

$$6(3x+2) = 5(4x+2) \Rightarrow 18x+12 = 20x+10$$

$$18x-20x = 10 - 12 \Rightarrow -2x = -2 \Rightarrow x = 1$$
Therefore
$$3x = 3(1) = 3$$

$$4x = 4(1) = 4$$
Thus, the required a humber are 3, 4
Example 4: (Figs.) a 4.45:5a + 7b = (**A**-**E**)
For the ratio $3a + 4b : 5a + 7b = \frac{3a + 4b}{5a + 7b}$
Solution:
Give that $a:b = 5:8$ or $\frac{a}{b} = \frac{5}{8}$
(Dividing numerator and denominator by b)

$$= \frac{3a + 4b}{5a + 7b} = \frac{3(\frac{a}{b}) + 7(\frac{b}{b})}{5(\frac{a}{b}) + 7(\frac{b}{b})}$$
(Dividing numerator and denominator by b)

$$= \frac{3a + 4b}{5(\frac{a}{8}) + 7(1)} \quad (\because \frac{a}{b} = \frac{5}{8})$$
(Dividing numerator and denominator by b)

$$= \frac{3(\frac{a}{5}) + 4(1)}{5(\frac{5}{8}) + 7(1)} \quad (\because \frac{a}{b} = \frac{5}{8})$$

$$= \frac{15}{(\frac{5}{8}) + 7(1)} \quad (\because \frac{a}{b} = \frac{5}{8})$$

$$= \frac{15}{(\frac{5}{8}) + 7(1)} \quad (\because \frac{a}{b} = \frac{5}{8})$$

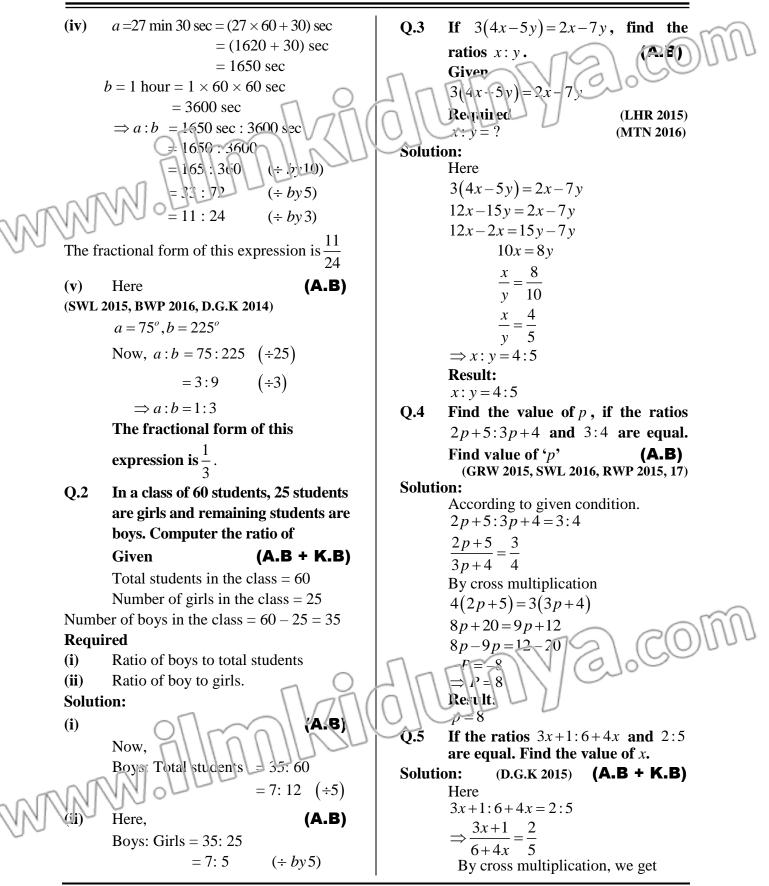
$$= \frac{15}{(\frac{5}{8}) + 7(1)} \quad (\because \frac{a}{b} = \frac{5}{8})$$

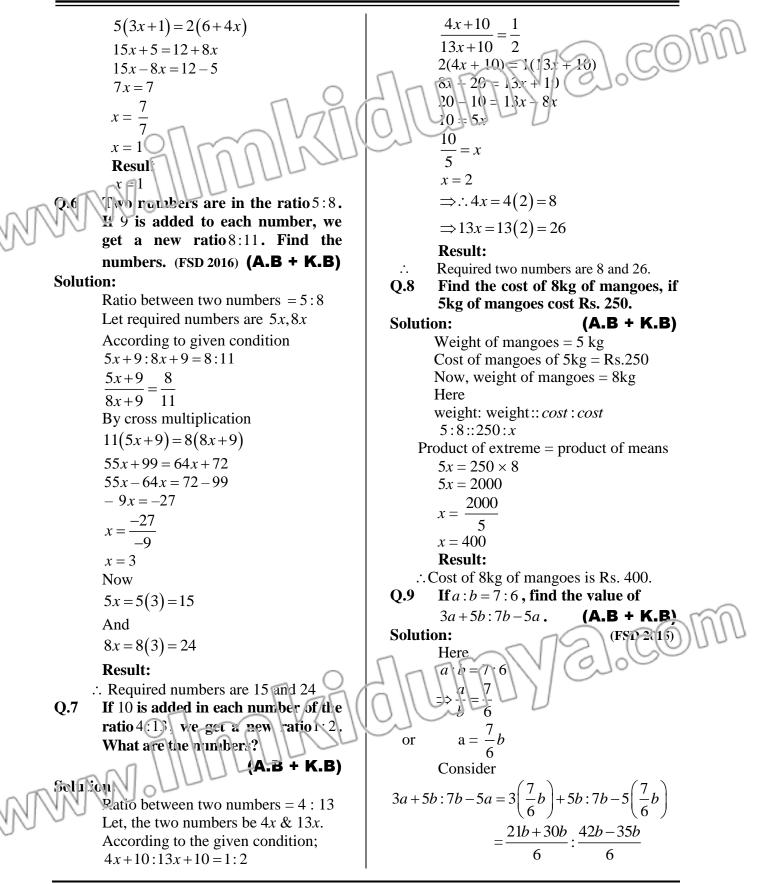
$$= \frac{15}{(\frac{5}{8}) + 7(1)} \quad (\because \frac{a}{b} = \frac{5}{8})$$

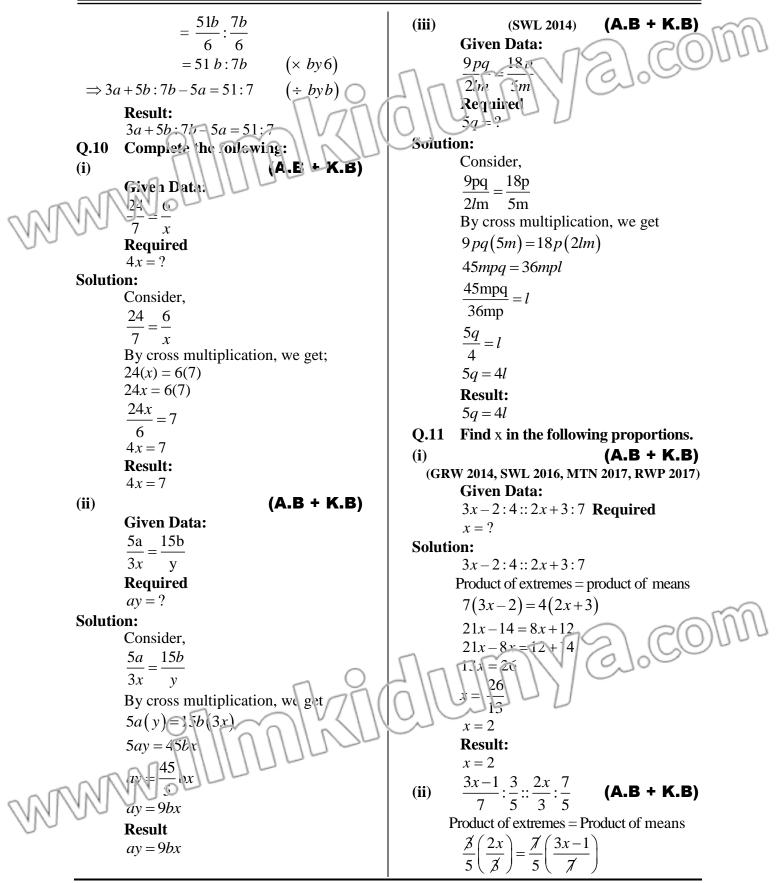
$$= \frac{15}{(\frac{5}{8}) + 7(1)} \quad (\because \frac{a}{b} = \frac{5}{8})$$

$$= \frac{47}{81}$$
Hence, $3a + 4b: 5a + 7b = 47: 81$
Example 6: (**Divergif23)** (**IIR 2014)** (**A**.**B**)
Find the cost of 15kg of sugar, if 7kg or sugar costs 560 rapees.
Solution:
Let the cost of -15kg of sugar, if 7kg or sugar costs 560 rapees.
Solution:
Let the cost of -15kg of sugar, if 7kg or solution:
Let the cost of -15kg of sugar, if 7kg or solution:
Let the cost of -15kg of sugar, if 7kg or solution:
Let the cost of -15kg of sugar, if 7kg or solution:
Let the cost of -15kg of sugar, if 7kg or solution:
Let the cost of -15kg of sugar, if 7kg or solution:
Let the cost of -15kg of sugar, if 7kg or solution:
Let the cost of -15kg of sugar, if 7kg or -162 \times 1000 + 750)gm
Solution:
Let the cost of -15kg of sugar, if 7kg or -162 \times 1000 + 750)gm
Solution:
Let the cost of extremes = Product of means 15x 560 = 7x
Now
$$a: b = 4000: 2750$$

$$a: b = 16: 11 \quad (+by5)$$
The fractional form of this expression is $\frac{16}{11}$







