

KIPS NOTES SERIES

Unit-9

M is the mid point of any chord \overline{AB} of a circle with centre at *O*. Where chord \overline{AB} is not the diameter of the circle.

To Prove:

 $\overline{OM} \perp$ the chord \overline{AB} .

Construction:

Join *A* and *B* with centre *O*. Write $\angle 1$ and $\angle 2$ as shown in the figure.

Proof:

Statements	Reasons
$In \Delta OAM \leftrightarrow \Delta OBM$	
$m\overline{OA} = m\overline{OB}$	Radii of the same circle
$m\overline{AM} = m\overline{BM}$	Given
$m\overline{OM} = m\overline{OM}$	Common
$\therefore \triangle OAM \cong \triangle OBM$	$S.S.S \cong S.S.S$
$\Rightarrow m \angle 1 = m \angle 2 \rightarrow (i)$	Corresponding angles of congruent triangles
<i>i.e.</i> , $m \angle 1 + m \angle 2 = m \angle AMB = 180^\circ \rightarrow (ii)$	Adjacent supplementary angles
$\therefore m \angle 1 = m \angle 2 = 90^{\circ}$	From (i) and (ii)
$i.e.,\overline{OM} \perp \overline{AB}$	<u> </u>
Theorem 3	(A.B)
Statement:	
Given: \overline{AB} is the chord of a circle with centre at \overline{AB}	O.
So that $\overline{OM} \perp$ chord \overline{AB} . From: <i>M</i> is the mid point of chord \overline{AB} <i>i.e.</i> $m\overline{AM}$	$\overline{A} = m\overline{BM}$
Construction:	
Join A and B with centre O.	

N

Proof:		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Statements	Reasons	CONU
$\operatorname{In} \angle rt \Delta^s OAM \leftrightarrow OBM$		GOUL
$m \angle OMA = m \angle OMB = 90^{\circ}$	Gryen	30 -
hyp. OA = hyp. OB.	Fach of the same circle	
mOM = mOM	Cominol	
$\therefore \Delta OAM \cong \Delta GBM$	If $\Delta t \Delta H.S \cong H.S$	
Hence, $mAM = mBM$	Corresponding sides of congruent triangles	
$\Rightarrow OM$ bisecs the chord \overline{AB} .		
Gorollary 1	(K .)	B + U.B)
\perp Bisector of the chord of a circl	le passes through the centre of a circle.	-
Corollary 2	(K.	B + U.B)
The diameter of a circle passes th	rough the mid points of two parallel chords of	a circle.
	Exercise 9.1	
Q.1 Prove that, the diameters of a c	ircle bisect each other.	(A.B)
Given		
In a circle with centre ' O' , AB and T e prove	d CD are two diameters.	B
\overline{AB} and \overline{CD} bisect each other		
i e Q is midpoint of \overline{AB} and \overline{CD}		
Proof	А	
Statements	Reasons	
$\overline{OA} \cong \overline{OB} \rightarrow (i)$	Radii of same circle	
AOB is a state line		
$\therefore O$ is midpoint of $\overline{AB} \rightarrow (ii)$		
Similarly $\overline{OC} \cong \overline{OD}$	As in (i)	
Or O is midpoint of \overline{CD}		ran
Hence \overline{AB} and \overline{CD} bisect each other.	From (ii) and (iii) Each other	<u> </u>
Q. 2 Two chords of a circle do not p	bass through the centre. Prove that they can	not biseci
each other.	96111111	(A.B)
In a circle with centre () chould	Rand che d (Dimersect each other at point)	D
To prove	b intrenoited intersect each other at point i	· ·
<i>P</i> is neither milpoint of \overline{AB} nor \overline{C} .	D. A	D
Construction		S. CH
\bigvee Uraw $OK \perp AB$ and $OH \perp \overline{CD}$.		- DH
2		B
		ć

Statement:

If two chords of a circle are congruent then they will be equidistant from the centre.

Given:

 \overline{AB} and \overline{CD} are two equal chords of a circle with centre at O.

So that $\overline{OH} \perp \overline{AB}$ and $\overline{OK} \perp \overline{CD}$.

