Statistics

(K.B)

The branch of mathematics which deals with collection and manipulation of the numeric data.

Information Handling

(K.B)

To present the information in a manageable way so that some useful conclusions can be drawn is called information handling.

Data

(K.B)

The numerical figure obtained from any field of study is known as data.

Types of Data

There are two types of data

(i) Primary data,

(ii) Secondary data

Primary Data

(K.B)

(K.B)

The data directly collected from its source is called primary data.

For example:

Prices of fruits collected from market.

Secondary Data

(K.B)

(K.B)

(K.B)

The data which have been passed through some statistical treatment at least once is called secondary data.

For example:

Office records, printed materials.

Constant

Any quantity that has a single value is known as constant.

Example:

All real numbers can be taken as constant.

Variābies

Any quantity whose value is not fixed is called variable.

Examples:

Age of person, weight of person, height of person.

Types of Variable

UNIT

BASICSTATISTICS

(K.B)

There are two types of variable.

- Discrete variable **(i)**
- (ii) Continuous variable.

Discrete Variable (K.B + U.B)

A variable which can take / assume some specific values in the given data is called discrete variable.

Note

(K.B + U.B)

A discrete variable usually takes the (i) values which are integers or whole numbers

i.e. 0,1,2,3.

It represents the countable data. (ii)

Examples:

- Numbers of heads appeared in (1) tossing 5 coins.
- No of children in a family. (2)
- No of students in a class. (3)

Continuous Variable (K.B + U.B)

A variable which can take / assure every possible value with in the given range or interval i.e. (a to b) is called continuous variable.

Note

(2)

(1) It may be a whole insure or a fraction.

It represents the measurable data

Examples:

Grouped Data

- Age of an employee. (i)
- (ii) Temperature or a place.
- Height / weight of an individual. (iii) **Ungrouped** Data

(K.B)

The numerical facts obtained on first hand and record as they stand are called ungrouped data.

(K.B)

(K.B + U.B)

The data which have gone / passed through some statistical process is called grouped

		t may be classifie rows and column	d into certain group	S		otal number o ne smallest nu			
	Class	fication	(K.B))	The largest number = 7 ³ Frequency Fistribution				CO
	certain	ocess of arranging groups or classes	s having similar	2/	Groups No of Students				nts
		teristics is called a	classification)/ (60 62 3				
	(i)	More than 15 g	reups or classes ar	1 1		63		4	
	(ij)	generally not ad	visatle and fast rule to find	d		66		5	
MA	<u> INN</u>	exact number of		u		69	-	2	
AN,	(iii)	-	should be between	5		72	- 74	1	
-	(iv)	and 15. Too small numb	er of groups / classe	s				<i>n</i> = 15	
	()	results into loss of		~					(K.B)
	(v)	information. Taking too many	groups do not pay		Each class / group is defined by two values one small and other large these values are				
	(•)	for the labour in	volved condensing	called class limits. The smaller one is called					
	T	the information.				wer class limi		l upper class lin	nit
	Exam		(K.B) in maths out o	·		ze of Class			(K.B)
			uency distribution.	1	Tł	ne difference	betwee	en lower or upp	er class
			6, 60, 73, 69, 70, 63	8,		•		consecutive cl	
	64, 63, Given				-	terval. It is de		e or length o by h.	or class
		Groups	No. of Students			Aarks (X)	Clas	s Boundaries	
		60 62	3	<u>60</u>	+ 62 2	$=\frac{122}{2}=61$	5	9.5 - 62.5	
		63 65	4	<u>63</u>	$+ \frac{65}{2}$	$=\frac{128}{2}=64$	6	52.5 - 65.5	
		66 68	5	66	$+ \frac{68}{5}$	$=\frac{134}{2}=67$	6	55.5 - 68.5	

Class Mark / Mid Point

(K.B)

The average value of lower and upper class limits of any class interval is called class mark, it is the mid point of any class. Class marks are represented by *X*. For C.I, 60-62,53-65,...

60

Class mark = (λ)

(K.B)

61

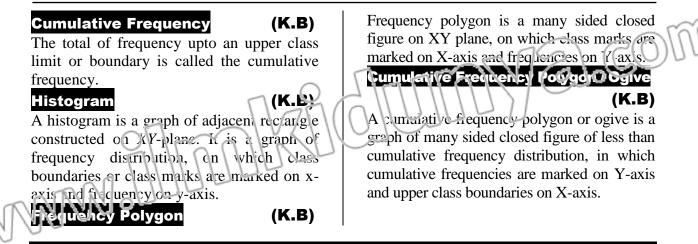
122

The values which describe true class limits of a class are called class boundaries. The smaller value is called lower class boundary. The larger value is called upper class boundary.

Class Frequency

The number of occurrence ഫ് 1tems corresponding to the class interval is called class requency. It is denoted by f. Frequency Distribution

(K.B)


(R.60)

The tabular arrangement of data in which various items are arranged into classes and the number of items lying in each class is called frequency distribution.

Formation of Frequency Distribution

(K.B)

By Tally Bar Method By Direct Method

Exercise 6.1

Q.1 The following data shows the number of members in various families. Construct frequency distribution. Also find cumulative frequencies. 9, 11, 4, 5, 6, 8, 4, 3, 7, 8, 5,

5, 8, 3, 4, 9, 12, 8, 9, 10, 6, 7, 7, 11, 4, 4, 8, 4, 3, 2, 7, 9, 10, 9, 7, 6, 9, 5, 7. (A.B)

D! / !!

Solution:

Min. Value = 2, Max. Value = 12, Total values = 39

. .

р.

	Discr	ete Frequen	cy Distribution		
	No. of members	Tally bars	No. of families (f)	C.F	
	2		1	1	
Γ	3		3	1+3=4	
	4	JHT I	6	4+6=10	
	5		4	10+4=14	
Γ	6		3	17	
	7	JHT I	6	23	
	8	Ш	5	28	
	9	JHT I	6	34	
	10		2	30	
	11		1-710	38 (200
	12	1 91		39	

Q.2 The following data has been obtained after weighing 40 students of class V. Make a frequency distribution taking class interval size as 5. Also find the class boundaries and mitpoints 34, 26, 33, 32, 24, 21, 37, 40, 41, 28, 28, 31, 33, 34, 37, 23, 27, 31, 31, 36, 29, 35, 36, 37, 38, 22, 27, 28, 29, 31, 35, 35, 40, 21, 32, 33, 27, 29, 30, 23. (A.B)

Also make a less than cumulative frequency distribution. (Hint: Make classes 20-24, 25-29...).

Solution:

Min. Value = 21, Max. Value = 41, Size of class interval = 5, Total values = 40

		Frequ	ency Distribu	tion		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	$\mathbf{C} - \mathbf{I}$	Tally Bars	Frequency	$\mathbf{C} - \mathbf{B}$	Mid points	
	15-19		-	14.5-19.5	h n s	(CO)
	20-24	JHT I	0 1-	19.5-24.5	<u> </u>	10000
	25-29	LHT LIFT	A AN	24.5-29.5	27	
	30-34	LHT INTIN (12	29.5-34.5	32	
	35-39	1 DHEMIN	9	34.5-39.5	37	
- 0	40-44		3	39.5-44.5	42	
MAN	Tetal		40			
2 UNNIN'	Ĵ	Less than cumul	ative frequen	cy distributio	n	
MA DO			$\mathbf{C} - \mathbf{B}$	C.f		
0		Less	than 19.5	0		
		Less	than 24.5	6		
		Less	than 29.5	16		
		Less	than 34.5	28		
		Less	than 39.5	37		
		Less	than 44.5	40		

Q.3 From the following data representing the salaries of 30 teachers of a school. Make a frequency distribution taking class interval size of Rs. 100, 450, 500, 550, 580, 670, 1200, 1150, 1120, 950, 1130, 1230, 890, 780, 760, 670, 880, 890, 1050, 980, 970, 1020, 1130, 1220, 760, 690, 710, 750, 1120, 760, 1240. (A.B + U.B +K.B) (Hint: Make classes 450-549, 550-29...).

