
 Ciled acute angled triangle.
i.e In the fig, $\triangle \mathrm{ABC}$ is an acute angle triangle.

Obtuse Angled Triangle

A triangle having one of its angles greater than 90° is called obtuse angle triangle.

Right Angled Triangle
A triangle having one of its angles eq ab to 90° is called right angle triangle.

Theorem 1

8.1(i)

In an obtuse angled triangle, the square on the side opposite to the ol tuse angle is egadid to the sum of the squares on the sides conta ining nobtuse ange oseer wish twice the rectangle contained b. one of and sides, and the projection on it of the other.
Given:
ABC i• a riangle navins an obtuse ange BAC at A. Draw $\overline{C D}$ perpend cular dn $E A$ produced. So tiat $\overline{A D}$ is the projection of $\overline{1} \mathrm{~A}$ on $\bar{B} \bar{A}$ produced. Take $m \overline{B C}=a, m \overline{C A}=b$, hi $\bar{D}=c, m \overline{A D}=x$ and $m \overline{C D}=h$.

- 0 Prove:

$$
(\overline{B C})^{2}=(\overline{A C})^{2}+(\overline{A B})^{2}+2(m \overline{A B})(m \overline{A D}) \text { i.e., } a^{2}=b^{2}+c^{2}+2 c x
$$

Proof:

In $\angle r t \Delta C D A$	Reasons
$m \angle C D A=90^{\circ}$	Given
$\therefore(\overline{A C})^{2}=(\overline{A D})^{2}+(\overline{C D})^{2}$	Pythagoras Theorem
or $b^{2}=x^{2}+h^{2}(\mathrm{i})$	
In $\angle r t \Delta C D B$,	
$m \angle C D B=90^{\circ}$	Given
$\therefore(\overline{B C})^{2}=(\overline{B D})^{2}+(\overline{C D})^{2}$	Pythagoras Theorem
or $a^{2}=(c+x)^{2}+h^{2}$	$\overline{B D}=B A+\overline{A D}$
$=c^{2}+2 c x+x^{2}+h^{2}(\mathrm{ii})$	
Hence $a^{2}=c^{2}+2 c x+b^{2}$	Using (i) and (ii)
i,e., $a^{2}=b^{2}+c^{2}+2 c x$	
or $(\overline{B C})^{2}=(\overline{A C})^{2}+(\overline{A B})^{2}+2(\mathrm{~m} \overline{A B})(\mathrm{m} \overline{A D})$	

Theorem 2

8.1(ii)

In any triangle, the square on the side opposite to acute angle is equal to sur of the squares on the sides containing that acitt angle dimimhed by wice the rectangle contained by one of those sides anc the projection on it of the other.
Given:
$\triangle A B C$ wih an acnte angie $C A B$ it A.
Take $n \bar{B} C=a \sqrt{\overline{C A}}=\bar{b}$ and $\sqrt{2} \bar{B}$.
Prav, $\bar{C} \bar{D} \perp \bar{A} \bar{\beta}$ se that $\overline{A D}$ is projection of $\overline{A C}$ on $\overline{A B}$
Andc, $\Omega \overline{A D}=x$ and $m \overline{C D}=h$
Jo - rove:

$$
(\overline{B C})^{2}=(\overline{A C})^{2}+(\overline{A B})^{2}-2(m \overline{A B})(m \overline{A D})
$$

$$
\text { i.e } a^{2}=b^{2}+c^{2}-2 c x
$$

Proof:

Statements

In $\angle r t \Delta C D A$
$m \angle C D A=90^{\circ}$
$(\overline{A C})^{2}=(\overline{A D})^{2}+(\overline{C D})^{2}$
i.e., $b^{2}=x^{2}+h()$

In $\angle r t \Delta C D B$,
$m \angle C D B:=90^{\circ}$
$(B C)^{-2}=\left(i B^{2}+\left(\frac{C D}{}\right)^{2}\right.$
$a^{2}=(c-x)^{2}+h^{2}$
or $a^{2}=c^{2}-2 c x+x^{2}+h^{2}$ (ii)
$a^{2}=c^{2}-2 c x+b^{2}$
Hence, $a^{2}=b^{2}-c^{2}-2 c x$
i.e., $(\overline{B C})^{2}=(\overline{A C})^{2}+(\overline{A B})^{2}-2(m \overline{A B})(m \overline{A D})$

Theorem 3

(Apollonius' Theorem)

8.1(iii)