$$\frac{2x}{\beta} = \frac{3x-1}{\beta}$$

$$\frac{2x}{\beta} = \frac{3x}{2}$$

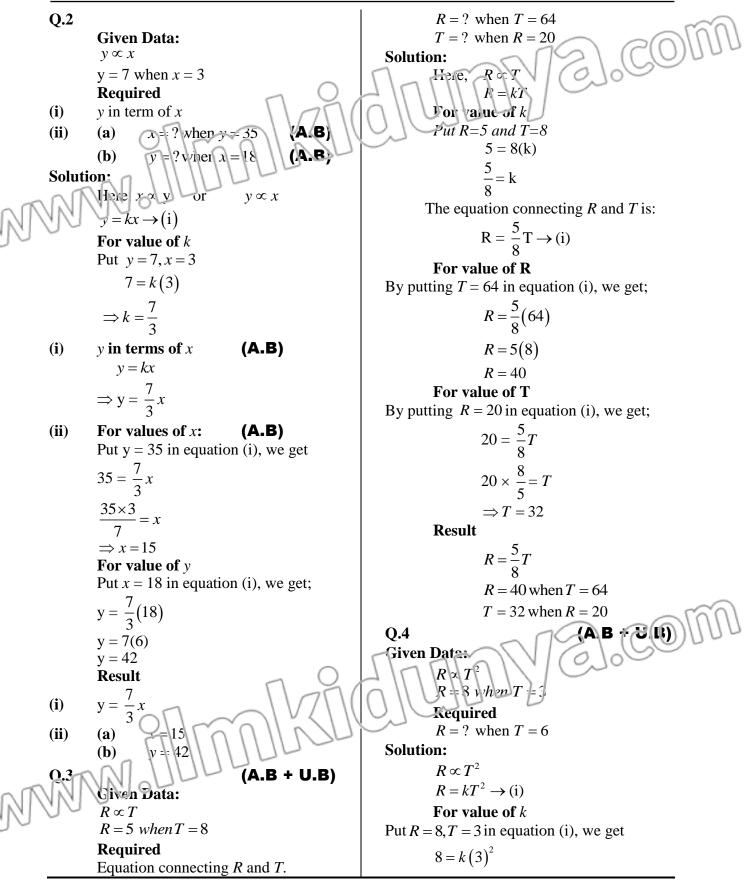
$$\frac{2x}{\beta} = \frac{2x}{\beta}$$

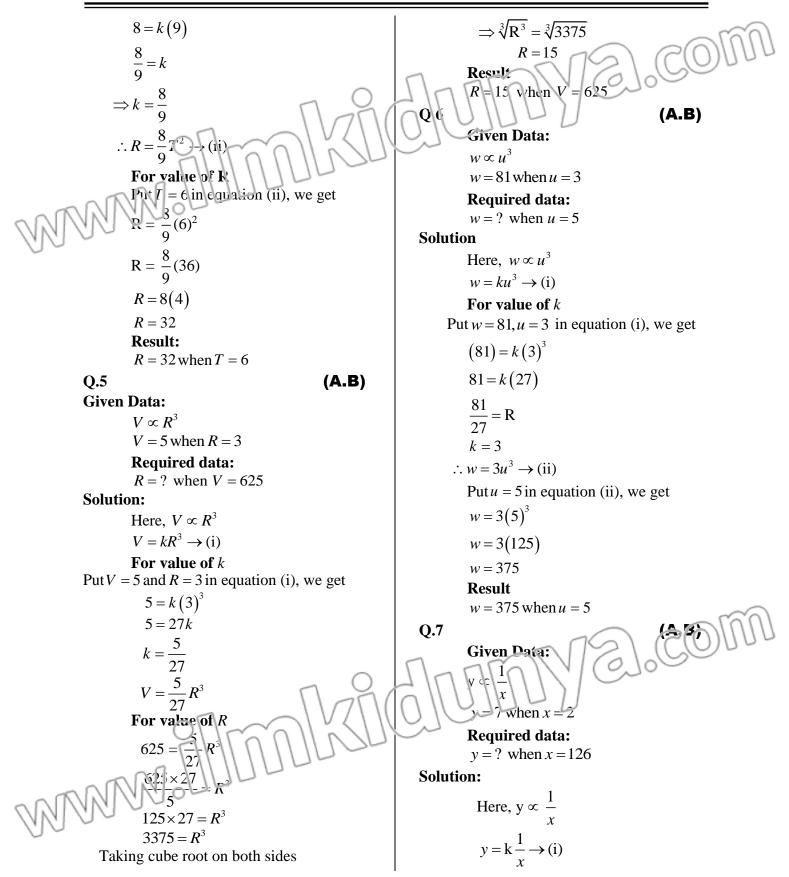
$$\frac{2x}{\beta} = \frac{2x}{2}$$

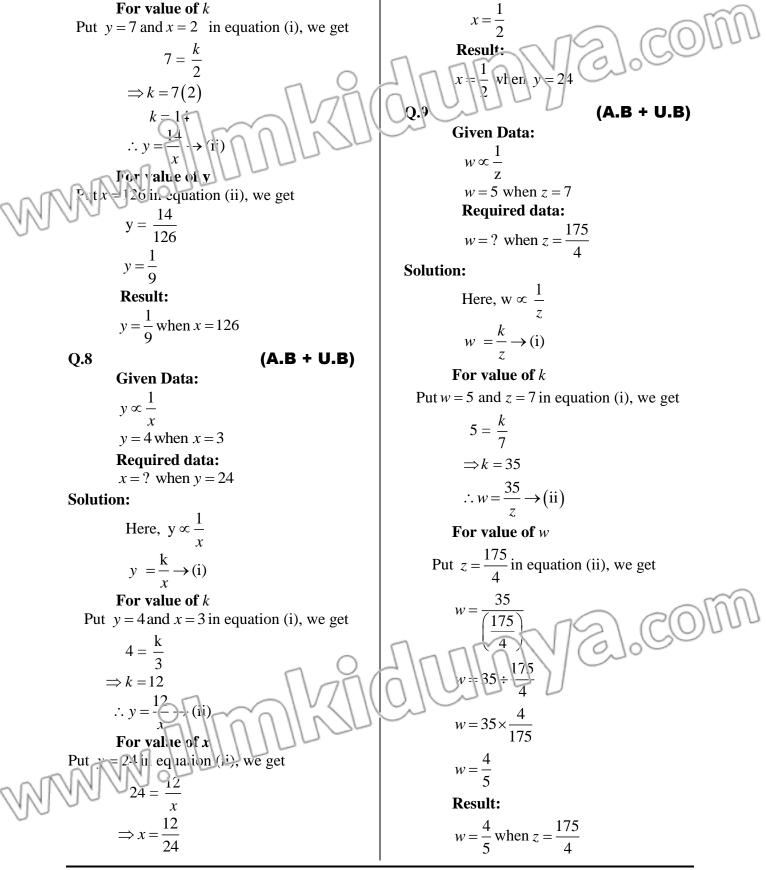
$$\frac{2x}{\beta} = \frac{2x}{\beta}$$

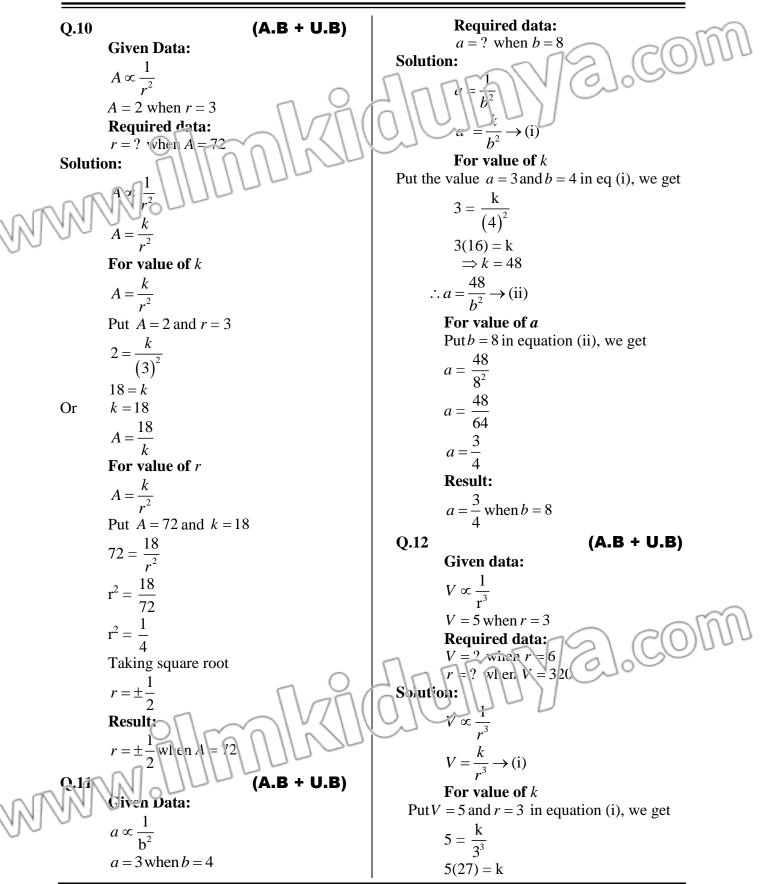
Example 3: (Page # 54)
Give that A varies directly as the
square of r and
$$A = \frac{1782}{72} cm^2$$
, when
 $r = 9cm$. If $r = 14cm$, then find A.
Solution:
Since A varies directly as square of r
 \therefore $a + cr$
 $a + cr$