Solution:

Min. Value = 450, Max. Value = 1240, Size of class interval = 100, total values = n = 30Frequency Distribution

Free	Juency Distric	Dution	
$\mathbf{C} - \mathbf{I}$	Tally Bars	Frequency (f)	
450 - 549		2	
550 - 649		2	
650 - 749		4	
750 - 849	LHT	5	
850 - 949		3	000
950 - 1049		4	and COM
1050 - 1149	JHT N	7505	N/GloGer-
1150 - 1249	SHE		
Tota		10,30-0	D

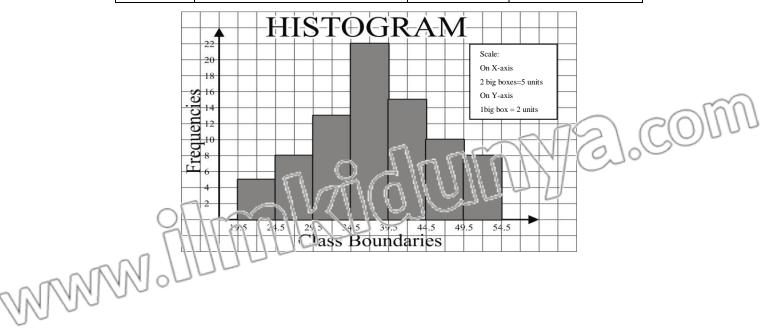
Q.4 The following data shows the oaily load shedding duration in hours in 31 localities of a certain city. Make a frequency distribution of the load shedding duration taking 2 hours as class interval size and answer the following questions. 6, 12, 5, 7, 8, 3, 6, 7, 10, 2, 14, 11, 12, 8, 6, 8, 9, 7, 11, 6, 9, 12, 13, 10, 14, 7, 6, 10, 11, 14, 12.

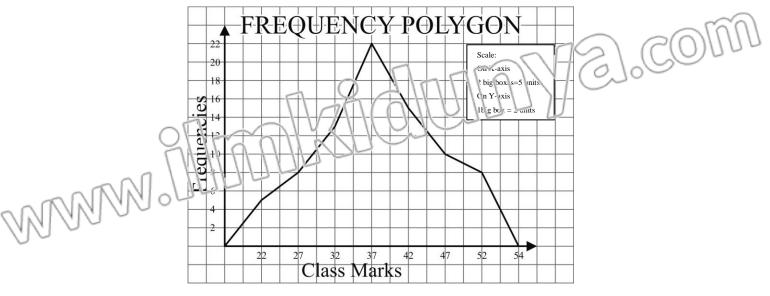
(A.B + U.B + K.B)

- (a) Find the most frequent load shedding hours?
- (b) Find the least load shedding intervals? (Hint: Make classes 2 - 3, 4 - 5, 6 - 7....)

Solution:

Min. Value =2, Max. Value = 14, Size of class interval = 2, total values = $\frac{1}{1}$ = 31 Frequency Distribution (By Direct Method) C - I Values Extension (By Direct Method)


	Frequen	cy Distribution (By Dir	rect Method
	$\mathbf{C} - \mathbf{I}$	Values 🗂 🚽	Frequency (f)
	2 - 3	\bigcirc	
	4 - 5		
\square	6.7	6, 7, 6, 7, 6, 7, 6, 7, 6	9
11	89	8, 8 8, 9, 9,	5
$\left(\right)$	10 - 11	16, 11, 11, 10, 10, 11	6
IL	12-13	12, 12, 12, 13, 12	5
	14 - 15	14, 14, 14	3
	Total		31


(a) The most frequent load shading hours = 6-7

(b) The least load shading intervals = 4 - 5

Q.5 Construct a Histogram and frequency Polygon for the following data showing weights of students in kg. (A.B + U.B + K.B)

weights of s	tuuchts m kg.		
Weights	Frequency / No. of Students	Mid Values	Class Boundaries
20-24	5	22	19.5-24.5
25-29	8	27	24.5-29.5
30-34	13	32	29.5-34.5
35-39	22	37	34.5-39.5
40-44	15	42	39.5-44.5
45-49	10	47	44.5-49.5
50-54	8	52	49.5-54.5

Average

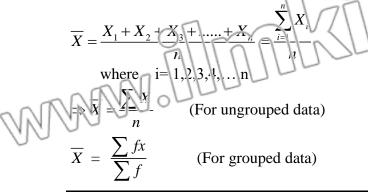
(K.B)

A single value which represents the data is called average.

Types of Average

ge (A.B + K.B)

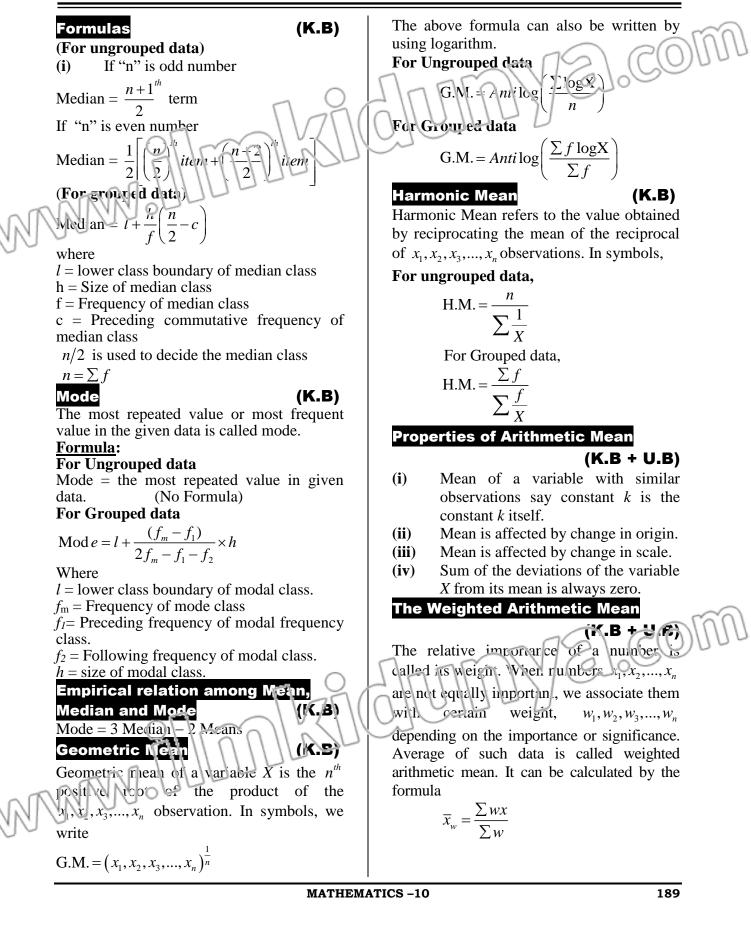
- (i) Arithmetic mean
- (ii) Median
- (iii) Mode
- (iv) Geometric mean
- (v) Harmonic mean

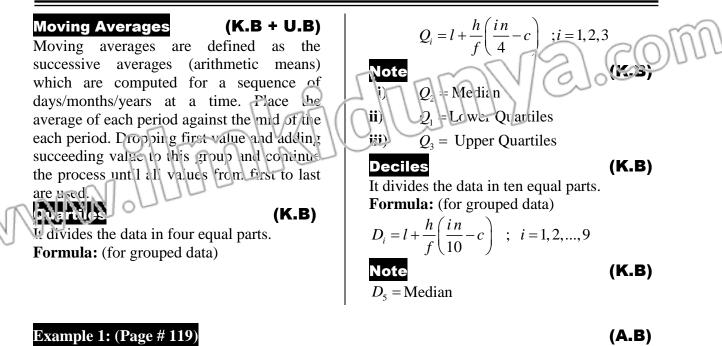

Arithmetic Mean

(vi) Quartiles

(A.B + K.B)

A value obtained by dividing the sum of all the observations by their number of observations is called arithmetic mean it is denoted by \overline{X}


Let X_1 , X_2 , X_3 , ----- , X_n be the values of a data thus the A.M is defined as:



Arithmetic Mean (By short cut method) (A.B + K.B) $\overline{X} = A + \frac{\sum D}{n}$ (For ungrouped data.) $\overline{X} = A + \frac{\sum fD}{\sum f}$ (For grouped data) where D = X - AA = Provisional Mean or Assumed Mean and X= Mid point of a class Arithmetic Mean (By Coding Method) (A.B + U.B) $\overline{X} = A + \frac{\sum u}{\sum h} \times h$ (For ungrouped data) where 'h' is common difference / size of C-I $\overline{X} = A + \frac{\sum fu}{\sum f} \times h$ (For grouped data) where (U.B + K.B)Median A value which divides an arranged data into two equal parts (i.e., 50% data before the median and 50% after it is called median. Or Median is the middle most observation in an arranged data set. It divides the data set into

two equal parts.

It is represented on \tilde{x} .

The marks of seven students in Mathematics are as follows. Calculate the Arithmetic Mean and interpret the result.

Student No	1	2	3	4	5	6	7
Marks	45	60	74	58	65	63	49

Solution:

Let

Or

X =marks of a students

$$\overline{X} = \frac{\sum X}{n} = \frac{x_1 + x_2 + x_3 + \dots + x_7}{7}$$
$$\overline{X} = \frac{45 + 60 + 74 + 58 + 65 + 63 + 49}{7} = \frac{414}{7} = 59.14 \text{ marks}$$

Example 2 (Page # 120)

(GRW 2014, FSD 2017, D.G.K 2017)

(A.B)


The salaries of five teachers are as follows. Find the mean salary using direct and indirect methods and compare the results. 11500, 12400, 1500, 14500, 14800.

