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Preface

This Model Textbook for Mathematics Grade 11 has been developed by NBF according to
the National Curriculum of Pakistan 2022-2023. The aim of this textbook is to enhance
learning abilities through inculcation of logical thinking in learners, and to develop higher
order thinking processes by systematically building the foundation of learning from the
previous grades. A key emphasis of the present textbook is creating real life linkage of the
concepts and methods introduced. This approach was devised with the intent of enabling
students to solve daily life problems as they grow up in the learning curve and also to fully
grasp the conceptual basis that will be built in subsequent gradtfs @ ﬁ

Q

After amalgamation of the efforts of €x @ hors, this book was
reviewed and finalized after extens %@f i educationists. Efforts were
made to make the co%ﬁ{;ﬂ iendly and to deyelop the concepts in interesting ways.

The Natio m 'bin'i/s. always striving for improvement in the quality of its
tex present textbook features an improved design, better illustration and
interesting activities relating to real life to make it attractive for young lcarners. However,

there is always room for improvement, the suggestions and feedback of students, tcachers
and the community are most welcome for further enriching the subsequent editions of this

. textbook.

May Allah guide and help us (Ameen).

Dr. Raja Mazhar Hameed
Managing Director
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After st*dgg;h\iﬁiwunit, students will be able to:

NN ecall complex number z and recognize its real and imaginary part.
Know the condition for equality of two complex numbers.
Revising the basic operations on complex numbers.

Find conjugate and modulus of a complex number.

Solve the simultaneous linear equations with complex coefficients.
Factorize the given polynomials like z2 + a® orz® —3z2 +z=5
Solve quadratic equation of the form pz?® + gz + r =0, by completing squares,
where p, g, r are real numbers and z is a complex number.

Represent complex numbers in polar coordinates.

Applying the binary operations in polar form.

Solve complex equations and inequations in polar form.

Using the complex numbers in real world problems. PN

T | -
bl T ll--“
1 )

Complex numbers are used in many branches of science; especially quantum mechanics (a
branch of Physics) heavily depends upon complex numbers.

In mathematics the need of complex numbers is to solve the polynomlals whlch do not have the
solution in the set of real numbers. e.g., The polynnnual x/ ~&hF D}m th&ﬁuluhuns x =11,
which are the real numbers. But the polynomfial x4 1= 0 do m have any solution in the set of
real numbers, since there is)ng reai numbe(,\\ghose sciuarc is —1. To overcome this difficulty, we
extended the set of real numbc!s to the'set of complex numbers by introducing a number i such
that i = \ ”1\\ m{ \[@g WIS

number. -~

“Remember that i2 = =1 is the Euler’s notation for the imaginary unit

National Book Foundaiion 5



1.1 Complex Number o / T\

',/\Iy

A complex number is an cxpression of the\fs\nnxélliif where x,y € R. A complex number is
denoted by z, i, z = x 4 Lyandthcsetﬁf all complex numbers is denoted by C .The complex
number x tﬁﬂpﬁgﬁﬂ\ﬂéﬂﬁedhy the ordered pair (x, ¥).The reason for this notation is justified
since there is.one to one corresponding between x + 1y and (x, y).

Clearly i = 0+i = (0,1) and 1 = 1+ 0i = (1,0)

. L.LL.1 Real and Imaginary Parts of a Complex Number-

Every complex number x + iy has two parts x and y. x is called the real part and yis called
the imaginary part i.c., Re(z) = x and Im(z) = y.

If the real part of a complex number is zero then it is called pure imaginary number and if the

imaginary part of the complex number is zero then it is called real number.

Since every real number x can be written as x + i0 thus every real number is a complex number

but note that every complex number need not be a real number. Only the complex numbers with

zero imaginary part are real numbers. Thus, the set of real number is a subset of set of complex

numbers, i.e, R C iC: o~ )/f?\?/d/ﬂ\
o - A [T @\\J/‘Q\Uu

1.1.2 Condition for the Equality of Two Cnénple\;\\bg;\lmmy\\ NITCA

Like real numbers any two complex »nt\/n\beﬁbﬁnﬁ\l\}:;\aﬁipéfaﬁ[gji.e., We cannot say that one

‘ C\ " o~ N\ V o\ N\
complex number is greater @aﬁgﬂkml ¢ .other-complex number. Two complex numbers are

said to be equal if bot'l_l_l\'lagfs'a\tﬁé ! ﬁl\anmﬁ‘lfgﬁary parts.

- AL _
1.2 Basi%ﬁ]&m\aji}cxdpemtinns on Complex Numbers
1.2.1 Addition of Two Complex Numbers

Suppose we have two complex numbers z; = x; +iy; = (X, 1) and 2z =x; + iy, = (x2, ¥2)-
Then their sum is:
71tz = uy)+@y) = xntintntiy
=+ x)+in+y) = (at+x y1+Y2)
Example: Find the sum of z; = 2 + 3iand z; = 6 + 8i.
Solution:
z+2z= (2+30)+(6+8)=(2+6)+(3+8)i
= 8+ 11i = (8,11)
1.2.2 Subtraction of Two Complex Numbers
Suppose we have two complex numbers z; = X; +iy; = (x4 ¥1) anq_gz\=‘f% | ;k:;,a:(xz, V2)-

1\

The difference of the two complex numbers is givenby: _ {1\ [ 75 | JOT
71—z = (0, )3 (xﬁ%)yi) ‘=‘, (:C; W l')"y') ={xz +iy2)
O =) K40 <) = (a — X2 Y1 = y2)
Example: Ifz, = 4 — 3i and\ 2 =\7 +6i, then find 2, — z;.
Solution: il\fl\lﬁl;\\\\ﬂ‘l"\\\i ‘l\\\;J_ NJo—
-z, =(@-3i)— (7+60) = (4=7) + (-3 -6)i

=-3+(-9)=-3-9 |

6 . Unit-01  Complex Numbers " National Book Foundaiio:




1.2.3 Product of Two Complex N %&
Ifz; = x;, + iy, = (%, Jv’1 = (x;,y,) are any two complex numbers, then

their product is giv,
14 = (11-.'!’1)(352:)’2) = (x, + 'J’i)(xz + iy;)
=X + Y, + iy, + Pyy, = 0% iy, +x20) - m'z

= (XX — Y1¥2) (Y2 + x291) = (X% — Y1¥2, 12 + X2)1)
Example: Find the product of the complex numbers z; = (2, —6) and z, = (4,9)
Solution:

2,2, = (2,-6)(4,9) = (2 — 6i)(4 + 9i)

=8+ 18i — 24i — 54i* =8 - 6i — (—54)

=8+ 54—6i =62 —-6i =(62,-6)
1.2.4 Division of Complex Numbers
The division of the two complex numbers is not simple. Since the number in the denominator has
two independent parts, To make the denominator a single term we rationalize (multiply and

divide) the given complex number by the conjugate of the denomin - rAfters U alization the
denominator will be converted into a smgle real ber ion can-be done easily.
Ifz, =x, + tyl = (x,, y,) and zz = @ﬁzu complex numbers, then
_ (x13a)
Xz
X— i}'z . Xpxp=ix; ¥, +ix3yy — i2y,y,
Mﬁ:ﬁ Iz-i.'fz T x?—ixgy; +ixay, — 2y,
_nxnt i(x,y,— -1'1}’2) tny, (x9x2 + y1¥,) + i(x2y1 — X1¥)
xz2 +y,2 X +y,°
_nxXtyy; | oV -y,  _ (Itxz +ny2 X2V -— -1'1}'2)
X2t +y,° Xt +y,? 2+ ¥ | x% 4 yp?

Example: If z; = 3 + 7i and z; = —4 + 6i, then find the sum, difference, product and quotient
of the two complex numbers.

Solution: _
Zy+2,=038+7)+(—4+6i)=B3-4)+(7+6)i=-1+13i
Z1-2=34+7)-(-4+6i)=3+7i+4-6i=3B3+4)+(7=-6)i=7+i
2123 = (3 + 7i)(—4 + 60) = 3(—4) + 3(6i) + (7i)(—4) + (7i)(6i)

=—12+18i — 28i + 42i® = —-12 - 10i — 42

= —54 — 10i @@m
z; _ 3470 3+7i —- wﬁi w

_ _ ~12< 186 28(F\

Z;  —4+6i 4+5t 46l 42-\(60)7 |\
__ —12 - 46i + 42 \quu

; 16 w &si@rm \sxp




Example: Write the complex number

Solution: (2 +3i)(2 + I'JO@\% '

1A LUV =i To1-i

_ 148 148 1+i 1+i+8i+8i2
T1-i 1-iC1+i 0 12-42

_1+9i-8 _-7+9 -7 9

1-¢1n 2z 2772
Example: Find the values of xand y if, == — y(1 + 2i) = 1 +1

Solution: x )
m—y(l-i'ﬂ)—l'l-l
o X230 i ian=141
. T Ereo3 YAt =1+
2x — 3xi

2x — 3xi

s ﬂw@@@ﬂ@@@m

E—y.: . (1)
and—X —2y=1 ()
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1.3 Conjugate of &’Cﬂmplex Nlmﬁher ,

Con]ugate u{ ?q?mpléx numher z=x+ iy is denoted by
zandls nedas Z = x — iy,

Gcomctncally, conjugate of a complex number is its mirror
image about x-axis. For example, ifz =3 + 4ithen Z = 3 — 4i.

v P'(3,-4)
Example: Find the conjugate of z = (1 + i)(2 — i).
Solution: | Ker Facts
z=(1+0Q-)=2-i+2-P?=2+i+1=3+i Fﬂﬁ
Now zZ=3+i=3-1i |
1.4 Magnitude or Modulus of a Complex Number I (:—;) =::‘;'

Draw a complex number z = x + iy = (x,y) on the complex plane.
Draw perpendicular from P on the real axis.
It is clear that POA is a right-angled triangle.
So,by using Pythaguras meorem; we have

[0F|" = [04[" + [4P|
= |z|? = x* +y* O \

= el =VF A A QLS

1 ol X-axis
which Nﬁﬁ;ﬁﬁn\lﬁ}de of the complex number z.
Also, |z| = J (Re(2))’ + (im(z))* !
Obviously |z| is the distance of z = (x, y) from origin.
Example: Find the conjugate and magnitude of z = mzﬂ%
Solution:
_[@r-zn) 3+ 2{)(1 20 (3-2i)(1+2i)
S YT @+3)  4-3i
34+6i—20—4i% 3+4+4i T+4i 4+3i
ST 4-31  4-31 4-30 4+3i
28 + 21i + 16i + 12¢ _28-12+37i 16+37i 16 37
- 4% — (3i)? ="16-oz ~ 25 25725
And A
(3+ 21)(1 21)| |3 +2ilj1<[2 t \ o=z P

lz| =

w30 AT eR3
«.fa%zz-‘fii"' (-a)* ﬁr -

V25 ] e
| z;l |zl

Unit-01  Complex Numbers
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Theorem:
If z is a complex number thenlzl 2 U and |z

Proof: Lotz = x by e 4] = V3
number is alwnyéi nohanegatwe Thus, value af x2+y2is non—negatwe, also square-root of the

non-negative number is non-negative. Hence Jx2 + y? is non-negative; i.e.; 2| = 0.
Now suppose that |z] =0 ' ey Eacks
@ In order to calculate conjugate

[x2 ¥ v2 = 2442 =
o '=‘“ xz-!-yz-rﬂ =x"+y" =0 of a complex number we may
Which is possible only if x =0andy = 0 simplify it first then take

Thusz=x+iy=0+i0=0 conjugate or we take first
Conversely, supposc thatz =0 = 0 + {0 : conjugate than simplify the
= |z| = 02402 =0 complex number
Evaluate the following: ~ AN X\

~ [T

(i) i* (i) (=)°¢ (i) (—1),§ (w} \X\y:j q?’&,{. [51_1_ lil

2. Write the following cmmpI%MW@\m@ﬁm r+ :y
(l} (3+20) + (2440 |\ () @+3) - @+5) (i) (4+70) +(@~70)

(iv) (:;Nww%ﬁ 5 (v) (3+2i)(4-3i) (vi) (3,2) + (3,-1)

(vii) (1- + DA=-D@+i)  (viil)) —

2+3i
3. Simplify the following:
o (2+D(3-2D) 1+ 1
@ 1+i (@) (2+1)? W) 35 3+, 3-i

(V)A+D2+Q-0D7% (v) @+i)*+ ?z:l

4. Find the values of the real numbers x and y in each of the following:

i) @+3Dx+(A+30)y+2=0 (i) mﬂ_ﬁ_l
x _1- 5i . ; N2 a2 \
(i) — Friai-w ———sinfa . (iv) x(A+i)*+y(2-i)*=3+10i
5. Find the complex number z if 4z — 32 = 12;1?-‘
6. Find the conjugate of the following complex numbers _ ) (€ A\

—

(I) 4-3i. (“) 3i+ B {1“) 2 .|..\ -1\ \ 7 )\ |5 ‘ ;

7. Find the magnitude of ﬂme: fcllewmg cumj;lf:x mimbers
() 11+12 (i @30\ -2+ 60) (iii) (2 £)(6 +3i)

N
vy 2 W) o3 = v8)(V3 +V=8)
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@N'\\lﬁiﬁj“ X +iy, #0; n=11,12

Type-l Consider the complex number of the type (x + iy)".
Whenn=1
z=x+1iy
Its real part = x = Re(2)
Imaginary part = y = Im(z)

M &t

Whenn = —1
. 1 _ (1 \(x=iyy_ _x-iy
7=+ == (:H,v) —ty/ " x2-ity?
=t (Y
24yl Cxtey?
ol 1 _ Re z)
Thus Re(x + iy)™! = Rez TxXiyl T |z

Im(x +iy)™ = Imz™t = —— Im(/)a O@@m

Whenn = 2 D&@“ﬁ’j

z: = r.y)2
Y& y: =x* -y + 2ixy
= Re(z)‘ = x? - (Re(z)) (Jlﬂ(a'f))2
Im(x + iy)* = Im(2)* = 2xy = ZRe(z)Im(z)
When n=-2
. 1 1\ 1 x—iyy?
=G+iy) 2=(x+l'y)1_ (.r-l-iy) d (x+iy.x—£;')
_ x— iy z_xz_+;£2 Z—ZL‘x}'_ xt—y? . 2xy
-G RIS ey
_ 2 2=y (Re@)’ - (im(2))’
Re(x+1y) ™ = ReGy = = (::r2+1'2)2 — Izl‘( e
_ —-2xy _ —2Re(2)]
Im(x +iy)~% = Im(2)™* Ty Elzzh it

Example: Find the real and imaginary parts of the following.
(i) 3+4i (i) B+4)™ (i) (3+4i)? (w} (3+4 -2«‘ \

: = 1<\ (C\OUBY
Solution: Letz =3 + 4i . :.'“/?\_ \ ,1'&,/2; \ QY
M ReG+ad=Re()=3 O T\ (|

Im@3+40) = Im(@) <4 /| | 0 j‘ca W
@ Re(3+41) xF'Re@)\-l SRe@ ___ 3 _ 3

AN o Iz ' 2 z)2 e
\( INJ € ( 3°+4
Vuiomal Book Foudation AN | "@

|
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Im(3+ 40" T Lz}“ "

(i) f@W‘ %iﬂﬁﬂecz)z = cne(z})z (im(2))*

—42=9-16=-7
Im(E + 4i)? = Im(z)2 = 2Re(z)Im(2)
=2(3)(4) = 24

~(Im@)* _ _3*-4* _9-16 _ -7

T =
121 ( [’—]32.'-42 5 625

—2Re(z)im(z) _ —2(3)(4) _ —24 _ 24
|z]* (m 5¢ ~ 625

where x; + iy, #0.

(ivy Re(3+4i)2=Re(z)?= (Re(2))”

mB+4)2=m(z)2=

Type-11 Consider the complex number of the form (= " i %
F 1

Letzy =x, +iyy 2= xz + iy,

So xlﬂh) ( where z, # ﬂ

acls

; @z@@@)m

i
Whenz:; )_"z (;2 V\ zz) # Im(2,2;)
nihy “*“ ARG e
2 T i}’z T—]’z —iy;
M ‘xﬂ’z + ix2y; — 21y, x4 iy —x1y2) + 1)z
% (x2)% = (iy2)? B x3 — 2y}
(xixz + y1¥2) + i(xy, — xl}"z) (x1x2 + y1¥2) ; (xz2y1 — x1¥2)
x2+y3 X2 +y} x? +y}
+ iy, z1\ _ (X + 1y2)
-Re (Dt =Re () =5
s + iy (Re(z)))(Re(z2)) + (Im(21))(Im(2;))
(Xz + l}'z) Izzlz
(11 + lJ’:l) CI) (x2¥1 — X1¥2)
Y2 x3+yi
(: + :yl) (Im(z))(Re(2,)) + (Re(z,))(Im(2,))
+ iy, |z21?
Whenn=-1 A\

A AN O\

atin\"_ iy _ oty Gty ncobis | (Ce
(zz + i}'z) - (x—-l-t}:) X+ KJ_ﬁ > xf * iyl 11 «—\uﬁ
xtxzﬂﬁ Ixu’z\’ ﬂ'x}'ﬁ C iiyﬂfz \1‘112 + 1-“1)’2 —ixoyy +Y1Y2
\ R\ (M)z xi +y{

fm& +yiyz]4-f(xlyz —x2¥,) _ XX +¥1¥; |, : X1Y;—%2Y
& 4|
\1 \ |\ xi+ys ;1ii+)']1 i+

e ™\ National Book Foundation
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e (21t t‘yl) _ ¥ +y11j; ! Be{zxj{?ﬁQZz)+ fmczl)\im(zﬂ
2 +iy; i yf W\ LS |z, |2
x1 + '3‘1)\ J,\J Ixﬂ'f‘ -~ xz)’1 _ Re(zl)f m(z;) — Re (?z)fmle)
"\ x2 +y2 |z, |2
Whenn = 2

(:1 + iJ"x)“ (it (a+iy)?  xf+ (in)? + 2ix
o +iy) (Xz + i)’z) T tiy)? 6+ 1)+ 200y,
—yi+2ixyy; (2 —yi) +2ixy; (13 —y3) - 2ixay,
X —yi 42y, (% —y) +2ixy, (4 —y7) - 2ix)

_ (- yD(F - y3) - 2ixyy,(xf — y) + 2ixyys (xF — y3) — 4% (1 1) (*2Y2)
N ’ (x2 — y2)? — (2ix3y2)?

_ (2 —yD(xE-yH) + Zi[xﬂ'l(xz y3) = xy,(xf —yi)] + 4(-"1?1)("2?2]
- x3 +yf —2x3 .Vz + 4:!:2 i A //\ /;)/f:.\"ﬂ"-.\j \
AN
( o
_ G = D) =) + 4y Gag] 2 Zi[x!h(x 32 - xaya (= 3]
- ?»—\I' \\ (\ ./x; "I'?}t\*i“

m}}f&% }’z)+4x1xz)’1}’z 2[1'1}’1(12 ¥3) = xy2(xf — ¥§)]

(x3 +¥3)? (xF +y3)?
Re (1 + lh) _ xf —y2)(xf — y3) + 40,0201,
+1iy; (x5 +y)?
_ [(Rezy)? — (Imz,)?)[(Rez,)? — (Imz,)] + 4Rez,Rez,Imz,Imz,
- |z, |*
And
im (2 +iy )2 _ 2001 (6 — y3) — xaya(x — ¥9)]
Xz + 1y, (x3 +y3)?
_ 2[RezyImz,{(Rez;)* — (Imz;)?} — RezyImz,{(Rez,)? — (Imz,)?}]
B |zz|*
Whenn = -2 —~ /,_‘/‘,_.\
(3:1 + 5}’1) (:':1 g l}'i} (?5;1 ul i}'l) ; Crz 4‘{?23
2+ l'l}lel o\ 3‘1" i/ \ _. {xz\'?'*J’z) "2 Hxy + iyy)?
Its real and unagmarypﬁrtacmbg fou : mterchanglng x; with x, and y; with y;

in the case whﬁnnh—- 2 Sﬁ

Re ““'—)&1) (x3 - }"z)(xl ¥E) + 42150
2+ iy, (xF + }’12)2

vutional Book Foundation Cuit-01 Complex Numbers
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(-"512 - y1) (x5 — }’g) i3 43112.’?'13’2 \ | C/’/ =
| (;:cz ¥ )ﬁ)ﬁ i A\ )
[{Resz (Jm,_ 3}[(Rezz)2 (szz)z] + 4Rez, Rez,Imz,Imz,
QJ |2y |*
’fmdmﬂ)_h 2[12}’2 (xt 3’1) X1 (x5 = ¥3)]
+ iy, (xf +¥1)?

_ =2[x (%] — y3) — x92(xf — D))

B (xf +y1)?
_ —2[RezyImzy{(Rez,)? — (Imz,)*} - Rez,Imz,{(Rez,)? — (Imz,)*}]
- lzy|* i

Example: If x; + iy, = 12 + Siand x;, + iy, = 3 + 2i then find the real and imaginary parts of
the following:

3 . .,.,1 z —2
) X +iyy (x1+iy1) (x,+iy1_) . (x1+£y1)
M X2+iy; (i) X2 +1y; (iii) 241y (v)

2 1Yz
Solution: s /;)/5\“:@?/;)
0 YNNI TCAS
X +iy; 12451 0 FQ AU\ Y
x, +iy, 3+ 2:0\ \c (\fﬁ\\ \ \{\ \ \\'\\'\/ﬁx\—*‘
Now, \ \\ ‘ \LV BB
re (2 *K\%} \balxz ¥y _ (D) 6D _36+10 _4s
+1y, x2 + y? 3=+22 9+4 13
Xy + iy _ (a1 —x1y2) (3)(5) -(12)2) _15-24 -9
m(xz+iy2) 2+y: | 32422 9+4 13
(ii) ‘
X +iy\ 7t (124507
(x2+iyz) "(3+21)
X +ip\t Hmrtyny.  (12)3)+(G)(2)  36+10 _ 46
fé z+iy2) xR +yE | 122452 T 144+25 169
And
x4\t ny—%y _(12)@)-@)6) _ 24-15 9
Im(xz+iyz) = X24+y: 122452 1\44 +~25 -1&9 0\
(x: + i}&) _ (12 +5t)2 VZI\(O NS -
X, + 1y RO (LN .
AW We
14 |
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Now, MR 1% \ \U \\oA~ -
xy +iyy ¥ \\ (&1\\@1 9(;2“ }'z) + 4x1 X512
\”\Je'l% N ’)O\E O +¥5)?
NV a2 -sy32 -2+ H12)BE)@)
B (32 + 22)?
_ (144 -25)(9— 4) + 1440 _ (119)(5) +1440 _ 595 + 1440
9+ 4)? 132 169
2035
And e
mf ih)"’ _ 2[xy, (33 = ¥8) — xaya(xf — ¥
2+ 1y, (x5 +y7)?
2[(12)(5)(32 22) - (3)(2)(122 - 5%)] _ 2[60(9 — 4) — 6(144 — 25)
: (32 +22)2 T (9 +4)?
2(300 714) _2(-414) 828 m
132 169 169 f@ @
(iv) - Q @@W ©
(:1+1'y1)‘5 1 &XX Q
2 +\£j’ij @ 1
O

(;-'1 +i.v1)" _ (of = y1)(xd — y3) + 4x1xa 012

2+ iy, (xl )2
_(22- 52)(3% — 22) +4(12)(3)(5)(2)
(12% + 52)2
_ (144 —25)(9 - 4) + 1440 (119)(5) + 1440 595 + 1440
(144 + 25)? = 1692 = T 28561
2035
~ 28561
And
; cl + iy, )" _ =2[xyn(x3 — ¥3) = x9(xf — ¥D)]
ol arwomny) e 7 1 vi)2
2 T 1Yz (xf +¥)

_—2[12)(8)(# -2) - 3)()(122 -5
= (122 + 52)2 |</3 \ /—) ri (\J
-2[60(9 - 4) +~ﬁL144 '714)

e e

T T2Bs6T 169
Enmg" W@ﬁi&g@kﬁm |z = 2i| = |Z + 3| in terms of x and y, by taking
=x+iy.
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Solution: O\ ~~7
_ Since, z =x + ay‘
li
%"H\ﬁl iy
N n\ﬂv 2| = |7+ 3]

= |x + iy — 2i| = |x — iy + 3|
= lx+ily -2l =(x+3)-iyl
=22+ (= 2)? =y (x +3)* + (-)?
Squaring both sides.
2+(y—-2=x+37+u)?
= x*+y —4y+4=x2+6y+9+y*
=>-4y+4=6y+9
>6x+4y+5=0
Example: Write the incquation Re(z — 3) < 2 in terms of x and y, by taking

z=x+1iy.
Solution:. i
- YA\
Re(z-3) <2 BN NGO
iy — 0\ ACANY [ (o
Re(x+iy-3)<2 o U\an(oN[C
0 AN U WYY
Re{(x—3) + :}85 2 o\ VLG //J ) J
\\

x—3<2 \f \ \\ (\ ‘I'\, "\\' \\. \\\_ "\,\v-
=S x < ’if \j | L3
NN ot

:\ \Ji NN

. Show that for any complex number.
i) Re(iz) = —Im(2) ii) Im(iz) = Re(z)
2. Use the algebraic properties of complex numbers to prove that:
(2125)(2324) = (2123)(2224) = 23(2122)24
3. Prove that for zeC.

i) zisrealiffz=12 ii) i:_i=i(%§)
iii) zis either real or pure imaginary iff (2)?* = 2
4. Ifz, =2 —3iand|z,2;] = 16 find |z;].
5. Ifz; and z, are any two complex numbers then prove that
|z, + 2,|* = |2, — 2;|* = 4Re(z;)Re(z;)

6.  Find the value of A; 1f|— +A| VA +2; v«rhﬂrez1 =3 +i and:;z = 1 -5(-1;: \
7. Verify that v2|z| = IRE(Z)I + llm(z)l 9) /ert (Stan wuﬂm {le Iyl)2 =0)

8.  Write the followmg éqmtwgs and m\eq\uatmhjs in 1 terms of x and y by taking z = x + iy.
' (i) |2z-i| = (n) Iz —~1| |Z+i| (i) |z — 4i| + |z + 4i] = 10

(i)« Eﬁp(tﬁﬁ‘*"é W m(E)=-5 @)-2Sim@z+)s3

16 / Unit-01  Complex Numbers '\ National Book Foundation
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9.  Find real and m@hawp&ﬁs cf lh%s\fo '.ﬁmgs -
. \ 7421
(i) (2 e %\\z A\ \@=v=a)" i) E’)
Ww l|. » (5—4i)2 3-7i
S5+4i ) i
10. Forz, = —3 + 2i and z; = 1 — 3i verify the followings:
. - - e [Z Z] ey e
() Nzl =l-zl=Izl=|-z7l (i) —:) = z':: (i) zZ; = 7;7;

(V) Zatz=2+5 (V) |2zl =lzllzl (V) |2tz < 2] + ]zl

1.6 Solution of Equations

Solution of an equation is the process to find the values of the variables (unknowns) involved in
the equation which when substituted in the equation, the equation is satisfied i.e.; value of the
left-hand side in the equation is equation to the right-hand side of the equation.

When we consider more than one equation then it is called system of equations and if we ﬁnd the
values of variables which satisfies all the equations under considerations sunultan

called the simultaneous solutions of the equations.

If z and w are the two complex variables th@ an i %ﬁ;@@ w = p is called

cquation with compjex variables z an & aan at the same time. If a and

b belong to the set of comple B (e itself complex numbers) then the equation

is called linear eq at iables with complex coefficients.

Here wc@! fﬁ@ﬂw}tjluhon of system of two

simultane Ls cquations in two variables with (oA system of cquations is N .

complex coefficients. consistent if it has at least one
solution.

1.6.1 Working Rule to Find the Solution by E
' limination Method
Consider the two linear equations:
@12 + byw = Py and az + byw = p,
Step 1: Multiply the equation or both equations by suitable numbers so that the
coefficients of onc of the variables become same.
Step 2: By adding or subtracting the equations thus obtained in Step 1, eliminate the term
involving the variable having same coelTicicnts.
Step 3: The equation obtained in Step 2 will have only one variable. From here find the

N/\c\\

-» A system of equations which has
L no solution is called inconsistent. J

value of this variable.
Step 4: Substitute the value of the variable found in /Stqp\;l h;any o\ngof lhc gwen
equations and get the value 6Fthe other variable, | ="
Step 5: Writing IPS: m]ues pfz‘ awdia m the mm{vf ordered pair (2, ) is the solution of
the systeny nf liﬂnnné

1.6.2 Working Wa Find : Solution by Substitution Method
Nll ind the value of any one of the variables in terms of the other variable from any

onc of the equations given above.

National Book Foundation £ 17
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Step 2: Substitute the value of the van%)le nlﬂam&d Ii’(sze;El ut( the eﬁualmn which is not
used yet. \\ A70\( U

\
‘‘‘‘‘ \
\

Step 3: Equation u‘tffame&m mc\Step\l wlﬂmvolvc nnly one variable. Find its value.

Step 4: Subsmutﬁ’the vame\ of variable obtained in Step 3 in any one the given equations
et the Value of the other variable.

W
Ste[}g Writing the values of the both unknowns z and w in the ordered pair (z, w) is the
solution of the system,
Exanple: Solve the following system of simultaneous equations:
22-(1-3Dw=14+2i, (1+dz+QR-Dw=2+1
Solution:
2z-(1-3w=1+2i (1)
I+Dz+Q2+Dw=2+i (2)
Multiplying Eq. (1) by (1 + i) and Eq. (2) by 2 then subtracting Eq.(2) from (1).
(1) = 21+i)z—-(1+DA-3w= 1+ +2i)
(2) = 2(1 + i)z + 22-Dw = 2(2+1)

-1+ -3w - 2(2 - :)
= —[1+)1-3)+2(2-i ]m@

21+i—2 4 2i
= = \ T
= Dw=-=-5+1i
Lo ot -5+i -84 _30+20i-8i—4i* 40+12i+4
-8+4i -8+4i —8-4i (—8)% — (4i)? 64 + 16

44+12¢_44+ 12 11 .3
80 80 '80 20 '2

Substituting value of w in Eq. (1) 1 A
| 3 Solve the system
1= 22— (1-3) ( i) =142 by Cramer's ule.
11
> 2z—(1—3i)( ;3‘)=1+2i

Multiplying both sides of the equation with 20.

= 40z — (11 + 3i — 33i - 9i2) = 20(1 + 2i) ]
= 40z-(11-300+9)=20+40i 70\
= 40z - (20 - 30% 2{}+*g;{‘\ WN i/(/ (\u\ AN
= 40z = 20 £404 4 (20 1,300) | -
= Qm;arfiﬂ + Mﬁ\ \ C/\ W
e
SR B Tt i e ) is the solution of the system of equations.

3
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1.7 Complex Polyng}\ﬁh\a\l?/&\;\\\é@‘y\}}l\/v‘
If z is a complex vg\' ‘ e,\\t\lnl _{_\'\Lj‘;éuéxp'\ré“ssinn ag + a,2z + ayz? + -+ + a,z" is called complex
WIWOW egrednif @, # 0 and n is a non-negative integer. Here aq, @y, @z, .., dy arc
constants and may be real or complex. Let us denote this polynomial by P(z) i.c.;

P(z) =ay + a,z + apz* + -+ a, 2"
When n = 1; then the polynomial is ag + a,z and is called linear polynomial. We are interested
to factorize the polynomial of the two types as a product of linear factors.

(i) P(z) = z® + a?; where a is a real number.

(i)  P(2) = az® + bz? + cz + d; where a, b, ¢, d are all real numbers.

1.7.1 Factorization of Polynomial of the Type z> + a® as a Polynomial of Linear Factor
The factorization of this type of polynomials is simple . Consider

z? +a* =2 — i%a? = z? — (ia)* = (z + ia)(z — ia)
(z + ia)(g — ia) are requirod linear factors of z% + a®.

1.7.2 Factorization of Polynomial of the Type az’® + bz* + cz +

o "

To factorize this type of palynomial first we find'on

%lp of factor
theorem and then do the sy 8 uation.

Recallthatz —aisa iff P(a) = 0. We may say that a is a root or

zero of the polynomu i \
e.g.:2 ' ot or zero) of the polynomial P(z) = 223 + 322 + 6z — 40; since
P(2) = 34+3(2)2+6(2)-40=0.

Example: Factorize the polynomial P(z) = z3 + 222 — 5z — 6.
Solution: Product of coefficient of z3and the last term is (1)(6) = 6.
The possible roots of the equation are the factors of 6which are +1, £2, 3, 6.
Since :
P(-1)=(-1*+2(-1)*-5(-1)—-6=0.
So z — (—1) = z + 1 is a factor of the polynomial. To factorize it completely use the method of
synthetic division.

1 2 -3 -6
_ _ i
il - NrATCON N
1\ A AN\ N &Q
— Q /A \‘,r\ \ \ /
i W\ 70 WO N2 U
ol\ea (Q i\\g/xX ¢ °
[ V \\'\ \\\\ \" \,X . \/\ .
fo 2222552 — 6 = (z+ 1)(2% + 2 — 6)
Wm{l%

® - % prnacn T ™1 - ‘
T 8
) \ " -
L e
,‘;,‘ﬂ.:l;' Ht L f“{&.ﬁ.ﬂ s )



z(z +3) — 2(z + 3)]

_ Q
\(\W Oﬂx =z+1D(E+3)(z-2)

i.7.3 Solution by Completing Square Method:
Example: Solve the equation 2z? — 6z — 9 = 0 by completing square method.
Sulution:

The given equation is

ez %@@@@Ey@@@

2z2-6z—-9=0
Dividing both sides by 2 (coefficient of z?)

l . Exercise 1.3

1. Factorize the following polynomials into lincar functions:

(i) 2%+ 169 (i) 2z*+18 (iiiy 322+ 363 (iv) z%+ 215
(v) 2z°+3z2-10z-15 (vi) 23 -=7z+6 (vii) z* + 22z% — 23z - 60
(viii) 223 +9z2 — 11z - 30 (ix) 22-7z2—-8 (x) 4z2-=-7z-11

2. Solve the following equations by completing square method
(i) 22—-6z+2=0 ()—322=52+2=0

2 =B

(iii) 4z2+5z=14 (V) 75 525 (1
3. Solve the following quadratic eq ion$:
i) 2z : i ; O 217 =0
(1) EZ +2z-1 M ( AN\=5
(V)22 =9z+11=0

ﬁmwﬁﬁﬁ@@O
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z—(2+5)w=2+3i

; 1-2)z+(3+2)w=5+6i

—z—(6+2i)w=5; iz (3-1)w=(3+2)

(iv) ﬁz+(1+i)m=3; %z-(z—?.i)m=2+6i

1.8 Polar Coordinate System

Another way to locate a point in the plane is polar coordinate system consists of a fixed-point O
called the pole and the horizontal linc emerging from the pole is called initial line (polar axis).
For a point P in the plane if » is its distance from the pole and © is

the angle which is measured anticlockwise from the initial line to

the line OP then the ordercd pair (r, 8) are the polar coordinates

of the point P. P(r )

The angle 8 is also called the arg(z).
e For z = 0 the arg(z) is undefined %It
that z # 0 whenever we use polar egord

* [facomplex nu \ 4
(r,8) then its.con =y
j H%[g [Q;] ﬁ’l o

— iy has polar coordinates (r, —8).
1.9 x Numbers in Polar Form

1.9.1  Polar I-lt‘])ri::mltmiu-n ol a Complex Number
Consider a complex number z = x + iy in cartesian
form. Draw it on the complex planc as shown in the
figure.

Letr = |z|, and @ be the angle in positive | Y
direction <
which OP makes with the initial ling(x-axis). 10 o
Draw a perpendicular from P on the initial line

then by Pythagoras thcorem, we have et Facts

2 2 — 2 o
OL|* +|LP* = |OP] -Hisca]ledargumentofzandiswﬁnmas

2 4 2=| |2
W“@l Sl
Also i—c:cvst&l >-=c @@
Izl
: Ww
.v |

Initial line

y-axis P(x,y)

L4

Or VxZ 4 x2

Ry Favis
cos @ + i sin @ can also be written as CiS

4 and cos@ + isin8 = e'? is known as
Euler's formula.

»y-axis
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- By substituting the values @‘ Q\MH\Z"—/ { ‘}V\ 9. A\
We have B "\ \ \ \\\z=Tcos 8 + irsin@
N \H\J\'l W r(cos 8 + isinf)

This fm‘m%ﬁm complex number is called polar form of a complex number.

1.9.2 Principal Argument

The symbol arg(z) actually represents a set of values, but the argument @ of a complex number
that lies in the interval —x < 8 < x is called the principal value of arg(z) or the principal
argument of z. The principal argument of z is unique and is represented by the symbol Arg(z),
thatis, -m < Arg(z) < m.

Example:

Find the modulus and principal argument of the following complex numbers.

)VI+i (i) —y3+i (iii) —3—i (iv)V3—-i

Solution:

o
() v3+i o @@W@O@
Since the complex numbe i % ¢ rant, has the principal value

8 =a=n/6.

MMulusWN (J‘)2+12 =\VIFi=2

a=tan~1 (=
x

~6
Therefore, the modulus and principal argument of

3+ iare 2 and 7/6 respectively.

(i) —+/3+i
Modulus = 2 and

Since the complex mumber — /8+i lying in the second quadrant ‘has the principal value

Therefore, the modulus and priscipal argument of —v3 + i are 2 and > respectwcly
n 5m

f=m—a=m-——=— Yo\
— W , ) 6 6 N /—),/;\\\T\?\\.I I“.\‘-‘j
(“l) _\‘d N - r',(/,s \ ~ '\\./l)l\\, U -
NI
\‘ \\ \ \\ ',\\ .(—\"\ \ l’ - -/
‘. \ \ \ !

r=2anda=", R\RRERD
: 6 (_ \\ / \ ) \ \ /\_, - [
Since the complex numbcrra\@-e i lylhg \rg third quadrant, has the principal value,

’* \ v‘\ \\ -‘\/X -

oL St
. \] l\\’ _ i E=__'
%\J\J\ f=m+a e 2

.22 ' TERETT vhior Lumplc&} n




—~ N

J«(\\

N (7 \\
9.5 \ (| Q)\ (BRS
N S \\;./O\Q\v\
= { \\ \

/n\ \\

\
\—

™ \ \/ \ / 2
Therefore, the modulus%d pnnmﬁhl ap'ghhmntbf(\ V3 — i arc 2 and —5n/6 respectively.
V3 =i (NN o
W

r=2and a=n/6
Since the complex number lying in the fourth quadrant, has the principal value,

g = _m

= —g= 5

Therefore, the modulus and principal argument of y/3 —i are 2 and — /6.

In all the four cases, modulus are equal, but the arguments are depending on the quadrant in
which the complex number lies.

Example.

Represent the complex numbcr (i)=1=i (ii) 1 + i3 in polar form

| 12\C
::IE: ‘{1 =1 =r(cos8 +isin8) %@@@W@o

O
We have r w\m 3.%
VUM A

Since the complex number —1— i lies in the third quadrant, it has the principal value,

a =tan™! El =tan~11 = ;

g n _ 3T
= 1!—4 = 2

a=1=1=v2 cos(v-BT)+isln(——)] v"—(cas——isin:)

3 3
1-i=v2 cos( +2kn)-;sm(f+2kn)]

(i) 1+ V3

National Book Foundation



WWW ‘\ F 5 =2 (cosE+ 5T

=2 [cos (£+ Zkrr) + isin (E + an)]

3 3
Example: Find the principal arg z, when z = 1;33‘
Solutior .
-2
argz = arg T =arg(-2) —arg(1 + iV3) ( arg (:—:) = arg(z,) — arg{z,_))

- [r- s ()] - () == 3=

This implies that one of the values of arg z is 23—’! .

Since z?ﬁ lies between —m and =, the principal argument Mﬁﬁ @ o@©

” oDt
1.8.2  Properties of Cnn&g ex Nu %1& dr\Forn
Property 1: KX

o
Ifz = rM), thenz™! = i- (cos® — isin8).

Proof: , .

1
r (cosf + isinf)

1
z-1=—=
Z

1 (cos@ — isind)
= : X =—
r(cos® + isin) (cos@ — isind)

_ (cos@ — isinf)
"~ r(cos?8 + sin?8)

z-1 =1 (cosf — isinﬁ) m

4 @@

i
@gé}are two com

Property 2:

If -.21 = rl(cm 31 + i sin
form then We@

plex numbers in polar

o = (ry 05 8, + 1y cos 0;) + i(rysin; + 1 sinf)




o

a A 7AW \R! LY
0\ \\\ /7 W\ O \Lb/v"\/\ U
AR I
\' \ \'\ .,\X -
Proof: ] \ \.\,_\/-\
\J\j 7 2y 4 2 =1(cos 8, +isin8,) + ry(cos 8, + i sin6,)
=rcosf,+irsinf, +r,cos8;, +ir,sinb,
= (r,cos6, + r;cos8,) + i( ry sinf, +rysin 6;)
Property 3: '
If z, =r(cosB, +isinf,) and z, = r;(cosf, + isinf,) arc two complex numbers in polar
form then their difference is given by
zZy—2;=(ryco56, —rycos8;) +i(nrsind, — siné,)

Proof:
2y — 2y = 1y (cos 0, + isind,) = ra(cos , + isinf,)

=r,cos8, +ir sind, —r,cosh, sin@ m
=(rcos, - z W@

Property 4: i

Ifz,=n (COS g, + lst@m 0s 8, + i sin ) arc two complex numbers in polar

form t t9s given as

2,2, = nyr;[cos(8, +6,) + isin(0, + 6,)]

Proof:
2,2, = ry(cos 8, + isin 8,)ra(cos 8, + isin ;)
=nrp[(cos 8, + i sinB,)(cos @, + isinG,)]
= ryry[cos 8, cos @, + i cos B, sin O, + i sin@, cos B, + i%sin B, sin ;]
Z,Z; = 11y [cos B, cos B, + icos B, sinf, + i sinf, cos @, — sin b, sin 8,]
= ry13[(cos B, cos 8, — sin B, sin 8,) + i(cos B, sin B, + sin 8, cos ;)]
= rlrz[CﬂS(ﬁl + EZ) + i sin (H] + 92)]
= p oy, pl(01482) W
Or 2,2, = nrettfith . . 6;\\ X @ \\ SJ
. /‘\\l /@V\O\‘/
Property 5: \m T \ O\ \
\/Q \\) \/_\\-) JJ
If z, =r,(cos 8, + 151@3; ﬂ-\ rgépsﬂz +isin ﬂz] are two complex numbers in polar

form then their ’.\wp 1\4 g\L aﬁsm [cos (8, —8,) + i sin (6, — 6,)]

WYY
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= 0\

_ PN ANE® L
Q \f\ﬂ \m\(\ﬁ%\\ l/ﬁ@/}\} D

5 _neos6y +ising) |\ g\\ o\SWB U

Z3 rz{l‘.‘ﬂs BZ +\{\§\i{ \}(-\ \\

Mo\sﬁ +ising,) (cos@, —ising,)
rz (cos @, + isin8,) (cos 8, —isiné,)
_ N1 [cos 8, cos B, —icosf, sinf, + isin 6, cosb; — i?sin @, sin 6,
T [ (cos 8,)? — (isin@,)? ]
1y [coS 8, cos 8, — i cos @, sin B, + isinf; cos B, + sin b, sin b,
- n (cos 8,)% — i%(sin 8)? ]
1, [(cos 8, cos B, + sin 8, sin 8,) + i (sin 8, cos 8; — cos B, sin §,)
i rz [ cos2 8, +sin? 8, ]

Proof;

?_ = L {cos(8, —6;) +isin(8; — 6,)]
2 2

Or 2 _T,i(0,-6;)
Z; T

Example: Find the product = (cus + Lsm xﬁ s—+: mﬁ%@@l
Solution: Qf“ @Vi E g
. K& =Zx6 PR
E(ms_ —+1sm-— -‘—x [cos +-ﬁ-)+:sm(§+-ﬁ—

= 4[cus—+ism :] 4[cos(n+g)+i35n("+g)]

= —4cos—a1sing = ~4( 2 4‘1)
= L‘DSS Sin—= I(E

6 2
=-2v3 - 2i
Which is rectangular form.
- 2(cos™+i sinZ"
Example: Find the quotient =] in rectangular form.
g +isin(—=
A\
N\ O\
Solution: /\\\,f/@(v@\\y\u




o
DoE
'-'-'03 %%B\ ]g —(cos3m + isin3m) = 2

Which tanguiar form.

Example: Ifz=x+iyand arg G:—:) = %', show that x? + y? =1,
Solution:

zg~1 x+!}'-‘1 {I—l)'l"iy_(I—l]-l-iyx(x.}_l)_
Z¥1 x+iy+1 (+D+ly (@+D+iy (x+1)-

z—l_(x2—1)+y3
z+1 (x+1)2+y?

n o 0 .

Kx =x2+y?=1

Example: Find the equation in Cartesian form, ifz=x+iyand arg(z — 2) —arg(z +2) = 3}
Solution:

Given that arg(z = 2) —arg(z + 2) = E

=arg(x+iy—-2)—arglx+iy+2) =~

= arg((x - 2) +iy) - arg((x +2) +iy) = %

= tan™! 4 —tan1 -2
x—2 x+2

= tan (tan"‘

MO/= +2)-y(x-2)

G-2G+2)+y7

of Rowak Fonrndobicen
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1.10 Appllcqﬂmﬂ luﬁéumplcx Numbers in Real World

Complex numbcrb are used in many real-life situations such as c:yptoy,mphy. wave phenomena,
pressurc and velocity of the fluid and for the calculation of voltage and current in the circuits. These
applications are of higher level so will be discussed in higher classes. Here we are going to use the
complex numbers by giving an casy example of the simple harmonic motion. In simple harmonic
motion we have to determine the position of the microscopic particle from its mean position. The
cquation which gives the position of the particle from mean position is

L EF T (1)
Where x is the displacement of the particle from mean position, Xpq, is the amplitude and
e'? = cosf + i sin @ is the complex number

Example: A micro particle is performing to and fro motion. Find its position at an angle of g- .

when its amplitude is 0.05mm. | A0
Solution: A\ /f/“\,

A
,/‘\\l|/// ..,L’\’
VA "\. e

We are given Xmay = 0 05

\ "., ’ f'/ \_‘-'\,“ {
g = E) \ \ /—\/ N\ \ N \\. \.\\

\\ \\ (\ \

Using the fnnnula

W

J A
1} xm o

_ A n o T
x =0.05¢2 = 0,05 (cosz + isin 2)

x = 0,05(0 + i) = 0.05i
It means particle is at the position where we cannot sce it but just think about it.
The above formula can also be written as x = X,,,e™¢ where w is the angular velocity and t is

the time. Alsow = ZTR where f'is the frequency of the particle.

Electrical Engincering;
The relation the flow of electricity, /, in a circuit, the resistance to flow, Z, called impedance, and
the electromotive force, E, called voltage is given by the formula £ = 1.Z. Electrical engineers
use j to represent the imaginary units. But for understanding we are representing the 1 :magmary
part with i, 00
Example: An electrical engineer is des:gmng a Cll‘cmt that is whavg a'“cm-rcn(oﬁ(ﬁ - 81) amps.
If impedance is (14 + 8i), fi nd thc voltagc - , ‘

Solution:

Here we have i =“'}\

andlmpedm?g“\u Jl\z (14+8)

L
B .fw

28 m%:"‘#- :ﬁ‘_,ﬁr T ,- .. F_\WMFM
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Using the formula E.‘ =Ix2Z AR\ Keh
E=1xZ= (6« +ﬁ:)(14+ 81) |
X g 64 N

1. Write following complex numbers in polar form.

()2 + i2V3 (i) 3 — iv3 (iii) =2 — i2 | (iv) ———

ms—+tsln—

2. Write the complex numbers in rectangular form

. r .. ' n . cos—~(sin~
O (ofrimd(oseimd @ L

3. I (xy + iy) (g + iy2) (x3 + iy3) . (X5 + iy,) = @ + ib, show that:

() (2 +3DEE +YDEE +3D). G = 1) o
(i) Ir=1tan™ (i’% mtan;ig\k \L M\
(\\ \

4, %ngwhmza show that z = itan# .

5. If cos @ + cos f + cos y = sin & + sin # + sin y = 0, show that:
(i) cos3a + cos3f + cos3y = 3cos(a + B +y)
(ii) sin 3a + sin 3+ sin3y=3sinfa+ f+y).

6. Writc a given complex number in the algebraic form:

() V2(cos315° + isin315°) (if) 5(cos 210° + i sin 210°) (iif) 2 (msif + isin%")
(iv) 4(1:05% + isins—:) (v) 2 (msg + i sin E) (vi) cos135° +isin135°
(vii) 10(cos50° + isin50°)  (viii) v2Z (ws’;” + fsin’T”] (ix) 4(cos"—" +isinZX ‘")

(x) 7&(c05§§+isin%—") (xi) IU\E(CHSE'!'!'SMT:')  Axii) 2/(-:0;»—#??&1:1—)
b LW . | W
(xiil) ﬁ(unh;+15|114) (: “.] ?’(cos}ltiﬂ"ﬂsm lﬁﬂ“i \\' (*m EE-

/
,’_\'v'-'\', WS [ ]

(xvi) 3e‘§

\\J “ DA A
NN
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7. Convert the fullowmg aquatmns and mcqmumn# in! Cal_zesmn ﬁm\*m'
(i) arg(z—1)=—= O (!I) 2z = 4fe‘€[\ ﬁn’] - -'- arg{z—4) 5 =
(iv) 0= al‘g(‘T )< j “ {'r) rg{ )=:,z$1

(vi) = arg(z\-ﬂa; :\Ev- 1, arg(z + 1)

8. Calculate the position of a parncle from mean position when amplitude is 0.004mm and angle
is: '

M 3 (i) 3 (iii)

9. When particlc is at a position of x = 2 + 3i from its mean position and X,,,, = 1 + 4i is the
position at maximum distance from mean position as it can be seen under microscope at this
point.

(i) Calculate the angle at time t =0 and find the position of the pamcle
(i) If x =2 + 3i and Xypg, = 1 + 4i. Calculate the frequency whent= 2,
10. Find the impedance Z for the following values: .
(i) E = (=50+ 100i)volts,] = (—6 — 2i)amps A\ @0 AW
(i) E = (100 + 10)volts, I = (—a + 3:)(%mps ara \\\' | (o \oo™ |

§
[

\ N|N J\J‘l\_J \J

Recalling complex number = and recognize its real and imaginary part.

Knowing the condition for equality of complex number.

Revising the basic operations on complex numbers.

Defining conjugate and modulus of a complex number.

Solving the simultaneous linear equations with complex coefficients.

Factorizing the given polynomials like 22 + a? orz3 —3z* +z =5

Solving quadratic equation of the form pz? + gz + r = 0, by completing squares, where p,
g, r arc real numbers and z is a complex number.
Introducing complex numbers in polar coordinates. - .
Applying the binary opcrations in polar form. _ ;"} 2\ (¢ Q)
Solving complex equations and inequatiofis in polar fom't WA
Using the complex numbcrs in real woﬂﬂ\ pmhlcms

. 2 * @

H uJi\'I“’ '
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Bz

. Choose the] eurrgpt nptmn '

(in ” \[Byery teal number isalsoa ____ numbwr,

(a) natural  (b) integer (c) complex © (d) rational
(ii)  Every complex number has part(s).

(a) one (b) two (c) three (d) no

(iii) Magnitude of a complex number z is the distance of z from ____
(@ (0,00 @®(@L) (O @D
(iv)  If z is a complex number then its mirror image is
(a) Izl (b)1/z (c} —2z (d) 2
(v)  Incomplex plane imaginary part is drawn along
(a) x —axis (b) y —axis (c) origin (d) xy —plane
(viy Ifz;=3+2iandz; =5+ 6ithen
(ﬂ) 2> 2 (b] Z <2 ( c) z_‘l =2 (d} Z; = ~ _Zz B «;\”‘\
(vii) Diagram representing a complex number i is c/all d (1<) ‘
(a) vector  (b) Vemn ¢ Qc]/argand (d) | 1,' ‘

O

(viii) Hz~3+%mm@¥w qp;\/

e 3 -4
@ 38 \\ (b) ('" - “(zs z;) @ (zs zs)
N Fihb of () i
@ 10 b)-10 (¢ 10i (d) -10i
(x) If (m) = lthcnleast positive value of n is
" (@) 1 (b) 2 (¢)3 (d)4

Find the values of the following:

() 240t HiE 4 (100 (ii) (3-2)(1+i)

2 3i
i)y [G=20G-0| v (22"
Factorize the following:
(i) 3x%+ 108 (i) 4x?+40
Locate the complex number z = x + iy on the complex plane Ifl
Find z when (z — 3i)(2 + 5i) = 3 - 4i . _ 15\ (2

Evaluate ﬁ +(2-0%+ \f—Z ]
Solve by cumpletmg square methcglgz \—,112 €16 = {}

When particle | Iﬂ at\ a pumnon 0fV2 + ivZ nm from its mean position calculate its
ampll}udﬁ Whén =45°,
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MATRICES AND DETERMINAN TS

After studying this unit, students will be able to:

e Apply matrix operations (addition/subtraction and multiplication of (matrices) with

" real and complex entries.

» Evaluate determinants of 3 x 3 matrix by using cofactors and properties of
determinants.

» Use row operations to find the inverse and the rank of a matrix.

» Explain a consistent and inconsistent system of linear equations and demonstrate '
through examples 1

¢ Solve a system of 3 by 3 nonhomogeneous linear equations by using matrix 1
inversion method and Cramer’s Rule. 1

o Solve a system of three homogencuus linear equahuns i @@@the
Gaussian climination method. e

«  Apply concepts of malnccq to real o) raphic design, data
encryption, seismi naformatmn of gecometric shapes,
social network analysis

\J
A very common use of matrices in daily life is
encryption. We usc them to scramble data for security
purposc and to encode and decode this data. There is a
key that helps cncode and decode data which is
generated by matrices. The screen of any electronic
device, like smart phone or LED TV. screen is
essentially a pixel matrix. When we rotate the phone
and it is in landscape form. The matrix is actually
rotated using the transpose. When we touch the screen
of a cell phone at some specific position; the position is
caleulated by matrix properties.

In mathematics we use matrices to solve the sysiem
of lincar equations. Matrices are also used frequently

s

\ \
\ \
f VAL LD

almwost i all seiences. A\ (OB
[ 7o \o™

In 19" century the term matrix was introduced by E hﬁﬁ ma*thcmau\an\.laﬁms Sylvester. Then after
taking the idea of matrices from Sylvcblﬂ, ’nhun gaxeyxdevciupbd the algebra of matrices and
published two papers in lgﬁﬂm n‘ :@stcm\o lmearf‘uquatmns matrices was applied by Cayley's
where they are stnllusefu\‘ ‘ \

\’\\J |\ |\J\(
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2.1 Matrices

A matrix is an array of numl:fcrs mngc ’ ,‘n.,\tﬁnzonfal and vertlcal lines enclosed within square
brackets. Matrices ar .usuﬂly danntedwnh capital letters.
The honmnla{ iineél are kﬂown as rows of the matrix and vertical lines

are known as culumns of the matrix. e.g.; ’ i i M rows

-2 4 8 i
Each number in the matrix is called an element or entry of the matrix.. Every element in the
matrix has definite position which can be specified by the number of rows first and then aumber
of column where it exists. In the above matrix position of element ‘8’ is determined where
second row and third column meet each other. In general, an element in the ith row and the jth
column is denoted by a;; and the matrix 4 generally is written as A = [ay].
2.1.1 Order of a Matrix
How many rows and columns are there in a matrix is known as order of the matrix. If a matrix A
has m number of rows and n number of columns then the order of the matnx is m x/,rr ﬁr m-by-n.

\

We always write number of rows first then number of co!uml;s < \, ' /O \ 8\
If we multiply m by n; it gives us the total numbcmf elemwts m\tha :haﬁ'ﬁt e.g.; if there are 3
rows and 2 columns in a mpm‘x A thmuts m{r js 3»>< Q,Oﬁcn we Write Aszx2. The product of 3
and 2 is 6; so, there are six c[¢mems m matnx

Equality of h}ﬁ(rwﬁsij H o\

Any two rﬂﬁ&a es are said to bc equal if both have same order and same corresponding elements.
Consider matrices A = Iz 1] and B = [2 1].

Here both matrices A and B are of same order 3 X 2 and also have same corresponding elements.
Thus they are equal. We write A =B.

2.1.2 Types of Matrices
Row Matrix or Row Vector
If there is only one row in a matrix then the matrix is called row matrix or row vector, e.g.;

=[1 3 6 2lixs B=[2 5lix C = [5]1x1

D=[3 0 1 9 2]xs areall row matrices.
In general, if a row matrix A having n number of columns is

[n M2 %13 ":"*Fm],,lxn ~X\ |

Column Matrix or Column Vector | L
If there is nnly one columnm a m,ﬂfm thenﬂm maﬁ*tx 15 called calumn matrix or column vector.

E.g..ﬂ— ' I‘J‘ﬁ"

C= [;]m D = [6],x4 are column matrices.
4 3x1 t
4x1

-

MW TRV, At 33
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In gcner%w@{ﬁﬂwﬁx wuth m numbcr of rows is

-Am1 dmx1
Square Matrix

A matrix which has equal number of rows and columns is called a square matrix. i.e.; if a matrix
has n number of rows and n number of columns then it is called square matrix and its order is

3 1 1 6 9]
nxn.e.g; [ ] , |0 1 =2] , [3]yx; are square matrices.
S T 3 3 5l

Rectangular Matrix
If the number of rows are not equal to the number of columns in a matrix then the matrix is
called a rectangular matrix. i.e.; if a matrix has m number of rows and n number of columns and

m # n then the matrix is a rectangular matrix. e.g.; m
IANCE

;3 m[ L,h —z@lg ﬂl

Zero or Null Matrix E\/\\
If all the entries (el ht are zero then the matrix is called null or zero matrix. A

Zero ma oted by Om,m e.g.;
0 0 01
0 of, [0 0 0 0], [ , |0}, [0] are zero matrices.
00
0 0 0
Diagonal of a Matrix
Consider a square matrix A of order 3 x 3 _XSecondary diagonal

A”ai
yﬂzz, « 23L
1"““32 Main diagonal

Then elements a,, G55, @33 with same subscripts form the main diagonal or principal diagonal of
the matrix and the elements a3, @23, @3, in which 1* script is increased by 1 and 2™ is
decreased by 1 form the secondary diagonal of matrix. In general, for a square matrix A of order
n X n primary and secondary diagonals are shown as under: PN

Sec‘@mlm dmgonal
ﬂ;{um“?@ , ( o0~

4



The elements of the mam dmgonaj ari: m1 az; 4'133\- lu.,a,m and the elements of the secondary
i %

diagonal are a,, zn-1:(-
Diagonal Matnfﬁ'\l AR
A nqun%' which all the clements except the main diagonal are zero and the main
diagonal has at least one non zero clement is called a diagonal matrix.

If A =[a J]mm is a square matrix of order » then it is called a diagonal matrix if a;; = 0 when

i # j and a;; # O for atleast one i = j where i =1,2,3 ..,nandj =1,2,3, ..,n.

2 ° 0 10 , .

[ ] ’0 0 Ol [U 0] ;  [3] are diagonal matrices.
0 0 2

Scalar Mamx

A diagonal matrix in which all the diagonal elements are same but not zero is called a scalar

a;; =0fori #
matrix. i.e.; if A = [au}“xn { = J

ay =kfori=j where & is a non-zero scalar.

k 00 2 00 _
e.g.; [0 k Dlwherek#:[]; [0 2 OL . —dJ’“/
0 0 k 0 a 2 \“‘\ \
V\ J_\ \\\\ u \\\jx\\ -

Identity or Unit Matri:Q’ \\ 0 0\ \\ \ -
A scalar ma w;:h\a\u the' diﬁgunal elements are equal to 1 is known as an identity matrix:
An 1%&& usually denoted by Ip,xn; or simply I. For an identity matrix
] ajy=0fori+j
- f=[a!j]'{a!j=1f°ri=j

1 0 00
e.g.; [0 1 [0 1 D] ,[1)1x1 are identity matrices.
22 |0 0 1l
Upper Trlangu!nr Matrix

A square matrix in which all the elements lying below the main diagonal are zero; is called an

123 ..
upper triangular matrix. i.e.; if 4 = [“U]nma“d a;; = 0 wherei > j; (J =123.. ) then 4 is

an upper triangular matrix,
e.8.; [W] , [KQ] 1‘(@] are upper triangular matrices.
w0 /A
Lower Triangular Matrix A Tlhan “/f \\ .' (”’,\f‘s "3"\""
A square matrix in Wh.ll’:l‘l all the menxs lynfg ahovc he' thais diagonal are zero; is called a
QN e 0p\ 123.. .
lower tnangular malnx 1 e"' lfA = [“I.f} and au = 0 wherei < f; (j 123. )then,.f is

s




00 6 0 1
eg; ;'\1\0]. [g N ]
—6—2

N o
Triangular mi \ﬁ'\ NI NN
A square matrix which is either upper triangular or lower triangular is called a triangular matrix.

e — ——

ey aels

Go. .y ® Sum, difference or product of upper ﬂuwer) triangular matrices is again upper (lower) matrix.
.| » Diagonal matrix is both upper and lower triangular matrices.

|
onal mat |
. — | |

. Transpose of a Matrix
If A is any matrix of order m X n then the matrix which is ob!amed by interchanging rows with

columns of the matrix is called transpose of the matrix and is denoted by A*. Note that the order
of the A" isn X m.

ea_[2 1 6
€8 ‘”‘[n 2 3]2><3
2 0
A'=|1 2
6 3l3x;

Symmetric \!atru\l |
Fora squareﬁ\@\ﬁﬂ \A\ A‘ then A is called a symmetric matrix, e.g,; if

* IfAis square matnx, then order pf‘ztgnd

‘ e S T ST

At is same. \\,) W\

\ 3 e? \ @n\jllar matrix is
*\1 jaen ular matrix and vice

) \fvﬂrsa

S—_—

1 2 5
A=12 6 4‘,thenfl’=2 6 —4
5 —4 3. 5 —4 3

Since A = A*, 50 4 is a symmetric matrix. Observe that in symmetric matrix a;; = a;; Vi # j.

Skew Symmetric Matrix .
A square matrix 4 is called skew symmetric if A = —A°.

[0 2 —6]
eg,ifA=|-2 0 §
L 6 =5 0.
(0 -2 6] 0 2 -6
ThenA'=|2 0 =5 =—[—2 0 5]=—A
-6 5 0| 6 -5 0
So, 4 is skew symmetric. N\ ON W

Note that in a skew-symmetric matrix a; ; = -aﬂ v i J a“d/"*ij %\ JJ- | ﬁi ;'= o \U)U L

\J l\\JI\J '\\j'\J I

28 (‘I"""'""“'P“""‘R““""'"' —— s S ——
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c bﬂ the f‘ollnwmg matrices.

1.
| n3o0 2
=|; 1] Gi) B= [ 2] i) €=
vy D=[2 1 6 8] v) E=[3] (vi) F= [
2. Identify the following mamccaassqua:c matrix, rectangular matrix, row mamx or column
matrix. _
Q) A=:§ ‘j_’ :‘; (ii) B = [ l (iii) C = “
1 6 9]
ivy D=2 0 1 WME=[2 0 1] (viF=[16]
3 1 2
3, Identify the diagonal matrix, scalar matrix, identity matrix, lower mang/ular;gatruc, upper
triangular matrix. ; =R :;/\-\
3 0 0 (-6 0 i”a,_:-
A=|0 1 ol =10\/76(@|: z,_'z 0];
2 6 00\ \CL 0, \*Q =
1 0@\ \\\ '2- V3 1 2
R Jﬂ gh%@ - E =0 3 ﬂ 1o 0 6
NUNR Ut 0 0 o 0 0 1
1 0 0] :
G=lo o of; H= E g]
0 0 o "

4. Find the ﬁanspose of the following matrices and identify which one of them are symmetric
and which are skew-symmetric.