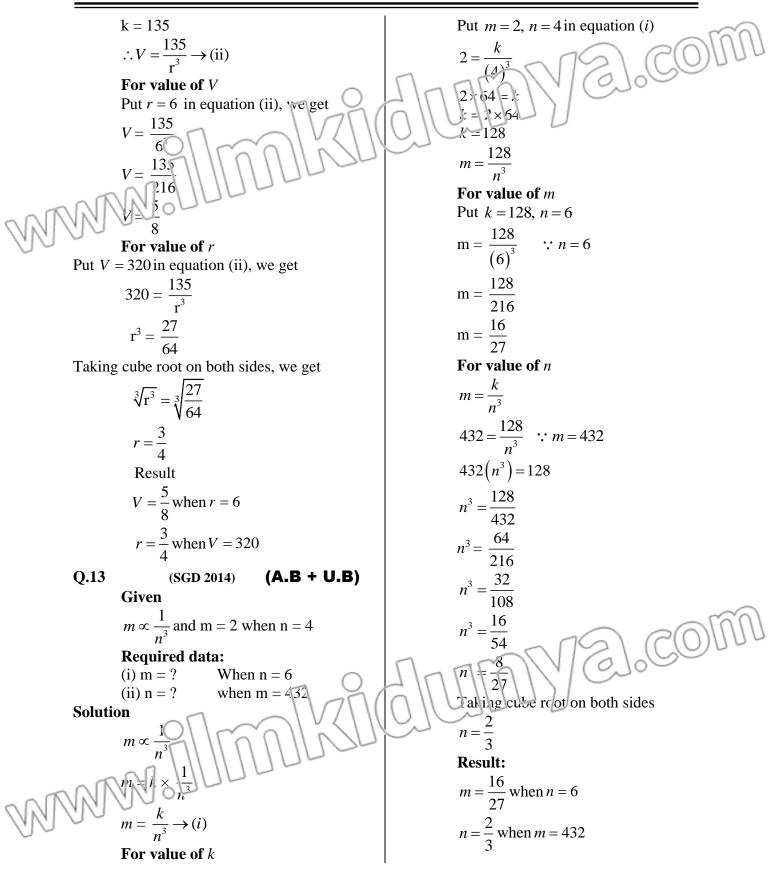
\mathbf{U}_{nit-3}



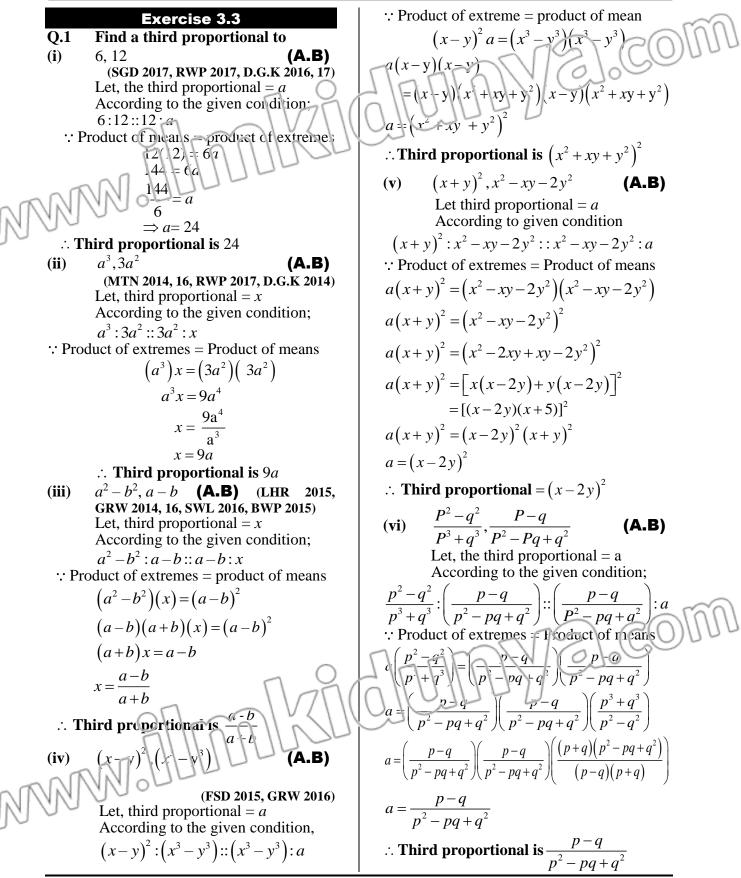


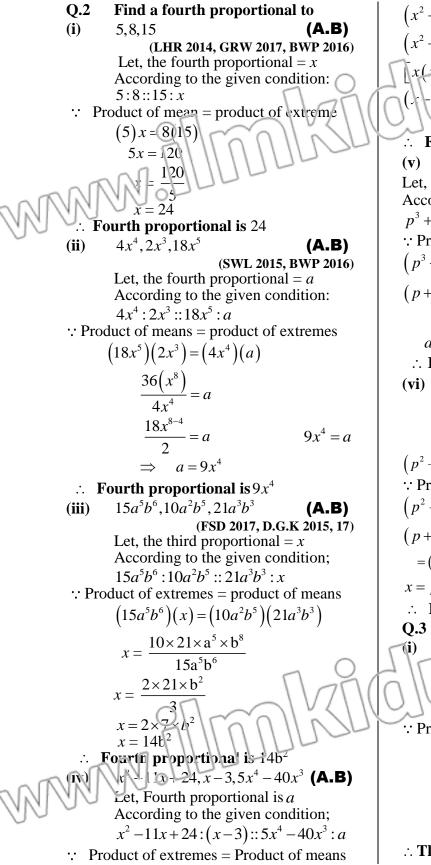






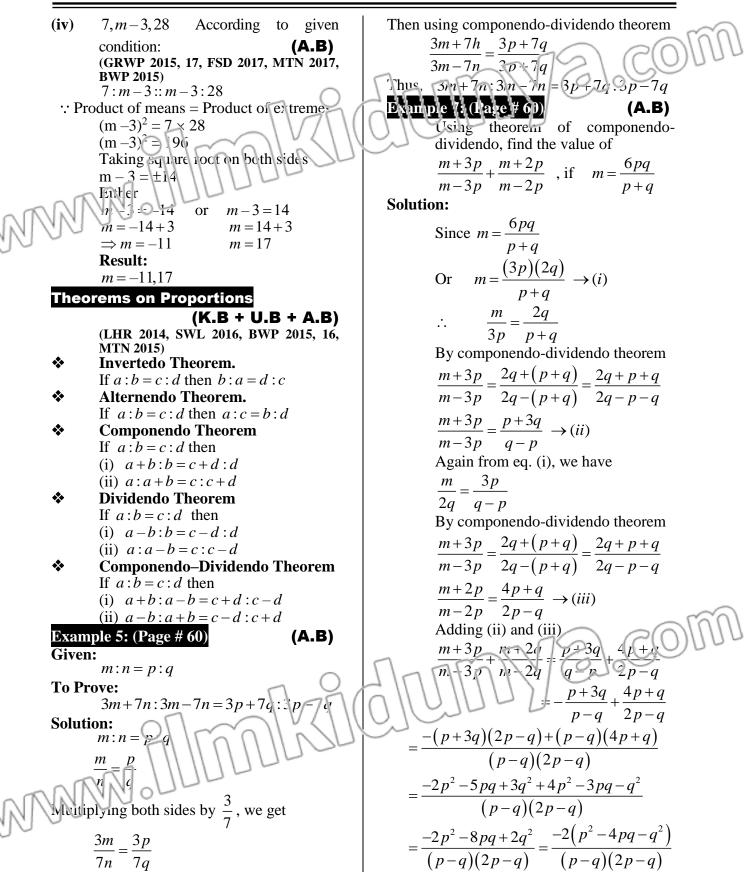






 $(x^{2}-11x+24)(a) = (x-3)(5x^{4}-40x^{3})$ $(x^{2} - 8x - 3x + 24)a = (x - 3)^{1}_{1}(5x^{4} - 40x^{3})$ $[x(x - 8) - 3(x - 8)]a = 5x^{3}(x - 3)(x - 8)$ $-3)(x-8)c = 5x^{3}(x-3)(x-8)$ $a = 5x^{3}$ \therefore Fourth proportional is $5x^3$ $p^{3} + q^{3}, p^{2} - q^{2}, p^{2} - pq + q^{2}$ Let, Fourth proportional = aAccording to given condition: $p^{3} + q^{3}$: $p^{2} - q^{2}$: $p^{2} - pq + q^{2}$: a: Product of extremes = Product of means $(p^{3}+q^{3})a = (p^{2}-q^{2})(p^{2}-pq+q^{2})$ $(p+q)(p^2-pq+q^2)a$ $= (p+q)(p-q)(p^2-pq+q^2)$ a = p-q: Fourth proportional = p - q $(p^2-q^2)(p^2+pq+q^2), p^3+q^3, p^3-q^3$ (A.B) Let, the fourth proportional = xAccording to the given condition; $(p^{2}-q^{2})(p^{2}+pq+q^{2}):p^{3}+q^{3}::p^{3}-q^{3}:x$: Product of extremes = Product of means $(p^{2}-q^{2})(p^{2}+pq+q^{2})(x) = (p^{3}+q^{3})(p^{3}-q^{3})$ $(p+q)(p-q)(p^{2}+pq+q^{2})(x)$ $=(p+q)(p^{2}-pq+q^{2})(p-q)(p^{2}+pq+q^{2})$ $x = p^2 - pq + q^2$ \therefore Fourth proportional is $p^2 - pq + q^2$ Find a mean proportional between <u>__}</u> 20.45 45 (LHR 2016, GKW 2014, D.G.K 2016) Let, the mean proportional = xAccording to the given condition; 20: x :: x : 45: Product of means = Product of extremes (x)(x) = (20)(45) $x^2 = 900$ Taking square root on both sides $\sqrt{x^2} = \sqrt{900}$ x = +30 \therefore The mean proportional is ± 30

(i)
$$20x^3y^3, 5x^2y$$
 (A.B)
Let, mean proportional = a
According to given condition
 $20x^3y^3, a::a::5x^2y$
 \therefore Product of extremes = Product of rmeans
 $(20x^2y^2)(2x^2y) = ax$
 $(20x^2y^2)(2x^2y^2) = ax$
 $(2x^2y^2)(2x^2y^2) = ax$