Solution:

We proceed as follows:

We proceed as follows:
(a) Using Direct method

$$\overline{X} = \frac{\sum_{i=1}^{5} x_i}{5} = \frac{11500 + 12400 + 15000 + 14500 + 14800}{5} = \frac{74000}{5} = 13640$$
 Ruppes.
(b) Intervent methods:
We assume $A = 1300$, $D_i = (x_i - 13000)$, $h = 100$ and $u_i = \frac{(x_i - A)}{100}$, the computations are shown in the following table:

Example 5 (Page # 122)

(A.B)

Find arithmetic mean using short formula taking X = 34.5 as the provisional mean in example 4.

Solution:

We use the following formula

(i)
$$\overline{X} = A + \frac{\sum fD}{\sum f}$$
 (ii) $\overline{X} = A + \frac{\sum fu}{\sum f} \times h$

Given A = 34.5, we notes that the distribution has equal class interval size of 10. So we may take h = 10 and make the following calculations:

Classes/groups	f	Midpoints <i>x</i>	D = X - 34.5	u = (X - A)/10	fD	fu	
09	2	4.5	-30	-3	-60	-6	
1019	10	14.5	-20	-2	-200	-20	
2029	5	24.5	-10	-1	-50	-5	
3039	9	34.5	0	0	0	0	
4049	6	44.5	10	1	60	6	-50
5059	7	54.5	20	2	140	14	\sim
6069	1	64.5	30	20	30	30	Ser.
Total	40		1300		80	100	

Substituting the totals in the above formulae we get

(i)
$$\overline{X} = 34.5 + \frac{1-80}{40} = 34.5 - 2 = 32.5 \text{ g}$$

(ii)
$$\overline{X} = 34.5 + \left(\frac{-8}{40}\right) \times 10 = 34.5 - 2 = 32.5 \text{ gm}$$

(A.B)

On 5 term test in mathematics, a student has made marks of 82,93,86,92 and 79. Find the median for the marks.

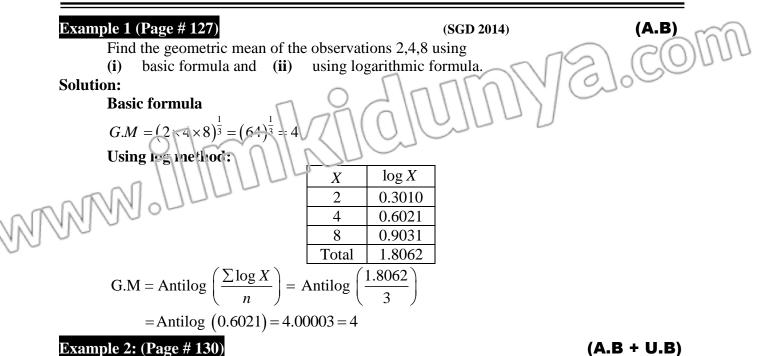
Solution:

By arranging the grades in ascending order, the arranged data is 79,82,86,92,93 <u>C(0)</u> Since number of observation is odd i.e., n = 5. 0 $\tilde{x} = \text{size of}\left(\frac{5+1}{2}\right)$ observation $\tilde{x} = \text{size of } 3^{\text{rd}} \text{ observation}$ $\tilde{x} = 86$ Example 2 (Page # (1.HR 2017, FSD 2017, 18, SGD 2014, MTN 2016) (A.B) The sugar contents for a random sample of 6 packs of juices of a certain brand are found to be 2.3, 2.7, 2.5, 2.9, 3.1 and 1.9 milligram. Find the median. Solution Arranging the values by increasing order of magnitude 1.9, 2.3, 2.5, 2.7, 2.9, 3.1 Since the number of observations are even i.e., n = 6. $\tilde{x} = \frac{1}{2} \left[\text{size of} \left(\frac{6}{2} \text{th} + \frac{6+2}{2} \text{th} \right) \text{observations} \right]$ $\tilde{x} = \frac{1}{2} \left[\text{size of } (3\text{rd} + 4\text{th}) \text{ observations} \right]$

 $\tilde{x} = \frac{2.5 + 2.7}{2} = 2.6$ milligram.

Example 4 (Page # 125)

(A.B)

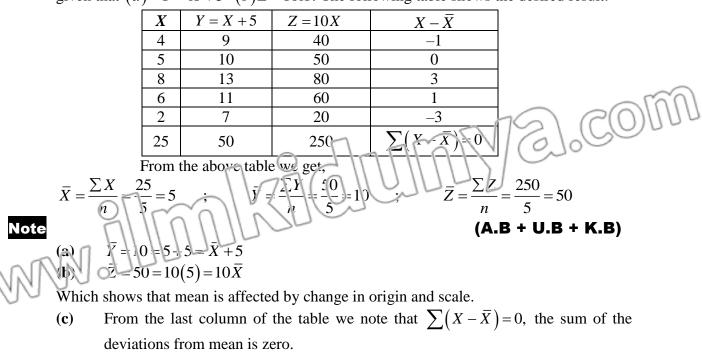

The following data is the time taken by 40 students to solve a problem is recorded. Find the median time taken by the students.

138	164	150	132	144	125	149	157
146	158	140	147	136	148	152	144
168	126	138	176	163	119	154	165
146	173	142	147	135	153	140	135
161	145	135	142	150	156	145	128

Solution:

Solution	011.				_
	Class Intervals	Frequency	Class boundaries	Cumulative Frequency	
	118 126	3	117.5 - 126.5	3	
	127 — 135	5	126.5 - 135.5	8	- 60
	136 — 144	9	135.5 – 144.5	19	2011111
	145 — 153	12	144.5 - 153.5		LONG
	154 — 162	5	153.5 - 162.5	(O,) \ 34 (O, JO)	
	163 — 171	4		38	
	172 — 180	2	7 171.6 - 180.5	40	
	Total	$40 = \sum_{j=1}^{j} j^{j}$	KNGJY	-	
	Median class = cl] [(2)		
W	Median class $=$ class	ass containing	$\left(\frac{40}{2}\right)^{th} = 20^{th}$ observa	tion	
	$\tilde{x} = l + \frac{h}{f} \left(\frac{n}{2} - c \right) =$				
		м	ATHEMATICS 10		102

MATHEMATICS –10

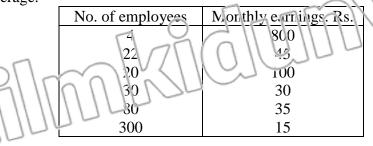


A variable *X* take the following values 4,5,8,6,2. Find the mean of *X*, also find the mean when (a) 5 is added to each observation (b) 10 is multiplied with each observation (c) Prove that sum of the deviation from mean is zero.

Solution:

Given the values of X, X: 4 5 8 6 2.

We may introduce two new variables Y and Z under (a) and (b) respectively. So we are given that (a) = Y = X + 5 (b)Z = 10X. The following table shows the desired result:



(A.B)

(A.B)

Example 1: (Page # 131)

The following table gives the monthly earnings and the number of workers in a factory, compute the weighted average.

Spintion

Number of employees are treated as a weight (w) and monthly earnings as variable (x)

No. of employees (w)	Monthly earning in Rs. (x)	(<i>xw</i>)			
4	800	3200			
22	45	990			
20	100	2000			
30	30	900			
80	35	2800			
300	15	4500			
$\sum w = 456$		$\sum xw = 14390$			
$\bar{X}_{w} = \frac{\sum xw}{\sum} = \frac{14390}{175} = 31.5$					

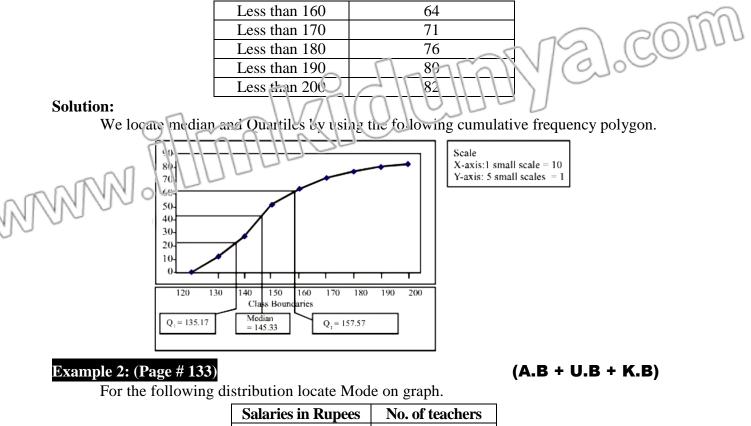
$$\bar{z}_w = \frac{\sum xw}{\sum w} = \frac{14390}{456} = 31.5$$

