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INTRODUCTION

Complex numbers are an extension of the real numbers designed to solve equations
that have no solutions within the realm of real numbers. The history of mathematics
shows that man has been developing and enlarging his concept of number according
to the saying that “Necessity is the mother of invention”™. Tn the remote past they started
with the set ol counting numbers and invented, by stages, the-negaliy @6%5,
ratiomal numbers, itrational numbers ete. Since & oA g 5 wative
number is a positive number, the s
realm of real numbers, Therefore

Yes not exist in the

1.1 Complex Numbers

The numbers of the form 7 =a +ih where a,be 7% and i = -J_I . are called complex
numbers. For example, 3 + 44, 2 %i, 7-2i ete. are complex numbers and the set of
all complex numbers is denoted by C

1.1.1 Recognition of Real and Imaginary Parts

Let us start with considering the following equation:
4l =0 = x'=—1 = x=+J-1

| Note:

Every real number 1= a complex
number with b as ils boaginary

-1 does not belong to the set of real numbers. We,
therefore, for comvenience call it imaginary number
and denote it by § (read as iota).

In the complex number z = a +ib | a is called real part and b is ca ing @@’t
of the complex number. For convenient, real part is d ' a ary part

The product of a

written as. 1

o B \!
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Complex Numbers <z> Mathematics (_

Conjugate Complex Numbers: Let = =a+ibbe a complex number, then a — ib is

called the complex conjugate of @ + ih, Tt is denoted by Z ., Thus 5- 4/ is complex

comjugate of 5 —4f and 2 37 is complex m e e e T T
conjugate of 2 +31

1.1.2 Operations on Complex Numbers
With a view 1o develop algebra of complex numbers, we state a few delinitions.
The symbols @ b, ¢, d. k. where used, represent real numbers,
(1)  Addition: (a+ib)+(c+id)=(a+c)+ilh+d)

(i) kla+ib)=ka—ikh

(1) Subtraction:{a +ib)—{c+id) = {a + ik

[—(c+i @©
@ t[-b d)
(iv) Multiplicatm@inm 1 The ‘Eui {ac—bd) +itad + be)
1.1.3 Com r ' Ordered Pairs of Real Numbers

mpkx numbers also by using ordered pairs.

4

Let " be the set of ordered pairs belonging to % »« 7% which are subject to the
following propertics:
i) (wb=le.disa=crnb=4d
(ii) (@ B)t(ce.d)=(atec,btd)
(i1} (@, bW, d )= {ac—bd, ad + hec)

Then C is called the set of complex numbers, li is easy to see that

(a,p)—(c.d)Y=(a—c,b—d)

(iv) Ik is any real number, then &(a.b) = (ka, kb)
Properties (1), (1) and (11} respectively define cguality, sum and difference of two
complex numbers. Property (iv) defines the product of a real number and a complex
number,

Example 1: Find the sum, difference and product of the complex numbu’@md
(3, —6)
Solution: Sum=(8+5,9-6)=

Difference = (; ;
Product = |
QF\W
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1.1.4 Properties of the Fundamental Operations on Complex Numbers
It can be easily verified that the set C satisfies all the field axioms i.e., it possesses the
properties of real numbers.
By way of explanation of some points we observe as follows:
(1)  The additive identity in Cis (0, ).
(i) Ewvery complex number (o, &) has the additve inverse (—a, —&) Le.,
(., By + (-a, B =(0,0)
(1ii) The multiplicative identity is (1, 0) i.e.,
(a, b¥(1, 0)=(a1—=b0, b1 +a0)=(a b).  The set C of complex
= (1, 0} (a, ) nmnbersdoesnotsausﬁ/ﬂle
DﬂlEF ﬂxlﬂﬂl& II‘I Aact
is ]

(iv} Ewery non-rero complex number {ie., number
not cqual to (0.0} has a mulaplicative inverse.

The multiplicative inverse 06 %\@
( z '
le e | = (1, 0), the identity element
3 a +h
( a b

](ﬂ b)

=|\Lﬂ' 4.4
(v} (a, D) [ie, d) Lde, )] (a, e d) | {a, fi*} ﬂ
Example 2: If z, =(4, 2) and z, =(3,~1), then find =

Solution: Given % ={4.; 2}, - ={3,—1}
(4,2) 4+ 4+2i
Y% O-1) 3-f
Multiply the numerator and denominator by the complex conjugate of z, =3/
g ARl 4+2f’x3+i

T
_ (4030 + ()0 + (20N + (2000 _12+4i+ i+ ’?:
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1.1.5 Argand Diagram
Every complex number will be represented by one and only one point of the coordinate plane
and every point of the plane will represent one and only one complex number. The
components of the complex mumber will be the
coordinates of the point representing it. In this
representation the x-axis is called the real axis and the

2 : : : 2 A(3,2)
p-axis is called the imaginary axis. The coordinate ]
plane itselfis called the complex plane or z —plane, The
figure representing one o more complex numbers on | + 1 4 >X

the complex plane is called an Argand diagram. The
Arpand diagram is a way of representing one or more
unmplc,x numbers on the cmnplcx mec, F'mn

\fw‘.! _ 342124203 2iand2-2i
- po the order pairs (3, 2). { 2,20, (-3, ~2) and (2, —2) respectively have been
represented geometrically by the point A, B, Cand .

Modulus of Complex Number: The real number

Az, ¥)
-.,,':cj - _;-: 15 called the modulus of the complex number é «, ;
x+iy and it is denoted by |x+ iy|.In Figure (ii), |04 T
] : : 4
represent the modulus of x+iv. In other words, the € v i T

modulus of a complex number is the distance from the
origin to the point rcprc&‘:ming the number.
20y’
=i
(1+ 2i) _1+divd? 344 2+i —6-3i+Bi+di’

2-i 2-i IR T m
O

Example 3: 1If = then evaluate |z|

.
Wl

Solution: z=

_ —H+5i-4 -10+35i

2
T 5 @@W]@
O
T:ilurlg Lun_]ugalL @
QF\W
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and  [7]=|-2-1]= (-2 +(-1)" = VA1

= |E|=~..u"§
P EXERCISE 1.1 g

1. Simplify the following:
=1
i i* (i) " (i) i) " {iv) (=1)?
2. Provethat z =z iffz is real.
3. For ze €. show that:

@) ZrE=Re(2) o @@%@O@(@

; 1 2
(Jll} {iv) —=—
|z

~; np ic unu. inverse of each of the following numbers:

(i) (v2.=5) (i) (1.0

4 bcpum le inlo ]'L‘El] and imaginary parts (write as a simple complex number):

o 2=Ti _N 24 3y i (43
(1) . (11} g {my — {1v) u
4+5i 1+1¢ 1+1§ 4-3i
6. If z=2+i,z,=3-2i.z, =1+ % then express — in the form of a+ib.
7. MWz =2+Tiand z, =—5+3i, the evaluate the following:

@) [2z-4z,|  G) Pz+2z| (i) [7z+22,

vy Iz + 22_]'—'|

1.2 Equality of Two Complex Numbers

The two complex numbers z, =a+5i and z, = ¢ +di are said to be equal iff Ihe-ir real

and imaginary parts are equal i.e., a+bi=c+di<ra=candbh=

Example 4: If (3+2)(x+iy)=5+12i v.h ; x }

Solution: Given that (3+2 é
54128

G

1 and ¥.
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Comparing real and imaginary part, we have

3x-2y=35 .(1)
2r+ 3v=12 L)
Multiplying equartion (1) by 3 and equation (ii) by 2, we have
Ox—by=15
4o+ fy =24
Add the equations
Oy—6yt4x+ oy =15+24
13x =39
x=3

Substitute x = 3 in equation (1), we have
9(3) tv=15 @o
TG

of a Complex Number

juare oot of a complex number is another complex number that, when squared,
give the original complex number.

Let w= p+giis a square root of a complex number z=x+iy, where pg.x,0e R,

then w=+/z .. A1), taking square on hoth sides, we get

e

(ptigF=x+iy
P 2pgi—gt =x+iy
Equating real and imaginary part, we have
x=p*—g* (1)
¥ =2pg . (iii)
We know that { p*+ g% =(p* ¢*)" +4p%g°
Substitute x= p" —g°, v = 2pg in the above equation, we get
(P gp =24y

—— prg= qu: +y° ... {iv) @m
From equation (ii) and (iv), we have £ p il @w =¥ v | Solving for
the values p and ¢, we “l
“ and g= :!:’HLI- +; =

O
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From equatmn (iii): ¥ =2 pg , thus we have
« =0, 0ifp and g have the same sign
oy ifpand g have opposite sign
o y=0ip=00rg=1>0
Therelore, the square rool of the complex number z = x4y is given by

2 l}.-;l 2
| .

|’+x L |2 |—.r

or Jz=+ B | ] ..[v}, where |;| X"+ ¥ =0 is modulus ﬁ%

cqualion (w} 1% the required formula for -squ T T W@G@C@

3..-
3+ 2
2 -
¥ 1+
X =)
b e e e e
2 : P S . ) 2 =z
|:|:|5+12,1: $+173%=13, e 1“_ 1 2 3 4
Applying the square rool [ormula lor complex U
numbers, we gel Al
| IR B i
5+]2€=ii J l )
| 2 |]2| 4§

(ﬁfn’\'{_] (3+2i)

Thus, the square root of the complex number 5 = 127 are 3 + 27 and -3 — 27 arc shown
n adjacent figure.

V" EXERCISE 1.2

.  Find the values of x and y in each nl “thetol lowg @ @©
(1) +iv+2- 3r-—u[5—f é “
Gy (x+ ey}l{@

(iii)
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2. Iz =<13424i and z,=x+ yi, find the values of x and y such that

3. Find the value of x and v il

(i) (x+i) =25+60i (i) (x+i) =64+48% (i) xi ;}-:L_”ﬂ
' (1+37)

4. If z;=2+3% and z, =l-«, find the value of & such thal Im{z,z,)="7.
5. MWz =x+yandz,=a+ bi findx, v, aand b such that z, +z, =10+ 4i and

2 — & =6t 2L

6. Showthat ¥Vz,zeC, 2z, = "_- z, @ @@
| i i @MM] 119+ 1204

T+ iWx+ i+ {(=1=-50)=i(l 1=i)

ey +3=iI1=i)=H

[1. Find the values of @ and vaf:

(i) (w+iv) =20+21 (i) (w+iv) =48-10i
12. If z;=4+57 and z. =e —2i, find the value of & such that Re{z,z.)= 20

1.2 Complex Polynomials as a Product of Linear Factors
A complex polynomial P(z) is a polynomial function of the complex variable = with
complex coefficients, It is expressed in the gcn.e:ral form as

Piz)=az"+a_z""'+. +az+a,
Where a,.a, ,...0.aare complex numbers (@, #0), and #>0is an integer
representing the degree of the polynomial,

For cxamplcs Pl,’z}= (1-iyz + 3, Blz)=(5 - 4i}zl +(2+ iz + (3 4i)and

into a pmdum of 11@
According to the F

o) [\

ANV A
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A corollary to this theorem states that any polynomial Piz) of degree s can be factored
completely into a constant a and n linear factor over C in the form

Piz)=alz—zz—z,).[z—2,) (1)

where z,,z,...., 2, are complex roots of the polynomal. Once we know the roots of a
polynomial equation, we can apply equation (1) to factorad the polvnomial Fz) into s
linear factors. Specifically, it 2 and z, are roots of the polynomial equation P(z), then
the equation must be P(z)=(z-zNz-2z,). For examples, the polynomial
P(x)=x" +4 consists of real coefficient has no real roots, so it cannot be factored into
linear polynomials with real coefficients. However, 1f we considered as a complex
polynomial P{z)=z" +4, we can easily be [actored into two linear factors as m

P rd=(z+2z-2
-2 W@@@@
& A ol ;:sfy}‘{z = 0 are called the zeros o

P(zy=z"+(1-i)z—i
=z +2—fz—i
=z{z+1)—il(z+1)
=(z+1)(z—1)

Example 7: Factorize the polynomial P(z)=z" -4iz+12
Solution: P(z) =z* —4iz + 12
2 —diz—(-12)
—diz— %12 S
7t -6z + 122 — %12
=z{z 6+ 2z o)
= {z = bi)(z + 2i)
Example 8: Factorize the polynomial P{z) ="+ (1 +i )" + iz

Selution: P(z) =2 = (1 +N +iz
=z + (1 +iz+i] @@m

It
l-L' [

&)
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Key Concept

The Rational Rool Theorem is a mathematical tool used to find all possible raticnal roots of a
polvnomial equation with imteger coefficients. According 1o rational root theorem:

If a polynomial Mixy=ux"+a_x"'+..+ax+u has integer coefficients, then every rational

o % (i simplesl lerms) selsfes:
{1} p 15 a fuctor of the constunt term ay. (1] g 15 2 factor of the leading coefficient @
Example 9: Factorize the + polynomial P(z) =z —3z* +z + 5,
Solution: According to rational root theorem the possible root of the equation are =1

and =5, On checking, we sce that =z =—1 is the root of the polynomial P(z) because
P-1)=(-1F =3(-1p + (- +5=0.

Soz+ 1 1s a factor of the Piz). Using synthetic division @ @@m
1]1 | @ W

ox %&

Therefo XE +1}{ '—4ﬁ+“1 sfi)

V\wm”s of 7 — 4z + 5 using quadratic formula

2 —4z+5=0, here a=1,b=-4,¢c=35
A A0 _4116-20 414 412
z= (1) 2 2 2
= z=2472
The quadratic factors arez” —4z+5= ( ["+:})[- —(2-i))=(z-2-i)(z-2+i)

Substitutes in equation (i), we have the
=3z 4z +5=(z+1){z-2-i)z-2+i)

1.3.1 Solution of Quadratic Equations by Completing the Square

Aswe learned in previous classes, completing the square is a powerful and systematic
method for solving quadratic equations. This technique involves rewriting a quadratic
cquati-;:m in thc form ax *+ by + o= U inm a pl.:rj‘r.:r.:l square Irinumial._ which Lanm

Example 1i: Solve & Az 2z + 30 = 0 by completing square method and

hence
a [\ N
AVAY
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Solution: 22— 12z+50=0
Dividing both sides by 2
F—bz+25=0
=5 22-23z=-125
Add 3% on both sides
23+ = 25+ 3

(z-3F=-16
= z—3=%4-16
= z=34+4

Therefore, z=3+4ior z = 3—4i are the required complex roots.
Using the corollary of Fundamental theorem ol Algebra the eg

using the roots 3 + 4iand 3 44 as:
27— 122+ 50 =2(2" — bz + 25)= @A@E@

Hence, 2z =12z 4 \‘\

Wo EXERCISE 1.3 _d
2 actorze the following:

(i) o +4b (i) 9a°+ 166" (i) 37+ 37 (iv) 14dx" + 2257
(vl #—=2iz—1 (vi) 2+ 6z+=13  (vii) 2 +4z+5  (vii) 227 —22z+65

(z=3-4i}z-3+4)

2. Fuctorize the following polynomial inte its linear factors:
(i) Z+8 (i) Z2+27 (i) F-27+162-32 (i) '+ 2127 =100
(iv) =16 (i) z*+32°-4  (iv) z*+52°+6 (v} Z'+72°-144

3. Find the roots of z* +7z° <144 =0 and hence express it as a produect of linear

factors.

4. Solve the following complex quadratic equation by completing square method:
(i) 2z —3z44=0 (i) = —6Gz4+30=0 (iii) 3z°—18z+50=10
(i) 22 +4z+13=0 (i) 22°+6z+9=0 (i) 32°-5z+7=0

5. Solve the following equations:

(i) 2='-32=0 (i) 32°—243z = {m] z@m
(iv) =52 +z-5=0 (v) 4z —2‘~3+21 ’ 1=0
6. Find a polynomial of degreg 3 {X|i s ng Pi, 1 )=20.

Find a pnl'-,m 12l of de . and satisfying
P2y = 240,

im{i a |1;Flﬁn%

ored 4 with zeros 4, 4,1 1 4, | — i and satisfyving
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1.4 Three Cube Roots of Unity Note:

Let x be a cube root of unity We know that the numbers contuining
7 7“# i arc called Complex numbers. So

g &= 1+ AL J— o
= r=1=10 z
= - txt1) =0 ﬁ““wmw“mﬁ
Either i-1=0= =x=1
or ©c+x+1=10

—|—m H-J_a

xr =

‘Lc;@ W C
Thus, the three cu ‘ K @@@ = )
%% l+..j'_, —l—ﬁj

2

—-

Properties of Cube Roots of Unity
( 1} EaLh complex cube root of unity is square of the other

= T - £ i i
I 3 J:E = g, then —I 2\1@ = @,
and if — J-I . then HJ_E = @ [e is read as omega]

{i1) The sum -rJf all the three r.:ul:re roots of unity is zero ie, 1 — w+ =0
(iii) The product of all the three cube roots of unity is unity ie. l-@-@ =o' =1

1.5 Four Fourth Roots of Unity

Let x be the fourth root of unity

1—il

. B— 1L
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1.5.1 Properties of four Fourth Roots of Unity
We have found that the four fourth roots of unity are: 1,—1,+i,—i
(1)  Sum of all the four fourth roots of unity is zero
1+ (-1 +i+H)=0
(i1} The real fourth roots of unity are additive inverses of cach other
I and | are the real fourth roots ot unity and | + (-1} =0=(1)+ |
(iii) Baoth the imaginary fourth roots of unity are conjugate of each other
i and — are imaginary fourth roots of unity, which are obviously conjugates
of each other.
(iv) Product of all the fourth roots of unity is —1 e, 1= (=1} = { = (=) ——1

Example 11: Prove that:(x" +17) = (x + p){x + en)x + o 1-} @ @©

Solution: RILS = {x | ¢)x | ay){x ar i)
,w+w=-11=LHS.

