \beta$                |           |  |  |  |  |
| $\bigcirc$ | 3                                                                                                           | If $\frac{3}{2} = \frac{1}{2}$ are the roots of a quadratic equation                              | on, then required quadratic equation       | on is:    |  |  |  |  |
| I          | C                                                                                                           |                                                                                                   |                                            |           |  |  |  |  |
| I          |                                                                                                             | (A) $2x^2 + 2x + 3 = 0$                                                                           | <b>(B)</b> $4x^2 + 8x + 3 = 0$             |           |  |  |  |  |
| I          | _                                                                                                           | (C) $x^2 + 4x + 3 = 0$                                                                            | <b>(D)</b> $4x^2 - 8x + 3 = 0$             |           |  |  |  |  |
| I          | 4                                                                                                           | If roots of a quadric equation $x^2 + qx + p$                                                     | = 0 are the additive inverse of each $= 0$ | ch other, |  |  |  |  |
| I          |                                                                                                             | then:                                                                                             | $(\mathbf{D})$ 0                           |           |  |  |  |  |
| I          |                                                                                                             | (A) $p = 0, q = 0$                                                                                | <b>(B)</b> $p = 0$                         |           |  |  |  |  |
| I          | -                                                                                                           | (C) $q = 0$ (D) $p = 1, q = 1$                                                                    |                                            |           |  |  |  |  |
| I          | 5                                                                                                           | What will be the remainder if $4x^3 - 5x + 15$ is divided by $x + 3$ ?                            |                                            |           |  |  |  |  |
| I          |                                                                                                             | (C) -78                                                                                           | ( <b>D</b> ) 135<br>( <b>D</b> ) 125       |           |  |  |  |  |
|            | 6                                                                                                           | Cube roots of -1 are:                                                                             |                                            |           |  |  |  |  |
|            |                                                                                                             | $(\mathbf{A}) - 1, -\omega, -\omega^2$                                                            | $(\mathbf{B})-1,\omega,-\omega^2$          |           |  |  |  |  |
|            |                                                                                                             | (C) $-1, -\omega, \omega^2$                                                                       | <b>(D)</b> 1, $\omega$ , $\omega^2$        |           |  |  |  |  |
| 1          | 7                                                                                                           | <b>Roots of the equation</b> $4x^2 - 5x + 2 = 0$ are:                                             |                                            |           |  |  |  |  |
| 1          |                                                                                                             | (A) Irrational                                                                                    | ( <b>B</b> ) Imaginary                     |           |  |  |  |  |
| i          |                                                                                                             | (C) Rational                                                                                      | ( <b>D</b> ) None                          |           |  |  |  |  |
| - I        | Q.2                                                                                                         | Q.2 Give Short Answers to following Questions. (5×2=10)                                           |                                            |           |  |  |  |  |
| I          | (i)                                                                                                         | Evaluate: $(1-3\omega-3\omega^2)^3$ .                                                             |                                            |           |  |  |  |  |
| I          | (ii)                                                                                                        | Prove that each complex cube root of unity is reciprocal of the other                             |                                            |           |  |  |  |  |
| I          | (iii)                                                                                                       | Show that the roots of the equation $(1 + q)x^2 - px - q = 0$ are rational.                       |                                            |           |  |  |  |  |
| I          | (iv)                                                                                                        | If $\omega$ is a cube root of unity, form an equation whose roots are $2\omega$ and $2\omega^2$ . |                                            |           |  |  |  |  |
| I          | ( <b>v</b> )                                                                                                | Use synthetic division to find the quotient and the remainder when the polynomial                 |                                            |           |  |  |  |  |
| I          | <b>.</b> .                                                                                                  | $x^4 - 10 = -2x$ is divided by $x + 3$                                                            |                                            |           |  |  |  |  |
| I          | Q.3                                                                                                         | Answer the following Questions.                                                                   |                                            | (4+4=8)   |  |  |  |  |
| 0          | (a) Prove that $y' + z^3 - 3xyz = (x + y + z)(x + \omega y + \omega^2 z)(x + \omega^2 y + \omega z)$        |                                                                                                   |                                            |           |  |  |  |  |
| (NN)       | <u>ran</u>                                                                                                  | Find two integers whose sum is 9 and the difference of their squares is also 9.                   |                                            |           |  |  |  |  |
| 00         | NOTE                                                                                                        | : Parents or guardians can conduct this test i                                                    | in their supervision in order to check     | the skill |  |  |  |  |
| I          |                                                                                                             |                                                                                                   |                                            |           |  |  |  |  |