20 2 6
A=V 5]; B=[1 6 2 o  C=[ J]:

l1 9

0 1 9 3 -6 9 0 1
D=|-1 0 5; E=|-6 2 0‘: F=l0 6 3

-9 -5 0 l9 0 o 001

2.2 Alvehra of Matrices _ a2\ © C
2.2.1 Sealar Multiplication o N\antal -
Ifk is a non-zero scalaxand A= {ﬂu]" /\is

| A " ‘5-mamx of order m X n, then the product of matrix

A and scalar k is dcnoted by the mamxh the matrix obtained by multiplying the scalar with

each of the elefrqqnm Hf‘ the matrix A.
l | ‘
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ila— L‘.' :d
."4 "'Z?": L

If
@y, @ @3 - - - %] [kan  kag kajiz . . . kain]
Az Gy Q23 . -+ - G2n kay, kaz; kaxz . . . Kag
kA=k|%1 a3z @33 - - - Q3n | = kﬂ.;l kﬂaz kﬂgg e kagn
Qmi Qmz @ma - . . Gmad lkapy Kame Kams - . . Kamgpd

In particular if A = [: 3 5] then

ey Faets

24=2[; 2
hy Lo
_{zx%@xﬂ3 @@m
Addiﬁonww

In general, we cannot add any two matrices. Only those matrices are conformable for addition

which have the same order.

IfA=[ay] _ and B =][b;] _ areany two matrices of same order m x n then 4 + B is also
men mXn ‘

a matrix of order m X n in which each of its elements is the sum of corresponding elements of 4
and B. If we assume that 4 + B = C where C = [¢;]  thency; =a;; +by VijEN
Subtraction of Matrices

Like addition of matrices, we can subtract two matrices which have same order.

IfA=[ay]  andB=[b;] areany two matrices of same order m X n then A — B is also
a matrix of order m X n in which each of its element is the difference of the corresponding
elements of A and B. If we assume that 4 — B = C where € = [c;y]

then Eu =ﬂu—bu Vi,)‘EN \ \/9_\

1\

Solution: O \\ Y«:@\L\\
6]

q\\
D
grasel Hs :

\1 \ﬂ
Example: Find 4 + Band 4 - — B where 4 = @ ?\T{ sa o \o
- 1\ \\ \) \

3+(—2) 0+ 6
2+0 1+0] [ 1]
6+2 5+1

38 - A “Unied2  Matrices and Du,lcnmrmms w:j‘?@u"I'aﬂm:\rJ!rmmt1='cum:mia.-t



0
A-B= 2 i 1

WEARSAK D, 5 3
'r-r [~2~\0 \BY = D] 1 1]
=2 5 1 4 4
Multiplication of Matnces

Two matrice; Alaqql B Jﬂ'e caufonnable for multiplication if number of columns of 4 is equal to
number oRDWs Of B, If A = [a; j] . is a matrix of order m x n and B = [b; j]
of order n X p then the order of 4B is m X p .

Assume that AB = [¢; j]mxp;Whem cyy is the sum of the clements obtained by multiplying the

corresponding elements of the ithrow of a matrix 4 with corresponding elements of the jth
column of matrix B. For AB = C, we have:

1s a matrix

(@17 @1 T3 - Qyn 1 [byy bz bys . E o by
Qz1 Gy Oz flz“ b2 ba ba . byl - byp
A=|ag @z  ag an| ;B =| . '

o> € = @)(by;) + (@2)(byj) + -+ (@in)(Buy)
@ —» Cij i=11.2,£,...,mn 2§ i j

where} =1,23,..p

€1 Cnz €n3 . Cpj + C

310

Example: Find the product AB for the given matrices A = [2 ] 5 4
2x3
3x2

Solution:

Matrices 4 and B are conformable for the product of 4B, since the number of columns of 4 and
the number of rows of B is the same.

1 3)3 4 o (D@ +3)2) WW+E)E) (1)) +3)(@)
AB= [2 1] 2 5 4/ =|AA)+ME@) W+ @WE) (2)(0)+ (1))
6 0 (6)3) + (0)(2) ©1)+ @) (6)(0J+(0)(4)

346 1415 0+12 RPRE
=|6+3 2+5 0+4 i Kniun
[184+0 '6+0 040 If‘twungameamndam
(9 16 12 T\ ~0 \_jpsnge ' cOnformable for thesproduct AB,
=9 7 4] ~ A\ 2\ % then it is not necessary that they
18 6 Oﬁ- \\ A\ \\U) @l are conformable for the product
AR LB |

l :
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Note that order of AB = 3 x{z 2% 35 3693 \\

Example: F md thc J?n”juct ABfor the gwen matrices.

Solution:
The number of columns of 4 and the number of rows of B is same. So they are conformable for
the pmduct AB. Now

f sl o 2l

(21)(3) + 1(2!) =)+ () @D+ QA)(-20)
[(-D@3) + (Bi)(2)) (=i))(=i) +(3i)(0) (=)D + Bi)(-2D)
[ 6i+2( =2i24+0 21‘2—21']

—3i+6i2 2+0 —i*-6i°

[ 8i -2(-1) 2(-1)-2i ]
T |-3i+6(-1) -1 —(-1)-6(-1) e\
_ . i .__ /—\\ )/‘,:\'.\ (\\'u \ \\
_ Bi 2 =2-2i ~ 1)\ OV
- ] O\ - ACaNY [ (B0
-3i—6 -1 ? O A\ . AN Q\ \ [\ oA~
Orderof AB=2x(2 2x3=2x3 |\ 70\(( \ UL = U
22 Commutative I‘@mq&ﬁmfﬁmﬂ@iwf L. ‘ulditinu

Any two matrices_ H{Fﬁ\ﬂl ém cunfoﬁna’ble for addition holds commutative property w. r. t.
addltmm@@n\s\@g} o matrices A = [ay;] ps A0dB=[by], 50
_[#11 Gz s _[b11 b1z b13]
A=lay ax “23] whe [bn by b
A+B = [‘111 +byy Gz +b; a;t bn]
@y +byy Gy + by Gp3 + basl
_[butan butaz bt ﬂ13]
by1+ay by + @y byztap
by by bla] ay; @z Q3
byy by baa + [az:t azz ‘-123] b
Example: Verify the commutative property of addition for the given matrices:
316 0 -1 3
A=|2 1 3|landB=|1 2 4
0 21 -7 3 1 n
Solution: _ a0

-1 3 3&ﬁwwi¢( Q 5+3
A+B= h 2 /ﬂ [a+1\= T2 3+4
7/ /3 \ 0+(-7)- 2+3 1+1

;. i

<\
-WWNM@»'
\\\.\l 1\\:" \J
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) \ " K
g \\ \\i / o \o2

) A\ T € .' (@
And - “v‘ \ ’,.’7 I". "- " \

o~ //\ \
ﬁr? -* 3\ 3 /1 6 u+3 (-1)+1 3+6
f‘ [ 31 lz 1 3] 1+2 2+1  4+3
J\\”\i\ 0 2 1 (=7)+0 342 1+1
NNA 3 0 9
= [ 3 3 7] (2

-7 5 2
From (1) and (2) we have A + B = B + A, i.e.; commutative property holds w. r. t addition.
Commutative Property of Matrices w, v. t. Multiplication

In general, the commutative property w. r. t. multiplication for matrices do not hold. i.e.;
AB # BA.

Examples: For the matrices 4 = [1 2 1] B= [ 3];show that AB # BA.

0 1
AB=[§ 2 1\2 3]

(1)(0) +@)(2) e 1@1)5@@7(3) + (D)
- |
)

(aml + /ﬂ% B + 1) + 6
+4 |
b ;T\fﬁf@s 343124 =3 30
NN
WNJ\M- E i] [3 1 6
O +1)B) @) +MA) ©))+1)E)

=@M+ 3B) @@+E)1D @M+ (3)(ﬁ)l
DM+ ®HE) W@+@®HA) (W) + (46
(0+3 0+1 l}+6] [3 1 6]

Solution:

2+9 443 2+18|=|11 7 20
11+12 2+4 1+24 13 6 25

Clearly AB # BA.

223 Verilication of (AB) = BtA!
Consider the two matrices 4 and B which are conformable for the product AB.

1 2
- . _M0 1 @6
’5 6] ' B_[z 1 U]szmen -
3x2

,\/’\ -~ \.

0 1 6 |DO+@Q) D) ﬂz)(n \fl)(f-) +(2)(0)
AB = ‘[2 ] {(5)00) + (6)(2)\ (s)ﬁHcG)(l) (5)(6) + (6)(0)
PN 0) + ;13(2} @M+ @A) (@) +1)0)

(
u+4 R ﬁ+§T l 3 6]

= %}4\2 5+6 3040 12 11 30

\1 TT24+1 1240 \
\W| N 2 3 12
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T
| e
= (AB)t = 12 11 W\g\o "
Mo N\U&\M 6 30 12

0 2
a=t 32 andﬂf=[1 1]
[2 6 1] 6 0
02, <, [OD+@@ OE)+@)6) ©@+@0)
BEA* = {1 1] 2 e 3= WO+ WE+WE O+
6 0 (6)(1) + (0)(2) (6)(S) + (0) (6) (6)(2) + (0)(1)
0+4 0412 0+2 2
[1+2 5+6 2+1] [3 11 3] (2)
6+0 30+0 12+0 6 30 12
From equation (1) and (2), we have (AB)" = BA,
Example: Show that for the two matrices 4 and B which are conformable for addition

ey Foels

(A+B) = A* +B*
Solution: F¢1>1r any two matrices Am |
Consider any two matrices 4 and B of the same orde which formi I '“°’l’
a b 1 2 Effﬁ ngetncra
A=[c dl;: B= 3 thes KX “‘\‘ 1HA 4+ A)
e f 2 | = AL+ AL+ + A
b a+1 b+2 )
’%f&g%:ﬁ +13 5 —IC+3 d+5
le fI 12 5 e+2 f+6
. [a+1 b+27
> @A+B)y =|c+3 d+5| =[2F2 c*3 ;Ig 1)
le+2 f+6
\ : = T W e [1 3 2
Now A __b d f]ﬂﬂdB = 2 5 6
topt —[2 € €,M1 3 2
a8 =y g f+[; 5 6
_[a+1 c+3 e+2 (2)
“lb+2 d+5 f+6
From (1) and (2) we have,

(A+B) =A'+Bt
Example: Any square matrix can be written as the sum of#wo square matrices such that one of

them is symretric and the other is skew- smn.mntnc @ @f\g
Solution:
Consider any square matrix 4. Let we ¢ mm matrices P and 0 where
P is symmetric and Q is sk

A=P+(Q; P‘ =\F (1)

Fﬁﬂw i Q*—P+(o) . .
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A+ At = zpw

NN
Now subwah}\ﬁgj equ'ahnn (2) from aquatwn (1), we have:

A—A‘-ZQ = =§(.4—A‘)
Observe that

-~
[y

Pt = %(’A+A‘) —(A'+(A‘)‘)—-(A‘+A)“-(H+A‘) P
So,Pissymmeu'it':_
gt =[ra-m =2 -y = st -y =34~ 49 =0
RO T2 | 2 2
So, O is skew-symmetric.

M

, 3 15
Example: Write the matrix A = [ 2 6 {]l as a sum of two matrices where one is symmemc

A\
12 1 VO

and the other is skcw-symmeu'ic A e «\|r"]|<% \d OV
Solution: -\\ ARAR A e

\\ \
‘\'\v\l \ \\ \ ] ,

Let A =P+ Q where 61(‘8)’@??1 n\xd\Q isskgw-swnmemc

3
1315 2 - 63 4 |} a
121 5o 1 4 2 2 |2
2 1
And
1 1f[3 1 5] B2 -ap 4[0 4 &
Q=-(A—A’)=i("2 6 0 -Il 6 2D=E L9
-121d 5o 1l %l-6 2 o
0 -7 3 ‘
= 1
; 0 -1
-3 1 0
ThusA=P+(Q
3 1
[3 1 5I S22 7 3
-] 2 1 2 61 2 o -
: 21 1 L3 4 Ted
\j “
\“\J'\“ '
Somtiemreal Rl P e 43



L. Const@f:tjq mﬁﬁﬁx} [a( j] of order 2 X 2 for which:

1+3 { »
(l) aij —2 (ii) ayy ——{ (i) ayy =3 (iv) ay =

2. Construct a matrix B = [q j] of ﬂrder 3 x 3 for which:

g i2- .. 252 ) 2,42
[1) b[j = —3'£ {II) b” = u (lll) bi! = rﬂ (]_V) bU — '[_+L

3 -1 2 2

3. IfA=’ﬂ 6 1landB=|0 ]thenﬁndamamesuchthat
-1 0 -3 -3 4 2

A+B+C=0

| . . 3 2 7/2 11 2
o 2 11,1 31_[1 0 T _
4. (i) Find A4 [3 z]A_z A= 3 (i) Find X [0 1]x—[z 4 1]

(i) IfA=[3 7] and B =[2 14] then find a non-zero matrix C such that AC = EC

‘ﬁ
“\ \ \ .
(iv) [ 0 x+ y] ¢ ] then find the valucs of z, t and 6 w\-/\\'J) U
B 0 \ \( ‘& _
V) IfA = [7 and ] = [o ﬁmﬁmf\ d&dum 4 al =
r\\ E\ 00 \ %
(w)Fmdmevalu\es\?F /:& | Ly ﬂ 0 1 0 I I =0.
, ‘\] - 2 0 4
5. fX=|2 1 2 tl:tcnprc:-\natl'lal:)f2 4X - 51 =0.
2 21
6. IfA= [3 _3] then find & and £ such that, A? + al = BA.
7. IfA= [‘; 2] then
xn
(i) Prove that for all positive integers n, A" = [y(x"—l) g]
x=1
(i) HA= [i :‘;] then prove that for all positive integers n,
n_[l1+2n —4n
A [ ol
8. Consider any two parucular matrices A and B of your choice of order an ahd 3x2
respectively and show that (AB)* = B*A". AN [ ,'K = \ \u\ ‘
9. Consider any two particular matncas A ﬁn\d B ofyom‘ chmce\af ljfdér 3x 3 and show that

(A+BY=at+g. |\ VAU

Y

10.1fA mdﬂmmmmmch thatA}}X'B and BA = A. Find A2 + B2,

ILIfA= [g.hsfq migtticof btder 3 X 3 and ay; = i% — j2 Check whether 4 is symmetric or
metric.
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i

12. For any square matrix A; prove that (A"‘)‘ =! (Af)'f \ €

13. Find the matrices X nnd Y s'l,(t:ﬁmt ZX\Y=~[; i 3] d X+3Y= [4 ]

2.3 ﬂLthﬂ.lh\-.Tﬂ\I’ AN
Not all but @\é& |\square matnx is associated with some number (real or complex). This number
is called the determinant of the matrix.

If A is any square matrix then its determinant is denoted by dct(A} or |Al.

Corresponding to the square matrix A of order n,

Ay Qg2 » - ¢ Qyn
a3 @32 . . - G2n

5

A — - 1 & M " . l K‘.‘_‘ F:ICI.\'
’ ' v mwed More than one square matrix can have
Apny QQnz . . . Qnn 54 i
. . <> same value of determinant.
The determinant of A is
an alz . 5 * ﬂ].T'I.
a;y Q3 . .- + %n
4= | R A
/R W\

py Qpz |, . . Quppl . \ \\_/ JUN
For our convenience we consider the qe;errr@apt(g of ﬂﬂ: ﬁﬁ&@ of orderup to 3 x 3.
2.3.1 Determinant of Matri s pwrdg ‘\1@( 2\ \

[+ [}
Consider a matrix A 1

QAN |\JJ o) b o
NN

|A] = |;:i z;il = Q11032 — Az10y2
Determinant of Matrix of Order 3 x 3

Q11 Gz G313
Consider a matrix A of order 3 x 3ie.; A = [321 azz ﬂza].

@31 Q32 - Q33
11 @32 Q3
A1 Gzz Qa3 .
az; @3 Qass| \
"To find the value of this determinant; we express the above determinant into the sum or
difference of determinants of order 2. This process of finding the value of the determinant is
called expansion of the determinant.
We can expand a determinant from any row or any column. Since in a determinant of order 3;
there are three rows namely Ri, Rz, Rs and three columns Ci, Cz, CJ. 50 we can axpand the
determinant in six different ways; but the value of determinant wgll mmam t!aﬁ same in'each case.
If we expand the above given determinant ﬁ'o;m 1} row i. ot ﬁnm\!h then O

G2 @z az1 ﬂza ﬂn a2z - U
Al = ay |ﬂsz ﬂaal ~ Iﬂsl( ‘a3l \qk - ﬂsz’
= a3, (azz033 - = e ajz)\ 5! \@13(a31833 — Q5303) + A13(021832 — A3203:)

This can l{?\g@qﬂ \Q&ﬁfor ‘determinants of the square matrices of higher order.

The associated determinant is |4| =

National Book Foundation ! 45
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Minor of an Element of a Sq}qar-e Matrix
Let we have any square mamxﬂféforder\ﬁ;\w A= [al j]mm: then the minor of the element
a;; of matrix is 2 dczemﬂnantofmemamx of order (n — 1) X (2 — 1) obtained by neglecting

the ith row gﬁﬂjﬁtl\ ﬁ'}lumn of the matrix A. Minor of a;; is denoted by Mj;. For example;
consider a matrix 4 of order 3 x 3.

17 Qg2 g3

A= |0 az Aaz

37 U3z Q33

ag; ay3| . . )
12 13'| is the determinant obtained by
a3z Qas

neglecting 2™ row and 1% column of the matrix A. Likewise we can find all the minors of
clements of the matrix A.

Cofactor-of an Element of a Square Matrix

For any square matrix A of order n X n, the cofactor of an element a;; of matrix A is denoted by

A;j and is defined as A;; = (—IJHIMU‘ e.g.; If

i3 Q2 Qg3 AT
A=|G; G2 a3 e\ O\

@3; Q32 Q33
Then cofactor of the element @z, is: 7\ & SR\RRER Y
Sz —~an) V4 \ NI
Apn = (-1)*'My, = (-13)[%2( &;E"[‘«.,ﬁ,\t}?-l)(ﬂfzaaa — @43Q3;) = —@y2033 + 13832

— M\ i L\ | ) .
AN\ ( ~> A ) \J ' s ; )

The minor of the element a,,; is Mz, where My, = |

1 3 0
Example: I[fA = !—1 2 6 ‘ then find M;;, M;aand A;;and A,3.
3 0 -

Solution:
Ma=|3 &= CDE-3)6) =4-18=-14

M =3 3= WO -E@E=0-9=-9

Az = (F1)"2M;; = (-1)3(-14) = (-1)(-14) = 14
Ays = (—1)3Mp3 = (-1)(-9) =9 .
2.3.2 Evaluation of the Determinant of a Square Matrix Using Cofactors
Consider a square matrix A of order 3 x 3.
@11 Q12 O3
A= |G ap ﬂzs]
[d3; d3z Qa3

a1y Gyz :,"‘ﬂ;;,{v =\

Then 4] = |81 az‘g‘\.‘"‘.ﬁ: a“ \ (L \LS NN
' ~ 1831\@32 \\@sst —
1f we expand if ot first row then:




|A] = 11 |q

W%m 013M13 '
\1 é)l”Mu + ag5(=1)1*2My; + a13(—1)1*3My,

= ay3411 + 32412 + Q13413
If we expand the detennmanl form fist column then:

14l = a Iﬂzz I_ Iﬂnz ﬂ:al
1|ay, azl~%2tlag; as

= @y Myy — az Mpy + @33 M3,
= ali(_l)"iMu + ‘121(—1)2“”21 + az, (-1)**'M
|A] = ay1A11 + Gz1421 + @3143,
From the above discussion it is clear that, |A| can be evaluated by adding the product of elements
with corresponding cofactors of any row or column of the matrix.

a |a1z ﬂﬂl
31 laz; ag

1 2 6
Example: IfA = [ 0 1 2]; then find |A| using cofactors.
-1 3 0
Solution: @1
First, we find cofactors of any one of the row arcol atrn us find the
cofactors of C5. The elements of C;are a e a3 = 6,a;3 = 2 and

WW@% I—(—l)*(o -D)=11) =1
W\N Az =(—1)‘*3| | = (-1)5(3— (-2)) = (-1)(5) = -5

An=C00 § =Cpfa-0=mw=1
= |Al = ay3éy3 + az3dz3 + A3343;
=6(1)+2(-5)+0(1)=6-10+0=—4
2.3.3 Singular and Non-Singular Matrices
Any square matrix A is called singular if |4] =
If |A| # 0 then it is called non-singular matrix.

3 12
For example, for the matrices A = [1 g] and B= [% 2 ]
4] = 1 gl = (1)2)-(3)(@)=2-12=~-10%0
V/\/—\
3 12 @@\
BI=[L ,|=®@-12(;)=6<6=0" m O
2 C o

Thus A is non-singul W
2.3.4 Adjoint q{nﬂq a\n‘

C{msnv & hatrix A of order n:

amx




a1 @2
A1 Qa2

a’&\J '\J N\ 11\\\1 ‘\1

All AZI . . . Al’ll
Ap Az .. - Am

adj(A) =|
' Alu AZn oo e Ann
If the order of the matrix A 1s 3 X 3. i.e.

a3y Qg2 Qg3 A Ay An
A=|821 G az3|thenadj(d) =|A1z A A
13 Az A

(33 d3zz O33

Multiplicative Inverse of a Square Matrix
Two square matrices of same order n are said to be the multiplicative inverses of eaclr'nfother if
their product is I, (identity matrix of order n). \\ C@\ \
Only non-singular matrices have their multi JIIC@VE inyerses \' o~
If A is a non-singular matrix thf;q its mquﬁh wg.uﬂek@ 15 dehcnedby A"l
\‘\ (AT S A ]
3.5 Adjmnt & &9% mléh}le l\nvene of a Non-bmgulnr Matrix

IfAisa non-s.\rg\ular square matrix i.e.; |A| # 0 then 4™ = — Tl adj(A)

Obviously if A is a singular then |A| = 0, then A~ = —adj (A) will not exist.

2 10
Example: If 4 = ll} 3 2] then find A~* by adjoint method.

2 1 4 ey Fuaels
Solution: ‘ -1 1
2 10 -t 47
Since |[A]=10 3 2 t{;ﬂ e If the inverse of matrix A
2 1 4 exists then it is unique.

R e —

<=2} -1l Feol

=2(12-2)-1(0-4)+0(0-6)=20+4+0=24%0  _ (|

Thus, A is non-singular. To find the adjoint of A we ﬁnd cofaat:ars qﬁal’l/ch; elenfmts of AJ
A= UMD 8 = 202 2) #ﬁ)(m) Lot )

tz= -2 ) J,_f.,jj Lol DD =4
Ais =23 Jlﬂﬁ'?’"‘f = (CDM0-6) = (-6 = =6

48 [nll ll'—' U:Ib'IA!‘Vi;’.L'ﬂ ;Ina—‘mﬁln - \ Natlonal Book Foundari
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= &)
Bt 4\ P
1\ \ \ AU
T\“\/(\.m C
\\

A= Iy Ng—iq*?( 0y =130 =
422 = AR 2| 06 -0 = 0® =8
N N‘(\' %1

A= 12]0 |=(1%@-2 = DO =0
an =0 = D'E-0 =)@ =2
Az = (D2 |2 D) = (D84 -0) = (D) = -
3= (-1 2 §=(—1)6(6_0)=(1)(e)=6

Ay Ay Ay —4 2
Now adj(d) =|A;; Apz Agp=

13 Az Az
10

L 1[m —4 2] 2;4
And A" dj(4) =~ 8 -
-6 0

o ﬂ@m‘%@@

1/4

2.3.6 VMH of the Result (AB)~! = B~14-1

Jeous

If A and B are square matrices of the same order then (AB)~* = B~*A~1, To verify this,

consider two matrices A and B of the same order.
I3 2 _n 2
L‘”“L 4““d3‘[4 3]

For LHS.

AB = ﬁ ﬂ E g] = [13: 1?5 zﬁ: 162] = [i'f' 'ﬁ

|AB] = I}; }ﬂ = (11)(14) — (17)(12) = 154 — 204 = =50
And adj(AB) = 1? -1112]

& (AB) ™ = madj(}lﬂ) s

L[ 14 ;12

(4B)™ = —5 -17 11l

Key Facts
(AB)™! = B~'A™! is known
as reversal law of inverse.

12



For R.H.S. \\ n)
1] = 3 2| - (3)(4) (1@(2)=n1“z\2— 10

adj(4); ﬁ{ﬂ [ \JT'@] and

1 - 4/10 =2 2/5 =1/5
A Iladj(’q)_'fuzr[‘#r 3= [{/10 3/;]60] [1?10 3/{(1

And|B|_|4 d=WE-@@=3-8=-5

adj(®) =[ 3, 7*|and

I _ 13 —21_[3/-5 =-2/-5|_[-3/5 2/5
B =g ®) = =13 7= [ 1) =les s
-3/5 2/51[ 2/5 -1

-14-1
AT s 4/5 -1/5]|-1/10 °

T 3\ 2 p i I\ /= PN

—1l= — . AT

— 5) (5) 1 (5} l"u..l.“U) (_4 A ,./\g—f/‘\\_./) U Y

| 2 \TaeA ) \
- e {21

~NE
WN\NJW

From (1) and (2) we have (AB)~! = B~14™1

1.

2.

Evaluate the determinant of the following matrices.

2 3 1 [cosf® —sin@ 0]
(i) 1 -1 2] (i) |sinf cosé@ []]
4 1 2 0 0 1 ]
i3 =2i 24+i 1 i PR\
(i) |1 3° 4 ] (iv| 0 2 11 /__,_\:\-»- \"”’.'&/'.:3 (_\v Sh
0 1 2 =gt N@l\(0\\ [ (520

Evaluate the detcmnnams of thc fpllowmg lﬁatnces uSmQ cofactor method.

3 2 3 2_31,, \TA n2. 13721
(® [4 5 1} N {u}[ 10 ZI
M’ Wbt 31




2i 6 N QO VWWSSTT= 20 144
(iii)| 1 ] B (w) [ 1 4 ]
\:\\‘\ “ [\ '\“ i' 0 2 3
3. termine which of the following matrices are singular and which are non-singular.
(4 1 2 [3 -1 2
M|z 3 1 ] @jlz 0 1]
' -4 1 -3 -1 5 1
[3i 1 2 " 2 -i 1
(i) [—4 1 i] (iv) | i 3 —2]
L2 01 ~24+L [4+3 —3
4.  Find the value of 4, so that the given matrices are singular.
A 1 3] A 2 0
M2 1 8 () |2 1 3]
0 3 1. A 21
A [ 1] 2+i 1 6
@mj2 1 3 (iv) 2 2 1] : AR
3 1 2 . 3 0 2 . 1oy \ //‘)/.\\ \
5.  Find the multiplicative inverse of the foHowmgmgm xuf,mexw&biradjumt method.
1 -1 1] O3S 4021\ Y
@ [2 1 e\ (1{ U sus]
1 —-2 ( ﬁl?*\ \ _13 0o u
I o S
g oN %Nﬂ” i ) |2 1 —3i]
L1 0 41 40 2 6
2 1 =3
6. IfA=|0 1 0 |thenfind A~ and hence show that A4~ = A~1A = I,.
2 1 6

7. Verify that (AB)~! = B~1A™1 in each of the following.
) 2 1 3
@) A—[B 5 andB =7

1 1 1 3 -2 3
i A=|2 -1 lland8={2 1 —1]
2 1 -3 4 -3 2
2 =i 6 3 1 2
(i) A=|1 2 i]andB:[l 0 1‘
-i 1 6 011
1 2 5 2 3 4
(iv) A=[1 -1 -1] and B = {1 0 z] o~ A
2 3 -1 013 ~\ 75 \ o™
( ) / \, yn' 7
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2.4 Properties of Determmants At Re

Here we will discuss somém:pﬂrtam pmpcﬁws of detcnmnams whuch will help us to find the
value of a deten‘m‘ Epr mnvcmence we will consider the determinant of the square matrix A
nforderBN‘Bl éilf

d11 G2 Q3
A= [‘121 az; ﬂza] then
laz; @iz a3
@11 @12 Qi3
|G21 Q22 Q23
Q33 Q3 dsz :
1A] = ayy az2 azal — Ian azal 3 |ﬂz1 ﬂzzl
a3z Qa3 G317 Qa3 az; Qs
= Gy (Az2033 — 023C32) — G12(21 @33 — G23031) + A13(A21832 — Az2031)
Property 1:

|| =

1Al = 4] .
Proof: A\ (F (¢ ;::( ) \
1 (%1 Gaf \\\\' " (”».‘r N
) IA‘T 17 A5\ ﬂs: J
o\l -wf/«. \ “Lﬂ\ ‘g3 d33
Expanding from Cl,vje Eave,
\ 22 N2 ﬂzx a3y az 0Oz
IAtF\ ﬁ\} a: ﬂaal a2|ﬂza a33|+ alﬂzz a:;z‘
= a1 (2833 — @p3037) — A12(A21 033 — G23031) + Ay3(021032 — Q22031)
= |A|
Example:
1 2 0 1 20
IfA=I0 3 0|then|A| = 0
2 16

z3 10 6 0 0,410

ok 1 6\_212 5|+°|2
=1(18-0)-2(0—-0)+0=18

And

10 2
2 31
D 0 6 AR N\ \ P,
=1(18- 0) 0+2(0> o) ="13 [ &

Thus [Al =14 7\ (ONSIU Y L

|Af] =

_1| |0| |+2 _\\

AR B
N il"'\:ij, | \J “ ™



Property 2: \ VD -
If any two rows (¢ ? q?lumus) {rﬁl square matrix A are interchanged such that the resulting matrix
is B then B NN r
Proof:
Let we interchange the first and second rows of matrix A; then the new matrix is:
(A1 Q22 23]
B=|;; a1z a3
[d31 Q32 d33]
1 Qdzz Qzs
= |B| =011 @2 Q33
' a3y a4z dg3
- Q12 aul g Iau a13| a1 ‘112[

921laz, a3l ~%22lag; agzl T %3lay, ay
= @34 (42033 — 33a32) — A22(@13033 — 4303,) + az3(ay1a3; — ay7a34)
= (17021033 — G1302103z — Q1032033 + 43033033 + A5105303; — ﬂnﬂzaﬂn
= (—a410;2a33 + 811823037) + (21207,833 — ﬂuﬂzaﬂn) +£\ 1385 z@'ﬁuﬂzzﬂsﬂ

= —ay4 (@233 — A2332) + @15(A21833 — azaaaﬁ/ - \&{#ﬁﬂam ﬂzzﬂal)
= —[ay1(azza33 — ﬂzaﬂsz) %;ﬁﬁ(ﬁ%}_‘ u{:iﬂ?ﬂ. +ﬂ13(a21 @3z — Gz2d31)]
= IB' —|A| C)\ \ —~ 7\/1 \\\ : \\\ \'\ \//\f \\ -

\\L \

1 2\ g\] A=
Example: Letdﬁ{ I;L\ ) ﬁlen
\ i\\| 2 0

A] = 1|2 g| ]2 "|+3| ;|=1(n—u)—2(0—u)+3(4—{1)=12

12 3
By interchanging second and third rows of A; we have a matrix B = \ﬂ 2 D]
210

1 2 3
0f .10 0. |0

0 2 o= 1| 0|—2|2 1]|+3|2

2 10

=1(0-0)—2(0—0)+3(0-4)=0-0—-12 = -12

|B] = —|A|

= |B| =

Property 3: . .
If any two rows (or columns) of a square matrix are identical then the value of the determinant is

Zero.
PI'DDf" - |->’|&/;;;\\. ‘/{T) :/I,i N\
Consider a determinant with two identical rows: —  ~ "\ [0 |0~
—\ ¢ ) 7 NARRIE \ y‘.‘ \, ’1' 7
Qe \ ‘ L
:‘11 :12 a1'3“\ ﬂzz ﬂh ._\ |a21 ﬂza' ‘ ,521 ﬂzzl
21 22 2| “ lazy “azsl = M2 lay;  az 3lay; ax
%1 G2 (@23l
\ ‘Fr\lﬁn 23— ﬂzz“zs) ay2(@z1823 — @31823) + 013(az,;52 = ap1a32)
= ﬂu(m —a;3(0) +a,3(0)=0+0+0=0
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Example: Consider the detennmant ﬂ IB é ’l]rin W\ N\ \ J
3\\2 )

f)
Expanding by Ry: “ ' \Re!
\ \\]\“\\ 3
NN _2|z -1f3 o +6l;
=2(0- IJ) 1(0-0) + 6(6—6)
=2(0)-1(0)+6(0) =0
Property 4:

If we multiply each element of a row or a column with a non-zero scalar k then the
resulting matrix is B and |B| = k|4|
Proof:

Gy G2 g3
A= lﬂn az2 ‘123]
a3y O3z Q33
Let we multiply each element of row one by a non-zero scalar k then the resulting matmr. s

vecl
i
@ qal Ve
WN 3l
kaﬁjﬁww’ - kay, |ﬂzz ﬂzsl k az1 ﬂzal a2 aﬁl

=|d; (@ Az
az; @3z Qi3

[kﬂn ka;; ka3
B=

= ‘Blﬁ‘ail azz2 az3 3z Qi3 lzlﬂgl 33 a3 Ia31 asz
a3y ﬂaz 33
azz azzl_ azy ﬂzal |‘121 “22”
[aulﬂaz 33 2|as; agsl " 13las a3
ayp Qi Q13
= k|@2 Q22 Qz
@z, Qz2 Gz
Thus |B| = k|A|
' 1 3 2
Example:LetA=|2 1 0
Lo S\ OO 2
Let we multiply each element of second row by53 then ther&@%lti}tgiﬁ;ﬁﬁls\ﬂ/ [6 3 D]
1 0 3

1 3 2 r) ~ \\ " \\ ) '\l/
2 1 gl ] [ | |+z|1

\i '\'0) 36-0)+2(0-1)=3-18-2=-17

Now |4] =




ﬂ
:
f/ N

1 38 2 . =
And |B| = 6 3 {1J | l+z|ﬁ 3
\ |,..'
L1 0y - 3018 o)+z(u 3)=9-54-6=-51
= 3(-17) = 3|4|
ie;|B| = 3l4]|
Property 5:

If matrix A is of the form

@y + by Gz Gy
@y + b2 Gz Gz
lag, + b3y @iz 4ass

A= : then

11 @2 A3 by a2 @3
|A] = |@21 @22 Q23|+ by Q22 @z
a3y @3z Q33| |bsy @32 Ga3
Proof:
a;; + b11 a2z M43 ~ V3 \ﬁ\‘«
[Al = {221 + D21 @22 23 i, I > 2\ @’/\I:\ -
@3, + b3 a3 a@g Q T\ \ N /f o
Expanding from C; O\ \ \ /Q‘u 'u \ A a
\i"A O\ 12
— (au + bll) aZ?. i (‘a!k h?fb |ﬂ32 ﬂ13| + (aﬁ‘.l + b31) Iﬂzz a3z
. aﬁz\li qif; Gagz a;al_a |au anl_ a2 ﬂ13|+a Iaiz 'lul
= 11 \ b1 as; Qa3 21ay, ajz; 21laz; ass 31la;;, as3
+ by |ﬂ1z ﬂul
azz; Q33
(i §2-an oz anl*osila; anl
a3z Q33 dz; Q33 llaz; ass

+(b lﬂzz ﬂzsl ~ b, |ﬂ12 a13|+b a2 ﬂ13|)
\"11jas; daaz lla;; ass lay; az3

a;; @12 @3
azqy dzz dz3|+
a3y a3z 4di33

1+2 1 0]
3—1 0 2|then

by @1z @3
by azz az
by; az; Qa3

|4] =

Example: If A =

2+3 2 1 .
142 1 0] |1 10
3-1 0 2|=3 0 2|+|-
2+3 2 1l 2 2 1l I3

1+2 1 0 & 3 1 0 O\
LHS. 3 1 n z\ 20, zl QNS
Ji 5 2 1
--1z+a+o~—_4 o
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11 0
3 0 2

2 (1w 0 Q

B2\ ]L
zzal\li\ﬁuzl - . )
=(f5]=1l; F+oly D+l d-13 o3 2D
=(10-4)-13- 4)+0)+(2(0 —-4)—1(-1-6)+0)

=(-4+1+0)+(-8+7+0) = —4 {2}

Property 6:
If all the elements of a row or a column of a square matrix A are zero then [A| = 0
Proof:

R.H.S. -

Consider the matrix A =| 0 0 0

[A11 Q12 an]
437 Q32 Q33

a;; 4 Q43
So|A| = 0 0
A3y a3z dazz
Expanding from R, "
Al =a L o B P@m@© SQ&
T as, as; a3 Qaz / -

=a,,(0-0) - al:‘u j§+ A,@J\—\i D%ﬂ\?ﬂ

Example: If A l 0 eh

3 YN \al

[Al={0 0 0
1309 |
=3|g g|—1|‘1’ ol+2[; g|=3(o-o)—1(o—o)+2(u—o)
=0-0+0=0
Property 7:

If we multiply any row (column) of a square matrix with some scalar k and add the resulting
value to the corresponding elements of any other row (column) then the value of the determinant

is unchanged.
Proof:
@11 Q12 @3]
Consider any square matrix 4 = [au azz Qz3 o
@3y Qzz Qsz] vaxe\
@11 @2 @3] _
az1 Gz @3} \(\ ()
o\ 1931 \‘-’132 ﬂs;i WAL =
Let we multiply R, by k anctthen add iha rm\ll \in R/‘ Resultmg mamx is:

= |A| =

a;; + kagy ﬂn\ml{mzz \ays '+ kass
B = ﬂm\ll\\l\ Nz, az3
ﬂ31 a3z A33
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ayy + kag, ﬂu'!'kazz—/ﬂxa*'gaa
|IB| = az; ) ﬂzz |\ s |
'131 AR Jl a3 W agg
‘1‘1}\@1 s & kﬂn kap, kazs
=@z Qzz G|+ |az Az Gz
azy Qzz a3 az; Qaizz 4ass
dz; dz Aas;
= |A| + k221 @22 Q3| = |A| + k(0) R, and R, are identical.
sy 0Qzz dass
« |B| = |A|
2 0
Example: Consider the matrix A = F 4 —1] then
3 -1 2
3 2 0]
Al = 4 -1
3 -1 2
“3t -z ot 4 SR

=3(8-1)- 2(2+3}+0(—1 12) = 24-10+0°= M- AL @\-w

Let we multiply R, By 2 a.nd adding Waly:Q ( " s ¢lemeuts of R3; the resulting
matrix is ( ) \ ‘\\ (\Jﬁ\\\,\ /\\‘\ \ . A

[3 2 0 T\ \) BT R

Q \J , (3 il

9\ i\&

Now
32 0
4 -1 1 -1 1

B| = -1l = _ |
ol I 3y 212l Zl+ol;

3 =3(8+3)—2(2+9)+0(3-36)=33-22+0=11
We conclude that |A] = |B|
Property 8:
If a square matrix A is upper triangular or lower triangular or diagonal matrix then |A| is the
product of its diagonal elements.
Proof:

a1 @32 Qg3
LetA = [ 0 a ﬂza]

0 0 d33

a1y Q12 43
Al =0 @ ax A C
0 0 /_ﬁ3§ o~ \ A7\

=0y ﬂzz“ @2?1 h"""‘ﬂ = au(ﬂzzﬂaa -0)
= sﬂ 122033 = product of the diagonal elements
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3 00
Example: IfA=12 1 0 th
4 3 2L

L \f g\ dl [l|

WNNVRT3 2
0 —2(7—0) =
_3|3 2|—{1+u_3(z 0)=6
= (3)(2)(1) = product of diagonal elements

24.2 E\raluatiun of Determinants Without Expansion

la=2l b=2m c-2n
Example: Without expansion show that | ! m n |=0
a b c
Solution: L.H.S
a—-2l b-2m c-2n a b c| |-2 —Zm —Zn
l m n [=|l m n|t+ !
a b c a b ¢
e M nf 2\
a b \k‘ y
%\ \\'“\?@ \'T'/ &“
AV s
Example: If a &ww then mthout expanding show that
c+a
c+a a+b b+c =0
a+b b+c c+a

b4+c c+a a+b
c+a a+b b+c
a+b b+c c+a

Solution: LH.S =

2a+2b+2c 2a+2b+2c 2a+2b+2c
=| c+a a+b ° b+c |byRi+(R,+R3)
a+b b+c c+a
2(a+b+c) 2(a+b+c) 2(a+b+c)
= c+a a+b b+c
a+b b+c c+a

2(0) 2(0) 2(0)
=|c+a a+b b+c|=
a+b b+c c+a

a+b b+c C~I/

_/~..--

a . i) "-».;r,—‘( .H\ \ \\\ //x - 2 } 2
.xample: Prove that ﬂ#’ bgaﬁ nc ¥ |
\] \\j N ' O U R e I 1
\WNNW ﬁt - cbl I

-

7N —_— ,//-\ \ L ". \
{} D 0 A\ "'K - \‘. /CA' \1\_,'/,: WU
c+a a+b h +c 0 -\ “// \Q' [ (€ g/\_g o>
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Solution:

a?+1 ab 7\ 1
ab ~ z\j""rﬁl b (1 + z)
~ kNN © 2 b
\\\@“ \\»J \J (s C + 1 1
Al ac bc c? (1 + —z-)
g
1
a (1 + F) b ¢ Taking out common
= abc a b (1 4 ﬁ) c afromR; bfromR,
‘ . b (1+1) and c from R,.
c e
3
(1 + —2) 1 1
a
1 Taking out common
= a2}2o2
=a'b'c 1 (1+F) i afromﬁ,bﬁ‘umcgr/ -
1 and ¢ from €3\ f‘-.l\\‘d
0 '\"\,\ |/(ﬂ \'\S\é ) \I\'\\"'\, VW)
AP\ ZAR\ A
-lz 0 Q/\\‘\, i\“( .‘ ’\'\\ ‘\ \ N /\\\/‘f
a _, ,’ \ \\ ,\\\ (PR By Gy~ C
= a?h?c? NS Yli1= 43
\ ‘QNN}% g Ea=Ey
@ ~a lta
Expanding from R;
' 1 1
( -— 1 0 1 0 —
= a2b?c? 1P _ol 1 141 ¥
a2 1 1 == 1+ = 1 1
W - I ol
, -1 (1 1y 1 1
M. L I
=anie Gl (e )+ a0+ 04 )]

1 1 1 1
o RS
=abe (ﬂzba+azb?c2+azcz+bzcz)
=c’+14b¥+a*=1+a?+b%+¢?

~ A
-3\ (@
Example: Prove that | g S
&
“;ﬂ.
Solution: \CA N\
1 a‘ Yat\Phata? 1+a+a?
a R I * 3 1 a? By Ry + (Ry + R3)
H\
a 1

National Book Foundation
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=(1+a+a)|a 1 a?| _ Tﬂhﬂs out/coninon from Ry '~ [/
1 J VL |- ByG -G
=(1+a+a’) a“J.lh-d ﬂz G-G
14 a - q=- |‘:l'.2 1- ﬂ
Expanding from R,
_ 2 1-a a =aj _
_‘(1+a+a)(1| - | 0+0)
- 3 -
=(1+a+a®)|172 @ -al
a—a? 1-q?
. 1 -a Taking out common
=(+at+a)1-a)1-a)|} 7% from €, and C,

=(1+a+a®)1-a)l-a)(1+a+a?
=(1-a%(1-a%) =(1-a??

1.  Without expansion show that:

N\
W)

9 27 36 VAN i L A
@) |18 54 24[=0 ¢ :(ﬁ)f“li,tb \ae -\ +c| -0 (m) a 0 —c|=0
27 81 28 /e ‘ab a+b b ¢ 0
SII[%J‘F“ \J| J Ji ""msz _ (a-b)® a®-bd ab(a - b)
(iv) | tan? scela 1 [=0 (v) |(c—-d)P® E-d® cd(c—-d)|=0
—r:osecza —cotla 1 (e—f)P e*—f3 ef(e-f)

x =z 0 (a=b)* (a+b)* ab
vi) |0 y -x|=0 (vii) (c —-d)? (c+d)? cd|=0
-y 0 2 -f)? (e+f)? ef

2. Using the properties of the determinants prove tha following.
x y x+y
O |y xty 1 |=-2e4
x+y x y

a b-=c b+
(i) a+c b c-a|=(a+b+c)(@+b*+c?)
a-b a+b ¢

ﬂal + b}_ nﬂz + bz nﬂa + b:i ﬂ1 ﬂz g,a ’,/;;;;, :‘ eV
(i) |nby+c mby+c; mbytogl=(n'+t 1). | O
neg+a; nc;+a; ﬂ.t‘..’g + flg ~ W\ W\ 1 Cg €3

x xz 1 +=ax3

(iv) y y 1+ay --—*t1+ \z)(x-y)(y -2)(z—x)

A\ r\ii;_.
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~N[\GE
N\ a* (b2 \\ 2b
) A\ \L2p' “1—a? - b?| = (1 + a2 + b2)?
QAR hf +52 " 2ab —2a
NI 30 1 2041
M) 2a+1 1 a+2 ={a-1)(a-2)
3 1 2
b+c a a
(vil) b c+a b |=4abc
c c a+b
—bc  b*+bc ¢+ bc
(viii) |a*+ac -ac 2+ ac| = (ab + bc + ca)?
a’*+ab b*+ab —ab
(b+c)* ab ca
(x) | ab (a+c)* bc |=2abc(a+b+c)
ac be (a + b)?
b+c q+r y+z a p x
(63 c+a rv+p z+x|=2lb q y - - 417(_‘\,‘
a+b p+q x+y c r z < .( A\ /v\\j\

(x)  If|AB| = |Al.|B| and |Aﬂ 1f|A1 ihi:n tﬁr amarcmm of order 3 x 3
prove Lpat ladeL Ml;" (O AL

(xii) IfAis a%‘mﬂers % 3 ich that IadJAI 64 then find |A™1].

b+c c+a a+bh

c+a a+b b+c

a+b b+c c+a

W \l \ﬁ\d (E arereal numbers and = 0. Show that cither

a+b+c=00ra=b=c.

2.5. Rows and Columns Operations

2.5.1 Rows and Columns Operations on Matrices
Elementary Row Operations

The following elementary row opcrauons can be performed on a matrix.
(i)  We can interchange any two rows of the matrix. If we interchange the ith row with
the jth row of the matrix then it is denoted by Ry;.

(i) We can multiply any row by a non-zero scalar k with the ith row then it is denoted
by kR;.
(iii) We can add a multiple of any row to the corresponding values 0£m¥ﬁther row. If we

add k-times of the jth row to the ith row thc:n 1t ]&dc'ﬁoﬁ':d byR; + kRJ
Elementary Column Operations

The following elementary column, 0 tlons ean be pcrformed on a matrix.
() Wecan mte!‘change any two columns of the matrix. If we interchange the ith column
' rarth lhé'jth column of the matrix then it is denoted by C; J-
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(i)  We can multiply any column by a Ipap-zero scaiar kw:th thé Eth column then it is
. denoted by kC;. ) J
(i) Wecanadda muiﬂpla Df any Olhtr\eulumn 0 t.hc cnrmspondmg values of any other
column. ff’ we. p,dd kaumes of the jth column to the ith column then it is denoted by
Gl 3N
2.5.2 Echelon Form of a aMatrix
Any matrix which has the following properties is known as in Echelon form (row Echelon form).
(1) If a row does not consist entirely of zeros, then the first non-zero number in the row is
1; we call this leading 1.
(i)  Iftherc aremany rows that consist entirely of zeros, then they are grouped together at
the bottom of the matrix.
(iii)  In any two successive rows that do not consist entirely of zeros, the leading 1 in the
lower row occurs farther to the right than the leading 1 in the higher row.
(iv)  Each column that contains a leading 1 has zeros below 1.
2.5.3 Reduced Echelon Form of a Matrix A
Any matrix which has the following properties is known as in Reduce,d E;c“helmrﬁm¥
(1)  Ifarow does not consist enurcly of (zems‘ then the ﬁrsl n\ nh-fém m:ﬁribcr in the Tow is
1; we call this lf.:admg 1. \ \/ 70\ O\ j .
(i)  If there are many Ws that ebnéménureiﬂfmms, then they are grouped together at
the battmg ftt;g mah‘m """
(iii) lr{\ cessive rows that do not consist entirely of zeros, “the leading | in the
]uwer row occurs farther to the right than the leading 1 in the higher row.
(iv)  Each column that contains a leading 1 has zero everywhere else in that column.

3 12
Example: Reduce the matrix A = [*2 4 1| into the echelon form.
1 0 2
[ 3 1 2 Key Facts
Solutiom: A= |-2 4 1 A matrix in reduced echelon
|1 0 2 N3 form is also in echelon form; but
@ 2 matrix in echelon form may not
(1 0 2] be in reduced echelon form.
~R |-2 4 1 by Ry3 ) i
[3 1 2
~R
~R
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o R\@m@w

~ b alinn
\M 3 -
Y z—{Rs
0 0
Which is the required echelon form of matrix 4.
1 2 3 4
Example: Write the matrix A= |2 3 4 5| into the reduced echelon form.
4 5 6 7
1 2 3 4
Solution:4A=|2 3 4 5
4 5 6 7
1 2 3 4
byR; - 2R
0 -3 -6 -9 @ @@
1 2 4 O W ©
~R |0 1 3 KX 3is
0 1

3
2
fi} | by Ry — 2R,
WW 2 3 R — R,
00 00

Which is the reduced echelon form,
2.5.4 Rank of a Matrix
Using Row Operations to Find the Rank of a Matrix

To find the rank of a matrix, find its echelon (or reduced echelon) form. The number of non-zero
rows in its echelon form is called the rank (or row rank) of the matrix.

2 5 7
Example: Find the rank of the matrix [ 1 2 —1].
-3 -6 3

o

2 5 7
Solution: Let A = [1 2 -1
-3 -6 3

m@n@mj@

| WWWK




1 2 -1
~R |0 1 9

0 0 0.

Which is the mheleww Iof the mah'uc The number of non-zero rows is 2.
\ ‘ \ '
Thus Rank(hy
2.5.5 Using Row Opecration to Find the Inverse of a Non-Singular Matrix

Row operations can be performed on a non-singular matrix A to find its inverse. For this consider
an identity matrix / of same order as that of A. Write A and / parallel to each other. Now

perform some row operations on 4 and / so that matrix A reduce to /, consequently the matrix /
will also reduce to some new matrix which is the inverse of 4.

We can also perform column operations to find A%,

210
Example: Find A™%; if A = [4 3 1] by using row operations.
10 2
1w
‘ 2 10 15\ @@&
Solution: |[A|=|4 3 1 /x ’/@V@
1 0 2

-2fy 31} f;mv&

J |—\1 l—\1 +0(0-3)
@\@iﬁ(g{— F0=5%0

So A is non singular. Now consider

2 1 0: 10 0
[AN=]4 3 1: 0 1 0
1 0 2: 0 0 1
10 2: 0 0 1
~R|4 3 1: 0 1 0 by Ry3
2 1 0: 1 0 0
1 0 2:0 01 B 4R
~R|0 3 -7: 0 1 -4 y Rz — 4R,
0 1 -4: 1 0 -2l R; — 2R,
10 2:0 0 1]
~RI0 1 —-4: 1 0 =2| by Rz3
0 3 =7: 0 1 —4 - A
10 2: 0 0 11 5\ cOWuY
~R[0 1 —4: 1,0 (%2{0\(" .,l.‘\\\by st B»Rz
AR |
~R0\1\ )41 0 =2 ] by 2R,
CRNNNET0 1: =345 15 2/5




g D ;3/5

AL 1/5 2/5

QR '\ ' AL

“\]' 6/5 ~2/5 1/s

Thus Al =|-7/5 4/5 —2/5]
Las s 25

First reduce each of the following matrices into echelon form then into reduced echelon

form.
(1 3 5] 2 1 2 -1 0
(i) -6 8 3 (i) |3 2 (iii) | 4 7 8]
-4 6 5 19 -3 1 3
2 -4 3 0 2 4
) [+ 1 8 Ol P o 3 6]
7 3 o0 0 1 2
2. Find the rank of each of the following matrices. A =100 “\
5 9 3] el -2«3\ \' [(2 o=~
M |3 -5 6 0 = 2\Wafy)
ﬂ‘- — N\ V' { \'\ ""." \ =
2 1 gc RN \‘ﬁ r s
(iii) | WD vy 2 9
- 2\\] |®| QM 1 6

3. ‘J}ith thc help of row operations, find the inverse of the following matrices if it exists.
Also verify your answer by showing that A4~ = A~14 =],

0 -1 -1 [1 2475
(i) -1 3 0 ] (i) |[-3 0 1
L1 -1 4 L 4 2 5
-5 2 3 0 1 3
(m) |[-1 =2 3] (iv)[3 2 4
1 -2 3 6 -1 2

2.6  Solving System of Linear Equations
Liner Equation
An equation of the form a,x; + a;x; = k,; where a,, a, and k, arc constants and at least one
of a, and a,is non-zero is called a linear equation in two variables x, and x,. P\
Similarly, the equation of the form a;x; + azx; + azx; = kz, where ai. ag! ﬂ@ and kz are
constants and at least one of a;, a; and azis ponazeru is uamd Nméarequanun in thrée variables
Xy, Xz and x3. In the same manner we carr &lltmd thls fdrn number of variables.
System of Linear Equatigns |1\ i.;] \\ Pt
When we deal w:{t\mq;e than one tinear equation at the same time; then it is called system of
linear f:quﬁhjqné &hw:de the system of linear equations into two categories:

(i) ~Homogeneous system of linear equations.

(ii)  Non-homogeneous system of linear cquations.

Natianal Book Foundeation
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2.6.1 Homogeneous and Non-homogeneous d,incm\ ﬁr/ @o
Homogeneous System of Linear Equaﬁc\ Q
Consider the following sysm \r\@ﬁ

NN \/\
W%M\J\J : a,x + bzy +cz= kz
azx + bgy +c3z = kg

If k; = k; = k3 = 0; then the system is called homogencous system of linear equations.
Non- Homogencous System of Linear Equations
For the following system of linear equations
mx+by+cz=k
ax+by+cz=k
asx + by +c3z =ky
If at least one of k,, k; and k5 15 non-zero then the system is called non-homogeneous system of
equations.
2.6.2 Solution of System of Linear Equations
The values of the variables involved in the system of linear equations wl'uch when s ted in

any equation of the system the equation is satisfied; is known
A system may have no solution or uniq soh@un or infini @ mns
Solution of Homogeneous v

\I\JWO ax+by+cz=0
NRU\J\J ax + by +cz2=0

a3x + b3y +c3z=10

2 by c1px 0
[az b, ¢ [}’] = [D]
bg c3l kX 0

as

a by o X 0
LetA = [ﬂz b, 63]; X= H; 0= 0]
aq b3 C3 ¥4 0

So, we write AX = 0

Observe that each equation of the system is satisfied if we take x = 0;y = 0; z = 0. So, (0,0,0)
is the solution of the homogeneous system of linear equations. Since this solution always exists
for all systems of the homogeneous equations thus it is called trivial solutions of th m. All

solutions other than trivial solution are known as non-tnwal sah\ﬁ@ @ k

Observe that, if the cocfficients matrix A is non e Key Facts
(1= 5-18’@\ (ﬁﬂf& @ Condition for the system of |

This system may be written as

(1)

= (A7! homogeneous liner equations to |
have non-trivial solution is that
4| =




em has a trivial solution.
The system of homogeneous linear equations may have non-trivial solution if |A| = 0.

Example; How many solutions does the following system of homogeneous linear

equations has?
Ix—2y+z=0 . (1)
2x+y—-3z=0 (2)
x—y+z=0 G)

Solution:
The coefficients matrix is:

I‘J -2 1

A=z 1 —3]

1 -1 1

=3t Pl-caff P+ 2 @@@m
=3(1-3)+2(2 3)3&@ ?

= —5§ ) — 3 =
This system has only trivia
EnmpWrg geneous system of linear equations:
. x+3y+2z=0 (1)
2x—-y+3z=0 (2)
x—4y+z=
Solution: y 0 (3)
The coefficients matrix is:
1 3 2
A=[2 -1 3
1 -4 1

-1 3 2 3 2 -1
|A|=1|_4 1|—3|1 1|+z|1 ~B
Al =1(-1+12)-3(2-3)+2(-8+1)
[A|=114+3-14=0
So the system has non-trivial solution.

Multiplying equation (1) by 2 then subtracting equation (2) fm: @@m
o
1) =22x+6y+4z=0 - %@@ﬁ
2) =2x-y ﬁ\m

-+
;

W
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67



~ &"?\/(\\

'K/J\ 7~ -\I\\\)

19 ( v} ‘\\l | //C/ \\ \\_»\
\ A
\

P

-\

_\ \

Subtracting equation (3) from equauun\(l),
(1) =:x+3y®23,=/(}? \\ ‘\\\. \S /;a b
3) =x- -Fz\ \ﬂ\\ VUL
\J‘\(N'T\' o
Ty+z=
Now equations (4) and (5) are ldenncal
Put z = t in equation (4).
=>T7y+t=0 =&?'y=’—_t=&y=-—-$t
Substituting these values in equation (1), we have:
x+3(=5t)+2t=0
Sx=2t+2t=03x+>t=0

\
\

(5)

11
2x= —-';-‘t

Thus (— 17—1t, —%t, t) are the infinite many solutions. By assigning different values to t we will

have different solutions,

Consistent System of Equations mm
A system of linear equations whic %f t'on consistent system of
equations. : \

In«onsisW atmns
A system of linear equations which has no solution at all is called in-consistent system of

equations.
2.6.3 Solution of Non-Homogencous System of Linear Equations

Consider a non-homogeneous system of linear equations:

a4 x + bl}' +gz= ki I - Remember
ax+ b,y +cz=k; e System of homogeneous linear
asx + by + 32 = k3 . equations is always consistent

since it has at least trivial solution.

where, at least one of ky, k, and k; is non-zero. IS
The above system in matrix form may be written as

a, by opx key
[ﬂz b, ‘r‘z] [}’] = [kzl
ag by clizl liky ] P
% bl 9 | 0\ klt". ’\'ﬁ/_\\,‘\'r; ./O \'\ (v&_ﬁl\g
Let A=la; b; cf; X= y o\ @ﬁ_— \ .,;kg \ O N
a \Lzl/! Y AT
3 by Ei f«/“/ \\ "
\ \! \\\ I‘. \

l\ \\ '\)

N
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Consistency Criteria \f Q

A system of homogcnenué k{ \s consistent if Rank A = Rank Ap. The system is
inconsistent i

If Rank Ab = number 0f unknowns, then the system has a unique solution.

If Rank A = Rank A, < number of unknowns, then system has infinite many solutions.
Augmented Matrix
For a given system of linear equations, amatrix consisting of the coefficients of the unknowns
together with the constants on the right side of equations is called an augmented matrix. It is
usually denoted by Aj. For the above system of linear equations the augmented matrix is:

a b ook

Ap =|a; b, ¢ @ k;

az b; cy kB
Methods to Solve a Non-Homogeneous System of Equations
To solve a system of 3 -by- 3 non-homogeneous system of linear equations, we use the
following methods.

¢ Matrix inversion method

* Gauss elimination method (ech @W@
o Gauss Jordan meth

u
® Cramer's rule
Matrix Inversi
Consul - omogeneuus system of linear equations:

ax+by+cz=k
ax +byy+cz=k,
yx + byy + c3z = ky
In matrix form this system may be written as:
AX =B
If A is invertible (i.e.; non-singular) then A~ exists; so
A1(AX) = AT'B
= (A"1A)X =A"1B
=I1X=A"'B
=X=A"'R
Example: Solve the system of non-homogeneous linear equation by matrix inversion method.

2x+3y—-z=1, x—-y+z=3; x+2y—-z=1 wN
Solution: f\ @@km

Forthi yse osfeqlla;:ons we have m%f
A= [ K\& S\\Q\IA

WN
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A\ ([ \\j ) )
= \ ~ "\ N [ (o \oo~™
_ 2 3 1‘ “'\I('-‘-- \ 1 "v,l -IVQT 1\ }I \_N
and JAI=(1 - 1= *-;*.\1 p-g | P
1 2 _'1 NS B

=2(1-2)- 3( 1 ‘\.,+1(2+15; 246-3=1%0
This system ﬁﬁmﬁfs wa to find A1, we calculate the cofactors of each element .
Ay = {—1)1“ _1 1| =(-1)1-2)=-1
A= (-1)1+2 =(-1)3(-1-1) =2
Aiﬂ = (-_1)1+3

Az = (—1)H1

= (-1)*Q2+1) =3
= (-1)%(-3+2) =1

Az = (-1)*%2 =(-D*-2+1)=-1

Ay = (-1)2*3

HONE NN W e
|
|

o= 0 -3)=-1
A= |3 = re-n =2

0
Asz=(—1)‘3+2‘i 1-( 1°2+1) = ﬂXF/QO@@LN
A33=(-1)3+3 = (= \x@“@@\,\,
\ ORI 2
adJA i?ﬂ =[2 -1 —3]
23 3 -1 =5
1 2 -1 1 2
A-1=|—;ade=- -1 —3]=lz -1 ‘3]
-1 =5 3 -1 =5
Since X = A™'B

B[z 3 -]

~x =4;y =—4 and z = -5 is its solution.

Gauss Elimination Method (Echelon Form)
In this method, we reduce the associated augmented matrix for a given system of linear equations
to its echelon form.
Example: Salvc the system of equations by using Gauss elimination method

X —3x;+4x;=1;x, +2:rz—x3 = 2; 3%, +SJr_z ’-3x3/=5\
Solution: S A Pt oA \\\\' [0\ =
The associated augmented matrix is: |\ 7\ (' SR\BYS

g\ 4;77" \| eI
Ay =112\ 512
Ni N g\ 2315

First, we r&fﬁ& into echelon form.

\\\\\\

\
R I
L/

e — -
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by Ry2
3 b}"Rz—ZR|
5 Rs — 3R,
1
0 b}'Rz;
0
1
0 by —1R;
0 : =3
1 2 zl
0 1 1 Ry + 7R
0 0 . 4 by Ry + 7R,
1 3

~Rl0 1 0 : % L

00 ‘3

@ - ; = Key Facts
2
2 If Rank A= Rank A, =3
O _2 l Then the system has a unique
=% =3 solution.

From second row we have:
Ox; +1x, +0x3 =1
2x=1
From the first row, we have:
Xy +2x;—x3=2
X +2(1)—-§=2=11+§=2

2
=X = ;
2 2. .
"X =T R=1L x3=gis the solution of the system.

Gauss Jordan Method (Reduced Echelon Form)

In this method, we reduce the associated augmented matrix into red @@n for the
given system of non-homogeneous linear equations. @

@)
Example: Solve the system of given non-homogene: ~-f- equations
2x> — ‘ i=1; 4x+5y+z=4,

by using Gauss-]nrdﬂ hod.| \ |
Solution:, [\ o

ﬁt@éﬁ%‘d augmented matrix is:

2ol Fonemdation m




First; we othe reduced echelon form.

1 4 =2:1

~Rl2 -3 s =z] byR12
4 5 1 :4
1 4 =2:1

~R[0 -11 9:0 oy B2~ 2%y
0 -11 9 : ol Ry — Ay
1 4 -2 : 1 1

~R |0 ‘f? : 0 by 77 Rz
0 -11 9 :0

| 1 0 14/11 : 1 by R — 4R,

~R|0 1 -9/11 : 0 R+ 11R

0 0 0 =0J . .