{a: + ¥)[x + (g 9

M 2 11 + )

Hence proved.
WNMW “EXERCISE 1.4 _4

|. Find the three cube roots of:

(i) 8§ (i) 8 (iiy 27 (iv) 64 {(v) 625
2. Evaluate:
(i) (1+@—mwf (i) o™+ ™ +1 (i) (1 + -l —ota)
\.'-v‘ 57
(iv) [H ;’__3 J + [—_I—zﬁj W) (A+=3Y +[=1-4=3)°
\
3.  Show that; iy x l"1 ={x— ¥ix —wy)ix ok )
(i) S+ +8—Inz=(x+ptzlst oyt oo+ @'y + ax)
Gii) (1 + @)l + &N + oW1 +@® ... 2n factors = |
4. If@isarootof v + x+ 1 =0, show that its other root is & and hence prove that

w =1, :’ m

5. Prove that complex cube roots of 5 an prove
[ —134/73 1
that | %‘3 14+

- i
- % ROUS s
fi.“ F\WM@ i of unity, form an equation whose roots are 2w and 2o,

I-3)" =16

ove that |
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1.4 Polar Coordinates System
Polar coordinates are often more convenient than giF
Cartesian  coordinates in situations  involving
circular or rotational symmetry, or when a
problem depends on distance from a fixed
point and angle relative to a reference direction.
Just as the Carlesian coordinate system uses an
ordered pair (x, ») to describe the position of a
point, the polar coordinate system determines
the position of a point using a directed
distance » from a fixed origin 2 {called the pole)
and an angle il [hﬂt t.he line mmm‘rmg the 1:11' oin

aligm:d with Lhc ru:u:;i
caton of a point P can be described by polar
twhere »# and 7 are real numbers.

Rectangular cooedinate 1 Polar coordinate
Ay, B
---------- TI’(r, ¥}
. r
L i o Polar axis
While ris typically considercd non-negative (= 0), it
; 4 ! : : #
iz also possible for v to be negative (r < ), The value :
o x s x a gt (&
of r changes depending on its sign, and this atfeets the fl 3
o “ i "»
position of the point in the plane.
When r = 0, the angle # is the measure of any angle in %
standard position whose terminal side lies along the e m
line connecting the origin to the point £, measured @@
counter clockwise from the polar axis (pysiti @m a0
4
For example, the p a 0| Polar axis

pmnt 3 u e at an angle of 2 radians.

1
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When r < 0, the angle @ is the measure of any angle
in standard position whose terminal side lies along
the line connecting the origin to the point £, but the
point (is located Irlunits  in the opposite /" '\\1\5

direction {i.c., &+ ) from the polar axis {positive -

axis). For example, the polar coordinates

[ %) ; . Q-5, %J
l—j,z J represent a point 5 units away from the

e . T o
pole, but in the direction of I+‘R’ = = radians.

Consider the adjoimin
onsider the adjoing A 0)

complex number i
S~ #
and y = rsin#, where : y=rsind

we § ’ 3
r 18 modulus and & is called an argument 0"\

i

ofz. g Ols-reosll M ¥
llence X+ iv=rcosld v irsingd (i)

where r=|z|=\1,m and #=tan 'Z (x£0)

Equation (i) is called the polar form of the +

complex number z . . ; ;
p m We can write cosd — fsiné =cisé

Example 12:  Express the complex number 1+ i3 in polar form.

Solution: Step—T : Putrcos#=1 andrcos# =3

Step—11 : r* = (1) +(ﬁ)2 Note:

= F=1+3=4 o Ifz=0,y>0thenl= —

= r=2

5 - [}
; = A3 = O 2
—_ k=S = — 0 '
Step — 1 & = tan 1 tan «J'éf m T
Thus 1+i/3 : %
Principal Arg eﬁk ineipal argument B of a complex number z = a + bi is
the &?Mv posilive real axis and the line joining (a, f) 1o the origin
ol

\J ™
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in the Argand plane,
[ &
qf b
argz=#=tan 'l -
a
It is denoted by arg. It is a single, specific value of the argument, typically chosen
within a standard range: are z € (—r, 7).
1.3.3 Operations on Complex Numbers in Polar Form
Addition and Subtraction of Complex number in Polar form
Let z =u{cost, +isind Jand z,=r(cos#, +isind, |be two complex number in
polar form. The addition and subtraction of two numbers can be computed simply as
2+ 2z, = 4 (cosf, +isind, )+ r,(cosd, +isind, )

and z,—z, = f{cosd) +isind, )—r, (cosd, +isind, ) @ @@m
Multiplication of C{rmple,' ‘ i m Eg ©
‘ 0

Let z, =n{cos0, +r i
umbers can be derived by multiplying them

complex number in

.AA

polar form. The pr
directly and simypli
= qu:116' -1, cosd, +isind, )
Z-Z,=pF [ma[}, cosd, +icosd sind, +isind, cosd, +i' sing, sinf}z]
-z, = [ (cosd, cosd, —sing, sind, )+ i cos, sind, +sind, cos@,) v P =—I
A A [L‘U:&(E"I +6. ) +isin( &, +8, ) : {Using trigonometric identities)
Thus, multiplying two complex numbers in polar form involves multiplying their
moduli and summing their arguments 1.e., arg{z -z, )= arglz )+ arg(z,)

e A o
Example 13: Find the product of S[cos% +i smg} and 4[1:05% +isin ?‘? J

( = T {3z Iz
Solution: Let z, = 3| cos —+isin — J:md Z= 4lccus—+fs.in— |
: =
9 & & 2

Here, 5 =5and &, =%, while r, = dand &, =%

Substitute this value in the product formula

. =r.r.[4:¢:|s{é' +0.)+isin( &, +6, ) @
_ ) <EH 0

_5x4 wal 2 E +isif]\: @k@+ in—

,. ‘ 3 3

. b a
the 3 200005 2 + isin =2 |
m@& S
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Division of Complex Number in Polar Form
Let z, =x(cosf +ising )and z, =#(cosé, +isind, )be two complex number in

polar form. The formula for division of two complex numbers in polar formag be
derived by rationalizing the denominator,

r;(cosd, + isind, )

1, (cosé, +isind, )

Fa I_t"l

[5] I_ll

r(cosf, ~isind, ) (cosd, —isind, ) ( Multiply and divide the equation
ry(cos#, +isind,) (cos#, —isiné, ) [bynunjugatcni:‘cmﬁz+:‘sin91
r, (cos@ cosé, +sind, sind, )+ i{sind, cosd, —cosd sind, |

cos” Hz+qm 6‘

_ f[um(r; —8,)+isin(6,-8;) ] O ““vw“. L1dumll.n:-,‘]

Thus, the maody lua R ilex numbers equals the quotient of
their moduli, whj t‘.‘ i ] thr;. quotient is the difference between their
argun

[y |-=

5] |_l-‘|

Nl_'

dwidmg two complex numbers, the modulus of the result is the ratio of
their moduli, and the argument of the result is the difference between their arguments

Y

Z
-

i.e., arg( =arg(z,) —arg(z,)

l‘k—
I 3 . i
Example 14: Divide —I LUb?+Ib1ﬂ 2 Jbv —| cos 5 +;sm[ —

4

[

S =y

i

2

Goid ag . (" T .. ) 3 T i
Solution: Let z =—| Cos — + f51n— |and z,=— cus[ W+ zslnL
A (3] 6 ) 2 :

M|:‘1
L S
. d

3 ]
Here, rl—z H|=?—ﬁ,rg=—aud92=—£.
7 a5 2

Substitute value in the guotient formula

il :ﬁ.[cgs{f}l -—E?l]* isin{f?, = ﬁ‘.}_i
-'.. rl;.' e
. el [ :r]} o
=Zx 2| cos| ——| - | |+isin]
T 3 L6 2} D)

= Iﬂ[ 5 : .

— —| QDS + 1l
Zy 21y 3
number. KX

o) J\
AV,
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Example 15: If z = x + iy, then write the equation [3: - :] =[3z+ ?| in term of x and y.

Solution: Given i3f«:—1‘|= .:+‘?\ s

3z —i| =3z + i) —i]=Bx+iBy—1)|= JBX + 3y -1)°

34 3y + 7= Ba- 3 7] = Bt T (-390 = /B4 TV 4 (-3p)

Substitutes these values in (i)

3E|?|=

JOXF + 3y -1 =J(3x+ 7 +(=3)

Taking square on hoth sides m
GxF +@y—1)? =GBx+ 7 +(=3)° @ @
9x? —w—m-l—ur+41r®4§ @
or \§ gt —
T .-.‘C 8 rcpreqmt': a straight line in the complex plane.

Example 16: Show that (.r+2 +‘L' — g *WJ +2;] I

=— for z=x+iy.
g—=2

42 x+iy+ 2 x+i(y+2)  x+i(y+2) x-i(y-2)
z—2% x+iy-2i A I+i'(_}’—2} 3 .r+;r'{_}-'—2_} x—:'(y—l]

Solution:

‘—""‘21'_'["'3“"»"'2'4)““4‘-"_ Xay-4 . dx

2-2i @+(y-2f TR (-

(\
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1.5 Complex Numbers in the Real World
(Voltage, Current and Resistance)

Ohm’s Law is a fundamental principle in physics that describes the relationship
between voltage *v', current ‘1" and resistance ‘R in an electrical circuit.
Mathematically Ohm®s Law can be expressed by the formula ¥ = IR .
when dealing with alternating currenmt  (AC) circuits, resistance generalizes
to impedance (£). Resistance in a circuit is due to
inductor (X, ) and capacitor (X,.). Their difference is
reactance X = (X, )} — (X,.). Geometrically it is shown
in the adjacent figure. Here Z=R~+iX
Then for AC cirewits, Ohm's Law m Terms of
Impedance is expressed by the fo “@

‘ : : ( N1ikha s A

Example 17: IT the impedance of di

voltage of 25{ cos | ¢ value of current in the cireuit.

Solution; 1 he voltage 25(cos 30° + [ sin 307} and impedance
| S35 ain 55,357 into the equation ¥ = IZ , where F is voltage, / denote
the turrent and £ 15 impedance.

Eﬁ{cnﬂ 30°+i sin 30°) = 1 .1)(cos 55.35°+ sin 55,35°)
= ES(CHH 30° +7 sin 3(]”)
1{cos55.35% +i5in 55.35")

ar

fe 'ﬁ cos(30° - 55,357 )+ isin( 30° - 55.35°)

7=2.27[ cos(~25.35 ) +isin(-25.35 ) _

Express into rectangular form
£=227[0.90+i{-0.42) = 2.04-0.95i
Thus, current 1s 5—4.217.
Cry |}Irmr‘!|lll\ It is the science of securmg mfnnnauon by tranaformmg

meplelﬂ Thiz 6
k=12 + 3i and t

multiphcatiy
FRVANTANUN
VA

complex numbers.
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Each letter of the alphabet is assigned a numerical value as follows:
A=1B=2.C=3, ....f=26

Solution: First, we assign each letter in the word “MATH™ a complex number with

zero imaginary part. The encryption and decryption shown in the table below

Letter [Comples Number (2}  zencrypled =z =& |z decrypled = 2 enerypled / &| Letter
M 13+ O (13 +W2+ 30 =26+30 (26 + 39D /2130=1310¢] M
A 1+ 0§ (I+0iM2+3ip=2+3i | (2+3D/(2+3)=1+0i A
T 20+ i (200 + 02 + 37} =40+ 60| (40 + 604) 7 2 — 35 =20+ (i T
H B0y (B A+ W2+ 3= 16+ 244

2. Express the following complex numbers in polar form -

§ ; 1 43 5
1) 43 uy 1+ i) —+—i i
(1) (i) (it} g (iv) .

5 8 o b s o8 R
V) =——i Vi) —4—i (Vil) == =—i
o WE (1) 5 2 3 3

3.  Convert cach of the complex number z in the rectangular form x+ iy :
5 ey T T 7
i) 4 cos£+e'5u1— {ii) cc-s—+:9.11_1.i
3 3 l f i
: 237 i IR

(iii) lz|=7, mg(z}zﬁ (iv) |z]=11, arg(z)= T

10 17z

) |z7|= o ara(z) i {vi) 2cos(—33)+i2sin( am

{vit) | |_12 arglz)=nm W
If 2, = 9| cos 22 i m ~— ,»,m_i I

then find
{iii) z {ivy =

i

=
-

1

(]

|"1
[

| ty

L8]

"2




; f e . = [ i ) .
5 0 p= '.-‘| 08 —— + isin —=— | and z, =1 ]| cos—— +isin— | then find the
2 ¥ 4 i \ 12 iz
following and express the result inw x + iy form
; o e 5 Z
(i) z+z (i) z-z (iii) z -z, (iv) =+
2
6.  Divide z, = 6icos 150° + i sin 1507) by zy = Mcos 30° +i sin 307} and express in

X+ iy form.
7. Multiply z; = 2(cos 607 + i sin 60°) and z, = 5(cos 90° + J sin 907) and express in

x+iy form.

8. Find the modulus and argument of z = -2 — 2J. @ @@m
_ . o)
9. Wrile the equation ttrgl: -2t @‘_ =x+iy.
Q
10 If 2= 5+ akd\axg ()
: ‘% aR=
O

I ¢4y and arg(z—2-3i)-arg(z+2+3i)=2r, show that 2y = 3x.

— ,show that x* + ¢’ ~4x+2y-5=0.

12. Solve the equation |z - 2i| = |E + ;’} for z=x+iy.

13. For z=x-=iv, solve the cquation |5’-— 4+i = |S:——3+ 2

14, Determine the set of poinls = = v+ iy that satisfy the equation |3E— 2+ .r'l =3z +i.
: [ 7 )

15, An AC source supplies a voltage of V= ]20| c{}s;+fsinj | valts to a eireuit
\ ),

1+ I'\"j
16, An AC circuit has an impedance of £ — 3 — 6/ ohms and is connected to a voltage
source of ¥ = 90 30i volis. Find the current in both rectangular and polar form.

17.  Encrypt the word "CODLE" by multiplying the complex encryption key & = 2 = .

Then decrypt it back to the original word. @
18, Consider the complex encryption key &5 3 — EW B A1

with impedance Z =

ohms. Caleulate the current in polar form.

then recover the original w
19.  Encrypt the ward\“CL.

Then decrypt “
o

ex encryption key k= - 3 + 4i.
ol



INTRODUCTION

Functions are fundamental in mathematics, describing relationships between inputs
and outputs through a rule of correspondence. Understanding key concepts such as
domain, co-domain and range is essential for analyzing different tvpes of functions,
including one-to-one, onto and bijective functions. Graphical representation helps in
identifying intersecting points, such as where a linear function meets the coordinate
axes, where two linear functions intersect or where a linear and a quadratic function
cross. These inlersections provide valuable insighls into solving equations visually.
Additionally, exploring square root and cube root function graphs allows for nmr

L .

understanding ol their unique properties and behaviour. '
problem-solving skills by combining algebrait and es-Fo Tunctions.
2.1 Concept of Fum:t Q@:
¢as IECagmze g@éﬂ : fi Mathematician Leibniz {1646-1716)
1 ) ¢ q

¥

uantity on another. The following examples
illustr Chis e
(i

¢ arca 47 of a square depends on one of its sides “x" hy the formula
A=x", so we say thal 4 is a [unclion of x.
(i}  The volume “F” of a sphere depends on its radius 77 by the formula

4 . .
V= E:rr" . 50 we say that V is a function of 1.

A function is a rule or correspondence, relating two sets in such a way that each
clement in the first set corresponds to one and only one element in the second set.
Thus in, (i) above. a square of a given side has only one area and in. (ii) above, a
sphere of a given radius has only one volume,

Now we have a formal definition:

2.1.1 Definition (Function, Domain, Codomain, Range)

A function / from a set X to a set ¥ is a rule or a correspondence that assigns to each
element x in X a unique element y in ¥, The set X is called the domain of 7.
il;&&c

The set of corresponding elements y in ¥ is called the pange of '
codomain of 4 function is the sct Y in which i.lnc;; 'b T he.
‘@ erithat the

Unless stated to the contrary, nw%i ser X and Y consist of
real numbers. <
: ol\ T‘/f?/(\\ N

e
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m'&a—dﬂmain is the set of all possible outputs but the range is the actual set of outpuis
produced by the function under the given domain that is range set i3 always a subset of co-domain,

2.1.2 Notation and Value of a Function

If a variable y depends on a variable x in such a way that each value of x determines
exactly one value of p, then we say that “y is a function of x7.

Swiss mathematician Fuler (1707 — 1783) invented a symbolic way to write the

statement *y 1s a function of x™ as y = fix), which is read as "y is equal to fof x™.

A function can be thought as a computing N

machine /" that takes an input x, operates | Funetion ity
on it in some way and produces exactly Iapulx [ g@%ﬂ“)

one output fx). This output f{x) is c:s&be

S ; ; g L Py g Machine
the value of fat x or image ol ol
the output fTx) is denbted -"ﬂ &E ayy and we write v = f{ x).
i ndependent variable of fand the variable y is called the

The variable xigca
e of /. For now onward we shall only consider the function in
whiclr the variables are real numbers and we say that fis a real valoed function of

real numbers.

Example I:  Givenfi)=+ 2¢+4x Lfind () A0 (i) A
i
(i) fi-2) (iv) A1+ x) (v) f:(— | x=0
VA

Solution: fix)=x"—2x"+4x—1
(i}  AG=0-D+0-1=-1
i) AD=01Y-201P+41)-1=1-2+4-1=2
(i) A-2D=(-2P 22 +4(-2)—-1=8-8-8-1=-25
(iv) fil+x)=(1+xP =21 +xF+H1+x)—1
=1+3x+3+xr -2-dx—-2"+4 +4x— |
=+ +Ix+2

D{}mﬂiW%
o AN\
AV A .
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Example 3:  Find the domain and range of f{x)= 2'.:

Solution: Atx=2andx=-2, fix)= is not defined. So,

Domain /= set of all real numbers except =2 and 2 or #-{-2,2}

Let y=;4:} r{: —=x=x" 1!—411—1

.1"_]-' == 4}’ =0 Remember!

—{—'I}:t\/(—l)‘-'—4{_}-‘)&4'1.'} There are two  types of
= 2,‘_, intervals  known as  open

interval 'md closed i
|+1m- e %@@ b
x: . n
2y @ rval
% is defined ag ¥ v# I gndooints are included.,
For = x=
3: —4

S&Mf all real numbers or {—,«)

Example 4:  Find the domain and range of f(x)=+x"-9.