EXAMPLE 5: CPage # (A)
Using theorem of componendo-
dividendo, solve the equation

$$\frac{\sqrt{x+3}+\sqrt{x-3}}{\sqrt{x+3}-\sqrt{x-3}} = \frac{4}{3}$$

Solution:
Given equation is $\frac{\sqrt{x+3}}{\sqrt{x+3}-\sqrt{x-3}} = \frac{4}{3}$
We show $\frac{\sqrt{x+3}}{\sqrt{x-3}} = \frac{7}{1} \Rightarrow \sqrt{\frac{x+3}{x-3}} = 7$
Squaring both sides
 $\frac{x+3}{\sqrt{x-3}} = \frac{4}{9}$
 $x+3 = 49(x-3)$
 $x+3 = 49(x-4)$
 $x+3 =$

$$\frac{a}{b} = \frac{c}{d}$$

$$\Rightarrow a : b = c: d$$
Hence Proved
(iv) Given
(a) $\frac{a^2 c + b^2 d}{a^2 c - b^2 d} = \frac{ac^2 + bd^2}{ac^2 - bd^2}$
(b) $\frac{a^2 c + b^2 d}{a^2 c - b^2 d} = \frac{ac^2 + bd^2}{ac^2 - bd^2}$
By applying componendo-dividendo prop
$$\frac{a^2 c + b^2 d}{a^2 c - b^2 d} = \frac{ac^2 + bd^2}{ac^2 - bd^2}$$
By applying componendo-dividendo prop
$$\frac{a^2 c + b^2 d}{a^2 c - b^2 d} = \frac{ac^2 + bd^2}{ac^2 - bd^2}$$
By applying componendo-dividendo prop
$$\frac{a^2 c + b^2 d}{a^2 c - b^2 d} = \frac{ac^2 + bd^2}{ac^2 - bd^2}$$
By applying componendo-dividendo prop
$$\frac{a^2 c + b^2 d + a^2 c - bd^2}{(ac^2 + bd^2) - (a^2 c - bd^2)}$$
By applying componendo-dividendo prop
$$\frac{a^2 c + b^2 d + a^2 c - bd^2}{(ac^2 + bd^2 + ac^2 - bd^2)}$$
By applying componendo-dividendo prop
$$\frac{a^2 c + b^2 d + a^2 c - bd^2}{a^2 c + b^2 d - a^2 c^2 + bd^2}$$
By applying componendo-dividendo prop
$$\frac{a^2 c + b^2 d + a^2 c - bd^2}{ac^2 + bd^2 - ac^2 + bd^2}$$
By applying componendo-dividendo prop
$$\frac{a^2 c + b^2 d - a^2 c + bd^2 + ac^2 - bd^2}{a^2 c + b^2 d - a^2 c + bd^2 + ac^2 - bd^2}$$
By applying componendo-dividendo prop
$$\frac{a^2 c + b^2 d - a^2 c + bd^2 + ac^2 - bd^2}{a^2 c + b^2 d - a^2 c + bd^2 + ac^2 - bd^2}$$
By applying componendo-dividendo prop
$$\frac{a^2 c + b^2 d - a^2 c + bd^2 + ac^2 - bd^2}{a^2 c + b^2 d - a^2 c^2 - ac^2}$$
By applying componendo-dividendo
$$\frac{a^2 c + b^2 d - a^2 c + bd^2 + ac^2 - bd^2}{a^2 c + b^2 d - a^2 c^2 - ad^2}$$
By applying componendo-dividendo
$$\frac{a^2 c + b^2 d - a^2 c + bd^2 + ac^2 - bd^2}{a^2 c + b^2 d - a^2 c + bd^2}$$

$$\frac{a^2 c + b^2 d - a^2 c + bd^2 + bc^2 - dd}{a^2 c + b^2 d - bc^2 + dd}$$

$$\frac{a^2 c + b^2 d - a^2 c + bd^2 + bc^2 - dd}{a^2 c + b^2 d - bc^2 + dd}$$

$$\frac{a^2 c + b^2 d - a^2 c + bd^2 + bc^2 - bd^2}{a^2 c + b^2 d - bc^2 + dd}$$

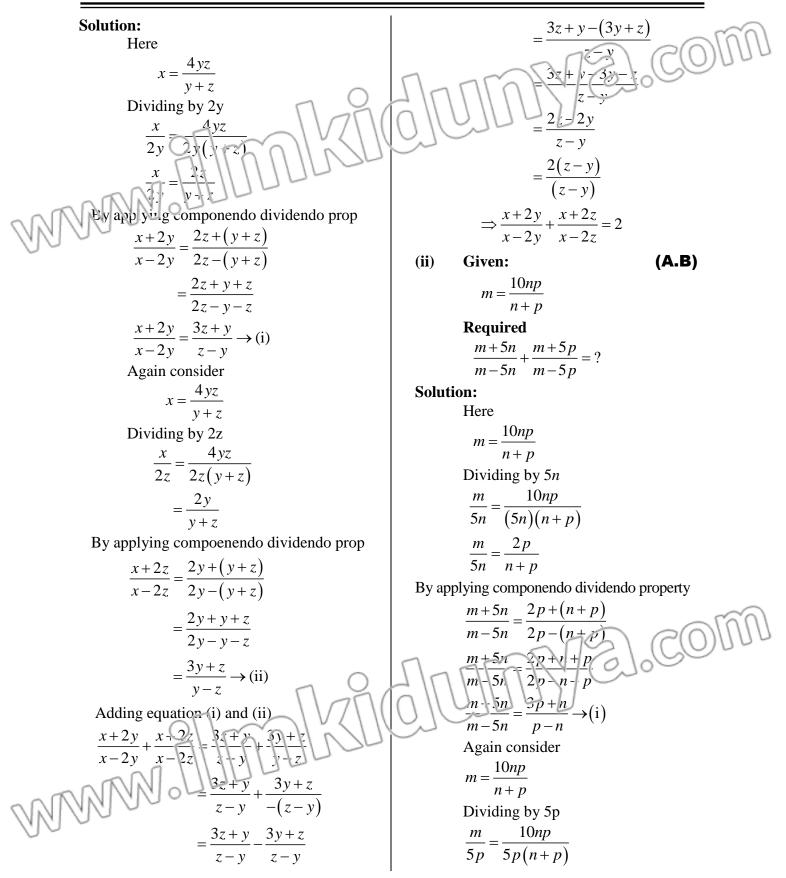
$$\frac{a^2 c + b^2 d - a^2 c + bd^2 + bc^2 - bd^2}{a^2 c + b^2 d - bc^2 + dd}$$

$$\frac{a^2 c + b^2 d - a^2 c + bd^2 + bc^2 - bd^2}{a^2 c + b^2 d - bc^2 + dd}$$

$$\frac{a^2 c + b^2 d - a^2 c + bd^2 + bc^2 - dd}{a^2 c + b^2 d - bc^2 + dd}$$

$$\frac{a^2 c + b^2 d - bc^2 + dd}{a^2 c + bc^2 - bd^2}$$

$$\frac{a^2 c + b^2 d - bc^2 + dd}{a^2 c$$



$$\frac{m}{5p} = \frac{2n}{n+p}$$
Applying componendo devidendo prop

$$\frac{m+5p}{m-5p} = \frac{2n+(n+p)}{2n-(n+p)}$$

$$\frac{m+5p}{m-5p} = \frac{2n+(n+p)}{2n-(n+p)}$$

$$\frac{m+5p}{m-5p} = \frac{3p+n}{2n-(n+p)}$$

$$\frac{m+5p}{m-5p} = \frac{3p+n}{p-n} + \frac{3n+p}{n-p}$$

$$= \frac{3p+n}{p-n} - \frac{3n+p}{p-n}$$

$$= \frac{3p+n}{p-n} - \frac{3n+p}{p-n}$$

$$= \frac{3p+n-3n-p}{p-n}$$

$$= \frac{3p+n-3n-p}{p-n}$$

$$= \frac{3p+n-3n-p}{p-n}$$

$$= \frac{3p+n-3n-p}{p-n}$$

$$= \frac{2(p-n)}{p-n}$$

$$= \frac{2(p-n)}{p-n}$$

$$= 2^{2}$$
Hence

$$\frac{m+5n}{m-5n} + \frac{m+5p}{m-5p} = 2$$
(iii) Given (A.B)

$$x = \frac{12ab}{a-b}$$
(iii) Given (A.B)

$$x = \frac{12ab}{a-b}$$
(iii) Given (A.B)

$$x = \frac{12ab}{a-b}$$
Solution (i) $\frac{x-6a}{a-b} = \frac{3b-a}{a-b} \rightarrow (i)$
Applying componendo-Dividendo prop

$$\frac{x+6b}{a-b} = \frac{2a+(a-b)}{2a-(a-b)}$$

$$\frac{x+6b}{a-a-b} \rightarrow (ii)$$
Applying componendo-Dividendo prop

$$\frac{x+6b}{a-b} = \frac{2a+(a-b)}{2a-(a-b)}$$

$$\frac{x+6b}{x-6b} = \frac{2a+(a-b)}{2a-(a-b)}$$

$$\frac{x+6b}{x-6b} = \frac{2a+(a-b)}{a-a+b}$$

$$\frac{x+6b}{x-6b} = \frac{3b-a}{a-b} \rightarrow (ii)$$
Subtracting (i) and (ii)

$$\frac{x-6a}{x+6a} = \frac{x+6b}{a-b} \rightarrow (ii)$$
Subtracting (i) and (ii)

$$\frac{x-6a}{x+6a} = \frac{x+6b}{a-b} \rightarrow (ii)$$
Subtracting (i) and (ii)

$$\frac{x-6a}{x+6a} = \frac{x+6b}{a-b} \rightarrow (ii)$$
Subtracting (i) and (ii)

$$\frac{x-6a}{x+6a} = \frac{x+6b}{a-b} \rightarrow (ii)$$
Subtracting (i) and (ii)

$$\frac{x-6a}{x+6a} = \frac{x+6b}{a-b} \rightarrow (ii)$$
Subtracting (i) and (ii)

$$\frac{x-6a}{x+6a} = \frac{x+6b}{a-b} \rightarrow (ii)$$
Subtracting (i) and (ii)

$$\frac{x-6a}{x+6a} = \frac{x+6b}{a-b} \rightarrow (ii)$$
Subtracting (i) and (ii)

$$\frac{x-6a}{x+6a} = \frac{x+6b}{a-b} \rightarrow (ii)$$
Subtracting (i) and (ii)

$$\frac{x-6a}{x+6a} = \frac{x+6b}{a-b} \rightarrow (ii)$$
Subtracting (i) and (ii)

$$\frac{x-6a}{x+6a} = \frac{x+6b}{a-b} \rightarrow (ii)$$
Subtracting (i) and (ii)

$$\frac{x-6a}{x+6a} = \frac{x+6b}{a-b} \rightarrow (ii)$$
Subtracting (i) and (ii)