:solet z=1t.

Observe that Rank A = Rank A, = 2, which is less than the number of unkr 0@@@01‘&
system has infinite many solutions. From the last row; we o
0x+0y+0z=0 Q X&@
This equation is true for all val %
From second row, we have; %ﬁk@
| M& =

9 9
%yﬂﬁt— 0= }'=Ht
From row one, we have:
14
x+0y+ oZ= 1
=&x+5t= 1 =2x= l—Ez
11 11
Thus,x=1— -:-%t; y= ,ﬁ- t; z = t provide us infinite many solutions by assigning different
values to the parameter ‘£’

Cramer’s Rule

Consider a system of non-homogeneous lincar equations:
mx+by+az=k
azx + by + 2=k,
azx + b3y +c3z2 = k3

The system may be written in matrix form as AX = B @o@@ S <
If 4 is non-singular then |4| = 0 and A~ exists() @@ .
AN = @&K@




L
. - | /@“
1_ \\ \
Since, A il & j\ﬂ\ﬁ(’\\i\ \\\ N e
So N =4 E‘F\ J'M‘}B
NN A s
\J\,‘ L Ay An Axn) Tk k1A1q + kzAz: + kaAz,
=2X= 7 Az Az Ax i‘-’z] = —[::Au + kzpAzz + kaﬂn]
13 Az Az 1Ays + kA + k3Ass

kyAyy + KaAzy + k3Aszy]
" |A]
= [y] = kiAqp + kA, + k;A3z
% A
kyAyz + kaAzs + k3As;
A

Comparing the elements, we have
- kyAyy + kaAzy + K33y

Al
kA + k3Azz + kaA
14112 24122 34132 @m
4&%‘3@@ AR

SaRae=

Now ky‘hl + kgAzj_

= =1)2+1 a| —1})3+1 by ¢
C (( D lf":-;')“i“k3 (( 1) b, Cg)
k b (5]
b b b $ i
=ty 2f-kelyr o+ ks 5' ke b2 ca
3 O3 3 C3 2 C2 ky bs cs
Thus,
:1 :; ?‘ r Remember
kz b . Like matrix inversion method;
x=-o2 23 0 - Cramer rule can be uscd only if A is
|4l non-singular.

Similarly, 1




Js\e

Example: QJ \lﬁ(\i\ﬁrn §ystcm of non-homogeneous linear equations
2x—3y+5z=1, x+y+2z=3; 3x—-2y—4z=0

by Cramer’s rule.

Solution:

The above system may be written as AX = B; where,

2 =3 5] X3 1
A=|1 1 2|; X=[y]; 3:[3]
0

13 -2 —4)

2 -3 5
| = ) =2 1 s 31 2 51 _}
|A ; _12 _24 I_z _4|+ |3 —4|+ |3 2|

=2(-4+4)+3(-4-6)+5(-2-3)=0-30-25 @@
=-55%0 Q&“@@ W
So, A is non-singular. m%(\/\\

1@\51 4
o -4=1|—2 7 R A R —z|_

- 4| -55
1(—4 + 4) +3(=12 - 0) + 5(-6 — 0)
= -55
_—66_6
T 55 5
2 1 5
1 3 2 21 .1 2 1
13 0 -4 | -4| 1|3 —4|+5|3
oA >3 N o
_2(-12-0)- 1(-4—6) +5(0 - 9) a0 /\\,f @Og\\y»
\ \ 0\ \
=55 \/Q\\\ U '_\/_\ \) LJ
\\ (\\\ N \\\<
_ —24+10-45 sgm\\ )

e
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2 31 /@) .,;\,:\y\tf/ ‘~
1 1 3 1 VIOV [
,-13 =2 ol 2l |+3|3 ﬁf“”la\_zl*z h6)+30-9)+1(-2-3)
\\ -55
Application of Matrices

Matrices are used in many disciplines. For example, in cryptography. We explain the process of
encryption and decryption by means of an example.

Suppose that the sender and receiver consider messages in alphabets A4 to Z only, both assign the

numbers 1026 to the letters 4 toZ respectively, and the number 0 to a blank space. For simplicity,
the sender employs a key as post-multiplication by a non-singular matrix of order 3 of his own

choice. The receiver uses post-multiplication by the inverse of the matrix which has been chosen

by the sender.

Let the encoding matrix be
1 -1 1
A=2 -1 0 m
17\C
Let the message to be @ COME",

e operation of post-multiplication by a square matrix of order 3, the
into pieces (WEL), (COM), (E), each of length 3, and converted into a sequence
of row matrices of numbers:

[23512),[31513),[500].

Note that, we have included two zcros in the last row matrix. The reason is to get a row
matrix with 5 as the first entry.

Next, we encode the message by post-multiplying each row matrix as given below:

Uncoded | Encoding | Coded row
| Row matrix Matrix Matrix

1 -1 1
1 0 ol] ;




- Mwm e

1
&}x/w 0| [46 -18 3]
W} 1 0 o
1 -1 1
[5 0 0] [|2 -1 0]| [5 -5 5]
1 0 o0

So the encoded message is [45 —28 -23][46 —-18 3][5 -5 5]
The receiver will decode the message by the reverse key, post-multiplying by the inverse of A.

So the decoding matrix is
1 [0 0 1]
A"l=—adjA =
i -1 1 7@ 16O m
The receiver decodes the c “®
W o\JUL . Decoded Decoded
‘ W matrix Matrix Row matrix |
0 0 1]
[45 —28 -23] 0 -1 2 [23 5 12]
1 -1 1 |
0 0 1
[46 -18 3] 0 -1 2 [3 15 13]
1 -1 1
0 0 1
[5 -5 5] 0 -1 2 [s 0 0]
1 -1 1

o
So, the sequence of decoded row mamce%’ m @

Thus, the receiver reads the

WWW
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X1 —3x2+4x3 =0 (i) 2x; —3x;+4x; =0

Xy —2x;+3x3=0 n+x+x =0
4xx+x2-613=0 Xy —4x; +3x3=0
(iii) x1+ x;—3x3=0 (iv) 5%, + 6x;, —7x3, =0
3x; =2x;4+x3=0 2x,—x;+x3=0

4x; =X, —2x; =0 X +2x,+2x3=0

2. Find the value of A for which the following system of homogencous lincar cquations may
- have non-trivial solution. Also solve the system for value of A.

(i) le —sz +x3 =0 (Ii) X _4xz +3x3 =0
211’*‘312-33:0 2x1+lx2+1330
3x, — 2%, +4x3 =0 X =2x+Axs =0

3. Solve the following system of linear equahnns by Gauss tt@@
(i) 2x+3y+4z=2 O :
2x+y+z=5 6z)= 1
3x -2y +@F\= 4y Sz =

(i) 2x + ZKX {iv) x+2y+5z=4
=3 3x—2y+2z=3
x+3y=5 S5x=-8y—-4z=1

4, Solve the following system of lincar equations by Gauss-Jordan method.

(1]‘ le —X;=X3 =2 (i) 2x;=3x;+7x3 =1
3x; —4x; +3x3=7 4x; +5x, —3x3 =4
41‘1 + ng “5.?3 =10 101’1 - 4.':2 + 1313 =7
(iﬁ) xn+x;+x3 = 3 ('W') 2xy — Tx;+10x3 =1
25, = 3x, +2x3 =7 Xy +2x; —4x3=8
4x, + 2x; — 5x3 = 10 2x; = 11x; +13x3, =7
5. Solve the following system of linear equations by using Cramer’s rule.
(i) x+x;+2x3=8 (i) 2x;+2x24+x3=0
-xy—2Xxz+3x3=1 —-2x; + 5x; + 233 =
3x; — 7x; + 4x3 = 10 ax,+x 1@ m

3x; — 4x, — X3 = 4

(ili) —2x;+3x3=1
3x, + 61, Oﬂ% m\@r@- Coxy s = z
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Solve the following system of linear cquatruhs /by matnx mvers\ion mefhud

(i) Sx+3y+z=6 .~ (Lﬁ\x+2y~3z 'S
2x+y+3z=19 O\ |\ ¢ 2x—3y+2z=1
x+2y+4z= §§ -x+2y-52=-3

QA '\JM\ | .
(111} —x+\3y 5z2=0 (iv) :—r-_l-%+17=4
2x+4y—62=1 2-24i=
x y z
x=2y+3z=3 s, B _,
x ¥ z
3 2 1
IfA= [4 -1 2 ];ﬁnd A~1and hence solve the system of equations.
7 3 -3

3x+4y+7z="42x—-y+3z=~ x+2y-3z=0.

Determine the v: e of A for which thc following system has no solution, unique solution

or infinitely many solutions.
x+2y—32=43x—-y+52=2;4x+y+(A*-14)z=1+2

Show that the system of equations \rﬁ/ﬁ

x-y+3z=a;3x+y-5z=f; - ;f—i%-p-'% T WU"\)
is inconsistent if y # 2a — 3{3 a 9 ‘\ \K
By making use of matri h?( ?@ Uﬂe and ffecude the following
words: V‘\ \\ ™
a. PAKINQW| AR oY b. ISLAMABAD c. COLLEGE
1 have Iuml

v B ————— ,_-““

Applying matrix operations (addition/subtraction and multiplication of (matrices) with
real and complex entries.

Evaluating determinants of 3 x 3 matrix by using cofactors and properties of
determinants.

Using row operations to find the inverse and the rank of a matrix.

Explaining a consistent and inconsistent system of linear equations and demonstrate
through examples.

Solving a system of 3 by 3 nonhomogencous linear equations by using matrix inversion
method and Cramer’s Rule.

Solving a system of three homogeneous linear cquatmns in thret; gnknomm ﬁmn& the
Gaussian elimination method. - EEN \\' TCAY )
Applying concepts of matrices to real\ wnrld prqblems such as (gtaphlc desngn, data
encryption, seismic anaiysis,,cr}tpiogmgh{ hmasfbrmahon of geometric shapes, social
network analysis). ! \\ L

N I\J '\\j '\J o

\“
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1. Select the best matching ophon v SN
()  IforderofA 1smxnaudordcr of Bisn X p then order of AB is:

(@ ﬂmﬂ’ ~ (mxp (c)pxm (dnxn
(u) ‘ If A is a row matrix of order 1 X n then order of A®4 is:
(a) 1xn (bynx1 (c)1x1 (dnxn

(iii)  For an element a;; of a squarc matrix A:
(a) ay = (-4 (O)ay = (1) My (C);,‘Ef; =D (day =M,

(iv)  If A is any matrix then A and A*are always conformable for:

(a) Addition (b) multiplication ~ (c) subtraction (d) all of these
(v)  If A is a square matrix of order 3 X 3 and |A| = 3 then value of |adjA] is:
(2) 3 ) 173 (c)9 ()6

(vi)  For the square matrix A of order 3% 3 with |4]| = 9; Az = 2;43; = 3; Aj3 =—1;
@z1 = 1; a3 = 2,the value of ay; is:

(a) 2 (b) 3 ©9 ﬁm) -1
(vi)  System of homogeneous linear equatmns hasﬂnnem\flai/solutlaﬁif‘
(a) |A| >0 lAt{/& \\J 3 {cﬂa[' =0 (d)|Al # 0
(vii) For nnn-homogﬂamﬁs sysfe\n\uf eqn&uuns . the system is inconsistent if:
(a) Ran\ = Rank V. AS) (b) RankA # Rank A,
AR J 'Q;} Raﬁk.&l < no.of variables (d) RankAp > no.of variables
[:x) Fora system of non-homogeneous equations with three variables system will have
unique solution if:
(2) RankA < 3 (b) RankA, <3
(c) RankA = RankA, =3 (d) RankA = RankA, < 3
(x) A system of non- homogeneous equation having infinite many solutions can be
solved by using:
(a) Inversion method (b) Cramer’s rule
(¢) Gauss-Jordan method (d) all of these
1 20
2. Forthematrix A=|-3 4 9|; find 4,5, A;3and A,5; hence find |4].
2 1 686
3. Provethatif A~! = A’ then |[AAf] = 1.
la+1 I I 1 A&\ RON\LY
4. Without expanding show that o a¥l i {a + 1+ 2:}(:: 51~ !)2

Find the value of )r 50 Ihatthe fnllqwq\g system has infinite many solutions.

“ Zx 3y+z-1x 2y+Az=2;3y+z=-1

g
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VECTORS

After studying this unit, students will be able to:

Recognize rectangular coordinate system in space.

Recognize: unit vectors and 1, f and k components of a vector.
Find the magnitude of a vector.

Demonstrate and prove properties of Vector Addition,

a & & @& #»

Express dot product in terms of components.
e  Find the cond'ition for orthogonality of two vectors and angle between them.

Explain the cross or vector product of two vectors and give its geometrical
interpretation. Apply cross product to find an angle between tW@

*  Describe scalar triple product of vectors and express. i n

Undecrstand that dot and cross pre
e  Recognize coplan tors and

;

Vectors arc uti \N/\ N-@ay life to assist in the localization of people,
places, and cy are also used to describe things that arc acting in

E;nns: to an extemal force being applied to them. A quantity that possesses
amagnitude and a direction is known as a vector. The first, second, and third
laws of Newton are all relationships between vectors that precisely describe the
motion of bodics when they are subjected to the influence of an outside force,
Newton's laws cover a wide range of phenomena and can be used to describe
anything froma ball in free fall to a rocket on its way to the moon.

- - e

3.1 Vectors Introduction

Scalar

Explain dot or scalar product of two vectors and give its geumetrmal interpretation.

Find the proj ction of a vector along another vector and work done by a force.

A physical quantity which can bc completely specified by its magnitude only is called a scalar.

¢.g., mass, time, distance, volume, etc.
Yector

A physical quantity which is completely specified by its magmtude and direction rgs }uell e.g.,

weight, displacement, velocity, acceleration, etc.

- (0
= O \BThead]
3.1.1 Geometrical Representation of a Vec@r T\ O\ (* \\' \/

Geometrically a vector is represented by a lm gm\wr,rh hﬁ arrow

head at its one end. The lenéﬁ; nf ﬂ?/ 'hc\ €] m&ﬁcnms the magnitude A (tail)
and the arrow head m% Fs ih& dm:ction of the vector.

The cnd A 48
point, In thc\ﬁgure vector AB is shown. It is denoted by AB.

tail or the initial point of the vector and the end B is called the terminal

'5, Nnﬂmd Book Foundation
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Usually, the vectors are denutcd by thKface IC‘-‘“EFS’ a, b c etc ora ._!;, ¢. There are also other
notations to denote a vector hkc a b €\ete;

3.1.2 Some K riddmém.ﬂ Dcl‘mtmm of Terms Related to Vectors
Mugmtmﬂ! of a Vector

In the figure vector OA4 is denoted by &@. The magnitude or
the length or the norm of the vector 04 denoted by ]Eﬂ or |d|. 0

R

Equal Vectors
Two vectors @ and b are said to be equal if both have the
same magnitude and direction.

It is not necessary for the equal vectors to have the same
position. If vectors @ and b are equal then we write @ = b.
Geometrically two vectors are equal if they are translation
of one another.
Negative of a Vector ~ VA
N \/f N\ \ ( \ \‘ )

A vector having the same magnitude but opposite in dlrecnwgf a 1'\ / >\ ;7\_,
vector d is called the negative of d and 15 denpt;d b;r =)\ ( I

M\ U !
Zero or Null Vector e WU\
If the initial and terminal pmnts of a vﬁﬂt&t
vector has. zero le\l}ﬁ\ﬂ'hj\s Veetor is called zero vector and is denoted by O. The zero

vector h | It can be assigned as convenient direction according to the situation,
Unit Vectfﬁ-

A vector which is in the direction of non-zero vector @ and has magpitude 1 is called unit vector

=18
L~ |

of @ and is denoted by &. If @ is non-zero vector of arbitrary length |d| then & = %.

= d=|ala.
This means any vector @ can be obtained by multiplying the magnitude of the vector to its unit
vector. The process of finding the unit vector of a vector d, is called normalizing vector d.

Parallel Vectors ’

Two non-zero vectors @ and b are said to be parallel ifd = Ab; i
where A is a scalar. If value of A is positive then both vectors have
the same direction and if value of A is negative then both are in the
opposite direction. The vectors which are in the opposite dnrectmn are
known as antiparallel vectors. < >
Position Vector @) 3
The vector used to specnfy the puuu}on nf‘n poi n P wnh wﬁpect to~
origin O is called pusnmlf vccm: of R. Thhﬁll of this vector is at

origin and tip at th pﬂ\ i P Thual _'_ﬁ is the position vector of point
P with rcqucjli td O(x,¥) x-axis

el Buok Favncdation g1



Addition of Yectors
Head to Tail Rule or Tr mngle Law nrmdmﬁmf/

To add non-zero vectors @ aild b dﬂll'l lhc taﬂ\qftheﬁccond vcctur a

with the head of the ﬁrs\J ectm‘ \Now ‘the vector obtained by joining .
the tail of (hfﬁist Mé\térto head of the second vector is the vector
a+b. . i+b c
@ + b is known as resultant vector of d@ and b. E
This me we.d for the addition of two vectors is called head to tail i b

a B

riile of addition. Since d, b and @ + b are along the sides of a tringle
ABC'. so the rulc of addition is also called triangle law of addition.
Pavalielogream Law of Addition

Consider any parallelogram ABCD. Let AB = @ and AD =b.
Since the vecior BC has the same magnitude and direction as
that of AD; su BC = AD. Also DC has the same magnitude and
direction as il.' ~f 4R so DC = AB.

Using trianglc law of au ‘ition, we have

N
e ~ [
= - — |
Le;d+b=AC "\ el ‘./(ﬂ‘ \ ) \\ VU )

\/ ) \ \ N
This mean diagonal thn@ ‘\\“‘;Lﬁw(hﬁwﬁmjﬂ‘s the sum of
\

the vectors of a amu{ 1 \\\ \BRR=

This is lm W t:gram law of addtion.
Polygon L: 1. uf Addition of Vectors

The process for the addition of vectors can be « “ended to any number
of vectors. For instance, let we have five vectors d, o, g, &, € and wé
wanttofind@+ b +¢c+ d + é.

For this draw 1A = a,AB b;

= (TA+AB) + BC + CD + DE
=TB+BC+CD+DE (~IA+AB=1B)
= (IB + BC) + CD + DE

Al
+
gl
+ ©
S

= ID + DE (R TC+ED = mju '
= TE‘ (¢ (;. ”ﬁ + DETE)

......

Same method is ado tq |t0\ ﬁhd thc sum of' any number of vectors.
This is c&ll?djpolp@o Jtaw’ of addition of vectors.
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Consider two non-zqro vacters dandbthend — b =a+ (-b).
To find & L5 tiraw 4B = @ and BC = —5; then A

AB + BC = AC

i+ (-b)=A4C
Thus AC is the vector which represents @ — b.
Scalar Multiplication
If A is a non-zero scalar and d is a non-zero vector then the d
scalar multiple Ad is a vector whose magnitude is || times /
magnitude of d. Ad has the same direction as that of @ if A is la
positive and if A is negative then direction of Ad is in the
opposite direction of d.

If Ad = 0 then either A =0ord = 0. N\

3.1.3 Position Vector of a Point Diwdingﬂw Lilecgnfmlm\'n'i G ven Ratm

Casel S\t AR \EN\S!
Let AB be any line se em* and R is the pomt which
divides ¢ \sﬂmq\éégﬂmnr in the given ratio m : n internally.
The pomhim vectors of the given points A and B are d and

b respectively. Let 7 be the position vector of point P.
Giventhat °

Q
R

L 4

>

= n|AP| =m|PB]|
Because AP and PB have the same direction; so
nAP = mPB (1)
From figure OA + AP = 0P

And OP + PB = OB

Substuutmg vallués i equatlon ( 1)
n(F—d) = m(b ~7)
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= nfi — nd = mb. - m?)
= nr+mr=4nb +

=5\Hl ¥ ‘n)‘r b ¥ na
A\ M\ n-\\l-%l '\\J_J\" 0
\”\Ji N\ o= mb + na
© m+n

Casel
Ifm:n=1:1thon ™ == orm = n. In this case P will be the midpoint of 4B and position
vector of P in this case is:

nb + nd o B s
:F:— -(m—ﬂ)
n+n
. n(b+ada) da+b
=T= I
2n 2

Case Il '
When the point P divides the line segment AB in the
- ratio m: n extemally then

|AP|:|BP| = m:n Y\WO
AP mO\ |\~ \ &
= l_l == \ Y'E@\/

|BP WJ‘OK NS
NI = m|BP|

Since AP and BP have th_c same dircction thus,
nAP = mBP
n(# — d@) = m(7 - b)

= nf —nd = mf —mb

=nf—mr=nd—mb
= (n=m)r = na —mb
. nd—mb

7=
n—m

3.1.4 Application to Geomelry
Here we are giving some simple geometrical proofs by using vector methods.
Theorem: The diagonals of a parallelogram bisect each other. A\ (@
Proof: .“/ | \\\\i | //, \ oo~
Consider any parallelogram ABCD. Let &, bfc 'mﬂ d) 18
be the posmon vectors of thb%ﬂc\'ml:ﬁ/ﬂ. \ {\'umHV

respectively, i
Now the po§ “N&é’i“ lhc nudpmnt M, of the diagonal

— . 4+c

ACi is—. A 8

-

\
/1 .
| - -

/
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Since ABCD is a parallclogram then:

AB = DC
sh-d=¢-d
=>b+d=d+7¢
Dividing with 2: P+d d+é
a+¢c
p-vofM; = =3 = p.vof M;

Since the position vectors of the point of intersection of both the diagonals are same. Thus, they
bisect cach other.
Theorem: Line joining the midpoints of any two sides of a manglt_: is. pamll/cl tt;rth“e\th:rd side

and half in length of third side. A AN N | /,, \ o=
Proof: A O /f \ \ ‘ C'J
Consider any triangle ABCC Lcht/ﬁ antk:?\m, L‘hi‘:’ Jhest

position vectors of the vﬂrhce*i A B \and-C respectively.

Let My anﬁ Mgﬁﬁ\diﬁmﬂpnmts of the sides CA and M, M,
BC resp\vé v\ly therfore:

Position vector of My = %
b+é .
> _
Position vector of M, == A B
1 = -y - —_ 1 - - — 1—'
=§(b+c~a—c -g(b'ﬂ) =348

This shows that M, M, is parallel to AB. Also
1
|M M| = I—AB| = > |48|

This shows that length of M; M, is half the length of AB.

Theorem: The joining of the midpoints of the two non-parallel sides of a trapen m is-parallel to

its parallel sides and its length is half the sum of thc lcngths uf t.h& pamilel siﬂe&-;f JUY

[ 2]

sides AB and Dfi\’l “

NNK .
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Let d, b, ¢ and d be the position vectors of the wmees A, B C and D rcspectwely Also
suppose that M; and M;be the xtudpomts uf tl{z ubn-pm‘allel sides BC and DA rcspecnvcly

Therefore,
QA J‘F Psiﬁﬁn %ctor "“ﬂ _ &%a
Position vector of M, =¥
Now m=¥_i‘z__§
=56 +e-d-a) =3[(-2) +(¢-d)]
=%(A_B‘+E) | (1)

Since AB is parallel to DC (given).
Thus AB = Aﬁf; where A is some scalar.
Therefore m=§(ﬁ+ﬁﬁ“)=lﬂ+1)ﬁ
MM, = uDC wheren——(ﬂ.+1)|sascalar
This shows that M, M, is parallel to DCand AB > N\~ 0 “f N \\ \' | f;/ \v’\'
Thus M; M, is parallel to the  parallel sides, AlSo, ,frﬁm U}lt‘ is\clear that length of M, M is half
the sum of the lengths of thejfwallql s;ﬁes\ﬂfmd T

—«\/\
\

\ \ '
~N\ o= /\\ '\ 'l,"‘.) U

3.2 \*’cu%f\qlwﬁik}gb\h hree-l)lmcusmmll Space) .7z-axis

3.2l Ru.tnm,ul ar Coordinate System
To represent a vector in space we need a 3-dimensional

coordinate system, For this we consider three mutually 'Y
perpendicular lines interesting at a common point O o
known as origin. »

0 y-axis

Any point in the space has some specific position
w. r. t. origin O i.e.; We can locate the point by
moving specific distance along these three lines.
These three lines are known as coordinate axes and x-S

are named as x-axis, y-axis and z-axis. The distance

along x-axis is called x-coordinate, the distance along y-axis is y-coordinate and the dlstancc
along z-axis is z-coordinate of the point. o~ sSAr

A general point in the space has coordinate (x,,2). _ ~—~{\ [[2\ =

This coordinate system to represent or locate a‘ pomL IS known as re:t:tangu[ar coordinate system
or Cartesian coordinate system and t&denated\y by R'X R %R or R3. The set of all the points in

space is:

[ VAR = {(1,),2):%,), € )

H H
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3.2.2 Unit Vectors i, j am:t k e \ ) \\ oA~

To represent a vector in spaﬂc wé nmd .un\t\ectors in thc direction of coordinate axes. For this
we have three fungl lﬁéﬁtal unit vectors i, j and k along x-axis, y-axis and z-axis respectively.
3.2.3 Cbih]ﬂmélm of a Vector z-axls

Let OP be the position vector A

of the point P(x, y, 2), then
0A = xi; OB = yjand

0C = zk

From figure it is clear that

OF = 0Q + QP 1)

——y

Since 0A + AQ = 0Q
=>0A+05=‘Tj

y-axls

Or 0Q =xi+ yj K{A — —
Also QP = zk AT QL

Putting values in equatlmb(ci) we jm@ \// \\ .
\\\\ \ “/, “xa+ yj+zk
Which lst kﬁﬂﬁ‘@ﬂ éethr brf\[he point P(x, y, z).

In the repté ation of the position vector OP = xi + yf + zk, x,y and z are known as
components of the vector along x -axis, ¥ -axis and z-axis respectively.

3.2.4 Analytical Representation of the Vector

The representation of a space vector in its component form # = xi + yj+ zk is known as
analytic representation of the vector 7.

3.2.5 Magnitude of a Vector

Consider a space vector T = OP. ’ ~ y.
From figure

07" = [0g|" + [@P
“~0Q=xt+ yj

~ 03] = V¥ + 77
and I@l =2z

Putting values in equatic;n {»fl,“),.m/ﬁ\/
|i"lz—(’_x3+y )z_r_ = (

- \J “ \J|\
NN .
N x-axis

y-axis
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8

= |F|? = x2 + y? + 2* Q

= |F] = Jx2 + y? + 22

Whichis themag{ﬂﬂuab QF a ﬁctm space

3.2.6 Fundamental Definitions for Vectors in Space
Unit Vector

Let # = xi + yj + zk be a space vector. A unit vector # in the direction of 7 is given by
r
==
|7l
xi+ yj+zk

JEE+y? + 22

d Y
=f= : i+ —j+
xRy 4z? xP+yr4z Jxt+yitzt

Equal Vectors \/:\ = /\\.r

Two space vectors 7y = x,1 + y,/ + 213? ancufz = x;i + y;f + z;ﬁ hméaid to be equal if they
have the same currespondmg mmpon@lga It fz S\ ~\ O\ -\ DAL

-

\\ Q-xlf + yJ + zlﬁ = x4+ y,f + 2,k
PX=X NTF A TL
Zero Vector
A vector in space which has all its three components equal to zero is called zero vector. It is
usually denoted by 0.ie.;
0 =0i+ 0f + 0k
Negative of a Vector

For a space vector # = xt + yJ + zk negative of 7 is denoted by —7 and is defined as:
-7 = (=)t + (—=y)f + (-2)k
Scalar Multiplication
The product of a scalar A with a space vector # = xi + yj + zk is denoted by A# and is defined

as
A7 = (Ax)i + (ﬂ}'}f + (A2)k s
Parallel Vectors Loy N2

Two non-zero vectors in space ﬁ =x,IF yyf + zlﬁ and 7 1’ = xgi H yz,f + zzﬁ are said to be
parallel if there exists somﬁnon-zem acala:@\{\mh that 7, = 7. ic;
A\ x-_.i + I+ 2,k = A(x0 + 3] + 2k)
NN 2 04 yug 4 20k = (et + Q) + (zlk
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J’z
Which is the condition for two vectors to be parallel. For positive value of A vectors will
have the same direction and will be in opposite direction if 4 is negative.

Addition of Two Vectors
Consider two vectors 7, = x,1+ yJ + 2k and 7, = x,1 + y,] + 2,k in space. Their sum
7y + 7, is defined as:
fo4 1y = (04 yof + 20k) + (x20 + yof + 22k)
= (x; + )1+ O +22)] + (2, + 2k,
3.3 Properties of Vector Addition

-

3.3.1 Commutative Law for Vector Addition

,,/\/ N\

Stntement. For any two vectors 7; and 7, inspace 7, + 7 = Fz ,-lzj‘:;\ /f)/ w\
o O \_ /=

Proof: Let#, = x,0 + y,j + z kand 7, 5% Xl % yaf'& ziﬁ NI | (el
Thus (r_% ‘-1- 7 /(xl\i ¥ /Jm + g,ﬁ\l + (i b + z,k)

AN @ e i+ O +y2)] + (20 + 20k
Since xy, Xz, Y1 \m.zg € If& and commutative law w. r. t. addition holds in R, so we may write

NN 5 4 = 0+ 1)+ Oz + 9007 + (22 + 20k
= (%20 + yof + 2k) + (11 + yf + k)
=F2+F1

Associative Law for Vector Addition
Statement: For any three vectors 7y, 73 and 73 inspace;: 7y, + (75, + 73) = (f, + /) + 73
Proof: Let 7, = x,i+ yij + 2.k, 75 = X201 + yof + z;k and 7 = x50 + y3f + 23k
Po + 73 = Xl + Yof + 2k + 230 + yaf + 23k
= (xz + x3)1 + (y2 + y3)f + (2 + 29k
f+E+i)=xi+ yj+zk+ [(-Tz + )+ (Y2 +ys)f + (z + zs}ﬂ
' =[xy + O + 23)]0 + [yy + (y2 + ¥))f + [z + (22 + 23)]k
Since X, X3, X3, ¥1. Y2. Y. Z1, Z2, Z3 € R and associative law holds in R w. r. t. addition so, we
may write: |
f+ (F + 1) =[(x +x) +x3]i + [(J’l "‘J’z) + J!’i]f"l' (2, "‘2Q1'|“ 23»1’5
= [( + X))+ Oy +J’zlf’f’ (31 (* zz);'] *(1’31 + yaf + z3k)
= {(xlf + y,j + zJE) -l-;x;t‘-’}- Vsf F zzE)] + (x3i + yaf + z3k)
[= (q -i- f'"g) Hi-
33.2 ldmﬁw qudur for Addition
Let0 —1 |E)H -\- |ifl'j‘ + DE be the nullvector and 7 = xi + yj + zk be any vector in space, Now
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_ +n}+\0&“)+(xr+ yj+zE’)
\= (0 4+ )+ 0 + )] + (0 + 2)k
Since 0 is the adriltwt#ﬁdm{ﬁty of real numbers; so,
W O+7f=xi+ yj+zk="+

Also
7+ 0= (xi+ yf+zk)+ (01 + 0f +0k)
=(x+0)i+(y+0)j+(+0k
: =xi+ yj+zk ="+
Therefore, O+Ff=Ff+0=F

This shows that O is the identity for the vector addition.
Additive Inverse in Vectors
Consider any vector 7* = xi 4+ yJ + zk in space, then —7 = (—x)i + (—=¥)j + (—2)k. Now
P4 (=7) = (xt+ yf + 2k) + {(-)i + (=9)f + (-2)k}
=(x+E=))i+@+E)+(2+ (-/15 e\

(0 J
= 0[ + Dj “t {}E \'"". . ,\/\ \ *\{ },l\‘?; \"-.I (»\:&9\_/
= o AT LY =0
and D7 &+x)i ¥ *Wfﬂ:(*ﬂfr] + (xs + yf +zk)

N AL (GO0 xii + (=) + f + ((~2) + 2)k
J \ LI —
W '\\l\ = 01+ 0] + OF
Therefore, F+ (A =(-N)+7=0
This shows that —7 is the additive inverse of .
3.4 Properties of Scalar Multiplication
34.1 Commutative Law of Scalar Multiplication
Statement: For a scalar A and a vector 7 in space A¥ = 74.
Proof: Let # = xi + ¥ + zk be a vector in space then:
AP = A(xi + yf +zk) = )i+ (Ay)f + (A2)k
= (xA)i+ (YA + 2Dk = (xi + yj + zk)A
=7A

Associative Law of Scalar Multlplicatinn =~ ~20O)

Statement: For any two scalars 4;,4; and a vactor 7\ msmcc &{AQF] —»{al, Rz?[r
Proof: Let7 = xI + yj + zE hc a vcctor in spac¢ tﬁen J
Aoft = Ay (xd +y]  Zk) 2 ()T azy); + mzz)ﬁ
Al(lzf) '} Wx)l + Gzl’)f - (AZZ}E] A(A2)1+ Ay (1’12)")] +4 (AEZ)E
H “ -1 {lllz)xi+ (A342)yf + (A 4.)zk = (2.1.12)(::? + yf +z§) (A, 4,)F
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State and Prove Dis.trihutwe Laws fnr S}alar Multiplication
Statemeqt, Fm(%aﬁrs Al,}lz and 7y, Ty any two space vectors
(i) (11 + A)fy = 41Ty + A1
(i) A+ ) =40+ AT
Proof: Let 7, = x,0 + y,§ +z,k, and # = %, + y,f + z;k be two vectors in space.
() 4+ DR = A +A)(xl + yf +2:k)
= {(A; + A)x }i + (A + )Y +{(4 + Az)zl}E
Since distributive law holds in R; so,
A+ 207 = Aaxy + )0+ gy + 9] + (421 + 4,2k
= (Ayxyl + A9 f + 4,20Kk) + (A28 + A0 + ,2,k)
= A, (11 + 3f + 2.k) + A, (3,8 + yif + 2, k)
= A7 + A1y
(i) MG+ ) = A0l + yof +2:k) + (x20 + y2f + 2,K)] AR\
= A + 2+ 0 2] + kR | (CONDT
= A1(x; + 2T + A0y +}"sz + ﬁi 21 ui 2z)§
? )E@hxr)f f(k)ﬁ\)f *f"())epzi)ﬂ + [(115‘2)? + (A2 + (-1132)&]
A1 £ ﬂ.l(xli*-h T+ Z1k) + Az (320 + yof + 25K)
W N '\\I\J N &, + 4,7
Distance Between the Two Points in R? (Distance Formula)

Consider any two points P(x;, ¥4, 21) and Q(x3, ¥z, z;) in R®.

The distance between P and Q is thc magnitude of the vector PQ.
The position vectors of P and Q are OP and 0Q respectively; where
OP =xi+ yf+zk 1 2-axis
and 00 = x31 + ¥, + 2,k
It is clear that:

0P + PQ 0Q PO yz) G re)

" = (xz‘t‘ + yof + 22k) — (s + yif + 2,k)
= PQ = (x, - )i+ (v, —y)j + (2 — 2,k

= |PQ| = V(2 — 1, )2 + (02 —y)? + (z - Zﬂi 9" RN
Which is the distance between the pnmts P(xl, yf. 31} S,
and Q(x2, Y2, 23). ‘-/».,. 4 A\ l:\\\ 7

x-axis

91



1. In the following find lﬂm mqmred vectm'\m_vfitsemnpuncnt form Given that P = (3,~1);
Q=(-4 e)n (1 4r)and5 (2 5)

(i) @_M“ [u) 3P0 - RS (i) 2PR + 3PS
(v 770 +3PR-308 (v) 3%PS-425F + QF
2. Show that:

(1) the points A(1, 0); B(6, 0) and C (0, 0) are collinear, _
(i)  ifdand b are the position vectors of points (2,—7) and (-?, 11), find the value of
m for which d and b are collinear.
3 Ifi=<-1,1>17v=<0,1>and W =< 3,4 > then
(i)  Find % that satisfies I — 2% = ¥ — W + 39 (<x,y > means xi + yj)
(i) Findiandbifti+7=<2-3>3+20=<-1,2>
(iti)  Find initial point of # = < —3, 1, 2 > if its terminal point is (5, 0, 1).
" 4. (i) Find the value of m for which the vector @ = 31 + 4f — 9k is parallel 19 .
b=i+mj-3k NTAYCON W\
(i) Find the value of A for whlch lh(‘lpmms \Bs thdﬂ\}% q‘:olfmehr
Given that I + 2; + BE —Zi-h f+ sm\ A1 ‘are the position vectors of
p{llmb P,Q and’R rcsprcll\.‘é!g\ N
5. (@) d= Jliiq@‘;#ﬁ B=T- ;—Eand ¢ = 21 + k then find a unit vector in the

\M ion of 2d — 3b + C.

(i)  Use vectors to find the length of diagonals of a parallelogram having adjacent
sides { + jand [ — 2.
6. (i) Show that the points with position vectors t — J, 41 + 3] + k and 21 — 47 + Sk
are the vertices of a right-angled triangle.
(i)  Show that the points with position vectors 2f + 3 + V3k,V10i—j + V5k and
—31 + V3] + 2k are the vertices of an equilateral triangle.
7. ()  Find the value of A for which |d@| = |3b| where & = 1 - 3f + Ak and
b=t+2j—k
(i) 1fd=2i+3jand b = —31+ 2J. Check whether|d| = |B| or @ = b.
8. Ifd=21—37+k and b =i — 3 + 5k then find:
(i) A vector of magnitude 5 in the direction d — 2b.

(i) A vector of m.agmtude npposm; in dlrecumt 32'1' +‘& ' ’

9. The position vectors of points Aand Bre, t - Zj‘d- % nd 28 1/ 3}‘ k respectively.
(1) Find the posumn vecmr of pni?n\P dmdmg the line segment joining A and B in
the rat}a @ \ B mtemaﬂy
J NN
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(i)  Find the posnmn vecturo.‘ pqml.Q ﬂmdmg the lme segment AF in the ratio 3 : 2
externally. || || |||\
10. (i] Th}q th,réé vcﬂlces of a parallt:lngram ABCD taken in order arc A(3, —4);
J d( 1,—3) and C(—6, 2). Find the fourth vertex D.
{11} Find the values of x and y if A(1, 2); B(4,y); C(x, 6) and D(3, 5) taken in order
are the vertices of a parallelogram.
11. Show that the line segments joining the mid points of the sides of a quadrilateral
consecutively form a parallelogram.
12. Show that line segments joining the mid points of the diagonals and the mid points of any
two opposite sides of a quadrilateral consecutively form a parallelogram.
13. Prove that line segments joining the midpoint of the diagonals of a trapezium is parallel
to the parallel sides and its length is half the diffcrence of the lengths of the parallel sides,
14. OPQR is a trapezium made from three

equilateral triangles with OP =7, 05 = §

and M is the midpoint of QR.
(i) Write PS in terms of 7 and 5°
(i)  Show that OQ is parallel (o SM. Nan)

15.ABCDisa tmpczmm Wﬁh A B pmfhetf A =
to DC. E ts thcj Fc-ml on the dlagona] g
_@ SNt hmpa__pg P

Show that BC is parallel to AE.

16. ABCDEF is a regular hexagon E o
as shown in the figure. If

AB = d and BC = b, then
express AC, CD, EF, DA, 'EB,
FA and FC in terms of @ and b.

b

33 Dot or Sealar Product

3.5.1 Dot or Scalar Product of Two. Vccmrs and 'i (.enmctrmal Imcrpretnhon

If 8 is the angle bctwcen the o no zt;m\vccmrh dand b then their dot product is denoted by

d.b and is defi ncd as

A\ ]{11'5 ‘l‘allb|cnsﬂ

where, B :h meaiured from @ to b and 0° <8 <180°
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8 is positive if measured in amcluckwme and xs taf(eﬂ
as negative if measured clcdkiwse a0\ \ e
The value of dot pmduct\lﬂ a ﬁ;a]ar quanmy that's why

T W

itis known ag ﬁqglﬂr ﬁmﬂum

Observe that:-

b-id= |Bd] cos(—6)

. The angle between the vectors |

= |b|ld| cos 6 (- cos(— 6) = cos 6) is the angle where the tail or
= |d| |EI cos @ head of both vectors meet.
=db

Le.; i-b=b-d

The reason for the angle to be taken —@ is that for b - @ angle will be measured from b to d
which is measured clockwise and therefore will be taken negative.

Particular Cases: '
Case I: when 8 = 90° then vertices will be perpendicular or orthognnal to each Qﬂ}t{' In this
case ~ f 10 /‘)A\ \,\

o=
|ﬂ||blCOSQUF* fﬂ‘l Ib (U) :N |
Case II: When 8 = 0° thcnﬁoﬂ] mv:qtﬁr&have‘ fne\safme dlrectmn i.c.; Both arc parallel to
each other, in this case | \\)
n\\N N a5 = 1615 cos 0° = \al|B|(1) = lal|B|
Case III: W}én d = b then in that case:

= |d]lal(1)
d-d=|dal?
=>|d?=+yada-a

3.5.2 Dot Product of Fundamental Unit Vectors i, j and k
_ The fundamental unit vectors in R3are £, j and k.

I is along x-axis; j is along y-axis and k is along z-axis. So |i| = 1; |fl = 1 and |E| = 1. Now
LT =|l||tlcos0°=111=1

i.J =illflcos0°=111=1 v 1

= |k||k|cos0° =111 =1 tk
j.k =fl|k| cos90° = 1.1.0 =0 > N\ WL _
k.i = IRI]'I’I €0s 90“ =1,1.0=0 0 i y-axis

X-axis
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3.5.3 Dot Product in, 1crmu uf{‘ump nemq«;\_; AL

Consider any two nnn-zcm w:mum 3 and in space.
Let N N ﬁi‘ﬂlt{ﬂ?-l- a,f + agk
wd WV byl + byf + bsk
Then @b = (ayl+ apf + azk). (b1 + byf + bsk)
= (&). (bsD) + (@, D). (b2f) + (@10). (b3k) + (a))- (by) + (azf). (b2))
+(azf). (b3k) + (azk). (b,0) + (azk). (b2) + (ask). (b3k)

Since the dot product is defined between the vectors, so,

a.b =ayby(i.0) + ayby(i.J) + aybs (L. k) + aghy (. 9) + azby (. f) + agbs(j. k)

+ agby (k.T) + azby(k.]) + asbs(k. k)
@b = ayby(1) + ayh;(0) + ayb3(0) + a,b,(0) + azby (1) + aybhs(0) +
ash;(0) + azb,(0) + azbs(1)

d.b =ayb, +azb, + azhy
This is known as analytical expression for dot product. /'—\\ e W
3.5.4 Condition for Orthogonality of Two ‘c’ﬂ:tors ﬁ \ \' ; \o~
Consider. two non-zero vectors d and b iy spacE Let 6 = a, 4 azj X1 aak
and b = byi+byj + bk |70 0\ TN
@ and b will bq ﬂr\t}}ﬁgpna! (p&:rpendzcular) to each other if and only if @.b = 0

\Ni = (gl + apf + ask). (by + byf + byk) = 0
= a.b, +azb, +a3b; =0

Which is the condition for the two vectors @ and b to be orthogonal to each other.
3.5.,5 Commutative Property of Dot Product

Statement: For any two vectors d and b
d.b=b.d

Proof: Let @ = a;i + a,j + ask and b = b1 + b,f + b3k be two vectors

d.b = (ayi + ayf + ask). (byf + byJ + bsk)
= a by + a;b, + azb; '

Since commutative law holds in R, so
d.b = bya; + bya, + baas

= gbli‘ + byof + bgfc) (alt + azf + aa_ﬁ) I
dab=b.d : ) N \ A
Distributive Property of Dot Pruduct " g

2 NI old=a 1+a3;+a3ﬁ
VA i b = byl + byj + bk
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c—c13+czf+c3§ \, A ( r\w\\(\)ﬂ\\\ L
N \ \ \ A e
Then b+¢ = (bC%\ b@j‘\b hgﬁl %r&: + cof + c3k)
\\ﬂ wbpw T+ (b + ¢)f + (bs + c)f
= m +¢) = (a1i + apf + azk). [(by + c)i + (by + ¢,)f + (bs + 3)k]
= (bl + (“1) + ﬂz(bz + Cg) + ﬂ.g(bg + cg) .
= (a1by + a;¢,) + (azb; + azc;) + (azbs + &333)
= (ﬂ1b1 + ﬂ.zbz + ﬂgbg) + (a161 + a;C; + ﬂgl'.';;)
=d.b+d.c
3.5.6 Direction Angles
The angles which a non-zero vector # makes with the coordinate axes in the positive
direction are known as direction angles of 7. Let these angles be @, 8 and y; then

0fasnm 0=p<m 0<y=nmn
Direction Cosines
If @, § and y be the direction angles of
a non-zero vector 7 with x-axis; y-axis and

z-axis respectively, then cos @, cos f and n:ns Y

are called the direction cosines of 7. &@
Here 7 = OP = xi + yj %{f\\
7l =yx2+y %

From FIW g(ic AQP:

[o4]

[oP|

From right-angled triangle BOP:

=cosa or = cosa =

—=cosf or = cosﬁ=%

From right-angled triangle COP:

loc] = - & cos -
—— = COSYy Ol 14 7

(A0
) //\\I" B LE‘
In literature cos a , cos § and cos y are denotcd b)( I, m angLn ﬁfiéﬁ }@ o))\
\x \ p\ \
\ \ \

\ \,J'

"

\\/\
r \ \\ \ \m\* D\'iﬁ -T
AR "
WY

ﬂ=‘E05Y=I—FI'




o J\/ N\
—~/~\\ ()

e, \ \
-|\’“ \II /,- _\:.' \ .,J
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Y

A‘ \

\
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- [ J
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3.5.7 Sum of Squares of Di,recnon Cd;ines is, ﬁﬁ}y e

O ‘
Let 7 be a non-zero Ycﬂmr E(nd d: ﬁ )uh‘? “be its direction angles, If
\JI ru-xi+yj+zﬁ

1 l
Théﬁ‘ 1\1\ 7| = yx2 + y2 + 22

|P]? = x2 + y2 + z?
The direction cosines of ¥ arc cosa = = Z cosp = i Z and cosy =

oot e = (5 (2 + (2
x? yz z? _x2+}r2+22

I7l {

P AR Vet
N |72
|72 1
R
Hence cos® a + cos® f + cos?y = 1

=~ Sum of squares of direction cosines is unity. (1 @O
Deduction: Q &@@

Since cos? a + cos?

=:r(1—sm2a)+(1 =1
:3—5
= ﬁ +sm y=2

Direction Ratios

The numbers which are proportional to the direction cosines of a non-zcro vector ¥ are

‘known as direction ratios.
Let a, b and ¢ be the numbers which are proportional to cosa,cos ff and cosy. i.e.;

aocosa; b« cosfl; CXCosy
= a= keosa; b= kcosf; c = kcosy
where K is constant of proportionality and k+ 0
= a’+b*+c? = k®cos?a + k?cos? f + k?cos?y
= k?(cos? @ + cos? § + cos?y) = k?

- k= ++/a? + b2 +c=

Q= kcnsa: =n:osa*—E
. a

or  cosa=t——ee—
val+b?+c?
b \\ 70\
b= kcos =% \ V ‘
B @Sﬁ k {\J‘“

Direction ratios arc also known as
oA 0

direction numbcfswosdurgeﬁﬁh\ \\

v \' / o/C/ \O \¥7\7 4

.nf dll‘l‘.!CliOﬂ ratios

—




<

or

These relanqﬂj{ jéPJﬂ used 0 ﬁnd direction cosines when its direction ratios are given,
5 \J \J ' \ |\

o - Key Facts
E Lu OP = xi + yj + zk be the position vector ot‘ a pomt P(x,y,z).
by If cos a, cos § and cos y are its direction cosines then

> x .
AL cosa = ﬁ =  x=|F|cosa

i y I

cosf = Tﬁ =  y=|F|cosf
Z .. -

!‘ cosy = m = z = |F|cosy

: The coordinates of point P in the form of dircction cosines can be written as:

'. (x,y,2) = (If| cosa ._IFI cos B, |¥|cosy)

- - o == " ' )//\ i{—f?/\\\ =
Example: Find the coordinates of point P, if OP i isa vcct/qrfaf gmkud@‘ 1 angbisﬁﬁrallel to the
vector 2 — 3] + 4k. » 0 /Q A \. \) "»\"‘-L_‘\_\ \ )J
Solunon‘ )_:-,\“ ‘I\‘. (‘_,‘/7—'\/‘5\\\"-\\ ,\\ _\\'lr\_\\\\//‘-‘ \ /L

Lei \R\BAS e
J(z)2+( 32+ (4)?=VE+9+16=V29
a 2i-3j+4
Thus 2 = ; 231+
|al V29
2 3 4
d=—i- +—k
oL
2 3 4
AsOP = 24 = ( fm ] + E)
V29, V29° V29
— 6 8
= k

”rrr

(v'%' - J%*ﬁ) are the coordinates of point P.
Example: Two direction angles of vector 7 are 30° and 60°. Find the third direction angle. Also
find unit vector 7. ,
Solution: e AN / ~
Leta=30°and f = 60°
Since cos?a + cqsz £+ ct;s 1/ "}"1"' LV
= cos? 30° # mszfm“ Hlcosty =T




T ettt o #

T e et S k
B e R a1 v

‘ {"\Cﬂszy/=\1=cosz y=0

= — +ykﬁz \
PR W '
= cOS. Q " W
\ \\H\JM#'& 50%0r 270°
Since 0<y=<180°
So y = 90°
Unit vector of 7 is:
f=cosal +cosﬁf+casyk
= f = cos 30°1 + cos 60° ] + cos 90° k
= f= ?f +%j+ 0k | .

Which is the required unit vector.
3.5.8 Angle Between Two Non-Zero Vectors

Let 8 be the angle between two non-zero vectors @ and b.

Since = |d| ]b, cos 6 s
TN )/r:\\\\(\\l \)
~ (A \ /‘/; \ ‘\_/' ) U
= cosf = \oF \ Nl [ 70 \ oo~
I Ilbl . e |’1 1\; \_.;\‘J. @)

= 0 = cos1(a.b)
In component form we can write it as
d=a,i+aj+ask
b = byi + byj + b3k
Then @b = (ay0+ ayf + ask). (byf + byf + bsk) = ayby + agh, + azbs

ld| = ’af+a§+a§
M=’ﬁ+ﬁ+ﬁ-
b

Substituting values in the equation @ = cos™! (I;_IIET) , we have:

—

K

\| | -.‘ \: ;_:' ' ‘/I/,' 1B e
g = cos--,i(_zalbl @by + t:;3b\1 | (61
D\ e W e VT b oY




Example: Find the angle between the vectors § — 2} @g@[ @ @@m
Soluti
' u:et a=t-2f+k an% Q@X(O

if= (s; = (1(2) + (=2)(=3) + (1)(1)
=w

|&1=J12+(-2)=+1==v'1+4+1=vf§
b =22+ (=32 +12=Va+9+1 =14
If 8 is the angle between @ and b then

d.b
8 =cos™! | — )
||
o= o (o) = oo ()
= Ccos~ cos r—— |
= v Vet
= 6=1089° '
3.5.9 - Projection 7 v V'nctor Along Another Vector m
Consider two, nON-Zero vectors dand b and 1 _
|OL| is the projection of b upon a

From right-angled tria

T g—t

4]

i) I 9
[0L| |0B| cos @
= |b| cos 8 >
B Iﬁlflslcosﬂ
T
—., db
oLl = ——
, [ |ﬂ| )
Projection of b alo g:'i=fi|'
a =
= E'.b
= &E = E d Y/\/—\
Projection of b along d@ = 5 a @@@S\B

| \/\ 1) F/@O
Similarly, we can prove that Q O @@ Y
Projection of d alnng b= \ .
AN

ijectmn of

T
; By ey




A0 \(O NS
Example: Ifd = f j ¥ Py d‘b 5\ —E\i-\j +T§ﬁ\ find projection of @ along b and projection

of b along a\ \“

Sulutibyi\i
ab=(i-j+k). (—'i+; + 3k)
=MED+EDD+HME) =-1-1+3=1
ldl={(1)? + (-1)2 + (1) =3
|b| = J=D7 + () + 3)2 = V11

—

-+ 7 1
Now projection of @ along b=—==— 4 y-axis .
) i3 | 11 P(cosa,sina)
Projection of b along d =— A=

Example: Prove that cos(a — ) = cos a cos § + sina sin f

|"‘£*:¢

Solution: Qlcosf.sinf)
Consider two-unit vectors = OP B .-\ x-axis
and § = 0Q making anglesaand f @ @@L\U o
with x-axis as shown in the ﬁgure us ©
@ — f is the angle bc pﬂs: vector of point P so,
ﬂ—cosai+smaj s”ﬁi+smﬁj
W = (cosa i+ sinaf).(cosft+sing))
_ ﬂ ﬁ-cosacosﬂ+sinasinﬁ_ (1)
Also f1.9 = |2]|6| cos(a — B) = (1)(1) cos(a — B) '
f.9=cos(a-p) = )

From equation (1) and (2) we have:

: cos(a — B) = cosacosf + sinasin f
Example: Forany triangle ABC, with usual notations prove that |@| = IE| cosy + |¢] cos B
Solution

Consider a triangle as shown in figure. S C

It is clear that 180° — ¥

i+b+2=0

=>d=-b-¢ | 180° - £

- . . - 3 h i __A — » —_ *

Taking*dot Er‘odtﬂ:t w :th d on bothsides ,ly 7 B

= a=aﬁ(-—b-c) 180° —a - ,Q - "f“) Yo
—~ \ ' ' /C/ ( \¥9\’

= |d|2 = -d.b- d.¢ g - p" NN
= *laélh{tosiwga % Iﬁﬁalxéés{lﬁﬂ ;i.')
= —lﬂfrl(-—\ ﬁﬂs}"} L|@[1E](— cos B) + cos(180° — ) = — cos 8
’\JQ\ m||5| cosy + |dl|¢] cos B
1d|? = |d@l(|B] cosy + ¢] cos B)

Lok Foundation ﬁ"ﬁ% Vm““ \\ 191



= |d| = |blcosy + |c| cos B e 71
3510 Work Done by u Constant Foree /() |\ U1
Let a constant force is applied on m oﬁject NSy
and it is displaced fm;q ﬂ,to Bl
The force m&kel‘.‘ an angle 8 with the

displacement vector S ‘

The component of  along § is |F| cos 6.

Thus work done by the force F to move the
object from A 1o B is:

work done = |F| cos 8 (|S]) = |F||S] cos 6
wdrk done=F.§

Euﬁtple: Find the work done by a constant force F = 2 + ] = k in moving an object from
A(0,1,3) to B(-1,2,4). '

Solution: ' - _ )

A= -0+ G-y \ &
=toeh S
Work done = F —' \ N\ -
g\ﬁ“@iﬂ ) (;+ +E)
= (2)(1) + (D) + (-1)(1)
=2+1-1=2units

hi;‘,'l o) ey

1. fa=2i-3j+k b =1 — 3+ 4k and & = —1 — 2f + SF, then evaluate the

~ followings.

S @ &b ) 23k i) (@-B).¢
(iv) (2d+3b-¢).(@+B) (v) La+ fhb+ké

2. fa=j-k b=31- 4j+ k and & = —i + 2j — 4k, then find the anglcs between the
vectors: , “’r\

(iy . and 33 ' (11) 2a - 33) and 2c (m} (*m+ E"}and\( b ZC)
() (@+b+&)and (@-5-2)\\ s ;/‘\ .‘\if{v) (& 2b + &) and d

3. (i) Ifa,bandcarethre&vedmrssuch\thﬂta+b+c—Uand|ﬂ| 2;|b| = 3 and |¢|=4
then qu apghpﬁetween dand b.

(ii) If Iﬁ T b[ | - b, then find anglf;benvccn dandb. \




4. (i) Ifa—E-—Sj'-t—*fk,\ B “?t Qj\ka - 3r—zj+ 5k, find the value of A so

berp-ehdlcular to C.
(u)@ﬁ Mnl the angle between any two diagonals of a cube is cos™ (;)
5. () Ifd=2i-3f ]+ 4k, then find the direction cosine of d.
(i) Ifd =1 — 2f + 3k; b =31—2f + k and & = 71 = j+ 8Kk, then find the projection of
@ — b along & and projection of b along & — d. Also find their vector projections.
6. (i) Three vertices of triangle are A(0, —1,—2); B(3,1, 4) and C(5, 7, 1). Show that ABC is
a right-angled triangle and find the other two angles.
(ii) A vector 7 is equally inclined with the coordinate axes and |#] = 5. Find the vector 7.
7. (i) 1fd b and & arc threc vectors such that |d| = 2;|b| = 5; | = 4 and
@+ b + & = 0 then find the value of d.b + b.¢ + &.d
(ii) For any vector  prove that ¥ = (7. D)t + (. ))f + (. k)k
8. The dot products of 7 with the vectors { + j'— 3k; [+ 3] =2k and 2i + j + W 0,5 and

8 respectively. Find the vector 7. @ @

(ii) W\i@ | = |ﬂ b|
10. (1) two unit vectors is a-umt vector, show that magnitude of their difference
is v"
(if) Show that anglc in a scmhcujclc is a right angle.
11. (i) Prove that altitudes of a triangle are concurrent.
(ii) Prove that angle bisectors of triangle are concurrent,
12. (i) Prove that cos(a + ) = cosa cos B — sina sin 8.
(ii) With usual notations for a triangle ABC; prove that ¢? = a? + b? — 2abcos y and
b=acosy+ccosa

9. Prove that for any non-zero vect
G @b —--|a® * ot

13. (i) The resultant of two vectors @ and bis perpcndlcular lodand|d| = =7 |b| Show that
resultant of 7d and b is perpendicular to b.

(ii) Prove that & + b is equally inclined with d and b.

14. A force of F=30- 5J + 7k newtons is applied on a body and moves it at a dl;tan\cc of
14 meters in the direction of the vector 1 — 3] + k. How much v@% s nzraﬁ@ N\

¥/\ =,

15. Find the work done by the forces 2 + Ej ﬁ and ﬁf + Tfj‘ &E aclaﬁg ona particle in
moving from point fi)ﬁn Q \yj\!,hpositfo{\vﬁctm b= Gj‘ 4.2 E and 21 — ~j+ E

16. A box is drag.ge:d on| tht surfacf.; ‘'of a-floor by a string that is applying a f‘orcc of 30N at an
angle of %}N \Hhc floor. Find the work done by the force when the box is displaced
up\\érﬁl\s ce of 10 meters.
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3.6 Cross or Vector Product of TWO V/Eﬂm‘ﬁ._‘ ) A

3.6.1 Cross or Vector mduct nfTwo W;tmaud its Geometrical Interpretation

If @ and b are two non\ FF“’ Vectors and 8 is the angle between them, then their cross product is

also a vcc\wgﬂeﬂbie& i:y d@ x b and is defined as:
dxb= |a||b] sin @ A

where fi ia a unit vector normal to the plane containing

both the vectors @ and b. 8 is positive when measured
anticlockwise and is negative when méasured clockwise,
While computing b x @ angle is measured from
btod which is the clockwise direction so;

‘ b x d = |b||d| sin(— 6) #

= B
Since sin(—@) = —sin#; then
bx &= —|b|ld|sin g o 8 .
- ' Y
=_EXb 41({1\\\ /—)Cé\ (\\\A
/ \ -
" This shows that @ x b and b x d are ogpomt@m d«r\aeﬂeﬂ‘ () w X@.\o=
Thus, a X b — )ﬁa / \ \.\ ".\B '\ 2 \ ‘.,_- I |,' J
\, o i
It means cross product i 18 @t\ tmhmu‘a\élﬁe

362 C ri{q}ih\c%} Fundamentnl Unit Vectors

We know amxb |a||b|51nﬂﬁ,so
ixi=i|i]sin0°A

= DO =T e
k
jxJj=Ijlljlsin0°A P,
= (D(1)(0)i =0 p >
0 y-axis

kxk= I§\|E| sin0°f
= ()(1)(0)7 =0

We know that £, | and k are the mutually perpendicular unit vectors so,

ixj="1il<in90°k
=MDk =k

X-axis

| }xﬁ* lfIIE| sin90°¢
\JNI\' W
EKE"I#"Tlsm'JU"j



Key Facis
The cross product is

\ V
- (1)(1)(1)}0ﬂ AN

Also Jxi -W&% =\3 defined only for the
W = —i veclor in  3-space;
ixk=

defined for vector both
in 2-space and 3-space.

=—ixk=-f ' l whereas dot product is

3.6.3 Cross Product in Terms of its Components ' - - -

Consider two non-zero vectors & and b, where,
“ @ = a0+ ayf + ask
and b = byl + byf + byk
Now i@ x b = (@] + ayf + azk) x (byl +.bof + bsk)
= (ab)AX D) + (@yb)(E X ) + (ayb)(i X B) + (azb,)( X §) +

(azb2) (7 % ) + (azbs)(j X k) + (azby) (k x 1) + (asb;)(k % ) +

(ﬂgbg)(E X 2)
= (ayby)(0) + (ayb;)(k (g h@@@gzbz}(ﬁ)
+ (azb3)(E + (asbs) (ﬁ)

-

d x ~(azb)k + (azbaji‘ + (azby)j - (a3bz)i‘

d = a3b,)0 — (arb3 — azby)j + (arb; — a;b,)k
uct in component form. Also cross product can be written as:

t L] k
=4 Q2 a3
by b, by
3.6.4 Area of Parallelogram
Consider a parallelogram ABCD.

. LetAB = d and AD = b be the

two adjacent sides of the parallelogram
and @ is the angle between them.

From figure it is clear that area of the

parallelogram ABCD is same as that of
the arca of rectangle EFCD.

From right-angled triangle EAD. ~
1&0] lEDl . A\ €© ﬁ&
=sinf=— = 2 CAU

D] Bl il ~\[[72\d
’\KI_TA@ /C/v

@ -
Area of parallel Bﬂmhgm%ﬁfsr

%\J = |dl|b|sing (1




S sino @

From cquatu%é ) and (2):
|d@ x bl = area ufparallelugram ABCD

If @ and b are two adjacent sides of a'triangle ABC then ~ Ge-------=====nn-=-n= 0|

'~V Arca of triangle ABC = -:- Area of parallclogram ABDC 2

 Arca of triangle ABC = | x b|

=11
=2}

. A

Example: If i=2i+ 5f - 2kandb =1- J + 3k are two adjacent sides of a parallelogram,

then find its area.
@@m@ 0

Solution:
m (5 —2)1— (6 +2)j + (-2 = 5)k
W\W\WO ii>-:5=13€—8;—'?§
. | xB| = 132 +.(-8)2 + (-7)?
=169 + 64 + 49 = /282
Area of parallelogram = | x b|
= /282 sq. units

Enmple‘ Find the arca of a tnangle wuh vertices (0,0),(2,9), (3,5).