Solution: x' =920 = ¥’ =920 ...(1)
jai ¥ —0=0=> x=%3

Critical points divide the number line into three regions:
Putx=—4in (i), 16=920 (True)

Putx =0 in (i), =920 (False)

Putx=4 in (i), 19220 (True)

So, domain /= {—c, =3] W [3, =)

The smallest value of ¥ —94s 0 (when x=13)

sy giegiog

As |r| inereases beyond 3, 7 — 9 grows to +oo, S0y grows to -+

So, range /= [0, =) @ m
2.1.3 Vertical Line Test O @

The vertical line test 1s a methpd ps a graph represents a
function. A graph @gpresen ' v nf no memcal line intersects the
gmph more th..m 0 ertical e passes thmug:,h the graph more than once, it
is not a [y :EX

al) \
\‘J\J
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Explanation is given in the figure,

¥ ¥ ¥ ¥
A i |

. | i 1

I : )
: | - |
15 > - ”[ : »1 \l : >

{a} a function {b} a function (] nota funclmn {d} not a function

[,

o[t

T 1
! I
[ i
[ i
2.1.4 Types of Function

(i) One-to-One (Injective) Function

A funclion [ is one-lo-one il dilferent inpul:-. produce

Six)=f(x,) implics x,= x,. This mLﬂ@ Ltha

93- ¥ is called onto (or surjective) function if every element in the
co-domain ¥ has at least one pre-image in the domain X In other words, for every v
n ¥, there exists an x i X such that f{x) = y.

For example, f{x)=2x+3, where the domain and co-domain are both real numbers.

-_3 E - 5
Here y=2x+3 = x= LT . Here for each v in R, there exists L,

— in & such that

a

fv—13 ; st e
F ( ~ )= v. Hence fis an onto function.

(iii)  Bijective Function
A function f: X — ¥ is called bijective if it is both one-to-one and onto.
Piecewise Function

A pieeewise funclion is a function that is delined _;-1:
by different expressions (or "pieces")  over _ _ 2
different intervals of its domain. Each piece applies m
to a specific part of the domain. X' LN (1] @ X

[ 2x+ i'w@@ m&ﬁ%fy\“z I i
For example, f{x)= Jl S . @ it

X5 / 2

For x =0 the fun \m ¢ 22 F1 and for —1 i B I
x=0, It Lgé o




Functions and Graphs é;> Mathematics (_

Example 5: Show that the function f{x)= x+1, where the domain and co-domain

are all real numbers, is bijective.
Selution: A function is bijective if it is both one-to-one and onto,
A function is one-to-one if f(x )= f(x) = ¥ =x, lor f(x)=x+1
Suppose f(x)= f(x )
x+l=x+1
= .T.'l =.1'-3
So, the given function is one-to-one,

x =y 1) such that f{v—1) =y 1+1 = 1. Therefore, f(x) is bijs

-

Example 6i: Show that the function f@} = @
are all real numbers, s netther “

Solution: As f(x, — r,

T es not imply that x, = x, , for example | P

x=2x,=-2=x+x and f(2)=2= f({-2). | \

It is also onto because for every real number y, there is a real number v (spec @y

ah cn—dﬂmmn

Thus, fis not one-to-one. fi=1t=2

Also, the element —2 in the co-domain & 15 the smallest |,

4
3
i 1

i

value that f(x)=x" -2 can attain, and it is only | 3 -2 - :'/2 3
achieved when x = (. However, any number less than —2 b
=¥
b

{in co-domain &) is not the image of any real number x in
domain R. For example, f{x) = -3 =¥’ ~2=-3has no

P~ EXERCISE 2.1 4

1. Giventhat: (&) flx)=x—1 b)Y fx)=J2x4 2x+3  Find: @@\
(i) f(-3) (i) f(0) (il IIA—W@@®
2. Find et i) and Hm“

m f{t‘,l 4

real root.

(1) fix)=sinx
(iv) fix)=tanx

\J
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3. Express the following:

(a) Thearea A of a square as a function of its perimeter P.

(b)  The circumference C of a circle as a function of its area A.
(£} The surlace arca § ol & cubce as a funcion of ils volume I

4.  Find the domain and the range of the function g defined helow:
(1) glx}=353x (i) glxy= fx+2
[6x+7,x5-2
(iv) gix)= v) glx)=x-5
LR T o
5. Given fixy=x" —ax®* + be + 1L IFf{2)=-3 and f{—1)= 0, Find the values of
a and b,

. . ; .. . x42 @m

. Find the domain and range of gi{x)= @O@

7. A stone falls from a height oA G .@h Itht f after x econds is
approximatel €y vey ( ' :

(i) I e when:
. ol s ! (b) x=1.5sec? (¢) x=1Tsec?
i1 When does the stone strike the ground?

8. Consider the function f{x) = 3x -5.

(1) Determine the domain and range ol f(x).
{11} Ts the tunction fone-to=ome? Tustify your answer.
(iii) Is the function jonto if the co-domain is all real numbers? Explain.

)
9. Letf: K — R bedetined by f{x) = —

x—3

x+l
(i) Find the domain and range of f(x). (ii) Determine whether /' (x) is onto.
(1i1) Prove that / (x) is one-to-one.

[(). Consider the function /2 & &7 defined by f (x) = ¢, Show that [ (x) 15 a
hijective.

I1. Let gz E—E be given by mix) = 2 32 Determine if g(x) is imjective and/or
surjective.

2.2 Finding the Intersecting Point(s) Graphically m
] ] L

o
fi fanhctions.
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Example 7: Find the points of infersection of a linear functiony=2x+6and
coordinale axes.

Solution: Table values and the graph of ¥y =2x + 6
is given below:

x | y=2x+6

=] | 4

] 6

l 8 i
Hence, from the above graph, the points (-3, 0) and ({},6)are the f
inlerseotions of vy = 2r+ 6 and coordinale ax @

2.2.2 Intersection of Two

@@7

The point of intef
functions is_tl

eir graphs
¢© This means the two
funetions have the same x and v values at
that point.

Example 8: Find the point of infersection of
¥=3x+2 and y=-x+6.

Solution: Table of different values of x and v
is given below:

x | y=3x+2 | y=-x+6
I £ - P
L] 2 §]
1 ] 2
By plotting the above points, we see that {1, 5) is the point of inte Lmn

straight lines as shown in figure.
2.2.3 Intersection of a Ling ‘ 1 rdlu Fumlmn

A line and a paml:@ G 0 points, one point or not intersect at
svstem has two points of intersection, A single

all, If there are _ -
solutipg, i dl ere 15 only one intersection point, suggesting that the line
(\ A

\J
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may be tangent to the parabola. If no solution exists, it means the line and the
parabola do not intersect.

=

o

Hw

-y
%]

of 7 /

Twa Solutions (e Solutions ™o 'mlullnn

Example 9: Solve the hnear function —
y=x"—6x+3 graphically. %
% x

Solution: Clearly ( intercept and y-intercept respectively off

y==x+3
p=xi=bx+3 L)

Put x = 0 in (i), so (0. 3) is the y-intercept.

Put v =0 in (1), we have

0=x"—6x+3
_—(=6)=4 (~6)" —4(1)(3)
2(1)
rdﬁi—.«-hﬁ—lE
S T
624
2
ﬁ+2~f
Pi= 3:!:~J"-
x=3-16,3+6 @Q
x=10.6, 5=O “
So W x-lntercepls.
VAVTANN

M
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Now we find vertex (A, k) of the parabola
h —6
T —m =3
k=03 -6(3)+3=—6
So, the vertex 15 [3,—6)
Hence (0. 3) and {5,=2)are the solutions (points of intersection) of the given
functions,

2.3 Graph of the Square Root Function

Example 10: Graph the square root function v = 2x +1 % @m
§ n’

' a negative
number 15 not 4 teal number. Th
a non-negative nun %l
Table val Hof

)
WP R

as the square oot of

(¥ |

1 3

2 3.3

3 4.5

4 5

3 55

6 5.9 i 7 T I

7 6.3 | | x
2 6.7 ll!]l23--'1:5('.I'FN‘;'NI'H
9 7

10 73

2.4 ‘Gi‘aph of the Cube Root Function @@m
B\

;|
rcal numbers because

or zero) 15 always real. Therelore, the

)

Example 11: Graph the cube root fun{sn

Solution: As we know that cube\ry

w gl RYLH N ks g o3
domain ol the gi Lﬂ ‘ton 15 all real numbers. The range of the given
functign i eset of real numbers.

(\ A

\J
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Tahle values and the graph of the function are given below:

x
5 .8

4 1.7

3| 1.6

2 -14

-1 -1.3

1] 0

2 |

3 | X
4 |

5 |

seimething increases in quantity or size over time, it is called growth. For
example, money in & bank account eaming interest (it grows larger), a population of
rabhits is increasing over months.

When something decreases in quantity or size over time, it is called decay. For
example, a radicactive substance is losing its strength over years, a cup of hot
coffee is cooling down over time.

Example 12: The value of a stock follows the exponential growth model P(t) = P¢",
where F, is the initial stock price, r is the growth rate per year and 7 is the time in

years. Suppose a stock is currently valued at s, 5,000, and it is expected to grow at a
rate of 3% per vear.
(i) Find the value of the stock after 10 years,
(i) After how many vears will the stock double in value?
Solution: (1) The formula for the exponential growth is;
P(t) = Pge”
Given P, =5,000, r=

Using ¢"):

A
So, Afthestock alter 10
(\L

\J
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(i) We want to find r when the stock doubles, i.e.. when F(r) = 2F,. Using the
equalion;
2P, =F,d"
Dividing both sides by Fy, we have 2 =¢"
Taking the natural logarithm on both sides: In 2 =
and ¢ =In2/r=069310.05=13.86
So, the stock will double in value in approximately 13.86 years,
Example 13: The concentration of a pollutant in a lake, in parts per million (ppm),
decays over time according to the function

EHL—ig% N “‘iﬁgﬁfﬁké@;:j&ﬁm

‘ introduced!
: e pollutant after 4 days?

days will the concentration drop below 10 ppm?
100

Jeel

where 1 i5 the time in
(i) Whatis
(ii

s s

\
(0)

where ¢ 15 the

bl mt (1) The pollutant concentration function 1s Cif) =

time in days.
Concentration after 4 days:
100 104

Cid = = —= = 44 72 npm
e pp
The concentration after 4 days is about 44.72 ppm.
(it} When will the concentration drop below 10 ppm? Set Cif) = 1
100
0= =i +l=10=¢+1=100=F="09
Jr+1

Aller 9 days, Lthe concentration will drop below 10 ppm.

P EXERCISE 2.2 R

y=2x-1

Find the point of intersection of the cog

functions graphically: Q
1) y=-5x4 KXX
a0
VAVIANIN N
\J

3
(iv) y=3x+3
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Find the pointis) of intersection of the following functions graphically:
(1) Jfix)=2x+5, g(x)=—x+5
(i) fix)=3x-2, g(x)=10-x
(i} fix)=2x-4 | g(x)=3x-1

6 Fliie i, Hm %I+ 3

(v) flx)=x-1, glx)=x"—dx+3
(i) F()=3x+4, g(x)=2"+2x-8

Graph the lollowing [unctions:

(D) y=~3x

WL@Q =

(vi) r=23x-3

bailding's height over time is modeled by H(r) = 100 + 20¢ which is in metres
and ¢ is the time in months. The height of a growing tree nearby is given by
Ty =50+ 10¢ + £,
(i) Atwhat time will the building and tree have the same height?
(11)  What will that height be?
Sketch the graphs of both functions and determine the time when the tree will
overtake the height of the building.
A radioactive substance has a half=life of 2 years, If the initial quantity is

: , g 1 e
200 grams and the exponential decay function is Q=0 | T ’ . then find the

remaining quantity afier 6 years graphically?




ol
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Q 'heory of Quadratic
Functions

INTRODUCTION

This unit explores methods to find the maximum and minimum values of quadratic
functions using completing the square and graphical analysis. [t also covers the inverse
of quadratic functions, determining their domain and range. Additionally, students will
learn to solve absolute value quadratic equations and inequalities, as well as equations
of rational, radical and exponential forms that can be reduced to guadratic equations.
Finally, the unit demonstrates the practical applications of guadratic cquations and
inequalities in solving real-world problems, providing a strong foundation for problem-
solving and analysis.

3.1 Quadratic Function
A quadratic function is a polynomial lum.h&;fdc W;’.prﬂ:ﬁbud

in the standard form:

_f 1
where a, fand ¢ arc .
3.1.1 Analxxi & ic Function by HLthmg
As yeknow shape of the gm.ph of a quadratic ;;” ff.h\\
function f{x) = ax* + bx + ¢ is a parabola. The \x ' ,// / ' *\\
parabola opens upward or downward, depending on v / A
the sign of the leading coefficient a, as shown in the a=0 a=0

given figure.

The tip of the parabola, labeled as ¥ in the diagrams above, is known as the vertex
having coordinates (&, K). The vertical line passing through the vertex serves as the
axis of symmetry for the parabola. The vertex represents a turning point, where the
graph changes direction,

¢ Ifa =0, then the vertex is a minimum point.
o If a <0, then the vertex is a maximum point.

For sketching the guadratic function, we need to find the Y-IHEBT'LCP[ v—n‘lterccpt and

the vertex. For analyzing the sketch of qu.idratlc funcun-n we m
18 & mimmum or @ maximum point and ings ' nction s

increasing or decreasing. W%\
—\ T /
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Example 1: Sketch and analyze y = —x* —2x + 3,
Solution: y=-—x*—2¢+3
The y-intercept is v =—0Y = 2(0) + 3 =13
The r=mlereepls wre found by solving the cquation:
r—2+t3=0 or ¥+&x-3=0
X*+3x—x-3=10

Mx+IN-1lx+3)=
{x+3Nx-1)=0
x+3=0,x-1=0
xr=—3,x=1 <
Now, we find the vertex O @@@ :
~b -2
o Wx&“
k=—— 5 +2+3=4
So —1, 41 is a maximum point, The function v

is increasing on {—c, —1 ) and decreasing on (-1, x)
3.1.2 Finding Maximum and Minimum Values of Quadratic
Functions by Completing Square
Completing the square is g techmique used o rewrnle a quadratic function in the
following vertex form:
fix)=a{(x—hP+k

h b’
Where vertex=(4 k), h =— — and k=c—-—

2a 4a

e Ifa =0, the minimum value of A{x)atx= his k.

o 1o =<0, the maximum value of fixpatx= his k.
Example 2: Find the maximum or minimum value ol
Six)= =2+ 4x + 3 by completing square.

Solution: Jixy==2(x*-2x)+3

o) =-202 -2+ 1§ ‘@@W i
ﬂ’il——zﬂx—” ‘
ﬁ;
]'
II-W
Th re, the maximum value is 3, which cccurs whenx = 1.
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Example 3: Find the maximum or minimum value of |
f(x)=a"-2x-3.

Solution: Given that f(x)=x"—2x-3
Herca=1,h= 2, 0= 3

I i1
2a 2(1) i
and k= [-_b_-=_3_ l—Z}‘ -
4a A1)

Here a=1=10

Therelore, the minimum value ui:{) ahyr =] @@
3.2 Inverse of % adratie | %

coordinate of the wertex]n orx<h

Mimimam vahse

! acCws alx - 1

Example 4: Find the inverse of f(x)=x"+4x+3,x2-2. Alse find its domain and
range.
Solution: fiX)=x+4x+3 , x=-2

y=x'+d4x+3

x=1+4p+3
Vt+dp+3i—x=0 {Interchange x and )
—4 {4 —4(1)H3 -
” w!{ }2(1}{ H3—x) {Using the quadratic formula)
-4+ Jl6-12+4dx
2

T ~34+4x

F et

ot

= —— Replace y with /! {x))
The dhmrr, mvers m a powitive and a negative component. To determine
whic : &) we fmd domain and runge of the given function.

=[ 2, )
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To find range, we proceed as
Since x=-2

As flx) =x*+dx+3
= flix) ={x+2¥-1

Therefore, mimimum value of f{x) is —land hence m
Rangef =[ |, =)
Daomain f‘- |, e} , Range f @w
MNow, we substitute a value of \w\t 1 e choose the value

x=1.

y= +2 ~J].— =-3

We notice only —1 lies in the range of f. Therefore, we discard negative component.

Hence ¢ '(x)=-2++l+x

3.3 Absolute Value ST S
The absolute value of v, is defined as | 5 =k
e [, X a0 x=0 2
=%, x=<0 | : |
; : . k T A x' x
3.3.1 Absolute Yalue Quadratic S T T T T

Equations
To solve the absolute value quadrate equations, all answers must be substituted back
inlo the original equation to verily whether they are valid or not. Sometimes,
"extrancous” solutions may appear which are not valid and must be climinated from
the [inal answer. @

©
< “@@@@W@°@
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Check: For x=3 For x=-3
B-4=5 | K3*)-4=5

|3 =5 |5| =3

5=5 5=35

Hence solution set = |[+3]

3.3.2 Absolute Value Quadratic Inequalities

Absolute value quadratic inequalities are inequalities that involve a quadratic
expression within absolute value bars, They are generally of the following form:
lax® + bx + ¢ <d , Jax + bx +e|>d | Jax* + bx + | = d , |m'“-r 6:r+|:| >a'

Example 6: Solve |_1 —bx— 4|—{ 3

Solution: j 6 4] <3 @@@
J<x? 6x 4< "':O
—3 <x2— fix- J r fix 4<3

or r—fAr—4-3<0

. i , xX—-6x-T7<0 (1)
Here we solve x* —6x— 1 =0

(61t 4J(-6)" — 41~ 1)
_ 2(1)
X

6+ +J36+4
=

X =

6+Jr_

X =

6+ 2J_

o

" 3iﬂﬁ_
P TN T R T

x=_016, 6.16 mﬂ@ L
Henee critical numbcn divide th ﬁ 5

L <016 O\~ 16 L x>6.16 .
; : ..V\\'\"\\\\\.\\)\T" ﬂ:,'“,: .
YAV S G T e e i
T bowe have

(1P -6(-1)-1>0 = +6>0 (True)
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Test x =0 in (i), we have
(0P —6(0)—1>=0 = —1>0 (False)
Test x = 7 in (i), we have
(TP-6(M-1=0 = 6=0 (True)
Solution set is {(—e, —0.16) 2 (6,16, =)
Now, we take (i) and solve
2-bx—T7=0
24+x-Tx—-T=0
xx+1)—-Tx+1)=0
x+1x—N=0

+1=0 % \
X x—T=0 ml O@@
x=—1 \
Thesecmlcalnumbe ivide % ofhiree regiens.
- : >

x=-1

"
T

Tes -2 . x=0andx=10 in (_n}_. we have
3P —62)-T<0 = 9<0 (False)
(OF —6(01-7<0 = =7<0 (True)
(10F —6(10)-T =0 = 33=0 (Fals¢)
Solution setis( 1,7)
Henee the solution set of the given absolute value guadratic inequality is
(oo, —0.16) U (6.16, )} M 1(—1, T) = (-1, ~0.16) W (6.16, 7)