Example 2: (Page # 131)

Calculate three days moving average for the following record of attendance:

Ι	Week	Sun	Mon	Tue	Wed	Thu	Fri	Sat
	1	24	55	28	45	51	54	60

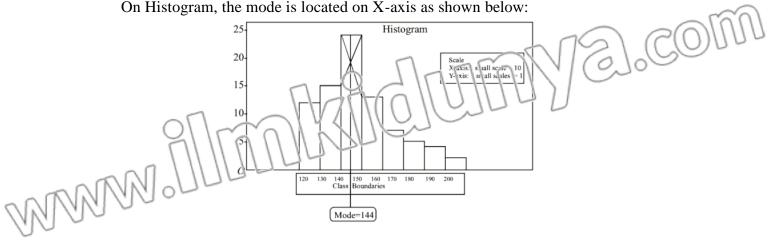
Solution:

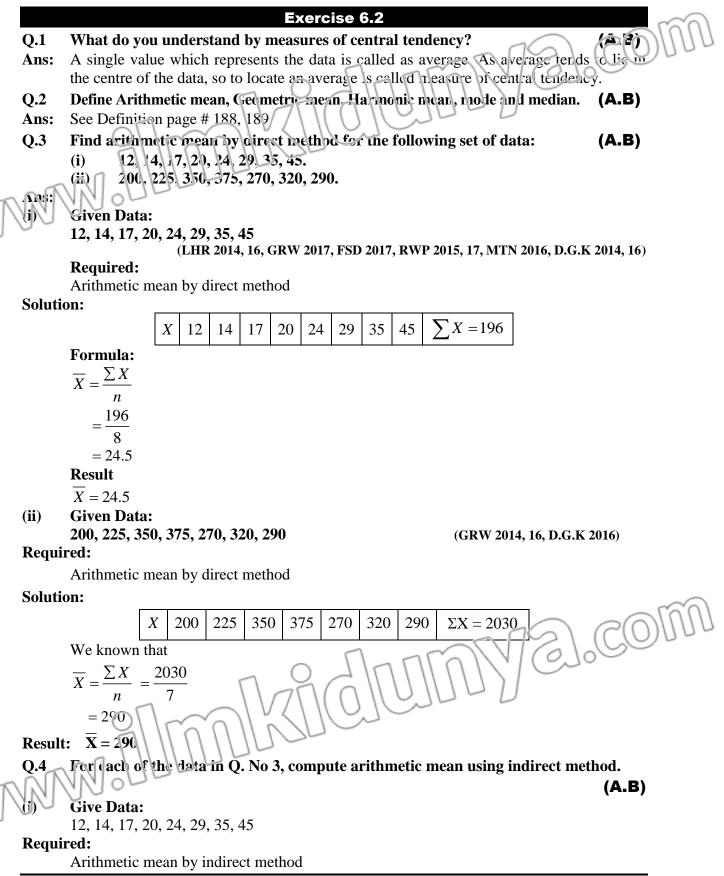

Exar

iuon.					
	Weels and day	Attendence	3-days	moving	
	Week and day	ys Attendance	Total	Average	
	Sun.	24			-ran
	Mon.	55	107	107/3 = 35.67	CONUU
	Tue.	28	128	128/3 == 42,67	LGODI
	Wed.	45	124	124/3 = 41 35	100
	Thu.	51	0110	150/3 = 50.00	
	Fri.	54/	68	168/3 = 56.00	
	○ \ Sat	60	Cu-		
mple 1:	(Page # 132)			(A	В)
Fort	ne tollowing ci	istribution locate Me	edian and Quartiles	on graph.	
NN	10000	Class boundaries	Cumulative freque	ncy	
100	, .	Less than 120	0		
		Less than 130	12		
		Less than 140	27		

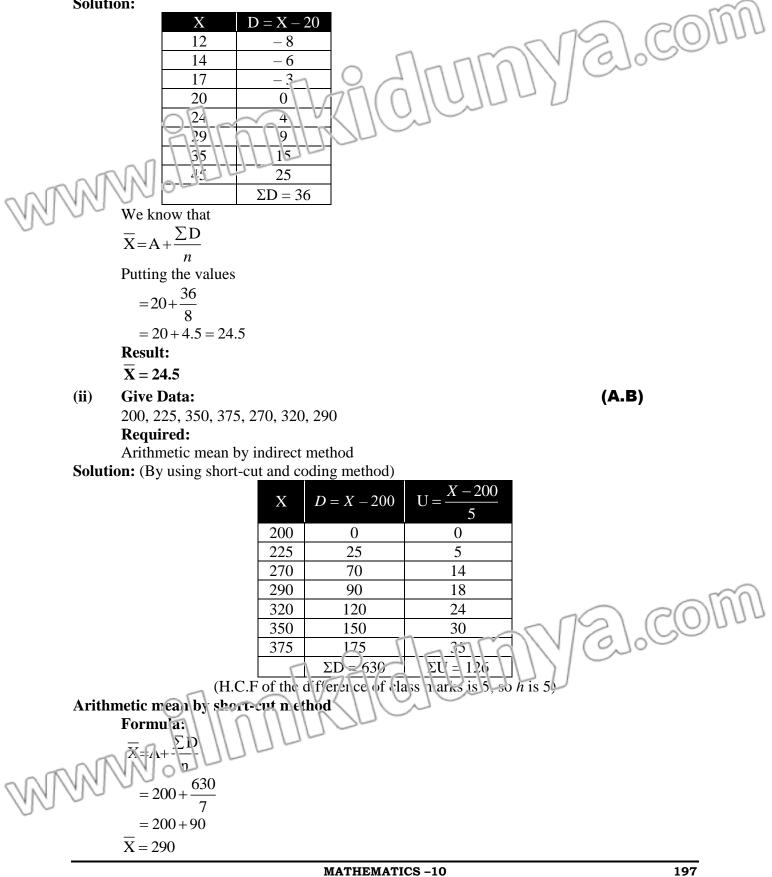
51

Less than 150


Basic Statistics



No. of teachers
12
15
24
13
7
5
4
2


Solution:

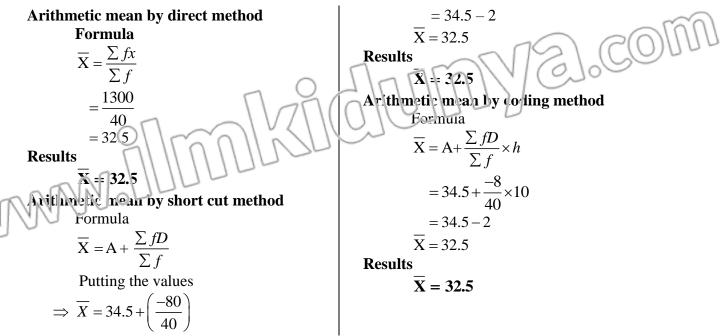
On Histogram, the mode is located on X-axis as shown below:

Solution:

Arithmetic mean by coding method

Compute arithmetic mean by direct and indirect methods. (LHR 2015) **(A.B)** Given Data:

Classes/Groups	Frequency
0-9	2
10 - 19	10
20 - 29	5
30 - 39	9
40 - 49	6
50 - 59	7
60 - 69	1


Required:

Arithmetic mean by direct and indirect method

Solution:

D. MANN

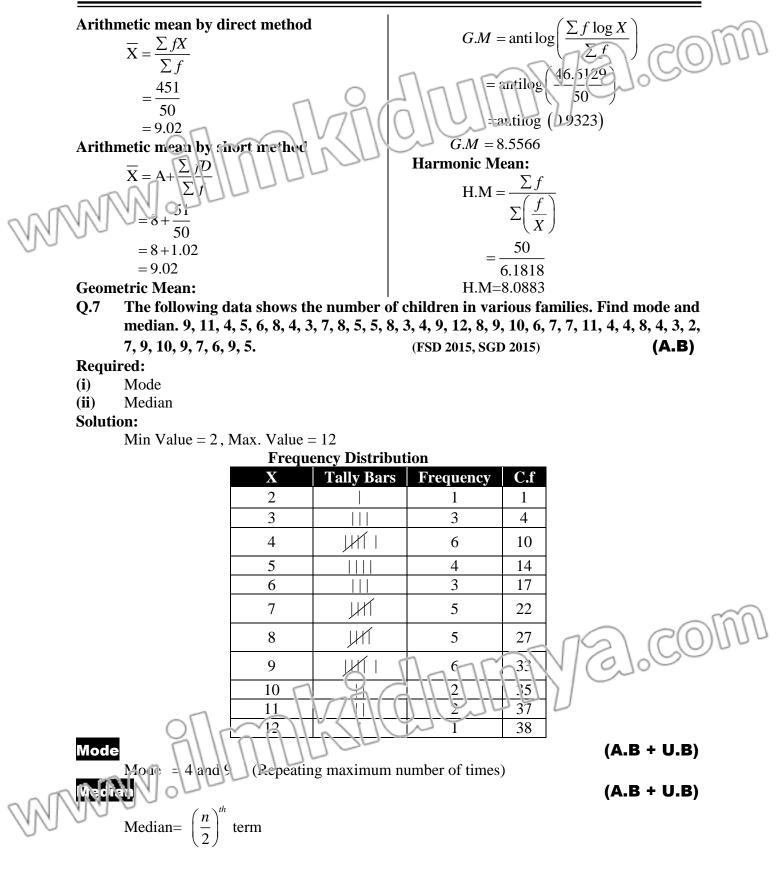
C - I	f	X	fX	D=X- 34.5	fD	$U = \frac{X - 34.5}{10}$	fU			
0-9	2	4.5	9	- 30	- 60	- 3	- 6			
10 – 19	10	14.5	145	-20	-200	- 2	- 20			
20 - 29	5	24.5	122.5	- 10	- 50	- 1	- 5			
30 - 39	9	34.5	310.5	0	0	0	0			
40 - 49	6	44.5	267	10	60	1	6	000		
50 - 59	7	54.5	381.5	20	140	2		\mathcal{D}		
60 - 69	1	64.5	64.5	30	30	3	1350	200		
	$\Sigma f = 40$		Σ fx=1300		$\Sigma D = -80$	1110	2jU = -8			
21 = 40										

Q.6 The following data relates to the ages of children in a school. Compute the mean age by direct and short-cut method taking any Provisional mean. (Hint. Take A = 8)

(A.B)

- 60

Given Data:


Class limits	Frequency
4 - 6	10
7 – 9	20
10 - 12	13
13 - 15	7
Total	50

Required:

- (i) Arithmetic mean by direct and short-cut method
- (**ii**) G.M
- (iii) H.M

Solution:

	Solution.									
	C - I	f	X	fX	D = X - 8	\int^{fD}		NFE)		0000
	4-6	10	5	50			0.6990	6.99	2.0000	
	7 – 9	20	8	160	701	O M D	0.9031	13.062	2.5	
	10 - 12	13	11	143 V	<u> 31</u>	39	1.0414	13.5382	1.1818	
	13 – 15	2311	14	98 0	J.	42	1.1461	8.0227	0.5	
N	NN	$\sum_{i=1}^{n} f = 50$	Ц	$\sum f X = 451$		$\sum fD = 51$		$\sum f \log X = 46.6129$	$\Sigma \frac{f}{X} = 6.1818$	
V										

$$= \left(\frac{38}{2}\right)^{th} \text{ term}$$
$$= 19^{th} \text{ term}$$

$$= 19$$
 t
Median $= 7$

Find Modal number of heads for the following distribution showing the number of **Q.8** heads when 5 coins are tocsed. Also determine median. (A.B + U.B + K.B)7

Given Data:

	X (No. of heads)	Freq. (No. of times)
mAl		3
NNN	2	8
0.0	3	5
	4	3
	5	1

Required:

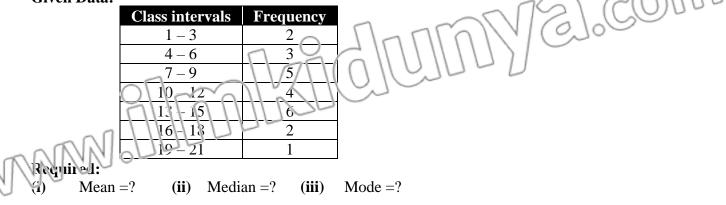
- Mode (i)
- **(ii)** Median

Solution:

Х	f	C.f
1	3	3
2	8	11
3	5	16
4	3	19
5	1	20

Mode

Mode =2


(Repeating max. number of times)

Median

Median =
$$\left(\frac{n}{2}\right)^{th}$$
 term = $\left(\frac{20}{2}\right)^{th}$ term = 10^{th} term = 2

Q.9 The following frequency distribution the weights of boys in kilogram. Compute (A.B + U.B + K.B) mean, median, mode.

Given Data:

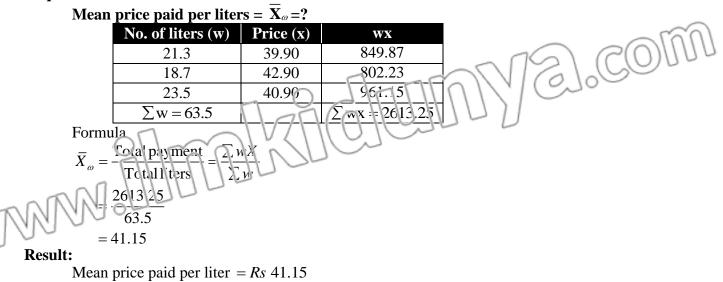
Soluti	on:								~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
		$\mathbf{C} - \mathbf{I}$	f	Χ	fX		C – B	e.f	
		1 – 3	2	2	4		0.5-3.5	\mathbb{Z}	CONDE
		4-6	3	5	15		3.5 - 6.5	(3,)0	
		7 – 9	5	<u>s</u>	<u>40</u>	-	6.5 - 9.5	10	
		10 - 12	4f1	/\11\(() 4(4	$\mathcal{O}_{\mathcal{A}}$	9.5-12.5L	14	
		13+15	$6f_m$	4	्रभ		12.5 - 15.5	20	
		16 - 18	$\int 2f \mathcal{V}$	17	34		15.5 - 18.5	22	
6	01	19-21	1	20	20		18.5 - 21.5	23	
MAN	914	0000	$\Sigma f=23$		$\sum fX = 2$	41			
MMM					_,				I.
(i)	Mean	:	(A.I	B)			=10.625		
	Formu		۲.	,		\Rightarrow	\rightarrow Median = 10.6	525kg	
	$\frac{1}{\mathbf{v}}$ Σ	$\int fX$			(iii)	Μ	ode:		(A.B)
	$\overline{X} = \frac{\Sigma}{\Sigma}$	$\overline{\Sigma f}$				Fo	ormula:		
	Putting	g the values				м	$ode = l + \frac{f_n}{2f_m} - \frac{f_n}{2}$	$\frac{1}{h} - f_1 \rightarrow h$	
		_ 241				101	$buc = i + 2f_m - 2f_m$	$-f_1 - f_2$	
		$=\frac{241}{23}$				Pu	tting the value	S	
	$\Rightarrow \overline{\lambda}$	$\bar{K} = 10.478 kg$					- 12.5 -	6-4	2
(ii)	Media	n:	(A.I	B)			-12.3+72	$\frac{6-4}{2(6)-4-2}$ ×2)
()	Formu		(-,			10.5	2×3	
							= 12.5 +	6	
	Media	$\mathbf{n} = l + \frac{h}{f} \left(\frac{n}{2} - \mathbf{c} \right)$					=12.5+1		
		3				\Rightarrow N	Mode = 13.5kg		
		$= 9.5 + \frac{3}{4}(11.5)$	–10)						
		=9.5+1.125							
Q.10	A stuc	lent obtained t	he following	g mar	ks at a ce	rtai	n examination	h: English 73	, Urdu
	82, Ma	athematics 80, 1	History 67 a	and So	cience 62.			(A.B +	· U.B)
	(i)	If the weights	accorded t	hese n	narks are	4, 3	, 3, 2 and 2, r	espectively, v	what is
		an appropriat						200	201111
C '	(ii)	What is the av	verage marl	k if eq	ual weigh	ts ai	re used?	121	GONE
Given	Data:	Subject	Marks W	eight		Π	INN'	1000	
		Subject English		<u>eran</u> u 4	511	1	$ U\rangle$		
		Lugusu	73	1411	1111	~		r	

Required:

(i)

(ii)

Weights Marks Subject English 73 4 Urdu 82 3 80 Muthen atics History 57 2 2 Science 62


- What is an appropriate average mark? (i-e Weighted means)
- What is the average mark if equal weights are used (simple means)

Solution:

Soluti						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	Subject	Marks (x)	Weights (w)	Wx		COUND
	English	73	4	292	121	alle
	Urdu	82	3	1246	VI (O)	
	Mathematics	- 30	3	240	\sum	
	History	67	$\left(\left(\frac{b}{b} \right) \right)$	134	D	
	Science	62		124		
	īctal	364	14	1036		
(i)	Weighted Mean:					
NA	x Sux					
NN/	$\sum w$					
0	$-\frac{1036}{10}$					
	$-\frac{14}{14}$					
	$\Rightarrow \overline{\mathbf{X}}_{\omega} = 74$ marks					
(ii)	When equal weights a	are used				
	$\overline{X} = \frac{\sum X}{\sum X}$					
	$X = \frac{n}{n}$					
	364					
	$=\frac{364}{5}$					
	= 72.8 <i>marks</i>					
Q.11	On a vacation trip a f liters at 42.90 rupees					
	mean price paid per l	iter.				(A.B)
	Given Data:					

No. of liters	Prices (Rs)
21.3	39.90
18.7	42.90
23.5	40.90

Required:

(A.B)

Q.12 Calculate simple moving average of 3 years from the following data: Given Data:

Years	2001	2002	2003	2004	2005	2006	2007 2008	2009 2010
Values	102	108	130	140	158	180	196 210	220 230
Required:			Π	0	G		1111271	0
3 years moving average:								
Solution:	10	\square		V < 1	\mathbb{N}			

Required:

Solution:

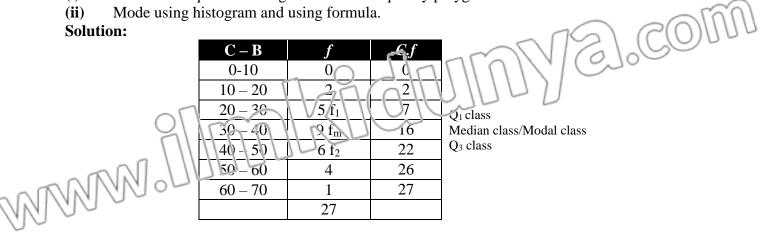
	/ / / / / / /			
Y	eart {	Values	B years moving total	3 years moving average
2	001	102	-	-
	002	108	340	113.33
QQZ	003	130	378	126
2	004	140	428	142.67
2	005	158	478	159.33
2	006	180	534	178
2	007	196	586	195.33
2	008	210	626	208.67
2	009	220	660	220
2	010	230	-	-

Q.13 Determine graphically for the following data and check your answer by using formulae.

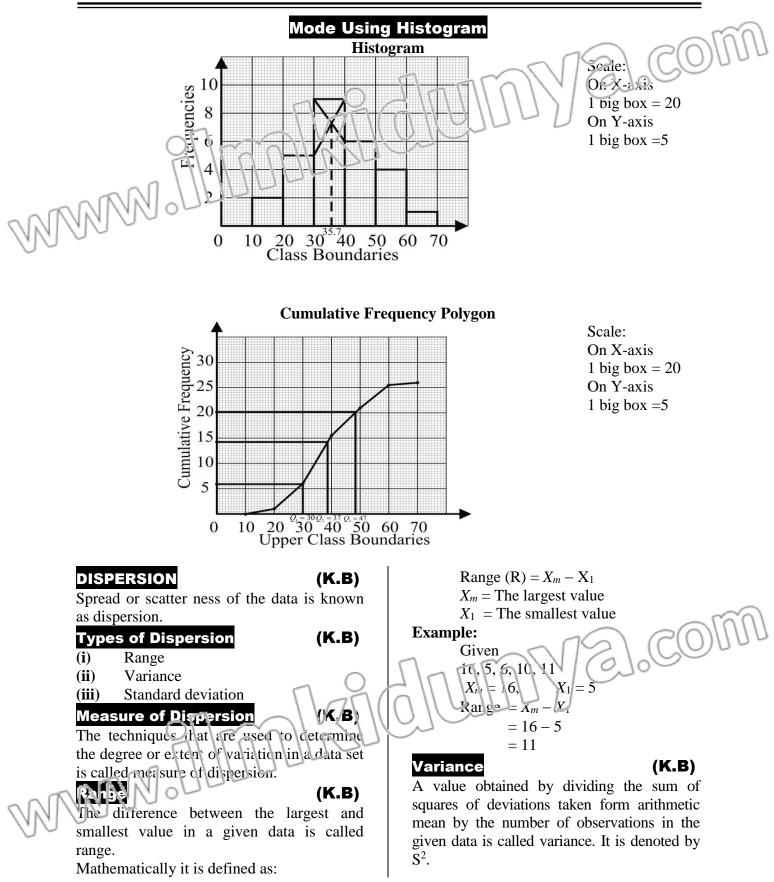
- Median and Quartiles using cumulative frequency polygon. **(i)**
- (ii) Mode using Histogram.

(A.B)

Given Data:


Class boundaries	Frequency
10 - 20	2
20 - 30	5
30 - 40	9
40 - 50	6
50 - 60	4
60-70	1

Required:


Median and quartiles using cumulative frequency polygon and formula. (i)


(ii) Mode using histogram and using formula.

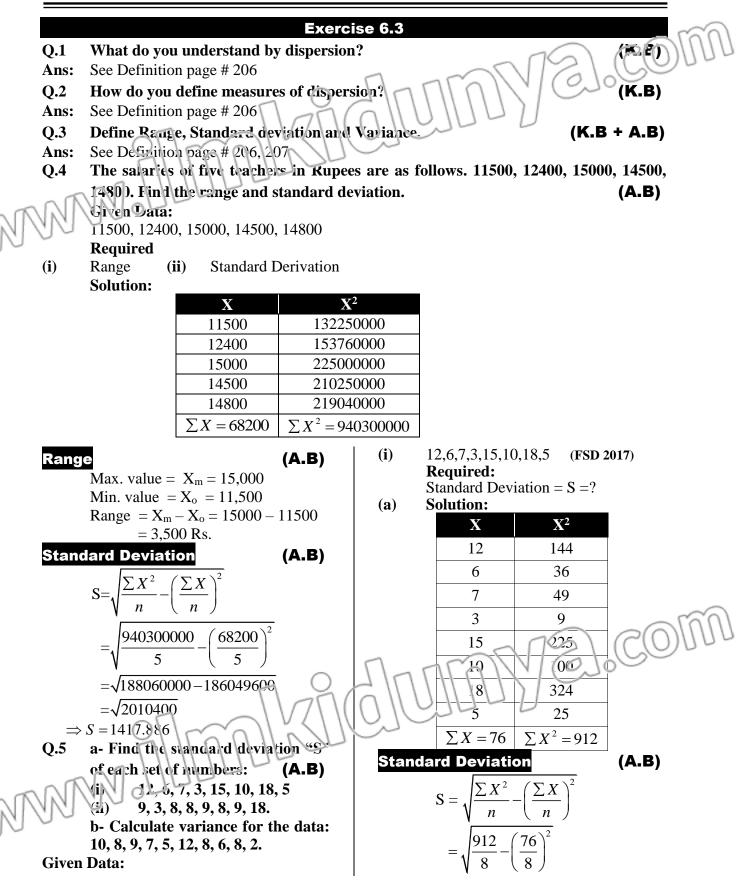
Solution:

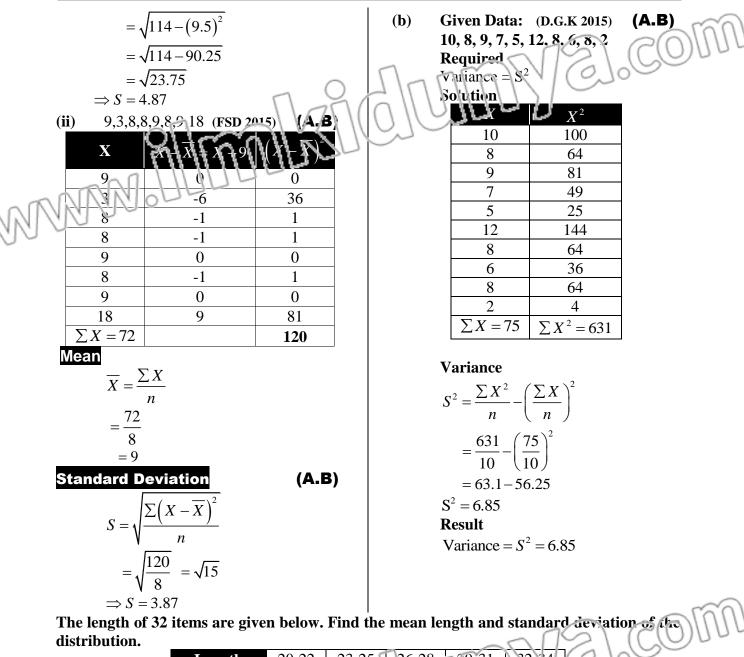
Median using Formula(K.B)Third Quartile
$$(Q_{c})$$
Median $= \left(\frac{n}{2}\right)^{ab}$ observation $= \left(\frac{27}{2}\right)^{ab}$ observation $Q_{1} = \frac{3n}{2}$ th observation $= \left(\frac{27}{2}\right)^{ab}$ observation $= \left(\frac{27}{2}\right)^{ab}$ observation $= \left(\frac{3}{2}\right)^{ab}$ th observation $= \left(\frac{27}{2}\right)^{ab}$ observation $= \left(\frac{3}{2}\right)^{ab}$ observation $= \left(\frac{3}{2}\right)^{ab}$ th observation $= \left(\frac{27}{2}\right)^{ab}$ observation $= \left(\frac{3}{2}\right)^{ab}$ (1.5.5 - 7) $= 30 + \frac{10}{9}(6.5)$ $= 30 + \frac{10}{9}(6.5)$ $= 30 + \frac{10}{9}(4.25)$ $= 30 + \frac{10}{9}(6.5)$ $= 40 + \frac{10}{6}(4.25)$ $= 30 + \frac{27}{4}$ th observation $= 40 + \frac{10}{6}(4.25)$ $= 27 + \frac{1}{4}$ th observation $= 27 + \frac{1}{4}$ th observation $= 27 + \frac{1}{4}$ th observation $= 20 + \frac{10}{5}(6.75 - 2)$ $= 20 + \frac{10}{5}(6.75 - 2)$ $= 30 + \frac{9 - 5}{2(9) - 5 - 6} \times 10$ $= 20 + 2(4.75)$ $= 30 + \frac{47}{7}$ $= 20 + 9.50$ $= 30 + \frac{47}{7}$ $= 20 + 5.51$ $= 30 + 5.71$ \Rightarrow Mode = 35.71