Solution: ~ B(2,9)
LetA = (0,0); B =(2,9) and C = (3, 5) B
Then & = AC; b = AB b C(3,5)
Sod=(3-0)i+(5-0)j=3i+5+0k d
b=(2-0)i+(9—0)=2i+9f+0k A0.0) A
R ] k N \I(—.QC;\\ /@@)L J
axb=(3 5 0 . O \\‘\\\(a /(Om
2 90 \ i )\ '\/ \
axb=(0- 0)r+(o-<jig,\+~ ﬁwv\m \ N\
“dAxb= 0% + 0f 1 ?E\ \\‘/\\J L
d x B NOE0Z + 172 = 17
1)

1 17 :
= 5(17) =5 sq units

A




\ AWV WY
a\ \/ \ ‘ \) \\_/“”
3.6.5 Condition rorﬁe ﬁvﬁﬁ’bn@ \vm” rs to be Parallel

Letd and b WIW{M&W&W&ON If & and b are parallel then angle between the vectors is

6= o\ﬁd
dx b = |d||b|sin0°f = |@|B|(0)a =0

Also, if @'and b are anti-parallel then angle between the vectors is 8 = 180°. So
dx b = |d||b| sin180°f =|d||b|(0)i =T

Thus, if two non-zero vectors are parallel or anti-parallel then the value of their cross product is
Zero vector, . -

3.6.6 Distributive Law of Cross Product
If @b and ¢ are any three vectors then :

() dx(b+&=dxb+dxé

(i) (@+D)xc=dxc+bx¢
Proof: Let a = a,i+ayf +ask

2= : f@o@@m
e RuIY

ﬂ\%{ &1+ ¢f + c3k)
ci -+ (bz + Cz)j + (bg + Cg)E

) )
LHS=dx(b+é) =| ay. a _ a3~
b1+f1 b2+f.'2 b3+53
b7 k| |1 ] Kk
=lay ap ag + a; dp; az
‘ bi ‘ bz b; € Cp G
=dxb+dxé
= RHS

':‘.'rl.
X

 Similarly, we can prove (@ +b) X & = d X

3,6.7 Angle Between Two Vectors
If 8 is the angle between the non-zero vectors @ and b then:

dx b = |d||b|sin6 f )/:\\ff\:
- oA L)
= |@ x b| = |dl|b||sin 6| ﬁl ,ﬂ“/\ (O \o G
|a X bi |a||bis]n/& ' \\ U ft \U ﬁ < 7 sb |sin 8| = sinf )
\/ N /\

~ =sin Bﬁ’#\, xeh \ \R)
AR W
= ()

ldlfa]

Vatloial Book Foundgfion Unie=? Vierors A\ w
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Example: If & =21 -Jj+ k b=-i§ %}# ﬂfé@li& i‘\-kji?B thcn ﬁnd the angle between
the vectors @ + b and & +@, \ 0 (\\\\ N

Solution: \(] ﬁ‘\ ’\_‘\\
WY B+ £+ (<t 27— B) = 144 08

and d+é= (2:—;+§)+(i+} 3k) =3t +0f - 2k

[ .E‘

=111 0

3.0 -2

=(-2-0)i-(-2-0)j+(0-3)k_

‘ -2+ 2)-3k

(@+8)x @+8)| = V(=27 + @7 + (372
=Vd+3+9=y17

|+ b| =VITIZ+ 02 =2

ld+¢] —J32+u2+{a~2)2=\i1,_3

Let @ be the angle betwe:en i+b and d + & then f@ @@m
o

now ' (@+b)x @+

txample Show that sin(a — ﬁ) =\sin & cos # — cos a sin g,
* Solution: :

+y-axis
Consider two unit vectors {1 = OAandp = 0B making - A
ahgles a'and B with x —axis respectively. Then a—p _
.is the angle between i and 7. P B
--ﬁ-—-UA—cosaE+sinaj‘ | /a 5
fi=0_B'=cnsBi+sinﬁj 1 >
: i ook 0 X-axis
Now ©X@=|cosf sin 0‘ N
cnsg smg ol A P.@f\: \
=(0-0)i-(0-0)+ (sing cuqﬂ Qasqis?\li )}} gjv@\“
—GE-0;+(sm:rms,tf-yem‘m/m}ﬁ}E VO
= x| = JOZ - Iﬁ’-ﬂ* Efﬂmg cpk \B1<xos arsin )2
= qﬁﬁx \ms a sin f) (1)

| | sin(a— p)ft

Also D 5@{'

i = s L
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= x= (1)(1}]’sm{a q ﬂ)llﬁl\\‘"“ - |
= Pxil= sqnw RN _ N )
From cquaq}ith ﬁ!}!mi:{ (2) we find that
sin(a — ) = sina cos § — cosa sin f
3.6.8 Moment or Torque of a Given Force About a Given Puint
The moment of a force is the tummg cffect
of the force about a point, and is the product
of the force and d; where d is the perpendicular
distance of the point from the line of action of
of the force.
From figure, moment of the force F acting at
point P about point O is
Moment = |04 IF |
From the right-triangle OPA;
loal
ol

=sin@; where @ is the angle between 7 and F‘
ol
17
= |04| = |7| smﬁ(
Thus, momgr\ \\ﬂﬁl hﬂ}lf-‘ I
= |7||F|sing °
Moment = 7 X F

= sin@

The vector M = 7 X F, is called vector moment of the force .
Example: Find the moment of the force F = 31 — 2] + 5k about the point (2, 1, —1) when it is
applied at point (3, 0, 2.

Solution:
Here F =3i-2]+5k
0=(21-1)
P=(302)
0P =(3-2)i+(0-1)]+ @2+ 1Dk
=i-J+3k
Veetor moment = 7 X
R L
M =11 -1 3
3 #2. 5,, ~AA

F” [E\%Mj'{*k




Example: Find the moment of the force F = 7i4 4]+ 2# ‘Whﬁi it 1§\ap§h;{d aﬁhc ﬁandlc ofa
door at the point (2, 1,4) abnut the hmge at pmnf{ﬁ ﬂ 1] ) j;,
Solution: O\ \¢ “ \\ -

= (2-12)i-(4-21)+ 8-k

M= -10i+17j +k
Is the required moment which is produced in the door.

Exercise 3.3

L. For the following vectors, find @ X b gu}d@ X/fiaﬁd\};ﬂ\‘(ﬂl
i, a—2i+f‘—°EO\‘\ ”B/ﬁ‘i\\-—ﬁb
ii. d=71 *\‘\5\42?—3j‘+k

\@\M}é‘k b=30+2f

2. For the following vectors, find @ X b and prove that @ x bis pcrpendlcular to both d and

b. .
i, d=3i-6]+2k; b=20-3]+4k
i. d=4i—2j+3k b=i+j-3k |
3. For the following vectors, find the value of the sine et‘_ the angle between them.

-

i,  d=20—-4j+3k; b=01-3]+4k
i. da=4i—-37+2k; b=31—-77+5k
4. i, Find a vector of magnitude 5 and perpendicular to both the vectors
d=30- 2j+5kandb = 8i - 2j + k.
, 11, Express the vectur S5{+2f - 3k as a.sum of two vectors onc of which is parallel gnd

other is perpendicular to the vector 21 —j+ 3k ~ [ N\ 0

A\
N ‘/// \ .‘v\“

" N |
§. 1. Prove the Lagrange ldcnuly|axb{ =1aL”bl *—(ﬂ b) \\

ii, For the vectors @ = iy—x 2J ~ ~b«= 2!\4\k ﬂmf/c 3} + 2k, ﬁnd a vector d which is
p..rp"ndlcular to bﬂth E..’ and Bl it given that ¢-d = 1.

WY

J \.J




6. (i) Fmd the vector B auchdhat &x\b =& andu B 3 where & = 1 - 2j‘+ 3k and
=i+f- PIR\R\RAS S
(u? ijﬂj?\db’ E éx d. and dxé=Dbxd,show that d@ —d is parallel to b — €; where
N a #dandb # ¢
7. (i) For anon-zero vector @ if @+ b =
(ii) For three vectors &, brand € if @ +
dxb=bxé=¢xa

-Eandﬁxb—axcmenshuwtha h=_¢.

d
b+ & = 0, then prove that

8. (i) Ifd,b and & are three unit vectors such that d is perpendicular to both b and & and
the angle between b and ¢ is E , then prove that d = iZ{E X E}.

(ii) Prove that |d x Eﬂz = ’& 4 & EI
ab b-b
9. (i) If |d| =3; |B| =Sand @+ b = 60 then find |d x b|.
(i) If [d| =2; |B| =Sand |d x B| =8 then findd-b. A
10. (i) Find the area of a parallelogram if @ = ZE - 3}‘ + ﬁ g d'rb&;_?\%—ﬁ\_ ;@ E are its two
adjacent sides, oW \ [N A0+
(ii) Find the arca of tnanglt: wlm v&rtlods Ll, ~<1’ lj {2, 1/2) and (3,0,-1). Also find its.
interior angle(f ‘ 1 \

11. (i) Fmdtﬁw\\ 4 Qfﬂie pﬂrﬁﬂe[ogram having diagonals 31 + j — Zk and I — 3] + 4k.
ﬁ)\ }ng\an ¢ are the position vectors of A, B and C respuctwcly, then show that area of
triangle ABC ls-|a><b+bxc+r:><a|

12.1f@-b=0anddx b = 0, then what conclusion can be drawn about & and b.

13. Show that the three points with position vectors & — b +'3¢, 2d + 3b — 4¢ and
~7b + 10¢ arecollinear.

14. (i) Find the moment of force 2 + 3f + 7k about the point.(1, 2, 3) when applied at the
point (—1,2,0).
(ii)Two forces 21 — f + 3k and 31 + 4] — 2k arc applled at the same point (1, -2, 4).
Find the moment of these concurrent forces about (0, 0, 0). _

I5. (i) How much force is required to produce a moment of magnitude v57 N.m along the
direction 6 — 21 — 6k when applied at (2,1, —3) about (=1, —1,1). .
(ii)At what point the force 21 + 2j — 3k should be appl:ed to- ,prpduceawire':.tm- moment
M =30-2f + kabout (-1,2,-3). T\ (\[" N TCA

16. A toy car is located at a pnml (l B 5) re]atwe -c-ngm such that when a force of
3420 7kis apghedtm car zt staﬂn wmtmg about the origin. Find the moment

produced ?y ﬂ’!ﬂf t'-arca inthe car.
\ |
H N

)




= y".'\ 5 "’_;

17. A seesaw is fixed from its middle point which i is! at (0,12, 3) TWO fnrccs F1[3 4 5] and
F;[9,2,7] are applied at _points (4,5, 3) aind( 4 ql 3) reﬂpectw"‘“ Calculate the moment
produced by each force a’fmut the ﬁxed pointin Seesaw separ-tely. Also find net moment.

3.7 Scalar Triple Proc uet
3.7.1 Scalar Trip]e Product of Vectors
The scalar product of two vectors in which one vector is already & cross product of two vectors is

called scalar triple product. If ene vector is @ and other is b x &, then their scalar triple product is
a- (E x €). It is also denoted by [ b ¢].

3.7.2 Determinant Form of Scalar Triple Product
Consider the vectors @, b and & such that:

Key Facts
a = a,i + a,f + ask | (EE . B) x ¢ is meaningless. because
b = b+ byf + bk d@-b is a scalar and will not have
. =qitcftck .cross product with & Thus, Lhere
) i 7k  should bc ngmnfgsnorimbwmmg
. bxé=|p b, bz a (bxe)as\a Bxe

bxé= (bzc = bgt‘-‘g)i (bicz \\17351)]4' (bifz = bye,)k

\J\| '
Thercforc \\”JNIJ' ' -

(b X C) (all + ﬂz} + ﬂsﬁ) [(bzcg bgf:z)f. - (b_ﬂ:a - bgCI)J + (blcz an bzfl)ﬁ:] g’ . .
= a,(byc3 — bacz) — az(bycs — bycy) + az(byc; — bycy) '

a; d; as
da-(bxé)=|b by by
B L T > T

If any two vectors in the scalar product are same or parallel then the two rows of the determinant
will be same, then the value of the determinant is zero. i.e, da-bxé=0
If we interchange any two vectors in the scalar triple product then the corresponding rows of the

determinant will be interchanged producing the value of new scalar triple product as a ncg,atwc
mu]tlplc of the original product. =\

dbxé=-b: a><c=—acxbetc‘=' VY,
3.7.3 Scalnr Triple Product uﬂ T"and k vecﬁ,ﬂ -




k-txj=
Thus i fxk=
Also N
NN
\1\J|\&‘Yel§j=
jrixk=j(-D=-G-P=-1 .
Eojxi=Re(~k)=—(k-k) = -1 ! W——
7. 8. - 5. _ ‘When any two vectors
;ihu;.] | Dhxj=j-ixkskfxi=-1 {0 gt arc same the value of
el L L /2| their scalar triple
i-jxj=t-(0)=0 oo’ product s zero. |
JoRx] = (-0 = (D=0 etc | /

3.7.4 Dot and Cress are Interchangeable in Scalar Triple Product
_Here we will prove that the cross and dot product in the scalar triple product are, interchangeable.

e, dad-bxé=daxb-¢

For this let Q\K\\@

a=a 11+a3j+aak
b
¢

_ @
Bl
As mwadyww o ,_11 \\/:;3 as

EJb XC =|b by by (1)
€ €z €3
. ioJ K
Now dxb =la; a; ag
b, b, by
ixb - = (azhy — azhy)i — (ayby = ashy)j + (ayb, — azby)k

—
=11
x
ot
. -t‘:u

= (ayb3 — asbz)c; — (a1b3 — azby)c; + (ayb; — azby)c;
= ﬂ2b3C1 - ﬂgbzfl - a1b3C2 + ﬂgblfz + a1b263 s azblcg

—
=T~ T4
x X
= L=

—
. M

(& X 5) ¢ , = (aybyc3 — a1b3cy) — (azbyc3 = azbsc;) + (azh,c; — azbycy) J
(& ~ B) ¢ = a;(b,c3 — b3cz) — az(bycs — baey) + ﬂa(blcz - b;E:J/\” \
- l& — \‘ /
T\ "/ \\ \' ' / o\ -:f;‘,-\\_A/\M
. a a g o A\n\(\\(\\\ [/~
axh-¢ bi bz bg AR ROR\CA R = )
k'-‘ “Fa G& \\ "

From (1) and {%} 1t :s clcar that:

P\H\\@ ‘él IE }-H)

= [(ﬂzb:; - ﬂgbz)i = (ﬂlbj - aabl)j + (ﬂlbz + ﬂzbl)k] . (Cli + sz 4+ Cak).
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Example: I d = 21 - 3j + & b = =3 b2 ¥ 3Rande 21t jL £, find B x &
Solution: Q -\ \(“; \ f\\ \ "\,\\_. \ \\ A
N jay \@p \as]
Since  _ @\ {6 b, b,
W Zhh
= 2 -3 1
Then dBxd=1-3 2 3
-1 1 -1
@-bxE=2(-2-3)+33+3)+1(-3+2)
=-10+18-1
a- E XEe=7T |
example: Let we have three vectors &, b and & such that bis parallel to &. Compute @ - b x Z.
Solutun:
bet = oyt + 0y + aske
b = byl + byj + b3k

¢ = ¢y + cof + c5k

Given that b and & are parallel; so @X/@ @
b = A¢ for scal @
Byt + bof + E%S}& @@ c3 (et + (Ac)j + (Aca)k
W \jg)he;, B b, = Acy; by = Ac, .
% . |91 Gz 43
Now @-bxé- |by by by
6 G G
a; a; 4as a, Q; @,
d-bxé=cg Az Acs|l=1lcy ¢ ¢
6 & G 16 €2 €3

d-bxé=2a00)=0
3.7.5 Volume of Parallelopiped and a Tetrahedron
VYolume of a Parallelopiped
Consider a parallelopiped with
adjacent sides as d, b and ¢.
anume of the parallelopiped
~ = (area of base)(perpendicular height)
|a x b| - |0D|

@ x b is the vector pcrp@d:hma( a0 \ & B!
tobothaandb\ﬁﬁ@ |si1\thed1f'ecuon

- </\‘J
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Putting in equation (1), we get:

o fd-bxé
» Volume of parallelopiped = |d@ x b| ab c)

| x b|
=d-bxé
Volume of Tetrahedron
Consider a tetrahedron with its three
coterminal edges d, b and Z.
Volume of tetrahedron
== (area of base)(perpendicular hmght)
11\
= VA \\
= (area nftnarg QOABJ(W” \ \\ \j\J A

\‘ \ (\‘. ‘I'\ \ \\\/, s

1@\ Nm‘ *D\ o

— —]a X b“ODl

d x b is perpendicular to both @ and b. So]ODI is in the direction of @ x b

Also |OD| is the projection of & on & x b. Therefore
(@xb)-¢ _d: bxé

o0} = laxb|  |axb|

Putting value in equation (1), we get:

* Volume of tetrahedron = %|& x b

da-bxé

1, =
—==(d-bx¢é
|é@ x b ( )

Example; Find the volume of a parallelopiped with adjacent sndes d=1-2f+ k'
hb=3i—3]+kandé=—-1-f+2k _ 1S\ (@

\ '. "\'\J /' \.J ke
o=

(1)

_/

—-/ k | "- AN
= ~ \ \| /// \ ON=

\\I\

Solulion Volume of a paralleloplped w;thadjacent slde;s ﬁ b, anﬁ £is:

oirnal Benke beoipelon:
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. =1{-6pD* 2{6 +, 1) -l-\l(e-?f‘,.r_; 3)= —5 + 14 6
= 3 cubic tmtts )\
xample: Flrjd !!'mj vuluhhc ofa tetrahedmn with vertices A(0, 0, 0), B(1,3, — 1), C(Z,\Z, 1) and
D(l 6 5)

~ dution:

Let the sides of tetrahedron ABCD are :
G=AB=(1-0)i+(B-0)+(-1-0k=i+3-F

b=AC = - 0i+2-0)j+(1-0)k=2i+2/+k
§=AD = (1= 0){ +(6—0)J+ (5 - -0)k =+ 6] + 5k
» Volume of tetrahedron = }d bxé’)
—1
=§ 2 z 1
1 6 5
= = [1(10-6) - 3(10 - 1) - 1(12- 2)]
-33 _ -11 A3\ @O)\LY
=—(4 27— 10) _— T— z = \.,\\' / /// EA\

Since volume is a non- m.gaiwe quanmy, ) 4 ' \ \
Volume of tetrahedron = ?— cuﬁic u?uts \\ T
3.7.6 Coplanar Vl:qﬁmﬁ .md f*‘nndftinn for the Coplanarity of Three Vectors

Coplanar \Wﬂdl‘{

~Twoor rnorc  vectors lying in the same plane are known as coplanar vectors.
Condition for the Coplgnarity of Three Vectors

Consider three coplanar vectors d, b and Z, 4
@ x b is the vector perpendicular to both & and b. dxb
Since &, b and  arc coplanar then d X b is also
perpendicular to vector &, then .

(@xB)-&=0 - /B.'

» @-b x & = 0 is the condition for the three vectors —_
to be coplanar,
Example: Find the value of A so that vectors

d=i-f+k b= 21+I+Eandf——2+1f+2§arccoplanar

Solution:

d,b and & will be coplanar if

d-bxé =/Q A~
1 -1 11\ \CA

el

1 ANl o\
W?‘n+um+n+um+n 0

-X-

i S iy -,

. U;ﬁ"-ﬂ;- \"L“&Gh Vettonal Book Foundation
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\*‘m_.—_ —

=8-1+17+24+1=0
=1+26= n'i
=>Jl——6\“ \
JM\"

Faereise 3.4

I. For the given vectors &, b and &; prove thatd-bx é=b-
i. d=3t—j+2k b=20+43-k E=-1+2/-3k
. &~~ﬁ+ﬁ+§ E ﬂ+ﬁ+§ d=2+

i d=t+]; bpj+f€, e:'=f+E
ii. d=71-2/+k b=1+); ¢=j-k
3. i. Show that the vectors @ = —4i — 6] — 2k, b = —i + 4] + 3k and
& = —i + 2J — 3k are coplanar.
ii. Find the value of A so that the vectors & = { — 2} +3k; b = —zi;—fajm 4k
and & = —1 + A + 2k are coplanar., . —\[ [ 2 ‘;. \&0\-/ -
4. i. Find the value of A lfthq"pomf?hff 1\ 4,/ 3), B{ A =8); C(~3,8,-5) and
D(=3.2, 1W°°°P*ﬂﬁﬂm N\ \ W=

\(\

1. If the v_g*rioma = diwf + b =1+Bf +kand ¢ = I+ +ykare coplanar,
\|\@Fﬂ\p|%vcﬂ1at—+—+—— 1 where a,f,y #1
5. i. Ifd,b and & are coplanar then show that d + b, b+ ¢ and € + d are also
coplanar.
ii.Ifd, b and € are non-zero vectors such that ¢ is a unit vector perpendicular to
both d and b and the angle between @ and b is %; then prove that
- iy 132
la 5 &?=4la’p|
6. Find the volume of the parallelopiped with given three coterminal edges:
i d=2+43j-4k b=i+2j-3k c=3i+j+k
i. d=-31+6f+k b=1+2+3k c=-1+2j+6k
7. Find the volume of the tetrahedron with given vertices:
i A(2,1,0); B(-1,2,6); C(2,0,3); D(1,-1,0) o
ii. A(0,1,0); ~ B(2,0,1); cE1, 2) D(iﬁ‘ -1}i Q)

0 \J )
-\ \ N V \ ':/ S

3.8 Application of Vectors 3 E 'L’i’\- ”-\ ‘H"Ii \RR0
Vectors can be used by air:traffic con Iem whcn\trackmg planes by meteorologists when
d:scnbmg wind condlllons and b"_y cdm er programmers when they are designing virtual
worlds. In this s om we will present some appl:catmm. of vectors that arc commonly used in
the study iiﬂ pﬁﬁg ‘work, torque, and magnetic force.

B T 17



Projectile Motion \\ 77 S

A projectile (stone) throwﬁmthﬂqn uuhal spged u atangle ¢ with the horizontal, has a vertical
component of (u sin ¢— ? t) a.tld ﬂm ‘horizontal component of u cos ¢ under components of vector,
Sharpening @quu\ﬁmﬂ with a blade

We cut the pencil at an angle. The component of force in the direction perpendicular to the pencil
cuts the pencil. The component of force in the direction parallel to the pencil removes the thin
wooden part.

Earth’s magnetic field

Earth’s magnetic field has two components B and H which are perpendicular to Earth’s surface
and parallel to the surface.

Pendulum

The tension in the string has two components to balance the weight and to give the centripetal
force.

Digital graphics: Vector art can be defined as digital graphics using mathematical formulas to
construct shapes and lines. Vector images maintain their quality irrespective of size. This
adaptablhty makes vector file formats flexible, resilient, and always looking sharp. Vector artwork
is digital art produced with vector design soﬁware like Linearity Curve (formerly Yeetornator),
Adobe Illustrator, and Sketch. These vector graplncs editors il:fm:mpie/@iaﬁesbenveen

points instead of pixels. ACANY [ (2

Programing: A vector, in progrnmmmg, mﬁ%zaf may ;hatus e dimensional. Vectors are a
logical element in progrﬂmmm WWM are uised for storing a sequence of data elements of
the same basic type. Mc{)[\bers ‘a vgﬁtor are called components.

GPS Unit; %& P‘@k your GPS unit to get from point A to point B. The GPS unit will give
you a dis é{magmmde) and a direction. A vector is, therefore, a directed quantity: a number
with a direction.

Example: An air-plane is flying with an airspeed of 475 km/h on heading of 70°. If an 80 km/h
wind is blowing from a true heading of 120°. Determine the velocity and direction of plane relative

to the ground.
Solution:
air
w
WRN U ..ﬁ 475 cos 201 + 75 sin 20°§
NN 7 = 80cos 1501 + 80sin 150°5
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~A 0\
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\ \ — ( { ' \\l ' //C/ Q\f
} 0\ ol /n\ \.\ \\ \
o\ ﬁ-—{m s 46f
' \\A = —69.281 + 40§

II
| (
o

+ A = 377.071 + 202.46]
6 = tan™! G = tan™1(0.536) = 28.23°

0B = +/377.072 + 202.46% = 428km/h

I have Learnt

¢ Recognizing rectangular coordinate system in space.

o Recognizing: unit vectors £, f and k components of a vector.

¢ Finding the magnitude of a vector.

« Demonstrating and proving properties of Vector Addition

¢ Explaining dot or scalar product of two vectors and giving its geometrical
interpretation. Expressing dot product in terms of componen @

¢ Finding the condition for urthogunahty two v Wﬂ% l@@n em.

o Finding the projection of a ve anothe “done by a force.

o Explaining the crg gmng its geometrical
interpretation. Applyi : C ind an angle between two vectors.

¢ Describi ar trip ct'of vectors and expressing it in terms of components.

. Wﬁ that dot and cross product are interchangeable in scalar triple product
gnizing coplanar vectors and finding the condition for planarity of three vectors.

1. Choose the correct option.
i.  The vector in the direction of i + 2j — 2k and having magnitude 12 is:

a. —(1+2/-2k) b. 12(f + 2f — 2k)
c. (t1+27-2k) d. 4(1 +2j = 2k)

ii. The position vectors of three vertices of triangle are 2f + j — k, 31 — 2j + 4k
and { + 4f — 3k. The triangle is:

a. isosceles b. right angled c. scalene d. cqullate;ql
iii. Given two vectors { — J and [ + 2, then the unit v;ct@t;w @@‘)"!ﬂ' \two vectors
and L to first is: /\\ \"\"/ \\' O \o
a. J.(r =D\ \b\ (QH-J)
b. cir(r“jjw ,(z+z})

AN
QN\N'\J\
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Tan

o el e

{\fIEJ‘E'TbI " bl ¢dlb  di=b-0
If @, b and ¢ are mutually perpendicular unit vectors; the value of |a + b+ é‘l is:
a. | b. V2 c.V3 d.2
vii fd+b+é=0and Ia] = 3,[B| = 5,1¢] = 7 then angle between dand b is:
a. 'E b. T c. % : d.g-
vii. Ifd =2i+3]—k;b=—i+2f—4kandé = i + ] + k then the value of
(@x B).(&' X €) is:
a. 74 b. -74 g a2 d. -52
vii. If |d X b| = 4 and |d.b| = 2; then |&F|B|"' i5'
a. 6 b. 20

then value of @ 1s:

ix. If@ is the angle between the two vectora d and b and ]q& /ﬁ @ \ dh
O

]where |a| =1, |b| 5, |ci =3is:
N&q\{w\ 7 b c.6 d. 15

Find the value of A so that the vectors @ = 31 — 2 + 6k and b = { = A] + 34k arc:

i. parallel ii. perpendicular

Ifd = —31 + 2f + 4k and b = { — 2J + 4k then find the component of @ + b along

d - b.

Find || if # is unit vector and (% — ¥). (i + ¥) =

The scalar product of { + J — k with the unit vector along the sum of the vectors

21— 3f + k and Ai — 2f + 3k is 1. Find the value of A,

For any vector @; prove that |@ x i + |d x J|* + |d x fE[z = 2|d|.

With usual notations for a triangle ABC; prove that .u - ,b == by vector

_ sinae sinf  siny

- 'hod. o\

Suppose an airplane has a velocity relative to the air with a specd of th[h and a

direction of 60°. Suppnsc the wmd mh)luwmg fmm ﬁc WC\\i h( 40 kjﬁ?h Calculate

the ground speed and the trumoum: for ﬂrrc rﬂ@ﬂ J

A pilot wants to hdv}: al tzme qﬂurseuNOO“ with a ground speed of 250 kmv/h, If the

wind has a Ve{?q”y wum: {r 9) {"U 30°), what should be the speed and dircction

nt‘w@&hﬁ\wltﬂ respect 1o air. Lk




\fter studyi ing ﬁlﬁis unlt smdeuts will be able to:

° DxtﬁHe ah arithmetic sequence and find its general term.

» Know arithmelic mean between two numbers. Also insert  arithmetic means between them.

« Define an arithmetic serics and establish the formula to find the sum to » terms of the series.

s Show that sum of n arithmetic means between two numbers is equal to » times their AM.

a Solve real life problems involving arithmetic sequence, arithmetic mean and anthmetic
series.

« Define a geometric sequence and find its general term. '

s Know geometric mean between two numbers. Also insert n geometric means between them.

s Definc a geometric series and find the sum of n terms of a geometric series,

» Find the sum of an infinite geometric series.

("onvert the recurring decimal into an equivalent common fraction.

Solve real life problems involving geometric sequence, geometric mean and agnea
Xecognize a harmonic sequence and find nth term of b m@;quemm\v

Define a harmonic mean and insert u(h}':mmme mchnafbch\g en(tio Humbers.

Recognize sigma LZ]L nutahpn \ 7\ O \ VAW

Findsumof 2\ \( NS~

+ the f] rmr, namral'\nUnthers (En),

N\ Nﬁ ML ares of the first » natural numbers (Zn), ]

"« the cubes of the first # natural numbers (Er?). i
> Define arithmetico-geometric series.

o Find sum to n terms of the arithmetico-geometric series.

» Define method of differences. Use this method to find the sum of n terms of the series
whose differences of the consecutive terms are either in arithmetic or in geometric
sequence.

s Usc partial fractions to find the sum to  terms and to infinity the series of the type:

I I

t.l(ﬂ +d) ' (a+dXa+2d)

~quence is simply an ordered list. For example, a supt{rha]i dmpped»
irom the top of the tower (336 fi hlgh] always rebounds three fourths of
the distance fallen. How for(upand dmvn) will the ball have traveled |
when it hits the grou d\for the 6th-time, a sequence is being formed?
When ¢ e\memimg of @ sequence are numbers, we can find their sum.
Sucha sunnis called series.




‘ ~7 o\ (

W3 \\QA
4.1 Sequcnce \w <\ WS
We cncountc %\‘ A@ ry bcgmmng of our mathematical experiences. The list of even
numbers; "\

2,4,6,8,10...
and the list of odd numbers;
1,3,5709..
are examples. We can ‘predict’ what the 20th term of each sequence will be just by using
common sense.
Sequences can be either finite or infinite. For example,
2,4,6,8,10
is a finite sequence with five terms whereas,
2,4,6,8,10...
continues without bound and is an infinite sequence. We usually use *...", three dots to denote
that the sequence continues without bound.
For a given infinite sequence, we can ask the questions.

¢ Does the sequence have a limi umb helsequence get as close as we
like to some numbe
For example, we can thc terms in an infinite sequence

whose gcncral term is 3 are approachmg zero as n becomes very large.

The list of positive ed:‘l numbers ;
| T .
is an example of a typical infinite sequence. We use the symbol a, to denote the nth term of a
given sequence. Thus, in the above sequence; a, = 1, a@; = 3, a3 = 5 and so on, the first term is
a, = 1, but there is no last term.
The list of positive odd numbers less than 100 is:
1,3,579,..,99
This is an example of finite sequence. The last term is 99. This sequence contains 50 terms.
There are several ways to display a sequence.
e Write out the first few terms.
¢ Give a formula for the general terms. @O\ \5\3
* Give a recurrence relation.
A much better way to describe a scquengé QL @ a\ t‘n&h]g\fbmhc nth term a,,. This is also
called a formula for the g l€ a,, = 2n - 1 is the general term for the

sequence of odd numm
Consider W \4 8,16

122 A\ National Book Foundation



Here, first term: :
second t\erm[ N\ j \ ﬂz 2 4
]@ B\ﬁﬁ. )ty = 23 =
The gcneral termis a, =2°
This sequence can also be written as:
2o By Brosni g 25 4
Example: Find the first four terms and the 57th term of the sequence whose general term is

- (-1)"
given by a, = —y
Y ) L | _(=1?_1
Solution: a, ] - \ g =t
~CW__1 Y 1
3 34 4 . G =51 s
x|l R Y
57 = “57m1 58
Note that the expression (—1)" causes the signs of the terms to alternate benvaen\pos:twc and
negative, depending on whether n is even or odd. SO\ (@ @\??L \\
Example: For cach sequence, prcd;ct the general terms, E\; ‘-.J, O O
() 1,4,9,16,25,. (@W\ﬁ@ﬂy

(iii) —1,2, 48 ~16/:.\| \\(w 2,48, 16,..
Solution: (i) There »squar& Qf t:dr\msecutwe pomtwe mtegers
1\% éneral term is n* i.e. a, = n’.
] Thcre are square roots of consecutive positive integers. So, the general term is v'_
(u|) There are powers of 2 starting from 0 with alternating signs.
So, the general term is (—1)"[2™1].
(iv) If we see the pattern of powers of 2, we will see 16 as the next term and gives 2™
for the general term.
A triangular number counts objects arranged in an equilateral triangle. The nth triangular number
is the number of dots in the triangular arrangement with n dots on each side and is equal to the

sum of the integers from 0 to ». The sequence of triangular numbers, starting at the 1st triangular
number, is

122
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1,3,6,10, 15,21, 28, 36, 45, 55 66,78, 91,

The formula for nth mqpﬁular umber is givenby T, = "{"fl}
10'(10+1] 5 5

For example‘” er
P:m:nl s Triangle
- One’ uf the most interesting number patterns is Pascal’s Triangle (named after Blaise Pascal, a
famous French mathematician and Philosopher). To build the triangle, start with “1” at the top,

then continue placing numbers below it in a triangular pattern. Each number is the number
directly above is added together.

.I_—Dnns
1 l—Cuunl.inL- Numbers
Diagonals ! 111 r'ﬁ'ﬁhgﬂlerumhen
The- first diagonals is of count, just *“1". [1]2/1 q
The second diagonal has the “counting 11331 e
" ‘ p =y n I P /’ﬁ. ‘.\"., ( \ U
o i gt ot “rsngio N\ el E A=
a an, N T = B DY =
S g ¢ tnangwar - O ANy (s [iof 5T
numbers”. AC \ \ 770\ ( { Al
1
AN N |\

fn each of the following, the nth term of the sequence is gijuen. In each case find the first 4 terms;
the 10th term, a4 and the 15th term, a,s.
L ap=3n+l 2. ap=3n-1 3 an=;% 4. a,=n+1

- - n-1

5. ap=r-2 6 g =i 1 oa=(3) 8. a,=(—1)?.n?
9. a,=(—-1)"(n+3) 10. a, =(-1)***(3n -5)

Find the indicated term of the sequence.

11. a,=4n-3; ag
13. a,=(3n+4)(2n-5); a

15, @y =4n? (1ln+31); gz || (1|}
17, a, =log10% ass -

124 . anel s Foogpders



Predict the general term or nth tcrm,an Ofthe si;qﬂcnce = U
19. 1,3,57,9,... | LN 20,0 3,9,27, 81,243,

@Jﬂ\r}/g o, 2. 12,23,34,45,..

4.2 Arithmetic Sequence

A professional race car driver drives out of a curve. He enters the straight away at 119.9 mph. He
increases his speed by 78.3 mph and after 9 seconds his speed is 198.2 mph.

The table below shows how his speed increased each second after entering the straight path.

Number of
seconds ~
| Speed inmph | 119.9 | 128.6 | 137.3 | 1460 | 154.7 | 163.4 | 172.1 | 180.8 | 189.5 | 198.2

0 | 1 2 | 3 | 4 5 | 6 | 7T | 8 | 9

(mph)

o

\7_/

~FN >\\J)\.\‘\\\' \
AN \
N\ |\‘\':J | \J< N

g

0 2 4 6 8 10
Number of secqnds

From the table and graph, we observe the number and pattern. This set of numbers is an example
of a sequence. Each number in a sequence is called a term. The first term is symbolized by a,,
the second term by a; and so on to a,, the nth term. The sequence shown in the table contains
ten terms. Thercfore, a;=119.9, a,= 128.6 and a,o = 198.2 (each term is obtained by adding 8.7
to the previous term). A sequence of this type is called an arithmetic sequence or arithmetic
progression. The number added to find the next term of an arithmetic sequuncc is called the
common diﬂ‘erence anu:l is symbohzed by the variable 4.

Definition —l

An arithmetic sequence is a sequence in which each term, aﬂcr&hc first; —Foundby adding a |
constant cailed ‘the common difference, 1o th(: p[evtous tcrmi [ (0 02"

,u/

— e ﬁ-.,.a. —— ,’4 — e —



To find the next terms m an, anlhmenc %quﬂnce, ﬁ:st fmd r.he cammnn difference d by
subtracting any term from lts suw:edmg ;erha,\hén add the common difference to the last term
to find succ&ﬁswc tcw NI
Example: {he hext %our terms of the arithmetic sequence 33, 39, 43..
Solution: Find the common difference d by subtracting two conserutive terms.
d=39-33=6 or d=45-36=6.

Now add 6 to the last term of the sequence and then continue adding until the next four terms are
found. , :

as = 45+ 6 =51, as = 51+6=157

ag = 57+ 6=463, a; = 63+6=69

The next four terms of the sequence are 51, 57, 63, and 69.

In this way terms of an arithmetic sequence are formed. A formula to ﬁnd any term of an arithmetic
sequence can be found if you know the first term and the common difference. This formula is
known as a recursive formula. Recursive means that each succeeding term is fnnnvg from

one or previous terms. NGO\ gﬁd
‘\ﬂ\r\\\ § @m -

a, L aq PR @X\(\) e &/\ ik AEAL a,

33 39 [\ WS\ \\\\L 3T 57 J.1-1- an
33+0(6) | 33-[IE)\[033+2(6) | 33+3(6) | 33+4(6) |.|.|-|.| 33+ 1)d
a, +0.d\|Nay+1.d | ay+2.d | ay+3.d |aqy+4.d [.].|].[.]ay+(1-1)d

4.2.1 Formula for the nth Term of an Arithmetic Sequence
The nth term a,,, of an arithmetic sequence with first term a, and common difference d is given by

a, =a,+(n-1)d
Note that the coefficient of d in each case is 1 less than subscript.

Example:
Suppose a race car driver increases speed at constant rate. What will his speed be after 15
seconds, if his initial speed is 85 mph and his rate of acceleration is 4.5 mph per second?
Solution:

a; =85 and d =45, a= ? (After 15 sec means we have to find a,¢ term)

~ T\
oA~ N0\

Find am using a, =a, +(n—1)d - 1SN (© i: N
= N SV Z AR =
5= 85 + (16 -1 (4 5} _ 7 - 7\-—1"‘.({ e ‘-.,‘ \\J f C C///\ o=~

am 152.5

Example: The thm:l term. an anﬂ'nmem sequenée is 8, and the sixteenth term is 47. Find a,, 4

and construq%hﬂ%%ﬁ&ﬁé Also find ays.

R 37 -\, National Book Foundation




So, , a,+{3-1)d = 8- a1+2d (i)
am =47 (Here n = 16)
am—a1+{16-l}d = 47=q, +15d (ii)
Solving (1) and (ii), we have
a; =2, d=3
So, a;=2, Az =ay+1d=2+3=5, ay=a,+2.d=2+6=38,
a,=a,+3d=2+9=11
The sequence is 2, 5, §, 11, ...
Now, aig=a;+(15-1)d=a,+14d=2+14(3)
a15-=44
4.2.2 Arithmetic Mean

To find arithmetic mean between two numbers a and b, we use formula
a+b

AM= A
2
A number A is said to be anthmeuc mean (A M) I:ll;mreesg1 nvpnunﬂnema and b if a,
A, barein AP. A~ WAV WY
If dis the comm;m diﬂ'crenee, thcn SO\ ’

e
z

Example:
Find the four arithmetic means between 19 and 54.
Solution: We can use the nth term formula to find the common difference.
In the sequence 19, . , , 54; we have, @, = 19 and a; = 54.
To find d, use ag=a; +5d '
54=19+5d = d=17
Use a; = 19 and 4= 7 to find the four arithmetic means

a =a,+d  =19+7 =26

as =a,+2d =19+27) =33

a, =a;+3d  =19+3(7) =40

as =a+2d  =19+4(7) =47
The four arithmetic means are 26, 33, 40 a0d 47 _, (Y NV (

Example: Find the 4. Mbctweméand E\ N\ Fl_l'ld three numbers that have a
Solution: We have g, s—ﬁ b lS, then sum of 27, a product of 288 and
]‘ ] NN ;"\-LJJ form an arithmetic sequence.
14 T
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AM =222 12

Example: Find the 7 4.Ms between 7 and 207;' \V\LO W~
Solution: Let A1. Az, A3:... 3 be'the rcqumzd \:Ms between 7 and 20. Then
1 Awm,,vbh As, s, Ao, 2, 20 are in AP,
A\ H\ ==7 n=9, ag=20

a, +8d=20 = 7+8d=20 = d=+

a+b 6+18 A ANV

Ai=a +d=7+==2 ke CheckPolnt
10 10
. 92 Show that sum of n A, Ms beiw
"4"_ a +2d= 7+2( )“ }‘5 a & b is cqual to » times
.. : 147 betweena&b.
Similarly, AJ—-;;, A-s-—?, As= ?, Aﬁ- -, A? ==

Fovercise 4.2

1. Find the first four terms of each arithmetic sequence,

(i) a,=4, d=3 @) o,=7,d=5 (i) a=16 d=-2
(ivia, =38, d=-4 (v) a1=§ d=1 : (vp,\ ay= E,)dm\?q

2. Find the next three terms of each anlhmcu@cgrucnaﬁ f“ \ \' 4 4"3'" N
i 5,9,13,. {u) 11 44 1/?(\ R ,' [\ DU
(i) 3, : 2 iﬁ) 54»-.44 2%,

3. Find the ﬂmfm he amhmeuc sequence 0.07,0.12,0.7,.. -

‘4, The ﬁﬁé of an arithmetic scquence is 14 and the mnth term is —1. Find the first four
terms of the scquence.

5. Find an arithmetic sequence for a” = 40 and ayg = -73, find a, and d. Write first five
terms of the sequence.

6. The fifth term of an arithmetic sequence is 19 and [ 1th term is 43. Find the first term and

87th term.
7. Which term of the sequence -6, -2, 2 .15 707

5 . 105, .
8. Which term of the sequence 2, % % is —T?
9, If = b - are in A.P. Show that the common difference is —.

2ac’
10. Durmg a fn:e fall, a sky diver fall§ 16 fect in the first second, 48 feet in the 2nd second w

80 feet in the third second. If he continues to fall at this rate, how many feet will hc fa!!

during the 8th second? A\ RO\
I1. If Rs. 1000 is saved on August 1, Rs. 3000 on Augusr 2“”&. Qﬂﬂﬂ o5 st e -
How much is saved till August 207 : O

12. A gardener is making afriangular p]antmﬁ; mth 35 planls in the ﬁrst row, 31 in the second
row, 27 in the t I}u'd) np}v and 5o on: If the pattern is consistent, how many plants wjll there be

in the etgﬁihi‘ﬁw
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13. Find A.M. between
() 7and 17 ) A\
(i) 7W5and v’_ A\ , '\\‘-' (' \') 21 +5and 5y + 3

14. Find ‘b’ if Q qih M hctwcc‘n b arld 20.

15. I-md &hnﬁ V if2and 13 are two arithmetic means between x and w.

16. Fmd the two arithmetic means between 5 and 17.

17. Find three arithmetic means between 2 and —18.

4.3 Arithmetic Series
A sky driver falls freely covering the distance in the following pattemn. These free-fall distances
form an arithmetic sequence.

16, 48, 80, 112, 144, 176, ...
To find out what the total distance coverd by the sky diver is, we would add the terms in the
sequence.

16+43 + 80+ 112+ 144 + 176
The indicated sum of the terms of a sequence is called a series. Above scnw;s called an

N Y= (1 | ". W\ U
arithmetic serics. NI Z \ (GIVY
Following are the cxamples of 1nthm¢uc sequr.;ncés and tluf r ¢6msponﬂmg arithmetic serics.

Vv {\ "‘.'\ \ ,/\ \ -
Anthmet:c&equmce LN Arithmetm Series
%,1 |ﬁ\8‘[0 2+4+6+8+10
\\1 '\l\ 8,-2,4 —8 + (_2) +4
4812 16 18,2, 28
5’5" 5 - 5 5
ay, az, A3, Qy,..., Oy ay +r13+a3 +ay +,...,+ a,

The symbol S, is uscd to represent the sum of the first n-terms of a series. For example, Ss means
the sum of'the first four tcrms of a series. For example, the sum of series 3 +6 + 9 + 12 15 30,
If a scrics has a large number of terms, it is not convenicnt to list all the terms and then find their
sum. To develop a general formula for the sum of any arithmetic serics, let’s consider the scrics
of sky diving distances.
16+48+80+ 112+ 144+ 176
We write Ss in two different orders and find the sum,
Se=16+48+80+ 112+ 144+ 176
+ S=176+144+ 112 +80+48+16 . [ }\:j‘_i (OULY
25.=192+192 + 192 + 192+ 192 + '921“ \\ ", ) ’6 tlmcs 192 (6 sums of 192)

=6 [m] =50 3 ,@gz} “(Divide cach side by 2)

Here, 6 rcprcscntT n,, IB" repre%ents the sum oOf the first and last terms (16 + 76) i.c. a,+ a,. We
can replace ! I}Hc dc}tmhon with the formula:

Soairerdeition,



T [ﬂ1+ %] - |
We have lcamt that in anthmetm sequence, a, = a; + (n— 1) d. Using this formula(i), we get
another Vﬂl‘ﬁlﬂn @hﬁﬁu‘m of an arithmetic sequence.
== [a1+ a,]; replacea, witha, +(n-1)d

Sn= 3t (@y + (= 1) d)]
Sn= = [2ar+ (n- 1) d]

The sum S, of the first n-terms of an aritlﬁnetic éeries 7
[ is given by

= Z[ay+ay) = Sn= -[2ﬂ1+(ﬂ- 1)d]

Example: Find the sum of 13¢ first 100 positive integers.

Solution:
7\
1* Method: In this serics, a; =1and a, = ayq0 = 100 N (|
-\ ~ g ‘ll‘- «I\‘I\d.’ﬁ\\'{/l c
A0

_ﬂgl_gm \ MM» 2\‘+ 3 +""
YN gy =1,d=1,n=100
Su= 3 [2ay+ (n-1)d]

Sioo= 222 [2 (1) + (100 - 1)(1)]

S100 =50 [101] = 5050
Example: ,

Find the sum of the first 50 terms of an arithmetic series where a; = 5 and d = 25.
Solution: Given

ay=5,d=25n="50
Sa= 2 [2ag+ (n-1)d)

o= 2209+ (0029 (obttingydie|
Ss=25[10+ (49)(255] 30875 AT
Example: Theaters are oﬁcn built Vnth thc}e seats per row as the rows move towards the back.

Suppose the mamjﬂqmj pfﬂ theater has 28 seats in the first row, 32 in the second, 36 in the third

and so omfgﬁ 50 rows. How many seats are on the main floor?
Solution: From the given information, 1st row = 28, 2nd row = 32, 3rd row = 36. The series is

130 '_ o4y Unit-04  Scquences and Series 7\, National ok Foune




QA J'QJ/’f{\l NN'\\“ o\ y— 28, d=4,n="50
o Sn= > [2a,+(n - 1)d]
Sso= > [2(28) + (50 - 1)(4)] (substituting values)
Sso=25 [56 + 196] = 6300

Example:
Find the first three terms of an arithmetic series where a; =17, a, = 101 and S,, =472,

Solution: First, find ‘n
Sn= E[aﬁ anl;
47222[”"’191] = 944=18n = n=8

Next, find ‘d’. _ B rﬁﬁ\
e =Mt K DE N\ A CA N \1 '/o PC\@ LuL
101“17+(8T])QO/ \r\\ \D y
@ng ,._4\4 \\u\\» -

Now we have: . r\[] \ \\ -\ \ VDL

a@ﬁw}biﬂ 12=29
crg-a1+2a' 17+2(12)=41
“Thus, the first three terms are 17, 29 and 41.

U Excreised3 o

Find the sum of each series (1 - 7).
1. 4+7+10+13+16+19+22+25 ‘2. a,=2, a, =200, n=100

3. a,=5, a, =100, n=200 - 4. a,=4,n=15d=3
5. a,=50,n=20,d=-4 6. 3+(=-N+(-11)+.......... + a4
T 911 F1IF IR F s forn=12

8. Find the sum of the even numbers from 2 to 100.

9. Find the sum of the odd numbers from 1 to 99.
10. Find the sum of all multiples of 4 that are between 14 and 523.

AN

Find S, for each arithmetic series, K \,"’,'K/’;/ \ (GQPBE"
11. a1=3 @ =-38n=8 o O - 12 a1~=ss,\uear a4, =25
13. =34,n =9, an= z ! AN }_— i, =, J—— n=13
15. =91, =-"4,x.,|a}, 19T 16, d=—4,n=9,a, =27
Find sﬁm Pf me Lﬁtﬁmeﬂc series.
1.6 % 12+ 18+... +96 18. 34+30+26+...+2

National Book Foundatior | - 13



19, 10+4+(=2)+:..+ (—5{1) A\ \RA\s
Find the first three terms nf L'ﬂéll nﬁlh!ﬁc\ﬁeserlcs.

20. 7a,, J;sms,, 876 21. n=14,a, =53,5, =378
22. tﬁéz,. -306,5, = 1716

23. A formation of a marching band has 14 marches in the front row, 16 in the second row,
18 in the third row and so on, for 25 rows. How many marchers are in the last row?
How many marchers arc there altogether? '

24, How many poles will be in a pile of telephone poles if there are 50 in the first layer, 49
in the sceond and so on, until there are 6 in the last layer?

25. A family saves money in an arithmetic sequence: Rs. 6000 in the first year, Rs. 70,000 in
second ycar and so on, “=r 20 years. How much do they save in all?

26. Mr. Salecm saves R:.. 500 on October 1, Rs. 550 on October 2, and Rs. 600 on October 3
and so on. How much is saved during October? (October has 31 days)

A\

4.4 Geometric Sequence =\ 0\

lodinc is used medically as a tracer isotope in monitoring the aztwitg\f'af ﬂi;ﬂrﬁmd glnnd A patient
is given a compound comammg the radmacmt; lodmm ’[hc amount of iodinc retained by this gland
is a measurc of its ability to” ﬁmctmn NS}

lodine has a half-li jqbaut B days. That means approximatcly every 8 days, half the mass of
iodinc dcﬂayﬁllﬁib Xﬁmr clement. Then in the next 8 days, half of the remaining iodine decays,
andsoon.

Suppose a container hold a mass of 64 milligrams of iodine. To find the remaining mass of iodine
after cach half-life, 64, 32, 16, 8,4, 2, 1, and 0.5, are what type of patterns do you suggest?

The pattern of masscs forms a sequence of numbers known as a geometric sequence or geometric
progression. The terms in this cxample arc 64, 32, 16, 8,4, 2, 1, and 0.5.

Definition

A geometric scquenéc is one in which cach term after the first is found by multiplying the
previous ferm by a constant (not zero) called the common ratio.

In any geometric sequence, the common ratio r is found by dividing any term by the previous térm.

Example: ging the next two terms of the geometric sequence 4, 12 ﬂl‘id 36

‘,\\ D)

Solutlon: T, ﬁnd the common ratio, find thr:quuncnt ofany tw‘ﬂ cunsecutwe terms.

12

. S -3 fhrmmmon mtmua

The fourth term = 36 (G 108
The fifth term | = '163 (3)=324
= The next two terms of the geometric sequence are 108 and 324.
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4.4.1 Formula for the nth Terny nf a t mw:tﬁcSequence L

Successive terms of a cumemc sequé:nceau usually expressed in the product of r and the previous
term. Thus, a cp ric: sequence is also a recursive sequence. Each succeeding term i in a GP
conmmdfeumr of r, each term can be expressed as a product of ~

We derive the formula for GP using previous example. Observe the following table:

4 ﬂg az ay PO IR I I PR ay,
4{3) =12 4{3") =36 4(3"‘} = {8 . . 1. X 3 {rm.-a.J =
ar ﬂr‘ ar"' \ . . . . . are s

The nth term a,, of a geometric sequence with first term @, and the common ratio r is given by
formula:
a, =a;r"*?
Example: Write the first five terms of a geometric sequence in whicha; =5and r=2.
Solution: Given a; = 5. Write next term using formula; a, =a,r"™*
ay=a,ri'=ay =(5)(2) =10 (Substituting values a,_ 5. r=2 agd:;\-ti, 3,4,5)
g =ayr¥l=ar?=(5)(2)*=20 ; )\
a;=a,r* 1 =a,r¥=(5) {2}3 = 40
ag=a,r*" 1= a1r“ (51(\2)]' A 811 . ot e
& The first five terms nf‘ a sequénce art S\TQ 20,40, and 80.
Example: Find| Fk\ypnth terim, @, of a geometric sequence in which a; =96 and » =4,
soluﬁ.mg' k\aﬁelaf form of the third term of a sequence is a;7* (a; ).
Wehavea; =96, r=4,a;="?
as = a,r?
96=a, (4% (we need a,to find a;)
96 =a,(16) = a;=6
Thus, a; = a,r® = (6) (4)° = 24,576.
Example:
Mr. Khalid saves Rs. 1000 on the first day. Then each day thereafter, saves double the amount he
saved the day before, Find the amount he should saye the 20th day of the month.
Solution:
In this sequence, a; = 1000. Since the amount of money is twice that of day before, so r=2.
an=ayr"t | ayp="?
Gz0 = @y7%%"1 = g,r1? = (1000) (2)“
= 524288000 . e\ Y,
On the 20th day, Kbaid should save R sza«zssuuo
4.5 Geometric Mean' | p -

\ \RSA
Ifa, G, b is in a geometric's sequ-mce, thi:n Gis callad the gcometnc mean of @ and b.
From genrqetnc ﬁeqw:[ﬁcea G, b, we have :
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Common ratio: r = %
Form (l) and (IQ \ ] “
a_ INIIM

= G2=gb

\j'\“

eaflqmc means of two numbers is the square root of their product

Key Facts

.- 'l'ﬁe positive square root is chosen, if both the numbers are positive.
¢ The ncgative square root is chosen, if both the numbers are negative.
¢ The mean is imaginary, if two numbers have opposite signs.

Example: Find the geometric mean of each of the following pairs of numbers.
27 .

(i) 9and 4 (ii) —-and—?

Solution: (i) Herea=9and b=4.So, - A\
G =+vab S
=X 4=

(i) Givena= —-Q&*T\ (ﬂ A\ -

\ ‘L_J b

Example: Find two geometric means between 81 and 3.

Solution: The sequenceis81,  , 3.

Use the general formula for the nth term to find the value of r.
Since a, =81,a,=3,n=4. '

So, By =yl becomes a, = a1r3 or 3=81(r)3

The missing geometric means ﬁre "7 (md'-gﬂl.l AN
Example: A vacuum J?"W" wmﬂves 2of the air from a sealed container on each stroke of its

\‘ ‘\

ent of the air remains aﬂer five stroke of the piston?

piston. What |
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Solution: , N\ AL
Let 1 represent the ongmﬂ amnum of mr \ﬁﬁcr" the ﬂrst stroke, 1 == or % of the air remains,

The second slirokc p‘pmn%s of the rema:mng air.

=34 18
Thus the amuum that remain after two strokes is = (1 - ;) =33 =
This pattern can be expressed as a geometric sequence.
Number of
0 1 2 3 4 5
strokes
4 16
Sequence 1 3 7€
Terms a, a, s ag as ag
Now we use the formula a,, = a,r"* to find ag, the amount of air left after five strokes
a, = a;r*? (substituting the values; a, = 1 and r = g)
#\5 45
ag = l.(;) or = : o~
G = 12 or 032768 T\ [ (e

Determine whe llep' ¢anh sequence Is genmetric. If so, find the common ratio.
L. 5,20/100,500, 2. 2,4,6,8,.

3 9 Bl
3. ST 4. 1, 14,21,23,.,.

Find the first four terms of the geometric sequence.

5 a,=3, r==2 6. ay=27,r=— 1. =12 r=;

Find the next two terms of each geometric sequence.

8. 90,30, 10... 9. 2,6,18... 10. 20,30, 45...

111 11

"'. 729, 243, 81... 12, =55 13. 2,71

Find the nth term of each geometric sequence.

14. ﬂ1=4,ﬂ'=3,r=5 15. a1=2,ﬂ=5, r=2

16. a,=7,n=4, r=2 17. a;=243,n=5, r=--_:-

18. a;=32,n=6, r=—§ 19, a1—16 n= 8 r=E\_

Find the missing geometric means. NB\RARY :

20. 3, , = - 8
WA P —

22. 8, S A\ 12 ,75

24. 5, _ N _."J [080 _ 25. 7, , , 112

‘\\J i\JJI \\_(' \J
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26, A Ping-Pong ball is dropped from a\hmg@pm j)/ m{u;l n\lwny ljuunds one-fourth of the
distance fallen. How @gh dm»q\nbogr\\tﬁ

27, A mty has a Lumr{ﬂ P\Nﬂhunva\f ﬁ)\l 000 and the population is mcreasmg by 3% cach ycar.
Wﬁ%ﬂ\uﬂﬁon be in 15" years?

28. A super ball dropped from the top of the tower (356 /7 high) always rebounds three-fourths of

the distance fallen. Iow far (up and down) will the ball have travelled when it hits the
ground for the 6th time?

29, The teaching staff of high school informs its members of school cancellation by telephone.
The principal calls 2 teachers, cach of whom in turn calls 2 other teachers, and so on. In order
10 inform the entire staff, 6 rounds of calls are made. Counting the principal, find how many
people arc in staff at high school?

M. A 5-day rain caused the river to rise. Atier the first day, the river rose one inch. Each day the

rise i the river tripled. How much had the river risen afier 5 days?

o Aot oo

a geometric series.

4 51 Sum ﬂmfn a Geometric Sequence
Ve want mula for S, when sequence is geometric as given below.

ay, a,rt, 4,1t a1, e, Qs

4.5 Geometric Series
The sum of the terms of a

The geomeltric series Sy, (sum of n terms) is given by:
Sp=ay Fart +apttard o, +a, "t 4! (1

i we multiply both sides of equation (1) by r, we have
ISy =ayr+ari e+ rar' +ar® (2)

subtracting corresponding sides of equation (2) form equation (1), we get:
S“ - rs,tz a‘ - a1 r"
or S, (1-r)=a; (1-1™)

.Di\'iding on both sides by I - r gives the following lormula:

~
—_ i - LY
The formula for linding the sum of n terms of L.I::UII'ILI.I'IL series: A\ (C (@) & SR
up (1 \ /\\“/—\\' / ( \(’Bk
-1——-—-@- | u* m\ \n\ 1\

Note: When r= 1. the du@mlqmaf/hﬁdmcs%m \ﬁ‘u\l‘\‘h/ . '1'\11 formuta s 1 wplicahle when ez 1 [




e \ iyt
\@

Example: \l{ .
Find the sum of the first 7 téﬂn{ ence 3 15, 75, 375; s
Solution: First we lf\ﬂ] t\\ Dﬁh&\

%\&{ n?r——os

Using the formula for the sum of geometric series:

) L ...."-‘

_a;(1-rh
Sn= 1-r
5, = 2050 Substituting values of d
. = (Substituting values of a;, n and .)
- 20-7129 - 58, 593.
Key Facts
Another form of the formula for S,, can be developed and used, when we don’t have
&9 number of terms.
' = ayr"?
A, .r=a,r" 1 .r  (Multipling by ‘r")
Qpr=a,r" (i)
We have, Sp =21 L

o
s =wﬂ$§@@@¥@%@o@ |
::::::: Find :hc smﬁ\g or whicha;, =48,a, =3 and r= =

ay—apr
1-r
s~ o .
Sn= (Substituting a, =48, a, =3 and r = _E)

1= ==
48 +
= ——;‘H_ =33
Example: Find a, ina geume.tric series where §; = 3279 and r=13.

Solution: Now, Here S7=3297,r=3,a; ="

. _ay(1-t™
e Srl_ 11-'.
7
5 =) (Taking n =7 to get Sy).
3279 = 2102 ) (Substituting 7 = 3)
3279:“1(1_31"7) e @G\Kﬂ@
-2 g W
_ 3279(-2) _ ol N %l / Cv\ =
— al W\
-2186 (\f \%\ )\\ \,.
a =3 O\

\\V

The ﬁmL@ h lpén dulum measures 25cm. The Ieugths of the successive swings of the
the geometric sequence 25, 20, 16, 12.8,..

pendul\nﬁ'l
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Suppose the pendulum continues to swmg bac\ Emd fprth mﬂeﬁmtely then the sequence shown
above becomes an infinite geumetnc sequcnce
The total distance tha dhlum travels can be expressed as the infinite geometric series

\J'\“ N ﬁs+2u+ 16+12+..

In the series, a; =25 and r= 2—5 = 0.8

So, the series can be expressed as:
25 +25 (0.8)! +25 (0.8)% + 25 (0.8)3 + 25 (0.8)* +...
Look for a pattern in the values of (0.8)™ as n increases.
(0.8)! = 0.8, (0.8)*° = 0.107374, (0.8)%° = 0.0000143
In an infinite geometric series where |r|< 1, as the value of » increases infinitely, the value of ¥
approachcs 0. Therefore, substituting value of 7™ in the formula;

Sﬁ:al (1‘?‘ )’

1-r
wegetl  Se=_21 _ Thisis formula for the sum of an infinite geometric series. N
- e [ m/;?‘-., (C )A/Q\, ( \\
Sum of an lnfinite Geomctnc Series_ e N\ 0 \. ! ,' C Cf»—"ﬂ"j' -
The sum, S ,0f an infinite gaumetnc sarres whe@ ]\*2:\( 1 given by the following
formula: ?> \ O (\\\ S \d
\ '\ 3 - |
AR i
NN
Key Facts

rﬁm infinite geometric series in which |r|> 1 dnes not have a sum. For example, consider
the series 1 +2 +4 + 8 +...... where a; = | and r = 2. The terms of this series keep
increasing, so the sum becomes greater with each additional term and never approaches
I to any point or number.

Example: Find the total distance travelled by the pendulum before coming to rest, if it successive
swings form the geometric series:
25+20+16+128+,..

Solution: Sum of the infinite geometric series is given by:
S=25+20+16+128+...
Here a;=25and r=08

5 T 1-r  1-08 125 O ANV NNY
Thus, the pendulum travels 125¢m. | ' \ = L
[ l "- ’.'—\' ;",‘ ".' ".I' -\\ \ \.
Example: Find the sum of the mﬁmte geomutnc scncs - = 5 + ; - —E +,

Solution: To. ﬁfnq 'thq #hlﬂe of'r r. dwule any term by its precedmg term,

Unit-04 i anuemes and Series " National Book Foundation




Since |r|< 1, we hajvc Scﬂ
RN NN
N ! \"\fLJ '\-«“ 4/3 8
NN VY S _rf -8
Example: Find fractional notation for 0.63636363. ..
Solution: We can express this decimal as:
0.63636363....... = 0.63 + 0.0063 + 0.000063 + .

This is an infinite genmetn-:: series, where a; = 0.63 and r = l'.} {}l Since |ri< 1,

this series has a sum:
a, _ 063 _ 063 _ 63

Find the sum of each geometric series. B (i
L. 16+16+16+......to 11 terms 2. TSH1S+34 xéjote@.ku W)
3. =5 r=3 n=12

\ N | {
5 ay=7,r=2 n= t4<;_;_.f%"“=.

‘ 49 /ﬂ; 256;\!' 0?\5 = 9
S\ V4 :L_,\a,dw a5 =972, r=-3

7. a, =16, r—-'l i \gp,— 1007 8 =243, r==% n=5
j\
YNANA 1 3 3
9. \:iiti =—1, r=-1 10. a=3 ag=2, n=6

Find a, for each genmetrlc series:
11. §,=244, r=-3, n=5 12, §,=32, r=2, n=6
13, ay,=324, r=3, 5,=484
14. Find fractional notation for the infinite geometric series.
(i) 0444.. (i) 9.99999... (iif) 0.5555..
(iv) 06666 (v) 0.15151515.. (vi) 0. 12121212
15. To test its elasnclty, a rubber ball is dmpped into a 30/7 hollow tube that is calibrated so that
~ the scicntist can measure the height of each subsequent bounce. The scientist found that on

each bounce, the ball risesto a height% the height of the previous bounce. How far will the
ball travel before it stops bouncing?

16. A hot-air balloon rises 80/ in the first minute of flight. If in each succeeding’ mmutes the
balloon rises only 90% as far as in the premous minute, WItat wl“ bc its maximum altitude
if it is allowed to rise w1thout lurut? \ SRR

Uinit-ld  Seguenees ol S0 139




4.6 Harmonic Sequence @o@@
A sequence of numbers is called a ic progression (H.P.) if the
reciprocals of its terms

For example, the s il . is a harmonic sequence because the reciprocals of its
terms are 1,4, 8,J%...... whtch form an anithmetic sequence.