P~ EXERCISE 3.1 d

I.  Find the maximum or mimmum value of the following quadratic functions by
completing sguare;
i} Jlx)=x"+6x+13 (i) Flx)=x"+4x
(iii) f(x)=-%" +8x+13 (iv) flxn)=-x° ’h;

(vi fix)= I +6x-13
2. Find the maximum or mi ‘“ e Inllm,nl‘n.. quadratic

functions. .=‘u|.~,®|

(i) ,ff.r}z " (u] flx)=x'-5x46
: 9».' +2.r 5 {ivl fix})=x'—dx+4
V) flo)=x"+2x-83 (vi) flx)=6-—x—x"
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3. Find the inverse of the following quadratic functions, Also find their domain and
range:
(i) Sflx)=x-3, x<0 (i} filx)=x'+6x+4, x<-3
(iil) f()=2-8x+11, x22 (iv) fi)y=3x"-2x+6, x=5
(v} flx=2Ax-3r+1, x=3 (vi) fix)=—3(x+4) -5 x<-4

4.  Solve the following absolute value quadratic equations and inequalities;
' +1|=5 (i) |@*+5x+4]=0  (iii) [v'-6x+8/=4
{iv) {3.:1—?x+2|=.rz—.r+l (v} |x —4|<5 {vi) |.r —3\:+2]}4
(vii) ’f Sx4 GIS.r-l 2 (mu}|2r h 5
3.4 Solution of Equs m@ Quadratlc

Equ dtll}tb “
There are certain 1y ich do not look to be of degree 2. but they can

be reduce qui ¢ quatmn We shall discuss the solutions of the rational,
radi | ntial equations.
3.4.Y Rational Equations Reducible to the Quadratic Equation

A rational equation is an equation containing one or more rational expressions, where
rational expressions typically contain a variable in the denominator,

; | 2 ,
Example 7: Solve —+——=1_x#0,x#-1
X x+

|
Solution: —4+ ——=]
x x+l

Multiplying both sides by x(x+1), we have
(x+D+2x=xix+1}
x+1+2x=x"+x
Ix+l=x"+x
X +x—3x—1=0
X =-2x-1=0

_ (=D E4-2)° @lﬁli

% I
H-LWMMF{HI}

Vel




Theory of Quadratic Functions <l> Mathematics (_

3.4.2 Radical Equations Reducible to the Quadratic Equation
Equations invalving radical expressions of the variable are called radical equations. To
solve a radical equation, we first obtain an equation free from radicals. Every solution
of radical equartion is also a solution of the radical-free equation but the new equation
has selutions that are not solutions of the original radical equation. Such extra solutions
(roots) are called extraneous roots,

Example 8: Solve Mx+8+fr+3=412x+13

Solution: Yx+8++Jx+3=4/12x+13

Squaring both sides, we get

x+84+x+3+ 2 +8/x+3 =12x+13 @@@
. e SO

Squaring again, w

Pl Y + 24 =252 + 10x + 1
24x* —x-23=0

= [(24x+23x-11=0
23
xr=—-—uor x=1
)

= 23 . :
On checking we find that —> is an extraneous root. Hence solution set = |1}

3.5 Real World Problems of Quadratic Equations and
Inequalities
We shall now proceed to solve the problems which, when expressed symbolically, lead
to quadratic equations in one or two variahles,
In order tw solve such problems, we must:
1. Suppose the unknown quantitics o be x or y cle.

ii.  Translate the problem into symbols and [orm the mumiuaaliﬂ@@@m

conditions. n
The method of solving the problen . hefollowing examples:
Example 9: The lcr&%’ | ‘W caferthian its breadth. If the area of the

room 15 180 square gy hoand the breadth of the room.

Solution: : ‘ dib-of Toom — v metres
¢ length of room = (x + 3} metres
Area of the room = x{x + 3) square metres
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By the given conditon, we have
x(xr+3) =180 i)
= X+3x-180=0 - (11)
= {xt 15Hx—12)=0
x=—=15 oo x=12
As breadth cannot be negative so x =—15 is nol admissible.
Whenx=12, wegetx+3=12+-3=15

Hence breadth of the room = |12 metres and length of the room = 15 metres.
Example 10: A company manufactures laptops and its weekly profit function (in

thousands of dellars) is Plx)= —x* +2x=13, where x is the number of Iam

N

produced (in hundreds). Find the rangL ol production leve

makes at least 54,000 profit. @
Solution: Here M) =4
? 4 h%%‘
*+2x-120
X =2x+150
(x-1) =0

This only holds true when (x—1)" =0 = x =1
The company makes exactly 34,000 protit when 100 laptops are produced (sinee x =1
means [0 laptops). There is no production level where profit is more than 54,000,

P~ EXERCISE 3.2 4

[. Solve the following equations:
= 1 4ax x x+1 5
i t—=1,x#0 i t ==rxe—L0
Ll W o
| 2z T
(i1} 1 — x#=1,-2,=5

¥4l FET eSS

(iv)

e

(vii) Y2x+8+4/x+5
{ix) -J.;\'.+?*\r'r.t+2;\l"ﬁ.r+1]

(vi)




A farmer bought some sheep for Rs. 9000, If he had paid Rs. |00 less for each,
he would have got 3 sheep more for the same money. How many sheep did he

2

buy, when the rate in cach case 15 umi form?

3. A man sold his stock of eggs for Rs. 2400. If he had 2 dozen more, he would have
got the same money by selling the whole for Rs, 0.50 per dozen cheaper, How
many dozen eggs did he sell?

4. A cyclist travelled 48 km at a uniform speed. If he had travelled 2 km/hour slower,
he would have taken 2 hours more to perform the journey. How long did he take
to cover 48 km?

5. Todo a piece of work, Abdullah takes 10 days more tha {ul d@@@mr
id o finish i

T

dix)=0.02%

they finish the work in 12 days, Howdhng
alone? Q é
6. The braking dm % i Tiodeled by:

% 15 the speed of car in km'h

o . a . i 5 ;
im safe braking distance is 50 metres, find the range of speed where

raking is sife,

-

A rocket follows the height function A(r)=-5"+ 200+ 30, where hit) is the
height in metres and 7 is the time in seconds. Find the time interval during which
the rocket is at least 40 metres above the ground,




Matrices & Determinants

INTRODUCTION

This unit introduces the fundamental concepts and operations of matrices, equlpplng
students with the skills to perform matrix addition, subtraction and mul
involving both real and complex entries. It explores I1 er
determinants and provides techniques @r t' a '!-H maltrix

using colactors and determina n ‘ 1] Igarn o apply row
operations to deten che,

of matrices, as well as distinguish
D '_ ut ‘-‘,’it-&lﬂﬂ n’f linear Equaatmm thr nu;_.h practical

ous and non-homogeneous, using advanced methods such as matrix
inversion, Cramer’s Rule and Gaussian elimination. Emphasis is placed on the real-
world applications of matrices in diverse fields such as graphic design. crvptography,
data encryption, geometric transformations and highlighting the importance and
versatility of matnx alzebra in solving complex, practical problems.

4.1 Matrix

While solving linear systems of equations, a new notation was introduced to reduce
the amount of writing, For this new notation the word mafrix was first used by the
English mathematician James Sylvester (1814 — 1897). Arthur Cayley (1821 — 1895)
developed the theory of matrices and used them in the linear transformations. Now-a-
days, matrices are used in high speed computers and also in other various disciplines.

The concept of determinants was used by Chinese and J.ipam.-n;, mathematicians but
the Japancse mathematician Scki Kowa (1642 1T0R) and th-.. @ tluan
Gottfried Wilhelm  Teibniz (Iﬁ% I ?Iﬁ are @@ enfion  of

determinants. G, Cramer {1? tgrimn'mts successfully for
solving the systems
A n:r.,languldr ﬂ[Tﬂ.'_'f ofin ¥ i palzr of bracket is called a mairix such as:

i | |
;_ : 2 1 -1 4
__5 4 ?J (1) ar 1926 {11}
41 -1

The horizontal lines of numbers are called rows and the vertical lines of numbers are
T

1) A@©m
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called colummns, The numbers used in rows or columns are said to be the entries or
elements of the matrix.

The matrix in (i} has two rows and three columns while the matrix in {10} has four
rows and three columns, Mote that the number of the elements of the matrix in (ii) is
4 3 =12, Now the zengral definition of a matrix is:

Generally. a bracketed rectangular array of men elements a1, 2, 3, ... m;

J=1,2,3, ..., n), arranged in m rows and a columns such as:

oM
e & 3 @@W@O%
ligs as @)

is called an p Ry o matrix fwritten as mx o matrix), where mx nis called the order
of th r 1ii). The matrices are usvally represented by the capital letters such
as 4, B, C, X, ¥, etc., and small letters such as a, b, ¢, I, m, n, or a,,,a,.4,;, ..., etc,,

are used to indicate the entries of the matrices.
Let the matrix in (iii) be denoted by A. The fth row and the jth column of 4 are
indicated in the folloaing tabular representation of 1.

Jth column

I
k4

Gy @y 5 &y @,
Ay Ay fdy " dy 1 gy,
A= : 3 : 3 : (iv)

ithrow —| @y @, a,

\c d@mﬂ@ i

. @, while the elements of the

The clements of the %
jlh columy e . We note that a is the element of the ith

Vthcolumn of 4. The double subscrlpt-:- are useful to name the elements of

—_— . — . | &=1 3
the matrices. For example, the element 7 is at e, position in the matrix [ ¢ e il
-5
For convenience, we shall write the marrix 4 as:
T ——

BN A@©m
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— 4 = v = -3 = . i 1%
[.r:tr.".],1| .y or A [al_.f.], fori=1,2 3, ,.,mj=1,213, ..., »n where ay 1s the

element of the ith row and fth column of 4. T e el

matrix if all of its elements are
eal.

The elements (entrics) of matrices need not
always be numbers bul in the study of
matrices, we shall ake the elements of the
maltrices from & or from

Row Matrix or Row vector: A matrix, which has only one row, L.e, lxn m.itrix af

the form [a, @. &, .. a,] issaid to be a row matrix ora ru:@@
Column Matrix or Column \f'cctnrO 3 “ Cane column i.e.,

okl
dn e I matnx of c.
W{R@\ﬂ o

s 5aid to be a column matrix or 4 column vector.
For example [1 =1 3 4] is a row matrix having 4 columns and | -1 |is a column

2

3
matrix having 3 rows,
Rectangular Matrix: If m = n, then the matrix is called a rectangular matrix of
order mrx a, that is, the matrix in which the number of rows is not equal to the
number of columns, 15 said to be a rectangular matrix. For example;

2 =30
2 3 1 O | : : _
ﬂ and are reclangular matrices ol orders 2x3 and 4x3
-1 0 4 3 -15 m

0 1 2 @ c©

respectively, @@
Square Matrix: If r.@ %é& T m>n is said to be a square matrix
h h

of order 7 or m. i.¢ as the same number of rows and columns is

\NW 112
2 3
callﬁdWe matrix. For example: [(]],[ { J and |2 =1 ®|are square
& 354

matrices of orders 1, 2 and 3 respectively,

1) A@©m
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Let A = [ag] be a square matrix of order n, then the entries a,,, @, 855, ..., @ form
the principal diagonal for the matrix 4 and the enties a,, @, 4 G5, 20 e @, 20 8,
form the secondary diagonal [or the mairix 4. For example, in the matrix
r'ull yz Uz dhy

'ﬁ'“ ﬂn d“‘l ﬂ!-t

4 , the entries of the principal diagonal are a,,.q,,.48,;,a,, and the
Ay L e 734

|67 2, a, Yan

entries of the secondary diagonal are a,.¢.,.a,, .4,
The principal diagonal of a square matrix is\al: Ww %mglnal or main

Dviagonal MatnL I fe, b\ a ‘Enarrix :af order .
Il az = 0 for g b : = j, thal is, some elements of the
o}
princi of A may be zero but not all, then the matrix 4 is called a diagonal
matrix.”The matrices
0000
1 0 0
o1 oo ’ 5
[T], 2 0fand are diagonal matrices.
& 0020
00 35
0004

Sealar Matrix: Lol A = [ay] be a square matrix of order a.
If ag = 0lor all 7= jand a;; =k (some non-zero scalar) for all i = 7, then the matrix

A is called a scalar matrix of order n. For example:

& a 0 0 3000
(7 0 . e 0300
ﬂ L0 a 0 {o#£0)and are scalar matrices of order 2, 3 and 4
lo 7 D030
' 0 0 a 0 3

respectively. - %[‘ @@m

Unit Matrix or Identlt} Matrix

rix of order n, lFa =1

atrix 4 is called a wnit matvix or tde.'m'il_b-
amatrix by [ or simply [ and it is of the form:

1) A@©m
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i
The identity matrix of order 3 is denoted by [5, that is, {3 = ‘

(===
== ==
— €:

Null Matrix or Zero Matrix: A square or rectangular matrix whose each element is
zero, is called a nmll or zero matrix, An s matrix with all its elements egual to
zero, is denoted by O Null matrices may be of any order. [lere are some

’ 0 o0 o0
| umx of any order
if therc 15 no confision,

= 2,3 =1, 3 = 4 respectively,

[T,

examples:

awoaft sl

Q
arg null matrices of o 1,

Equ fo matrices of the same order are said to be equal if they have
same r and their corresponding entries are equal. For example, 4 = |a i Ao« o A0

0

= [b,), ., are equal, i.e., 4 = Biff a, =p, fori=12,3,...,m, j=1,2,3,...n In
other words, A and B represent the same matrix,

Transposce of a Matrix: If 4 is a matrix of order mr=n then an s> mmatrix
obtlained by interchanging the rows and columns of 4, is called the ransposc ol 4. It

is denoted by A Let 4 - [a, ],,., then the transpose of 4 is defined as:
A =fu ], ., wherew~a, ford=1, 2, 3 mend =123, 5m
by by by by
Forexample, if #=[b1..=|b, b. b, by |.then

fr by, b

3l 1 n EL |

B =[N, 1,; where b.=h_ fori=1.2,: Wk@@m

Note that the 2™ row of B has the same entries respectively as the 2™ column of

B! and the 3¢ row of B has the same enirics respeetively as the 3 column of 8 cie.

1) A@©m
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4.2 Matrix Operations

Matrix operations involve various techniques and procedures applied to matrices.
These operations are foundational in linear algebra and have applications in
numerous fields such as computer graphics, physics, statistics, etc, llere are some key
matrix operations:

4.2.1 Addition of Matrices

Two matrices are conformable for addition il‘tlu,:.- are of the samc urdu

The sum 4 + B of two mxn, matrices A= ] and 8= 15 then atrix

! :i W:ﬂ,uthﬂr In

A—B =4+ (-8)
= [, ] +[<b] =la =B =[a, b lfor =1, 23, .,mi=L2L L .n
Thus, the matrix 4 B is formed by subtracting each entry of B from the
corresponding eniry of 4.

0 -2 & 1
(A_’_Bja:f;r_l_ﬂr

1 O -1 2 2 =1 3 I |
Examplel: If4=|3 1 2 5|land 8=|1 3 =1 4 |,1he|1 show that
1 6 -1

Solution:
1 0 -1 2] [2 -1 3 1 1+2 0+( @@
A+B=|3 1 2 5k 3 104 = gf@ 5+4
0 -2 | 6 1+2  6+(-1)
O{& Q
i @
3 5]
i 4 3
, : _|-1 4 -1 .
and (A+ 8 = 3 1 3 {i)
30 5
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Taking transpose of 4 and B, we have

13 0 T
25 6 1 4 —1
L3 o] [z 3713 4 3
. 0 1 2 1 3 1 1 4 1
= AN 5 1M < 202 q (i)
& o6ty 9 o=l |z 9 5

4.2.3 Scalar Mul@' C3
I A=a,]ismx=n 1
A, de

kA = [ka, Nate:

Obviously, order of k4 is mx n. If nis a positive integer, then
4.2.4 Multiplication of two Matrices e R
Two matrices 4 and & are said to be conformable for the product A8 if the number of

columns of 4 is equal to the number of rows of B,
Let A=[a,] bea 2= 3 matrix and B = [b,] be a 3 * 2 matnix, then the product 48 is

- | i
From (1) and {11), wc‘havt: (A @K—X @@W o@©

sl or complex number, then the product ol & and

matrix formed by multiplyving each entry of 4 by £, that is

defined to be the 2x 2 matrnix ¢ whose element ¢, 1s the sum of products of the
corresponding elements of the ith row of 4 with elements ol jth column of 8. For
example, the element ¢,, of Cis shown in the figure (A), that is

1" column of &

1 by, 'bl?

a, 4, a5 a by aghy oy g b, tash, +ahy, .

J"TB: a I bﬁl bjj = kL ¥ Rk j o g e 3 & ('%'
Gy + by, +andy a,by agb,, 4 u:tb.u_
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_bll ﬁ]] | n i a}

Similarly BA=|h,, b, [ n G |
b b | L f2 fnl
| -1 A

-
by, +hpay by, thaay  byay, +hpan,
=|Dbyay tbpay byay thypay byag tbyay | (D)

| by +bgay,  bya, +baan  byay +boag,
From (i) and (ii), AB and BA are calculated their orders are 2x Eﬁk ix3

respectively.
LO

Notel. In general, A8 # BA o @
Note 2, If the product AB is dEﬁ"w@ product can be illustrated as

given below: Oxm
Order 31@“ /‘ mxn
i n= -
Order of AR l\,mxp)
2 -1 0 2 -2 3
Example 2: If 4=|1 2 =3|andB=|-1 =4 6/, then compute 4°B.
1 2 -2 b -5 5

Solution: A=AddA=|1 2 =3||1 2 =3

[4—1+0 =2-2+0 0+3+0 3 -4 3
=(2+2=3 =1+4=6 0=6+6|=|1 =3 0O
2 =1 =2

|2+2=2 =1+4-4 0-6+4

yee™

i % ‘ 9-24+15] [10 =5 ©
Wa- +0 -2+12+0 3-18+0 =‘5 10 —15
44140 =4+44+10 6-6-10] [5 10 =10

W8 Powers of square matrices are defined as:

A =dx 4 AA=A=4x4
A=A x4 =4 = - ton factors,

BN A@©m



Unit o Matrices & Determinants Q> Mathematics m

4.3 Properties of Matrix Addition, Scalar Multiplication and
Matrix Multiplication
If A, B and " are conformable for the indicated sum or product of matrices and ¢ and
o are scalars, then following propertics are troe:
(i) Commutative property w.r.t. addition;: 4 + -8+ 4
(i) Associative property w.r.t addition: {4+ 8)+ C= A+ (B+ )
(iii) Associative property of scalar multiplication: (cd)4 = c[a’A]
5 nd A

(iv) Existence of additive identity: A o + 1
54 square matrix
@: =A (f1s

(v) i “ unil! ld_'Lnlll._} malrix)
. sealir multiplication:

(*'i}

- b)) (c—d)d=cAd+dA
(vin] ssaciative property w.r.t. multiplication: 4{8C) = (4A8)C
(viii) Left distributive property: 4(8+() = A8 + AC
(ix) Right distributive property: (4 + By =AC+ BC
(x) cAB)={cA)}8=A(cB)

01 1 =1 0
Example 3: Find AR and BAt A= 4 2|and B=|2 3 -1
0 6 1 =2 3

2

]

3

2 0 11 -1 0

Solution: AB=(1 4 21|12 3 —l]
34 B8l -2 3]

(2x1+0x2+1x1 2x(- 1}+'U:<3-*-]x(—7} "xu+{1x
= Ixl+d4x2+2x| I:-c{—l}‘ +2x3

3>¢1+Ux2+6x1 3xU+Ux(—l]+6x

ww 8

-1 072 0 1
BA={2 3 -1|[1 4 2
| =2 3|3 0 6
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Matrices & Determinants <q.> Mathematics m

12 +(=Dx 1+ 03 1=0+{=Dx4+0x0 Ixl+{=D=x2+0x6
=|2x2+43x1+(—1)x3 2x0+3x4+(—1)x0 2x1+3x2+{-1)xb
I 2+ (=2)= 1+3x3 I=0+{=2)x4=3=x0 Ix|+{=2)=x2+3x0

[l -4 -1 Note:
=4 12 2 (ii) Matrix multiplication s not
9 —8 15 commutative in general.