In any triangle, the sum of the squares on any two sides is equal to twice the square on half the third side together with twice the square on the median which bisects the third side.
Given:
In a $\triangle A B C$, the median $\overline{A D}$ bisects $\overline{B C}$.
i.e., $m \overline{B D}=m \overline{C D}$

To Prove:

Beavens
Given

Pythageras Theorem

Given
Pythagoras Theorem
Form the figure

Using(i) and (ii)
$(\overline{A B})^{2}+(\overline{A C})^{2}=2(\overline{B D})^{2}+2(\overline{A D})^{2}$

Construction:

Draw $\overline{A F} \perp \overline{B C}$
Proof:

Now in $\triangle A D C$ Si ce $<A D$ is aculeat D
$\therefore(\bar{\pi} \bar{A})=F(\overline{C D})+(D \bar{D})^{2}+2 m \overline{C D} \cdot m \overline{F D}$

$$
=(\overline{B D})^{2}+(\overline{A D})^{2}+2 m \overline{B D} \cdot m \overline{F D} \rightarrow(\mathrm{ii})
$$

Thus $(\overline{A B})^{2}+(\overline{A C})^{2}=2(\overline{B D})^{2}+2(\overline{A D})^{2}$

Using Theorem 2

Using Theorem 1

Adding (i) and (ii)

Exercise 8.1

Q. 1
(A.B)

Given:
$m \overline{A C}=1 \mathrm{~cm}, m \overline{B C}=2 \mathrm{~cm}, m \angle C=120^{\circ}$
compute the length $A B$ ard the area of $\triangle \mathrm{ABC}$
Solution:
For areal \triangle
Fron the figure,

$m \angle A C D=180^{\circ}-m \angle A C B$
(Supplementary Angles)

$$
\begin{aligned}
& =180^{\circ}-120^{\circ} \\
& =60^{\circ}
\end{aligned}
$$

From $\triangle \mathrm{ACD}$,
$\operatorname{Sin} 60^{\circ}=\frac{m \overline{A D}}{m \overline{A C}}$

$$
\frac{\sqrt{3}}{2}=\frac{m \overline{A D}}{1 \mathrm{~cm}}
$$

$\Rightarrow m \overline{A D}=\frac{\sqrt{3}}{2} \times 1 \mathrm{~cm} m \overline{A D}=0.877 \mathrm{~cm}$
Area of $\triangle \mathrm{ABC}=c m \frac{1}{2} m \overline{B C} \times m \overline{A D}$
\therefore Area of $\Delta=\frac{1}{2}$ base \times height
\Rightarrow Area of $\triangle \mathrm{ABC}=0.877 \mathrm{~cm}^{2}$
Q. 2 Find $m \overline{A C}$ if in $\triangle A B C m \overline{B C}=6 \mathrm{~cm}$, $m \overline{A B}=4 \sqrt{2}$ and $m \angle A B C=135^{\circ}$.

Solution:

$(m \overline{A C})^{2}=(m \overline{A B})^{2}+(m \overline{B C})^{2}-2 m \overline{B C} m \overline{B D}$

From $\triangle A B D$
$\cos 45^{\circ}=\frac{m \overline{B D}}{m \overline{A S}}$

Now putting the values in formula
$(m \overline{A C})^{2}=(4 \sqrt{2})^{2}+(6)^{2}-2(6)(4)$
$(m \overline{A C})^{2}=16(2)+36-48$
$(m \overline{A C})^{2}=32+36-48$
$(m \overline{A C})^{2}=20$
Taking square root $m \overline{A C}=\sqrt{20}=4.47$
$\therefore m \overline{A C}=4.47 \mathrm{~cm}$

Exercise 8.2

Q. 1 In a $\triangle A B C$ calculate $m B C$ when $m \overline{A B}=6 \mathrm{~cm}, m \overline{A C}=4 \mathrm{~cm}$ and $m \angle A=60^{\circ}$
(A.B)

Solution:

By Theorem 8.2, we get

$$
(\overline{B C})^{2}=(\overline{A B})^{2}+(\overline{A C})^{2}-2 m \overline{A B} \cdot m \overline{A D}
$$

Putting the values

$$
\begin{aligned}
& (\overline{B C})^{2}=(6)^{2}+(4)^{2}-2 \cdot 6 \cdot \frac{1}{2} \cdot 4 \\
& (\overline{B C})^{2}=36+16-24 \\
& (\overline{B C})^{2}=28
\end{aligned}
$$

$$
\frac{\sqrt{151}}{2}=\overline{B D}
$$

Q. 3 In a parditogram $A B C D$ nsve

Taking aquale root on ooth sides $m \overline{B C}=\sqrt{2} \overline{3}$

Result

$\sqrt{2} C=\sqrt{2} \mathrm{c} \cdot \mathrm{m}$
In a $\triangle A B C, m \overline{A B}=6 \mathrm{~cm}, m \overline{B C}=8 \mathrm{~cm}$, $m \overline{A C}=9 \mathrm{~cm}$ and D is the mid point of side $\overline{A C}$. Find length of the median $\overline{B D}$.
(A.B)