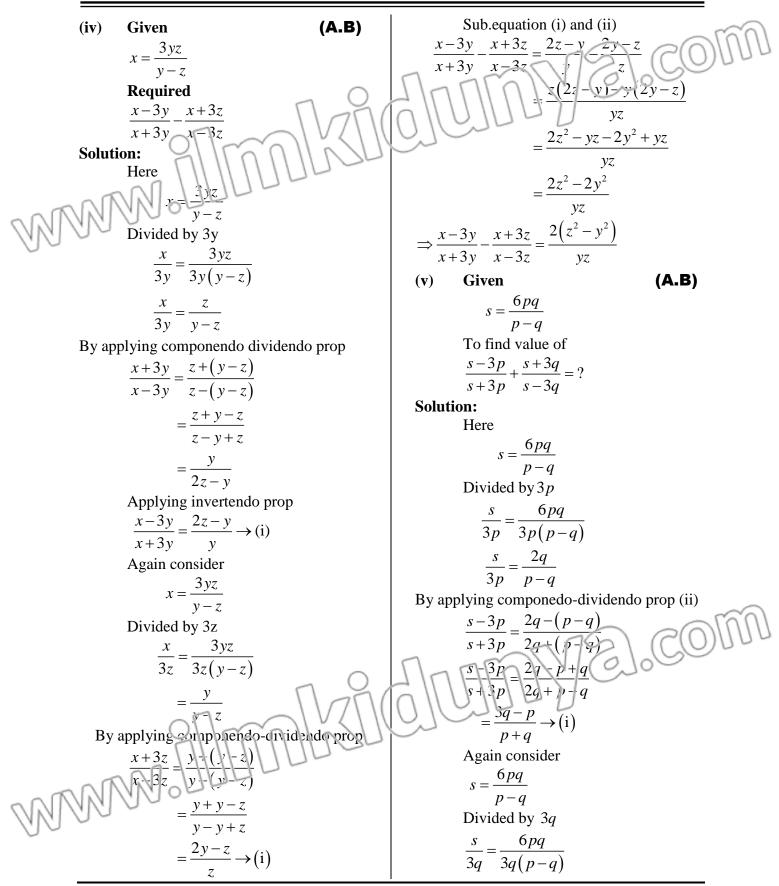
$$\frac{x-6a}{x+6a} = \frac{x+6b}{a-b} \rightarrow (ii)$$
Subtracting (i) and (ii)

$$\frac{x-6a}{x+6b} = \frac{3b-a}{a+b} \rightarrow (ii)$$
Subtracting (i) and (ii)

$$\frac{x-6a}{x+6b} = \frac{3b-a}{a+b} \rightarrow (ii)$$
Subtracting (i) and (ii)

$$\frac{x-6a}{x+6b} = \frac{3b-a}{a+b} \rightarrow (ii)$$
Subtracting (i) and (ii)

$$\frac{x-6a}{x+6b} = \frac{3b-a}{a+b} \rightarrow (ii)$$
Subtracting (i) and (ii)
Subtracting (i) and (ii)
Subtracting (i) and (ii)
Subtracting (i) and (ii)



$$\begin{aligned} \frac{=2p}{p-q} \\ \text{By applying componendo-dividendo prop} \\ \frac{s+3q}{s-3q} = \frac{2p+(p-q)}{2p-(p-q)} \\ \frac{-2p+2p-q}{2p-1q-(p-q)} \\ \frac{-2p+2p-q}{2p-1q-(p-q)} \\ \frac{-2p+2p-q}{2p-1q-(p-q)} \\ \frac{-2p+2q}{p+q} \\ \frac{-3p-p+3p-q}{p+q} \\ \frac{-3p-p+3p-q}{p+q} \\ \frac{-3p-p+3p-q}{p+q} \\ \frac{-2p+2q}{p+q} \\$$

$$\frac{x^{2} + 2}{x^{2} - 2} = 9$$

$$x^{2} + 2 = 9(x^{2} - 2)$$

$$x^{2} + 2 = 9(x^{2} - 2)$$

$$x^{2} + 2 = 9(x^{2} - 2)$$

$$x^{2} + 2 = 9x^{2} - 18$$

$$x^{2} - 9x^{2} - 18 - 2$$

$$-8x^{2} = 50$$

$$x^{2} = -20^{2}$$

$$x^{2} = -20^{2}$$
Solution Set= $[27, -27^{2}]$
(ix)
$$\frac{\sqrt{x^{2} + 8P^{2}} - \sqrt{x^{2} - P^{2}}}{\sqrt{x^{2} + 8P^{2}} - \sqrt{x^{2} - P^{2}}} = \frac{3}{1}$$
By applying Invertendo Property
$$\frac{\sqrt{x^{2} + 8P^{2} + \sqrt{x^{2} - P^{2}} - (\sqrt{x^{2} + 8P^{2} - \sqrt{x^{2} - P^{2}})}{\sqrt{x^{2} + 8P^{2} + \sqrt{x^{2} - P^{2}} - (\sqrt{x^{2} + 8P^{2} - \sqrt{x^{2} - P^{2}})}}$$

$$\frac{-3^{2}}{\sqrt{x^{2} + 8P^{2} + \sqrt{x^{2} - P^{2} + \sqrt{x^{2} + 8P^{2} - \sqrt{x^{2} - P^{2}}}}}{\sqrt{x^{2} + 8P^{2} + \sqrt{x^{2} - P^{2} - \sqrt{x^{2} - P^{2}}}}$$

$$\frac{-4^{2}}{\sqrt{x^{2} + 8P^{2} + \sqrt{x^{2} - P^{2} - \sqrt{x^{2} - P^{2}}}}}{\sqrt{x^{2} + 8P^{2} + \sqrt{x^{2} - P^{2} - \sqrt{x^{2} - P^{2}}}}}$$

$$\frac{-4^{2}}{\sqrt{x^{2} + 8P^{2} + \sqrt{x^{2} - P^{2} - \sqrt{x^{2} - P^{2}}}}}{\sqrt{x^{2} + 8P^{2} + \sqrt{x^{2} - P^{2} - \sqrt{x^{2} - P^{2}}}}}$$

$$\frac{-4^{2}}{\sqrt{x^{2} + 8P^{2} + \sqrt{x^{2} - P^{2} - \sqrt{x^{2} - P^{2}}}}}}{\sqrt{x^{2} + 8P^{2} + \sqrt{x^{2} - P^{2} - \sqrt{x^{2} - P^{2}}}}}$$

$$\frac{-4^{2}}{\sqrt{x^{2} + 8P^{2} + \sqrt{x^{2} - P^{2} - \sqrt{x^{2} - A^{2}}}}}}{\sqrt{x^{2} + 8P^{2} + \sqrt{x^{2} - P^{2} - \sqrt{x^{2} - A^{2}}}}}$$

$$\frac{-4^{2}}{\sqrt{x^{2} + 8P^{2} + \sqrt{x^{2} - P^{2} - \sqrt{x^{2} - A^{2}}}}}}$$

$$\frac{-4^{2}}{\sqrt{x^{2} + 8P^{2} + \sqrt{x^{2} - P^{2} - \sqrt{x^{2} - A^{2}}}}}}$$

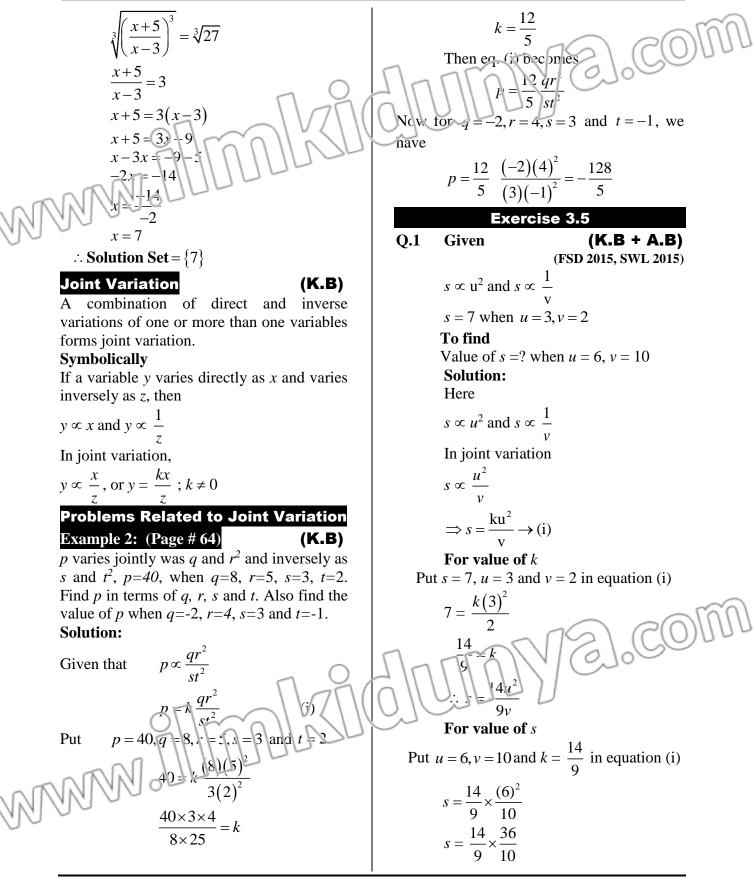
$$\frac{-4^{2}}{\sqrt{x^{2} + 8P^{2} + \sqrt{x^{2} - P^{2} - \sqrt{x^{2} - A^{2}}}}}}}$$