Thus, Irom (i) and (i1), A8 = 54

Vol

1.
0 -2
! 5 0 |, then find
4 -1
(i) A-8 (i) B-C (i) (A=-8)—-C  (iv) 4—={B-C)
3.  TIf A and B are square matrices of the same order, then explain why in general:
(iy (A4+BY £ A +24B+ K (i) (4—BY # A*-24R+ B’
(iil) (A+BYA-B)= A -B"
i 3% 9
4. IfA=[1 0 2 -2|. thenfind Ad' . A'Adand(A).
& 5 N ‘ |
3.

Solve the following matrix equations fox @ @@S
{I}) 2X-34= B Lfﬂ—m 3
2 E'.i
Ww?u X= 0 if A=|2 1
|

4.4 Determinants
The determinants of square matrices of order 123, can be written by following the
patiern. For example, ifn =3

=

BN A@©m



[ o i <> e O

dy @ oy

A=|a, a, a, | then the determinantof 4 =|d|=|a,, a, a,,

23 Gyp 5y iy g g
Mow our aim is to compute the determinants of matrices of various orders.
4.4.1 Minor and Colfactor of an Element ol a Mairix or its Determinani
Minor of an Flement: Let us consider a square matrix A of order », then the minor
of an element a,, denoted by M is the determinant formed by deleting the ith row

jecid

and the jth columm of Ajor|A]).

Q LUE
For example, consid 15 v i,
1 12 Ry
To t‘uww} the element a,. delete the first row and second column of 4
r
-f--Hp---dr - &
a, a, a, | thatis M, =" "%
I o I TR
L9 a4 a9y

Cofactor of an Element: The cofactor of an element a,, of a square matrix 4 denoted
by A, is defined by 4, = (- Iy M,

‘?JH a"l a!j

y e
For example, A, =(-1)""M,, =(-1)| a'l -

31

L By B
4.4.2 Determinant of a Square Matrix of Order n =3
y iy

If 4 is a matrix of order 3, thatis, A=|a, a,, a.,|,then:

iy Oy 4 @ @@@
| 4| =a,d,+a,4,+a;4, E’(@i@w o
or |A| =a, A +@( 4 A & 2,
For exampl %2& -

d
i

di=2, wehave

8|:“1|2 g, (i)
or Alzﬂ‘u"qll bty Ay g Ay (ii)
or |A| =t A Handy Hagdy, {1ii)

(iii) can be wrilten us: |4 =a, (-0 M, + o (D7 M, +a, (-1 M

BN A@©m
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ie., |d|=-a,M,;+a,My, - a,M,, {iv)
Similarly (i) can be written as [d|=a M, —a M, +a, M, (v)
Putting the values of M|, M,, and M, in (v}, we obtain

g ay Ay 5 @y dn
|4 = a, T Ty,
[z Ag - VS n n
or [A| = iy (g tiyy = agtlyy h— 0y (s 8ys — thaqtly, W by [ty 0y, — ooty ) {‘ei",l

or [A| = ) @aq gy + @2y + Ol (5, — ) la?.‘a‘, [ e B PO ,a”

Equation (vii} 15 the required e:-:paml-nn of d W %@
Example 4: Evalual@% - ; @ ]

—z 3
Snkul‘inn:|fi|=—2 3 1
4 -3 2

using |A|= a,,.‘H,, —a M, +a. M, wegel

3

s - o

= llﬁ— H=3)]+2{(-21(2} - (1) {4)]+ 3|(-2)(-3)-12]
=(643)+2-4-4)+35-12) =9-16-18==25

1 =2 3
Example 5: Find the cofactors A,,, 4., and 4,0fA=|-2 3 1 |and find |4|.
4 3 2

Solution: We first find -Hn, oo and M., ,

. @‘; % ‘@E@f

l+2

S A=) M, = (1B =8; Ay = (-] M ,=1(-10)=-10
Ay = =1V My, =(-1(7) =-7

and |4 =a, 4, + a4, +a,4, =(=2)8+3(=10)+ (=3)=T)

==16-30+21==-25

JH]I o

and

Thus
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4.4.3 Properties of Determinants

i.

For a square matrix A, 4| =|4]

ii.  If in a square matrix A, two rows or two columns are interchanged, the
determinant of the resulting matrix is —|4].
iii. Il square matrix 4 has two identical rows or two identical columns, then |4]=0
iv. [Ifall the entries of a row (or a column) of a square matrix 4 are zero, then |4 = 0
v. If the entries of a row {or a column) in a square matrix ff are multiplied by a
number £ e &, then the determinant of the requhing Mt b@@
vi.  [If each entry of a row {or a column) A twn terms,
then its determinant can be W : g erlmrnnts i.g.,
Oi\ﬁm
| @, +b, a,
ayth, a, a, a, a, a,| b, a&; a;
Bl =+ 8y Rgi=|e @y auptldy dy ay
ay+hy o a, a @y Gy ay| |hyoa, ay
@y +hy o, ag, @y d | By, ag
aythy a4y ay|T ey 8 au|tlh, &, ay
‘ by any an | ey ay oay| By oan, ay
vii, If any row (column) of a determinant is multiplied by a non-zero number & and

viii,

Example 6: Wi

Soluti

the result is added to the corresponding entries of another row (column), the
value of the determinant does not change.

If a matrix is in triangular form, then the value of its determinant is the product
of the entries on its main diagonal,

W We shall define tna([gul

: Addimg the entries of C to the t:un‘c:»pundmg m‘ltrlt.s of C,
x a+h+c+x bk
“|x a+b+c+x cta)

x athtetx ath
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f-E be by taking x from C, and (a +b+c+x)
ingxfromC, and(a +b+c+x)
=xa+bh+e+x)l 1 c+a ‘ ? Ef: c ! & - T)]
b 5 otk , common from C,
= vla+b+c+x)-0 (- C, and C, are identical)

=0
4.5 Adjoint and Inverse of a Square Matrix

Inverse of a Square Matrix of Order # = 3: Let A be a non singular {|4| # 0) square
matrix of order r, If there exists a matrix 8 such that A8 = B4 =7 _ then B is called
the multiplicative inverse of 4 and is denoted by 4™ It is obvious that the order of
A7'is nxn.

Thus, A4 =f und A'A=1_

If 4 is non singular matrix then

- P
A7 = —adj4

4

1 O

=(= 1}'* =(--D=1

o

2 -
T HO0=2)==2, Ay =) l—(—l}(mz}—-:z

Ay, = (-1 ;
12 L 1

2
l‘—l.{l—z}——l, d={-1*

0
=IH—=1-th=1
' 9
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A, ={-D* ) : = (—1)(1-0)=-1
" 2 i -

2 _ 2l
]‘_1'(0_4}__45 f‘t:_(_l] ﬂ

o fl
Ay =1 L} j= 1.(2-0)=2

d, 4, A, j 1 =2
Thus [ila=|4 4p Ay|=[-2 -1 1
LAy Ay Ay
R @%j
and adj A=[A:',j3“3=)l m “@V  Bee R

Since 1+ '"|:A13 a0 ﬂ‘1."»"'-t|:1'
= 1(3)+ W1+ 2(=2)

=34+0-4=-1

3 2 4] [-3 2 4

So si'fi‘ladjﬁfi] I =1 =1 =|=1 1 l‘
4 Tl 2 oy Lo aee
P~ EXERCISE 4.2 4
1. Evaluate the followmg determinants:
1 =2
i |3 -1 -3 {i1)
-2 3 2

a+bh a-b a
(v) | a a KX
o
2. cpransion show that;

789 s 6 -1 a0 B
@ |5 6 7=0 (i 2 2 0/=0 (i) |0 a —=0
2 31 4 2 -8 10 e =bh 0

BN A@©m
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! m+n 1
(v) [m n+f 1=0
n d4+m 1
g=g g=r
(vit) |g—r r—p p—g
r—p B @
O
ijj@ § ¢t a a| |l &
(ix) leca & Hl=l ¥
ab ¢ | 1 &F
3. Show that:
3 5 D 31
() |5 25 10=25[1 1
25 1 T 5
1o e [ 2 2
{iii_) ] '\.-' Zxl= l _]_.! }.12
I =z xvl |1 =
r)_! —
v) |x
¥ Q
{vii)
a+b b+e cta

<s>

(v)

[PV S ]

i

Ll 5 = ]

W@@ mﬂ

-

| pl 2
3x 9
9x [=0 iy | g7 Li=0
15x ’{"
i
)
A
13 z=0
111
x oy ooz
2a a+b a+c
(x) 2h 2h h+e|=0
2¢ b4 2c
a+h a e
(i) | ¢ a+bh a [=F(Ca+h)
a a  a+h
e+ { !
{iv)

b+e c+a a+hl=a' +h +¢'=3abe

n+l m |= 413&:

=

rsind 0

cosé?
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6.

-

a+d a a
(viiid| & b+A b |=ANa+b+c+ )
C ¢ c+d
| & F
(iX) Il ¥ ¥Fl=(x-yNy-2Hz-x)
1 z 2
Y+Z Z+X X+Y

4 |. then lind:

x) | x A ¥ z ={x+}’{£f}(!o@©m
\

Ayzs Ay, A,y and |A|

Find values of x if:

() B,.8,, 8, and l‘Bl

3 1 = 1 x=1 3 1 1 1
(i) -1 -3 —4=-30 (it} -1 x+1 24=0 (ili) 2 x 2|{=0
x 1 0 2 =3 3 hox
T
Show that: |2 x 2j=(x+4Wx-2)".
AR
-
13 1
Find [A4] and |4 4[if. () 4 B @ 4=|2 2
‘ind [AA| and |4 A|if: 2 &
2 1 3
If A 1s 2 square maknx ni'u-rdi:r.’ﬂ,,gun oy @O
Find the values of £ il 4 an iy Ik
et ol
A=]|7 1. -2 1
1§ & @
I =0
Find the inverse of A=|-5 0 4 |and show that 4 '4=1,
5 40
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11. Verify that (ABY = B'A"if%
= 1 1 2]
: 1 -1 2| - 1 -3
(i) A= | and B=|-3 2| (ii)A=|1 4]and 8=
0 =3 1] _ @ -2 |

4.6 Elementary Row Operations on a Matrix
Usually, a given system of lincar equations is reduced to a simple equivalent system
by applying elementary operations which are stated as below:

(1) Interchanging two equations, @@@
(1) Multiplying an equation by fongden \ YJ@O

(111) Addinga mulupla ol o ‘
Corresponding o l.h-'.. , n ! dlons, the lollowing elementary row
::-pnrauun.w. are “ 0 obtain equivalent matrices.

Multiplying a row b} a non-zero number
(iii) Adding a multiple of one row to another row.

Matrices A and & are equivalent if § can be ohitained by applying in turn a finite number of
Tow operations an .

Notations that are used to represent row operations for I to IIT are given below:
Interchanging f.und R is expressed as £ < &
ktimes R is denoted by kR — R
Adding k times R, to R is expressed as £ + AR, — K
(R is the new row obtained after applying the row operation).

For equivalent matrices 4 and B, we write 4 R B.

A R BthenB R A
Upper Triangular Matrix: A qquareon AtTi %(i’a @pﬂl triangular
matrix if all elements below the pr n. al 15

a, = 0 for
: A square matrix A =[a,]is said to be lower triangular

an{@W mt
matrix\ball elements above the principal diagonal are zero, that is,

a; =0torall i< j

Triangular Matrix: A squarc matrix 4 is named as mangular matrix whether it is
upper triangular or lower triangular. For exumple, the matrices
T —

1) A@©m
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1 ¢ 00
1 2 3
3 200 ) . .
0 1 4|and TE are triangular matrices of order 3 and 4 respectively.
a0 6
=1 E 3 1
The first matrix is upper triangular while the I
second 1s lower triangular, Diagonal matrices arc both upper
4.7 Echelon and Reduced triangular and lower lnangu]ar

Echelon Forms of Matrices

In any non-zero row of a matrix, the fi pst &S&@m @9@1&7‘@ entry of
that row.

Echelon Form of

An mx nmatrix l%lﬂn form it

(i) Zeros before the leading entry is greater than the number zeros in
receding row.

(i1} Ewvery non-zero row in A4 precedes every zero row (if any).

(iii) The first non-zero entry {or leading entry) in each row is 1.

a0 1 -2 4 | 2 -3 4
Thematrices [0 0 1 2 |and |0 © 1 2| arein echelon form
o0 0 0 00 0 I

Reduced Echelon Form of a Matrix: An mx= amatrix 4 is said to be in reduced
(row) echelon form if the first non-zero entry (or leading entry) in & lies in C, then

all other entries of C are zero.

01 0 4 2 0
1

I 0
Thematrices |0 0 1 2land (0 0 0 | are m{r(}w)rcdu:,m oo m'n
oo o 0 o0 0

Example 8: Reduce @ Y@ v} cchelon and reduced (rovwd echelon

ﬁ::rm
[2 3 -1 ¢ 1 =1 2 =
Solution: |1 -1 2 3|, g-&|2 3 -1 9
3 £ 3 % 2 13 2
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[1 =1 2 =3] [ =] 2 =3
Blo 5 -5 15| DR2+CAEE Rig | v 3| lpog

_ﬂ 4 -3 ||_ and &, + (=38, — &) _{} 4 -3 I

(1 =4 2 3 [ E o]
Ro 1 -1 3| a+r—>8 Blo1 -1 3|gern, 0

|

0 0 1 -] 00 1 -1

(1 0 0 | m
Blg 19 2| Bi+thE-xk @@@

0 0 1 1 and B, + LK, — R, @@ o

1 -1 2

| 1

0 2 |are {row) echelon and reduced (row)

echelon forms of the given matrix respectively.
Inverse of a Matrix: Let 4 be a non-singular matrix. If the application of elementary
row operations on A/ in succession reduces A to £, then the resulting martrix is 7347,

2 5 ~1
Example 9: Find the inverse ol the mainix A=(3 4 2
1 2 =2
2 32 -1
Solution: | g_(3 4 2|=2(-8-4)— 5(-6-2)—1{6—4) =24+ 40— 2= 40— 26 =
1 2 =2

s

As |A| # 0, 50 A is non-singular.

a¢@@©
Appending {,on the nOuKI the k@‘@m :

1 2 =2 oo |1
Rlo -2 8 {0 1 =3|B&~CR—K
01 3 | s e and & +1-218 > [

BN A@©m
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By ——;- R, = R, we get

1 2 2 :0 0 1 1 O & 0 1 -2

g g g ZiBlg oy wd gl Llnpricaneag
z. 2 2 2 |andR 4 (-2R, =R

01 3 :1 0 -2 i ey 2 T

‘:’ 2 2 O@@@
oot o oo EAUINS

D 6 = 0 O @
0 1 -4 ; 2 Qo ¢ e F o 3 BEREAEG R
o-Z 2 7 13 T 2 |andR, +4R, R,
Ul]lfi—l——L uu]ll__i_
- T M 21 | I TH
2 B o I_
7 3
4 3 |
Thus, the inversc ol d1s | = —-— ——
7 14 2
i 1
T 14 z

Rank of a Matrix: Let 4 be a non-zero matrix. I # is the number of non-zero rows
when it is reduced to the echelon form, then # is called the rank of the matrix 4.

L =1 2 =3]
2 0 7T =1
1 12 -

S
and B, +(-3) R, = &,

£

W A l Rl
_ SR R,

As the number ol non-zero rows is 2 when the given maitrix is reduced to echelon
form, therefore, the rank of the given matrix is 2,

Example 10: Find the rank of the matrix

Solution:

By & +{—4)R, = K

b [ G B
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4.8 System of Non-Homogeneous Linear Equations
Three lincar equations in three variables such as:
ax+by+ezr =d, l
ax+hy+c,z =d, (i)
ax+by+ez =d, [
is called a system of non-homogeneous lincar equations in the three variables x, v and
z, if constant terms ,,d, and d, are not all zero.