To Prove:

 $m\overline{OH} = m\overline{OK}$

Construction:

Join *O* with *A* and *O* with *C*. So that We have $\angle rt\Delta^s OAH$ and *OCK*.

Proof:

Statements	Reasons	
\overline{OH} bisects chord \overline{AB}	$\overline{OH} \perp \overline{AB}$ Perpendicular from the centre	
	of a circle on a chord bisects it.	
i.e., $m\overline{AH} = \frac{1}{2}m\overline{AB}$ (i)		
Similarly \overline{OK} bisects chord \overline{CD}	$\overline{OK} \perp \overline{CD}$ Perpendicular from the centre	
	of a circle on a chord bisects it.	5
<i>i.e.</i> , $m\overline{CK} = \frac{1}{2}m\overline{CD}$ (ii)	Lange V/2].CU)\
But $m\overline{AB} = m\overline{CD}$ (iii) Hence $m\overline{AH} = m\overline{CK}$ (iv)	Given Using (i), (ii) & (iii)	
Now in $\angle rt\Delta^{S} \supset H \triangleleft \supset OCK$	Given $\overrightarrow{OH} \perp \overrightarrow{AB}$ and $\overrightarrow{OK} \perp \overrightarrow{CD}$	
$hyp\overline{OA} = hyp\overline{OC}$	Radii of the same circle	
MAR MULIO	Already Proved in (iv)	
$\therefore \triangle OAH \cong \triangle OCK$	H.S postulate	
$\Rightarrow m\overline{OH} = m\overline{OK}$	Corresponding side of congruent triangles	

Theorem 5 9.1(v) Two chords of a circle which a	(A.B)	M
Given: \overline{AB} and \overline{CD} are two chords of a $\overline{OH} \perp \overline{AB}$ and $\overline{OK} \perp \overline{CD}$, so t	a circle with centre at O hat $m\overline{OH} = m\overline{OK}$	
To Prove: $m\overline{AE} = m\overline{CD}$ Concurrences Join A and C with O.	So that we can form	
$\angle rt\Delta^s OAH$ and OCK .		
Proof: Statements	Reasons	
In $\angle rt\Delta^s OAH \Leftrightarrow OCK.$		
$\therefore \text{hyp}\overline{OA} = \text{hyp}\overline{OC}$	Radii of the same circle.	
$m\overline{OH} = m\overline{OH}$	Given	
$\therefore \Delta OAH \cong \Delta OCK$	H.S Postulate	
SOMAH = MCK(1)	Corresponding sides of congruent triangles	
But $m\overline{AH} = \frac{1}{2}m\overline{AB}$ (ii)	$\overline{OH} \perp \text{chord } \overline{AB} \text{ (Given)}$	
Similarly $m\overline{CK} = \frac{1}{2}m\overline{CD}(iii)$	$\overline{OK} \perp \text{chord } \overline{CD} \text{ (Given)}$	
Since $mAH = mCK$	Already proved in (i)	
$\therefore \frac{1}{2}m\overline{AB} = \frac{1}{2}m\overline{CD}$	Using (ii) & (iii)	
or $m\overline{AB} = m\overline{CD}$	Multiplying both sides by 2	
	Exercise 9.2	
Q.1 Two equal chords of a circle i	of the other	DDD
Given		
In a circle with centre ' O ' \overline{AB} a	$\operatorname{nd}\overline{CD}$ are two chords of the circle intersecting at P such	
that <i>mAB</i> = <i>mCD</i> To prove	Alle C	
$mAP = m\Box P \operatorname{and} mRP = m\Box P$	\sim $\langle \rangle_{\rm A} \rangle_{\rm B}$	
Drav $\overline{OH} \perp \overline{CD}$ and $\overline{OK} \perp \overline{AB}$	H	
Join O to P.	APD	