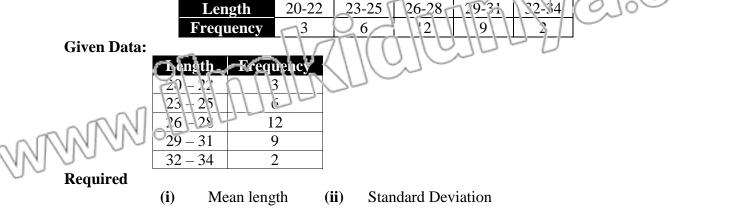
X = Marks	Y = Marks
(Section A)	(section B)
60	62
70	62
30	65
90	68
80	67
40	48

Solution:

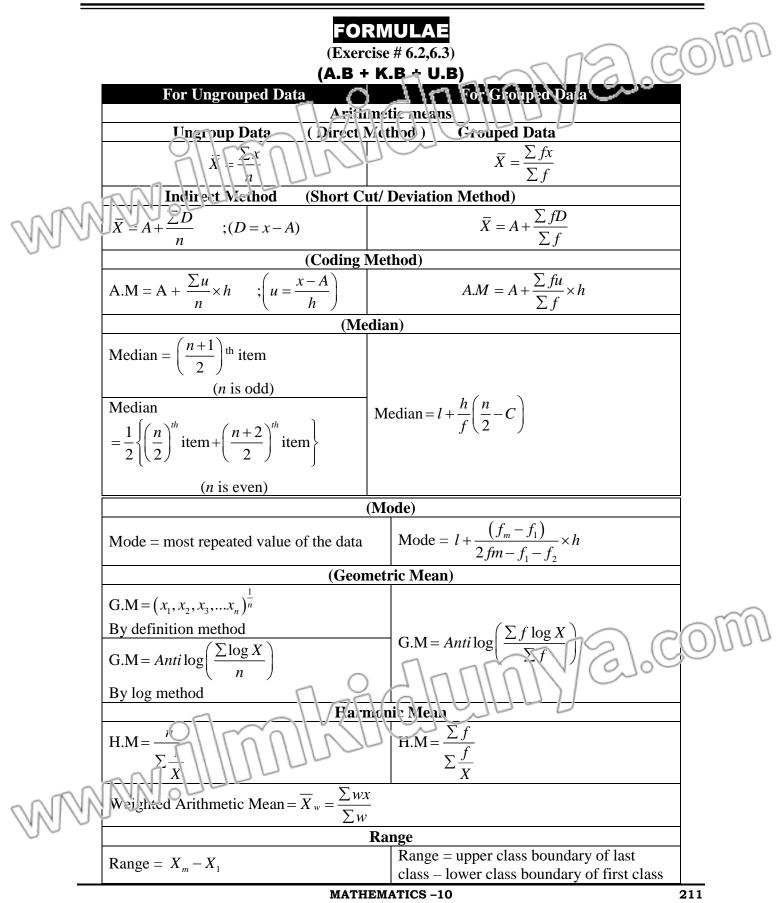
MMM

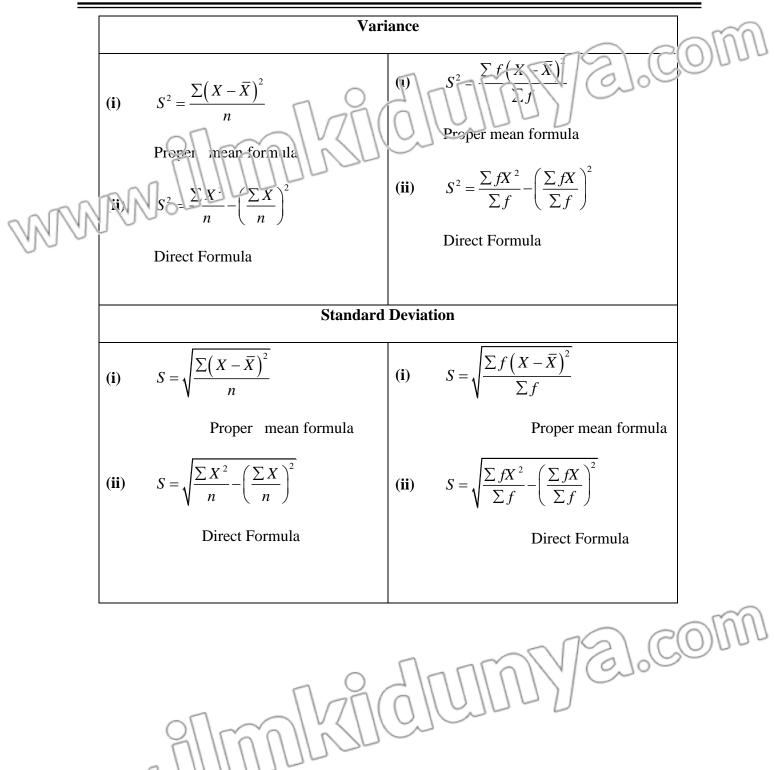

In order to compare variation about mean we compute standard deviation for the two groups as follows:


Comment: we note that the variation in Group B is smaller than that of Group A. This implies the marks of students in Group B are closer to their Mean than that of group A.


Smaller variation is more consistent in

Note


performance.



Solution: $\mathbf{C} - \mathbf{I}$ f X fΧ fX^2 1,323 20-22 3 21 63 3 456 23-25 24 144 6 12 27 324 8,748 26-28 29-31 9 30 270 8,100 32-34 2 33 2,178 66 $\sum fX^2 = 23,805$ $\sum fX = 867$ f = 32 $\frac{\sum fX}{\sum f}$ 867 32 x = 27.09Standard Deviation *S* = 23805 867 32 32 $=\sqrt{743.906-733.87}$ $=\sqrt{9.8347} = 3.136$ Find the range of the given data: (A.B) Q.6 33-40 41-50 51-60 61-70 71-75 Class 12 9 Frequency 28 31 5 **Solution:** Frequency Class C-B 33-40 28 32.5-40.5 41-50 31 40.5-50.5 51-60 12 ≈(O) 50.5-60.5 9 61-70 60.5-70.5 71-75 5 70 5-75 5 Here Range = upper class boundary of last class - lower class boundary of 1^{st} class Range = 75.5 - 32.5 =43 MMM.