4.6.1 The nth Term nf a Harmonic Sequence
The sequence:

1 1 1

ay' ay +d' ay +2d’
The reciprocals of the terms are:

iy, ay + l'.i, ay + Zd, ......... iﬂ AP,
We know that gencral term of AP. is

a,=a; +(n-1)d

The reciprocals of the terms :

e 1 _(nHP)

an a1+{n ~-1)d
where aland d are the first term and common difference o :ﬁ mm
Example: Find the 9th term ﬁhe H. P%@%Qﬁ: : &

Solution:
111

The recipr of the terms 2, 7, 12, 17,... are in A.P.

Wehavea, =2, d=5, n=9
ap,=a,+(n-1)d
ag=2+(9-1)5

=2+40=42 inAP.

Thus, the 9th term of the H.P. IS -

.1 |
Example: Find the harmonic sequence, whose fourth term is 5 and eleventh term 1s e

Solution: The fourth and eleventh terms of H.P. are E and ;—5 respectively.
The reciprocals are in A.P. So,

Fourth term (A.P.) =a,=13,
and eleventh term (A.P.) =a;, =25

=13 = q,+3d=13 m/
au:zs = a1+t0d 1@@
Solving (i) and (ii), we have XX

d

' Saqummmdﬂmﬁ




Mh@+mf7+unuu
a,=a,+3d=7+3(2)=13
The arithmetic sequence is
7.9, 11,13,......
So, harmonic sequence is
1111
7' 9" 11" 13"
4.6.2 Harmonic Mean
A number H is said to be the harmonic mean (H.M.) between two numbers a and b if a, H, b are
in H.P.

< \\\J '\\J_ "

111 .
-, — —are in A.P. '
So, a'H'b PR }
1
Common difference == -==3 -4
a b H PPN
N\
~ [ 1(71\\ (C @)"&f\".‘) v
l+‘._1+1 A N ‘\||’//)\(\tf/\_/
#tH"a’s NN Cr
\/ I\', 77\ l/; \ ‘I\\\ I\\_B \\ \ \\.<l ,' /
2 fﬂli-_b. P \‘/f/ \ \..'\ U \)\'\,/”‘\ -
H:j\d A O\ N Y
\‘\ w A\ \J -
‘\'qu ‘

\j \l = - " (Harmonic Mcan)
\ I AP
This gl&Nﬂ ormula for H.M. betwecen a and b.
Example: Find the harmonic mean between 15 and 7.
Solution: Here a=15 and =7, therefore

HM. = 2050

1547
— 210 _ 105
22 11

4.6.3 Relations between Arithmetic, Geometric and Harmonic Means

(i) If A, G, H are the arithmetic, geometric and harmonic mean between two positive numbers a
and b, then' show that -

A>G>H
We know that
A= 9—? (Arithmetic Mean) o — g m’, Pk

=\ -\\ I}\‘”\i" \\l_J\‘-\_‘ o l'v,_,'" /|
Welhave- b e

a+b-2ab > 0
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“-‘HJ‘ J'd‘f_ m >0, always true

A>G
& G>H if vab> li'i
write: ﬂ
We can write: a+b > =
a+b > 2Jab
So, a+b-2Vab >0 = (\/E—\(E)zb 0, always true
G>H
Therefore, we have A>G>H
(i) AxH=G? A
LHS.=4 xH N\ O\
_ath, 2a o
2 a+b

=ab= (\fab)z 2 \= RAHLS)

N NS

Example\\ll‘%ﬂh\tﬁe anthmenc, geometric and harmonic means of 24 and 16.
Also show that AH = G2.

Solution: Here a=24, b=16

A_a"l-b 24+16_20 ’(AM}
G—«f_ \!24x1 =86 (G.M.)

_ 2ab_ 2(24)(16)
a+b 24+16 (H M. )

We have AH=G?
LHS. =4 xH = 203‘— 384

RHS. =62 =(8V6)? =64 x 6=1384
. Ax H=G? ' ~\

~ . —~{ M\

1A\ ()

i e N [~ 2\ L\ \\S
B ". ’ »

Fmd the indicated term of the- har;mo\nic pmg‘réis!on (Q 1-6)

111 VNS 1
L 3 12, T Tthterm |\ 2. 35 5 10th term
N N ’v 111
3' \‘-\ E |+ & 20&‘ tcm] 4" 4) 9, 1+|--«.- ﬂm tenn
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11 1
27" 20‘13 “
\\ l\“\

d\LchhtermanP

5.

111 1
£710 13"
8. 7, 41,...... is arithmetic sequence, find the 17th term in H.P.

9. Find the 8th term in H.P.

11 1
~1,-2

76 3+
10. Find H.M. between 9 and 1 1. Also find 4, H, G and show that AH = G2.
11. Find HM. between 2 and 2.

12. Find four H.Ms. betweeng and 1—11

Note: Sum of Harmonic Progression Formula

Sum of n terms in HP; r"(\\ @/R WAL

Where: ‘ a’ is the first term of A.P, * d " is the common difference of A.P, and"/n” is the
natural logarithm

4.7 Miscellaneous Series

A sequence is simply an ordered list. For example, when a baseball coach writes a batting order,
a sequence is being formed. When the members of a sequence are numbers, we can find their
sum. Such a sum is called a series.

4.7.1 Sigma Notation

When the general term of a sequence is known, the Greek letter E(Sigma) can be used to write a
scries. For example, the sum of the first four terms of the sequence 3, 5,7, 9, ..., 2k + 1, ... can
be named as follows, using sigma notation ur summation notation;

Z @+ o o
— ~X '\'\_vj\\:,'/ -

—\ ﬂ// \ \ \\J " \// 2. ‘. -lf"r ~—r

This is read as, “the sum as k goes from, ‘If) 107 ‘fﬁf@k + 1) v 'ﬁle letter k is called the index of

\\\\\

summation. Sometimes’ lhe mdem}f sm{uqatiun ‘starts at a number other than 1.
Example: Find and evaluate the following sums.

NER BIR b TLED@ 9 S+
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Solution: -
" Zk =1 k2=12+2%+ 32 + 42 + 52 A ,,

Evaluate k2 for all in rfgcrs from) 1\ tu\s\and thén add.

s I\vl\ g+!6+«25

) T Rk R = - (zn+(——1)* (22)+ (-1 (23) + (-1)*
= 2+4-6+8=4
30 (2K+5)=(20+5)+ (2 +5)+ (22 +5)+ (2 +5)
=6+7+9+13=35
‘Example: Writc sigma notation for the sum.
a) 1444+9+164+25
b) ~l43-5+7
Q) 34327481+,

Solution:
a) 1+4+9+16+25
This is a sum of squares i.e. 12 + 22 + 3% + 42 + 52, So, the gcneral term is kz gndﬂm sigma

notation is, / U
T AT xs
Z k /(: \

k=1 \.\ \\
b) -1+3-5+7 \

Except for the allematln%slgns }s& @h\é sum df the first four positive odd numbers.
Notc that 21:\N ia\h) 12 for the kth positive odd number and (—1)* = 1, when k is cven
and (—1) = \r when k is odd.
The general term is thus (—1) (2k - 1), beginning with k= 1.
So, its sigma notation Is:
S (D 2k - 1)
c) 3+9+27+81+ ...
This is the sum of powers of 3, and it is also an infinite series. We use the symbol co to
represent infinity and name the infinite series using sigma notation as follows:
o
L3
4.7.2 Some Important Results
The sum of the first # natural numbers, the sum of squares of the first » natural numbers and the

sum of the cubes of the first # natural numbers are cxprcsscd in mgma natatmnvas? i
{ A\ ﬂ// \- \ \\' ;' \/// \ ¢ \\hA\ o

g ‘ 3‘ 3 3 .
™\ '-\\-<‘kf-;r\\ll \\:. ﬂ' 1‘2 +3 +4 iltr|||+n
\tU\i A

T R RS weE R\



A A A\ RN
s\ \/ U \L/v\/ U
We evaluate E [kQ\i- (—- i)"f\] ibr y posmve integer m and shall use this result to find
out formul {qﬁlﬁ&z mns stated above.
W\Hl}"‘ — (k= 1)™] = (1™ —0™) + (2™ - 1™) + (3™ - 2™) + .......
+[(n=1)"-(n-2)"]+[n" - (n—1)"]

=1 R IR YR § TR R s +t(n-D"-(n-2)"+n"-(n-1)™
=n™ [only n™ will left, all other terms will be cancelled out]
Thus, Y g [k = (= 1)™) =" (i)

If m = 1, the equation (i) will become
Y pua [k = (= 1)1 =7
Ek-l [k=k+1]=n

Li=1 1=n [Means; 1 +1+1+..+1= ?]@@

When m = 2, the equation (i) will %@@@‘
N c@m
" [2k-1  =n?

2 %y k-ZRey 1=12
23k=y k—n=n? (“Zk=1 1=n)

22%:1 k=n2+"

Zk=1

Key Facts

Ya+b)=Ya+Xb
Y3a=3Ya

n _ n(n+1)
zkzl k = 2

Taking m = 3 inf equation (i), we have
3 panll? = (= 1)) =
Yo [3k2 =3k +1)=n°
3y k-3 T k+ TR, 1=n \ X@L\Lf/\\yv
\

. M\ \
Wehave, i, 1=n X, k= MD C\\\ \T\'\

3% 1"‘\;['@'\; : 1u ;\ \3,\,:.;
IS et 555

Vﬂgﬂlﬂ,ﬁw Unit=0d 5 .uces s Soie 145



WW %n(znz-}an-u]

=n{2n +2n+rn+71)
2

_ [P +2n+n+1

—"[ 2 ]
—J2nn+1)+1i(n+1)

S
n 2_ n{n+1)(2n + 1)
3 2k =S

Zn kz - n(n+1)(2n 4+ 1)
k=1 6 .

Similarly, we can prove that
o neeef W@o@@m
Lik=1 2 O @
Example:Find the sum of the n.terms o%@@@
1.2 .
Solution: We know that | @m& | :
W@% F o is k. :
2+3+4+.........isk+ 1.
If Ty, is the kth lerm or general term of the series, then 5
=k(k+1)
Tk =k%+k

To find sum, taking summation both sides:
- oo
YreiTi= 2k=1k3+ k
= gy K2+ ey k

_nn+1)(2n+1) n(n+1)

6 T2 ¢
_nn+1)[2n+1 ‘
=~ g [Ek =2 g
 N(n+1)(2n+4)

[
= Nn+1)(n+2)
3

- n(n+1)(2n+1)

E:lT

Example: Find the sum to n terms of th ‘
- Solution; Replace n with k)

T,
Taking NWW ﬁ
Y T= T (k%+ 4k +1)




\\ ,-._,_' -

G 2 k4 E k +\£\1 ‘\ \)\_3
n(n + mzn +1) AEIULEVIN
~MN N8 ]

~ N\ J”'K‘N N I\J_J\U Y [+ 1)+ 2)

QNN @208 4 o0 4 1) + 1]
_ N2+ 2n+n+2+12n+12+6
=1 3 N ]

_ [n%+15n+20
LTi=n— ]

4.8 Arithmetico-Geometric Series

In mathematics, arithmetico-geometric sequence is the result of term-by-term multiplication of a
geometric progression with the corresponding terms of arithmetic progression. The nth term of
an arithmetico-geometric sequence is the product of the nth term of an arithmetic sequence and
the nth term of a geometric sequence. A'rithmctico-geumeu-ic sequence arise in various
applications such as the computation of expected values in statistics and other fields. For

instance the sequence
oM
1248 16 32° k//\,

is an arithmetic-geometric sequence. The: mﬁgm @3\4 ¢ numerator and
geometric one in the denﬂmlpatur \ \ ; ‘k O
The summation of this i m cquc@c \1

4.8.1 Terms o[t qﬂuqnﬂ: \/\ She
The first %n anmmetmo-geumemc sequence composed of an arithmetic progression
n

with comm d:ﬂ'crr:nce d and initial value a and geometric progression with initial valuc b and
common ratio r are given by: -

Ty =ab=A,6G,

T, =(a+d) br=A4,6;

Ty = (a +2d) br* = A5G,

llllll

anthmeﬂc-geometnc series.

Tn= Fﬂﬂ'n 1)‘{'&,.11— = ApGp
Ay Gn

For example, in the sequcnce
Then nth term is:
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4.8.2. Sum of then 'I: rms WU
The suuwf\\me\fm@tﬂ\crms uf an antiunct:co-geomeMc sequence has the form:
Sp=2h=1 Tic= Zkﬂ[a + (k-1) d] br¥?
=ab+(a+d)br+(a+2d) br+...... +la+(@m-1)d br™1 (i)
Sn=A;Gy + A6y + A3G3 + ... + Ap Gy
This sum can be written in closed form.

Proof:
Equation (i), is written as by putting b= 1
Sy=a+(@tdyr+(@+2d)r+. ... +tla+(n-1)d r*1 (ii)
Multiplying both sides of equation (ii) by r.
rSy=ar+(@+dyrP+(@+2d)r+@+3dr.... +[a+(n=-1d)r™ (i)

Subtractmg rS, from S5, and using the technique of telescope, we get:
Sp—rSp=[a+(@+d)r+(@a+2d)r+...... tlat+@-1)dr*t — mw
[ar+(a+d)r1+(a+2a)r*+(a+mr ﬂ;\ y M&\#]

=atar+dr+ar’+2d’ + .0\t h)
bl dr@\dg*ﬁ?@\* éb (=)
After canccllmg like t Note
a+d(&}mj\’j ‘.,.ﬁ- :_1) [a+(n- 13 d 7“’:l To generate the formula
+d +o )-ar™ - ndr" +dr for finding the sum of
Sn—rsn—a+d(r+;1+r1+ ...... ) — (@t nd)r™ | e i term 45,
) | "
(1-ASp=a+dr(l +r+r2+ ... +r* 1) _(a+nd)rm we take b= 1.
(1-n)Sp =a+dr 22— @+ ndpr™
‘ 1-r")  (a+ nd)r"
Su=_+dr E: =3t (iv)

Hence, a is first term and 4 is common difference of arithmetic series and r is common ratio of
geometric series.
4.8.3 Sum to Infinite Terms of Arithmetico-Geometric Series

Let |rl<1 _
We know that r“—i 0 as n— oo, then equation (iv) will become ~IRT N\
2= 1\ (OB
s = 1"" taoor (1-r]= f". .—‘// \\' \\\J ' /(/ _I‘J- ,C_\\t.'.?\"/
This is sum to infinity of arithmetico- gmmg&-w/sgﬁgsd VWAL
~ )\ \,)‘ \ il -
L ) " ". { ( “. 5]"\" ‘, ; -\\
Example: Find the Slk 0{1 +§+;+;+ 1o n terms.

Sﬂ]“hoq\Jw@W& éhat the sum of anthm¢t:c-gcomctnc series formula for » terms is
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OV et NS e
Sa =2 —-g{,xﬁvﬂ, 1\ [a +ad)r” ®

\

AN
We need_the valig of i (1* t
(mmmon\iiﬂ\tjﬁ)\#o\i" geometric series.
Given series is:

We can rearrange as:
I3#+3.2+5.2+ 7.2+ ... tonterms
It can be guessed that 1, 3, 5, 7, ... is arithmetic sequence witha=1,d =2,
1111 . . . 1
and Ty s geometric sequence with r -
Substituting the value of a = 1,d =2 and r =2, we get:

_1 1 {1—;‘.;)_(1+2n)5},
I M=

1- (14 2n)y A\ RO
='_1i'+ 1 ( f') - 1 z,’\, _ACA) \lr,"((/%\ D\
2 ¢ G ANV S
_ f:‘\|(—\ 'l\’/.v\\'\‘\,)‘l|
= ZC) .\ \I \(1/_\'/:\%‘\)\75 g\\( l.':\f\gn\)\ﬁ—/u
IR S G
, '\J"\INM 8-4+2+4
QJ\\JJ\JM 26— ")
2

=6- i Eh 2n)
_ . 2n+3

Sﬂ: 6 - an=1

Example: Find the sum to infinity of the arithmetic-geometric series:
2.3, 4.5
l+§+ ;"’ §+Bl+ —
Solution: Given arithmetic-geometric series can be written as:
1 "y | 1
1 x l+2x5+3x+4x5+5xa+ ......
The numbers 1,2,3,4,5,...arein AP.witha=landd=1.
Similarly, the numbers 1,3, %, -, = ... are in G.P. with first term as | and r =
Thus, sum to infinity of the arithmetico-geometric series for
1 1 1 1 .
I +2 X;+3 x;+4X§ +5 X_EI -l*:'l-'_"."'. ls'ﬂ,.'{“

)

a dr A O A~
S o o —— \\ —2C\( ) /"
T ter (1en)?

4 (

=

Herea=1,d =T, r

M\ \\J |\\\j '\_' oV~
QNN
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1 ZS 2 2 ZB 1
=12k ' k=1 2k +1

3 T 4. Ti_omk
5 Za L 6 27 (—1)k4k+1
. Ll S . k=1 /\\ /—)ﬁ?\?‘?l \ \
. \| \,3 j\tf/\ e =
Zk o (€243 0 —,Q' /ﬂ \Tzk\u"\(*”) —
Rveil’E ﬂle sum ll!ing)q[ mtmhuoqg\\ \~\ \/ \\o- -

\ __)

9.

10.
1L f§+4 8+16 32+64

1 1
. —t—t—t—+
2. Ststaw

13. Prove that Z:ﬂl k3= [ﬂ‘;—ur

Find the sum to n terms of the series whose nth terms are given:
14. n+1

15. n*+2n

16. 3n*+2n+1

Sum the following series up to n terms:

17. 22+452+8%2+ ...
18. 22+42+62+ ......
19. 13433453+ ...
20. 2+5+10+17+...... to n terms
21, 1x442x7T+3x]10+.......
22 lx3x5 + 3x§x7 +5x7x 9 +. \ AW T L

Sum to n terms of thefullnwing m’i&\fﬂﬂlhmeﬂm-geomeh'ic series):
23. 142x2 3§\2}+4x23+.:;‘... :

2. "‘H‘W WP 10y + ..

+++++++
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25. 1+:+ 4 +‘—°+

26. 1+7 + 4\? LN
Fiﬁdjﬁilm] inénity of the following series: .

27- 5+-+;+2?+ ......

4
e +-+ -+ —+ ...
28. 1 5 25 125

29, 1+4x+7x2+10f+ ......

30, 3+S4 e B
10 100 1000
4.9 Methods of Difference
If the differences of the successive term of a series are in A.P. or G.P., we can find nth term of the
series by the following steps:
¢ Denote the nth term by T, and sum of the series up to n terms by S,.
e Rewrite the given series with each term shifted by one place to the right. .

e Then subtract the second expression of S, from the first expmamn/mbmm!‘,,
~ :,\C;\\ \' / /// —3 \¥r)\_/ .

Example: Find the sum of the scnm ’,_Q / \. IR\RRY ) 1," e

7+ lﬂ“+ 2%“"3\14 45\%2\ ’. - up to n tcrms
Solution: Let \
\sﬁ:\m@ m+ 3+ 45 +62+......+ T,
F12+420+31+45+ ...+ Ty +T,
Subu'actmg second expression from the first expression, we have

Sa=Sp=7+12+20+31+45+62+......
+T,—(T+12+20+31+45+ ... 1+ Ty)
0=7+(12-7)+(20-12)+ (31 -20) +(45-31) +...... + (T —Ta-1)-Ta
“7* of 1st expression and T, of second expression will be left as single.
We get - ' — '
0=7+(+8+11+14+17+.......upto(n— 1) terms) - T,
Then
T,=7+(5+8+11+14+17+....... up to (n— 1) terms)
Ta=7+22[2(5)+(-1-1)3] (v Sa=2[2a+ (n=1)d])

=7+ 22004 0-23 (]2
-—7+—[3 +4] Q A

_wda ez (0L
2 |‘>‘<I
1‘4 I‘"Sﬂ Hﬂ*aﬂ—‘

Ji \j &
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242 Z n +
n{n+1)(2n+;l} + 1 . n[n+1]

6 2 2
—[(n+ D@n+1)+n+1+20]

=—[n +2n+11]
Example: Find the nth term and sum of » terms of the series:
14+3+7+15431+.......

Solution: Let nth term and sum of n terms of the series be T, andS respectively.
S5n=1%F2S5+T+15+3 +.0aes ¥ Ty + T, i)

+ 5n

E
2

Also,
.S‘u—1+3+5+7+15+31+.,....+T,,_2+T,,_1+T {11)
Subtracting (i) and (ii), we have

0=1+3-D+(7-3)+(5-D+ @a@@+rﬂ
We get @@
and
Wq t 16t consina up to n terms
This is a geom series witha=1,r=2,n=n

2n-1 —
Tn =1 ( 1J ( Sn ,rr_ll)
T,=2"-
S5n=2Th =E(2ﬂ_1)
=¥
=2+224+23+ ... +2%—n
2(2"-1

S.=2@"—-1)-n

4.9.1 Summation of Series by Partial Fractions
This method is used to find the sum of series Ty + T, + T3 + ... up to n terms, when each term

T,, can be expressed as the difference of two consecutive terms of a 1@@
C Ty=V - Vaa @Sj’

= 52570 =4 %)+ 0 @@&

: S, =V, -V, O Kg;i : Sé

We can convert rational into partial fractions, which can be written as a
difference of &mns in such a way that an addition of the fractions in successive
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Vr-1)




Lt

o v e O—/ _

/&\

\
terms cancel. This is also c@jl@i‘l telucop]ng«{e\ﬂbs\ﬂ:h)s }\mque ‘will be used to find the sum of

given series. T\ (\
\ \ \ )
Example. F@W \Hfoﬁﬁ n(n TS

1
Tn nn+1)

First, we will convert into partial fractions.
1 ‘1' Az

= e —

nn+1) n n+l

This implies that: 1=Ay(n+ 1)+ A;n
After comparing coefficient, we have )

Al ad I, Az =-1
We have
1 1 1
nin +1) = n n+1
n. “ 1
k=t x=1 lc(k+1)

iy @@/@@
Applmnsﬂmpmm G-3)+G-)+-+G-)]

After can lmg like terms, we have:
k— _3 _n +1-1_ n
Z k=1 T (1 n+1) - -

'n n+1 n+1
R ey
Example: Find the sum of the series
1 1 1 . +
=ttt ;-; y . to infinity.
Solution: The given series is
= +=+=1+...... to infinity (i)

13 35 57
Here, 1,3,5... are in A.P,, witha =1, d=2, whose general term is:
at(n-Dd=1+n-1)(2)=2n-1
Similarly, for 3,5, 7... a=3,d=2, and the general term is:
a+(n—1)d=3+(n—l}(2}=2n+l =\ )mﬁﬂd
The nth term of (i) is, :

1
Tn= (Zn - 1)(2n +1)

To find sum of infinity

Be= Z |
B

Vatlonal Book Foundatlon Uinit-04  loiquences and Sei
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We make partial fractions of m

1 1{ 1 \ JA. '~.. ‘-.
(2k - 1)(2E4-1) 2 u-'.l k)
Equation (ii), mbe enas* \ L\ V-

J‘ “5” \ ik 1Tk Zk=12[2 TS

-3 -
=il + G2+ G-3)+-]

o
N'_L‘n-n
1]

1

Sum of infinite series is %

Using the method of difference, find the sum of the following series:
L3+47+13+421+....... to n terms - .(, E)N
2. 1+4+10+22+.......
3. 1+4+13+40+ 124,

4. 1+2+4+7+11+16'% .tnnterms
53 +‘U"Q ‘l-\lNP?\leﬁLPM +66+ ...... to n terms
6. 1+4+' +M+24+42+76+ ...... to n terms
Find the sum of n terms of the series:
1 1 1
Lrrridror i
, TR I SRR
16 6xX11 11x16
Evaluate the sum of the following series:
1 1 1
9 E+E+F+ ....... up to oo

n
1
10. z k=3 (k+ 1)(k +2)

L Z,m k(k+2) =

12. E+_+

L s
511

13.
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4.10 Applications (ofSeg\/enQe ﬂqi Smes S L

Sequences and sene haw: ﬂiclr own importance in many areas of Mathematics such as finance,
slansttcs, Ff\d;\ﬁm“rth and physics, Most of the society and reality around us is based upon
scquen&m}l\sequencc. changing and repeating themselves over and over again. Common
examples of this are time and calendrical system. Time (seconds, minutes, hours) always follow
the same sequence, which always contains the same number of elements. Our lives are ruled over
by sequences such as the routines that we follow every day without knowing leading to their
great importance in the structure and function of the modem world.

Example: Khalid is saving for a new car. He deposits Rs. 100,000 into his account and then each
month he deposits in Rs. 10,000 more than the month before. If the price of the car is
Rs.1,260,000; find:

i.  The amount Khalid has saved in four months.

ii.  The time in which Khalid reaches his goal of Rs. 1,260,000.
Solution:

i.  Since Khalid deposits same amount every month, Lherefo @ @@nem series.
o

sf‘_‘[;’;llf’,“‘ﬁ?{\’ el “@@

S, = 2[2(100000)+ (3)10000]
S, = 2[200000)+ 30000]
S, = 460000
Therefore, amount saved in 4 months = Rs. 460,000
ii. Let Sp=126,0000, d= 10000, a = 100000, n = ?
S = -’21[2.:; +(n=1)d]
126,0000 =g [2(100000)+ (71— 1)10000]

= n[190000 # +100000]
2520000 = 190000 # + 10000 @R
19025220 A e BAER
n'+28n-9n-252=0 O A\

n(n+28)— 9(11(-!- oify o~
(n 9)(:14* }éﬂ\ \

A NT ~ 28 (¢ tannot be negative)

\J
iéhj 1d willreach Rs. 1,200,000 in the 9*month.
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Example: A new virus is on a remote area. Oliday{me, there ére\lﬁ peOpIe mfected, with

the number of new mfectlonsmcreasmgat a ra% c-f 4[3% per-day.

i.  Find the expected pramber of mfected people on the 7 day.
ii. Find the\%pp?dlbd nurfiber of infected people during week (7 days).

Solution:

i.  As the infection is increasing in percentage, therefore it is the problem of geometric
sequence series.

Let a, =10, r=1.4 [40% increasing so r = (100 + 40)% = 140% = 1.4], a,="?

Formula for nth term of a geometric progression.

a,=ar""
a,=ar®
a, =10(1.4)° PN
0(1 ) / . \\ / / \ \ -\ "‘.‘ \‘. "-,_Y‘Jt
a = 75 29 “\ .—-' ,\/ \\ \| | ‘/{/ _‘J. \\_,)\_

\1‘

Expected number of new 1nfectmns —,’}’Saﬁ’efsev\er;days
/_N/_\ \\ V \ \\ VY 78 5
ii. Total infected people aﬂer u\ne ch ah:}

S, :W '\l

S, = a(r’ -1)
r=1
_10(1.4-1)
T 14-1
S, =238.53
Expected number of total infections = 239

1. A rocket rises 20 feet in the first second, 60 feet in the 2nd second and 100 feet in the

third second. If it continues at this rate, how many feet will it rise in the 20" second?

2. On the results declaration day, the school wants to invite parents as well as smdhnts

Auditorium has 21 seats in the first row and each of the other rﬁws has onb more

people will come that day; *mll there, ba A, seat ﬁn: c‘m:yune‘? Justify your answer.

3. Majid retired aﬁtr 30 years t:-f*‘ employme “If his salary was Rs. 4500 in the first year
ent of Rs.820 at the end of each year of service. What was his

and he receiv:
total sahlﬂyJ ahter- 30 years?

156 tnit-04  Scquences and Series National Book Foundation
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4. You save Rs. | in the first day Ttren each dg}' ‘thereaﬁar save double the amount you
saved the day befbre. Find, the) amagnt you should save in the 20" day of your plan.

5. A vacuum pump mmoves 1/5of the air from a sealed container on each stroke of its
plstq)p Whaﬂ pércent of the air remains after five strokes of the piston?

6. Adlam borrows Rs. 20000 at 11% interest compounded annually. If he pays off the loan
in full at the end of four years, how much does he pay?

7. A property dealer estimates that a piece of land will increase its value at a rate of 10%
cach year. If the original value of land is Rs. 450000, what will be its value in 8 years?

8. A man deposits in a bank Rs. 2000 in the first year, Rs. 4000 in the second ycar, Rs. 8000
in the third year and so on. Find the amount he will have deposited in the bank by the
fifth year.

9. The number of bacteria in a culture increased geometrically from 16000 to 1215000 in 5
days. Find the daily rate of increase assuming the rate to be constant.

10. A car loan is in the amount of Rs. 600000 from the bank. Interest is 9% compounded
annually and the entire amount is to be paid after 10 years. How much is to be paid back?

11. Zain bought a new car and got policy from insurance company: Hew{ﬁp;iy (5000 the first
year, 6125 the second year, 7250 the third jn:ar aﬁd\s%\bn( for, 10-years. How much he
will pay to insurance company fmr Wh(cl:e'?

12. Naveed takes a '@ﬁmlefnim bank ‘fter paymg down paymem He deposits Rs. 13000 in
a bank in first month, Rs. 14500 in the second month, Rs. 16000 in the third month and

onF gd(ﬂibu much total amount he has to deposit in the bank at the end of two years,

13. Ajﬁﬁn orrows a loan Rs. 1000000 for leasing a car and agrees to repay with a total 20
installments. Each installment is less, than the preceding by Rs. 2000. What is his first
installment?

14. Sara pays her first installment Rs. 8000 to insurance company for the vehicle. Each
installment will increase by 5%. What total amount she will pay in 24 installments?

/I haveLearnt. |

Defining an arithmetic sequence and finding its general term.

Knowing arithmetic mean between two numbers. Also insert # arithmetic means between them.
Defining an arithmetic series and establishing the formula to find the sum to, ntcrms ﬂf the series.
Showing that sum of n arithmetic means between two. numbems Equal to ‘A tires their AM.
Solving real life problems involving anthmm: chuenne anthmetlé mean and arithmetic series,
Defining a geometric. sequence ¢ and find mg its. g,eneml term,

Knowing geometric mv:an bel‘merl two-numbers. Also inserting # geometric means between them.
Defining a gfﬁ;lpemc senes and finding the sum of » terms of a geometric series.

qul(nh tH um'of an infinite geometric serics.

* & & & & & & ® @
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Converting the rccumngdeclma] ;mo aty cquwall:nt cmﬁﬂwn ﬁ'acﬁon
Solving real life pmbIem& mvotvmg gen ri¢ sequence, geometric mean and series,
Recognizing a hﬂ“ﬁ“’?{“ scqucnr:eand finding nth term of harmonic sequence.
Defining Qﬁaﬂpﬁh ic' mean and inserting # harmonic means between two numbers.
Rccugniimg sigma (Z) notation.
Finding sum of
« the first # natural numbers (Zn),
« the squares of the first » natural numbers (Zn?),
« the cubes of the first » natural numbers ().
« Defining arithmetico-geometric series.
» Finding sum to » terms of the arithmetico-geometric series.
e Defining method of differences. Using this method to find the sum of » terms of the series
whose differences of the consccutive terms are either in arithmetic or in geometric sequence,

* * ® & & @

"f\/\

. '(?\\\ nﬁ\\ \
A NN 2 \o =
o O A '\ 0\ |\ "‘., M\ f o~
1. Choose the correct option. ( YGRS\ W)
(i) How many terms of t@p sequcn{:e\fs, \Q \m‘e needed to give a sum of 45?7
a. upto 7th b,\ ﬂp\t‘ olI0th- ~ ¢ upto6th d. upto5th
J\\“ o\
\1 I\
(i) Flnd}ﬂéq term from theend of A.P. 2,7,12,17,......, 222,
a, 222 b. 132 Coe 127 d. 122
(ili) In the sequence 1,2,2,3,3,3,4,4,4,4,....... where n consecutive terms have the value
n, the 22nd term is:
a. 6 b. 7 e 8 d. 9
(iv) Ifa, b, care in A.P., then 3%, 3%, 3¢ are in:
a. G.P. b. H.P. ¢. AP d. none of thesc
(v) Predict the gencral term for thc sequence:
L] 4 4
a. an-2 b. ﬁ ¢ -3; d. 3_“:"‘
(vi) 0+0.1+0.01 +0.001 +0.0001 +...... , the sum is:
9 b = 2 d :
a. . ¢ = 3 —,,
(vil) Find first term of the geometric series, whenS, «3&,// \=4J rz/-z gl
a. 6 b.v -6 0\ 9\ (,e, s MWWV Y T -8
(viii) The arithmetic means m tﬁt; 'saquencc —} - 5 , 5 are:
-3 NN \JN_‘I oba\31 ¢ -4,2 d. 3,-1

JNI\

\J
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(ix) Geometric means between 1 gl;d E”m' ((
a. 3 il h ﬁ \ d. 5
EN) ht W
YD NIMI 1sequal to:
a. 14 b. 13 ¢ 5 d. 30
(xi) The sigma notation for the sum -2 +4—6 + 8 is:
835 (CD* (k+1) b Ty (-1 2
' : 5
e T (-DF2k d. 3. (—D*2k
(xif) Xk=15 is equal to: '
an b. 5n (1 d. 5"
(xiif) Th:gmeral?wmofthe given sﬂrics%+-;—5+3—:7+ R | 5
1 1 '
a. —e
n(2n+1) (n+1](2n‘1) ~ [/
\ "'\ f-\ll\ { ‘\I"‘v,ly ( “,,\ \ \ |,'| C /‘\,'L-
(lh’) Iﬂ - ﬁ + T%) \ /_t\hq n’h/ t;!m @ \'\. \ ' AU =y
(3n-1)(3 +, \. \ \. (3n-2]{3n+4)
RN UL I
c\ +1)(3n+4) (n+2)(n+6)
(x¥) The sum Z r"' 7 Tepresents:
3 4 1
(xvi) Sumof the series | +3+5+7+9+11+....... is:
an b. n? en(n+l) d.(n-1)
(xvil) Ekgq 3is equa! to:
a.l0 b. 103 ¢. 300 d. 30

2. The sum of four numbers in A.P. is 24 and their product is 945. Find the numbers

Find four numbers in A.P., whose sum is 6 and sum of whosv_: square |;LL4, W

4. Tnscrt 20 A.Ms, between 2 and 86. \_ araX Vo=

S. Evaluate3+33+333 +......uptomtenns,) || U\ )

6. If the product of threic nmnbers m (}M 2I€ nnd thcu' sum be 19, then find the numbers.

JN!“

o

\“\J'\
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9. Find the H.P., whose 3rd and 14th terms are g and i respectively.

10. Evaluate the sum:
10 o 8 k+1 7k
® ), aw ) Yy (-3

Sum to » terms of the following (arithmetico-geometric series):

11.4+14+30+52+82+ ...

12.1+4+10+21+39+...
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~ After studying this unit, students will be able to:

 State and prove remainder theorem and explain through examples,
Find remainder (without dividing) when a polynomial is divided by a
linear polynomial.

Define zeros of a polynomial.

State and prove factor theorem.

Use factor theorem to factorize a cubic polynomial.

Apply concepts of remainder and factor theorem to real world problems.

Use of letters to represent an unknown quantity was introduced by “Rene Descartes”, a French
Mathematician, in 1637. Today 'x' is used by most of‘the mathematicians as the standard letter for a
single unknown. In fact x-rays were so named because the scientists who discovered them did not
know what they were and thus labeled them the 'unknown rays' or ) \ 5\3

\

ms. It is basically an extension of

X-fays. { :
* Algebra is a branch of Mathematics, which %cs IEI?R Igrim / quantities, numbers
and variable quantities. It hc/ps to sclv@e V@i@&p

Arthmetics. | \\\ \(\\\ N

VU

AL




% math mﬁﬁclan whu mlmduced Algebra and wrote a bauk
. ﬁ:\ﬁF ‘Hisab—Al-Jabr Wal Mugabala in 820 A.D. Heisknown |- .

ather of Algebra'.

5.1 Algebraic Expressions
A statement in which variables or constants or both are connected by arithmetic operations
(i.e. +,—, %, +) is called an algebraic expression. »

For example, . ’ ry
2
M , 3(a+b)-4, 0,-5 Enlighten Yourself
! | . "  Components of an algebraic
r—2t, —, Vb —4dac ete. - expression are:
% ‘  Numbers
S.L1 Kinds ~7 AMuehraic Expressions Vo Signs of operations (+,—, X, +)
Algebraic expressions are of three kinds. » Variables (a,b,c,. &g&-’-?
I, Polynomial Expressions | . Gmupz “symbd@) s, (),
2, Rational Expressions 0O \ ~ T\ (“{\3\\[
3. Irrational ExprEssmns \/ \ 7\ \‘ \\ — -

|
/ ‘\ \\
\
\\<

of AN
L Pnhnnmmll\prusmmﬂ’hl(ww\“\‘tll} -

Polynomi m@é ic- expresswns consisting of one or more terms in which exponents of the
vanabfe?\ﬂ arg whole numbers.
For example,

n: "2: %I""%fz, —FY’, ‘JEX‘-TCIZ—'JE etc.

“The expressions x 3, y>+— %1 , 2y? y * are not polynomials because their exponents are not
.'r’

key Faets

positive integers (whole numbers).
- The highest exponent of the variable
involved in a polynomial is called its
| degree. If more than one variables are

being multiplied in terms of a

Tvpes of Polynomials w.r.t. Degree
= Zero polynomial or'no degree polynomial:

‘0’ is called a polynomial of no degree. Also, polynomial, then the degree of that
0x* + Ox is a no degree polynomial, because polynomial is the maximum sum of the
. coefficients are always zero in zero polynomial. exponents of the ?am}hlesvm%\ved in
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Constant Poly nomlal % pnl}*nnmlalaa\fm\g degyccgero ie\called'a constant polynomial.
eg 2, -5 -J_ are‘ laﬁnstant anynnmlals

° Lmeﬁy} wm\‘[’* A polynouual having degree one is called a linear polynomial.
e, X, -
e Quadratic PoI} ﬂﬂ!l.'Illl‘ A po]ynomlal ‘having degree twu is called a quadratic polynomial.

e.g, 22+7, ar+?_xy+3 ——.\j:z“etc .
¢ Cubic Polynomial: A polymmml having degrcc three is called a cublc polynomlal
eg 9 -Tx+5, - szy 3x2y— gz etc.

All other polynomials have no speclﬁc name w.r.t. degree ‘but simply, we call them polynomials of
degree four, degree five and so on.

-

2. Rational Expression

An algebrmc expression of the form % where P(x)and Q{x) are polynomials and (x) 0 (ie
X

it is nat a zero polynomial) is called a Rational Expression. X/@ @@

13 2x-1 +O
Forexample,IE PR3
3. Irrational Exprit’:ssmu&kc Kiﬂ\ b . -
An aIgebraW h cannot be expressed in the form g:x; , where P(x) and Q(x) are
x

' pafynam: bur Q is rmt a zero pofynomra! is called an Jrrananm' erpremmn

For example: -f_ xy ? Vx-— ?Jx +y? , 24x? y"+ ~Tete.

-

5.2 Remainder Theorem and Factor_ Theorem

If we have two polynomials
p(x)= x—6x2+ 14x—8and d(x) =x— 2, then dividing p(x) by d(x), we

can find the quotient and remainder as follows

x* —4x + 6 « Quotient

" Divisor —»x— 2) x* —6x? +14x—8 « Dividend

- tx —2.: : : ]
G\
AN\ (P AN Y
- - | N *.I (C \ \ JAS! B
4I + l4x e ".,'“/(:,\\-. \ ”.' ‘ \/C)/\, Q\i’?\\’/"
C '—_—\‘ r/ \l\ "‘ : ',\j I'\ \‘\\ ‘// A V2T [
\\ ~— oo
O \ Gx \8
1 WU 4 x-12
ALY 8
QNN
AV\C 4 « remainder
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So, quotient = x?—4x+6and rema\nder = 4
Similarly, here ( ? \\ § ?” \\

uotient x mder - 4x+6)(x-2)+4 -

! d‘wm'% —?Elxz 4x+)6() 23):1 4x+6)+4
= —4l+6x-27+8x—12+4

v — 62 +14x -8

dividend

Here, (x — 2) is the divisor of x° — 6x2 + 14x - 8.
If we put x = 2 in the dividend , we have, Ker Fact
p(2) = (2r-62F+ 14{2) 8 T ey Facts

Il 4I

= el When youputx=2in
= g 6(41"'28. 8 B9 & p(x) then the factor x- 2 is |
= 8-24+28-8 - Jjust zero.
= 36 -32 .
= 4 remainder \
Hence, p(2) gives us same remainder which we have got by long division. PN
ie. p(2) = remainder VO

", We can deduce that, if a polynomial x’- 6x
rcmamdcr is 4 and the value -::-dedctﬂa f inder.
Conclusion: If p(x) = £ 6 1»«- g\mm\ﬁ - ‘
d(x) = x- -%\\2 \\< \ lvisor
then, rems RJ\I \% p&) =4

52.1 Remainder Theorem o
Statement: If a polynomial p(x) is divided by x — ¢ (where ¢ is a constant), then the remainder is
p(c).
Proof: We know that:

dividend = divisor x quotient + remainder.
Let g(x) be the quotient and r be the remainder when p(x) is dw:dad by (x - c), then

p(x)= (x- c)qx)+r...... (i)
Substituhng x=c¢ inresult (i), we have
pc)=(c-c)q(c)+r
=0+r =r, which is the remainder.

Hence, p(c) is the remainder when p (x) is divided by x - c.

Example: Find remainder if x’— 5x*+ 7x - 6 is divided by x -3, B
Solution: Let p(x)=x" -5+ Tx -6 | -\ 20 O\

{ ) ':"-‘ = hu Ficls

dx) = x-3 N\ O Rempbisaes thoor
A\ { qmmndﬁr thecrem provides us
By using the Rcmamder Theorpm AN - - BY! lpful tool for finding
p(x) =x* - 53 7’5 60\ nou " WM remainder instead of doing long
Rcmamdch p(3) A\ | division,

\J |\\J|\J '\\j'\
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=(3)' - 5(3)+7(3)- 6
=27-509) +21-6

\'\ \ /

=

\ (_\/‘\/(\ \ \.‘ 1
\

=27- 4s+21(£\q

= 48 @@J F3 UL
Example:, ue of p, when 3:(4 4p? + 5x - p is divided by x + 2 and the remainder is 4.
Solution: Let f(x) =3x"-4p?+5x—p; d(x)=x+2
By using remainder theorem,
Remainder = f (-2) =3 [h2)4 —4p(-2P+5(2)-p
4=3(16)-4p(4)-10-p

4=483-16p-10-p |
4= 38-17 I - — : Pay Heed
38-4 =17p  Degree of dividend is always greater
4 =17p , than or equal to the degree of divisor
34 TR Degree of remainder is always less than
P= 7~ 2 I the degree of divisor.
Hence, the value of p is 2.
52.2 Zerosofa PDhlm 11 : /\ pem;mun Pl
Consider an equation, 2x+5=9 (0o
2a+5=9" \/\ ofp(x} x*— 9 are the same
%+5-5=9 @ “ as the solution to the equation x*- 9 =0.

2
W y
Here ‘2" 1s'¢all tof 2x + 5=9, as it satisfies the equation.

Hence, the roots of a polynomial p(x) means the values of x that satisfies p(x) = 0. These roots are
called ‘zeros of the polynomial’.

The values of x which satisfy p(x) = 0 are called ‘Zeros of the Polynomial p(x)'.
For example 5 and -5 are the zeros of the polynomial p(x) = x* - 25, because

p5) =(5)-25
. =25-25 =0

and p(=5) =(-5)P-25
=25-25 = 0

Basically, when we are finding 2zeros of a polynomial, we are looking for those values of x which
cause the values of polynomial equal to zero.

Example: 7\7 N

/\\

Is -3 a zero of polynomial p (x) = rd +7x 54).-2‘\27;; }gg \; . /O e GEN
Solution: ‘-3’ mubea(gm(of @g;) Z{* 7@ {xze 2?x 18,

Ifp=3)=0 TN (L
So p3)=2 ,7-3"4(*-3) -2%(-3)-18
ANRS Nﬁﬂf{-zn 4(9)-27(-3)- 18
1 =162-189-36+81—18
=243-243 = 0
Hence, ‘-3’ is the zero of p(x).



re

Exnmple. If zeros of a pc‘)nl)er\tqmlai\ are' ﬂk -, ﬁnd the polynomial.
Solution; \Wr@q{i}@wdynumml be g(x). Then settingx=0, 6 , -1, we have
" S(x) x-0)(x-6)(x+1)

=x(F—6x+x-6)

=x' - 58— 6x
Example: If one zero of g(x) = 2’ +x*— 2x— 1 is 7—;, find its other zeros.

. _ . ‘
Sotution: If ong zero ¢f the given polynomial is ?1 , then its other zeros can be found by

factorizing it. Setting x = —?l , 50 that 2x + 1 is the fa'ct'c:')r of g(x).

First divide g(x) by 2x + 1 for getting its quadratic factor-

x#l

2'x+l.) 20 42 -2 @W@ @
@\ m\\uzf 1& -

~-2x~1
+ +

0

RN

So, 20+ 2= 2— 1= (2x+1) (¥ 1)
= (2x+1) (x—1) (x+ 1) «——factorizing
Hence, its other zeros are 1 and—1. _ setting x~1=0and x+1=0
ie. x=land x=-~1
5.3  Factor Theorem
Factor Theorem is a result of Remainder Theorem and is based on the same reasoning.
Statement: A polynomial p(x) has a factor x — ¢, if and only if p(c) = 0.
Proof: Let q (x) be the quotient and r be the remainder when p(x) is divided by (x - ¢)

then, p()=(x-c}q@®)+r ....... (i)

ey Facts,
If x - c is a factor of p (x), then r=0. | Everyfactousadmsurhutcvcry
N \ _ dmsonsnutafactug,of;\
Now by = :mainder Theorem, r = p(c) po Jgno"mml -\
- remainder =p (¢) =0 - actorof a g pdbrhamm! divides it
Conversely, if p(c)=0, that means, rem@:dc;: ‘* 0 YA\ A\ LSt mpletely.
Therefore, result (i) reducesito Y &l! \\ \) oo -
N 3

p(x) '(sﬁﬁcm w \)

(.t c) is a fact E\LIW‘ ““““

.y x\{&i%\tx the factor of p(x) if and only if P(0) =0

166 f o Unit-05 I’olynuuﬁal*s

ss ou LRl i,




Example: Show that 7 1 is a factorof y
Solution: Let f(y)= y .,24}2 }3y+ 36/ \ \| AR\
By Factor Theorem, y - Imllﬁuafactm ), if ﬂl) 0.
So, first we find £(1).|
j‘ N\ 5£(l} 24 (1] -13 {1)+36 —— substituting y = 1 in (i)
f(1)=1-24-13+36
=37-137
=0
ie. remainder =0
Hence, y— 1 is a factor of y*—24y*— 13y + 36.

Example: Determine the value of k for which x + 3 is a factor of (x + 2)s + (3x + k).
Solution: Let f{x)=(x+2)’+ (3x+k), d(x)=x+3
As x+ 3 is a factor of f{x), so by Factor Theorem,
| | f(-3)=0
ie. (-3+2)+L3(—3]+k] =0
-1y +(-9+k)=0
-1-9+k=0 R\
~10+k=0 or k=10 (2 N E0

1. Find the remaluder cf the fnllamn}by usifig ‘Remainder Theorem’ when
| \\ I&JME-U ﬂ:’“ U+ 1 is divided by x + 2.
("J 2P 2+ s dividéd by x - 2.
2. Show that x—3 is a factor of x’—2x*— 5x +6.
3. Decide whether x - 3 is a factor of x’ — 2x* — 5x + | or not.
4. 1fdy’-4y’+ 10 + 2y is completely divisible by any of its factor such that the quotient is
4y~ 8y + 10, then find other factor,
5. Find the value of ‘q’ if X’ + g’ — 7x + 6 is exactly divisible by (x+ 1).
6. Find the value of ‘m’ in the polynomial 2 + 3x* - 3x — m which when divided
by x -2 gives the remainder of 16.
7. Check whether 1 and ~2 are the zeros of x’~ 7x +6.
8. Find zeros of the polynomial 2¢’+ 3¢, He=6,c o\ ,
9. Express f(x)= f - 14x4 8 mthe fonn f{.t) -—.,(x -d ) q(x) +r, where a=4.
10. A rectangular room hhs a valum:: u}\(x’ 1 Ir2 +34x + 24) cubic feet. The height of the

o0y, & ﬂﬁ’fe&t Find the area of s floor.
(Fﬁnt Volume of room = arca of floor x height.)
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gree. Consider a cubic polynomial,
f)=x'-27-5x+6
The process of factorizing above polynomial is explained as under.
Step-I: Obtain one factor by hit and trial.
First try, x - 1. '
Here, x — 1 will be the factor of f(x)if f(1)=0— by Factor Theorem
M=) 22(1) 25(1)+6
=1-2-5+6
=7-7=0
Hence, (x — 1) is a factor of f(x).

Step-II: Divide x’—2x*—5x+6 byx -1 to find its other factor g(x).
' x*-x-6

x-1) ¥ -2x*-5x+6 O @O@@i@
A %@@@@W

0
So, (¥ —2¢-5x+6)= (x-1)(F-x-6).
Step-111: Factorize quadratic factor (if possible) for other linear factors.

\J
¥-22-5x+6
=@~ 1)-x-6)

=(x—1)(x*- 3x + 2x - 6)

= (x= Dx(x-3) +2(x-3)] (1) (#2)(-3)=+6

=(x-1)(x-3)x+2)
Hence, ' @ O@©m

= =5x+6=(x-
o U
e «




. «&‘7@99 DL

Example: If two Iu\egr faactors ﬂfthe polynamml 2y’ +y*~8y—4are (2y + 1) and
%( %} itsthird factor. ¥ unknown factor
Snlnti&ﬁ\ygli-y’ 8y-4=2y+1)(-2)( ? )
Y+ -8y —4=(f+y-ay-2)( ? )
2y’+f—sy 4= -3y-2)( ? )
2y’ +y* -8y -4
W =(? )
y —3y-2
y+2

2iay-2 ) Wyi-sy-4
+2y’ -3y -2y
-+ .+

4y —6y-

+4y? —6_}'—4

= + 4

Hence, missing factor is (y + 2).

Ly -By—d4= (2;:@2%&@ @X

el

Example: Factorize

Solution: \Nt%ﬁ
Step—NW f-2) = (-2 - 5(-2) - x'=2x-1

2
=_8+10-2 =0 x+2) IJ'—‘SI'—'Z
3 2
Hence, x + 2 is one of the factors of r-5x-2. i +2x
: —5x =2-2¢
Step-II: Now, we divide x’- 5x - 2 by (x +2). 4y -2
+ +
So, x'—5x-2=(x+2)(x*-2x-1) - x-2
-x=2
. + +
Hence, X —5x-2=(x+2)(x*-2x-1) 0
= Key Facts
| By inspecting, if f{x) is of degree ™
three, we would expect it to have PN
three linear factors at most, so that ™| = O\

) = (x + a) - b)x ) wheres [0
bandce nbe, posmm orne atwe
\ rj/numbc Also» b;}ktﬁulnplymg ‘the
WAL O] st term of each factor,a b ©

\ \\ )\ Fnumerically equals the last term of
the polynomial. ) .I

[
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Factorize the following hy u:'im g fautdr th%rem
y pﬂi\‘\“z W4l 3 2P+5P-0x-18
.' 313 5¢-36 5. C+E43t-5
6./ If (x-2)is onc of the factor of 2x’— 15x*+ 16x + 12, find its other factors.

7. Factorize 2x*— 15+ 27x— 10 if‘% * is one of its zero.

1

8. If h(x)=4x" + 4x* + 73x + 36 and hi%) = (), then factorize h(x).

5.5 Applications of Remainder Theorem

If you give 10 pencils to five students out of 11, each will get 2 pencils. Only o V‘,Q//pem:ll will
remain with you and this leftover 1 pencil is ca]led the remainder, U,’js M)@;&ﬁd{ 5 is the
divisor, 2 is the quotient and 1 is the remainder. (" _ "\ N o\o =

A remainder theorem formula is a pow oal ‘;ha} t;an‘ be used to solve a variety of
mathematical problems. A rggﬁmdervf‘q?m éﬁgtg&’)uﬁlffcrcnmtc the polynomials.

Suppose Nasir hits a high fist Ba] &trmgh& up over home plate. The function that describes the

height of the halkﬁﬁl\qjN Oﬂds‘is
h() = —l&%

The roots of the function tell us that at what times the
ball| is theoretically in the ground. When ¢ =0, the

height of the ball is 5 feet. This is thc point at which he
hits the ball.
Supposc we find the height of the ball after 4 seconds.

h(ty=16t* + 801 +5

h(4)=-1 6(4) +80(4)+5 replace t with 4.
h(4)=69

After 4 seconds, the height of the ball is 69 feet.

Notice that the value of h(4) is the same as the remainder when polynomial is divided by 1-4.

Example: The volume of a rectangular solid is 72 cubic units. The width is twice the ht:Lght and
the length is 7 units more than the height. Find the dimensions of the solid: (7)) 0L

Let x be the height of the solid. O\ - o\
volume = (2x)(x +7)(x)

72=20" + 14}’
K +Th*-36=0
Trace the posﬁlhle\h&b

The zero is 2.

o




2y’ +72)"~36=0 ' A AN 12\ [T
So, (—_\
height=x=2 |
width F*szEFu

]ength x+7=9

O s i |

1. The volume of a drinking water bottle is 120 cubic centimeters. The bottle is 7 centimeters
longer than it is tall. Find the dimensions of the bottle.

2. In the cricket match season, the number of tickets sold during the match can be modeled by
t(x)=x" -12x* +48x + 74, where x is the number of games played. Find the number of
tickets sold during the twelfth game of the cricket season.

3. A rectangular solid has a volume of 14 cubic units. The width is twice the hglght and the
length is 2 units more than tb.&mdth Find the dimensior nf tEe solﬁ (QUBE ,

4. The volume of a l;ectangular snlu;l is 2475 cuhm unim"]‘hb\lengtﬁ of the box is three units
more than twice ﬂl&vﬂdth gfﬂm M&The helghus 2 units less than width. Find the
dimensions of the bmt

5. Ttxe a{R@ﬁ Mﬁaﬁgle ACED is represented A G D
by x* +38x +56. Its width is represented by
2x+8. Point B is the midpoint of AC. ABFG
is a square, Find the length of rectangle o F
ACED and the area of square ABFG. C E

6. The volume of the box is y* —~2y* — y+2. If the length of one side is -2, find the
length of the other two sides.

> Stating and proving remainder theorem and expfmmug thmugh examples
Finding remainder (wﬂhoutdtwd' ng) whsn a polyriomial is divided by a linear
polynumlam \ \ ARREN \
Definin zeros of a‘polynomlal
quatmg d proving factor theorem.

Usmg factor theorem to factorize a cubic polynomial.

Applymg concepts of remainder and factor theorem to real world problems.




(O
1.  Encircle the carreet ohlitm in theT\luwmg

Miscellaneous L\urmsc "

()  Fact \ HxPare:
3 (@\&Rﬁ ,1) (b) (x+1)(x+2) (e)(x+2)(x-1) (d) (x+1)(x-2)

(ii) Divide 9y2 +9y- 10 by 3y -2, then remainder is:

(a) 0 -(b) 1 (c)2 (d) 3
2 2
x“-x-9 :
=y+2+ ——
(iii) 3 X 3 |
@ 27 ® -3 '@ ﬁ+x+2 @. 3
! —
(iv) If 3x° - 222+ 5 is divided by x + 1, then x + 1 will be its:
(a)  divisor as well as factor (b)  dividend
(¢)  quotient : (d) remainder

(v) If 2isa zero of the pnlynom:al O+ 52— 4x+k then
@ -4 “@6 %; g{d]» 0
(vi) If x—bis the fao@ﬁf,w\é@)\

(a) fact ivisor mmamder (d) dividend

(vi) M[\ﬁmssmn Zr‘ + 3px? - 4x has a remainder of 4 when divided by x +2,
thenp=
(a) -2 (b) I () -1 d 0
(viii) If flx)is divided by x — 2, then remainder is 12. What is f{2)?
| @  -12 ®) A2 © 12 (d zero

2. (64y° - 8) + (4y-2)' 3. (125 - B) + (5y-2)
4, Is3y-2 afactorof 6y’ -y’ -5y+2?

5.  If zeros of a polynomial are 4, %, -2, find the polynomial.

6. Find the value of ‘k’ so that the remainder upon dividing (> + 8x +k) by (x- 4)is

ZEro.

\\\\\\\\

1. Suppose that the quotient upon dmdmg one pnlynomml by auother

\¥ \\//

\' |'< O \(
121 AW\ ICAL
i-x 432 - — \ A \” |
x+4_)- . ,
What is the dmdcﬂdq \R\BAR

8. t\\@\p@?ﬁ}ﬂm fthe polynonual y’+ ﬁyz —y-30are (y-2)and
v+ 3} find its third factor.

172



~m N
After 'studying this unit, students will be able to:
¢ Know Kramp’s factorial notation to express the product of first # natural numbers by »!.
¢ Recognize the fundamental principle of counting and illustrate this principle using tree

diagram.

» Define the permutation of n different objects taken r at a time and proof of formula of
permutation.
Find out the arrangement of different objects including around a circle.
Define the combination of » different objects taken r at a time.
Prove formula of combination and solve problems involving combination.

Apply the above formulas for permutation and combination to solve the real world word
problems.

The history of counting is as old as lhehu;n}mty 1séﬁun1\gi'ag (' Basic tool. How to count
correctly and quickly k&svegy/_\m:&ptqﬂ;(u’tm\ m:ir\daﬂy \life. For this purpose, we develop the
techniques for computing nui'ubernf\c%ments in sets without listing, them. To determine a
general rl\llq,\}'(q"ﬁgﬁﬁjdérﬁ-é&iﬁ and a dice. A coin has two outcomes that is head and tail while a

die heSNN o\

(H,1),(H,2),(H,3),(H,4),(H,5),(H,6),(T,1),(T, 2),(T,3), (T, 4)(T,5), (T.6).

These outcomes are 12 in number. We can also find this number 12 without listing all outcomes.
We know that a coin has two outcomes while a die has six outcomes. So, the total outcomes are
the product of values of two things thatis 2 x 6 = 12.

hﬁ:\dmcs 1,2,3,4,5and 6. Then the outcomes of tossing a coin and rolling a die are /

J
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6.1 Rule of Product

If A can happens in m ways, and B can hap@ m u waaysythen the pair (A, B) can happen in

m X n or mn ways. If we ha‘vc thxee ub_lects c B, and C which can hapg.ned in m, n and p ways

respectively. Then th tnpler {A) B! C) can be written in m X n X p or mup ways. In this-unit, we
will develop| foﬂnu lac and techniques for counting the number of vbjects. Then these formulae

will be used to calculate the number of arrangements of the objects.

6.2 Factorial Notation ‘
Factorial notation was introduced by French mathematician Christian Kramp in. 1808. Factorial
of an integer n is denoted by eo

al=1x2x3.(n—-1n’ |
and is defined as the product of all the positive integers from » down to 1.

Factorials for First 6-'Numbers P — I;i;}' Facts
- 11 u TS
00=11=1 ravenfnc&rial key m;nmonly K
| = = | o - @81 locate on the top of x~ havc
2!=2x1=2,31=3x2x1=6 signc s used sBIﬂbuttnn
H=4x3x2x1=24 F?*ﬁmm@éﬁ ,Mln
5l=5x4x3x2x1=120 ay o
6l=6x5x4x3x2x1 —/~7\20 , // VRCRIRR=NY e ,
AN .\ i“‘-\ ‘\ \N ] . 'Point to be Noted
Example: S‘“"th}' the Kf‘““f\mﬁ " 20X 4=(2x1)(4x3x2x1) =48
N ” (n+1)! (2 x 4)! = 8! = 40320
© T\' 'M 41x3! S!le (i ) (n-2)! In general; (m x n)! # m! x nl
Solution: ) (m+n)! £m! +n!
.. B 8765! ) W . - —
(i) —— = 8.7.6 = 336 _ :
1 7 5 7x3
(i) —=+——= o
413! 5Ix2! 54Ix3!  5Ix3.2!

5 21 _ 5421 _ 26 _ 13

=5x3 T 5Ix31 — 120%6 720 — 360

(n+1)! _ (r+1)n(n-1)(n-2)!

_ o 1Y il —
. (iii) 2 - n-2) = (n+ l)n(n )=n®-n
Example: Write the following in factorial foﬂﬂ.(
G 13az1ss g i) (n-4)(n-3)(n-1)
Il' 6.5.4 M - n(-n\_ 1)
Solution: .-*.(.,
(1312119 _ 13121110198 . 31 1319131 ¢
(i) = — X = '
6.5.4 65431 | rorer \10!'8%6!\ |
(i) (n-4)(n-3)(n-2) \(n-»z)(n*a)[m-ﬂ(n—ijl A (n-!}’l
a(m-1) O\ ap=Dtn-2)f (-5) /
/ J \\ ..‘.‘.(n-z)l(n-z)! _[(n=2)1)?
a:w'1'1111;1“\1‘::{1‘“?4«.‘ T T (n-5)! /
RIS W" ) ], | Unit-06 Pcnnuhﬁnn.hﬂdenbfnation .\.h:fmﬁﬂ?mﬁ“"‘;f;
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i-'g: MW N . (n=1) : 8!
@ 10! J\J| ’l 32 - (i) s W (n-2)! ) (61?2
2. Wn& H,c i‘nllowmg in factorial form:
. o - (=3)(n-2)(n-1)
OB @I3579 @) aet =) W) T
3. Prove the following:
. 1 3 1 _ 4 (n-1)! 2 _ o)
@ stats= s (l)( 3)""n ntz
4, Show that: .
i & =235 2n- 1) i) 2 = 277135 (2n - 1))
5. Find the valuesnf‘n in the following. -
. n _ 33 Lnl (-1 '
@) (n-4)!  (n-3)! (W) (-4 (n-3)! ks e
6. Prove the following for neN, '“\ ﬂf/f MUY

() @n)t=2"m)[135...2n5 DT\ 1\ 0 WAt
@) (n+ Dintnt (n = 1) 2 ~1I+(¢r \13*&“.1):1-(”2).
nt OV Can | po .

(i) !{n ri \(‘f“ﬂl(l!-?%ﬂi rl(n-r+1)|

m\i'\\ﬁk\n(n 1)(n 2) . (r+1) © e
_ nl

V) (r-r+1). (n— r+1)' ~ (n-n)!
(vi) 33! is divisible by 215

. 2nl _ n(n+1)(n+2)..(2n-1)(2n)
W)t (n-1)!
(viii) (n!+1) _is not divisible by any natural number between 2 and n.
(ix) (n))?<n"nl<(2n) .

7. Findn, if
. ! " n! -
(1) (n-2)1 =930,n=2 {ll? m 20. o S]I,n 25
(iii) (M+2)=60.(n-1)! (iv) (n+2)=132n!
_ 1 1 n N '_“; = "
(v?. (n+2)' = 56.n! (Vi) m+w’ - =i TANCEOMN
T (vii) =990.(n-3)! ﬂgvm) (n#—l){hﬁ_(n—/nl -
, (n+21! _(n+3)! 72 @n)r “4}(n—4)|
) Gn- vy (2n+1)r \{ 0 Wm0
1, 00\ BN 3
) i~ 22 -

]‘ “ J «-K L]
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6.3 Permutation S O AT OV J [ (&€

The number of ways in wh;eh It theets mﬁ oQa objgcts\(} < " ': n l:im - arranged in a definite

order is calied pmnulatmn

Example: { a Yl:h}@lp :ﬁumher platc consists of four digits; then the different number platcs
A\ banmstmg of distint digits from 1, 2, 3,4, 5, 6 can be counted as follows.