\mathbf{U}_{nit-9}

Unit-9

J

	(v)	Radii of a circle are (LHR 2014, GRW 2014, (a) All equal	SWL 2015, 16) (b) Double of diameter	(К.В)
		(c) All unequal	(d) Half of any chord	(CONDE
	(vi)	A chord passing through the centre of a (a) Radius	ir cle is called (LHR 2015, GRW 2014, I (b) Diameter	(K.B) FSD 2018)
		(c) Circumference	(d) Secant	
	(vii)	Right hise tor of the chord of a circle alw	ays passes through the	(K.B)
			(S	WL 2014)
~	NA	(z) Radius	(b) Circumference	
	<u>UNU</u>	(G) Centre	(d) Diameter	1 / / / D)
	(vm)	The circular region bounded by two radii	and the corresponding arc is called	а (К.В)
		(a) Circumference of a circle	(b) Sector of a circle (d) Segment of a circle	
	(•)	(c) Diameter of a circle	(d) Segment of a circle	
	(IX)	The distance of any point of the circle to i	ts centre is called	(K.B)
		(a) Radius	(SGD 2014, D.) (b) Diameter	G. K 2014)
		(c) A chord	(d) An arc	
	(x)	Line segment joining any point of the circ	to the centre is called	(K.B)
	()		(SGD 2014, ,MTN 1015, R	WP 2015)
		(a) Circumference	(b) Diameter	
		(c) Radial segment	(d) Perimeter	
	(xi)	Locus of a point in a plane equidistant fro	om a fixed point is called (D.	(K.B) G.K 2014)
		(a) Radius	(b) Circle	
		(c) Circumference	(d) Diameter	
	(xii)	The symbol for a triangle is denoted by		(K.B)
		(a) \angle	(b) Δ	
		(c) \perp	(d) ⊔	
	(xiii)	A complete circle is divided into		(K.B)
		(a) 90 degrees	(b) 180 degrees	
		(c) 270 degrees	(d) 360 degrees	- Mini
	(xiv)	Through how many non collinear points,	a circle can pass?	REDUCE
		(a) One	and the second	HK 2013)
		(c) Three	(c) None	
		OI CONTRACTOR		
			c x c xiii d	
	~	v a viii	b xi b xiv c	
	M	d vi b ix	a <mark>xii</mark> b	
	UU			

(v)	Interior and exterior of a circle.	(K.E	
Ans:	Different	iation	0000
	Interior of the Circle	The Exterior of the files 100	
•	All the points which lie inside of the	• All the point which lie outside of the circle	e
	circle form. interior of the circle	It does not include control of the simple	_
•	It includes the centre of the circle	It does not include centre of the circle It is outer part of circle	_
MA	A sector and a segment of a circle.	(K.E	3)
Ans:	Different	iation	-)
	Sector of Circle	Segment of Circle	
•	"Circular region bounded by an arc	• "A chord divides a circular region in two)
	and its two corresponding radial	parts called segment of a circle". In the	e
	segments is called sector of a circle".	given figure, \overline{AB} divides the circle into)
	In the given figure, AOB is a sector of	two segments.	
	the circle.		
•	It does not include any chord	• It includes one chord	
•	It always included centre of the circle	• It may/may not include centre of the circle	
		A Ò B	
	annaltan	JUMV2.C	91111

MATHEMATICS -10

Uni	t-9	Chords of a Circle
Q.2	Give Short Answers to following Questions.	(5×2=10)
(i)	Define circle.	NACO
(ii)	What is the difference between minor segment and major segn	nent?
(iii)	Differentiate between interior and exterior of a circle and illustrate them by diagrams.	
(iv)	In a triangle ABC calculate \overline{mBC} when $\overline{mAB} = 6cm$, $\overline{mAC} = 4cm$, $m \angle A = 60^\circ$.	
M	Lea triangle ABC, $\overline{mBC} = 21cm$, $\overline{mAC} = 17cm$, $\overline{mAB} = 10cm$.	Measure the length of
	projection of \overline{AC} upon \overline{BC} .	
Q.3	Prove that,	(8)
	A straight line, drawn from the centre of a circle to bisect a cho	ord
	(Which is not a diameter) is perpendicular to the chord.	
NOTI	E: Parents or guardians can conduct this test in their supervision	n in order to check the skill

of students.

Mankholulye.com