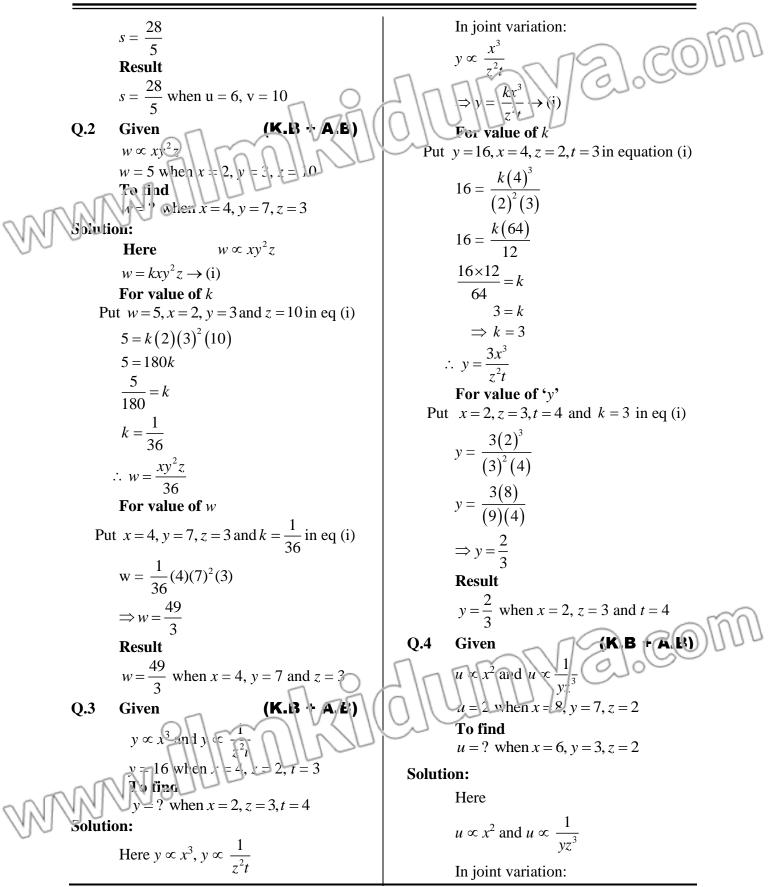
$$\frac{-4^{2}}{\sqrt{x^{2} + 8P^{2} + \sqrt{x^{2} - P^{2} - \sqrt{x^{2} - A^{2}}}}}}$$

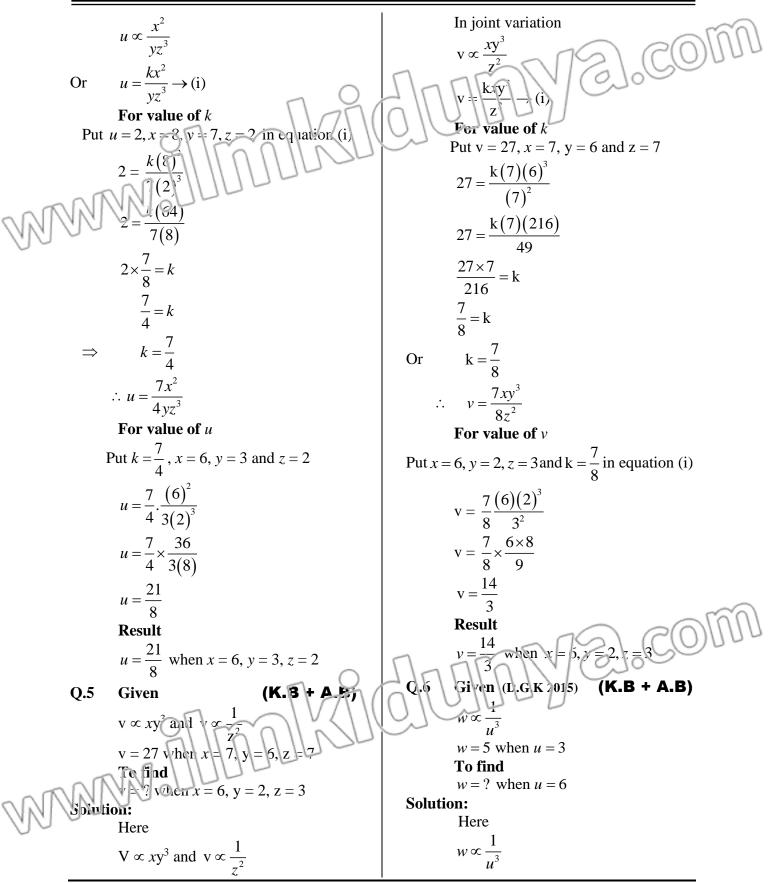
$$\frac{-4^{2}}{\sqrt{x^{2} + 8P^{2} - 2}}}}$$