Consistent: A system of linear equations is said to he consis s a
unigue solution or it has infinitely man -ml | nnw
Inconsistent: A system of linear

no solution.
Mo we will solve th%
the follow]

(i) ced m_htlun form (i) Using matrix inversion method
(ii) Using Cramer's rule

SLstent lf the svstem has

mnyznfmu& linear equations with the help of

4.8.1 Reduced Echelon Form
There are following steps to solve a system of non-homogeneous linear equations (i):
(i} Convert to augmented matrix
a b ¢ |4
ie. g, by @ |d,

a b o |d,

(i) Convert to reduced echelon form {iii) Solve by back substitution

Example 11: Solve the following and explain a consistent and inconsistent system:

(iy 2x+5y-z=35 (ii) x+y+2z=1 (iii}y x—p+2z=]
Ix+4y+2z=11 2x-y+7z=11 2x—6y+5z=7

x+2y-2z==3 Jx+S5y+dz =3 }@@m

-1

Solution: (i) ']hewﬁ%«%@%mmm F 4 T U

-2 : =3
We aW ary row operations to the ahove matrix to reduce it to the
equiv duced (row) echelon form, that is.
2 5 -1 : | 1 2 -2 : -3
3 4 12 3 4 2 11| By R <R
- 2 =2 A A = 5
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| B - 3 .4 1 2 -2 -3
Rlo =2 8 i 20|Byr+or—r B0 =2 8 ¢ 20|Byscomor
2 5 =1 % 5 & 1 3 &1

By —'—lzﬂJ — I, we get

2 ~g.f <3 1 0 6 : 17 [ ——
1 -4 : -10|8]0 1 -4 10 };j‘éw“[j:‘é—);
o 00 7 gy | +{-DR, > R

=), com!

| , :
&lo Br RA{-6R >R,
0 and R A4R, R,

—4 1 -10|By — % o 2

0l % %@5@ S o b
Thus,@&i{w}@ ¥=-lLy=2andz=3, therefore the given system of linear
equati unique solution and it is consistent.

I

0

0
o5 i 17
| ;
0

S N B
(i) The augmented matrix of the given systemis [2 =1 7 : 11
3 5 4 =3

2 1L 3 3T ¢ & ;
2 -1 78 11 |Blo =3 3 ¢ 9 | Adding (-2)R, to R, and (-3)R, to R,.
3 5 41 -3 -2

L 0 2 6
[112:1 103 :4

Weget, 8[0 1 -1 : =3 By 1, ., &01-1:-3 BrR+-DRoR
|0 3385 B 37 F 00 0 0 and £, + (-2, = R,

The given syslem is reduced 1o equivalent system

x+3z=4 m
TEL O ASTVES

The equation 0z =1
From the first and sect

(a)

; ib)

As z is arbitrary, so we can find infinitely many values of x and v from equations (a)
and (b) or the given system, 1s satisfied by x=4-3f v=¢-3 and = = for any rcal
value of &,

Thus, the given system has infinitely many solutions and it is consistent.
T —
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M =1 2
(lii) The augmented matrix of the system is [2 _g 5 @ 7
13 5 4 i -3
Il =12 3 13 I =1 2 5 ]
2 -6 5 7|80 —4 1 5 |Adding (-2)R toR, and (-3R) toR,.
[3 5 4 i 3] [0 8 -2 -6
We hav

10 - . m
@@@ﬂﬁ@ﬁ?

and By (-8R, »

The third equation (z = 4has no solution, so the system as a whole has no solution.
Thus, the svsiem is inconsistent.

We see that in the case of the system (1), the {row) mank of the augmented mairix and the
coefficient matrix of the system is the same, that is, 3 which is equal to the number of the variables in
the system (i).

Thus, we observe that o linear system is consistent and has a unique solution if the rnk of the

cocfficient matrix is the same as that of the augmented matrix of the system and equal to number of
variables.

In the case of the system (1), the rank of the cocificient mumx 15 lh: S AT
matrix of the svstem bt it is 2 which is less than the nus :
Thus, we observe thal a svslem is consi
coellicient mainx and (he aug

of vanables in the system:
In the case of the systen

mmatnx of the svslem ave dilferent.
4.8.2 Matrix Inversion Method

The matrix inversion method is a way to solve a system of linear equations using the
inverse of a matrix.

BN A@©m
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X

-2x,+x, =-4
Example 12: Use matrix inversion method to solve the system 2x, = 3x, + 2x,=~6
2y, +2x,+x =3
Solution: The matrix form ol the given syslem 1s

1 =2 1] x| [
2 =3 2|l x|=|-5
2 2 1]l 5

ar AX =8

v}
| o@@ﬁ@
Where A=|2 @

By R, +(-2)R — R,

Expanding by R, we have

re i |
-, {'_I}lﬁ'.

={1-2)=-1, that is,
5 {1-2)

|A| # 0, s0 the inverse ol A exists and (1) can be wrillen as

X=d4'8 i)
Now we find adj 4.

-7 2 10
= [4].,=|4 -1 -6,
-1 0 1

Comactors are 1= 7;4,1 2.4,3—IL! @@@

I

~1 7 -4 1
and A = A adjd = l 2 -1 0|=-2 1 0
| | o -6 | -10 6 -1

BN A@@m
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[ x, ] ~4 7 =4 1][-4] [-28+24+5]
Thus| x, |=47'| 6 |=[-2 1 0| -6|=| 8-6+0 [, ie,
| x, | 5 -10 6 -1f| 5 4-36-5
[ x ] |
X, = 2
[ % | =

Thus, the solution set is {(x,. x5, x40} = {(1. 2, -1)} @ @©m
4.8.3 Cramer’s Rule 0 @W ’
Consider the system of vﬁ@%@

% =4 |

40 Tl Xy bl =hy ¢ ...(ii)

e X, + Xy 4 g X, =B

These are three linear equations in three variablesx,, x,, x, with coefficients and

constant terms in the real field R. We write the above system of equations in matrix
form as:

AX=28 ....(ii)

X [ b

S A=l s X=| % | and B=|b
% b,

We know that the matrix equation (2) can be written as; X = 478 (if 4 exists)

adj A @ @O@@m
ha=|4 Ap - (o4, =A)
4, Ay

AI‘IE’I & AZ|£’] T A? Ibﬂ
» m Aph + Ayh, + Ah,
) Ab v Anh, v Ah,

BN A@©m
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[ Ab+ Auby + Ab, |
|4
X,
. Asb + A, + Ayb,
L X, |=|—= 2
¥ A
p _
"'{Hb', I "l:,tbz f ‘43:;'!’;
4] |
Hence X,
" hA, —b?AJI +bdy, _ |y - - 08 (iv)
I A -
@y ay B
@, G b
s hA;+hd,+hdy |2 dy h, )
| I A

The method of solving the system with the help of results (111}, (1v) and (v) 15 often
referred to as Cramer’s Rule,
=—4)

=—4
-1 +2x,

oM

3 @g&@m

3x, + X, = X

Example 13: Use Cramer’s rule to solve the system.  x +x, —2x,

Solution:  Here |4|=
@)

oo

—4 1 -1

=4 1 =2

| .
Sa, X = - o N 1[:+2}| l(—&—1)

-

12\ A@©m
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_=12-6+9 -9
==
R
R
—1 1 -l 34+ 2)+4-1-2)-1(1-4)
2 9 B 9

18- m+3 9

e @@7@@ o

. 2 gm@\ 4) 42+1) _27+3-12 18
O 9 9
Hence =1, x,—l X, =

=12

Thus, the :-‘.nlutmn set 15 {(x;, x5, x3)} = {(-1, 1, 2)}

4.9 System of Homogeneous Linear Equations
The system of following homogencous linear equations:

&%+ iy K + X, :Ol

QX b o s+ QX = il )

g Xy + Ty Xy + Ay Xy = 0!
is always satisfied by x, = 0,x, =0 and x, =0, s0 such a system is always consistent.
Trivial Solution: The solution {0, 0, () of the above homogeneous system is called
the trivial solution,
Non-Trivial Solution: Any other solution of system (1) other %th@@ lution

is called a non-trivial solution.

4.9.1 Solution of System %@@@ iear Egquations by
Gaussian i\‘k

Gaussian Elimi n tic method for solving systems of linear equations,

name%@ﬂ&w‘ﬁan mathematician Carl Friedrich Gauss. It involves performing

a series of row operations on the system's augmented matrix to transform it into row-

echelon form. Once the matrix is in this simplified form. the solution to the system

can be determined through hack substitution. This method is widely used due to its
efficiency and clarity in solving linear systems.

BN A@©m
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Example 14: Solve the following svstem of eguations by Gaussian Elimination
method:

it2y+z=10
2x+ 3p+ dz=10

det3pt 22— 0
Solution: The augmented matrix is
(1 2 1o

4=[23 4o o
43 2 m @@@W@O@©

[1 2 1]0
= Rlo 1 -2)0|Bv(-1R, >R,
[0 -5 -200
[1 2 10
= Rlo 1 -2|0|BvR,+5R, =R,
0 0 =120
1 2 1|0
= Rlo 1 =20 BJII(I:EE]& — R, (Rank of A = 3 = number of variables)
0 0 10

The matrix is in row-cchelon form. @ @@m
By hack-substitution, from the th W ©

ird row, = @
from the second mw:d%}_z = k@@
W o% =0
From irstrow, x+ 2y + =

=0, substituting y= 0 and x = 0, we have
x+2H+0=0

x=10
Thus, the system has only trivial solution. i.e., (v, ¥ ) — (0,0, 0),

BN A@©m
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Example 15: Solve the following system of equations using Gaussian Elimination
Method.

o+ x5+ x, =0

- x+3x =0

% Fie— %.=0
Solution: The argumented matrix 15
o1 1o
A,=|1 -1 3{0

SR ot

“and R, +(—1)R, — B!
0
O
0] .
— 0 By{—lJRl—Hﬂ
; [}_ :
(1 1 1|0
= Rlo 1 10| ByR+(-2DR >R, (Rank of 4 < number of
0 o ofo
variables)

The matrix is in row-echelon form
Thus, the above system 1s reduced to the equivalent system of equations
2y ey k=0 (i)
Xy =2y =10 {ii)

Or, ~0

From (i) and (ii). we get @W@O
ey _“KX )

Substituting i K&% € get
=Xy — Xy =AY,

2x, {iv)
Asx,is Ell'bll_mr},, s0 we can find infinitely many values of x, and x, [rom (iii) and (iv)
or the system 1s satisfied by x, =24 x, = { and x, = ¢ [or any value ol 1.

BN A@@m
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From above examples we observe that:
Rule — I: Homogeneous system of linear equation has only trivial solution if
rank of 4 = number of variables,
Rule — 11: Homogeneous system ol lincar equation has non-trivial solution if
rank of 4 < number of vanables.
4.10 Applications of Matrices in Real World
Matrices play a crucial role in solving real-world problems across various fields. In
graphic design, they help manipulate images through transformati aling,
; - o

ces for secure

represent and analyze relationships between individuals, identifying key influencers
and connections in a network.
Transformation or Reflection Matrix is a mathematical ool that represents the
reflection of a point or object across a mirror line in a coordinate plane. 1t's a matrix
representation of 4 reflection transformation. In two dimensions, this typically means
rellecting across the x-axis, y=axis or a hine such us y=x.

0|
Tao reflect a matrix over the r-axis, we have multiply it by [“ a3 !

-1 0
To reflect a matrix over the v-axis, we have multiply it by [ 0 1]

Example 16: A trimple has the verticds (A9, ¢ 1, @) and (3, 2). Find the

vertices of the reflect 15 by using transformation matrix.

Solution: Tg 2 Toss a certain axis or line, we have multiply the point
as a nvector by the corresponding transformation matrix.

Here, to reflect the given points over the y-axis, we use the transformation matrix

1
Lo

L =

1) A@©m
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Write the points as column matrices

T
The vertex A urmcrcnmemmagu—[ ]H [”"J_[:} (2.-3)
o e

The vertex " of the reflected image = l i\ Hﬁ@@ @?h 2)

Thus, the vertices of %& are A2, 3L R 1, 4yand O3, 2).
Coding is the : rerting a message into a specific format using a code. A
code 9% ; :11 symbols, words or signals used to represent other words or
meanings. ]l s oflen used to hide the actual meaning of a message.

To decode a message, we multiply coded matrix by the inverse of the given matrix.

The veriex #' of the reflected image =

1 2 :
Example 17: Use matrix 4 = L l]to encode the message: ATTACK, where

letters A to Z are corresponding to the numbers | to 26.
Solution: Here

M B L& (¥ E af i H I ] k. L M
1 2 i 4 g ] 7 8 4 10 11 12 13
N O P 0 R 5 T U v W X Y Z
14 15 81 17 L8 19 20 21 22 AN 24 25 26

Divide the letters of the message into groups of two.
AT TA CK

Assign the numbers Lo these letters and converl each Y @@lm

matrices.
By m% i
So, IIW %1 matrices 15

_ n 1 1|

Now to encode, we multiply, on the left, each matr:x of our message by the matrix A.

o s s ;3]%;‘;}

1) A@©m
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1 2]|[20] 20 + 2 22 ]
L e
1 2137 [3 + 22 25 |
[3 1} [uJ:b 4 11]{20_

41][227[25
So, the desired coded message is [23] }[ ]

el coll

H < me ﬂ A\ T Fatioms:
| -2 (i) |2 13 0
|1 ¢ 2 L
2. Find the rank of the following matrices:
"1 -1 3 ] [1 -2 3 (3 -1 2 0 1]
-2 -6 1 -1 i) _21 ': g (iii) ; i 41 ; '12
= Saeg o1 -l 2 5 -2 -3 3
3. Solve the following systems of linear equations by Cramer’s rule:
24+ y-z=] X +2x,~3x,=0 2x —x; +x, =1
(i) x=y+iz= (i) 4x-x4+x=5; (i) x+2x,+2x,=2;
Ix+2y+z=4 -2x,+3x,+2x, =3 5 =2 —%=1]
4. Solve the [ollowing systems of incar equations by nulm mny |_1~.m
x=2y+z=-1 et 3, W
(i) 3x+_1~—2;:4 (1 @i 2x-z=
y-z R\i@@ ;=4 G
5. Solveg lB ystems by reducing their augmented matrices to the

v and the reduced echelon lorms:

X +2x, = 2x, =-1 x+2p+2=2 x+dx, +x,=2
M 2x+ia+x,=1 » () 2x+y+2z=3 (i) 2x, +x.—2x.=9
S5x +4x, -3x, =1 2x+3y=z=T 3x +x,—x,=12

BN A@©m



. \ (i \ A ediations by using

; Bz 5 K x+dn+2e=0 Ht+ix,—x =0
INB¥FPp+52=0y (i) 25+x-3n=00 (i) x—x+5%,-0

Sx+2y+8z=0 3x+ 20, ~4x, =0 2y +x,+4x =0

:-J

A triangle has vertices at A(4,1), #(—2.5) and C(0,-3). Find the vertices of the
reflected triangle over the y-axis using a transformation matrix.
5 O @

8. The point 4 is mapped to (30, 20, -5} by the scaling matrix P=| 0 =5 0

Find the coordinates of 4.
|Hint: I A 15 mapped to A" by scaling matrix P, then AP = A’|

9. Find the equation of the image of the curve with equation 1 = x under the

fransformation with associated matrix ‘ @W@O@©
[1 0
1y Use the maln‘xom
NYANNA Sk
Ixltws A to £ 4

e correspondimy to the numbers | to 26.

cncode the message: KEEP IT UP, where

11| [25][22
11. Decode the message |[20]|10](14| that was encode using matrix
43 [[41]] 41
[1 1 -1
A=11 0 1|, where the numbers 1 to 26 are comesponding to the letters
12 11
Ato Z,

) @W@o@m
o0



Partial Fractions

INTRODUCTION

We have learnt in the previous classes how to add two or more rational fractions into a
single rational fraction. For example,

(i) ! % 2PE i

x=-1 x+2 (x=1Xx+2) @ m
and (i) .\:il+c{)] :*”\7 %@@@Wa

In this unit we shal verse the order in (1) and (11) that is to express a

singl ' chibn as a sum of two or more single rational functions which are
artial Fractions,

Expressing a rational function as a sum of partial fractions is called Partial Fraction

Resolution. It is an extremely valuable tool in the study of calculus to decompose a
complex rational function into a sum of simpler fractions,

An open sentence formed by using the sign of equality *—" is called an equation. The
equations can be divided into the following two kinds:

Conditional equation: It is an equation in which two algebraic expressions are equal
for particular values of the variable e.g.,

(a) 2y = 3 is a conditional equation and it is true

Note:

For simplicitv, a c:undmonnl

equanonlscallaﬂ '.-'--- i,

(b) x" + ¥— 6= 0is a conditional equation and it lS ~NIZ
SGIA I €O

true forx = 2, =3 only. S: \\
Identity: It is an anj'i n )xhwh\in% \ilr.: ¢ variable e.g.,
ify .md its

(4) (a+ bh = \*7\ r\ two sides are equal for all values of x.

\]
(h)i\(\l \j\ } 4’)0 = x" + Tx+121s also an identity which is true for all values of x.

\,

only if x=

r.:l L

For convenience, the symbaol ™" shall be used both for equation and identity.
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5.1 Rational Fraction
Pix)

An expression of the form (_—)I:-v—)- , where P{x) and Q(x) are polynomials in x with real
403

coetticients and (Nx) £ 0, is called a rational fraction. A rational fraction is of two

types.

5.1.1 Proper Rational Fraction

Ax) .

A rational function OGx) is called a Proper Rational Fraction if the degree of the

polynomial P(x) in the numerator is less than the degree of the W
; 3 2x-—5
denominator, Far example, T+ A @ a W‘ al fractions or

proper fractions. O

5.1.2 Impro

ction O(x) is called an Improper Rational Fraction if the degree ol the

polynomial P(x) in the numerator is equal to or greater than the degree of the
polynomial O(x) in the denominator.

i - (x=2)x 1 1) -3 F-xlxll
For exumple, 2e—3 1)+ 4) I+ ] and 245

are improper rational fractions or improper fractions.

Any improper rational fraction can be reduced by division to a mixed form, consisting
of the sum of a polynomial and a proper rational fraction.

I+l . \ ) L
For exmnp]e, — is an improper rational fraction. By long division we
biai I+ Ly 13 ir+6
AR =2 = x=2 x— 23:c+l

i.¢., an improper rational fraction has 2eN e
to the sum of a polynomial 3x 6x+1

gus A3 tox 12
fraction —— . | %m —

n is separated into partial fractions, the result is an identity:

1s truc for all values of the variable in the domam of identity.
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The evaluation of the coefficients of the partial fractions is based on the following

thearem:

“If two polynomials are equal for all values of the variable, then the
polynomials have same degree and the coefficients of like powers of the
variable in both the polvnomialy must be egual”.

For example,

If pr' +qr’ —ax+b=2x"-3x" —4x+5, ¥Yxthenp=2,g=-3,a=4and b=5.

g ; " L : PR . , N
5.1.3 Resolution of a Rational Fraction ~into Partial Fractions

‘_? (X) @
Following are the main points of E:)mh-' “‘;a ¥ into partial
fractions: O “
(1) The degre : t\befess than that of ({x). If not, divide and work with
j ‘ﬁﬁ%&b enrem.