Ans:
By Theorem 8.3, we have

$$
(A B)^{2}+(B C)^{2}=2\left[(A D)^{2}+(B D)^{2}\right]
$$

Putting the values

$$
\begin{aligned}
& (6)^{2}+(8)^{2}=2\left[\left(\frac{9}{2}\right)^{2}+(B D)^{2}\right] \\
& 36+64=2\left[\frac{49}{4}+(B D)^{2}\right] \\
& 100=2\left[\frac{49}{4}+(B D)^{2}\right] \\
& 50=\frac{49}{4}+(B D)^{2} \\
& 50-\frac{49}{4} \\
& \frac{20}{2}-\frac{49}{3}=(B D)^{2} \\
& \frac{151}{4}=(B D)^{2}
\end{aligned}
$$

Taking square root on both sides
(A.B)

Ans: By theorem 8.3, we have

$(A B)^{2}+(B C)^{2}=2\left(\frac{1}{2} \overline{A C}\right)^{2}+2\left(\frac{1}{2} \overline{B D}\right)^{2}$
$(A B)^{2}+(B C)^{2}=\frac{1}{2}(B D)^{2}+\frac{1}{2}(A C)^{2}$
$(A B)^{2}+(B C)^{2}=\frac{1}{2}\left[(B D)^{2}+(A C)^{2}\right]$
$\because \mathrm{O}$ is mid point of $\overline{B D}$ and $\overline{A C}$
Or $2\left[(\overline{A B})^{2}+(\overline{B C})^{2}\right]=(\overline{A C})^{2}+(\overline{B D})^{2}$

Hence Proved

Miscellaneous Exercise 8
Q. 1 In a $\triangle A B C, m \angle A=60^{\circ}$, prove that

$$
(\overline{B C})^{2}=(\overline{A B})^{2}+(\overline{A C})^{2}-m \overline{A B} \cdot m \overline{A C} .
$$

(A.B)

Given:
In a $\triangle \mathrm{ABC}, \mathrm{m} \angle \mathrm{A}=60^{\circ}$
To prove:

By Theorem 8.2, we get

$$
(\overline{B C})^{2}=(\overline{A B})^{2}+(\overline{A C})^{2}-2 m \overline{A B} \cdot m \overline{A C} \rightarrow(\mathrm{i})
$$

For value of $m \overline{A D}$
From $\triangle \mathrm{ADC}$,
$\operatorname{Cos} 60^{\circ}=\frac{m \overline{A D}}{m \overline{A C}}$
$\frac{1}{2}=\frac{m \overline{A D}}{m \overline{A C}}$
$\frac{1}{2} m \overrightarrow{A C}=m=\sqrt{D}$
Putir equation (
$(\overline{B C})^{2}=(\overline{A B})^{2}+(\overline{A C})^{2}-2 m \overline{A B} \cdot \frac{1}{2} m \overline{A C}$

$$
(\overline{B C})^{2}=(\overline{\text { Or }})^{2}+(\overline{A C})^{2}-m \overline{A B} \cdot m \overline{A C}
$$

Hence Proved

Q. 2 In a $\triangle A B C, m \angle A=45^{\circ}$, prove that $(\overline{B C})^{2}=(\overline{A B})^{2}+(\overline{A C})^{2}-\sqrt{2} m \overline{A B} \cdot m \overline{A C}$.
(A.B)

Given:
In a $\triangle A B C, m \angle A=45^{\circ}$
To prove
$(\overline{B C})^{2}=(\overline{A B})^{2}+(\overline{A C})^{2}-\sqrt{2} m \overline{A B} \cdot m \overline{A C}$
Proof:

By Theorem 8.2, we get
$(\overline{B C})^{2}=(\overline{A B})^{2}+(\overline{A C})^{2}-2 m \overline{A B} \cdot m \overline{A D} \rightarrow($ i)
For value of $m \overline{A D}$
From $\triangle A D C$,

$$
(\overline{B C})^{2}=(\overline{A B})^{2}+(\overline{A C})^{2}-2 m \overline{A B} \cdot \frac{1}{\sqrt{2}} m \overline{A C}
$$