$$\frac{-4^{2}}{\sqrt{x^{2} + 8P^{2} - 2}}}}$$

$$\frac{-4^{2}}{\sqrt{x^{2} + 8P^$$

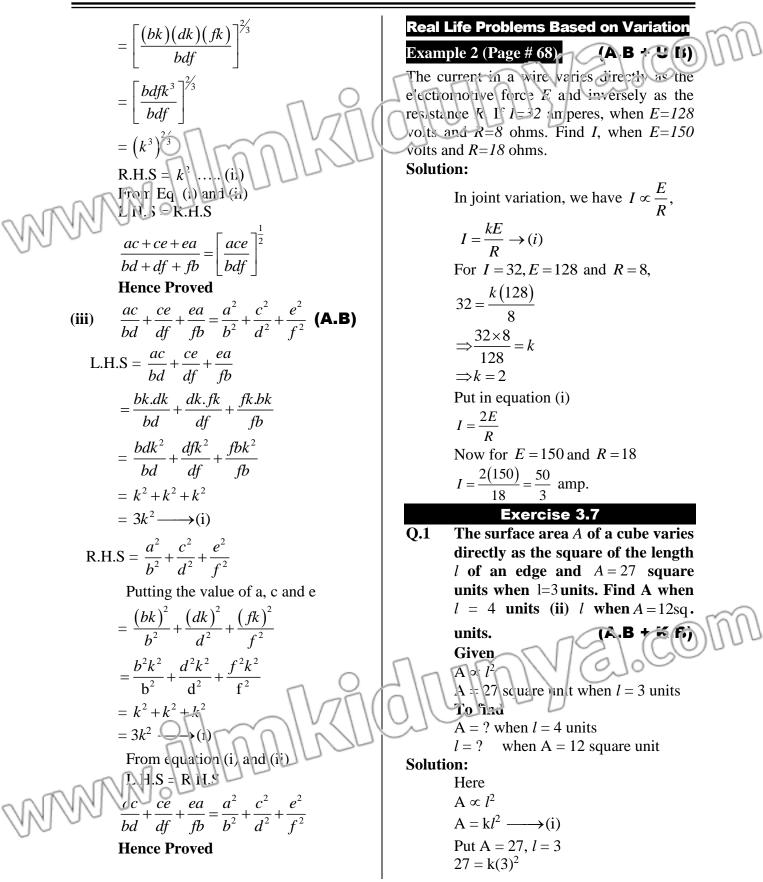




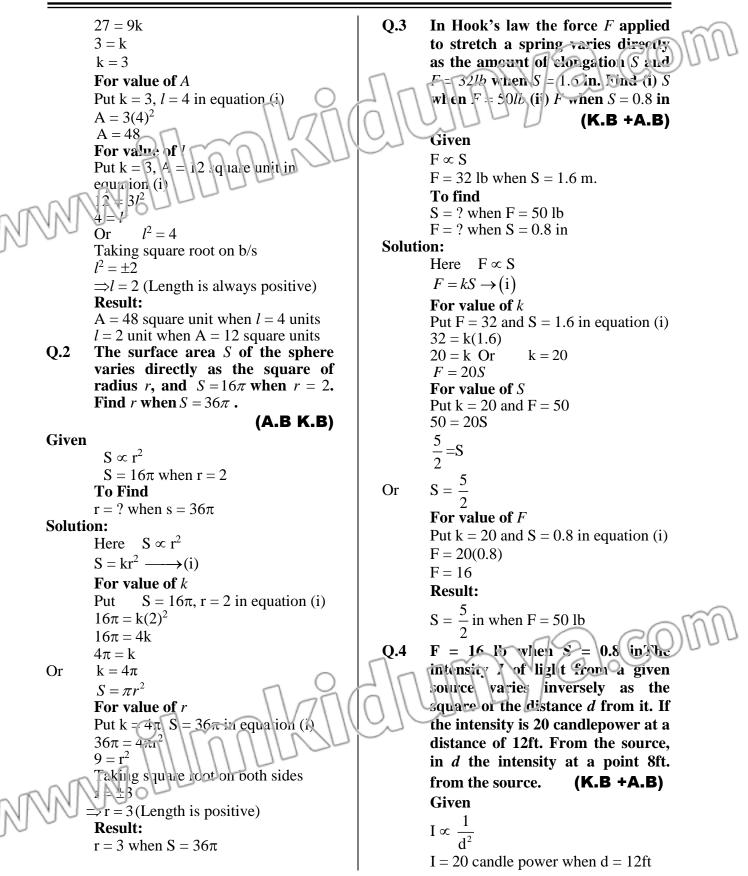


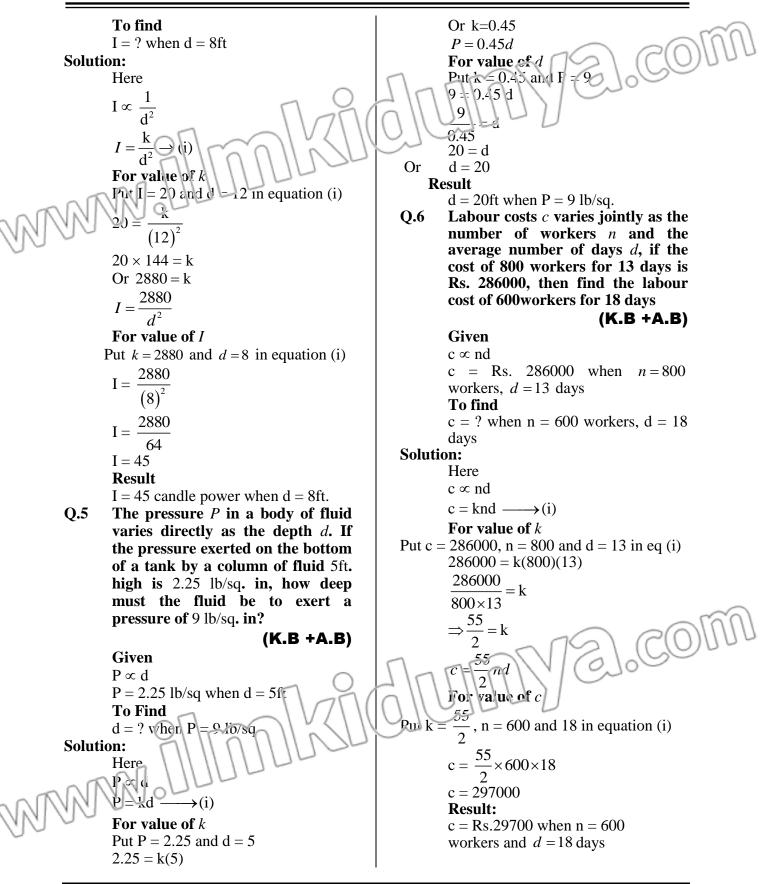
(vi)
$$a^2 + b^2$$
; $\frac{a^3}{a+b} = c^2 + d^2$; $\frac{c^2}{c+d}$
(vii) $\frac{a}{a-b}$; $\frac{a+b}{b} = \frac{c}{c-d}$; $\frac{c+d}{d}$
Proof:
Let $a: b = c$ $d = k$
 $\Rightarrow \frac{a}{b} = \frac{b}{c^2} + k^2$
(i) $\frac{4a-9b}{4a+9b} = \frac{d-2d}{4c+9d}$
(i) $\frac{4a-9b}{4a+9b} = \frac{d-2d}{4c+9d}$
L.H.S = $\frac{4a-9b}{4a+9b}$
Putting the values of a
 $= \frac{4bk-9b}{b(k+9)}$
 $= \frac{b(4k-9)}{b(4k+9)}$
(i) $\frac{4a-9b}{4c+9d} = \frac{d-2d}{4c+9d}$
R.H.S = $\frac{a-2d}{4c+9d}$
Putting the value of c^*
 $= \frac{4k-9}{4dk+9d} = \frac{d}{4k+9} = \frac{d}{4k+$

$$\frac{a}{b} = \sqrt{\frac{a^2 + c^2}{b^2 + d^2}}$$
Hence Proved
(iv) $a^2 + b^2; b^2 + d^2 = a^2c^2; b^2d^2$ (A.B)
L.H.S = $a^4 + c^2; b^2 + d^2$
 $= (bk)^2 + (k^2)^2 + (k^2 + d^2)^2$
 $= (bk)^2 + (k^2 + d^2)^2 + (k^2 + d^2)^2$
 $= b^2 d^2 k^2 + d^2^2$
 $= b^2 d^2 k^2 + d^2^2$
Hence Proved
(v) $p(a+b) + qb: p(c+d) + qd$
 $= p(bk+b) + qb: p(ck+d) + qd$
 $= b(k+1) + qb: p(k+1) + qd$
 $= b(k+1) + b(k+1) + (k+1) + (k+1)$



Variations





vari dian squa dian feet How	supporting load c of a pillar es as the fourth power of its neter d and inversely as the are of its length 1. A pillar of neter 6 inch and of beight 30 will support a load of 63 teas. whigh a 4 inch pillar number upport a load of 28 tons? (IS-3 = A.B)		$28 = \frac{175}{4} \frac{(4)^4}{l^2}$ $28 \times 4l^2 = 175 \times 256$ $l^2 = 400$ king positive square root on both sides $\Rightarrow i = 20$ Result feet when d = 4 inches and c = 28 tons The time T required for an elevator
c = 63 tons	en d ⁴ and $c \propto \frac{1}{l^2}$ when d = 6 inches and l = 30 feet	Q.0	to lift a weight varies jointly as the weight <i>w</i> and the lifting depth <i>d</i> varies inversely as the power <i>p</i> of the motor. If 25 sec. are required for a 4-hp motor to lift 500 lb through 40 ft, what power is required to lift
Solution:		(K R	800 lb, through 120 ft in 40 sec.? +A.B)
Here			Given
$c \propto c$	d^4 and $c \propto \frac{1}{l^2}$,	$T \propto \text{wd and } T \propto \frac{1}{P}$
	int variation:		P T = 25 sec when P = 4 hp, w = 500 lb
0.00	d^4		r = 25 see when $r = 4$ hp, $w = 500$ lb Find
$c \propto \frac{d^4}{l^2}$ $\Rightarrow c = k \frac{d^4}{l^2}$			P = ? when $c = 800$ lb, $d = 120$ ft and
	d^4	a 1	T = 40 sec.
$\Rightarrow c$	$= K \frac{l^2}{l^2}$		lution: Here
For	value of k		
	c = 63, d = 6 and l = 30 in]	$\Gamma \propto \text{wd and } T \propto \frac{1}{P}$
1	lation (i)		In joint variation:
63 =	$k \frac{(6)^4}{(30)^2}$		$T \propto \frac{wd}{P}$
	k 1296 900		$T = \frac{kwd}{P} \longrightarrow (i)$
$\frac{63\times9}{129}$	$\frac{900}{2} = k$		For value of k $C(0)$
$\frac{175}{4}$	=k	AN	Put $T = 25$ $P = 4$, $w = 300$, $d' = 40$ in equation (i) $25 = k \frac{500 \times 40}{40}$
Or $k = c$	$\frac{175}{40}$ $\frac{175}{4e^2}$ Value of l	<u>u</u>	40 $\frac{25}{5000} = k$ $\frac{1}{200} = k$
	75	0-	1
$\nabla \nabla = \operatorname{Put} \mathbf{k} = -$	$\frac{73}{4}$, d = 4, c = 28 in equation (i)	Or	$k = \frac{1}{200}$

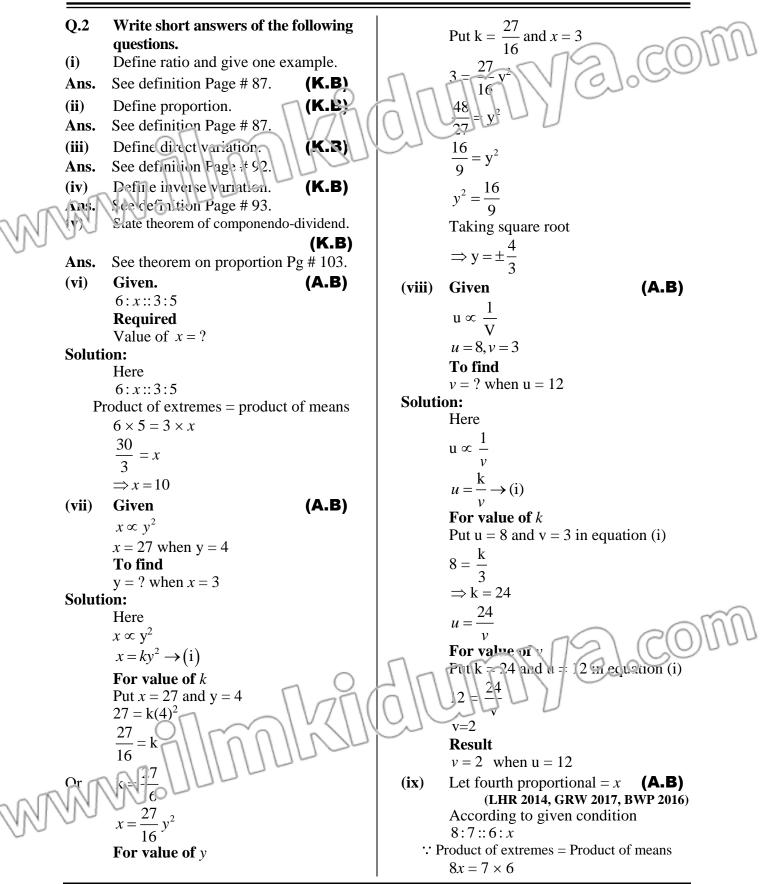
$$T = \frac{vd}{200p}$$
For value of P
For value of P
Put k = $\frac{1}{200}$, w = 800 - u = 120
and T = 40 magnation (i)
 $40 - \frac{1}{200} + \frac{1}{12}$
 $40 - \frac{1}{200} + \frac{1}{12}$
 $40 - \frac{1}{200} + \frac{1}{12}$
 $40 - \frac{1}{200} + \frac{1}{12}$
Result:
P = 12
Result:
P = 12 hp when w = 800 lb, d = 120 ft and
T = 40 sec.
Q.9 The kinetic energy (*K.E.*) of a body
varies jointly as the mass "m" of
the body and the square of its
velocity "v". If the kinetic energy is
4320 ft/lb when the mass is 45 lb
and the velocity is 24 ft/sec.
Determine the kinetic energy of
3000 lb automobile travelling 44
ft/sec.
K.E = 4320 ft/lb when m = 45 lb ard
v = 24 ft/sec
24 ft/sec