. 15( 2m| .3rd| 4‘I:h
S P
6-choices 5-choices 4-choices 3-choices

For the first digit, we have 6 choices of digits 1, 2, 3, 4, 5, 6. For the second digit, we have 5-
.choices; because the selected digit cannot be selected again. Similarly, for the third digit, there
are 4-choices and for the fourth digit, we are left with 3-choices.

So, the total number of plates = 6 X 5 x 4 x 3 = 360

Example: Suppose a student has four different subject’s books. and w mﬁq\iﬁcm on a
shelf. In hnw many ways he.can arrange the bnoks can bﬁmgnt {ti!bow;t’/\ )8

. For the first place he has 4 lm:c::s Khlqcfpl\a\sﬁhe has 3 éﬂowes, for the third place he
has 2 choices and for the fomgth\;\kicxe hc\ha)s oice
Hence total nqueQ j gements are = 4x3x2x1=24=4 -

So, we Canwauﬁti that if we have n distinct objects then total number of arrangements are n!.

6.3.1, Permutation of » Distinct Objects Taken r at a Time (0 < r < n) )
Here we arc going to generalize the above discussed counting process.

Let we have n number of distinct objects and we want to arrange r of them in some order.

We denote such arrapgement by "P, and read 1t as n-permutation-r.,

For the first object, we have n choices.

For the second object, we have n - 1 choices.

For the third object, we have n - 2 choices.

For the third object, we have n - 2 choices, and so on,

For the " object, we have [n - (r- 1)] = (n-r+ 1),

We write "P, in factorial form as: \

| - " - (n-r)(n-r-1)(n-r-2).321 )
P,=n(n - 1)(n 2) (0 =1+ 1)x o H(n-r=1)(n- r,-M»«WSEf ©
n(n-1)(n-2).(n-r+1)(n- r)(n-,r—l)(u-r —’gl); 321 | (“n

(n-r)(n=r=1)(nLre2KBEEL O 0 - by (ri-r)f i
I-J-’H—-_‘-/-‘-H-w y'-v“{ \_‘/“ .
RN \nl\ \
NN\ 1\:” \ S\ f‘n-r‘k' :
" '-\JH\‘\"J \J| \‘:Jl"‘\b_-_--------v‘l
\\\\l AN ' \\_J faad
N
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= O
ue:li;lctll:n:”: - %\/\\mi\/&@@l (ii) Since, "Pr=n!

P/ 1A= 2) ... (n-n+1)

he ';ﬂ.—l. |=1!=
San-1Dn-2)..1=n! Therefore, nl =& = 0! ==
n! n! T E T T penee—

Example: In how many ways can 6 peoples out of 8 can be seated in a row?
Solution: Total number of people =n =8
People to be seated =r=6

8 _ 8
(8-6)! 2!

Total number of ways = "P, = %ps =

= 2102832 — 20160

6.3.2. Permutation of n Objects When Some of Them are Alike (not Distinct m
Let we have total ‘n’ number of objects which are all not disti J‘ : @ are n,
objects in 1 similar objects category, nz objeets i i jects category, and
similarly, n; objects in I.h@l(‘:: i ’% )
So,n=n;+n;+n QXKW
Let X be permutations in this situation. If we consider all similar objects as
distinct o in all the categories, then number of permutations for 1* category are n, !, for 2
category n,! and for the k™ catcgory n; .
~ Wehave X.ny!.n,! ... ny! number of permutations.
But total number of permutations are n!, therefore

X.nln!..n!=nl

n!
ﬂ-] !1 nz! W ﬂkl

=X=

_ nl
nylnglny!

Example; How many different arrangements of the letter used in the word EVENING can be
made by using all the letters?

Solution: The total number of letters in the word ‘EVENING' = 7

Here, E is repeated 2 times, N is repeated 2 times f@ @@m
.3.2!

Thus, number Ooﬁmuﬁﬁ%@% = 1260

o i

R
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6.3.3. Circular Permutation

Some times we have to ﬁﬂﬂ the numhar of ])ctmutaunns whllc arnmgmg
the objects about the c le \R\nys

Observetosé: four a&angcmems abed, beda, edab, dabe

All are distinct along a line but all arc same along a circle. Since

the position of each object with reference to other is same,
» Number of arrangements = 4:1 = 4-3:,1 =6

So, if we have n number of objects which are all to be arranged jp a circle, then

Number of ways = %‘ At _ (n—1)

n

— - Check Point

V. In how many different ways can the lctm;:sof qrc wprd ‘OPTICAL’ be arranged
\ so that the vowels always come logcll,l.r"

p— i hes ————

Solution: .
Total numbcz(ﬁf pmple—- =8\ -

?f mcmmaums (8 - 1)' =71 = 5040 ways

Examplqﬁw@@ 5

Etample' In how many ways 8 p;ople can §5t araund a nimulﬁr\%m( ﬁ)r dﬁlrﬁzr

‘men and 5 women in a party. Find the number of ways in which they
‘can be seated at a round table if:
(i)  anyone can occupy any seat,  (ii) men and women have alternate seats.
Solution:
(i) Total number of persons=5+5= -
Since there is no restriction, so they can sit in (10 = 1)! = 9! ways.
(i) We can start either with men or women. If we start with men then they can be seated in
(5 - 1)! ways
So, the total number of ways that 5 men and 5 women be seated at round table such that
they occupy alternative seats = 4! x 5! =24 x 120 = 2880
Now we consider the case in which the objects are arranged in a circular manner but we can
flip or turned over them.

The arrangements whth were anlm!ockwme are now in clockwise direction after flipping but are

same, Sakguhabér ofammgemcnts are (4—;1]—' - -iﬂ = 2 =3

e
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Use of Perm utannn m Cn plugmp{v / IR\
in! lhe crypmgraphy as cxplamed in the following example.

Permutations are u \

Let we hay&im hncrypt the word “PAK”, Label P as 1, A as 2 and K as 3. Total number of
encrypted words are as follow:

PAK a2 3
PKA a3 2
AKP e 3
APK @ 1 9
KAP 6 2 )
KPA G 1 2
Let we want it to be encrypted as _ o

APK ie; 2 .3
It is decrypted as A

1. Prove the fﬂl]nwing for neN.
@) "Pr=7 r)r (). "By= Py (). "Pr=n"'Pri
(iv). "Pr="1PAr™Pr; (V). "Pn=2"Pn2
2. Findn, if:
(i). "Ps+=20"P; (ii). 2"P3=100"P: (iii). 16"P3=13"P;
(iv). "Ps=20"Ps ). 30"Ps= "2P; (vi). "Ps:™Pi=6:1
(vii). "Ps:™'Py = 9:1  (viii). "Ps:™IP3=5:12  (ix). elp, m4ip, 1 =227
3. Findr,if:
(i). ®Prr=°P+  (iD). mPr—ZFPr (iii). "*P-=210 (iv). P, = S’HPF:
(V). 4P, =P (vi). 2%Pns= (vii). SPrey:MPrg= 1 30@0@
4. How many 3-digit even numbers canbefunnedﬁ'om the dlyml 2,34, 5, 6, if the digits

are not repeated? -\ \/ \
5. How many 7-digits mublle humber can\he madc using the digits 0 to 9, if each number

starts with ; ﬂnd 0o digitis rcpeated"
6. How fnéhy Jtir-(;hglt numbers can be formed with the digits 1, 2, 3, 4, 5, 6 when the repetition

of the digits is allowed?

179



10.

11,

12,

13.

14.

15

16.

17.

18.

19,

20.

21.

22

23.

180
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How many numhe’rﬁcanﬁéfnnned\mthcdrg\lts 1,1,2,2,3, 3,4 so that the cven digits
always n’pcﬁ\Ry\tﬂc_"ﬁﬁp}f}ah&ﬁ»ﬁéihg_ all the digits and no digit is repeated?
[u\!?aﬂ'\'mﬁﬂ}\%y?éﬁh a party of 4 men and 5 women be seated at a round table so that no
two women are adjacent?

How many different signals can be made with 2 blue, 3 yellow and 4 green flags using all
at a time.

How many words can be formed from the letters of the word FRIDAY? How many of
them will end with F?

How many different permutations of the word STATESMAN can be formed using all
letters at a time?

Find the number of arrangement of letters of the word VOWEL in which vowels may
occupy odd places?

In how many ways ca Ictters of word MACHINE be arranged so that all the vowels

are never together?

How many 3 letter words (with or without meaning) can be formed out of the letter of

the word ENGLISH, if the repetition of the letter is not al o% >\ @@ \fL-

Fatima wants to arrange 5 Mathematics, 3 4@31\155\@ ‘ on book shelf. If the
N —\ :\‘\

books on the same sp?;icis}m@n , i‘\‘,\ﬁ\l}dﬁm ngements.

How many odd n \bl;i\'s@\a@p ‘\\\ formed by using the digits 1, 2, 3, 4, 5, 6 when repetition

of digits i&ﬁ]lg\[\dﬁ yjeye
WW igit odd numbers can be formed using the digits 1, 2, 3, 4 and 5 if no digit is
repeated.
How many odd numbers less than 10,000 can be formed using the digits 0, 2, 3, 5,6
without repeating the digits.
The chief secretary of Sindh calls a meeting of 10 secretaries. In how many ways they be
seated at a round table if three particular secretaries want to sit together?
Find the number of ways that 6 men and 6 women seated at a round table such that they
occupy alternative seats.
Make all the permutations of the following words
WHY, SAD, TWO, MADE
Encrypt the word LAHORE by using the permutation:

3 46 1 5 2

By labelling L as 1, A as 2 and so on. A
Decrypt the word “TNLUMA” by using the permutation: [ [, | (/"
S \ \ 7\ \ \ M\ \3\_/‘7. L 1)
N



6.4 Combinations 0 A2 =S\0L % \ _' )

In permutation we arrangtihe otgcms m s&tng dbﬁnﬁc ordtr Ifin the arrangements of objects
their order is not unpogﬁﬂnt then ﬂusanangemeut of objects is called combination.

Let, we hg\f{guepjbhbets a, 'band ¢ then abe, ach, bac, bea, cab, cha all are same. In
permutation we consider them all distinct, so there are 6 arrangements, but in combination all
these are same (since order is not important). Hence, we consider all these arrangements same
and consider them a single combination. The combination of r objects taken out of n distinct

objects is denoted by "C; or C)

64.1 Provethat °Cr= () = -

Proof: Let we have n distinct objects and we want to take r at a time where, 0 <7 < n. Let the
total number of combinations be . i.e. X we take these r objects in some order then total number
of ways are 7!, But in combinations all these r! ways will be treated as same that is one way.

ie. r!combination =1 permutations
r/ﬁ \\
2O\

= r!X =1 permutation A S\
e —\ ~\/ | \ O\l
Since, total number of permutatmnsa;re P:. So N r \/\(\6\\ N , @ o
. Xr!l="P;

\ \ |
l\_\:\\\ \J \\ AR
_Oh\c 4_);
=X= r{ \]\)r\\ "f’ jndf*
w\\ﬂ 'N% (ﬂ r!(n—r)l

X
Deductions o
o Q=G=1
Since, C) = ﬁ
Putting r = n, we have
n! 1 1
(:.) n! (n Wl om0 1 1
Now taking r = 0; we have
, - n n! 1
(o) “0-0) Ll 1 !
Thus () = (g) = 1
(i) (ﬂ) (n — 'r) .-*WC:\\. SO

ince, r r!(n—-r}! ( ) gt \ N \\ \ " ~

n!
r}' [n—(n- r)]' T(n=-Nl(n=-n+1)

\‘l\ B (_n—nrm )
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(iii) (;)\ =
W

nl

Since ) o

Putting ¥ = 1; we have

n n! n(n—l)'
(1) Un-1) (-1
Nowputr=n-—1

noy_ n! nn—1) n(n—1)!
(n—l)_(n-l}?(n-(nal))l (n=1!(n- )l (n-1in

Hence, (n) ( )
0 O+ ~

N\ \

; i )/r? A (\\ U
Since, (n) ‘_,.,(:1,.)| A AN \; | / \\ C&J/U .
Re-placmg rbyr—a, | \ \-\V‘\ \\ W\ )
\ ﬂl \ \/f/ \ )\ C \\\\jﬂ\\ - a
( 13[\: &—m!{ﬁ%w r—1i(n—r+1)! @)
'\J’\';\lw (P?ﬁd d n! n!
/\‘ H H
NN [\(r +(T— 1) Tl (n—r)!+(r— DI(n—r+1)!
n! : n!

- DIm=N  G=Dlni-r+ Dm -1

_ n! 1
_(r—l)!(n~r}![;+n=r+1]

= L n—r+1l+r
S -Di-nlr(n-r+1)

nt  n+1
T -Dim-nlr-r+1)
= mnt1) _ (n+1)
Cr-Dir-ni(-r+1) it 1-n)!
= (n + 1) n - o

Example: [0 students applled for 6 HEC schdldmhjps 111 haw maﬁy WﬁYS can these 6 be chosen”

Solution:
Total number of stud:q ﬁ-“ n ., lﬂ
Number ufs\tpqqm{bbéthoscn r=6

182
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Because for this selection order nt?tlﬂ:studgnks ts\ncﬁkﬁﬁcessary‘ -
So, this selection can be fidde) i it |\ )\

0 1t (N[ o D fose76 _
Cﬁ}]ﬁm‘&ﬁ 64l claazy - c10ways
Example: Find the value of n if "C2=10

Solution: Given"Cz=10

n!
zs(n-z)l'w
n(n—1)(n - 2)!

(n-2)!
nn—-1)=20
n2—-n-20=0
n—-5n4+4n-20=0
nn-=5)+4(n—-5)=0
m=5)n+4)=0
n—5=0o0rn+4=0
n=5orn=-—4

= —4 is not possible as valu ‘?\ X/
Hence, n = 5 \ W{ \

\\\/ LI TTRC M T
. There ﬂ\l\&wéﬁn and you need to form a committee of 5 men and 6

=10x2

L L8808

vecl

any ways can the committee be formed?

_

1. Prove the following for neN.

0 == [:im (i) n™Cer=(n—r+1)"Crr (iii) r"Ce=(n—r+1)"Cri
V) "Cort™C="C; (V) "Ce+Cor="C, (vi) 2Cy= Eli2S-Gno1)]
< (vil) "Cp="Cq=2p=qorp+gq= n (vili) °Cr+2"Cr1 +°Cra=""2C;
(ix) r°Cr=n"'Crt (x) The product of k consecutive integers is divisible by k.
2. Findn, if: o\

(i) "Cs="Cs (ii) "C1s="Cs (m) "c;u T (nq P;c; vc{@\w
(v) “Cs:“‘303=33:4_

3. Findr, if: O \¢ \ t
15
@) \ﬁ T \1@4 | Gy

National Book Foundation
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10.
11.
12,
13.

14.

184

Find n and r, if; %_/.‘ \ 2 N

@) "c“ "c” gww 614 21 (i) "Cr1:"Cr:"Cr1=3:4:5
A

(iii) *(“\Cm r:¥iCh=22:12: (iv) "Ce"Ce1:°Cr2=1:2:3

In how many ways can 11 players be chosen out of 16 if
(i) there is no restriction.
(i1) a particular player is always chosen.

Out of 5 men and 3 women, a committee of 3 is to be formed. In how many ways can it be
formed if at least one man is selected?

A committee of 5 members is to be formed out of 6 men and 4 women. In how many ways
can it be done if it has (i) exactly 2 women (ii) at least 2 women (iii) at most 2 women?
There are 10 points on a circle. Find the number of (i) lines (ii) triangles that can be drawn?
Find the number of diagonals in n sided polygon?

In how many ways a group of 10 girls can be divided into two groups of 3 and 7 gu‘ls
Number of diagonals in n-sided polygon is 35. Find the nmnb;rgr‘?\ n/“ \ F‘ \\

For the post of 6 officers, there are 100 a ggfhcams ;po@s rpséuéctfﬁrsemng
candidates and remaining for others. (are ID serying 1dates among the applicants.
In how many ways this sélaatmﬂ:dp ] ‘a'd W

Inan exanunatmn a cand}datq h@s‘t \ﬁss in each of 6 subjects. In how many ways he cannot

qualify hﬁh?

A qu%m r has three parts A, B and C each containing 8 questions. If a student has to
choose 5 questions from A, and 3 questions each from B and C. In how many ways can he
choose the questions?

Knowing Kramp’s factorial notation to express the product of first n natural numbers by n!.
Recognizing the fundamental principle of counting and illustrating this principle using tree
diagram. Y

Defining permutation of n different objects taken » at a time and proof of formula of
permutation.

Finding out the arrangement of different objects including around a circle.
Defining combination of n different objects taken ratatime. "\ (7
Proving formula of combination and solying problems; niwotvmh don;bmatidn
Applying the above fonnulas for pcmntaﬁuﬁand co;nhmam:} to solve the real world word
problems. |\ \ \ b

\JNI\J' Wo
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Review l-;wrciw

(@) ( \If Bﬁﬁi ip, then value ofn i:
b. 6 c. 7 d.8

(i) Number of ways of arrangement of the word “GARDEN™:

a. 480 b. 600 c. 720 d. 840

(iii) The product of r consecutive positive numbers is divisible by:
a rl b. r+1)!  crl+1 d. 2r!

(iv) The total number of 6-digit number in which all the odd and only odd digits appear is:
a. 26! b. 6! c. 26! d. 26!

(v) LetA={1,2,3,...,20}. Find the number of ways that the integer chosen is a prime
number is:
a. 3 b. 5 c.7 d8

(vi) FromA={1,3,5,7,9}and B= {2, 4,6, 8} ifa caﬂesla;meducLA F&Eag chosen,
then the number of ways thata+b = 9|s --.ﬁ/ m\; /,, NS

a. 0 b.2 o Qe A\ a)
(vii) A student has to ansywrm ot 'ot‘\l2 @e;uona inan cxammatmn such that he must
choose at lcast 4 fmm fist five questions. The number of choices is:
NA b 35 c. 40 d. 45
(viii )\f \ﬁ.}=\“};‘m then value of n is:
a. 10 b. 12 c. 13 d 14
(ix) If'*Cs ='*Cps then value of ris:
a. 1 b. 2 c. 3 d 4
(x) The number of ways in which r letters can be posted in n letter boxes in a town is:
T b. "P; e r" d n"

2. How many words can be formed by using four distinct alphabets?

3. How many 3-digit numbers are there which have 0 at unit place?

4. How many six-digit numbers can be formed using the digits 0, 2, 3, 4, 5, 7 without
repeating.

5. The number of ways of arranging 7 keys in a key chain.

6. Twelve persons are seated at a round table. Find the number of ways of their arrangement
if two particular persons don’t want to sit together. '

“ j'“
'H H
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MATHEMATICAL INDUCTION AND
BINOMIAL THEOREM

After studying this unit, students will be able to:

o Describe a mathematical argument, identify the base case, induction of hypothesis
and a precise conclusion.

e Apply the principle of mathematical induction to prove statements, identities,
divisibility of numbers and summation formulac.

* Evaluate and justify conclusions, communicating a position clearly in an appropriate
mathematical form in daily life.

» State and apply the Binomial Theorem to cxpand expressmns nflthe fom(a ~F b)“
where n is a positive integer. B\ N | / O, \ON S

» Describe Binomial 'I‘heorcm as expanéténnf hmomta] powérs restricted to the set of
natural numbers. (" U\~

« Calculate binomial nuefﬁménts us }ﬁstal’s triangle.

» Expand usu\lﬁﬂ]&]bmonual theorems, and use appropriate techniques to simplify the
expression.
Find'an approximate value using bmumlal theorem.

e Use binomial theorem to find the remainder when a number to some large exponent
is divided by a number.

e Use binomial theorem to find the last digit of a number, test the divisibility by a
number and compare two large numbers.

 Apply concepts of Mathematical induction and binomial theorem to real world
problems such as (puzzles, domino effects, Pascal's triangle, Economic forecasting,

: Rankmgs Vanable suhlctnng)

The concept of mathematical induction was first teding {““‘*[" ”‘ﬁc ruwthq;w-
utilized by the Italian scientist Francesco Maurolico T FE e

in 1575. During the seventeenth century, both Pierre <™= —/ &Y
de Fermat and Blaise Pascal also employed this
technique, with Fermat referring to it as the "method | |
of infinite descent." In 1883, Augustus | De Mcsrgam, SuL=S
renowned for De Mc:-rgan& laws, pravMPs\d e

meticulous description of l]he pmcf:sa \and-named it J‘F"-W(s,r_ :
mathcmaucalmdﬁﬁtpph N

G
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Tl Mathemaﬁcaﬂndlmﬁun '

To ‘illustrate the u:l¢a 0!‘ mathcmancal
mduchnm Em}ismn an infinite sequence of
dominoes arranged in a line, where if one
domino falls backward, it causes the next
one to fall backward as well. Now, suppose
the first domino falls backward. What
occurs next? . . . They all fall down.
(Figure 7.1)

If the kth domino falls backward, it will also push the (k + 1)th domino backward.

To establish the connection between this visualization and the principle of mathematical induction,
consider the sentence "The nth domino falls backward", denoted as P(n). It is known that for cvery
k = 1, if P(k) is true (the kth domino falls backward), then P(k + 1) is also true (the (k + I)th
domino falls backward). Additionally, it is given that P(1) is true (the first domino falls backward).
Hence, according to the principle of mathematical induction, P(n) (the nlh ﬂomtnﬁ fallﬁ backward!

L

1

is true for every integern > 1. k. 1 .“/ N\ //, N\
7.1.2 Principle of Mathematical lnducfmn/ \\ Y\ \ |
Example: Use the metlpqd of maﬂmmmca\ mdu;lié& {0 pmve that
\\ nn+1)(n+2
N le"-. ‘ 23+34+ +n(n+1) = ( ;( )
|\ AU R 1
for all Rq#ivélintegers n',
Solution:
Here the proposition P(n) is:
nn+1)(n+2
_ 12+23+34+-+nn+1) = ( ;( )
Step 1: (Basis Step)
P(l) is true; since r Key Facts
1.2 = 11+D(+2) 8% The two steps are involved in the
3 ; mathematical induction. First one is known
>2=2 .1 as basis step and next one is known as
Step 2: (Inductive Step) I inducive step.

P(k + 1) is true whenever P(k) is true.
Let P(n) is true forn = k. i.e.;
124234344+ k(e + 1) = LT 13) o 2), e\ L
Now we prove that P(k + 1) is also frue. Fﬂf ﬁns WG add (k + 1)(.': + 1 + 1) on both sides.
1. 2(.1.‘2;3.4;34 + *\4\5:(3': O+ (k+DEFI+ 1)
J R\B\B)E k(k + 1)(k + 2)
NR NN o 3

+k+DEFI+)
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12+23+34+- +k(k+1)+Ue+1):'k‘{1y 1) Mk+1;(k+2)+(k+1)(k+2)
-&+NW*Q[+4 m+nm+nP_1
‘(k+1)(k+1+1)(k+1+2)
3

This shows that P(k + 1) is true. Thus, it is true for all positive integers.
Example: Use the method of mathematical induction to prove that

(1-2(1-3)(-3)- (-9 =77

for all positive integers 'n’.
Solution:
Here the proposition P(n) is:
1 1 1 1y 1
(1_5)(1 'E)(l "E) (1 T+ 1) Tn+1
Step 1: (Basis Step) ~ /ﬁ{ \4( \/\J

Forn=1;P(1)is

PVQWouuW

Step 2: {lnductwe Step)
In this step we will prove that P(k + 1) is true whenever P(k) is true.

This shows that M}\

Let it is true forn = k; 1.e,;

(1'%)(1‘%)(1'%)“'(1“::11) =k-:|l-1

Now multiply both sides by (1 - pro5)-

(1-2)(-3(-3)-( -5 -0 = e )
(k11)(1'k-1+2) (k11)(k:izl) (k+1)( ) k+2

_ 1

Tkt1+1 ﬁ(ungﬁ_({i
This shows thatitistrue forn = k + 1i.e.; P(k + 1} 15 lru¢ NV [ (@0~
Thus, it is true for all positive mtegers n_\\s W W
Example: Use the method of’ maﬂiemauca!‘-‘,mﬂhcﬁon o shuw that n? — 3n + 4 is an even (i.e;

divisible by 2) for all pfosgtwp mtegers n

188




Solution: W\ A2\ (¢ 3 ]

The proposition P(n). n* v 3:1 + 4 lsvan\even number for all posmve integers.

Step 1: (Basis Step) |\

Forna L P(i) 1§12 3(1) + 4 = 2 which is an even number. Thus P(1) is true.

Step 2' (Inductwe Step)

P(k + 1) is true when P(k) is true.

Let P(k) is true i.e.; k% — 3k + 4 is an even. Now P(k + 1) is:

(k+1)2-3(k+1)+4=k*+2k+1-3k—-3+4

=(k?—-3k+4)+(2k+1-3)
=(k*-3k+4)+(2k-2)
=k*-3k+4)+2(k—-1)

Which is an even because it is sum of two even numbers (k? — 3k + 4) and 2(k - 1).

=  P(k+ 1) is true. Thus, it is true for all positive integers n.

Example: Use the method of mathematical induction to show that 3" > n? for all positive

integers n. o

N (O

Solution: N\ ;j/ \ QL)
The proposition P(n) is 3" >n? fm’ dl'posmve mtegﬂm n \\ .
Step 1: (Basis Step) ~(\ A

Furn=1 W\ A\

3‘i|§|13=$3}1 ‘

P(1)is
= P(ﬁ # N
Step 2: (Inductwe Step)
P(k + 1) is true when P(k) is true.
Letitistrue forn = k. i.e.;
3k > k2
Now 3*¥*1 =3 x 3% = 3k 4 3k 4 3k 5 3k 4 3k
= 3k 5 j2 4 3k » 3% > k?istrueforn=k
Also3*>2k+1 fork>1
=53 k2 42k + 1
=31 s (k4 1)2
This shows that P(k + 1) is true. Thus, true for all positive integers n.
Example: Use the method of mathematical induction toshow that o7\
4446 +H462+H460 4+ 46" = o ""furauposmvammg;m =
Solution: . 78 L U
We have to prove thr. pmpomtmn \(ﬁ“ﬂiat 4+46+46°+46°+ - +46"= i('%l"l
by mathematical induction.
Step 1:( asis ‘Step)
Forn=10

el Bopk Fonboine
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4 = M =
5 5\
=P(0)istrue _ [\ ,«l?-J |
Step 2: (InduGtive Step)
P(k + 1) is true when P(k) is true.
Letitis true forn = k. 1.¢.;

4(6k+1 - 1) (1)

5
Now we have to show that proposition is true forn=k + 1.

Adding 4. 6**on both sides of equation (1), we get:

44+46+46%+4.6%+ - +46"=

4 K+1 _
4446+ 46%+ 463 + -+ 465 + 4,651 = ET—D + 4. 6*+1
_4.(6+ —145.6%1)
- 5

_4 (6.6 - 1) _4 (642 — 1) g
B 5 -_l e |\/—5 \ C ) /‘ L_.\ ‘3\"_.'-"
This shows that P(k + 1) is truc. Thus, truc fo;: all Pﬂsmveﬁmtégem\h; (0o~

I i VA A~70\ O\ \\ U \\
\/ / \ |\ \ 4\ iy R
- Y\ \\ \\ \ ~>"

By the method of- ﬂql mpéthemanca] mductmn prove the following when n is an integer.
RPEPIN: ISk n="CE yn>1

2 1242243042 < HOHNEMD -y 5 g

2 2
3, 13+z3+33+---+n3="—‘-’i§3— vn21

1 1 1 _n
4. + + 7.10 toet (3n-2)(2n+1)  3n+1 Yol

2 .
> 12*‘32+52+"'+(2n—1)2=J—Mr; ) ynz1

Al
6. 43+44+45+_"+43=u Yn=3

3
1 1 1 1 . n

T 2 + 2.3 + 3.+'+ + nm+1) * n+l Vnz1
3 4 5 n+z 1

8. 122 + 2.3.22 + 3423 L n(n+1).2" (n+1)2"
5 6 n+4 _ n(3n+7)— ’f{:‘».\,' [

9. 1.23 + 2.3.4 + 3.4.5 tet n(n+1)[n+2;l 2(n+1){n+2) |

10. 7+?7+7?7+---+777_ :fm,,,, mo’*ﬂ-gn-m) vn21
1. 13+33+53+ I(2n+1)3—{n+1)2(2n +4n+1) vn=0
12. 120+;1211+3§ P tn, 2“‘1—(n 1).2"+1  ¥n2l
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13. 110 +2.2! + 330+ ‘»n/n' = ( + 1)1 e e

14, (1--—1;%;“-—"‘3(1——) (1——-)_"” Vn22

b
15. %Hﬁ(s I) G %) "(2n+1 2n+2) {zniz}z vnz0

16. 1-2422 =23 4 4 (-1)2n = 2C2 vn>1

7. (5)+ () +G)++() =2 Vnz0
18. (7)+2(3) +3(5) ++n() =n2m vnz1

9. () +3() +3Q)+ - +2m () = T Vnzo

Prove the followings by mathematical induction.

20. n? + 2n is divisible by 3 vnz=1
21. 6 is a factor of n(n? + 5) .vnz1 PN
4pcn2 AC /;)/?\ F\a‘\
22, L‘E’_‘__:;‘_"ﬂ s a rational numher A ey N | 1‘/’;/ \ o
\ M\ \ \‘v, f o~
23. 4" + 15n — 1 is divisible h)@ rV 2 1) \ ‘. V)

\ \

Prove me\f%l‘W\mEquﬂltms by using the method of mathematical induction.

24, 7" —-2"is dmﬁblebﬁ \\ nd \\_‘\ \>

zs%}kk n+1)! V22
26. 5" +9 < 6™ ' Yn=2
27. fh>—-1then1+nh<(1+h)* Vn20
28. (2")«:22"-2 V=5
n
29. ’«‘.fr‘w:.z—"; V2
30. 1+ 3n< 4" ¥Yn>0
3. nd>2n+41 vn=2
32. n! >n? Vyn=>4

7.2 Binomial Theorem
‘Bi’ mean two and ‘nominal’ mean terms. So, binomial mean an algebrmc cxpr:;ssmn consisting

(A

of two terms. e.g.,(x + ¥), (; - -) (x : 3 ) etc all are blna@als \ (\4.’;:;\'::}',; WL

Often, we need some positive intcgral powewqf blnonnal hke square cube or even higher powers.
Higher is the power the; Ihngemmll b¢ c ¢xpg:mon “To handle such problem we use binomial
theorem. General form| of Hmdmlal cxprcssmn is a (@ + b)™ where n is a positive integer. We can
expand maeﬁmql&h (a e b)“ by using binomial theorem. Another way to expand (a + b)"is the

use ofP&y:n al's triangle.
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7.2.1 Pascal’s Triangle o N ntn \\ | C » e

N o\

VN
\J '\\”\ NN

\l

et . e S—

— S S e e o

This triangle of positive integers is known as Pascal’s triangle. How the Pascal triangle is
helpful in the binomial expansion; observe some positive integral powers of (a + b)™.
forn=1 (a+b)=a+b

forn=2 [a+b)z=az+2ab+b2 )

forn =3 (a+b)? = a® + 3a%b + 3ab? + b3 N
1%)0f

forn=4 (a + b)* = a* + 4a®b 6a?lk + \+ @JD

Observe that the binomial coeﬁ' t:lents (\91'@ \@J

forn=1 \\ ?f\

forn=2 N o \ \\ \

forn = 3NN RN 303

forn = 4 1 4 6 4" 1

Which are same as the first four rows of the Pascal’s triangle.

In this way we can find the binomial coefficients from the Pascal triangle by considering its nt"
row; for the expansion of (a + b)™. Also from the above expansion note that, expansion starts
with a" and in cach next term exponent of a is decreased by | and the exponent of b is
increased by 1. The expansiun ends with the term b",

© & . - Key Facts J

X Expansmn by using Pascal’s triangle is convenient whcn n is a small positive integer.

Example: Expand (1 + 2x)® with the help of pascal’s triangle.

Solution:

Herc a = 1; b = 2x and n = 6. For the binomial coefficients we nu_zed lhe ﬁm;aw of [hc
Pascal’s triangle. AN \ | /,/ (O

Herea = 1; b= 2xand n = 6. For the hmdxﬂml J:ﬂﬂfﬁcli:ms w‘\mpeﬁ the 6“‘ row of the
Pascal’s triangle. {_) \ o "‘\/-\\\ \\\A ™

1% Row - A 1 1

2" Row ——=t LSS

3% Row_N ¢« I 3 5 1

4" Row » 1 4 6 4 |
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(1+ 2x)¥ ﬁlﬁi\\ﬂw\é(l)s(h) + 15(1)*(2x)2 + 20(1)3(2x)® + 15(1)2(2x)* + 6(1)* (2x)°
+ 1(2x)8
= 1(1) + 6(2x) + 15(4x2) + 20(8x3) + 15(16x*) + 6(32x°) + 64x°
=1+ 12x + 60x? + 160x* + 240x* + 192x° + 64x°
Example: Expand (2 - %)5 with the help of Pascal’s triangle.
Solution:
5

(-3 - o+(- 3
Herca=2; b= e ! and n = 5. For binomial coefficients we need 5% row of the Pascal’s
triangle.
1* Row
2™ Row

i
o — & ufﬁ/a i

R y\\\@
W 1 1 1)} 1
2+(-3)] =12 + 5020 (=5)+ 102 (=) +10002(-3) +5@ (-3)
(-3
- 1(32)+5(16)(——)+10(8)L =)+ 10 (-5 )+5(2)(, )+1(- 1)

=R2-Z+5-Z+o-=
x

4

x5

7.2.2 Binomial Theorem
Statement: If a and b arc any two real numbers and n is a positive intcger then

n - - -
(a+b)" = (5)a +(7) a"b* + (5) an2b? 4+ 1) alb"1 4+ (ﬂ) a®h™
Proof: = /m MWL
We will prove this with the help of mamem:mcai mducnm \\! - / c, \o \W\f’

Step 1: (Basis Step)
Forn=1

(a+b)! *Mw‘b 4 }ai Th = (Da() + (DD = a+b
True f u&w\‘

ey ————
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\\ U o\ I‘. \ \,.— , |

\\ o~

Nt W/
A O /' AT\ \
Step 2: (Inductive Step) - \ 7\

Letitis true forn = k. i.e.; O \ \¢ -’:\"\\"a \\ \ j/‘
Kk — kﬂ-ai RY k-2p2 k-1 ¢ (kY gopk

(a+b) (UL \N"Q@) L +( ) b2 + +(k 1)ab +(i)a%

Now we w:l hwe ﬁmt it is true for n = k + 1. For this multiply the above equation by @ + b on

both sides.

(a + b)(a +b)* = (a+b) [(’5) akh® + (’{) ak-1pt + (’2‘) ak2b? + -+ (k 1) abk-1 4 (f‘) a“h"]

= (a + b))kt = a[(g) akb® + (!{) ak~1h' + (g) ak-2p? + . + (k E 1) ab* ! + (::) a“b"]ﬁ

+b [(k) akp® + (I{) a*-1p! + (g) a*"2b% + -+ (k . 1) ab¥-1 + (D a”b"]
e[ (et o aen (F Joo s (e

() s (e v (F Jat (o

By collecting the like terms, we have,

(a+ b)Y+t = (g) ak+1p0 + [(k) ] a*b + [ k)] a*=1p? 4 + ab*
| + () ate W@@ é @@@
- “ W@Qg
QN g, -3
(E)+ () (’”‘1) for0sr<k

(a+b)"”=(k:1)a“‘b° e+ (a4 r ( KFT Yapt

1 2 k+1-1
k+ 1Y o, k41
+(k+1)ab

This shows that it is truc for n = k + 1; hence it is true for all positivc integer n.

Some Properties of Binomial Expansion
I.  The number of terms in the expansion of (@ + b)" is one more than the index n.
2. The sum of exponents of a and b in each term of the expansion of (a + b)" is n.
3.  The coefficients of the terms equidistant from the beginning and the end are same.
4. Ifniseven then there will be odd number of tcrms in the expansion of (a +b% gn the
‘ e\ = 3 \o\ 2o~
middle term in this expanslon is the (-r + (D) ‘= (3—* p\ N | (S€

/
1’ _}




5. 1fnis odd then there will be even number of tanm m the expansmn uf (a\F b)“ So there

1 1 .

: \th | th
will be two middie terms in the expansn{n, these arﬁ (—-——) and (—) terms of the

expansion. \ )

6. Intheex nsm;n qu (a. + b)" exp—anent of a is n and the exponent of b is zero in the first
term. IH each' next term exponent of a is decreased by 1 and the exponent of b is increased
by 1. In the last term exponent a becomes zero and the exponent of bis reached to n.

7. Any particular (r + 1)*® term from beginning also known as general term in the expansion
of (a + b)" is given by
Tpyy = (:) a*Th"
8. A term which is at r*" position from the end in the expansion of (a + b)™ is at
(n+ 2 — r)*® position from the beginning.
Example: Expand (x — y)° using binomial theorem.
Solution:

(c=y)* =[x+ (=y)F°
=(f,)15(-3’)“+ HECRIHE SEUM i) zi.\y}-" %@fcﬁy)*
Now the bmmmal coefficients aref | '

(5) St _h W\
0TI N
(5) g 5! 5><4'
U NG 1x4 4
(5)_ 58 8 _5x4x3l_
2/ 2(5-2)1 2Ux31 2x1x3
(5 _ 5! _ 5 S5X4x3!
3/ 731(5-3) 3Ix2 3Ix2x1
(5)_’ 5! 5! Sx4
4/ THGE -2 MxlU Hx1

5! 5!
(5)= =——=1
5/ 01(5—-0) 1x5!

Substituting values in equation (1)
= (Dx5(=)° + (S)x* (=) + (10)x3(—y)* + (10)::2(—31? + (B)x =y

+ (D)x°(=y)3 ~ 12\ (CLONB S
=x%-5Sx*y + 10x3y - lszy #Sxy*

~—~N \ | ~ \ A/ ™
—~ N\ N | 7D \o\=2
{ ' W\ Y ( ¢ \ Q

Example: Find the cnnstaﬂttenn m the c:xpahsmn of (x + )
Solution: 7 "’J ARSI
The mnsta(’lqtéhn‘m the expansmn is independent of 'x’.

‘10
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Here a=2x; b -—andncjio A~ \\ \/ / ‘\\J \\o°

The general term ofbmomial ﬂxpénmm\is/

\J \”\Ni'# (‘l‘!) an-ThT

Subsntutm& values

= C) e () - ()0

- (13?) y10-2ror "

Term will be independent of x if the exponent of x is zero i.e.; 10 — 2r = 0 = 2r = 10
=r=5
Putting value of r in equation (1), we have

_ (10Y 0,5 _ - 10! 0! . 10.9.8.7.6.5!
T =(5)2 =5 o—sy MG = s' 5132 = 5232151 C°2
Te = 8064
Example: Find the 3rd term from the end in the expansion of 2 - @
Solution: Herea=2, b= —,, @ @
3™ term from the end i 15 at %ﬁ
Ty =
For fourth t
Substitutin alues;

5 =5 5! -125 -125\ 5.4.3! (=500
T3+1‘()253(,E) 3!(5—3)!22( x;) 3121(4)( x’!) 3r21( )

T, = m(msuux‘i) = —~5000x7

Example:
Find the remainder when 711 is divided by 25.
Solution:
?101 ?.7100 7. (72)50 B ?(49)5(} B 7 i
25 25 25 25 ——(50— 1)
- ) ot s (F) ot s () o (P cwrene
+ (30 s0-1)*] 2\ O

\_/\\/

= L[{soo-e + +(T) 608 ‘4‘15")(5“3‘% 1 &' (G9) G0 -1¥)
—~ ') \
( ) o ML

75l




i i . l e

= [ (soyo¢- n“ (5")(501“1 . 1)‘3\1-\(“) (S0 +( 5 50 -1¥)]

$\ j\“

Thus, the re n ]ﬁc’r is 7. ~ Ilustration
n If we divid
Example: The fourth term in the expansion of (ax - ;-) is g rc::in d\:r :;is ‘:?ELT;
Find the values of a and n. write
Solution: 3_5. =3 +i
General term of the binomial expansion is & 7
_ (n) nrpr Numerator of the fractional
T =)0 part is the remainder.

The fourth term in the expansion of (ax + i)n is

o= () a2 () = (e

Given that fourth term is g ; thus

n - - 5 1 A\\ /”‘)/'\\\,
(3)am3xme =2 o DA Nt W
Now right side of (1) is independent uf’ r,, this mé@s %bpnmt of #-to be zero. ie;n—6=0
=>n==6 t)‘,\, \\ (\ '-\ \ \\ \y\ '
Putting value of n i FqHatmn ﬁl), we' get
\“ l 3,05 o8 3 5 6543 3 5§
NN 2 TN T 2 32131 % T2
3_23 i_5
= 20a° = 3 =2a = 20

=ﬁ'a=§

7.2.3 Use of Pascal’s Triangle and Binomial Theorem in Real World Problents

Pascal triangle and binomial theorem are used in the real-world problems such as cryptography,
calculating the number of matches played in a tournament where n teams are playing, calculating
the possible number of protein structure and DNA sequence.

Example: Use pascal triangle to find the possible number of heads when three coins are tossed
simultancously.
Solution: B A\
When three coins are tossed together the f'nllawmgam the pgmhig :‘ésults & O
HHH HHT HTH HTT THH THT I‘TH T'rr AN+

0 Heads = )\ |

1 Head =
2 Heads T Presults -
3 Heads " l| “—-| Jotic result

By pascal triangle we have

etreont! Bowk Fovndation "nit- veatlbie o etc o Indeeciaen. o



T T~

0 heads lhead 2 heads 3 heads

Expand the following with the help of Pascal’s triangle.

0 (2E+g) @E+Y G -y (iv)(‘ﬁ‘ﬁ)s

Expand the followings by using binomial theorem.

O (Z-2) G@x+y e i) Gu- D (afE+b3)’
V) (1+2x—y)*(vi) (,;*’ ] ) A0\ \\\' [ ‘(” \(E=

Expand and snmp};fz /\ Liohly
0 Q+ IDx) + (1 n\ mx)* (u) (2 -3 (1 +4x2)

< i M@\Jhﬁ 2x)(1 - 08 (iv) (:99)° + (101)*

(V) (,_“) (x+) (vi) (a® + az—l‘—(al_M“

10
Find the coefficient of the 8" term in the expansion of (x2 + %)

Find the middle term in the expansion of the following.
. 1 10 .. 2 _ l 11
(i) (31 — 5 (ii) (2: Sx)
. 3 12
(1ii) ( + \/_) (iv) (a - F)
Find the specified term in the following expansions.

10
(i)  Term involving b® in the expansion of ( + sz)

12
(i)  Term involving q® in the expansion of( + 6q ) PR\

(iii)  Term involving x*y? in the expansmn of (3x*'— y)‘
(iv)  Term involving y x?' mtﬁe cxpanm()n of ()r" - 3x)5
Find the term mdcpendﬁmnf 2 nxlhq oxpansmns of the followmg

0 (2 AOBULETT G (VEegh)
Flﬁd the r"‘ term from the end in the expansion of (a + b)" where0 <r = n.
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9. Prove that sum of all the binomial cuafﬁmems m the axpﬁlsm\n cf (a + b)" is 2"; hence or

‘‘‘‘‘‘

otherwise prove thafisum 94"/Qdd c,l' ffici

10. The sum of noe\ﬂiciemsyof ﬁﬁt thrcc terms in the expansion of (a —.;) is 559, Find the

e@y\iﬂwﬂwmg a? in the expansion.

11. If the coefficients of (r — 5)t* and (2r — 1)** term in the expansion of (1 + a)3* are
equal; then find the valuc of r.

12. If the coefficients of 2, 3 and 4™ terms in the expansion of (1 + x)?™ are in A.P., show
that 2m? —9m +7 = 0.

13. If coefficients of three consecutive terms in the expansion of (1 + x)™ are in the ratio
6 : 33:110, then find the value of n and the position of terms.

14. Prove that () +3(7) +3(5) + -+ — ( ) m 2t
15. Prove that () = 3(7) +2(3) -+ EL(T) = L.
16. Prove that (0) +;G) +22 (’2‘) ot L (n) 3 n

17. Prove that (E) ( ) +(") . + ﬂ F‘@m \Jf&\dh

W Qﬁ\
18. Use pascals triangle ;g find the'n &@uﬁe six lcoins are tossed simultaneously.
19. If 7 coins are toss% q@@h Eﬁ?mll appear.

20. Ifa coin &W au ow many times 3 tails will appear.

7.3 ﬁm lal Series

7.3.1 Expansion of (1 + x)" when n is Positive Integer

Since the index n of (1 + x)™ is a positive integer; so by using the binomial theorem we have,

(1+x)" = (g) Wre+ (7) @it + () (P2 44 () (0%

nl
= Ty O + e =g x4

nn-1) nmn-1)(n-2)!

n!
2
R

nl
21 ( Z)I

_n 2 ---++—x“
ns(”*(n—i-):” Ae-2 - Tl
(1+x}“-l+nx+n(n D2 4 oot 21 P “r?f?~

\ // \ ". B

The series on the right is termmatmg and hgs (n + 1} numbér ({thrlﬁs
7.3.2 Expansion of (1,.,, x)“ whgn n ts\{ot‘ Po;iﬁvefntegers or Fractional Number
When n is not mpw 01' fms:nonal numbcr then expansion of (1 + x)" is non-terminating. i.e.;

\\1\ - i
“ |(1+::r:)"‘ 1+nx+ (2| 1) n(n 13)I(n 2) x4t
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The above scrics will be mnvepgenﬁf |x|\<‘\1_0r —1 <’: ] < 1 -
Convergent means senTs has\a fmuc sun otherwise serics will be divergent. We will focus only
those cxpans ?nﬁ\df@ \'E x)" which are convergent.

\ - : o
The series i +nx + n(" . x? + 20 13}!(" 2) ¥3 4 ... is known as binomial series. The general

term of the binomial series is given by
nn—1)(n—- 2) (n—-r+ 1)

i1 =

'_

Expand the followings upto four terms and also find the values of x for which the series is

convergent.
1
W (1-v%)~ (). (3+ i)_; Gi). (- f’;);
(iv). 3= W = (vi) Y -
A 3o\ co
2. Approximate the value upto fom; placg of dem\m\af /‘/\ \\\ \' ,’: '\/Q g\tf/\ ),
(i)./65 : / (ﬁ.fzﬁﬁwaii Y 95)7

3. Find thrxem\u}\lélwmgx“ inthe product of (1+x7)(2++3 %)

4. If x IS so small that its square and higher powers may be neglected then prove that:

=5

~ vEEa-e _vE(, 19 L (145x) WA a0 05
) ——= (1 :r) (ii) " (3 :r)
Jﬁ+[1+%x)_s 67
i) — S =20
5. If x is so small that its cube and higher powers may be neglected then show that:
-~ (1+2) 2= (14x%)3 . 3x? .. (4+x)72+(1-2x)"° 3 15 @xz
(1) Vi-x - _T (i) (1+2x)2 = 2 + 4 x+ 32

2
6. If x is so large that G) and higher powers may be neglected then shoe that:

8
Vx2+25—Yx? +9 =~

2 < ‘\
7. Find the term involving x™ while snmph@}ng%l—;w—:;g f s

8. Identify as binomial serjes and find ‘the s{m of mefo“owmg

0 1=t () e

J\’i\ 4 47
(W“H T ey
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(iif) __

(v) 3-30sib

AN NV e show 87 5 169 1920
9. W\ Iy = 22 1!+Zi it 3]+ en show that 8y? y —

35
(ii) If*-——+ +%+ - then show that y2 — 2y — 2 = 0.
i) Ifx byl s e o g e

10. (i) If x is very nearly equal to 1 then show tha prraledead

. . i q+2p __ p !3
(ii) If p and q are approximately equal; then prove that g (q) .

3
Hence approximate the value of ( 2 )

Applications of Binomial Theorem

The binomial theorem has a wide range of applications in Mathcmancs, hkc fmdmg the remainder,

finding the digits of a number, etc. The most cnmm;an\bmumxgij thqnmn apphcatmns are as
( )
follows: '

\
- l
7 )

Finding the Last(ar Ut[if Plhwékgitofan expnnentml number
Conside mﬁﬁl \ﬁwea bcan in which numbers are written in first column while their

expo\\én 2-written in the first row and it is showing only the unit place digits.

Powers — ‘

- 11234567819

’ 0 0jofojJofofojofofo
1 Lt friryrfrfrjnrgi
2 2486|214 (8[6]|2
3 3(91711(3(9]7]1]3
4 41 6|14|6|4|16|4]|64
3 5|5|5|5(5[5([5 |55
6 6|16 [6|6[6|6|6|61]6
7 71931 (793 [1]7
8 842|684 |2]|6]|8
9 ol1]9f1[9of1]9 WER

From the table, the unit place digits for 2 are@s 2! = 2,28 = 4 23 .S 242 16 zmd 25 =32,
Since the unit digit is same as that of menumbcr 2 ;hen:fnne the c_vchclty of21s 5-1=4.Inthe
same manner we can’ ﬁnd the Eych'::lfy%{fﬂthﬂr aumbers. The cyclicity of 3, 7 and 8 is also 4. For
1, 5 and 6 the unit d|gm remams the same for all the exponents and for 4 the unit place digit is
either 4 ]:sr w!héréds for 9 itis 9 or | only. Hence, we can say that if the exponent is of the form
4n, 41 H‘~ \n+2 or 4n+3 then we can easily find the value of the unit place digits of all the
numbers.
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S
Example: Find the unit digit of: (i) 17203 ,->(ii}z"2935T—-w. (i (C®
a Y A\ \ \\ \

Vo \ L\
\ \

{ \ \\

'\ | v\ O\

\

Solution:

(i 174%™ AT
N' o\

Now 203 caww}\rjl as:
203=4x50+3
Since, the remainder is 3 so, 73 = 343
Hence the unit place digit of 172%% js 3,
(i) 29%6
As in case of 9 from the table we can see that there are only two values i.e.; 9 and 1.
So, write 26 as 4 x 6 + 2. Hence remainder is 2 that is 9% = 81. Unit place digit of 926 is 1.
(iii) 36307
As the unit place digit lS 6 which always remains 6 at unit place, s %&u@(@fﬁ}@ce.
Finding Remainder Using Binomial T ref& @J@@ﬁ ;
Example: Find the remaindﬁk{@ ' '\‘}cd by 25.
Solution: WW o |
A _7(49y" _ 7(50 - i
25 25 25
_ 7(25k —=1) 175k —25 + 25 - 7)
25 25

_25(7k —1) +18
a 25

~ The remainder = 18

403 .k oy
Example: If the fractional part of the number 21—5 IS o then find k. o~ A
] \ M\ —‘//::.\\:x\; |" &2‘0 J <f):<fl§\8/) c
Solution: \ AT QLY [~
2403 23 (24)100 Of"ﬂ\ o A\ y
15 15 v_\[,_ TN (L
\ NNN"\-J

"202 7/ Gaie7 Mathemaical Induction And Binomial Theorem ' Natona! Bok Foundaton



_ 8 0o — \ AT ‘ \\_ Y
T (16) £15+ L’j’f’ -g\{\li?u+ 1] 81.+ '

v 8hi m' \:Tn :wgéﬁ H'achonal part = —5

So, k=8

Example Find the unit digitof (i) 172°® (i) 292 (i) 36%”7
Finding Digits of a Number

Example: Find the last two digits of the number (13)'°.

Solution:

(13)1%=(169)°= (170 - 1)°

=5Cp (170)* = 3Cy (170)* + *C2 (170)° — 3Ca (170)% + *C4 (170) — °Cs

=3Co (170§ = °Cy (170)* + *C2(170)° - 5c3 (l'm)z 5C4{l?%rf'\ m) @(_“) J
A muliple of 100 +5(170) - 1 = mn;: # 349@ \ I\
(; ‘\. ‘\\ (\ r\‘. \'\_,E‘v e
* The lasttwod ? . '49\ U
oL -
W\H een T‘wo Numbers
Example: Which one is greater 99°° + 100 or 101%?
Solution:
1015 can be written as:
101%%= (100 + 1)*= 100"+ 50 . 100"+ 25 .49 . 100+ ...
99® can be written as:
= 9950= (100 - 1)®= 100 50 . 100 + 25 . 49 . 100*¥ -
Now, 101%—99%0=2[50. 100* + 25(49) (16) 1004+ ...]
=100+ 50..49., 16 . 100"+ >1005° _~\1&\CE

£ 1019-99%>1002 -\ -

= 101°%> 1( JTQQ U
1' Ji\ Jl
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Divisibility Test \\/\vﬁ\\ g\

Example: SW&H& 9” is divisible by 10.

Solution:
11°+9" = (10+1)°+ (10 - 1!

=[*Cox 10°+°C, x 108+... +9Co] + [MCox 10" = 11Cy x 10"+, +''Cyy]

=9Cox 10°+°C; % 108+ ... +°Cgx 10+ 1+ 10" ="'C; x 10"+ .., +""Cjox 10 -1

=10°Cox 108+°C; x 107+ ... +°Cg+ ''Cox 10'°=11Cy x 10°+ ... + ''Cy0]

= |0k, which is divisible by 10.

e A

& Excercise 7.4

Find the unit place dl

8205 is divided by 48.

Find the remaind
If fracgmna! part of number —1 is —, then find the value of k.

31‘
Find the last one or two digits of the number where applicable.
a. 15* b. 377 c. 29'
Which of the following is a larger number?
a.  98%+100% or 102°° b. 47° + 50* or 53%°
Show that 12'° + 8'% is divisible by 10.

Show that 22%° + 18% is divisible by 20.

Use binomial theorem to find the remainder when 5192 is divided by 13.
What is the remainder when 171717 is divided by 9.

Using Binomial Theorem, indicate which number is larger (1.1 YO or 1000.
Show that 9"*! — 8n — 9 is divisible by 64, whenever » is a positive teger.

If a and b arc distinct integers, prove that @ — b is a factor of a” bi\ vh @E\.g
positive integer. 0\ (\ m
Show that 6™*3 — Bn —6is dmsn%\ \
K\ \m/\\ \
V

s
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Descnbmg a thcmat:cal argumcnt and 1dent1fymg the base case, induction of
? ahid ap precise conclusion,

ﬁplying thc principle of mathematical induction to prove statements, identities,
divisibility of numbers and summation formulae.
Evaluating and justifying conclusions, communicating a position clearly in an appropriate
mathematical form in daily life.
Stating and applying the Binomial Theorem to expand expressions of the form (a + b)"
where n is a positive integer.
Describing Binomial Theorem as expansion of binomial powers restricted to the set of
natural numbers,
Calculating binomial coefficients using Pascal’s triangle.
Expanding the binomial theorems, and using appropriate techniques to simplify the
expression.
Finding an approximate value using binomial theorem.
Using binomial theorem to find the remainder when a number to some larggfexpnnen! is
divided by a number. \[ >\ (CLOW
Using binomial theorem to find thedast di d;glt ofa ﬂumbi}g tcmﬁg the dwmbmty by a

number and co e n m’bgm ) \\ A\ B R
Applying concqﬁm f ME amatmhdmﬁou and binomial theorem to real world
problems su s (pﬁzzl&s, domino effects, Pascal's triangle, Economic forecasting,

I{ Wﬁ%l\ﬂ ble subletting).

B Revich EXiRiis suistmanaiiire s

Select the correct option:
(i)  Mathematical induction is used to check a proposition for all n where n is a/an:
(a) real number (b) rational number  (c) integer  (d) positive integer

(i) A mathematical statement which is true for all positive integers is also true for all:
(a) negative integers  (b) positive numbers (c) whole numbers  (d) none
(i) Ifnis cv:n positive imt‘:ger then the middle term in the expansion of (a + b)" is:

—1\th n th
(a) ( ) term (b)( H) term (c) (1-1) term (d) (— ) term
(iv)  Inthe expansion of (@ + b)?° a term is at the 11 posatlon usposmon from the
end is: RN %

(a) 9" Lo)10" U\ 10 ) w0 (d) 120
(v)  The cocﬂ'lctent nf tha 3" Tast tctm m thc expansion of (1 + )i
20000 0\ by 44850 (c) 303 (d) 4305600

{m ’{‘31‘:3[1‘30;‘6\51! & (121) + ( 4 ) +otk (1(1,) is equal to
\J () 211 (b} 212 (C) 210 (d) 211 _



(vii)  Ifthe third term m th; expansmn at’ (1 +fo" 15/— t xz then lhe value of p is:
(a) 2 ' T‘ )1/2 (c)4 ()3
(viii) The q?qﬁéicﬁféf X" in thc expansion of (1 + x + x% ++--)™™ where n is a even
o ber:
(a) 1 (b) -1 (c)n (d-n+1
(ix)  The greatest cocfficient in the expansion of (1 + x)0 is:
10 10 10
(a) 2* ® () ©(,) @2
(x)  Binomial series (2 + 3x)~ /2 is valid when:
@ Ixl <1 (b) Il <1 ©@lxl<: @kl <3
Using principle of mathematical induction prove that for all positive integersn:
1 i 1 T o pe n(n+3)
123 234 nn+ D(n+2) 4n+10n+2)
The ratio of coefficients of three consecutive terms in the binomial expansion of (1 g{ -Hc)"‘
is 2 : 15 : 70. Find the average of the three coeff'clcnts / f \ \w \) 5
Show that the expansion of (x + ) rdoe@:qtﬁuﬁmm 3@)\'\\ l,nvof ving -

If @ and 8 are nearly egu@ﬂ;q}. sl{}, \}m {LTA a:z ; a+ﬂ
If 2C, IE‘NIW\%Mﬂimerit in the expansion of (1 + x)?? then ﬁnd BC,.

theorem to prove that 6™ — 5" leaves a remainder 1, when divided by 5.

Use bin
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FUNDAMENTALS OF
TRIGONOMETRY

After studying this unit, students will be able to:

% Use distance formula to establish fundamental law of trigonometry:

. cos(a — B) = cosacos f + sin @sin S, and deduce that
. cos(a + f) =cosacos f —sin asin f,
. sm( e + B) =sin @ cos ff + cosasin J,
tan ¢ + tan
. tan(g t f)=—
ratf) I ¥ tanatan B

% Define allied angles and use ﬁmd,amemaﬂ W ‘and‘., ns deduc*tmm. to derive
trigonometric ratigs'\of. atlied angl R\ \\
% Express gsin 8+ bc@sém the form rsin( 9 +¢) where a=rcosgand b=rsn ¢
. ** Derive unQIé!anglc half angle and triple angle identities from fundamental law and its
‘?{d; uctions.
“* Express the product (of sines and cosines) as sums or differences (of sines and cosines),
- ** Express the sums or differences (of sines and cosines) as products (of sines and cosines).

Trigonometry has a wide range of applications in the
sciences, such as, in the measurement of distances
between celestial bodies or in satellite navigation
systems,

The solar system has fascinated human beings
cverywhere since the start of civilization. We use
trigonometry to find heights of high buildings, trees

and mountains ete. and distance of the shore from a
point in the sea. Astronomers use trigonometry to
calculate how far stars and planets are from Earth.
Even though, we know the distances between planets
and stars.




8.1 Distance Formula_ ) N\
The formula for the duﬂanﬁt bet\%cen twh pomts whuse

coordinates arg (g”\\\i j\ﬂ Ndi\ X, v~} is: & _ B(;, "

Alxy,
d=AB= \/"l—-"z)l"'()l'.":)- i
This is called the distance formula,
For example. if A(5, 4) and B(3, 2) are two points in the plane t!'len distance between A and B is:

AB= (s %) +0r-F = G- +@-2F
= J(2F +(2) = V8 units

8.2 Fundamental Law of Trigonometry
This law is statcd as:

cos(a — ) =cosacos ff +sin wsin f wiere a > f

Proof:
Consider a unit circle with centre at O as shown in the ﬁgure below. OC @)‘@& sides
of angles & and f respectively in standard pusmobwh

The coordinates of points D and C are t v ﬁ sm j).
Measure of JCDD is &= [J‘ to measure of z_’COD a — f is constructed
in standard posnw

%\B(cusa sma} Clcosg, sing)

‘s'\

. —
O(0, 0) ALD) X-axis

B[cos{a=g). sin{ a=#)]

As ZCOD= ZAOB =g - f3, thercfore
CD=AB

- \ (C Jjuv
J(cosa—cos B +(sina—sin A =+ [ﬂﬂﬁ(a m lF [ “/'\ F)-0fo o
Taking square on both sides, we have: \\ | L) -

(cosa —cos B + (sin @ s 2’1‘)‘ [cnétﬁ*—l ﬂ)\s\l]! +’[sn1(a ﬁ) OF
= cos’ a +cos’ % Wgﬁsﬁxi-sm a+s|12)3 2sin asin 8
=cos (a\il)‘i st(a B)+sin’(a-p)
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A~

" ~ -
Ve (Y E‘IIL U

(Y

1< \ ( \'\‘H.u
— | WA Ry
\ | \ O~

/

/

:—~/1j*§\ MRS
o O /__\ \y T\ () \ ‘ (&2
= cos’ a +sin’ & + cos’ {%ﬂm /,@—imsims,&hzsm*amﬁ
=cos’(a - ﬁ)+sn*(a *ﬁ)*l*—!cos{a' B ... (Rearranging)

=1+ —%cgﬁgﬁi\ﬁ\e'zsm asin f=1+1-2cos(@-f)..... (as cos’@+sin’f=1)
= -2c0s cos B —2sin asin f=-2cos(a - )
After simplification, we get
cos(a — f)=cosacos f+smnasn f ............ (n
This law is known as fundamental law of li'igonomctry. 2.4 complicated problems
Does the identity (1) make it possible to find in various fields such as
cos(90° —60°) =? Let us check. calculus, physical and
c0s(90° — 60°) = cos 90° cos 60° + sin 90° sin 60°
c0s30° =0x0.5+1x0.866
0.866=0.866 which is true.
Now replacing £ by — fin the above law, we get:

cos(a + ) = cosa cos(—f) + s a s —5)

i ey Facts
| Trigonometric identities
- are used in simplifying

social sciences.

o
L

@O@o@“

cos(a + f) =cosacos f—sn asnﬂ....o ...... (\Js&mﬂ[
Before proving the other identities, w from the fundamental law.
(i) Letting @=0in %m :
{:05(0 W sin ,b' | Check Paint
8 it Qg { 1. Are the equations
ms{—ﬂ) =cosf

sina = cos(%0° —a) and

(ii)  Substituting @ = g in the fundamental law, we have: | ©95¢ =sin(90° —a) true for all

; real numbers or only for values
T B -cosEcosﬂ+ . B { of @ in the interval
s 2 Biainat Sm zm i 0<a<90°?
- ' 2. Amna said that, without finding
=> C0§ [— - ﬂ) =0xcos f+1xsm f the values on a calculator, she
2 - knows that sin100° = cos(~10°).
T ) . Do you agrec with her? Explain
cos[:-i-*ﬂ] =smn f ! why or why not.
(iii) Now substituting § = —% in the fundamental law, we have: .
/ \\ P .//:l\\l f?‘y '\ J
cos (a -(- E}) cosa cos(- I l+sna sin (— = N \! ' / CA \ oo~
2 Z : QO A \K\ 2 SRR, B

\ |
\ \\ \ \\ |\ ,

\ \ \
\ \\ Y A\ [

= cos{a + g—) =cos a‘ikﬂwi-sﬂ‘&\x‘(_ \‘

SRR
\ L

() ame

cortedd Roseek Fisniendation



(iv) Replacing ﬁwm\ 2

o fm)ﬁ—mt R

=» cos(—a) =sm (% + a]

. |
SH(E +C¥) =cCosax

¥

(v)  Replacing a with %m, the identity (2) gives:

cos g-+a+ ﬂ} = cus(% - a)cosﬁwsin [%+ a)sin B
=3 ms(E +(a +,B)] = m(%+ a}cosﬁ—- sm (z +a)si1 Jij

sin{ @ + ) =sm @ cos f+cosasin f
Now replacing S by- ﬁmtdcntlg\

G \ J
sm(a+( ﬂ)) smrpgx M@

|\J\' s
E:mmplt&J Provc that:
2+ )= tana + tan §
l-tanatan g
_sn(a+p)
tan(mﬂ)-m{wm
sin acos f + cosasin
cosacos ff—sin asin §

Solution:

(7 m@u@
GOV

SR |

| Check Point

Prove that:
(i) smn(-a)=-sna
(ii) tan(—a)=—tana
tana - tan g
l+tana tanf§ |

v

I (iii) tan(a - B) =

Dividing numerator and denominator by cosa cos £, we get:

sin acos f +cosasmn

sin a cos . cosasin f

cosacos f _  cosacosf cosacosf
cosacos ff—sm asn f cosacosf  smasm ff -~
cosacos ff cosacosf cos acnsﬁ (A f, A
sma sinf s N L \¥ 2= Key Fact
cos@ cosf tan a+ tam ﬁ Thc ldelhlllt‘s of tangent ratio
T s axsmp.’ *1 mﬁm }gA “are truc for all values of @ and
1 —ﬂ—'—v—‘—‘—ﬁ—
GQ axmsﬁ for which cosa = 0and cosf =0,
QA \I N : _
\”\JN Jﬂﬂ(ﬂﬁ)— mﬂfmmg and for which tan(a + ) or tan(a - )
]—-tan ¢ tan ﬂ are defined. J
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called allied angpes |
If. Ehg a%ﬁslc angle then angles of measure — > w2 O.7+8, 32 +8,27 + 8 etc. are called
allied angles.