$\operatorname{Pr}(\overline{B C})^{2}=(A B)+(A C)^{2}-\sqrt{2} m,-(A) A C$

Hence Proved

In a $\triangle A B C$, calculate $m \overline{B C}$ when
$m \overline{A B}=5 \mathrm{~cm}, m \overline{A C}=4 \mathrm{~cm}, m \angle A=60^{\circ}$.
(A.B)

Solution:

By Theorem 8.2, we get
$(\overline{B C})^{2}=(\overline{A B})^{2}+(\overline{A C})^{2}-2 m \overline{A B} \cdot m \overline{A D}$
For value of $m \overline{A D}$
From $\triangle \mathrm{ADC}$,
$\operatorname{Cos} 60^{\circ}=\frac{m \overline{A D}}{m \overline{A C}}$
$\frac{1}{2}=\frac{m \overline{A D}}{m \overline{A C}}$
$\frac{1}{2} m \overline{A C}=m \overline{A D}$
Or
$\left.(\overline{B C})^{2}=(\overline{A B})^{2}+(\overline{A C})^{2}-2 m \overline{A B} 1 / \overline{2} \bar{A}\right)$
Putting the vaiues
$\int^{-} B^{-}\left(C^{-}\right)^{2}=(5)^{2}+(4 \cdot)^{2}-2.5 \cdot \frac{1}{2} .4$
$(\overline{B C})^{2}=25+16-20$
$(\overline{B C})^{2}=21$
Taking square root on both sides
$m \overline{B C}=\sqrt{21}$

Result:

$$
m \overline{B C}=\sqrt{21} \mathrm{~cm}
$$

Q. 4 In a $\triangle A B C$, calculate $m \overline{A C}$ when $m \overline{A B}=5 \mathrm{~cm}, m \overline{B C}=4 \mathrm{~cm}$, $\mathrm{m} \angle \mathrm{B}=45^{\circ}$.
(A.B)

By theorem 8.2, we have
$(m \bar{A} \bar{C})^{2}=(m \overline{A B})+(m \overline{B C})^{2}-2 m \overline{A B} \times m \overline{B D}$
For value of $\overline{B D}$
$\cos 45^{\circ}=\frac{m \overline{B D}}{m \overline{B C}}$
$\frac{1}{\sqrt{2}}=\frac{m \overline{B D}}{4 c m}$
$\frac{4 c m}{\sqrt{2}}=m \overline{B D}$
Now putting the values in equation (i)

$$
\begin{aligned}
& (m \overline{A C})^{2}=(5)^{2}+(4)^{2}-2(5) \times \frac{4}{\sqrt{2}} \\
& \Rightarrow m \overline{A C}=12.71 \mathrm{~cm}
\end{aligned}
$$

Q. 5 In $\triangle \mathrm{ABC}, m \overline{B C}=21 \mathrm{~cm}, m \overline{A C}=17 \mathrm{~cm}$, $m \overline{A B}=10 \mathrm{~cm}$. Measure the length of projection of $\overline{A C}$ upon $\overline{B C}$
(A.B)

Solution:

From the figurt, ve get
$(\overline{A B})^{2}=(\overline{B G})^{2}+(-\overline{C D})^{2}-2 n \bar{b} \bar{C} \cdot m C \bar{D}$
Pariacthe vames

$$
\begin{aligned}
& (10)^{2}=(21)^{2}+(17)^{2}-2(21) \cdot m \overline{C D} \\
& 100=441+289-42 m \overline{C D} \\
& 42 m \overline{C D}=730-100
\end{aligned}
$$

$42 m \overline{C D}=630$
$m \overline{C D}=\frac{630}{45}$
$m=\bar{D}=5$
. Iengther pojection of $\overline{A C}$ upon $B C=15 \mathrm{~cm}$
Q. 6 In a triangle $A B C, m \overline{B C}=21 \mathrm{~cm}$, $m \overline{A C}=17 \mathrm{~cm}$ and $m \overline{A B}=10 \mathrm{~cm}$.
Calculate the projection
of $\overline{A B}$ upon $\overline{B C}$.
(A.B)

Solution:

From the figure, we get
$(\overline{A C})^{2}=(\overline{A B})^{2}+(\overline{B C})^{2}-2(m \overline{B D})(m \overline{B C})$
$(17)^{2}=(10)^{2}+(21)^{2}-2 m \overline{B D}(21)$
$289=100+144-42 m \overline{B D}$
$42 m \overline{B D}=541-289$
$42 m \overline{B D}=252$
$m \overline{B D}=\frac{252}{42}$
$m \overline{B D}=6$