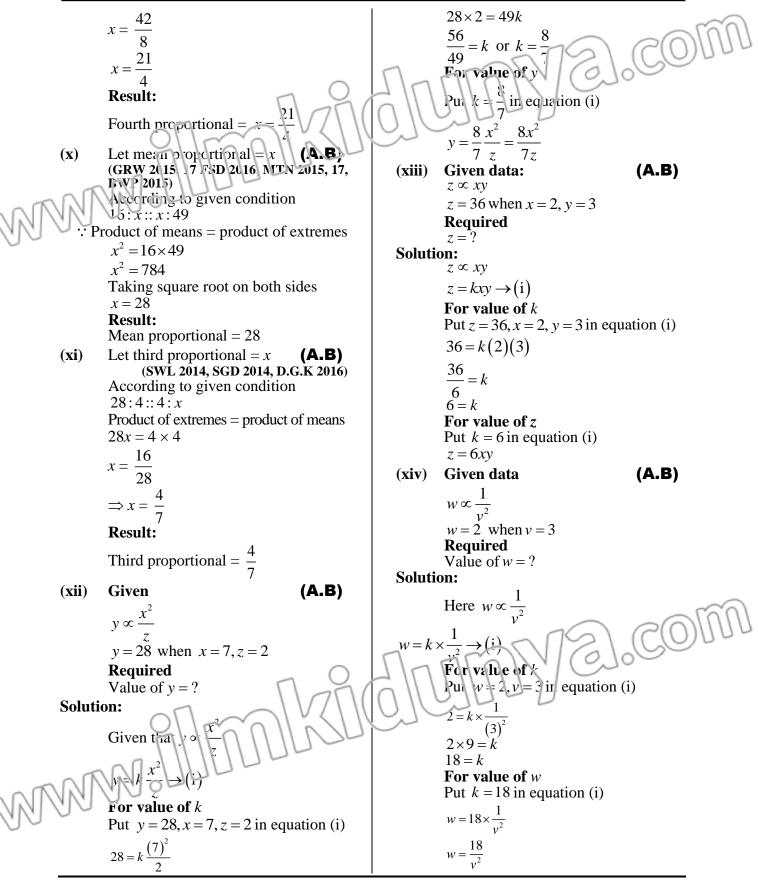
\mathbf{U}_{nit-3}

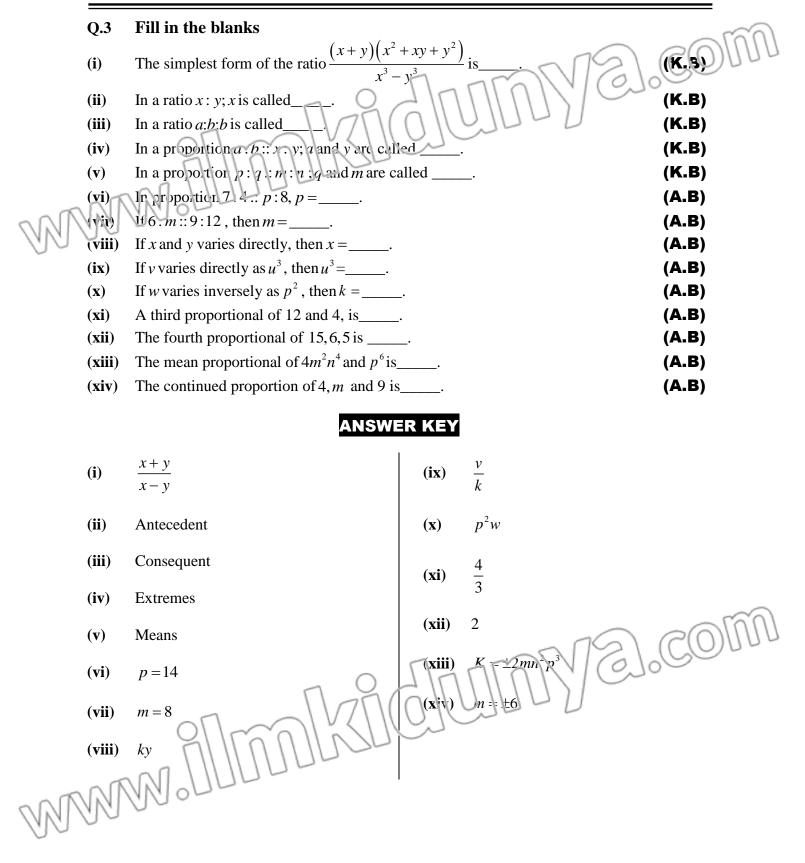
Variations

	Miso	cellaneous Exercise 3	
Q.1	Multiple Choice Questions		10 COM
	Four possible answers are gi	ven for the following questien Tick	$x(\checkmark)$ the correct
	answer.		V (CJO)
(1)	In a ratio <i>a</i> : <i>b</i> :, <i>a</i> is called;	SWL 2014, MTN 2015, D.G.K 20	14 15) (K.B +A.B)
	(a) Relation	(b) Antecedent	
	(c) Consequent	(d) None of these	
(2)	In a ratio x : y y is called:	(LHR 2014, GRW 2014, RWP 201	(K.B +A.B)
(_)	(2) Relation	(b) Antecedent	
aNI	(c) Consequent	(d) None of these	
A A	In a proportion $a:b::c:d,a$		N 2015) (K.B +A.B)
(\mathbf{J})	(a) Means	(b) Extremes	(2013) (N.D · A.D)
	(a) Means (c) Third proportional	(d) None of these	
(4)	In a proportion <i>a</i> : <i>b</i> :: <i>c</i> : <i>d</i> , b		(K.B +A.B)
(4)			(R.B + A.B)
	(a) Means (c) Fourth proportional	(b) Extremes(d) None of these	
(5)		$b = b : c, ac = b^2, b$ is said to be	nunartional
(5)		= b : c, ac = b, b is said to be	
	between a and c.		(K.B +A.B)
	(a) Third	(b) Fourth	
(\mathbf{O})	(c) Mean	(d) None of these	
(6)	In continued proportion <i>a</i> : <i>b</i>	b = b : c, c is said to be proportion	
			(K.B +A.B)
	(a) Third	(b) Fourth	
	(c) Means	(d) None of these	
(7)	Find x in proportion 4 : <i>x</i> :: 5 :	:15	(K.B +U.B)
	(a) $\frac{75}{-}$	(b) ⁴	
	$(a) \frac{1}{4}$	(b) $\frac{4}{3}$	
	(2) 3	(d) 12	
	(c) $\frac{3}{4}$	(d) 12	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(8)	If $u \propto v^2$, then	(LHR 2014, MTN 2015, D.G.K 2014)	K,B (20)
	(a) $u = v^2$	(b) $u = kv^2$	121 GOUS
	(c) $uv^2 = k$	$\int (d) uv^2 = 1$	1 Colo
		AGUUUU	
(9)	If $y^2 \propto \frac{1}{x^3}$, then	(F 5D 2015, SWL 2014, D.G.K 201	与∕ (K.B +A.B)
	QUINTON		
	(a) $y^2 = -\frac{c}{3}$	(b) $y^2 = \frac{1}{r^3}$	
	$(c) y^2 = x^2 $	(d) $y^2 = kx^3$	
	WW 5000	(u) $y = \kappa x$	
(10)	If $\frac{u}{k} = \frac{v}{k} = k$, then	(LHR 2014, D.G.K 2015)	(K.B +U.B)
	V W	(1) (2)	
	(a) $u = wk^2$	(b) $u = vk^2$	
	(c) $u = w^2 k$	$(\mathbf{d}) \ u = v^2 k$	

(11) The third proportional of
$$x^2$$
 and y^2 is;
((A, B + A, B))
((GRW 2014, MTM STRE, D.G.R.2015)
(a) $\frac{y^2}{x^2}$
(b) x^2y^2
(c) $\frac{y^2}{x^2}$
(d) $\frac{y^2}{x}$
(e) xyy
(f) The forcest proportional v of $2x$, $z = w$ BS, (PSD 2014, 15, RWP 2014) (K, B + U, B)
(a) $\frac{x^2}{y}$
(b) $\frac{y}{x}$
(c) xyy
(d) $\frac{x}{y}$
(e) $\frac{x+b}{x} = \frac{x+y}{y}$
(f) $\frac{a}{b} = \frac{x}{y}$
(g) $\frac{a+b}{x} = \frac{x+y}{y}$
(g) $\frac{a+b}{x} = \frac{x+y}{y}$
(h) $\frac{a}{a-b} = \frac{x-y}{y}$
(h) $\frac{a}{a-b} = \frac{x-y}{y}$
(h) $\frac{a}{a-b} = \frac{x-y}{y}$
(i) $\frac{a}{b} = \frac{x}{y}$
(i) $\frac{a}{b} = \frac{x}{y}$
(j) $\frac{a}{b} = \frac{x}{y}$
(k, B + U, B)
(k, B + U, B)
(k, B + U, B)
(j) $\frac{a}{a+b} = \frac{x+y}{y}$
(k) $\frac{a}{a-b} = \frac{x}{x-y}$
(k) $\frac{a+b}{b} = \frac{x+y}{y}$
(k) $\frac{a}{a-b} = \frac{x}{x-y}$
(j) $\frac{a}{b} = \frac{x}{c+d}$
(j) $\frac{a}{a-b} = \frac{c}{c-d}$
(j) $\frac{a}{bc} = \frac{a}{b}$
(j) $\frac{a}{b} = \frac{a}{b} = \frac{a}{b}$
(j) $\frac{a}{b} = \frac{a}{b} = \frac{a}{b}$
(j) $\frac{a}{b} = \frac{a}{b} = \frac{c}{c-d}$
(j) $\frac{a}{bc} = \frac{a}{b} = \frac{a}{b}$
(j) $\frac{a}{bc} = \frac{a}{b} = \frac{a}{b}$
(j) $\frac{a}{bc} = \frac{a}{b} = \frac{a}{b}$
(j) $\frac{a}{b} = \frac{a}{b} = \frac{a}{b}$







×	Uni	t-3	Variations				
CUT HERE		SELF	TEST	2			
1		40 min	Marks (25)	Π			
	Q.1	\bigcirc	(i)) to each question are given, mark the				
	1	correct answer. The third proportional of x^2 and y^2 is: (A) $\frac{y^2}{2}$	(7×1=7) (B) x^2y^2				
W	N	(C) $\frac{y^4}{x^2}$	(D) $\frac{y^2}{x^4}$				
	2	If 16, a and 4 are in continued proportion	on, then a is equal to:				
i		(A) $\pm \sqrt{20}$	(B) ±8				
		(C) ±64	(D) $\pm \sqrt{12}$				
	3	Find x in proportion 4: <i>x</i> ::5:15					
1		(A) $\frac{75}{4}$	(B) $\frac{4}{3}$				
		(C) $\frac{3}{4}$	(D) 12				
	4	In a ratio $x: y$, "y" called					
i		(A) Relation	(B) Antecedent				
		(C) Consequent	(D) None				
, i 1	5	If $\frac{u}{v} = \frac{v}{\omega} = k$, then					
I		$(\mathbf{A}) \ u = \omega k^2$	(B) $u = vk^2$	Ŋ			
		(C) $u = \omega^2 k$	(D) $u = v^2 k$	0			
i	6	If $a:b=x:y$, then invertendo property is:					
		(A) $\frac{a+b}{l} = \frac{x+y}{v}$ (B) $\frac{a}{a-b} = \frac{x}{x-y}$					
(C) $\frac{a}{r} = \frac{b}{y}$ (D) $\frac{b}{a} = \frac{y}{x}$ (D) $\frac{b}{a} = \frac{y}{x}$ (D) $\frac{b}{a} = \frac{y}{x}$							
40	0 -	(A) 3	(B) 12				
I		(C) 3/2	(D) 8				
MATHEMATICS –10 129							