(Hx)
(i) actor the denominator Q(x)into its irreducible factor, write the rational
fraction into partial fractions,

(11)  Mulliply the identity with the denominator of left hand side.
(iv)  Egunate the coefficients of like terms (powers of x).

(v)  Solve the resulting equations for the coefTicients,

We now discuss the following cases of partial fractions resolution,

Case 11 Resolution of g%f_-}imtu partial fractions when Q(x) has only non-
X

repeated linear factors:

The polynomial (Nx) may be writlen as:

x)=(x-a)(x—az) ... (x—a.), where v+ ar#....#ady

P) | A, A, A e ]D o@@m
AL

+
Olx) x—-a x-

Where 41, 43, .... n &&&
The method is expla lfowing cxamples:

O |
Resolve i s, into partial fractions.

(x=31x+4)

i
i
A\t

Ex
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5425 _ A B
(x+3)(x+4) x+3 x+4

Solution:  Suppose

Multiplying both sides by (x+ 3) (x +4), we get
Tx+25 = Ax+4)+Bx+3)
= Tkt Ax t44 + Bx t 3B
= Tx+25 = (A+Bx+44+38
this 1s an identity in x.
So, equating the coefficients of like powers of x we have
7 =4A+8 and 25=44+38

Solving these equations, we Eul [4 =4] W@ @@S
Lence, ERE

(x+3)x +@) t‘#&
MW

Su

e D)  z+d xta
== Tx+25 =A(x+4)+B(x+3)
As two sides of the identity are equal for all values of x,
Letusputy =3 and x —4init.
lor 4, putting x + 3 = 0 f.e., x = =3 we gel.
~21+25 =4(-3+4)
=] A=4
For B, putting x + 4 =0 i.c., x=—4 we get,
-28+25=B(-4+3)
=% B=3
Tx+25 4 o3 '
(x+3x+4) x+3 x+4

Example 2: Resolve x‘-—lf_}x+13 i @ @
(x=1)x &5 ﬂ

Solution: The pol enommamr can be factorized and its
lactors are x —

WNNJ&M?“” 2105 +13

(=1 =5x48) (r=Dx=2Kz=3)

Hence,
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Suppose ¥ =10x+13 » A o B - G
(z=Di{x=2¥x-31 x-1 x=2 x-3
— =+ 13=Ax=20x=-3)+Bx-Dx=3+Clx—1)(x=-2)

which s an idenlity in x.
For A, putting x-3=01e,x= 1, we get
(1D =11+ 13 =4(1=2)(1 =3)+B(1 = 1)1 =3+ C(1-1)1-2)
= [ =10+ 13 = A(=1) (=2) + B(0) (= 2) + C(0) (=1)
4=24

S

For B, putlingx 2 =04, x=
p 2 e

{2)"=—lﬁ a3)+ B2=1)(2=3) 1 C(2=1)(0)
+13 =B(1)(-1)
= -3=-5

B=3

LFor C, putting x-3 =01.¢., x =3, we gel
BY=103) + 13- A3 -2+ B3 - +C3-1(3-2)

= 9-30+13=C2)(D)
— -8=2C
C=-4
3 4

Hence partial fractions are:
x »-2 x-3

i g W R

Example 3: Resolve 4 inte Partial Fractions,
P X254 3)(x-1) 1) w@ @ m
Solution: 2+’ —x=3 @@
x{?f}gjﬁ EE \

258 3\')2.1“+x -x-3

ction so, firs xved form.
fraction so, firs edn g

2x-3

F~Ax—1) =2+ 3x
D:wdlngZ\ +x'=x=3 by 2x' — "= 3x,
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we have
Quotient=1 and Remainder = 2v -3
2+t —x-3 _ i Zx-3
x(2x+3)(x-=1) x(2x+3)x-1)
2x~3 4 B C
Suppose — — ——
.rflr+3){1—l} x lt—3 x-1
— =3 = A2x+3)(x— 1+ Bx) (x— 1)+ C(x) (2x + 3)

which is an identity in x.
For A, putting x = 0 in the identity, we get

For B, putting 2x + 3 =0 =:~\:"— ~ intheq

o v I "
For C, putling x — IW y. we get |C :
8

H ctions are:] + —— :
x 52x+3) S{x—l)

Case 11: When Q(x) has repeated linear factors:
If the polynomial O(x) has a repeated linear factors (v — @)%, » = 2 and n is a positive

integer, then g['xi may be written as the following identity:
X
A, A
Plx) A 5 4,

= THeet =
O(x) (x=a) (x=a) (x=a)"
where 4y, 43, .... A» are numbers to be found.
The method is explained by the following examples:

, X +x—l : .
Example 4: Resolve — into partial fractions.

, . ' +x—1 A B C
Solution: $ e
b A (x+2) 1’+2+[r+2} (x+2)° %\ @@m
= r i—r-]-.‘i(x*21+3@1~ \ w ©
= Fx = e AP (i)

For C, pumng H
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Equating the coefficients of x* and x in (ii), we get
and |=44+8
= 1=4+8 = |B=-3
3 1

Hence the partial fractions are: - St .
x+2 (x+2y (x+2)

Example 5: Resolve —,l—— into partial fractions.
(x+1y(x =1

Solution: Here denominator = (x+ 1) (x* = 1)

=+ IR+ )= 1) = wa @ m
A
B\ C

1= Aix+ 1)+ Bix+1¥ (x - 1)+C‘{1— IMx+ 1D +Dx=1) ...00)
= 1=A 433+ x4+ DB+ =x= O = 1) - Dx=1)
= 1= (4B H3A+B+CO 34 = B+ DixHA - B- C - D) ...(ii)
Ford,puttingx—1=0 = x=1 m (1), wc gcl
1
]

1= A(2) = |d=

ForD,putting x + 1 =0 = x==1 in(i). we get
|

1=D(=1-1) = |D=—
( ) 5

Equating the coclficients of 1 and x* in (ii), we get

0=A4+8 — =—4 = |B=-
g @@m
and 0=34+B+C = @C&@X@)/ﬁéo
Hence the partial G%W i
I | e 11
N NAFT @+ 1) {t-i-l} R(x—1) 8{x+|) Ax+1 2Ax+1)
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Resolve the following into partial fractions:

, | {x-"' + ” 2x+1
= e D) T eIy 2)(x3)
I’ -4x-35 5 6x’ +5x2-7 6. L= Dlr=3)x—3)
(x=2)x"+Tx+10) T Bl - (x=2)xr-4)(x-6)

¥ 4+d @Q\
Hin o make factors
(X +h )+ N +d7) [HEck: Poex =¥ - O o”
20 ~3x+4 ‘@

{_.\‘—1:}'-‘ Cix {I+I’J (t—]}

1. TR o

Case HH1: When @(x) contains non-repeated irreducible quadratic factors
Definition: A quadratic factor is irreducible if it cannot be written as the product of
two lincar lactors with real coefficients. For example, x¥* + x + 1 and x* + 3 are
irreducible quadratic Factors.

Pix)

O(x)

I the polynomial O(x) contains non-repeated irreducible quadratic factors then

may be written as the identity having partial fractions of the form:
Ax+ 8

ax’ +bx+c

The method is explained by the following examples:

ax 11
Example 6: Resolve m into partial fractions. @ 5 m

Solution: Suppose il AH'B @
Te +]]{t+3} x @\,

= 31:-11@

=  3Jx-— 1 A+Blr+(33+(“1 {1:}
For. ¢ .r — 3 in (i), we get
MY ein=cotn = ==

where 4 and B are the numbers to he found,
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Equati t'ioframdlm (i), we get
0=A+C = A==C = [4=2]

and 3=34+B= B=3-14 = B=3-6 = B=-3
23 2

Ilence, the partial fractions are; —————
¥+l x+3

4x’ +8x . " ¢
2 +—— Into partial fractions.
+2x+9
Solution: Here, denominator = x' + 20 + 9 = {rz e+ 3) (- 2x+3)
41" +8x 3 4x* +8x
F+2x 49 (P +2x+3)(x - 2x+3)
4x” + 8x __Ax+8  Cx+D

(t2+2\'+3]{xj—2x+3}| Y4243 ¥ —=Iyx3
= 4+ =(Ax+B) (- +)-(Cx+D) (¥ +2x+3)

= 4 +Bx=(A+O)x +(=24 - B+2C ﬂﬁl\#j @Q@

Example 7: Resolve

Suppose

+(34-28 @C

which is an identity in

Equating the coeffi A we have
{=4A+ {i1)
W@ 2( D (iii)
3A-28+3C+2D {iv)
(0=38+3D ()

Solving (ii), (iii). (iv) and (v), we get
[A4=1],[8=2],[C=-1] and [D=-2|
x+2 —x=2
Pi2xtd £ —2x+3
Case IV: When @(x) has repeated irreducible quadratic factors
If the polynomial {Xx) contains a repeated irreducible quadratic factors (ax” + bx + ¢)",

Hence the partial fractions are;

n = 2 and n is @ positive integer, then gi‘li may be written as the following identity:
X
Plx)  Ax+B5 " A.x + 8B, __Ax+B,

- < — .t
Ox) ax +bhx+c (ax +bx+c)’ {ax’ +!u+c)

where Ay, 8., 42, B ... As. B, are numbe lo he amed

through the following example: Q




ot <>

Example 8: Resolve

Solution: Let

4

m into partial fractions.
X+ X—

4x* _dAx+8  (x+D  E
(+D (=1 £+ (P41 x|

D

= 47 = (Ax+ B+ D= D+ (Cx+ D)x= 1) + £ + 1) (i)

=

= A+ E) )+ (=4+ B2+ (A=-B+C+2E) 5
+(—A+B-C+D)x+[-B—D+E)

ForE. puttingx—-1=0 = x=1 in (|}, we get

4=E(1+1¥ = W
Fquating the coefficients of x* .) @
Tl

= |
and

—

Hence partial fractions are:

4 A-B+C+2E
C=4-A+B-2E=4+1-1-2 =
0=—Ad+8-C+D

D=A-B+C=-1+1+2=2 = [D=2

—x=1 2x42 1
4 + ] =
4+l (41 x-1

P EXERCISES.2 4

Resolve into partial fractions:

(x* + 1} x+3)

Ox—=7

e

(i1)

ol

< @m
Bx’
(2 +1Y(1-2)




INTRODUCTION

In this unit, students will learn to analyze and solve problems involving arithmetic,
geometric, and harmonic sequences and series, including their real-world applications.
Learners will identify various sequence types, compute finite and infinite sums, and
utilize sigma notation, Additionally, they will explore ]1ri1+:'tical scenarios siuch a tor
vehicle leasing, investment planning, and financial caleulation @ gﬁhn
are, hnam;:e,

emphasizes applying these concepts t&dw TS
and traftic modeling. Finally, Stddents
life problems usingGeguicn : i %

mof numbers.
(ii) 6,12,24,48, ...
.x 2 4 B 16
{1v)
s grar
In example (i), every number (except 3} 15 formed by adding 6 to the previous numbers,
Hence a specific pattern is followed in the arrangement of these numbers, Similarly, in
example (i), every number is obtained by multiplying the previous number by 2
Similar cases are followed in example (iii) and (iv), When a set of numbers follows a
pattern and there is a clear rule for finding next number in the pattern, then we have

Let us :}bac:n ¢ the fi

sequence as in above examples.
6.1 Sequence

A systematic arrangement of numbers according to a given rule is called a sequence.
The numbers in & sequence are called ils terms. We refer the lirst 1erm ol a sequence
as u,, second term as «, and so on, The »™ term of a sequence is denoted by a, , which
may also be referred to as the general term of the sequence, and the teuns elv
preceding it are called the (n — 1)st term, the (» — 2Ind ter i

6.1.2 Finite and Inimm SNe

I. A sequence whighhe erof terms 15 called a finite sequence.
For example, X i 28,723 15 a fimite sequence of ¥ terms.

2. Ase <]) OIS TS (Ji an infinite number of terms 15 called an mbmite
coFor exumple, 3, 10, 17, 24, ... is an infinite scquence, or more generally

as 3, 10, 17,24, ..., Tn—4, .. to show how cach term was generated.
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Note:  [fa sequence is given, then we con find its n term and if the #  term of a sequence is given
then we can tind the terms of the sequence,

Example 1: Find the first four terms of the sequences whose »  terms are given.
(y  aw= 3+l
Substituting n = 1, we have
a=3H+1=4
Similarly, a,=32)+1=7
a=33)+1=10
a,=34)+1=13
The first four terms of the sequence are 4, 7, 10, 13

(1) an=3n" -3 @O@@D
Substituting n = 1, we have Q @@@
S

Similarly,

a,=34y-31=45
The first four terms of the sequence are (), 9, 24, 45
Sequences of numbers which follow specific patterns are called progression.
Depending on the pattern, the progression is classified as follows,
(1)  Arithmelic progression (ii) Geomelric progression
(111) Harmonic progression

. Find the next four terms of each sequence.
a)y 12,16, 20, .. (iiy 3.1,-1, ..,

Write down the first three terms of each sequence.

b2

() aw=3n+35 () a,,= 4a —7 and a ,=3

nitl

(iii) an=(n—3n+ 1) (iv) a =-1,

(viii)a, = (=1)"T o
O = Ty nin+1) o
3 sion for the »™ triangular number is = . Write down the 1

sth

riangular number.
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4. Write down the #* term of each sequence,
(a) 743,119,325, by 7.4,1,-2, ..
1% & 1
€} TaTaTaTae df 15, -1 18,
(e 23 45 @
5. The n" wrm ol the sequence 2, 0, -2, —4, ... and the #™ werm ol the sequence
—22, 20,18, 16, .... are equal, l1ind the value of »

6.2 Arithmetic Progression or Arithmetic Sequence (A.P.)

A sequence {a.| 15 an arithmetic sequence or arithmetic progression (A P.), if @, — @e-
15 the same number for all n € Nand #n = 1. The difference a, — a1 (1 = “K&@tht
difference of two consceutive terms of an AP, is calle 2 n@ ce and
15 usually denoted by d. @@Wv‘ o

TSST0M1S 3 ach ter

Thus, an anthmetic pr
by adding a constangt (his constant 15 called common difference
4 3
O

atter the tirst 15 found

of the arith
F
(i) . 3,5 7, .. ([common difference is 2)

(i) 54,51, 4%, ... (common difference is =3}

0An arithmetic progression with » terms can be

lowing sequences are AP. If @, @, @, .d,.acin AP,

then d=o,-a=0—a =_.
where a_ iz #™ term of the AP
written as:

a,a+d, a+2d, .. [a+(n-1)d]

The #' term of an anthmetic progression can be written as:

a =a +(n—1)d

(i) 1%, 2™, 3% and ™ terms of an AP, are denoted by a,, 4., @, and @, respectively,

{11)  n™ term from the end ofan AP, 5 (m — o+ D™ term where “m” denotes the wilal number of erms

ol un AP,

(i) Thres numbers @, & ¢ arein AP i and onlyaf 2= a + c.

(v} Any term {except first and last) in an AP, 15 cqual to half of the sy oF By @mﬂ
froam it

(v} [Ifthe term a. is unknown or not gi
{the subscript of the

The middle tegr % &
WO\, 7,9, 11 is an AP, with i = 6
(i) 1.3,57,9,11,13isan A.P. withn=7
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i.e. I the total number of terms of an ALP. 15 even. then there are two middle terms 1.e..

( / \ .

i\% ]{h and | g +1 J:h where n represent the number of terms. In example (i) 5, 7 are
\

two middle terms.

It the total number of terms of an AP, is odd, then there is only one middle term i.c.,

i

l n‘j k. ]tﬁ term. In example (i) 7 is the only middle term.
Loe

6.2.1 Selection of terms in A.FP.

(1) Three consecutive terms of an A.P. can be chosen as a— o, a, a + o ur

ora+ 2d g

(11) Four conseculive lerm of an A, P @WJ" atd,a+3d
ot a, o+ d, a+ 2d, c;+3d

(1ii) Last four conseg) ] &rm can be writlen as below:

] ¥ _d Jl
o\t
If M AP, is increased or decreased, multiplied or divided by the same

non=zero number, then the resulting sequence is alsoan AP ie, if g,. a., a,, ... a, are
n A.P., then

() etk a.tk ., a Lk, .. arcalsoin AP with common difference d”.

(i)  ka,, ke, ... ko, ... are in AP, with common difference “kd’.

(iii) ﬂ, E’—i, ; i X o8P are in AP, common difference E
k k ff 'S

{(iv) Term by term addition or subtraction of two arithmetic progressions is also an
AP Le.,
Ho, a0, e and &b b b are in AP, then g+ b, a + 5,

a, + 0, ... arealsoin AP,

Example 2: Find the general term and the eleventh term of the AP, whos m

and the common difference are 2 dm:l 3 respectively. Al a v@

Solution: Hete, a, =2,8= @ @
WW -5 3 0

Thuy, the general term of the A.P. 15 5—3r
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Putting #n =11 in (i), we have
a,=3-311)
=5-33=-2§
We can find a,, a,, a, by putting n =2, 3, 4 in (1), that is,
a,=5-3(2)=-1
a,=5-33)=—4
a, =5=-H4=-17

Hence, the first four terms of the sequence are: 2, -1, -4, 7.

Example 3:  1f the 5" term of an A P, is 13 and 17% 1 ad @
Solution: Given thate; = 13 and., & @4@1\;&
N +

Puttingn =5 in a, =~ ~1)d

= a, +dd A1)
a, =a +(17-1)d
or 49 =g +164d
or 49 = (g, +4d)+12d
or 49 =13+124 by (i)

=5 12d =36 = d=3
From (i), @ =13-4d =13-4(3)=1
Thus a,=1+(13-1)3=37 and
a =1+{n=-1)3=3n-2
Example 4: Find the number of terms inthe A.P. ; ifa =3, d=7and g, =59
Solution: Using a, = a,+(n—1)d, we have

M=3+m 1)=7 (v w =59 a=3 and d=T)
or  S6=(m- DxT=>(n-1)=8 =n=9 ©m
Thus, the terms in the 4., are 9. @o@

e
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I. Find the common difference and write the next two terms of each arithmetic

sequence.
(i) 916,23, . (i) 5, 5+42.5+242.