MNG. MANN

) 1	Multiple choice questions	scellaneous Exerci	56.0	-
).1	Three possible answers are g	tiven for the following a	uestion Tick (1) the corre	ct (reway
i)	A grouped frequency table		(5WL 2014, MTN 2015)	
)	(a) Data		ution (c) Frequency Poly	
ii)	A histogram is a set of adja		014, 1.5, MIN 2015)	(K.B)
u <i>)</i>	(a) Squares	(b) Rectangles	(c) Circles	(11.0)
iii)	A frequency polygon is a n		(LHR 2014)	(K.B)
III)	(a) Closed figure	(b) Rectangle	(c) Square	(11.0)
iv)	A cu nulative irequency ta	0	(c) Square	(K.B)
202	(a) Frequency distribution		han cumulative frequency	· · ·
NJ.	In a cumulative frequency			(K.B)
1)-	(a) Midpoints		laries (c) Class limits	(11.6)
vi)	Arithmetic mean is a mea			nder studv
•••	by dividing the sum of all v			(K.B)
	(a) Number	(b) Group	(c) Denominator	(11.6)
vii)	A deviation is defined as a	· · 1		(K.B)
vii)	(a) Constant	(b) Histogram	(c) Sum	(К.В)
viii)	A data in the form of frequ	e e		(K.B)
vIII <i>)</i>	(a) Grouped data	(b) Ungrouped data	(c) Histogram	(R.D)
ix)	Mean of a variable with sin			(K.B)
IX <i>)</i>	(a) Negative	(b) k itself	(c) Zero	(R.D)
v)	Mean is affected by change			
X)	(a) Value	(b) Ratio	(LHR 2015, FSD 2014) (c) Origin	(K.B)
			(c) oligin	
xi)	Mean is affected by change (a) Place	(b) Scale	(c) Rate	(K.B)
xii)	Sum of the deviations of th	le variable à from its i	(FSD 2016, 18,	(K.B)
	(a) Zero	(b) One	(c) Same	D.G.IX 2013)
xiii)	The n^{th} positive root of the	• •		(K.B)
	(a) Mode	(b) Mean	(c) Geometric mea	
xiv)	The value obtained by re			
AI V J		cipiocating the mean	of the recipiocal of x_1 ,	
	observations is called	(L) M. P.		(K.B)
)	(a) Geometric mean	(b) Median	(c) Harmenic mean	
xv)	The most frequent occurri	ng observation in a dat	ta set 15 called (GFW 2014, FSD 2014, 15	
	(a) Mode	(b) Median	(\mathbf{c}) Harmonic mean	
xvi)	The measure which determ i			
AV1)	(a) Median	(o) Mode	(c) Mean	
xvii)	The observations that divide			0 (K B)
хүц)	(a) Deciles	(b) Quartiles	(c) Percentiles	(n.D)
	The spread or scatterness			(K.B)
NTK.	ing spread or scatterness	or observations in a da	(FSD 2014, SGD 2014,	• • •
N	(a) Average	(b) Dispersion	(rsb 2014, sGD 2014, (c) Central tendend	
xix)	The measures that are use			
-)	set are called measures of			(K.B)
	(a) Dispersion	(b) Central tendency	(c) Average	()

	(xx)	The extent of variation between two extreme observations of a data set is	(A ()				
		by (RWP 2015) (a) Average (b) Range (c) Quar illes	KM (U)				
	(xxi)	The mean of the squared deviation: of x_i $(i = 1, 2,, x)$ observations for	and				
		arithmetic mean is called	(K.B)				
		(a) Variance (b) Standard deviation: (c) Range	1.2				
	(xxii)	The positive square root of mean of the squared deviations of $X_i(i =$	=1,2,n)				
		observations from their arithmetic mean is called	(K.B)				
	~	(2) Harmonic mean (b) Range (c) Standard deviati	on				
- OT	AN.	ANSWER KEY					
NNI	UU	i b v b ix b xiii c xvii b xxi a					
00		ii b vi a x c xiv c xviii b xxii c					
		iii a vii a xi b xv a xix a					
		iv c viii a xii a xvi a xx b					
	Q.2	Writhe short answers of the following questions.					
	(i)	Define class limits. (RWP 2015, BWP 2016, D.G.K 2014)	(K.B)				
	Ans:	See definition page # 184	()				
	(ii)	Define class mark.	(K.B)				
	Ans:	See definition page # 184	()				
	(iii)	What is cumulative frequency? (GRW 2014, BWP 2011, 14, RWP 2016, SGD 2014,	16) (K.B)				
	Ans:	See definition page # 185	-•)()				
	(iv)	Define a frequency distribution. (BWP 2015, SWL 2016, MTN 2016)	(K.B)				
	Ans:	See definition page # 184	()				
	(v)	What is Histogram? (GRW 2016, FSD 2014, SWL 2017, SGD 2015, RWP 201	4) (K.B)				
	Ans:	See definition page # 185	··· ()				
	(vi)	Name two measures of central tendency. (K.B) (LHR 2014, GRW 2016, SWL 2015,)	D.G.K 2015)				
	Ans:	See definitiDEon page # 196					
	(vii)	Define Arithmetic mean. (LHR 2016, GRW 2016, FSD 2015, SGD 2015, D.G.K 2014	(K.B)				
	Ans:	See definition page # 188	()				
	(viii)	Write three properties of Arithmetic mean.	(K.B)				
		LHR 2016, 17, GRW 2014, FSD 2014, 15, 17, SWL 2016, RWP 2014, BWP 2014, SGD 2015,					
	Ans:	See definition page # 189	000				
	(ix)	Define Median. (LHR 2014, BWP 2015, SGD 2016, RWP 2017, MTN 2017)					
	Ans:	See definition page # 188	GODI				
	(x)	Define Mode? (K.B) (LHR 2014, 17, GR-W 2017, SWL 2015, 16, BWF 2014, 17, MTN 2015, 16, 17, D.G.K 2017)					
	Ans:	See definition page # 189					
	(xi)	What do you mean by Har nonic mean? (KB) (GRW 2015, SWL 2015, MTN 2015	, SGD 2015)				
	Ans:	See der atton page # 189					
	(xii)	Define Geometric mern (LHR 2015, FSD 2015, SWL 2016, D.G.K 2016)	(K.B)				
	Ans:	See cefinition nage # 189	(17.5)				
M	(mii)	What is kange? (SWL 2014)	(K.B)				
	Ans	See definition page # 206					
0 -	(xiv)	Define Standard deviation.	(K.B)				
	Ans:	(LHR 2016, FSD 2015, SWL 2014, 15, BWP 2017, MTN 2015, 17, SGD 2014, 17, D See definition page # 207	J.G.K 2014)				
	AII3.	See definition page # 207					

	\sim							
Time: 40 min								
Q.1 Four possible answers (A), (B), (C) & (D) to each question are given, mark the	0-							
correct answer.								
1 The value obtained by reciprocating the mean of the reciprocat of								
	$x_1, x_2, x_3, \dots, x_n$ observations is called:							
	(A) Geometric mean (C) Harrophic mean (D) Mode							
2 If $D = x - 10$, $\sum D = 50$ and $x = 5$ then arithmetic mean is:								
(A) 10 (B) 20								
(D) 15								
B A A A A A A A A A A								
$(\mathbf{L}) = (\mathbf{L}) = ($								
4 If $\sum (x - \overline{x})^2 = 40$, $n = 5$ then standard deviation is:								
-								
(A) 8 (C) 200 (B) 2.83 (D) 14.1								
5 In a cumulative frequency polygon frequencies are plotted against:								
(A) Midpoints (B) Upper class boundaries								
(C) Class limits (D) Lower class boundaries								
6 A histogram is a set of adjacent: (A) Squares (B) Rectangles								
(C) Circles (D) Closed figure								
7 The measure which determines the middle most observation in a data set is called:								
(A) Mean (B) Mode								
(C) Median(D) NoneQ.2Give Short Answers to following Questions.(5×2=10)								
Q.2Give Short Answers to following Questions.(5×2=10)(i)Find the standard deviation for the data: 12,6,7,3,15,10,18,5.(5×2=10)								
(ii) Find arithmetic mean by indirect method for the set of data:								
200,225,350,375,270,320,290.								
(iii) Find the geometric mean of 2, 4, 8 using logarithmic formula.								
(iv) Find median. Class Mark (X) 5 10 15 20 25 30								
$\frac{\text{Class Mark (X)}}{\text{Frequency (f)}} \frac{3}{2} \frac{10}{12} \frac{13}{25} \frac{20}{32} \frac{23}{14} \frac{5}{5}$	\sim							
(v) On a vacation trip a family bought 21.3 liters of petrol at 39.90 rupees per liter, 18.7 liters	1Nĩ							
at 42.90 rupees per liter, and 23.5 liters at 40.90 rupees per liter. Find the mean price raid	UU							
Q.3 Answer the following Questions. (4+4=8)								
 Q.3 Answer the following Questions. (4+4=8) (a) The length of 32 items are given below, find the mean length and standard deviation of 								
the distribution.								
Length $20-22$ $23-25$ $26-28$ $29-31$ $32-34$								
Frequency 3 6 12 9 2								
(b) On a prize distribution day, 50 students brought pocket money as under.								
Rupees 5-10 10-15 15-20 20-25 25-30								
Rupees 5-10 10-15 15-20 20-25 25-30 Frequency (f) 12 9 18 7 4								
NOTE: Parents or guardians can conduct this test in their supervision in order to check the skill								
of students.								