The following trigonometric ratios can be derived easily with the help of fundamental
theorem of trigonometry and its deductions.

sin[%—ﬂ}=cus3 sin(%+9)=oos€ . BRI FF ) = Zain.0
m[%—ﬂ):shﬂ cos(%+8)=—sh @ cos( +6) =~cosf
m[g——ﬂ] =cotd tan(i;-+9]=—cut9 tan(.rrd:e)j_-ttanﬁ
. [ 37 __ ‘ Ir ég\ ,.) ‘
sn[—z-iﬂ] =—cos@ cos(TiB] :I:sn f.? ﬁ \ﬂ{({ £3 Q‘»@Ow
sin( 27 £ 6) = j:smﬁ' X coslf\i.;rcl;?) 6&8@ um(briﬂ) =ttanf

Key Facts

Ni\ \A tngnnnmctnc ratio changes to its co-ratio when allied angle contains
an odd multiple of right angle. For example sine ratio changes to
cosine ratio and vice versa.

(i) A trigonometric ratio does not change when allied angle contains an
even multiple of right angle.

(i)  The sign of ratio will change according the position of terminal arm of
angle in the quadrant.

(iv)  The above results are also valid for the reciprocals of ratios of sine, cosine
and tangent.

Example:  Use (60° - 45%) = 15° to find the exact value of:
(i) cos15° (i) sin15° (i) tan15°
Solution: Letting & +60"and g = 45°, we have: .
(i) cos(a - p)=cosacosf+sn asn ﬂ A~ ;"}'KZ; 9))
cos15° = cos(60° — 45"} 2 WSGO“ cas 45';" + sim 60"5:1 45"
cos157% 0 Sxﬁ?m’ msﬁéxwm )
coleS“ -.0 3535+ﬂ 6123=0.966
l J' {upj‘ma ﬂ} sin @ cos f—cosasin f
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st k:f,ﬁosaﬁxmm 2 0.5%0.707
\\JP\H\JNE =0.6123-0.3535=0.259

Giii) tan1se < S015° 0259 4 oeq

cosl5” 0.966
Example: Given that A and B are second-quadrant angles. If sin 4 = % ,and sin B = % , find

cos(A + B). In which quadrant does the terminal arm of angle (4 + B) lie?
Solution: We use the identity cos*@=1-sin>8 to find cos 4and cos B
cos’ A=1-sin’ 4

L4
cos’ A=1- (1 =1_i_24
5) 25 25

__E
cos A= (TenmnnlannofanglelstlI) @Qm
O

Similarly, cos? B =1-sin® B W@ﬂ/ Check Point
% Fmd the exact value
N\

of tan y, when
\ % )
— (Terminal arm of angle is in QIL) tan( y— 45 ):5+

Now cos(A + B) =cos Acos B—sin Asin B
S1GHG)
X| ——|—| = [%]| =
3 5 3
cos(A+B)= “lgz-l=8‘6'l
15 15 15

As the value of (4 + B) is positive, therefore terminal arm of angle lies in fourth quadrant.
Example: If @, B,y are interior angles of a triangle, then prove that:

cot fcoty +cotacoty+cotacot f=1 Check Point
Solution: Given that a+ 8+y=180° I Find the exact value of
a+p=180"-y (i) cos105° {11) QQ&[?—%]
cot(a + B) =cot(180° —y) o I.'-;.&;\\l /:\Q)
: — = mﬂa+ﬁ)£wi(18ﬂ“+y) \

an(a+f) tan(180° -y )) R KA
o matanf @]1 ‘l,,‘:,_»,"L.‘h\ilﬁz+tanﬁ——tﬂny[l tanatan )
I-tanat: ,Q\H\J o

= tang +| ﬁ—-m;v-&-mnamnﬂtany = tana+tan f+tany=tanatan ftany

" o | T pp——————
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Dividing both sides by Mamﬁ fan -ANBA
wna - wnf) +"" tany

lanalanﬁmny

mamﬂpﬁwﬂ-mdmﬂtﬂny lanatanﬂtanr tan @ tan ftan y

mtﬁwly+mtacmy+mtacotﬂ 1

8.4 Expressing asind + bcos@ in the form r sin(6+¢@)

Let P(a, b) be a point irﬂ_he coordinate plane and
let & be the angle that OP makes with x-axis as shown in

the figure.
If we let a=rcos¢ and b = rsing, then

asin@ + bcos@ = rcos@sing + rsingd cos@
=r(cosgsing +singcos @)
=rsin(@ + ¢)

Where r=a’ + b and é:m"[é}

For more illustration, let us solvc fnllmmg):xa;qple \

Example:

l?%inﬂ *I*SEOSH in thf: form of rsin( @ + ¢).

Sululmnﬁ lg‘f&e compare 12sin@ + 5cos# with rcos¢@sin@ + rsin ¢ cos 4, then:

a=12=rcos¢ and b=5=rsing

So, r=va? +b* =J(12) +(5) =169 =13
Now 12sin@ + 5cos 8 = i{—- sn8+—xcos€) 3(5119
= r{sin @xcos¢+cosfxsin g)=rsin( 6+¢)

Where r=13 and ¢ = m"(f"i); mn“'[i |
a 12

x—+cus€x-—-

\4';/ Express cos@ + sin@ in the form of rsin(@ + ¢ ).

urid Poisk Foe.



1. Find the values of cos(a " ﬁ) sn[ a :I: B}and tan(a: ot ﬁ) for each given pair of angles.
0] ZJ 13@7, B +,60° i) @ =60° f=90° (i) a=180° B=30°
(iv) a'i‘ T, ﬂ-_gi v) a=—§"*ﬂ=g (vi) a'_'%iﬁ:z‘z

2. a, Find the exact value of cos15° by using cos (45° = 30°).

b. Use the value of cos15° found in a to find cos165° by using cos (180° — 15°),

¢. Use the value of cos15° found in a to find cos345° by using cos (360° — 15°),

d. Use cos A = sin (90° — A4) to find the exact value of sin75° and then find tan75°,
3. a, Find the exact value of cos120° by using cos(180° — 60°) and cos(90° + 30°).

b. Find the exact value of sin120°and then tan120°,

¢. Find the exact value of cos75° by using cos(120° — 45°).

d. Use the value of cos75° found in ¢ to find cos105° by using cos(180° — 75°),

e. Use the value of cos75° found in ¢ to.find cos285° by using cos(360° — 75°).

f. Find the exact value of sin 15°. A0

4. Rewrite as a single expression.

~ X\ N ; /, f- \‘:{/’
@ cos6fcosIf—sn6Osin3d D !Zli) mﬁmmﬁ Zb*m?gsnw
‘ ) \\O

6}+ ms[m.] (g\ (hrf sin 138" c0s46° —cos138° sin 46°

8/ 6
N\ \Ji\”‘ Pl 4 2
QNN =
(v) \|m750 mnvdsn (VI) tan 3 +tan 3
[+tan 75° tan 45° o ¥ o 2%
4 5 33
5. For sina=§, tan =5 with terminal side of in QII, find cos(a + #) and cos(a — f3).

7 . . .
6. For cosa = T with terminal side of in QII and cot f = }82 with terminal side of in QIII,

find: (i) sm{a-p) (i) cos(a-pf) (iii) tan(a-p)
7. Given a and / are acute angles with sn & -—% and tan f = 4 find:

(i) sn{a+p) (i) cos(a+p) (iii) tan(a + f)

8. If sma = %,where O<a <g—and cos i = l—i,whcrc 3? -::ﬁ -a:«2zr ﬁnd~

(i) csc(a+pf) @ sec(a+ﬂl «""”um wt(aw)

9. Given a and ,B are. ol:-nme angles wﬂh\'a -—L and cos f = —% find:

2
(i) © mju& ;?) (u) cos(@tf) (i) tan(atp)
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10, Verify:. AN\t
(i) sm{-— -ﬁi) \ébsa \C (i) cos(r—a)=-cosa
NN 5 |
(iii) cos (a+ "r) J— (cosa —sina) (iv) sin (;‘3+ J=~i—{cosﬁ+sh1ﬂ]

® tan(r~£)= tany T i) tau[y+i)=‘+‘“"?’=°°5?+5fﬂr
4) tany+1 4) l-tany cosy—siny

(vii) cos(x+y)+cos(x—y)=2cosxcosy (viii) sin(x+ y)—sin(x—y)=2cosxsiny
11. Show that:

sin(180° + A)cos(270° + 1) sin(90° + @) —cos(360° —a)+ cosa

(i) i o o =1 (H) . Py . Y F g ; =-1
sin(180° —A)cos(270° - 1) sm(180° —a)+sm(270° —a)+ cos(90° + @)
N sin(a +f) =
(i) tance+tan/3 = cosa cosf _|/;\ /ﬁ)/;\t\m‘
(iv) sin(a+ p)sin(a - ﬂ‘) cos ﬂ—@os @=sin’ xx«aé«\w\fﬁ AL
™) tan (x+y) _ tan’x- f“l) mstu&ﬁ) I—tana tang
cot{x— y) -v‘tan qucfanE - cos(a—ﬁ) 1+ tana tan f

bﬁ'lacotﬂﬂ i) cosdd sm‘w:shS&

A
« +
(ﬁi)qo{ ﬁﬁ cotf-cota " cscd  secd
12. If a+ f+y =180°, prove that:

() tana+tanf+tany=tanatan Stany (i) cnt%+cot§+cot%=cot%mtgmtg

i) tanZan? +anBan? +anlan+1=0
2 2 2 2 2 2
13. Express the following in the form of » sin(@ + ¢).
(i) 12sin@— Scosé@ (ii) 3sin@+ 4cos@ (iii) sin@— cos@
14. A telephone pole is braced by two wires that are both fastened to the ground at a point 3m
from the base of the pole. The shorter wire is fastened to the pole 3m above the ground
and the longer wire 7m above the ground.
a. What is the measure, in degrees, of the angle that the shorter wire makes_wﬁhth\‘: ground?

b. Let @be the measure of the angle that the !onger wnre makes Wlﬂl the grnwd Find sing
and cos@. \ \ .' =A™

c. Find the cosine of the angle betwaen the vnres where they meet at the ground.

d. Find, to the ncarestdegmg fhe meﬁu{e of the angle between the wires.

1' J|\J| J[\J'
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8.5 Double, Hall and { f*lp]“ \ﬂgiu K!Bq

(i) Double Angle Identities

(i)

216

The doub{erﬂx{g}d ﬁdeunhcs for sine, cosine, and tangent can be derived by putting a = £
in ﬂlﬁ\%ﬁomng identities.

si( @ + ) =sin acos B +cosasm f§ ... (1)
cos(a+ ff)=cosacos f—smasm f .....(2)

tan @ + tan S

+f)———— i3

tan{a+f)=1———— 7 (3)
Cheek Point

Putting £ = a in identity (1), we get: [
sin{ & + ) =sin acosa +cosasin a Does cos 28 = sin 2(90° - 8)?
Sl(2ﬂ)=2snﬂ¢ﬂ5ﬂ sEnssnnnan (A} m Justifyyo“r answer.
Now putting B = & in identity (2), we get: 1
cos(a +a)=cosacosa —sin asn a
WS(ZG)_msza-Sh:ﬂ T (B) |(71\\ r)@{j‘?nj;\&

1 \I
Using relation cos® a +sin® @ =1, the i ntmy (B)baﬁﬁ \§\\' [(2d
\ '. \ \

\I \ ’\ ‘. M\
cos(2a) =2cos’ a C1 /jg)\\.\ \/7\ \.'\ ~.\ //v \\ 3\
\ ‘\I \ § \ U R
\\

("‘,

)\ \ A\ 0 \\.,

‘A I\\' (7\\ \ \ \ \—-

cos(2a) =1-2si qr \\ \J*.Ea D). -

Rel{’@WM}(D) al@ imply:

-

g =t T, o e 1+costg cveeend(E)
2 2
su'n’f.:mr=1_m:”s = smamif & ®
2 2
Dividing identity (F) by (E), we have

mnta=l"02% (G)
1+cos2a

Again putting 8 =& in identity (3), we get:

tana + tana - Cheek Puoing
a+a)=———

tan( @ + &) I E——— Use the ¢ double anglefunnu!a to

. pana ﬁnd lheexacﬁviiue of'sin120°,

Half Angle ldenuﬁes' |

bﬁm{mﬂb a=— m ab{we identitics, we get the following relations.

b |-1 =l ationg! Book f‘lmmﬁpr"”.'.'



(iii)

~\
A C \

From identity (A), (192‘& gg{ 0 \ \ T

sm{;je‘\xpﬁ'%ﬂ( )CDS[ j = m_(ﬂ) zsn[g)cﬂs(gJ ........ )]

Simslarly, identities (B) to (D) imply:

0 _an?f)= O)1=1-2sn( &
cos(f) =cos (2) sin (2] 2cos [2) I=1-2sm (2) ........ 0]

And from identity (H):

P Ztan[g) Ztan[g]

l-tnnz[EJ
2

ms[g) Sy T /
i JE@@?@@ $ Q&@X

N%J\jw ?uy (M) by (L), we have:

a 1-cosé@
tan| — |=%+,— .......
n(Z) 1+cos@ ™)

These identities are useful in simplifying complex trigonometric expressions.
Triple Angle Identities

sin 3a, cos3a and tan3e etc. are called triple angle identities. Let’s prove these
identities.
(a) sin(3a)=sin( 2a+a)=sin(2a)cosa +cos(2a)sin a

=(2sm aoosa)cosa;(l—hin a)sma ....by(A) and (D).

=2sin @cos’ @ +sin a—2sin’ a A\ /—‘.c?j-\(n,'x,
oA | [ / S
=2sin a(l-sin a)+sma-‘-lsn d ( ’h'+ms a=))

./ (W
o) \ A

=2sin aQ2sm a:ﬂun GNX{EI'I} &

sin(3a, a~4m a
\f \\J ﬁ |W
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e

(74

m ) sin acoscz);sn a ...by(A) and (C).
Wﬂ&s a—cosa—2sin’ acosa
=2cos’ @—cosa—-2(1-cos’@)cosa ... (- sin‘a+cos’a=1)

=2cos’ @ -cosa —2cosa +2cos’ &
cos(3a)=4cos’ @ —3cosa
(¢) tan(3e)=tan(2a +a)

_2tna +tana
e .. by(H)
1- tan( 2a) tan & 1_(1233 )mﬂ
- (4

2tana+taua(l tan” ) @@
' a- ZW“UW’FE@
o

Example: Given sm 8 = %, find the values of sin 28, cos2# and tan2 4.

Solution: First we find the value of cosé.
1
cos’@=1-sn’@ = cos’f= 1—(3) _16
5 25
cosf = i
5
Now (l) sm 20 =2smn fcos & : Check Point

. (8
i2g=2x3x2 2 . Fmdsn[ﬂwhm
55 25

) 00s20=1-2x’0 . | M@W%‘S@@zﬁ@m
mszﬂ;l-Zx(gx— ﬁﬁﬁm@@w may
I
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(iii) tan26=T<%

ﬁ;

Examplki Ms&lhc\half-angle identities to find exact values for: (a) sn15° (b) tan15°

Solution: (a) sinlS“:sin[:ig] - Jl—ﬁ;ﬂﬂ ;Jl—{;%ﬁ

0]3 =+/0.067 =0.259

a 30° 1-cos30°  [1-0.866
by tanl5® =tan| — | = = |—= :
™ [ 2 ) w3 V05

—M—G 268
0.5

Example: For cosa = ;—; and & in QIII, find values of sin [— and eosg \.rfr*/(\\‘
’9)

y \l /O (“‘ i
Solution: When 7<a < —then —\-:;—93 Tﬁus\sm[ar) 0 anﬂu;(a ]«:O.

P /?\ \2/ \\\ \} X

_ 16_4
255

9 _ 3

25 5

Example: Express 4sin* x in terms of an expression containing only cosines to the power 1.

4 - 2 2
Solution: 4sin* x=4(sin? x) =4(| cos .r)

: 2
={1-2cosh4+ms (h)]=l—2cos2x+ 1+ cosdx

2 4c052.t+l+cos4x 3- 4cm2.r+cos4x

: 2 ﬂ// \\:' ' CK/ = Cheek Point
Example: Find the exact value of sm 22 5" X wsm 5-: \\ \ \ Verify
) ‘Yl' ."v { /(\\/- \ \'v. \ T y",‘ <' ~ ./‘" - .
Solution: As si) 2a)= Zemagasg, ) \\ ‘ g (sin#—cos@) =1-sin 26
~ (1 \J 'C\\\\:J '\\Q\Jﬂ' -‘"‘.-I e I
JN!‘\ Deose = .28

Navignal Book Foundation Ai-0S I T— 219



Substituting the value of angle we ggt t'
sin 22.5° st?}:j? '

sm(meﬂ) \shidse
W 2 ~0345

Example: Prove that: m(ﬂ J _ :t( lmlcosﬂ)
2 sin @

Solution: We know that:

mn(ﬁ)=i Jl—"msﬂ J(l ~cos)1-cosd)

2 l1+cosf "~ Y(1+cos8)1-cosd)

J(l mg)’ ;t\/(] ~::<:-stén’)2 (l—cusﬂ)

1-cos’ @ sin’@ sn &
sin dcosf oA
Example: Prove that: ———=tan2# —~ A0
’ 0.5co0s28 - 12\ \ \v u s

Solution: L H.§ = & cos 9= 2xsin Bms Lost

1. Suppose P (=3, 4) lies on the terminal side of & when @ is plotted in standard position.
Find cos2@ and sin 26 and determine the quadrant in which the terminal side of the angle

260 lies when it is plotted in standard position.
2. If sma =y and a lies in QII. Find expressions for sn 2, cos2a and tan2 & in terms of y.

3. Use a half angle formula to find the exact value of cos15°,

4. Find (a) sin 20 (b) cos28 (c) an26 (d) sin-g- ©) cosg ) tnn% when:

@ cos&:-;- where n«:a«:?” (i) tanE-I:

o~ 1 * ) \

(iii) sn@= L where 3? <f< 2:: i{w} Sec_ﬂ J§v whnre 3? < 9 < Z:r

25 : (O
(v) cscf=4 where szﬂ ‘--'(-.r:) mt&-—% where -’25«:9-:;1

JI -.\]l J' j o\
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a \\
L"
/

’(. B Rranl @Qﬂ?@\ C@:
5. Find exact valuzef i‘ﬁr WJ, cosﬂ and\tan 6 usmglthe glformanon given.
(i) s 29_1-@-5 zam Q- i) c0s26=-—2, 20in QII

\“\\1&11\
i) s020=-22 29inQm (v eas260='2, 20inQIV
289’ 169°

/

6. Use a double-angle identity to find exact values for the following expressions.
() sin15°cosl5® (i) cos’15°—sm?15° (iii) 1-2sin 2(%)

=0

(iv) 2cosz(£J-l (v) ——=2
e

7. Rewrite in terms of an expression containing only cosines to the power 1.
(i) sin’acos’a (i) sin'‘acos’a (iii) sin‘acos‘a
8. Verify the following identities. '

W
(i) (sha+msa)‘=1+smze (u) tan 2x= e f\,)ud
. t@r\ﬁ
i) tan2=_S0O ql L\&ti ,;:—m”‘““
2 l+cosd ﬂm/\\ 2
(v) 8sm'éd= 3+ ié {@s&@ {w) sm49_=4si19ms’8~4sh’ﬂms€

\\‘-"/

(“QN ﬁ%x‘%ot Osin’@ (viii) cos?2x+4sin’xcos’x=1

o
/(—\ \ \ U
/)L
\‘-

cosx sin x
+

(ix) cos46=8cos'@—8cos’ O+1 (x)  sec2x= - .
cosx+sinx cosx—sinx
(xi) cos*x—sin’x=cos2x (xii) tan§+cut—§—=2{:scﬂ
3x-smn3x 2+sin2
(xiii) csc2a—cot2a=tana | iy) XX T
COSX—8M X 2
sin3a cosla . l-cos’B B
- =2 xvi) ———=c08"
(xv) sma  cosa i) 2-2cos 8 2
: ]-mzf
sin & g 2
ii =tan— =C0sX
(xvii) T 3 (xviii)
. sm 2a. cosla .
- =secq S
(xix) Epm— o /(3‘9‘3 At
xi) 2cosysec2y s -2
(xxi) * 2('% \ eo&y m yj\wsy-r-/gm y
oy R\R\RY ks 1

(i) ZSF‘W 4~={::::qs;y sin y " cosy+sin y

\H\“
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8.6 Sum, Difference and Product Smes andCosmes
8.6.1 Expressing the Produt‘t uf Sinﬁ de osines as Sums or Differences
We havqmqw e fo[lﬁwmg identities:

R\ H\Qﬁ{mm =sin azcos f+cosasin (l)
sn(a — ff) =sn acos f—cosasn f ()
cos(a + f) =cosacos f—sn asn B (3)
cos(a— ff)=cosacos f+snasin f (4)

Addition of identities (1) and (2), and (3) and (4) gives:
sin{ e + B)+ sin{ & — f)=2sin excos B (5)
cos(a + B)+cos(a— ff)=2cosacos B (6)
Subtracting (2) from (1), we get:
sin( &+ B)— $( & — f)=2cosasn B (7)

Now, subtracting (4) from (3), we get:
cos(a + ff)—cos(a — f)=—2sin asin ﬁ (8

Identities (S) to {8} can bc re-written 3%5

ﬂ/\/,;\
) ON\\\
S =2( N\ !
NIz \\. (C \U)U
B ’,\/—\\ \| | >\ \Ex) st
A 1€\
\ \,r'\ \ \\\ ( \ \ [N /\44
= \‘ j VAL L [
VAL VLD |
y W\ VW
/, VW L/

ZSmHCUW‘Wﬁ){n{QW N
2ma§nﬁw${a+ﬂ} sin(a- f)
'@w\s&ﬁ*mﬁa+ﬂ)+mﬁ(a-ﬂ)
_—-ZSnasmﬂ cos(a+ﬁ)-cos(a )]

W

The identities (A) to (D) are k:nnwn as pmduct to sum formulae.
Example: Express the product 2cos68sin 38 as a sum or difference of sine and cosine.
Solution: Using the identity (B), we can write:
2cos68sin 38 = sin(68 +38) —sin (66— 36)
=smn (98)—sin (36)
Example: Simplify sin 40° cos20° +cos40° sm 20°
after converting into sum or difference [
of sine and cosine.

Cheek Point
Express sin 60° cos30° as a sum

‘/ or difference of sine and cosine
and simplify.

Solution: sin 40° c0s20°-+ cos40°si 20° = (2sin 40" cos20°) + -(2oos40° sin 20°)

= {m (4o°+20°)+sm (40" 20“)}4%]sn(40”+2ﬂ“) ( Zﬂj]‘
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\ U
8.6.2 Expressing the Sums ire\fn% (\Tg s(nd Cnsmes as Product

_P*“? lﬂlﬂ\

.v q_ 2p ptq p-q_2q

a+ and a—-f =
ﬂ =pand a-f= > T =3
Subsutlmng values of a and Finto identities (5) to (8) of section we get:

=q

ESESESE ~ (5
COS P +Cosq = st(qu) [M) mp-msq=-25h(P;qu{p;q]

Above identities are known as sum to product formulae.

Example: Express cos45°- cosl5° as pmducL

Solution: cos45°- cosl 5° =-2sin 45 W
Enml}w s Clieck Poinit
cosx+sin y I Provide two different methods of

x+y -y B calculating cos195° cos105°, one
Solution: S x+sm’y 2sin 2 cos~ 2 of which uses the product to sum.
| cosxtsimny . Xty o X-y 1" Which method is easier?
2 2
Y

2
Example: Show that: cos6a +cos5a +cos3a +cos 2a = 4cos(4a )cos(1.5a)cos(0.5¢z)
Solution: cos6a +cosSa +00s3a +cos 2a =(cos 6a +cos 2 )+(cos 5a +cos 3ax)
ba+2a 6a-2a Sa+3a Sa-3a

=2cos cos +2cos cos
2 2 2 2
=2cosdacos2a +2cosda cosa = 2cosda(cos2a +cos ) ~
2a+a  2a-a (192 /P@\@w
=2cos4a x2cos - —COS -?\4\903 4«;();\? G {Cos @W}/

@\ /O \\ U \\'\ I\\ . 3
\\ - ]
Example: Show that; %W"sggﬂ"& M&oﬁ = -oo s10° +£: +—sin40°
Solution: ws\l \sﬁﬁ@“\ebsiﬂ cos10’
\J -E(smi'{l"cosm“cosl(}‘) ..... [sin]()’ = %]
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1

E(Zsm‘?ﬂ"msm‘)cos @B\ §
% sin701) Mﬁ‘*)ﬁm{?ﬂ" 20“)}005]0“
= ;[511190“ + 5in50"]cos10° = —[l +sin50°Jcos10°
1 1. o 1 o2l o mi cno .
= —c0s10° + —sin50°cos10° = —cos10° +=x 2sin50°cos10
4 4 4 8
1 .
= -4-50310“ + %[sin(SO“ +10°) +sin(50° -10°)]
- i- 10° + %[smﬁﬁ“ +5ind0°] = co 510° +-;-[% +sm40°]
= lt:-:isltf)" +—Ji +l sind(® .
oo SR

‘. 'y‘x \_) .\ /

1. Use the pmduct—&smn fonhulh mmze the followmg to sum or difference.
(M Jé,fﬁcgsmx (11] 10cosl0ycos6by  (iii) 2c0s5¢sin 3fx
(N}\ '\géos xsin10x (v)  sin(—u)sin5u (vi) —2sin(—100°)sin(-20°)
(vii) c0s23°sin17° (viii) 2cos56°sin48°  (ix) 2sin75°sinl5°
(x) 4sin %cos% (xi) Zcoszuzzvsin 2”;2"
2. Rewrite the sum or difference as a product of two functions.
(i) sin70°+sin30° (i) sin76°-snl4° (i) cosS8° +cosI2®
(iv) cos P ; 9 4 cos2 ; 9 (v) sm(-10°)+sin(-20")
3. Prove the following identities.
o) cos(a + 53) _ 1-tana tan § (ii) 6cosBusin2u _ —3sinlQu '3
cosf@—f) l+tanatanf sm{-eu) - smﬁu WA\

(iii) 4cosdv sin3v=2(sin Tv—sin v) (w) sn3$+3mﬂ,= 4(:@3"'9 sin 9. -'
(v) cos3x+cosx= Zcos.\{cus%) A( 0 'w} anycqs:!y secy(sm4y —sin2y)
sin6f + ity iw TS cot3 +cotd _ —cos20cotd

sm Fﬁl «-»Jam 4p tanSﬂcotﬂ (v'l! ) 2ot30 —cotd

(vii)
1‘ H
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L.

1 cus?.a -‘.3054&

cos6x +cos8x Ve ,
1 —_—=cot 7 ] =tang
(%) sin 6x—sin4x) - 2 xFPS x\mﬁ‘j\‘(})w,_ sin2a +sin 4a.
(xi) 2cosu: i.1+<su12usmu -2cos’u (xii) 2sin2ysin3y=cosy-cosSy
I
G KMI i:ﬁsll{]xu cosbix - coDxcotRn
cos6x—cosl0x
Prove that.
(1) c0580°c056[}°cos4[}"cns2{}°—% (i1) sm70°s'in5{)"qh13u°sm10°=llﬁ
(iii) sm£sm2—5m3—’r- in‘ﬁ‘—)r——:i—1 | '
9 9 9 9 16 .
Ihm Lurnt

Using distance formula to cstablish fundamental law of trigonometry:

o cos(@—f)=cosacosf +sinasing, and deduce that

o cosa +f)=cosacosf—sinasnf o sm(@ iﬂ} sma cosf. ;t*cqsasmﬂ,

tanga £ laﬂﬂ . “/ \\ \| | // \o f.A\
o lﬂl’l i =— & c "‘. I". N c ,\ { \'.{ ‘ o /O
(@xf)= IFtanatanff 2 A W WA \

Defining allied anglés) and u’s‘ng ﬁmi&ﬁ\umhl law and lts dedu-:tlons to derive
trigonometric mtgs of allmd angles.
Exprca&i(ng ﬁé sin| lchcos@ in the form psin(f+ @) where a=rcosg and b=rsing.
Dchﬁg Eouhlc angle, half angle and triple angle identities from fundamental law and its

deductions.
Expressing the product (of sines and cosines) as sums or differences (of sines and cosmes)

Expressing the sums or differences (of sines and cosines) as products (of sines and cosines).

Sclect the correct option in the following.
(i) sin(45°-30°)=...
(@) ‘@;‘E ®) "@:‘5 g =2 g s
2 2
(i) tan(% %J ) - M* 5’7
Ji-1 Brl O 1\ -ﬁﬂ (07 Byl
© Fa Of .‘.,'?‘.” ) x\ AN/ (d) ~3+1
(iii) sin ?”,“i“ cras22 5" ) cus22 5°sin 22, 5"
NN 1 -1
ﬂ ]l b N d -1
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(iv) cos(z—0)=... (O \/

(a) secd )\ £ cosd | | " cosé (d) -cost
FRLNN o

) tgfRe)

(a) cotd (b) -cotd (¢) tané (d) -—tand

(vi) 2sinacosa =...

@ sin(z-2a) () sn(r+2a) (¢) sin(-2a) (d) sn2r-a)
sinacosa |

cos’a ~cosasin’a

(vii)
(a) csc2a (b) —sec2a (c) tanla (d -tan2a

(viii) If snf = %, then cos2f =...

-7 7 _? )
5 % - Y\
@3 ®s5, © B }‘P“\ o
(ix) cos’3x-sin*3x=.. |, ﬁ@\ /(i\w WU\ xs
R I R

(x) (sinx- cosxxv.f\\ \_\\\/\\\'\) -

(a) \%%Nﬂl J\(b(i 1-cos2x (¢ 1-sin2x  (d) 1+cossin2x

(x1) cos(60°- 3{}") :

(@ cos30°  (b) sec30° (©) V1-sin?30°  (d) cos60° ~cos30°
I-cosx

(xil) — = e

smx
@) m@) ) cn{%), © -m[g) @ -co{%]

2. Given that sin8 = %, sin ¢ = %where @ is obtuse and ¢ is acute. Find the values of:

G) sin(@-¢) (i) tan(6—9) (iii) tan(6+9)

. Express the following as single tngonomemc ratios. _ ,-»—'.CL?“\. 2O\

— .,,.\'
\\ \' /(/ ‘-'.;,'

(1) J—(smﬂ+cosﬂ) ; (Iﬂ) —J-ij-‘s:l\n;?S" »ﬁgcu‘ﬁ

4. ' Find thavalueso A%

' | I' I' : ‘I - "L :‘L y | . 8
QJ Nl‘*m% (i) cos70° cos20° —sin 70° sin 20°



e, Y

B ok \!
\\ \\ ~7\ \({ N
) & '\\ \\/ \'\l \) '\
Q" \\ k\‘\\ 0 \‘x "‘\ "\\v\\ N
\ \ \\ B 1
5. mewmgﬁmma when tan(9 - 45°)=—. 3
6. (i) If sm(¢z+9) 2:05(41 B)provethat tang = - L .
' ' 1-2tan®

(ii) If sin{a~6)= cod{a+8) prove that tana =1.

4sin’ @ cosd ... sinl0@-sin4d
7. Show that; (i) 350 0c0sd _ o ~9an —cosTd
W 30+ 008 0 ) tpiamag Rideed

(iii) If sm(a 9 co{a +t9) pmve that tana =1.

8. Provethat: (i) J c05(90° + x)sec(-—x)tan(180° —x) _
ec(360° — x)sin(180° + x)cot(90° —.r)

tan (E-x} :r+x)sm2:r x)
(i)

e
cosi(x - x)%&@,@;\@ﬁ/ @ €O

, OV\M [N
. | 1 tantxcos(-2)cos(360° - x) ) tand5®

' {Mﬁéﬂ% -sin(180° + .r)}{ $in90° - cos(BO" -x)} |

- 9. Simpli

10. vae that: (i) sin(16x) = 16 sin(x) cos(x) cos(2x) cos(4x) cos(ﬂxJ
G ) l1+cos20 _ 2cosd
. sin26-cosf 2sinf-1
(iii) Sos30-cosd _ 2tan’0 _  —2tan’d
. ¢cos3@+cos® tan’0-1 sec’0-2tan’0

rff\\
\ /_ ) O \& )
LA ﬂ/—\w/(O \(’3
( A\
RGNS
9\\\ \( 1\ (f\\"-\ [N\BN
" "‘\ \,\'\ \ I".‘ \ L \J
. "\le \ \\LI\
- r\J "’\\N\J O
\NJ
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After's émhying this unit, students wil be able to:

+ Find the domain and range of the trigonometric functions,
¢ Discuss even and odd functions, and the perio&city of trigonometric functions.

*  Find the maximum and minimum value of a given function of the type:
. a + bsin®,
. a + bcos8,
«  a+ bsin (c8 +d),
. a + 'beos (c6 + d),
. The reciprocal of above, where a, b, cand d are real numbers.

~ 0\

¢ Graph and analyze the trigbnometric functions sma cosine, and tan{;mktu sg!ywmﬁqn%
J \ \‘/\\ / '\'
»  Explain the properties of hsufsm cos fy NB 0 \ \' [ C C 0,0
P propertics of grap @) /B@d a L
e  Apply the concepts 9 of trigont ‘a/\ﬁmﬂm/sljﬂmncs, phs periodicity, even, odd
functions, and nxqunlﬁ vq]ués'to réal-wmld problems such as (distance, clevation, and
Q der\?ﬁ NJ i é.»'irm:mru:%s navigation and mapping, lengths of irregular shapes, graphs to

wsua]nzc and predict patterns in data, frequency and periodic length of Ferris wheel, forces

on a see-saw or lever, the ideal angle for solar panel placement)

4 — 4 M0=-30C0s361736 )

A Ferris wheel is 60 ft. in

diameter. It makes onc- ;
revolution every 100 seconds.  ozzoonetes ey Bt s s —
Yasir climb up 6 feetof stairs to X o
get on the wheel at its lowest
point. Model the height of a
rider as a sinusoidal function
andgraphlrevn!utmn

)

: .‘ 0 5 s0 75 100
\ - Timse: | {in seconds)
. N /
——
. NN
228 i W —ﬁ\k National Book Feundation




9.1 Domain and Range of Bignnpmeﬂ’lc Fl{‘lmm =
The domain of a function f{x) ,l"s the set of all possible values of ‘x' such that function f(x) is
defined. g Wﬁwﬂmtmn «(x) is the set of all possible values the function f{x) can take,
when ‘x’ is any number from the domain of the function.

y-axis A
Let *6” be any real number. Construct the angle
“whose measure is 8 radian, with vertex at the origin P(x.y)
of a rectangular coordinate system. Let the initial T
line of the angle ‘8" be along x-axis. Let P (x, y) be f y
any point on the termina] side OA of the angle. ol x m R a:is
LetOP =r ! e Pt
Then from r.a.t OMP: ' 11
. \ej ﬁ*om a
(1) Sin@ = \/
' , [a, b] a<x<hbh.
For any °@ | = (a b)is open interval
w.: such that
W 1 | (a,b)=a<x<bh.
—-1=S5in8 <1 " -

Domain of Sin & = R or (—o0, ¢0) and range of Sin 8 = [—1,1]
(ii) Agam from r.a.t OMP:

Cosﬂ*-f;_:
For any ‘@’ -r<x<r
-1g3<1
r
—-1<Cosf < i

Domain of Cos & =R or ( w, ¢2aind range of Cos 8 = [~1, 1]

(iit)  Since Tan 6 is defined for any . |.umlm B wh}ch s\mobay nddmﬁltlpie nf -
For any such value r;f ‘E' tlu. I n m = m@a Qny real numher
Q\
Domnm dfTanﬂ R — {(2n +1) ,neZ}

\
\ \J N NN '\Ramgc ofTan8 =R

Unit-09  Trigonometric Funct: - 223
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- : v \ [/~

(nz)_, CuL&«;s d:frned for an§ real nmnbr.r ‘8’ Whmh 1s mﬂ an eve:imuluﬁie of =

—_— For any such vam:a af’ﬁ*, the raths\‘; \f:an he ;.my real number
| M RN Dormain of Cot =R fom, nez}
W Range'of Cot6 =R

(v) / Sec 8 is defined for any real number ‘4’ which is not-an odd mul‘ﬁple of g

" . For any such'valuc.nﬁ‘ﬂ’,wehavc:

X

.k “1<¥<1 e PHlet
.I, ‘ ISrEI 1€, v 51
= . |1} |Sec 8| =1

Domain of Sec 8 =R - {20 +1) %, n e 2)

AN, /\

Range of Sec § =R - (~1,1) - TN -

\(w) Cosec 0 is defined fm' any real n%tgber‘ﬁ whwhfmﬁ@n 6@ mﬁhple of -

For any such yalue of/B/AwkhaK; \j N / ,

\-l‘i-ﬁl le.,| |<1

\Jl
N o'
\\”\ 1 ‘ - |l l. I7 Al
_ . ‘?;,.21- = HEI =  |[Cosec8] =1

Domain of Cosec 8 = R-{om;ne Z}
Range of Cusec 8= R (-1,1)
" Remark-1
* The maximum (i.¢., greatest) value of Sin 6 and Cos 8 is 1 and minimum (i.¢., least) value is —1,
() 1SinBl S Lie,~1<Sin0 < Lie, Sin <1
(i) |Cos@] <1;ie,-1%< Co‘s 8 <1;ie., Cos?8 5‘ 1,

-

Remark-11

Tan 6 and Cot 8-can take any real number F&l]:iﬂﬂ:.u _ArA N\ I3

; Remark-II R T\, (3 JAU \

Ser 6 and Cosid b f;a.m{ot rakeValiie in the Interval (=1, 1)

‘ N J|JiISch|21u:‘e Sec8 =1 - Ty
|Cosec 8] 2 1,1. e.,Cosec?8 = 1

2an



TR /V/_:' /,3'\ OO
L e uwmﬁiﬁﬂ@ ta
y=.5{{nx 0\ Ryvz\*vnﬁ\ob)&)/\\/\\’ £

y=Cosx | \\ Y\/\ R=(=%,)
y w}{l J%l'r@xeﬂand x#(2n+ 1)— n an integer}

y=~Cotx |{x:xeRandx# nm, nan integer}

y=Secx |{X:XeRandx#(2n+ 1]%, naninteger} |1<yandy<-I

y =Cosecx |{x:xe Rand X#nm, naninteger} 1<yandy< -1

Example:
Find domain and range of the following:

1
Z2Cosx -1

i) y=rmes ) ¥= e f@ @@m
o . O @@W ;

Solution: (i) We

(i) y=4Sin3x (i) y=

or all real values of ‘x’. Then, domain of y=Dy=(—00, %) or R,

Sinca ? s
Mﬁnﬂ the range of (i). Let,

= Ix=49
Form()  y=4Sinf........(ii)
As, rangc of Sine function is ~1 < Sin 8 < 1.
So, ~1<sing<t’ :
and —454Sn0<4 T
~4<4Sin3x <4
Fom(i)  —-4<y <4, thus
Range of y =Ry=[—4,4]. i
(ii) We are given /@ O@ @r\?y \J\
= sertir ) DIy &

Since (l)xsde@qd\ T mréﬁgvélu&\af*x except
l\ﬂ\ [{g m Randx¢(2m+—)1\xa=(2n:rr+—f) neZ}

w\“




WQUW O\g\\—gs/}hs xs2 |

-2—-1<2Cosx-1<2-1
—3<2Cosx-1<1

1< 1 < -1

We get ' 2Cosx -1~ 3
-1

From (ii) t=ys+

y< %1. andlsy
Thus, Range of y=R,=(—°°,.";1] U [1, +c0)

’ - N e~ i

(i) Wemgiven 1 @r{@@@d

1 O

142sinx’ W

Since (i) is defined forﬂlWﬁ
W —)ﬂz¥(2nn+"") neZ} -
Therefore, domain of y=Dy=R —{x: x e Rand x = (gmr+?).n.x=h (2nﬂ+l—:ﬁ).ﬂle-
Now, we find the range of (i), since, range of sine function is [-1, 1J-
Similarly, : =1<8Sinx<1
-2<2Sinx <2
-2+1=<2S8inx+1 <2+1
-1<2Sink+1<3

S %szsmi+ 331
- 1
From (ii1) 3 sy<-1 | @
1 Taueot
—<yandy 5 w o )
ORI

Therefore, OW \ ‘
WWM.M (-, ~1] U [, )

4 e i L FEERT TR
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) We are given &\&@@w@ @@

To find the domuW}, t 2 Sin3x should not be equal to “0™, s
2—S8in3x+ 0
Sin3x # 2
Which is understood because —1 <Sin 3x < 1, s0 (i) is defined for all real values of ‘x. y
Hence, Domain of y = Dy= (—0, ) or R. '

Now, we find the range of (i), since, range of sine function is [-1, 1].
We have ~1<Sin3x<1
=(=~1) = —-Sin3x = -1
12 -Sip3x = -1
2+122-Sin3x=22-1

322-Sin3x=21
o 1_ 1
From (iv) 357 Sin3x ~

s
Therefore, Range oy = Ry & W@ @@

9.2 Periodicity of Trigona netic
We often encounter periodi

M

¢ nature, technology, and human society. Recall

the 24-hour i F tida cycles caused by the moon revolving around the earth.
A perio 1s a function whose value repeats after a specific time interval. A periodic
function is represented as : .

flx+p) = f(x)
Where “P" is the period of the function. For example, Sinc wave, triangular wave, square wave,
and saw tooth wave are periodic in nature.

[VAVAVAVAVAV RS R R

- Sine wave Square wave
3 | | TR i
= Lyl
L] ,
Rectangular wave Saw tooth wave .

All trigonometric functions repeat itself at regular intervals, or periods. The values of ometric
functions for ‘8" and ‘2nmw + 8°, where A € R and neZ are_samg !l @ avior of

mgonometnc functions is called periodicity. @
>0,

' f(P+x)= f(r)
od of thgﬁunctmn ) o

e mmrm——— v m——— =t &
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|g = ,-—u@f\w;_ym- -

~ T\ \\! [ (0 \ o2~
9.2.1 Periodicity of Sine Functlon T\, -;,f stdat!
Suppose “P" is thﬁpﬁmd ©f Sme ﬁhﬁuun tﬁcn
“ \ %P\Nﬁ):ﬂnﬁ ......... () where@eR. [ Key Facts -

Period of a trigonometric
function is the smallest +ve
integer which when added to
the original circular measure

N}yﬁv\puttmg @ = 0, we have:
Sin (0 +p) =sin0

=  Sinp=0 | of the angle, gives the same
> p=Sin"*(0) =0, £ m + 2m, +3m, .. value ofthe function.
Case1: Putp=min(i),Sin(0+ n) = sin 8, which is not true. 5

v Sin {11: +8)= —-Siné
1 is not the period of Sin 8.
Case2: Putp=2min(i)
Sin(8+2n) = Sing.......... (ii)

a0
3 1@ @© \S&
Fom (i) LHS=Sin 2 +6)= Sm (4(5 + )\ﬁwj /
Since terminal su:le of angl sg&(ﬁfﬁ\f \ﬁ% 2 ‘J the smallest +ve real number
Lsn- |

for which: %ﬂ\iﬂﬁ]‘" gfk ﬁ él = " Key ;-:tl
. od of Sin 6. Us’ne is the perlﬂ 1€
Q/N‘ eﬁen

function and its period is

o — ..
9.2.2 Periodicity of Tangent Function cos (6 + 2m) = cos §

Suppose “P” is the period-of Tangent function, then:
tan (6 +p) = tan@......... (i) where @ €R.

Now putting 8= 0 in (i), we have:
tan (0 +p) = tan0.

= tanp =0

= - p=tan”'(0) =0, m,2m,3m, ..

Putp = in (i) _‘ ,
Tan(8 + n) = Tané......... (ii}

From (jii): LH.S = Tan(1r+9)-Tan(2 +E]—Tan9 RH.S

Since terminal side of an angle is- m\Emd quadrant, Bﬂd‘#\ i tﬁc Iéag( -l-vweal nimlber
 for which: : \(L 0 \ (oo
 rangorm a0
s TS hﬁ; pﬁ:riod nfl‘rﬂ
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R Cotmgent 1s the penod;c funcnon and 1

If“P” is the period of a periodic function f(x), then —— f[ ; —— 15 also a periodic function and

will have the same period “P” as f(x).

Thus, y = cosecd is a periodic function and its period is 27 because sinf = p—

Similarly, y= secf is a periodic function and its period is 2 because cosf = %

If“P” isthe penod of the penodm function f(x), then f(ax + b),a > Qisalsoa penodm function
with a pcnod

I I — _ ¢ \/\ \
/ — -\ /Z2((OVNV UV .
Trigonometric Functions igonometric Finction | (2~ " ' Period
f (x) = sinx ‘-' & \y@ﬁsﬂi ax or f(x)=Sin(ax+b)
N] [N\ ke —
\\f& - COS X n fix)=casax or f(x)=cas(ax+b)

. 7
f(x)=tanx T filx)=tanax or f (x':)‘ =tan (ax + b) [—aj'
f(x)=cotx m fly)=cotax or f(x)=cot(ax +b) T

[ a . ; 0 - 2 §
f(x) = cecx 21 fix)=sceax or f(x)=sec(ax+b) T&FI
# i I ' . 2
f(x) = cosecx 2n | fix)=cosec ax ' or f(x) =cosec(ax+b) _lEni.
Findtheperiodsof: [\ 7 WY _.
()  f@=sin 3x WO OE f@=cs® i) fo)=tE
Sulutmpii “

(i) We know that period.of sine function is 2m, i, e., period of sin x =2

——

f a8
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N (7 \
'|§\\-. //“'Q\\)
- T \\";o\g\v\)
» I .-A! \\ ‘yf \\ \ \ \ __KEIFW
\ 1/ WU WV

\ _‘N’eﬂodmny of cos’(x) = ==1r

J«(\\

21
=  Period of sin3x == of) \ﬁ )

- '\ \ ‘a\ \\.,,l\“w' _ _ Periodicity of Cos x
(i) We know W&d fcm on 2 ('f ISR
Ex 5 L. Periodicity of cos"(x)
Period of cos (ax +b) = _' where 2= s = Periodicity of cos x

=2n (if ‘n’is odd)

= Period of cos ?x == .2 =5m. ‘
3 K * Similarly, for Sine function.

Hence, 5 is period of cos 2?‘ » Periodicity of tan"(x) |
3 = Periodicity of tan x
- [ = = zrx . )
Check: Since ‘5w’ is period of cos = (no matter ‘n’ is even or odd).
% COS (z?x + 5m) =cos -:F (x + 2m) .

This clearly shows that ‘57" is period of cos E.

(i) We know that the penod of Tangent is T, i.e., Period of tan x = .
Period of tan (ax + b) =—, wherea== m/@ @
= Period of t ——E‘gne“%FQ&@

Hence,
Note: If “p” IM& periodic function f(x) thena f(x) + b, a > 0, is also a periodic

function with a period of “p™

Trigonometric Functions | Period Tngunomemc Function” Period

B f(x)=asinx+b. ‘ er'l B f(x)-acosecx+b ' er —
f(x):acasx+b 2 f(x)=asecx+b 2
f(x)=atanx+b T | f(x)=acotx+b T

Example: Find the period of f(x) = cot 3x + sin Z?x.
Solution:

Since, period of cot x =1 T S@c panod%fs’hx\f ZrtO AR
7€ \ \ U \‘

0 i
Period of cot (ax + b) = l I @E‘:‘ca?@‘\\ ‘\@pod\ofﬁm (ax + b} = 2% where a =.§
T\ \\ ﬂ \ '\ \Lb :

S

\ \\ BT ,
Thus, the period o Thus, the period of sin = = =3
'\1 %\P % = e pe 3 _—?

N
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L \I \ NSO
Hence, Period of f (x) = ; 2’;:;::1? m /311

Hence. 3:: L*N\pmod of cot 3x + sin —. '
Eumple Fm? ll'fc pencid ﬂf f (x) = 7sin(3x +5).
bulundn N f (x) = 7sin(3x+5)
Since, period of sin x = 2

Pcriodﬁfsin(ax+b)=% where a =3

Thus,  theperiodof7sin(x+5)= 2.
9.3 Maximum and Minimum Values of Trigonometric Functiony
(i) a+bsing (i) a+bcosh
(iii) a+bsin(chd +d) (iv) a+bcos(chd+d)
The reciprocal of the above where a, b, ¢ and d are real numbers.
i) a+bsing . /_ﬂ?/J
" Maximum value (M) = a +|b| (1) 6 N g \\! [ (o, ,_32'\"(:9\-/

-=q+|b = whens!ﬁ\ﬁ# 1 \, "-\ ¢
ora+bsinfis maxlmwn whkrfb Sm“& thaximum and it is maximum when sin 8 is maximum.

As sm&tWXﬁhﬁh when sin 8 = 1.
N Minimum value (m) 5 a +|b| (1)
=a —|b| = whensin 8 = -1 ‘
ora + b sin 8 is minimum when b Sin @ is minimum and it is minimum when sin 8 is minifhum.
We know that sin 8 is minimum when sin 8 = -1,
(i) a+bcosh
Maximum value (M) = a +|b| (1)
=g +|b| = whencos 8 =1
ora+ b cos # is maximum when b cos £ is maximum and it is maximum when cos 6 is maximum.

As cos 8 is maximum when cos 8 = 1.

Minimum value (m) =a +|b| (= )~ , "
=g ~|b| = when cos E =’ £\ () VY |~
ora+bcosfis mmlfnnm wheﬁ b cos&s minimum and it is minimum when cos @ is minimum.
As cos 8 is mmlmuﬂl when Casﬂ =-1.
(i) < miH-ﬁsm (c6 + d)
Maximum value (M) =a +|b| (1)
=a +|b| = whensin (c8 +d) = 1




. L » . - W ol
5 ) ol B-58 a [
. # -
- L ] # -
S S L ,f-\A c Boi
".-"\I ~/ /“ A\ \ I\ 3 3
\ \\ I

ora + bsin (cﬂ +d)is maximum whenb Sm{gﬂ + &} is maximum and it is maximum when
sin (c@ + d) ‘is maxlml;m\J f\s sm (CB + d) is maximum when sin (c + d) = 1.
< Minim value () = a +1b] (~1) -
=a —|b| = when sin (¢c8 + d) = -1
ora + b sin (¢8 + d) is minimum when b sin (cﬂ + d) is minimum and it is minimum when
- sin (c8 + d) is minimum, As Sin (c8 + d) is minimum when sin (c8 +d) = —1.
. (ivv a+becos(c+d)
' Maximum value (M) =a +|b| (1) .
=a+|b| = whenCos (c8 +d) =1
ora + b cos (¢6 + d) is maximum when b cos (c8 + d) is maximum and it is maximum when
Cos (c@ + d)is maximum. As cos (¢ + d) is maximum when cos (c6 + d) = 1.
Minimum value (m) = a +|b| (—1) _ . ‘
’ -a—|b|=whencos(cﬂ+d) 1 CC\S‘ \
ora + cos (cf + d) is minimum when b cos (c§>+ d;) is- mmi’nfnﬁiuéd (@miﬁnﬁufn when
cos (cf + d) is minimum. As g:us (cﬁj-ds 5T nwlu;n\wjﬁm cos (c8+d) = -1
Example: Find the maxlmunfand hﬁmlnum es 6f y = 3 + 4 sin 6.

Solution: \'.’ {ﬂ%@ﬂ ﬂ\ l ....... L'
Since, \i}i\a +bSiné.......... (u)

Comparing coefficients of (i) and (ii):
a=3 and b=4 _ Lo
Maximum value (M) Minimum value (m)

a+lbl=3+4=7 a—|b|=3-4=-1
M=7 = —l
Example: Find the maximum and minimum values of y == — 5 Cos 8.
Solution: y= ; —5Sind.......... (i) |
Since, y=a+bCosh.......... (ii)

Comparing coefficients of (i) and (ii):
1 ! §
a=3 and b=-5
Maximum value (M) Minimum value, (ma- -
a+lb| =3 +|-5| \

Eump’le I‘a}d ngmi Xibui and minimurm values of the follnmng trigonometric finctions.
(i) y=1+2sin@ (i))y=3+2cos(360—-2) (iii)y=

143 Sin (28 —15)

_ Unit-09 Trigonometric Functiﬁns




Since, NG j-H b sm B k (u)
ompmﬂg &:heﬁ‘iments of (i) and (n)
a=1 and b=2
Maximum value (M) Minimum value (m)
a+lbl=1+2=3 : a=lb|l=1-2=-1
M=3 ‘ . m=-1
(i) y=3+2Cos(38-2).......... (i)

Since, - y=a+bCos (¢ +d).........(i)

Comparing coefficients of (i) and (i)
a=3 and b=2
Maximum value (M) Minimum ‘value (m) PPN
a+lb|=3+2=5" a=|b| =3~ zwl\f;;whﬂ

~ N\ \I \ o\

M=5 a2 m=1 Y A

\
\ \ / \ .v,.«‘ [

(i) y-m,ﬁm% g ) AN
Then the comey |re¢1pwcal ﬁmctlon of (i) is
\VRNQL1+3mnaa—1m ..
Since, y=a+bSin(cd +d)....... (Iu’)
Comparing coefficients of (ii) and (jii):
a=1andb=3 . _
Maximum value (M) Minimum value (m) '
a+|lb|=1+3=4 a=lb|=1-3=-2 -
M=4>0 m=-2<0 '

Now for maximum value of (i) Now for minimum value of (i)

Unit-0%  Trigonometric Function«
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%4 Graphs °IT"3““°UI%¢ Fﬁmﬂinns\\.; "

All the mgnnou{{m\{]l& mmns are pcnﬂdlc functions. We can draw their graphs on the intervals
of length r periods. Because, when the graph of a periodic function of period ‘p’ is -
drawn in a wen interval, then it is sufficient to draw its graph only in that interval. Further, it can
easily be drawn completely by repeating it over the intervals of lengths ‘p

Procedure for Sketching Graphs of Sine and Cosine Functions
To graph y = a sin bx or y = a cos bx, with b > 0, follow these steps,

Step 1: Find the period %ﬂ. Initially, start from “0” on the x-axis, and lay off a distance of ZT”.

Step 2: Divide the given interval into four cqual parts:
a. Find the midpoint of the given interval by adding the end-points of each interval and
dividing the sum by 2.
b. Find the quarter points (the midpoints of the two intervals obtained in part (a)).
¢. Continue in the same way until the reqmred number of equal parts are obtained.

The resultmg points will be maximum points, mi “@\1 ;
Step 4: Plot the points obtained in step 3 andjoi g{ﬁ@ N
: |al. %

Step 5: Draw the graph ov
m”\\NM\J 1 Angles in Degrees and Radians
0 n ‘J\j n 21 5w s'r n | 4m 3z |5t |1lla o
6 |3 2 3 |6 | 6 |3 |2 |3 |6 |
0° | 30° | 60° | 90° | 120° | 150° | 180° | 210° | 240° | 270° | 300° | 330° | 360° |

Graph of y = sin x
We know that sin x is a periodic function of period 2.

Step 1: For this function b = 1, so the period is 2.
The function will be graphed over the interval [0, 2 .

Step 2: Divides the interval [0, 2r ] in twelve equal parts to obtain the x-values:
non :ItZ!t 5T 1n4n‘ 31! 5t 1lim

Da P e e 2 3'7'2’[
Step 3: For this, we first construct the table determined by the x-values i in Stcp 2 L 7\/ N
l& >N e
L L T R T N s S o \l [3m | <5§z/\’ 11n
x 0 g 3 2. EY \F(\\\ﬂ'/ﬁ \’—ét/ 7\ | 2 3 |5 2n
sinx | 0 | 0.5 |086P1\ 0 /fﬁa 050 —05 2086 | =1 | ~0.86 | —05] 0

Step 4P1§&H\§qﬂi§‘(§'&)( ‘ ) ( 86),(3,1),(%.086),(2,05),
(n,ﬂ?f( -05), (%.-086).(3.-1),(3.-086), (12,05 ), (21,0).

24? & . llnll'-ﬂﬂ_ T'rmm. Mk



Step 5: Join them with a sinusoidal curye haying amplitude\1.\ - |

("22/-.2 o
AW
NSININANE -1
L CEE TR “;\‘l‘_l.-n.l.‘z ------------------------------------------------------- }f ..... i
g - — L L i . i -
K-axis O| = rn m 2n 5n a\Jn 4n 3n Sm lin/on T caxis >
6 3 2 3 6 ] 2 3
A T »
.l y=" ]
2 3 ylaxis

Step 6: Extend the graph by repeating the cycle, from 0 to -2,

L LIS y I

The grap?\ '?fhﬁm%\\‘“' lﬂlﬁl’lﬁ
So, the qmél\gJa L\can be extended on both side of x-axis through every interval of 2m.
Graphofy= cos x

We know that ¢os x is a periodic function of period 2.

Step 1: For this function b = 1, so the peried is 27t. The function will be graphed over the

interval [0, 21 |
Step 2: Divides the interval [0, 2] in twelve cqual parts to obtain the x-values:

0 T m W 2 LW n 4w odAm Fw_ﬂ iim 2
‘' 3'2°3'6""'6"1'2" 3"' 6 ' .
Step 3: For this, we firit construct the table determined by the x-values in Step 2.
| m | n 7 2. 50 | 7n | 4r | 3r S5t | lln
X i) - ‘ = | = | = 5_ | — —_— ] — ki E — i 2r

— -

T } :
6 ' 3 2 3 6 L6 3 | 2 3
: et - e e Y
Cosx | | | 086 | 05 | 0 | =05 | -0.86 ‘ -1 'L_U'Hﬁ I —US ' y“l Ufr”f {iBﬁ W]

E V2 T\ N\ Y (T30~
Step 4: Plot the points (El'lt)(-;I 086].@65 ) gp)(ifaus) (%X,-086),

11 g

e u),(“’;—“,u.s).(f%.u.aﬁ)_(zmj_

\{ ¢
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—\ '.\jl ) ('L'- )
P ,/ \\ \' / C 0, "). ‘i—;\’,\\‘.ﬁ/\*/

Step 5: Join them with a smusmdal cur\fe,ha%'m’g/amphmdc L \

x-axis
Step 6: Extend the graph by repeating the cycle, from 0 to -27,
e y=1 Characteristics
) Domain = (-00,00)=R
Range = [-1L1]

Period =2n

' Amplitude m
- f (@r@ function
y yraxis
( \,E/ i .
The graph in the interval [0 |s (Si zriod-of the Cosine function is 2.
Sn 'the Cosine graph qan be Z%t

* Graph of M
We lmﬂw

t-tan x is a periodic function of period .

s:dc of x-axis thmugh every interval of 2m.

Step 1: For this function b = 1, so the period is 7. The function will be graphed over the interval
[(0,7].

Step 2: Divides the interval [U 7 ] in twelve equal parts (From 0 to +m) to obtain the x-values:
n’iﬁ’iSI‘#Z' Z'iﬁ’i‘
Initially, we draw the graph of tangent function from 0 to .
Step 3: For this, we first construct the table determined by the x-values in Step 2.

2 n T T T | m | m| 2 5
RO DU 3 . iy . . O I ) G B

a 5323‘5.532??
Tanx | 0 | 058|173 | =0 | -1.73| —0.58 | 0 | 0.58 | 1.73

73

-1.
/ Step 4: Plot the pninmﬂfi—n, 0), ( 0. 53} {,..ﬁ 1. 73) ( &‘_og)r(a‘.\ii;t

(-%--0s8) @, “3;(*1053) Q&”Mz“ﬂ ~173), (.- 05 )("*")'

Jom these po tf by a fm: hand turve to obtain the graph of tan x.

o \\Jl\ N




v’

=
S
E

to 2.

I
> B

O .
In the similar way, we can dgxthe ar “ ¢ intet
. . 7

. . S
; U y-axis | i E 5
s s s s : Y CO
-2x -S% 3w 4w AT -n -5 0 " i= 1 moAw " l#
o TEEESAT AT P EH? b i
: : : : ; v : ¥
¥ ¥ v y-axis

Characterlstics *

Domain = {-x x€Rand x= (2n+ 1]- n an integer} N G\
~ Range = (—00,00) =R F @\m

Period E T T Um%

Amplitude = nil W O

Nature = odd funciion S\ 0

The graph in the inte \\x Qﬁeﬂ a cycle. Since the penod of the Tangent function is 1.

So, the 'I‘an%n{@ﬁ 9 extended on both side of x-axis through every interval of .




T

Graphofy=23 sin2x
We know that sinxisap W
Step 1: I or this [ ¢ period of'y = 3 Sin 2y i 1-».— - . The lunction will be

Sinterval [0, 7).
Step 2: Divides the interval [0, m | in cight equal parts to obtain the x-values:

mm omnon 2 im 5w

4’32 34 6
Step 3: I*ur lhlz-,, we first construct the table di_h.nmm,d by the x-values in Step 2.

_ 4 m T m 2m 3 S
X 0 - - - ol — — — n
o 6 | 4 3 | 2 | 3 | 4 | 6 |
T b 2 4 - 3m S
2% 0 - - —_ —_ — — 2n
. i3 2|3 | "l3 |z |3 |7
Sin 2y 0 E l E 0 — \/_i -1 _ E 0
o 2 e A 2 , 2
3 Sm 2.1. 0 b {ﬂ 3 Z.M , _q_»_ -——2 61 —2 61 {]

(,-261). (,0).

Step4 Plot the points (0, 0), (-— 261) ( 3). (: 261 !
Join them with a sinusoidal O'l ; t
Step 5: Extend the g erp@ c, from {] o m,
o

(g
4 y-axis y= 3
[ PR 2 ---“'.. ........ B L g - mmmmmeemmm oS fianm [ >
21
| 4
-+ + t —+ t t t i o
; o noomw n v-iXis
SIS n T o n g
‘ 4 6 3 3
-3 .1
L R R LL L L LT TR PP >
¥ yeuxis

In the similar way, we can draw the graphs for the interval from =2 1o 27,

Characteristics

o - LA Km&@l@w@ oo

= (-
Period éﬁ&
Amplltudz

Natm’c odd function

\ Neitiopieif Bk Fisteriaheiticen
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Key hﬂs \ By Favis

-\ )

I For y = a Sin by, we know that —l CSHI b£ g

- Fory - a Cos h'. we know thit =1 £ Cosbx < 1

and —d < aSin .fJ.r < .

and =a<aCoshr<a. Alse, Cosx is a

AN -._ fore
W""d“ JllIlM}T\lh ﬂ I“‘”""I 2n. Therefore. petindic Tunction of period 2. Theretore, Cos bx

b is ier WL =1l : R | .
Sin hyisperiodic function of |)u‘lm| Ih.uu iy et Do of l"cm‘d?- lHenee, a Cos bx is

A | et i gl “lll'll:riud AT:I_
ht J - - " | ‘ . J

We know that Cos v is a periodie Tunction of period 2.