Result

\therefore Project of $\overline{A B}$ upon $\overline{B C}=6 \mathrm{~cm}$
Q. 7 In a $\triangle A B C$, $17-2 \mathrm{sm}, b=13$,

Solution:

From fig, we get

$$
(\overline{B C})^{2}=(\overline{A B})^{2}+(\overline{A C})^{2}-2 m \overline{A B} \times m \overline{A D}
$$

Putting the values
$(17)^{2}=(15)^{2}+(8)^{2}-2 \times 8 \times m \overline{A D}$
$289=225+64-16 \times m \overline{A D}$
$16 \times m \overline{A D}=289-289$
$16 \times m \overline{A D}=0$
$m \overline{A D} \cong$
From $\Delta \mathrm{C}, \mathrm{A}, \cos \operatorname{na}-A_{s}=\frac{m \overline{A D}}{m \overline{A C}}$
$\cos m \angle A=\frac{0}{8}$
$\cos m \angle A=0$
$m \angle A=\cos ^{-1} 0$
$m \angle A=90^{\circ}$
Q. 8 In a $\triangle A B C, a=17 \mathrm{~cm}, b=15 \mathrm{~cm}$ and
$c=8 \mathrm{~cm}$ find $m \angle B$.
(A.B)

In $\triangle A B C$
Solution:

$a=17 \mathrm{~cm}, b=15 \mathrm{~cm}$ and $c=8 \mathrm{~cm}$
By theorem 8.2, we have

$$
(m \overline{A C})^{2}=(m \overline{A B})^{2}+(m \overline{B C})^{2}-2 m \overline{B C} \times m \overline{B D}
$$

Putting the values

$$
\begin{aligned}
(15)^{2} & =(8)^{2}+(17)^{2}-2(17) m \overline{B D} \\
225 & =64+289-34 m \overline{B D} \\
34 m \overline{B D} & =353-225 \\
& =128
\end{aligned}
$$

$\therefore m \overline{B D}=3.76 \mathrm{~cm}$,

$$
\begin{aligned}
\text { Nov fron } & \Delta A B D \\
\text { cos } \because \angle B & =\frac{m B \bar{D}}{m \overline{A B}} \\
& =\frac{3.76 \mathrm{~cm}}{8 \mathrm{~cm}}
\end{aligned}
$$

$\cos m \angle B=0.48 \mathrm{~cm}$
$m \angle B=\cos ^{-1} 0.48$
$m \angle B=619^{\circ}$
Q. 9 whether the triange v aides $5 \mathrm{~cm}, \gamma \mathrm{cin}, 8 \mathrm{~cm}$ is acute, obtuse or ight.
(A.B)

Soution:

Let $a=5 \mathrm{~cm}, b=7 \mathrm{~cm}$ and $c=8 \mathrm{~cm}$

$$
\begin{array}{rlrl}
a^{2}+b^{2} & =(5)^{2}+(7)^{2} & c^{2} & =(8)^{2} \\
& =25+49 & & =64 \\
& =74 &
\end{array}
$$

Since $a^{2}+b^{2}>c^{2} \Delta$ is acute angled.
Or
$\mathrm{a}^{2}=5^{2}=25$
$\mathrm{b}^{2}=7^{2}=49$
$c^{2}=8^{2}=64$
Since $a^{2}+b^{2}>c^{2} \Delta$ is acute angled.
Q. 10 Whether the triangle with sides $8 \mathrm{~cm}, 15 \mathrm{~cm}, 17 \mathrm{~cm}$ is acute, obtuse or right angled.
(A.B)

Solution:
Let $a=8 \mathrm{~cm}, b=15 \mathrm{~cm}$ and $c=17 \mathrm{~cm}$
$a^{2}=(8 \mathrm{~cm})^{2}=64 \mathrm{~cm}^{2}$
$b^{2}=(15 \mathrm{~cm})^{2}=225 \mathrm{~cm}^{2}$
$c^{2}=(17 \mathrm{~cm})^{2}=289 \mathrm{~cm}^{2}$
Since $a^{2}+b^{2}=c^{2}$
$\therefore \Delta$ with given sides form a right angled triangle.

$$
(A . B+U . B+K . B)
$$

If $a^{2}+b^{2}=c^{2}, \Delta$ is a richt angled
If $a^{2}+b^{2}<c^{2}, \Delta$ is . ontuse ansled (1)
If $a^{2}+b^{2}>r^{2}, \Delta$ is a ATe ogica Δ
Whare c is longest sivie