. . il . . ' . N in
a Sin bx is periadic Tunction of peried .

Grapholy =3 cos 2x

. " . . ; ; ;
Step 1: For this [unction = 2, so the period of y = 3 Cos 2y is S - The function will be
L

graphed over the interval [0, m ).

Step 2: Divides the interval |0, | in eight equal parts (o obtain (he x-values:

ﬂnnn’anl‘.n A~

— e s — -rlx/ \

oatzt2lal __j N [ O
Step a3 I or Lthis, we Tirst construct lheal.lhlLllm;j'rmﬂLd by Ih\»\m\hlu in Step 2.

0 O ‘ [ 2n | 3n 5t | E— )
) ) — — —
i P 4 3 3 4 6
A\ \\] %JJ‘\ l oL N R [N [ FR— —
N UNN RS #r | 3n | 5w
2w YWy 2 s | = | & | = — | =
. 2 3 3 2 8
——7—F — e —_—
3os2o | 3 [ 15 | o | s =3 | =15 o [ 15| 3
. 5 H s il E E — E S EE _—
Step 4: Plot the it ©3).(%, 15).(3,0).(5.-15). (5, -3)(5.—15).
dm A i
(=,0).(2.15). (n.3).
Join them with a sinusoidal curve having amplitude 3 .
Step 5: The graph can be extended by repeating the cycle. ¢y -

a--k

Characteristics

Domain =

Range =

Period =

Amphmd: -~ J’l"" z i

Nature © Ji mren ﬁmcﬂon _____________________ .
y — A
245
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In the similar way, we terval from —2m to 2m.

~\ V7O WP
Graph of y ’\\\\\\\ -

raph of y = ' U
We kno secant function is a reciprocal of the sine function which is a penudlc function

of period 2. Therefore, Cosecant is also a periodic function of period 2.
Step 1: For this function b = 1, so the period is 2mr. The function will be graphed over the

interval [0, 2 ].
Step 2: Divides the interval [0, 2 ] in twelve equal parts (from 0 to +7) to obtain the x-values:

r.r  ® 2 5T
0; :t;; :t';: ﬂ:;li?li 6' iﬂ:
Initially, we draw the graph of Cosecant function from 0 to +r.
Step 3:For this, we first construct the table determined by the x-values in Step 2.

% | O | e B E I Elg | ®| B]E]LL E
2| 3 6 @ﬁ\ x

° ’ 0\ nf?\\%f/%\o@ ®
= N2 s 1 [r1s| 2 | e

—oo| -2 |-115] -1 fé\ @*\%

\NU

Step 4: Plot the points
& =X 115),(=2,-1), (- 5. -115). (-, -2),(0,0),

(” (”'115) Z)and(rrm)

‘Cosec x

y-axis "

E




pe

Step 5: Extend the graph By rcpeating thb }c’[c -
In the similar waﬁ\we jqan draw-the graphs for the interval from —2m to 2.

\\.\J\“\\]i\

A 4 A A
] (] *
i ! |
s E E
: E k.
i 2 i i
' : :
i i i =]
& ] L} }f
--------- P L e
: 1 : : ;
; : :
- ' ) i
—t—t—t—F————————t+—+——+—+—+—+—+——+—t+——+— &+t
A baukutEy s PrF Y ST Uy FUd rads
xtaxis . ' \ ON\LY
' ' \ 0 - :
e ‘— LS e
- r ) \\oA P y==
: Ol ) :
, C\\ i\ :
i -\ \ [l
: PNIARE - :
L RN oV -2 :
Q}'AJ\\JJNJ\,I\J ; i
E i :
] . 1
¥ ] L]
] ! :
v v y y-axis v

The graph in the interval [0,2% ] is called a cycle. Since the penod of the cosecant function is

2. So, the cosecant graph can be extended on both side of x-axis through every interval of 2.
Characteristics

Domain = {x:xeRand x # nn, n an integer)
Range = (-oo,.-1]U[1,00) or|y|>1

Period = 2n

Amplinde = il

Nature = odd function

Graphofy= sec.x

We know that Secant ﬁm;;nm isa rempmcﬁl q( lhﬂ Cosme "ﬁmctmn which is-a periodic function
of period 27, Thercfom Sct;ant 15 alsu a penodxc function of period 2m.

Step 1: F“’\ﬁ!}m ﬁih& im}: b=, So the period is 2m. The function will be graphed over the
mteeral [0,2x].
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Step 2: Divides the interval [0, 27 ] i in jwclm. (7qual pdu:s ( Fmﬁ)) ﬁ)\% 10 nblam the x-values:

—

Q‘u. »«p,“_-b N’\_" 4 ﬂ“ 5“
Imuﬂl&lwﬁr ihe j,rraph ul‘ Lt)HLLdﬂl function from 0 o +.

Step 3: For lhrs we [irst construct the table determined by the x-values in Step 2.

. | —n Sm| 2n| ml m|l ® ol TE|E 2m | Sm
"6 | 3| 2| 3| 6 6 |32 3| 6 | g

Secx [=1]|-115] =2 [ @ [ 2 [1LIs[ 1 [ 105 | 2 [ [ -2 [-115] -1
— _

Step 4: Plot the points (-m,~1), (- =,-115), (- &, -2),(-2,») (- %.2), (- %, 1.15)

00 1) (52 (o 222, (15 o
Join these points by a frec hand curve to obtain the gr ﬁgﬂﬁ[‘ @ m
y-ifxis
R

A A .Q
r O\ :
i \ i
i i
i i I
\J\W«J\EN > : :
1 L] I
W ¥ ] [] |
I 1 L) 1
i ' ' '
; | [} i_ L
 § L} ¥ Ly
L] L] ¥ L]
: ' ' '
[} ] i ]
¥ ¥ i ¥
L] ] 1 I
- g . I |
: : ' : s
¥ ¥ L) L)
R ——— Lacennnas R laceaann T T »
[, (] l ] i
[} [ 1 L]
L] (] i (]
i [} ] ¥
| [] 1 ¢
[} 1 1 ]
L) ¥ ] [
avi moSw2nxomom [‘mom ox2mSmon x-ixis
‘ P h 3236 63T T 6
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Step 5: The graph can be extended hy I'L[}Cﬂhnbﬁ'u, cyele: ., \ \\, e O

In the similar way, we can dmw lbc 1,&1[111&” F:u' e &mcfvzﬂ fraim 21 0 2.

\\ § e

‘,’-dxl'-

SRR 3 fg_,;::

b A
Ll
:
. i
4 *
[l 1
1 '
: :
. '
TRRR— A RO SN -

; .

b — e —— >
E'. . f) L T £ 9 1 : F R IR
: A
; . a I/r;T\ \ (\\'IX \)
o e
: N\ [0 . y -1
-4 A = \ ]
\ \ /7 (\ \ (] M\ \Q/ \
LY \ \\ .) \ -~

L I I I

.‘___._...n._.i..

. SELT
The graph in the interval |0,2m | 1s called a eycle. Sinee the peried ol the coseeant Tunction is
2m. So, the cosecant graph can be extended on hoth side of v-axis through every interval of 2.

Characteristics
Domain = {xxeRandx# - +nm, nan integer}

Range = (-00,~-1]U[l,00) or|y|>1
Period = r

Amplitude = Nil

Nature = even function

Graphofy=Cotx W\ /7T Q)

We know that Cot v is a/ erh:di&. Iumtm\n\rl pu'mtl m.

Step 1: lur tl\p”hﬂdﬂm W l sor the period is 7. The Tunction will be graphed over the interval
lfI .



,"-lk

oA O
,..,—\\ =3 ‘(, ".' L\
= \ \ -l

,,,,,

Step 2: Divides the interval [0, n‘] in twehf:.r equal parts (fmm Om :|:JI} to oBtam the x-values:

0 B5 Ll He
Step 3: Far tl}la wﬁ\fﬁilconstmct the table determined by the x-values in Step 2.
NN
. —\rz om| 2m| W m W T r T 2r | -5¢
76| 3] 2| 3| 6 6 [3|2| 3 | 6 |n
cotx |—oo| 1.73 [ 0.58 | —c0 | -0.58| —-1.73 1.73 1 0.58] oo | =058 | =1.73 | e
Step 4: Plot the points
114 in n n n
(-m,0),(-F,058),(-%,173), (—— 0.58),(-5,-173),(-%,-058) (0,0),
(2,088), (%,173), (5. ), (% -173) (.- 058), (r,0).
N ol Y ?_J
Join these points by a free hand curve to obtain the gray h of Cotx, (o=
N,\J\N&.
;1axis —rrg S x-axis'
Step 5: Smpd cotal 'g\éﬁt‘is’a periodic function of period 7. So we shall first draw the graph in the

interval [—7r, 7 ]. In the similar way, we can draw the graphs for the interval from —2m to

2n.
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¥ ylaxis

---..‘---.._‘..--...._--_..,_-...-.....,..-...-,.._...)

‘
‘
\d

T y-axis

The graph in the interval [0, 7 ] is called a cycle. Since the period of the cotangent function is 7.

So, the cotangent graph can be extended on both side of x-axis through every interval of .

Characteristics
Domain =
Range

Period
Amplitude =
Nature =

Vertfrmal B::ok 'P——m'-—"v-:'—n

{x: xeR and x # nn, n an integer}
(-00,00)=R

odd function A T r/\wr/ @ o &
O A\ (N
= Tz 0\ Y
AN\ pai
\-k \\ \ \\ \‘. \/"3 \/X -
U

. T
ORltdY Trigonometric Fimctions
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9.5 Even and Odd Thgnnnmtﬁffunuﬁm\s
All Iunuhmv:\ul\n\?.h\fﬁw Irigonomictric functions, can be categorized as even, odd or ncither.
o Afuh ity

s add if and only il f(=x) = =[{x) and is symmetric (by reflection) with

respect to the origin,

L

o A Tunction is even il and only il f(—x) = [(x) and is symmetric (hy 180" rotation) with

respect to the y-axis.

Key Facts

wa * The graph of Sine [unction is symmetric about the origin therelore, it is an odd

function,

o The graph of Cosine function 15 symmetric with respect to y-axis therelore it is an

even lunction.

~2)
: Lo \'(-/C\.\:\\) o
~ | 2 (AN V ™
Ly —\ ~X\ /7o \c N\
Example: AR\ Ke RN ASA
‘ 0\ Q ANV WANNY

~J

. . . A0 LNV \\~ . LJ
C'heck whether the Iull-::ml@vﬂu}gmw \ud( o \wggg\j o~

P L
Solution: ;( x) =\J \i| :\{ _'}\\/‘5 \\:fa_, AT
NJX\J!WN‘ ey —x°
f(=x) = (=x)*.Sin (—x)
= —(x)*. (-Sin(x))
=x*Sinx = [(x)
As  f(=x) = [(x)

So (i) is an even lunction,

\ )~
N

' Example:

Check whether the following function is odd or even?

' . . W _ Tun x

(i) y=38inx +4Cosx (i) Y=o .
Sl}lll.uﬂll: “\ . :"‘/‘:\\i\i;\\\; "'K‘//Zj v_l‘l {1_\:\'_\:;\\:‘
(1) y=3Sinx +4Cosx \ ( L

\ \ s /"7
\ \ Y,

Replace r{ffy 0 | \ N\
AN N N NL:I} =

\
\\\\\\ l |\Q“ \

3 Sin (=x) + 4 Cos (—x)



/NN AR ) f(=x) # —[(x)

© 7 8o, f(x) is neither even nor odd function.

.. _ Tanx
(1) y—.x—sinx

Replace "x* by '—x’ ey "
oplise X Sin (—x)

_ Tan(-x) —

- _“fanx " Tan (—x)
-x+5inx _
Tan x Cot{—x)
-5 T p

R g E Sec {—x)

As, f(—x)=f(x)

So, f(x) is an even function.

O | Cosee (=x)- : L

— | \ {
o~ [ \ \\ "V o
ATA \.\\' [( N0~ .

9.6 Application
Example:

o N ‘\ "' .y"'. \ )\ .b-i - -. F /
A Ferris \.\\;tmft\bpw fl‘\hl«ill‘nﬂt‘r of 30 m with a center 17 m above the ground. It makes one
% NIANIAN P

_1v\0~mmn cvery 60 seconds. -

uumpl&;ﬁ

(1) Graph one complete period of the graph that models the height in relation to time.
Assume a rider starts at the lowest point. '

(2) Find the equation of the graph using the cosine function,

(3) What is the height of the rider at 45 scconds?

(4) At what time or times, the rider is at a height of 15 m?

Solution:

(1) A an

40 T

— Height in Meters
ol =. 1

} —
45 60

30

——»Time L (in seconds)




(2) Since

Where,

4] = W@ and ?" is the pcnod

0-2—"=B——andr: =17

Puttmg values in the above equation (i)

h(¢t) = —15Cos (—1 t)+17
= ~15Cos (2 ) +17

This is the equation which will gwe us the height of the nder at any time *’t".

(3) Since
h(t) = ACos (Bx) +C

h(45) = -15595 “‘") +17

= —15(.‘05 o @@m

@ xm%&%é
- WW h(t) = —15Cos (% t) +17

15 = —15Cos (% t)+17

~15Cos (30 t)

my_2
Cos su) is

ki { T -1 l
3(}: Cos (15)

_30
t=2(1.437) g

Here, "
6, =1437, and 6,=2r-1 43 = 4,846

=20 437).an @@WW@ @@m




(i) y=2-2 Cﬁ (u} y=— - —Sm ]

N
(m)" N -i - 2 Sm (30-7) (iv) y=7 + ECns (20 - 1)
2. Find the maximum and minimum values of the following reciprocal trigonometric
functions.
B
O ¥=itisme (i) y= I ~5Cos @
1
(ii1) y= T 4sin(26-5) () y= 3+ism (56-7)
3. Find domain and range of the following:
(i) y=7Cos4x (i) y=Cos;
(iii) y=Sin= (iv) y=7Cot Ex 2\ @€ e\
(V) y=4Tannx ,(w] y Cﬂscc 4.’:' \
4. Check whether tha fnﬂowmg ﬁmohoqs aread;f or eve.n? ’
(i) y=Sinx \J +x*Casx (i) y= X3St x. Cosx
' 4* \TLh x . . ) z
(my 9& e (iv) y=x3.Sinx.Cos%x
‘ _ _ Sin*x . Tanx - Sinx
' (V} Y = +Tanx V) y= Sin’x
vy o SEEX - w2 Cim v
(vii) y = pryr— (viii) y =x*Sinx.—Cot x
5.  Draw the graph of each of the followmg functions:
(i) y=28inx ;(u) y =2Cos3x
(i) y=2Tan2x (iv) y=CosZ 3
(v) y=28in3x (vi) y=3Cosx
(vii) y = Cos?x . (viii) y = Sin?x
(ix) y=Tan’x (x) y=Sinz

| L |
[\~
| e

6.  Find the periods of the followmg

(i) ¥ =6Sec (zx 2 3) n) 'J* ?‘\. Cos(Sx+4) (iii) ¥ =Cotdx + Sin




8. Draw the graphs ul,y = G 3 d _V Crw 2x in |0, 2| on the same scale.

I\ .
9. ‘strlvwgi“ph cally: : St
(i) Sinx=Cosx (i) Cosx=x
(iii) Sinx = x ' (iv) Tanx = x

10. Alternating current cyclically reverses direction. The maximum voltage is about 180 volts

when the standard frequency is 56 11z (56 cycles per sccond). The voltage can be
madeled by

V(L) =aSin (k(t —d))+¢
Determine cach of the following:

a. Period of 56 Hz AC,

b. The value ofk, .
¢ The amplitude of the voltage function, \\\\l '\/,/ \'~.
an’.

. Muodel the \«nlt.lu.. with an appmpm@ lt:rmﬂur nu.l §m

Finding the domain and range of the trigonometric functions

Discussing even, and odd functions and the periodicity of trigonometric functions
Finding the maximum and minimum value of a given function of the type:

. a 4+ bhsind, "

. a + bheosh, _

. a + hsin (c0 + d),

. a + beos (e0 + d),

. The reciprocal ol above, where a, b, ¢, :H‘I(l d are real numhers.

Graphing and analyzing the trigonometric lunctions sine, cosing, and tangent o solve
problems. \
Lxplaining the propertics of graphs of sinf), cos0 and tand.
Applying the concepts ol trigonometrie lunctions, IdLnlllILb. Emphq r{ﬂrh‘dlb]lyﬁ ev:.n
odd functions, and extreme valuesto real-wofld, prabic/ma *a{%h é@f{dlstmicc clevation,
and direction of tall structures, H.I\'Ij:,'-dﬁdl)l’fﬁnd rnqp]'nn;_.,i\Y lengths of irregular shapca
graphs to visualize and| pr{..dm{/p;rllt.rq\n dau, frequency and periodic length of F erris
wheel, forces on a scn, WW‘.{'I Iever, \the ldt..dl angle for solar panel placement)

Weetivsnmaad Rk .Fuumi.uﬂnn




1. Mark the correct epnon m each ofﬂle followmg

i If Lmlﬂlﬁ ”ﬁ{ and thc tcrmmal arm of angle is in Il quadrant. Then sin @ =

1 . 1 = —e
a. s b. - c.v3 d ﬁ

ii. The exact value of the trigonometric function tan (=151) =...... :
a0 b. -1 cl d. Undefined

i, If 2sin @ + > Cosec 8 and @ = 45°, then the value of the given trigonometic identity is:

S 1 3 vz
a, .ﬁ b_ ; C. ﬁ d. 'i"

_ Ifsin(270° + 8) = x and the terminal side of an angle *6" is in [V quadrant,

iv. )
thenx =.... A\
a.cos @ b. —cos 9 P

s{nﬂ-ﬂi:h. AR\NA

v. The trlgonumetnqmémlty m SRR

asina \ \\ b;‘-‘cﬁs?z" © c.tana d.cota

|\ y ,J AR
vi. E ﬁ:és\i R T

a.cos4x—cos10x b.cos10x—cos4x  c.cos 4x + cos 10x d. cos 10x + cos 4x
vii. Express sin 5x + sin 7x as a product:

a.2 sin 6x cos x b.2sinxcos6x ~ ¢.2cos7xsin5x d. 2 cos 5x sin 7x
viii, The value of tanx. tan G - x) . ta'n(g + x) is:

a. 2 cot 3x b. cot 3x c. 3 tan 3x d. tan 3x
ix. Iftan4 =-;-.and tanB=§,Thencas‘2A is equal to:

a.sinB b. sin 4B c.sin 3B d. cos 28

sindx i
x*+tanx

X. Whether the function f(x) =

Xi.

mal Mok Ferwlotion: T nit-09  Treconometnic Funciion:



Xii.

Xiit,

Xiv.

XV.

XVI.

XVil.

XVIil.

XiX.

The trigonometrig ﬁ ﬁmctmn y = eosec x meel atx =

Q NINIES
2,309\ " A . 90° d. 120°
2co55x,.sin3x =......
a.sin8x—sin2x b.sin8x+sin2x  c.cos8x + cos 2x d.sin4x —sinx

The trigonometric functions which are even and having period = 27 are:

a.sinx &cos x b.secx & cos x ¢. sin x & cosec x d. tanx & cot x
If *f* is a periodic function and its period is m, then f(8) could be equal to:

a.2cos x b. 2 cos 3x c. 3 cos 2x d. cos 4x

If function f(x) = sin 8x is a periodic function and its period equals:

am bi’l c.2m d,fﬁ/\
A\ /f)/i\ A
If the range of the function f(8) = a sln(Z&] + b wlfsrélsﬁ @hs B35
o
= - 1 \ /7 \ \( O\ R SA\S
then 3a + 2b= @\ \ = LA " _3\_
a1l DA e d.5
Thwi@ﬂﬁ\vﬁne of the tngnnnmctnc function f(@) =17 sm(49) is:

b. —4 c.—17 | d. 17
If the given figure represent the curve y = 3 sin x, then |a| + |b] =

4 yaxis (Z,q)

The mammu;q wﬂue of ‘? cos'x + 24 sinxis:

NN
NN b, —25 6.7 d.24



2. Ifcos@—sind =2 2 sin- a theu slmw

3. Verify the folloan]g rrgonomcmc :denutles:
| ,,

(
(a )—M cax| secix —

cosec x
sinx.cosx

o — pant >
- fan'x
(b) M— ] seczx —_— tanzx
seclx + tanix
sint sintcost
1-cost 1+cost

(c) = cosec t(1 + cos?)
4. Prove that:

() tan (a + f)-tan 8
1+tan(a+ f). tan g

=tana

|
1+5in28 +cos20

=tan@

/-\

T" "/ ‘. \ \' /// _I‘; 'f,)'

5. If cosa + cosp + cosy = 0, then prove th;t

..........

N
l

_sin7a -sin8a
1+2 sin S5a

- 3 fa— a
Tv2 consa cos 2a — cos 3

AN

",\/\
N (\
—/ ||“‘."-" U

)\
¥A\ « e

7. A Ferris wheel is 40 meters in diameter and boarded from a platform that is 4 meter
above the ground. The six o’clock position on the Ferris wheel is level with the loading
platform. The wheel completes 1 full revolution in 16 minutes. The function h (t) gives
a person’s height in meters above the ground t minutes after the wheel begins to tumn.

a. Find the period, amplitude and vertical shift of & (t).
b. Find a formula for the height function h (t).

- c. How high off the ground is a person after 5 minutes? f \ @€

8. The ‘h’ (in meters) above the ground ot‘ a nder un a Fmis whacl t (m seconds} after

the rider begins is gwem’ \ea | T AN
N h(t)‘-é 10 sin (3(¢  30)) + 12

j‘ll “



10.

Determine each of the following; | 2 A\ U \

a, The maximum nnd ﬁlmﬂﬂ,lm hmg\ﬁts of the rider above the ground.
b. The hmq.ﬁlt off the rider above the ground 30 seconds after start.
¢ ‘l‘hé‘tt ereqmred for the Feris Wheel to complete onc complete revolution.

The top of the flagpole sways back and forth in high winds. The top sways 8cm to the
right (+ 8 cm) and 8 cm to the left (= 3 cm) of its resting position. It moves back and
forth 260 every minute. The pole was momentarily at its rest position at t = 0, befor= it
started moving to the right.

Find:
a. the equation of the sinusoidal function that describes the distance the top of the
pole is from resting position in terms of time elapsed.
b. the domain and range correspond to the situation described.
Find the domain, range, and period of the following trigonometric functions:

4\/\

o n . x
(iy 7sin x (i) 2sin 3 ~ \\'f’n /,2 Cﬁse\c,x
(iv) 5sin3x ) {'w) = cos 4?;-

(vii) 3 sin Jr{j | (\rlﬁ} ’:'sin 5x (ix) ; sec fx
A
(x) 5 cot —x (xi) 9cos (3x—2) (xii) 8 — cos 4x

(xiii) 7+ 5 sin (2x =%)  (xiv) 6+4cos 22 +3)  (xv)

1-5inx




O\ \ . Ui 1: Complex Numbers
~RAN SOSS T Exerise 1.1

Lod-i SN 2 v

2 L5+6i  ii.2-20  §i8+0i  v.O0+10i yil2-i

. 7 .9 2
“‘7'10+qu viii, = li

9 a7 1 e =1 .
3 i.;-;! H.E—E! m.?i iv.0 v.5+41
4 ix=-2y=2 il.x=4/3y=5/3 ii.x=15/4y=5/4 ivx=7y=1
5. 4-i
6. i.4+3i i, -3i +8 iii.Z—é iv.}"-i—‘
7. 1.7265 i.3 i, 15 iv, % v. 11

e a0\
6. A:—-i—-{ / N /-— / \ I(". "."‘-) \',__‘,

16
4, IZz = E

8.i4x? + 4yt —~4y—-15=0 ux—y !}> 1!1«.25#;34-%?2 \ﬂfﬁ»y*
v.x=-9 -3£y5

C 11, 5 ('}_n_ A\t 13!’ '\-/ 17
T E' 169 T mal f & V- 103 + i
1579 \j ' AY\P\Sr
usn R | ”
, éﬂl\ A Exercise 1.3
L L(z- 131)(2 +13i) i, 2(z = 30)(z + 3i) iii. 3(z — 11i)(z + 110)

-2+ 20 v Q24 3)E-VB)E+VB) vi.(z-DE-2(+3)

i,z +3)(z +4)(z-5)  viii. (z-2)(z+5) (2 + ;) ix. (z-8)(z+1)
x.(z+1)(4z - 11)

2 i3V} if-sevB) i R iv.[%ﬁ]

-2 3 - =166 9 177
3I lz_ﬁ:*i _m+9:l :ﬂhz— » —“;;2:: 1 ms.FEE B0
432 431 . = .
4, jli,z=——-—iw=—=—|] iv.z= w==—==—{
2 TR ETET TR atTai" 5 n
Exercise 1.4

I, i.4(cos§+isin§) ii,Z\f_(cus-l—lﬁ+Isi .IE,)
iv. V2 (cosEHsin’:—'z')

2 i ll-—l—ﬂi i i 7

3, Ll1=i

iv.~2v3+2i v.V3+i
+;EM Vil 6.43 + 7.66i vii. =1+i  ix.-2+2V3i x.=7-T7i

V) VESE
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L

700 UL
\\’éﬁ\;\'} N24+2i xvi. 30 xvii. = +£1

xi. 10— 10f  xii. 2i Cxji \
| A
i..x\W’\J\ﬂMPf\‘:—q. ii.— 35—5#'“ iv. UEJ_(I;f;:)
w.:rr2 yi=1 vi.v3(x? -y +1)—2xy =0
- 2
Lo (L4 0) nm(1+v"_:) ii. m(ﬂf+:)
i1 =i ii.%ﬁ-s—?i ii. —2i iv.—2v34+2i v. V3 +i
vi.%+%i vii. 6.43 + 7.66i vitl. =14  ix.—2+2V3i x. =7 —7i
xi. 10— 100 xii. 20 xiii.14+i  xiv.=7xv.VZ+vZi xvi.3i xvii. 2+5‘:_
L.x+y=1ii.x2+yt=4 1u—fs~—<~/' iv. ﬂs\f_(: “1)
vx2+y =1 viiV3(x? —y2+1)—2xy =0
i E(I'H) ii., —(1+\ﬂ) iii, m(v’_+i)
0 =tan™' (—— 144 ii. —tan 1 —-—
o @@@m
L5+ i ——(77+381)
O
iLe Ji.b  dii.a viie wviiid ixb
10 i 21 ~;-;
i 3(x =60 (x + 61) ii. 4(x = V10i)(x + v10i)
Z2=X
3_11.4.+_; 6. —478 + 621i
_ 11471 8 ..
T
Unit 2: Matrices and Determinants © /"2
] Exercise 2.1
. i2x3 i, 3x2 iii. 3x1 iv. 1x4 v. 1x1 ° vi. 2x2
i. rectangular  ii. Squarc iii, column iv. square V. row Vi, square
Exercise 2.2
. 7/2) /2 ) 1 1/2) , [F13 -4/3
1. [5,2 4] Il.[ 1 2] iii. [2 ] 1/3  -2/3] .
0 -1/3 —2/3] —1!2 E; \\ 1@@% !
ilt 273 173 i [3i4 0 5 \ 4
1 5/3 5/2) @ \ -
[5;3 2 138 | \\\ s
5/2 13/5 \gg \\/\M =
[ %ﬁ@x]v /

' Grade-11 Answers



=

L[5 72 o\, A\ \
e A [8 1{!z il [142 ;}_ = AR 7x]\where XE llil
wz~—4t-ﬂx+;r =20va=-—103 9 vi. —4,3
@5 ININEI
5. Xx7t= iw 235 25 ]
2/5 2,15 -3/5
6. a=9p-141=[13 00 iyt 3 ]Y [n =3 _11]

-

1/3 -2/9 10 3
Exerclse 2.3
1. .15 il -6 iv. 16 + 8i
2. 0.- 17 027 Ciii. 1= 161 iv.-23-1
3. singular il. Non-singular iii. Non-singular iv. singular
. .a . 7 i
4. i.16/23 i.—4 jiL-1+35 iv. =
11 9 - 2B e LY L 3 za
13 9 9 s‘ 5 1 1 22
=1 =1]. -1 11 e [ B= 1+2i 1-i 1+i
S ) FIE) ol Il (0 5
g =1 =L 3 1 "
3 9 3 9 5
111 ] &
3 2 6
6 0 1 0
-1 1
5 03

\BA e Exerclse 24

11. 2. ﬁl&

Exercisell.s ,
1 3 353 1 % 1 -3 0 1 -2 3
4 1 v o 0 0 1 0 1
0 1 2
A I R
0 00
2.1.3 ii.2 i3 iv.2
. -12 -5 -3] -2 0 2 . 0 -6 6
3.3 -4 -1 -1 u- 19 -15 -16 IIIE 3 =9 6
2 1 1 -6 6 6 2 -4 6
, Exercise 2.6
X3 543 X3
1. i 213] ii. _*_zx jii. [2?-'3] iv. does not exist.
Ia < (]
\J
-10 O
—xj ,',’
2 id=— ’_xs ii. ﬂ. \2; Z’} Qr)l
3. 19'5'_?| ] NhJ:}tJlLtlon i, 50 3

weel Bavek Fovnnzodestnon Gl'ﬂdl:‘-” AI"“W.‘N



LM 14 .,_.\:m 51— ﬂ\, :/

13 26 62 - 17 2

LTy G0 kg 15" _5;115 VG TR 13\ [\ .
5. 1312 ii. —%:{%\;i&,\ i soluﬂun nm p-ufssihlh’aaﬁ is smgular iv. il‘“-ﬁ;ﬁ
1,370 . 37_3‘{11 \CL 0\ B
6. <i—i il 11 3 T; e w.ld;3; 5
—sfszm%éi ) /62
- |13/31 -8/31 -1/31|1;1;1
l19/62 5/62 -11/62
8. A = 14, no solution; A # £4 unique solution
REVIEW EXERCISE
I ib ii.d iiLd iv.b wv.c wvib vi.d viic ix.c x.d
2 -11,-3,10;87
12. 1/3; no solution
Y Unit 3: Vectors
Exercise 3.1
I L=7t=5] ii.—220-16] iii. =71+ 28] iv.—z—st—-;—af v. —13E+/1§5j‘
SENEN
B+l id=-Sieehd=7i-11) g 2 ‘BC@\'\_&?
4im=4/3 S |—E——j‘+ Sk C /;f i’Aj:\;\I:Z\K‘..l_‘ij./; i jal = |bl; @b
ij_‘r}_ig i “b“‘“ﬁ? %]}\‘ "ﬂ.;-}z ii. =1 — 12] + 5k
10.i.D(-2, 1) \J\“ 3\u xwﬁﬁaﬁdy—ii
NN
\ Exercise 3.2
L1590 iil-16iv. 147 v. 4 ,
= coc=] -1 57 T e |
2. i.8=cos (H._) ii. 8 = cos 1(“3_4) i@ = cos (\/ﬁ)
i — _ —E = . _ﬂ__
iv. 8 = cos l(ﬁ) v. 8 = cos 1(m)
; =121 AR
3. 1.180°—cos (z-z) ii. 90
4 iLd==
i - — = = TS
5. LCCIS;T—\?E,COS;?-JE,CGST—@ T 7
: s, 5
6. l-iﬁfiﬁjiﬁﬁ
7. i.-452
8. F=1+2f+k
14. 350/V11joules 15, 48 units
' Ewr;uﬁ:.’a
L vi.(4, - 15, - 7)ii. (18, - 3,-13) | \/7\\( ;m 4=
2. i.(-18,-8,3) ii. (3 is 6) KNAR\E NN
3, jui® |
| FN_J'NE”\ A 1 1 3 19, 27
4. (Jﬁ— N Tk ﬁ) u,pamllel?i+ﬁj--ﬁﬁlwmﬂndlcular-I+—ﬂ;31—0

1515
9. T | i. 6



. . 5 -242 -1 \I [ // \éﬂf\\j’
10. i.3+59 il. E'WS ( = cos {ai/ﬁ)pcaf (3\-") (2"
11. V75 14. i. J'1Bl i, 114‘5 ZA\NON Vs, 4f “42j-3k i

(28,1 i)
12 '12" 8

16.1104] = ,\\\H ,;»;i"'t-.w.--li'xsrh'br 201; 21i — 28] — 19K; 61 — 8] — 19K

Q Ni NNV Exercise 3.4
. i-14ii -20
2. 1.2 ii.-8
3 ii.A=-1/2
4. 1.A=2 6. i. zero .68 7.i.27/6 i. 3

REVIEW EXERCISE
i.d ii.c dii.b ivvb w,¢ wvid wviihb wilib ix.c x.a
i.2/3 ii.-3/20 '
N2 4 V19 5. -11/2
8. Ground speed = 235,492 km/h true course=~ 64.872°
9. Speed = 237.816 km/h direction =~ 107.980°

Wb

Unit 4: Sequences and Series
3 Exercise 4.1 G\ (@ /@fﬁ
1. ay=4,a; =7, ag—lu G.*—IB a10-3lrﬂ15 -—/4\‘&\?\A\] 1/0 ﬁ‘\\;’/\-)
2. a1-2a1—5a3=8a4—11€“—-@./ﬂ¢5 ‘H;\-.‘-\\\ /
2 4 \5)'\'\\‘*',‘
l a= '.ﬂz 3-113 O;Nh = k h;$3:
4. ay = 2 a; =5,03 5 0\h4\=\1\‘? azo ’Iﬂl n15 =226
5. aé a—Ba = 80,a,5 =95
: 21 = — g@iﬂ Bfjas\: \i‘ 4 - o
. 3 = ! 4 = THh A =15 =

1“@\ R T 113
1 a=1, ‘12:":“3- B4 = =510 = T5%5 T Tam
8. a1—1a2—4a3-9 a4=i5,am=100,alg-225
9. a;=-4,a;=5,a3=-6,a4=7,a;5 =13, a5 =-18
10. a = -2, 4z = -6, a3 = 4, ay ==7,80= =25, a5 = 40 .
Il. ag=29 12. ay=56 13. a; =225, 14. @2 =-235
15, @z =528528, 16 @z =1 17. ayu=1 18. ae =67
19. ap=2n-1 20. a,=3" 21. a,=+v2n 22, ap=1In+01

Exercise 4.2 ,
L. (I)ﬂ1=4,a2=7,ﬂ3=10,ﬂ4=13 (iya; =7,a, =12,a3 =17,a, = 22
(lii) a, = 16,a, = 14,a3 = 12,a, =10 (iv) a; = 38, a; = 34, a; = 30, a,. 26
" 3 5 3 3 13
[v]a1=;,uz=1,a3 =30 =3 (vi) a, =50 = l,a3 = B,m‘-;

2. (i) The next three terms of the sequence are 17,21, 25
(if) The pext three terms of the sequence arc’ 20 23,26

o~ o
(iii) The next three terms of the sequence m: 21 25 'm/..f..:\-;‘ i ,"','K/’;/ ‘\\_7\,
(iv) The nextlhreetenns of the sequence7 p ‘I‘ 4 é \3 an = 05?

4. a,=19,a,=2 a,? 14Lq;‘§ e al\-ﬂ Gy = 5.0y =2,y = =1

\ \\ 105 a-c
6. agy =347 7 ﬂzu ==s ?ﬂ \ ~ Bge == 9. d=-—=
10, dg - ZQQ FF#‘\\j '\ Szo = RS 40000 12. ua =17
\l '\ o
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13.(0)12 ()5 (i) 4V5 )= 14.b=30 1§ ¥ £29
]6 Al = 9 ‘42 =13 ]7 Al —7—' -3 I.A’Z 7‘- —B 143 = -1-13 ) "
| \Exercise 4.3 -

. §,=11625,= 101&0 3, s,. £\ 11150 S = 375 5, Sp = 240,6.~210 7.5, = 240
s. Sn = 2550 9.8 = {2500110.5, = 34036 11.5, = ~140 12. §, = 1155 13,162

2 1565/ 1060 16,5, = 387 17.5, = B16 18,5, = 162 19.5, = =220
20. “1 =7,0,=19,a3=31 7.4, =1, a,=5a,=9 228, =6, a,=36,a;=66
23.950 24.45 25.12,280,000  26.38,750

, . . Exercise 4.4
1. The sequence is not geometric
2. The sequence is not geometric 3, The sequence is not geometric
4, The sequence is not geometric 5, a; =3,a; = -6,a; = 12,0, = -24
6. @=2lam=-54=r0="= 7.0,=12.0;=6,a3=3,a, =3
8. ay=T.a5=%7 9. a4 =54,a5=162 10. 2y =22, 0 _$
1. ‘a,=27,a;=9 12. a4 =1l,a;=3 13.a4=2,a; =4
14. a3 =100 15, ag =32 16. a4 = 56 17.as =3
18. ag=-1 19. ﬂa=§ 20. 612 24 21.2,4 32(4,21
23. 10,20,40 24. 14,28,56 36 1;24@ 26_ —.-»\ﬂ\ 27 1$579?
28. 3100351t ». 27 o O /Em SI \\VY
\ - \Exer lsa 4.5 oo
1. 176, 2. 93.15 132#6110 “4 94? 1> 5114681 6,732
7. 10, 656 8. 165 %gmp” 1.4 12.0.51 13. 4
0.0 @ 1S W 0 o ')E 15. 70 16. 800
Exercise 4.6
1 i 1 1 1 1
'y 273 -~ = > S 6'?%!
1 - 11 8 5.5 5.5
% 8.-u %7 113 123 3 n'n'w
Exercise 4.7

1. 1.14 2,096 3. 63 4. 457 5. 183 6. —524327. 41,8.3° 9. B, -~ 10. B5., 3*
1.2, (-1 2% 12, Zkﬂm 14.2n +1 15,2 (2n? +9n+'?) 16. (2n? + 7n + 3)
17.%(6712-1-371—1) 18. n(n+1) 19. n? 20. 5(3u+1) 21.3(2n* +3n - 5)
2. n(n+2)(n* +n® +n? +3n—-1)23. 2%(n— 1) + 1 24, LTI~ "’"”," “

- 100

e -
?1'—3 " » i p ool
28,5 (<2n+ 7= 1) 26.27(=3n = ) - 2T 14 20 z.zg%% oy 303

33'9'1?

oW\ 4 E’("‘Kiwid,.s/ i
L.nt+n+1,2 nzﬂ-p+1i3.3n“-6n+44 =n a-n+15. n —-n+3
7, \RA D If I s 12 11'.“—+a
6. En B -mTl ;m &E;*f 9. Lo yoursell 16, 4{n+2} * 2(n+2)’ "3’ “ 15(zn+9)’

14, Do yourself 15, =



L. 780R ~ 2.11065, no because the auditorium has only 1065 scats 3. 491,70044
4. a0 =520288. 1\ A5\ a=03280r328% 6. 303614082 7. 964615
8. 3200%)"?i11_,1"""fiij--' Vg 23 10. Rs. 1420418.205 11. Rs. 100625

12.Rs. 726000  13. R31000  14. Rs,356015.99

Miscellancous Exercise
L@a (@i)c @b (v)a (Vc (vijd (vil)b(viila (ix)b (x)a (xi)c (xi)b (xiii)a
(xivic (xv)b (xvi)b (xvi)d 2.3,5.7,9 3.0,1,2,3 4.4,10,14,
5.55[10™% —9n - 10] 6.4,6,9 7.6,18,54,162 8.n= -1 9. = 10. Do yourself
11. n(n + 1) 12.%(:14 +11n?)

Unit S: Polynomials
Exercise 5.1

L @S G)35 = 3.No 4y+l1 5 -12, 6.m=6 7.0nlylisazeroofP(x)

8.2,-3,2 9. @-aF+Ix-2+3 10 $+10:428 0\

. Exercise 52 . — \\-;-\;"? \/,/ \‘.’9\'\_{,/‘
- PR RAD N A _
Lo+ De-3)p+2) 2. (- D+ )2c-B ALY 4 (x-3)3 +4x +12)

S.(t-1)+2t+5) 6. Other mgmm«s@(x-@\md(zx +1) 7. (2x = I)x =5 x-2)

B+ 22 +x+36) T\ \| () |\ |\
NP Exercise 5.3
1. Scm p%{\gwwv%in “2.650 3. 6 units by 8 units by 3units 4. 9 units by 11 units by 25 units

5. Length of one side of square ABFG is x+4. Area= (x+4)’. The length of rectan:jle ACED = 3x+7.
6. y+1,a-2

REVIEW EXERCISE
L@ @ @) @ @emeEO o6 @ © e o ©

2. 16/ +4y+4 3. 25 +10y+4 4 Yes 5. 5S¢ -13 2 -34x+ 24
6. 48 7.x+4 & y+5

Unit 6: Permutation, & Combination

_ Exercise 6.1
1. i. 3628800 ii. 7920 iii. 11/63 iv.n-1 v. 7/90
2 e < aral e () . (n-3)1
. ‘1. 14‘4‘.}10. H.Q.M.xlﬁ.} . . o) W.I—E{n_‘m?_‘)[ .

1.6 ii.6 131 i. 8 E:r}g':lgeﬁ.iv' 10 v.6  wvi.l2l  wii. 1l viii.2 ix. 4

2.i.7 13 S iv.8 v.19 wvi.6 wvii.9 viii.8 ix. 10 )
3.3 iS5 .2 iv.8 v.2  wi.3  wii 4l R\

460 56040 61296  T.18 B.2gg 91260 | (C 107200120
11.45360 12.36  13.42 14.210 O 15280 (\ | | —"16.360
ok 18,48,  19.30240 \( (20.86400° ~ 22, HOELRA 22. MULTAN
VB viS 343 i3 i3 iwS

O\ \
N\ \ q

2013 @22 i 51 \i

4.93 R 6227 i 10;5 iv. 14; 4
5.1, 4368 ﬁ{._‘aobs 6.55 T.i.120 ii. 186 iii. 186 8.3, 45 ii, 120

9.7%C,—n 10. 14400 1.7 12.300500200 13. 63 14, 6272
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N it T EI ey _Qw;\”rg\w o) J

l;) =
> —«m:v s;g EXERCISE
l. i b ii c iii. a , &) \ = vi.c viib,b  wviiihd  ix.c X £
ca NI \J JH 60& =75 360 6. 32,659,200
\1 AN Unlt'? Mathematical Induction and Binomial Theorem
. Excrcise 7.2
10. - 5940 11. 14 13. 12,2 ) 19, 21 times 20. 56 times
Exercise 7.3

7. 2 (n? 470+ 8)x"
Exercise 7.4

1. 1,8,4,7 2.a5 b2 3.1
4. 2.5,25 ©.3,33 clOI % 8 9.8

REVIEW EXERCISE

1. i.d e iind ivvd wv.b  vic wvilb viiha ix.b x.b.

3,232 6. 78
: ' Unit 8: Flld:mum @O S“
1. (i) cos(180°+60%) = . sm(lEG" + 60°) = - sin 60°,

CﬂO
sin(180° - 60"] ?&h& éﬁ"] = tan 60°, tan(180° - 60°) = — tan 60°
(ii) cos( Mﬁ sin 6[‘.!" cos(90° - 60°) = sin 60°, sin(90° + 60°) = cos 60°,
sin(90" - 60") = cos 60°, tan(90° + 60°) = — cot 60°, tan(90° — 60°) = cot 60°

{v) ms(er + E) = cus(;), cos(Zn - E) = cos(;). sin(?n‘ - %) = sin(%)*
sin(2 - ) = - sin(Z), tan(2 + Z) = tan(Z), tan( 2 — %) = - tan(%)

o h'_ ] ]
2. @) cos15°=22 (b) cos 165°= -2 (¢) cos 35t =22 () sin 750 = 22
3. (a) cos 120°=—E (b) sin 120"=—§,tan 120°=-+/3 (c) cos 75° = ‘;..‘
(@) cosl05°=228  (¢) cos 285°= L1 (0 sin150=21
4. () cos98 (i) cosSO (i) sin? () sin92° (V) tan30° (vi) tan2m
5. cos(a+B]=E, cos(a — B) =6—s: - f‘ =1 «(\/\
N 04 93 ﬁf\ \U/\J
6. (i) sin{a — ﬁ)-:ﬁ (i) cos(a — j?)= Fﬁm) lﬁﬂfﬁ"m’“g

7. (i) sin(a+ ) = —': (i) xoa(awaﬂa = l' ’ ‘(:h*} Tan(a + f) = -

B. (i) ese(a + ﬁk-\l—\\J ,\@i} shef 4 3) (iii) cot(a + ) ==

9. (i) sm(a\+\m =—spSn@-P=55 @ cos(a+p)=-5,cos(a= )=
208 il i i :\!L'”-:‘uw\w

-




13.G) 12sin@-5 ﬁ;sin(a_ﬁqp)whmrnusandgn tan (-
i\ \\H\

(ii) 3 sin é'+4 cos B =rsin(f + ¢) where r=5 and ¢ = tan” ( ) (iii) Do yourself.

12

4. (@a=45" () sinB=rz=,cos0=7%  (c) 09285 (@) 22°

EXERCISE 8.2
. cos20=—=, smza=—3§, 111 quadrant
2. sin2a=—2y1f1—yz,e032a-I-2y’,hm2a'= -‘—{J_‘%F 3. cos15°= ‘“—f’“‘f—“’-u.m
24 6 1 6 _ 2 6 1
4. (i) sin28= ,uosZB——E,taniﬂ——T ,8in o= 7. Cosy= &, tang= 2
120 119 _120 , 8_12
(i) sm26= — 1o 0820 =1 tan26 =, s ‘ tans= 3
336 527 = — -E = 1 A\
(iii) gin 28 = 35 C0s 20 = m,thﬂ-‘ . sin i AN
=
{'V} Slﬂ2&"",¢0529=—- tan 26 = — r/ mﬂ;= m
O‘ "\\/f:‘-\ I\‘\ \I. VZ +1 8 V2-1
(v) sin28=-1, ms\Zﬂ\“ Q,mﬂﬂé pndtﬁn SE = (5
J oL L
(vi) smﬁ#\l%\mszem 20 =-V3,sind= 28 cosdo YIS gl [0S
5.(0) sin9=-,cosa=-.tana=§ (ii) sma=§,ma=—§,m9=-§
(iil) sin 8 =2, cos 6 =22, tan 6 = @) sin@=—2=,c080 =~ tanf=—Z
6.6) 1 G B i) LW g ® L

.0 == (u) - [1 - cos2a — cosda + cos2a cos4a] (m)--[a 4 cos4a + cosBa]

EXERCISE 8.3

I () 2[sin26x+sin6x] (i) S[cos 16y +cosdy] (iil) sin8r—sin2¢
(iv) 3[sin 15x +sin5x] (V) i[cm 6u—cosdu] (Vi) cos 120° - cos 80°

P

(vii) 1 [sm 40° - sin 6°) (viii)sin 104° - sin 8' {ix) cos 60° “\663’@6?’ 2=
VW N~

!») '/

(x) 2[sin u + sin v] (xi) sin 2u — sﬁ?v ((SR\ 2
2.0) 2sin50°cos200 () ""-2@%45" a1 (i) - 2 5in 35° sin 23°
(iv) zm—TosiJ,\\J, 1] 922 sin 15° cos 5°

P CTEIPA B FITTTOR A o1t 269



!Eﬁ’“ JEKEBCISE U

O\\‘V. 0 m\\ \\‘ J N
LG) a (i) 31 i (m)\ e vd (v) b (vi) a
(vii) %‘J\'\F{ MY @ b x) © (xi) d (xii) a
] 16
= (D) (ii) _ﬁ (i) —=
3. (i) sin(B+45°) or cos(f—45%) (i) cos45° or sin135°
4. (i) tan 60°=1.732 (ii) cos90°=0 5. tane— 9. 1
Unit 9: Trigonometric Functions
l. i, Maximumvalue(M) = 4 ; Minimum value (n'i} = 0
ii. Maximum value (M) = % ;  Minimum value (m) = "%‘
iii. Maximum value (M) = % ©  Minimum value (m) = - .g_
iv. Maximum value (M} = %@@@& g
2. i Maximum valye = % _
-
. Maximum g
iiil ue (M) = ﬁ 3 Minimum value (m) =1
iv. Maximum value (M) = 1—53-. ;  Minimum value(m) = %
3. i. Domain=Dy=] —00,00 [=R; Range=Ry=[-7,7]
ii. Domain=Dy=] -00,00 [=R; Range=Ry=[-1,1]
ili. Domain=Dy=] -00,00 [=R; Range=Ry=[-1,1]
iv. Domain=Dy=] -00,00 [=R; Range=Ry=0 )
v, Domain‘_-Dx=] —mlw [=R; ngeuR}r:{]
vi. Domain=Dy=] —©00,00 [=R; Range=Ry =[~6,6]
~A0)
4. i a= "'l en 1v. even - ;\\ (~ [/f\, ARRRRS
i. odd i, even i ov e ‘f\xﬂ(‘ ARCS J
v. even  vi. even vii. edd O viii \odd |||\ [
~\ VU A~ -
Q \C '\ ‘-,"\.\ WA\
{ \\ \ \\ \ "\ W
i i ‘\ \ \\ L]
(] ‘\i'\INN:' o\
NVAS
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..._.,.._.....— "....,l

RS



ciienil Bowk Foyrd

e

wia

R e ettt

y-axis

B e I &

- S

= (-00,00)=R
Range -2, 2]
Period = 2n
Amplitude = 2

Nature odd function

Domain

Characteristies
W= )WY
3\ \\U 2 =
\ (&) ,00)=R
= [_21 2]
2n
3

= 2
=  even function

-\ \ .»I
[ (€ \O
] \_™

=

Characteristics

n

Domain ’-le"ix-c-’-}-e‘-’—’z'-‘

:

*



™
o Shlas.
B

P

- '& ~ ( JANRE
. i\’. 3 yﬁﬂxis . - '.'.\‘-w‘-,‘ = T,ﬂ'.l(“,-‘ . \\\\' / / o _';. ‘:")\\:-9\7/
3  Characteristics
Domain = (-00,00)=R
Range = [-1,1]
caxis  Fenod = 4m
Amplitude = |
| » st Nature = even function
¥ ys—
¥ y-axis
V..
4 y-axis 5
.............................. - ™ Characteristics
Domain = (-00,00)=R
Range = [—2 2)
Period

‘ V\@@’“ﬁ -

vi.

A y.axis

Domain
Range
Period

e,

m e iT Adgwers

58

= odd function

Characteristics

= (-co,00)=R
= [-3,3]
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vii. J

Characteristics

Domain = (-00,00)=R
Range = [0,1]

Period = =

Amplitude = 1

Nature = ¢ven function

Characteristics
Dorstn, SRR

: e | =10, 1]
-

Amplitude 1
Nature even function

Characteristics

Domain = An<x< J-+mn
= f(x)=0

T

Amplitude = pil

Nature = cven function

g
g 8
T

B T T T T T T T T T T YT T TS o
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ey S
[ )

Characteristics

Domain = (-00,00)=R
Range = [-1,1]
Period =47
Amplitude 1

Nature = even function

6. i i, % iii. 47 iv.%“ v & vi. 271

v

X-axis
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4 \ |\
A\
| / / o \ - ‘”/\*"

‘ N | 34)- —
\ O\ \ | (o
\ \ /
| ] J
— |
L

J\“ E
WA N :
/g/—)y=Tanx
x“axis T mnom - C 0 xeaxis
6§ 31
oS !
wr | o Darra 1@\C>
S Sl Poreii
f i’\ \\@ \ o
10. a.each cyclc ls— (\ T ha
Nk
c. 130
d. V(t) = 180 Sin 20, 160t
REVIEW EXERCISE
1. i. b ii. a L. ¢ iv. a V. ¢
vi. a vii. a viii. d ix. b X. ¢
Xl a Xil. ¢ xiil. a xiv. b XV. C
xvi, b xvii. a xviii. ¢ Xix. __fim/.: Q8 ;Uzi C\
Q. /r |\ f \. \ '." (S~

7. a Pmod-—*ﬁmpllmd'

\Jl @1 r&ﬁb@s( ) +24
c. The height is 32 m aﬂ:er Sminutes.

.......




g a. Maximum he%L g
b. The height|is | er 30 seconds.

mplete revolution takes place in 120 scconds.
9. 2y=10Sin1440¢,y = 10 Sin 1440 (t — =)

b. Domain = {t / t = 0,t € R}, Range = {y/ —10 <y < 10,y € R}

10. Domain Range Period
i. Domain =]-o0,00[=R Range =] - ©0,00[ Non periodic
ii. Domain =]-o00,00[=R Range =[-2,2] 6
iii. Domain =]-oo,00[=R Range =] - 00,00 Non periodic
iv. Domain =]-co,c0[=R . Range=[~5,5] z
v. Domain =]-00,00[=R Range = *%:%] In

: . : . - X
vi. Domain =]-oc0,00[=R Range =[-3» @O@@m%

vii. Domain -o,00 [=R Q @@@w Non periodic
viii. Domain KX ge=[-7,7] 2_15[
Wg R Range=]- o0, 00( Non periodic
main =]-%,%[=R Range=]-co, oo Non periodic
xi. Domain =]-00,00[=R Range =[-9,9] =
Xii. Domain =]-o00,00 [=R Range =(7, 9] 72—[
xiii. Domain =]-00,00 [= R Range ={2, 12] T
xiv. Domain =]-o0,00[=R - Range=[2, 10] n
xv. Domain =[2:-m,%+ 2mn ] Range = f( 33% 2n

sitieanel Boak Forsrdaion



G L 0 S 3 A F\\ ’." (S0 =

Adjoint of a matrix: A matrix o[ o,rder_z,.mw I:\Kmk:mha!lgmg dlagun:ﬂ elements and changing
the signs of non-diagonal clcmenu ARBLRERLE

Algebraic erpressiun. A J;Tmﬁrhcnt in wh:ch vanahles or constants or both are conm:ctcd by

arithmetic operati o S é+ 2 %y )

Allied angles: The anglm connected with basic angles of measure @ by a right angle or its multiple, are
called allied angles.

Arithmetic mean: A number M is said to be arithmetic mean between two numbers @ and b if a, M, b are
in A.P.

Arithmetic sequence: An arithmetic sequence is a sequence in which each term, after the first, is found
by adding a constant.

Arithmetic series: The sum of the terms of an arithmetic sequence is called an arithmetic series.
Arithmetico-geometrico sequence: This sequence is the result of term-by-term multiplication of a
geometric progression with the correspending terms of arithmetic progression.

Column: The vertical arrangement of objects.

Column matrix: A matrix having only one column.

Combination: If in the arrangements of objects their order is not important then this an‘angemeﬂ(tﬂ‘

- /\\ /—) ’\\ )
objects is called combination. \| ] / \ (O

Complex number: The number of the form a +§tb wﬁ&c/erand b a.rd; ml nu bcfaﬁd i= -\lr—_
Complex polynomial: If z is a m@pltx vmablc, u(ﬁm\é\exggﬂsmn au + alz +apz? + -+ apz"is
called complex polynomial of c!uagm-ewrlxifii,Q % 0land-n is a non-negative integer.

Conformable for ma jon: | Mattices of same order so that they may be added.

Conformable fi 11 pllcation If number of columns of first matrix is equal to the

number of mws o sewnd matrix so that they may be multiplied in that order.

Conformable for matrix subtraction: Matrices of same order, so that they may be subtracted.
Conjugate: Two complex numbers differing only in the sign of their imaginary parts.

Constant polynomial: A polynomial having degree zero is called a constant polynomial.

Consistency criteria: A system of homogeneous linear equations is consistent if Rank A = Rank A,.
Consistent system: A system of equations is consistent if it has at least one solution.

Cross product of vectors: The product of vectors resulting in a vector quantity.

Cubic polynomial: A polynomial having degree three is called a cubic

Deductive reasoning: Deductive reasoning is a logical approach where someone moves from general
ideas to specific conclusions. '

Determinant of a matrix: A number obtained by subtracting the product of non-diagonal elements
from the product of diagonal elements, in a square matrix of order two.

Diagonal: A line joining any two vertices of a polygon that are not joined by any of its edges
elements running from the upper left comner to the lower right comer of a. squaw mmx
Diagonal matrix: A matrix in which all the non-dmgon;l c]cmcms are ﬁam hm at [ast one
element of the diagonal is non-zero. . \B y
Direction angles: The angles thafx non-zcm vmtor‘ﬁnakcs fivlth the coordmate axes in the positive
direction arc known as dmxsim? g!es of 7

Direction cnsiqﬂ'\%ﬁm of direction angles are called direction cosines.

ARG YTl i | B LA e o b i
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Dumnln of trigonometric functions: ".l‘ha dnmmn uf a funcuon ﬁx) Js the sei of all possible values of

x’ such that function f(£)s defineds \| 1\ |
Dot product of vecto :\The pmduct of vectors n:sultmg in a scalar quantity.
Equ:lvecr?mi TwB vlacmrs d and bare equal if both have the same magnitude and direction.
Equality of complex numbers: Two complex numbers are said to be equal if both have the same real
and imaginary parts.
Equality of matrices: Two matrices are cqual if both have the same order and the same corresponding
elements. ‘
Even function: A function is even if and only if f(—x) = f{(x).
Factor theorem: A polynomial p(x) has a factor x — ¢, if and only if p(c) = 0.
Factorial: Factorial of an integer n is denotedbynl =1x2x 3 ...(n - 1)n.
Fundamental law of trigonometry: This law is stated as: cos(a — ) = cos acos f + sinasin
Geometric mean: If a, G, b is in a geometric sequence, then G is called the geometric mean of a and b.
Geometric sequence: A geometric sequence is one in which each term after the first is found by
multiplying the previous term by a constant called the common ratio. '
Geometric series: The sum of the terms of a geometric sequence is called a geometric series.
Graphic solution: Mcthod of solving two simultaneous equations by plomng thc /g:aphﬁfeach
equation. N e \ v\ J)
Harmonic mean: A number H is smd to bqﬁm hhrmomc mr{ﬁn&\kwtﬂi\m numbcrs aand bifa, H, b
are in H.P. ( -,
Harmonic sequem:t‘ M:queﬁ:e m calle&\q ha.rmﬁmc sequcnce tf the reciprocals of its terms are in an
arithmetic sequen \
lmagg{l P ééefﬁmem i in any complex number.
lncouéﬂ\rent system* A system of equations that has no solution is called inconsistent.
Inductive reasoning: It is a method of reasoning in which general principle is derived from
observations. '
Inequality: The relation between two comparable quantities, which are not equal.
Irrational expmslon An algebraic expression that is not rational is called an irrational expression.
Linear pulynnmlul A polynomial having degree one is called a linear polynomial.
Lower triangular matrix: A squarc matrix in which all the elements lic above the main diagonal are
zero.
Matrix: A rectangular arrangement of numbers enclosed within square brackets.
Modulus of a complex number: It is the distance of a complex number from its origin.
Negative of a vector: A vector having the same magnitude but the opposite direction is called the negative
of the given vector.
Non-singular matrix: A matrix with non-zero determinant.
Null matrix: A matrix with all entries to be zero. o
Odd function: A function is odd if and only if f(—x} -—f[x)./ ~\ [ 7 ) \
Order of a matrix: If a matrix has m nmnbcrof mws and n munber Uf colunms then the order of the
matrix is m-by- n. O\ o\ V g
Ordered pair: A pair sel m wm\:h‘x is de%mta& the f rst element and y the second, denoted by (x, y).

Parallel vectgm 'Nrp nnmzem vuctors d and b are said to be parallel if @ = Ab.
Perlnﬂ;i Jﬂud n~ A periodic function is a function where values repeat after a specific time interval.
Periodlclty The periodic behavior of trigonometric functions is called periodicity.
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Permutation: The arrangement of numbers or thlngsm a dcﬁmté ordar 1s mllﬁpennutatmm
Polynomial: Algebraic expresuons ;:onsmmg of ong! or nmre term,s ih-which- éxponeuts of the variables
involved are whole numbers. 1-4’ \CA N\

Position vector: The vector usﬁd 10, Speclfy the posumn of a point P with respect to the origin O is called
the position w:ctur Plf I\ J l

Quadratic polynbmia] A p-c-lynom:al having degree two is called a quadratic polynomial.

Range of trigonometric functions: The range of a function f{x) is the set of all poss:hle values of the
function f{x) can take, when ‘x’ is any number from the domain of the function.

Rational expression: An algebraic expression of the form P(x)/Q(x), where P(x) and Q(x) are polynomials
and Q(x) # 0.

Rectangular matrix: A matrix having an unequal number of rows and columns.

Remainder theorem: If a polynomial p(x) is divided by x — c, then the remainder is p(c).

Row: Horizontal arrangement of elements.

Row matrix: A matrix having only one row of elements.

Rule of product: If event A can happen in m ways and event B can happen in n ways then pair
(A, B) can happen in mn X n or mn ways.

Sequence: A sequence is an arrangement of objects or numbers in a particular order followed b}' some
rule. NG Yo\
Scalar matrix: A diagonal matrix with equal diagonal clements. _ N \l o 3.3.\&?\\5”' -
Scalar quantity: A physical quantity that can be com(piﬁ:leiy spcmﬁad hy lf,*hnﬁgmmdc only.
Simultaneous equations: Set of uﬁ\lmnsaatlsﬁed thc sa)nc\sofut:on -

Singular matrix: A matrix wuh zem dﬂ:n'mnant.,

Skew symmetric mal\ mx Whose mmspusc is not equal to the matrix itself.
Solution ofequ\ \mh‘;c solution of an equation is the process of finding the values of the unknown
involved in the equatmn

Square matrix: A matrix having an equal number of rows and columns.

Symmetric matrix: A matrix whose transpose is equal to the matrix itself.

Terminating decimal fraction: A decimal fraction whose decimal part is finite.

Transpose of a matrix: A matrix obtained by interchanging rows and columns of a given

matrix.

Triangular matrix: A squarc matrix that is cither upper triangular or lower triangular is called a triangular
matrix.

Triangular numbers: A triangular number counts objects arranged in an equilateral triangle.

Unit matrix: A diagonal matrix having all diagonal elements equal to one.

Unit vector: A vector that has magnitude 1 is called a unit vector.

Upper triangular matrix: A square matrix in which all the elements lying below the main diagunﬂl are
zero.
Vector quantity: A physical quantity that is completely spt:mﬁcd by us mgulmdemd mmm e
Zero matrix: A matrix having all elements equal to zero. \n
Zeros of a polynomial: A value of the variable for whuch thr.* va]ucyof'thc pblynomml is zero.
Zero polynomial: A polynomial ‘hnvmg “ﬂ“ as tht- en\ly term/

Zero vector: A vector'in wluql} thc mmal \and terminal points coincide.

\'\H “ J| J|\|

". \. 1 \ j_,/‘—‘
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is not cqual to

is member of

is not member of

empty set

union of scts

intersection of sets

if and only if

line Segment AB

measurement of side AB

measurement of angle A

is congruent to

is perpendicular to

triangle a0
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Complex numbers A 06\ > O Arithmetic sequence -
g’m““;’“ ‘;”' "““‘ﬂi’hﬂ‘fm’?‘“.f U068 Arithmetic mean 127
- Conjugate

M(:);uliltds oi? czmpl‘:ex number Arithmetic serics 129
Complex equations 17 Geometric sequence 132
Complex polynomials ' 19 Geometric mean ; 133
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