2. Write the lirst three terms ol each anthimetic sequence, with given information.
(i) a=2,d=13 (i) @ =12,d=—13

3. Finda,,  anda, ife,=4+3n

4. Find the indicated term of each of the following arithmetic sequence.

(i) a=3d=74a,=14 . JO R g@
5.  The 18" term of a sequence is 367, The 30° WB@@ . How

many term of this sequence gre
6. [Is30l aterm r&
7. Hlxx+§ %

2. Which

ind the value of x.
I;) AR B, LB, ... is 123,
tol the AP, 30, 29.5, 29, 28.5, ... is the first negative term.

e 7" term and 21% terms of an AP, are 37 and 107 respectively. Find the AP
and its 100" term.,
- | 1 : a-b a—«
LE i ; . arc in AP, the show that = .
a—c¢ b—v b-u u—¢ b-a
12, How many numbers of three digits are divisible by 77

13. Find the 8" term from the end of the AP 8. 11, 14, ... 185,

P Wl W 5
B et i PR L ¢
I4. Find the »™ term of the progression | = ' — | | — | + o=+, |8 the progression
N J !

-
L A o/

an A.P.? Is il infinite?

If the arithmetic progression 3, 10, 17, ... and 63, 63, 67, ... are such that their n™
terms are equal. then find the value of n.

16. 1f the p” term of an AP, is ¢ and the ¢™ term is p, prove that iis nth lerm is

(p+g—n) m
11 | 2ac @
-
Sisa

17, If — —and — are in A.P., show that i @o©

a b e O - @

P 4 | - : ? i il

18. If — —and O iy AW ofrrfion difference is ——

a b s m 24

: L:%A -dhifferent terms of an A P, show that its o™ term 15
(o]

a4, =, \

h

19. 1f a, an

Kk

J+ _H—A':ll

k=m )




M) semrcomisers o> — |

200 If a,.4,.a,,....a, are positive and in A.P., prove that
l : 1 n—1

i e b i = e

Vi e Jay +aja, Jya, , taja, .__.' & + .\.'u'_i

21. Tfthe roots of the equation (h—c)x* +(c—a)x+{a—b)=10 are equal. Show that
i, b, care in AP,

22, Ifthe sides of a right-angled triangle are in A.P,, find the ratio of its sides.

23, If the i term of a progression is a linear expression in m, then prove that this
progression is an AP, ©m

@ ; ;

6.3 Arithmetic Mean ( A.M%
A number 4 is said to be the AN betee

t5dr and B if a, A, b are in
Sthend —g—dand b A4 =4,

AP, 1fd is the cm i)
g " = _A
S mlf.-!l.dz, Ay oo, A, are said o be n
i M=a+h AMs. between two numbers @ and &, then
a4+ oh a, A, A Ay ... A, barein AP,

2
Example 6: Find three A.Ms. between 2 and 342
Solution: Let A, 4,, A, be three A.Ms, between +/2 and 342, Then,

— A=

V2, A, A, A, 32 arein A.P.

Here @, =2, a,=3V2 using a,=a +(5-1}d or 32=2+4d
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P~ EXERCISE 6.3 4

[. Find AM. between the given numbers

: - : 42
D 240 23 (i) (a+b),(a-b)
2. 16, 11, 16 are three A Ms. between o and b, find a and 5.
3 2 15
3. Insert five A.Ms. between 'u"j and :f'_
3
4. The AM. of two numbers is 7 and their product is 45. Find the numl'n:r-s

Rl

@™

5. If manthmetic means are inserted between a and &, prove that o =

{ 1% the common difference.

. If A isthe AM. hetween a “ _ :

T- Wu% is the A.M. between o and &, where a= b
(o]

6. ries

The sum of the terms of a sequence 1s called the series of the corresponding sequence.
For example, 1 +2 + 3 + ... + n is a finite series of first n natural numbers.
The sum of first 7 terms of series 15 denoted by S,

Wewnte, Se=a) +az+ -« + i
Here, Si=a
82 =) + az
Si=atamtas
Sa=a) +a:+as+ .+ agis known as '™ partial sum.
The sum of the terms of an arithmetic sequence is called an arithmetic series.
To develop a formula for the sum of any arithmetic series, consider
S =a+{+d)+la,+2d)+ — + (£ =2 )+ (I =)+ (where a, = 1)
S, =L+ —a)+{{+2d)+ - + (g +2d)+(a, +d)+aq,

Thus, 25 ={a,+{)+(a +)+(a, +)+ . = {a,+ FW _._@@&S B

= n{a, +£)

O é
5,22, x@&\g@
(Substitutc£in § )

[a Fea, +{n-1Dd]= E‘[Ea, -1
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Example 7: Find the sum of the first 100 RESASIE

positive infegers. The sum S of the ficst # tenms of an
Solution: The seriesis 1 +2 13 1 ... 0 1000 | sithmetic serics is given by

Since you can see that « =1,q¢, =100 and

_ 1S Z2a i (n ldlor 5 (ara)
d = 1, you can use either sum formula for this 2 2

arithmetic series.
Method-1 Method-2

.'_-.‘“=£{u, +a,) —[za, +(n—-1)d]
; Iﬂﬂ 100 @
o e
S 30 %%
". S, = 5050
ExWﬁ(M:@ Y term and the partial sum of 19 terms of the arithmetic series:
i 13
S

—_— 3
Solution: Here, o, ~2and d = a, — g, ==

Using a, =, +{n—1yd

. |
e = 24+(19-11=
- + }2

f3\.
=2+18| = |=2+27=29
VE )
; i
Using &y = E(a] +9-)
19 589

(2r29)—-[31}——— @m
Example 9: Find the anlhm':tlc series if its W @i
Solution: Gilw en that a, =1 Kké\ ;S \
UsW 160, we have

S, = %[Eu, +{4-1d]=a,+1
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or da, +6d = a +8d +1
Ja -1 =2d
Substituting 2d = 3a, —lin (i), we have
@+ 2(3a, -1 =19
or Ta,=2] = a=3
From (i), we have,
4d =19-g =19-3=16
— d=4
Thus, the series is 3 -7+ 11+ 15 +19 +

Example 10: How many terms u.’r the -.n;:nm a-@@ ?
Solution: Here, a,=-9 and d =

Lm@%@
USW we have

—[2(-9+(n-1)3]

\J?S

or IJE:n[fh.!—’lI] = HM=nn-T
or w=Tn—44=10

el TE449+176
]

714225 7115
A
But » cannot be negative in this case, so # = 11, that is, the sum of eleven terms amount
to 66,
Example 11: Find the [irst three tenms ol an arithmetic series in which o, =%, a_ =103
and § =741,

Solution:  Step— 1: Since we know a,, a, and .5
ooy R L £ +{n —!}d
T 1

\ DS 9+(13-1)d
ﬂ 13=n

= n=11,-4

U6 =124
B=d




Step— HI: Use d to determine a, anda,.
a,=%+8=17, a,=17+8=25
The first three terms are 9, 17 and 25,

P EXERCISE 6.4 4

1.  Sum the series:
@ 3+6+94+.5a, Al g i
3 5 '
2. Find §_ for each arithmetic series:

(i) ar=4,1=25, a=100 (ii) ar=40,n= @@m
(i) anw=252,n=21,d=—4 o “I!@ﬁ o

3. Find ay for arithmetic sericsy ) ﬂ
4. low many erigs ' WS G0 + ... amount to 1071,
5. Ilthe threpijdes W sdgh-angled triangle of perimeter equal to 36cm are in AP,

o

Bum the series

(i) 3+5-T7+9+11-13+15+17-19+_,. to 3n terms,

(i 1+4-7+10+13-16+19+22 25+ ... t0o In terms.

Find the sum of 20 terms of the series whose " term is 3» + |.

8.  The 5™ and 9" term of an A.P. are 11 and |7 respectively. Find the sum of 20
terms.

9. Ohbtain the sum of all integers in the first 1000 positive integers which are neither
divisible by 3 nor by 2.

10, The sum of Y terms of an AP, is 171 and its cighth term is 31. Find the series.

1. The 5 term ol an arithmetic progression is 21 and the sum of [irst six terms is
90. Find the 18" term.

12, The sum ol three numbers i an A2 15 24 and their product s 440, Find the
numbers.

13. The first four terms of an AP, are 2, 6, 10 and 14. ig

is 25 and the sum of whose squares is

135.
lﬁWW : . are in AP, then show that ¢, &, ¢ are m A.P.
a+bh c+a b+
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17. The sum of the lirst four terms of an A.F. 18 56, The sum of the last four terms 18
112, 11 1es first term is 11, then find number of terms.

I8. The first term of an AP, is a, the second term is H and the last term is e show that

(b+e—2a)c+a)

2ih—a)

the sum of AP is

19, Show that the sum of n A Ms, between o and b is n times the single A.M. between
them.

6.5 Geometric Progression (G.P.)

A geometric progression or geometric sequence s a sequence in which each te ﬂLl’

the first is found by multiplying the previous term by a no u@
commaon ratic, ﬁ

Like arithmetic progression, w @ COIMetric sequence as
a, ay. 6y and so om \ id the previous term is @, ,. So,

its previous term.

6.5.1 Rule for nth term of a G.P.

Each term after the first term is an » multiple of its preceding term. Thus, we have,
a;=ar=ar '

1]

a, = a,r=(aryr=ar =ar
q, =ar=(grir=ar =ar"
a,=ar"" which is the general term of a G.P.

6.5.2 Properties of G.P.
(i) Tfeach term of a G.P. is multiplied or divided by the same non-zero number, then
the resulting sequence isalsoa G.P.ie. if g.g.. 8,. .. g,. - arein G.P. and kis a

non=zero number, then

(a) kg, ke, ks, o kg, are in G F m@0@©
@ &.465 %&
(ii} The reci % ternrof a G.P. also form a G.P. i.e. ifa, b, ¢ are in G.P,,

= —umalwm(:?
a b ¢
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(iii) If each term of a G.P. be raised to the same power, the resulting numbers also
forma G.P.ie,ifa, b, carein G.P, then a", A", ¢" are also in G.P.

(iv) Three numbers a, b, ¢ are in G.P. if and only if b* = ac.

{v) Ilthe sel ol posiive numbers a,, @, o...., &_,... are in G.P., then log o, fog a,.
fog dy. ... forr a,, .. arealso in AP and vice-versa.

{vi) Term by term multiplication or division of two G.Ps. are also in G.P. i.e.,
ifa, a,,a,....,a,and b, b, b, ... b, arein G.P. then a,b, a,b,, a;b,, ..., and

a, . o L
4 2 2 _arecalsoin G.P

rl:_.iﬂ_lnjple l!}lﬁ”' IEl;:mi:l the cighth term u@ g@@n{i

Solution: Here, a X&@
Ww*{ 3)-(-2*

g, = (=3)- (128}

i, = 384
Example 13: Wrile an cquation for the ath wrm ol the geometric sequence
3,12, 48,192, ...
Solution: Here @ =3, r=4

a,=a-r"
g =34
Example 14: Find the tenth term of a geometric sequence for which a, = 108 and r=3.
Solution: Step 1: Find the value of . Step 2: Find «,,.
Here,n =4, r=3, a, =108 lHere, n=10, a =
a,=a:r a,=a,-r

a,=a-3" a @@
@ﬁ

Example 15; T%%Mme GP.3.6.12, ..
a=3da,=6a=12 themfme.r:”-’-zgzz.
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Using a_ =ar"" for n =5, we have
a,=ar '=32"1=3.2"=48
oy . 8 -4 2
Example 16: Find a, if 0, - — and a. =—— ofa G.I.
27 729
Solution: To find @, we have to find a, and r.
Using a, =ar™’ (i}

a=ar’”'=ar , so agr'=— (1]

and d=ar =ar' o0 ar’ @ @@
@3} :
Thus, : - M‘“ & u, .
] ar’ y

(taking only real value of r)

Put " = —— in (ii), to obtain @, that is
( 8 8
| —-— |:— = gy=-l
AT 27

Now putting @, =—1 and r= ? in (i), we get,

f;"=(‘—1}(—§] ={—r')<'—1)""'(§]l =(—1)"[§] forn=l.

o

V" EXERCISE 6.5 4

I. Find the 6" term of the G.P.: -6,

. @O@@
2. Find the 8" term of the sequepce Q, 343 @
3 Thewa™ lu'i'n- ?& A \ s \yand F56, 1.8

B, 64, ... are equal. Find

llu value of #.

s Of each sequence described:

—'243_ r— (i} a =379, r——l
5 2
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5. Findthe 12" termof | +i, 2/, -2 = 2i, .
6. 1fthe 4" and 9" term of a G.P. are 54 tlnd 13122 respectively, Find the G.P. Also
find its general term.
7. TIfa.b, ¢, darein G.I', prove that:
(1) a—=b b—c c—darcmGP
(i) & -8, b0 -c%, ' =d* areinG.P.
(i) a’+b°, b+, ¢ +d arein G.P.

8. If(p+ ¢)" term of a G.P. be m and (p — )"

4.  Find three consecutive numbers in (P whose sum 1s 26 angdHtle @
10. The 3 term of a G.P. is the square of 1&yern B@h d the fx"‘
ferm. »
4. | 1O\ \ , m
1. Ir—, .f_ and —?& ! 3 the common ratio is :E'-—
& ] il

resulting numbers are in G.P. Find the onginal numbers il their sum 1s 21.

term be n, then find the p™ urm

13. [If three consecutive numbers in AP, are increased by 1, 4, |15 respectively, the
resulting numbers are in G.P. Find the original numbers if their sum is 6.
15, If p" ¢" terms of a (P, arc g and p respectively, show tha (p + )" term is
1
\g" = p' ).
16. Ifa, 2a+2 3a+3, ... aremG.P., then find the hifth term.
6.6 Geometric Mean (G.M.)

A number & is said to be a geometric mean (G.M.) between two numbers a and b if o,
G, boare in &P Therefore,

&b G,‘;Gz,g.v.,G are said to be
a G
= G =ab
= o

6.6.1 Relation 5
If 4 and & are respect

y

(i) A=Gifa#b (i) A-Gifa—b
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Example 17: Insert three 7. Ms between 2 and % \

Solution: Let G,. G,, G, be three G.Ms. between 2 and % . Therefore

: i 1
2 0. 6.0, E are m (£.P. Here a, = 2, dy=— and =3
using a, =ar""" we have
a, = a,rs"' 1e, = alr4 (i)

Now substituting the values of a, and «, in (i) we have

1—*:'

e Aol
Taking square root of (i), we g%@@@@w
“‘W@%ﬂ % 5

= r=+— w r=

1+

Sy

-

When r—L thcnf}—z[i\—w@ ) —"(L}I—l i _sz _ 1
v R e 1 pee b i - R B e e
el N I ¥

When r=——|—, then G, =2 ——-1— =-J§, Gl _l =1, Gﬁ:g ] :__I_

i .

i . i f i ]] K i

Wh w bl el 2o ey gl B laut e e | aaa

“’“"ﬁ"’“'(m*ﬂ!ﬁ Bt -
.\l . 2 g k3 5

When then G, = [ =—f2i, Gz=2[—:)= 1,G, =2 =L
- % vl i ko)

The real values of » are nsually aken but here other cases are considered to widen ﬂlcﬁ

r EXLB @ A
1. Find G.M. |.'Ix
(i) -2 und S m amd LA (iii) 6and 9
: S0 nc means between 3 and 946.

e _| .3rL positive distinet real numbers, show that the geometric mean

et b

retween x and y 15 less than their arithmetic mean.
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a’ +bH

4.  For what value of n, — - is the positive geomeltric mean between a and h?
a +h"

5. TheAM ol two posilive integral numbers exceeds their (positive) G.M. by 2 and
their sum is 20, [ind the numbers,

6. The AM. between two numbers 15 5 and their (positive) M. is 4. Find the
numbers.

7. The arithmetic mean between two positive numbers ¢ and b is double their
geometric mean, Prove that a:h=24+43:2-4/3

8. If one geometric mean G and two arithmetic means p and ¢ be inserted bepween

two positive numbers, show that G =(2p-g)( 29— p) @@
ilan unte \ riendson Monday. Each of those friends

L) (X

I o e
s hdd Abd AAD

{=) = Ny #
- Wednesday - - - - oo i o e o A S, i

NMotice that every day, the number of people who read your Islamic quote is three times
the number that read it the day before. By Sunday, the number of people, including
yoursell, who have read the quote is 1 +3 +9+ 27 + 81 + 243 + 729 + 2187 or 3280,
The numbers 1, 3, 9, 27, 81, 243, 729 and 2187 form a geometric sequence in which
a, = | and r = 3. The indicated sum of the numbers in the sequence, | + 3 +9 £27 +

81+ 243 + 729 + 2187 is called a geometric serics. @@
o)
The sum of a geometric progress @ . rel
—_— }‘
To develop a formu ¢ Ypeometric series, consider

F =23 el AR pi
S"WB Rl EAE (1)
rs T Ty e S N i T {ii)




———
Ifr=1,then § = na,

Subtracting (i) from (i), we get
8§ -rS =aq X
S(-r=a(l-r")

Ol

S‘II_
1-r

Example 18: Find the sum of n terms of the geometric series if a, = 3}| —T

Solution: We can write {—’i} 2 as;
2 2 6“.#"} s W@ @©
FNNN’ —g,&g"
¥
Idenfifying | ——E-Jlg-] with ar"™ . we have g, ——E and # =-%
L, ) 7 B 3
_g{._(g |
g, =AU, R AW
5
{ ; b 4
=L_E1(E ;_[EJ =(-2|1- E]
1 % 3 L

P EXERCISE 6.7 _d

. Find the sum of first 15 terms of the geometric sequence 1,
2 The 3™ term of a (7. P, is 16 and the &' Iefm |q 1|@. e

_u|—
o i

sum of the first seven terms.
Sum to & terms the wriu-
"-3.3 +333+-

(i) nz+nz

Sumtont

.%+{fr+af:r B+ (e + a'b+ab’ + b+ -

PR (LR
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; 13

5. Sum the series 2+ (1 —i) + | - |+ to 8 terms,
6.  Show that the ratio of the sum of first # terms of a G.P, to the sum of terms from

(n+ 1™ to (20)* term is {_, . Where v is the common ratio of (G.P.

e

6.8 Arithmetico-Geometric Progression (A.G.P.)
SUppose @, dy, Gy «oo s By 0 18 a0 AP, and by, by, by, ... L B, .5 8 GUP. then the
sequence formed by multiplying the corresponding terms of AP, and G.P,, that is, a b,.

ayhy, aby, ... a b, ... issaid to be an anthmn._hcn-hcnmetnc qc ce
Consideran A.P., a, a+d, a+2d, . ,ia+ —1;: b"""
G,

where F=1.
Muluiplying the ¢ po we gel an arithmetico-
geometric saquence@@
(a+2dbe, ... fa+ (n—Ddtbr !
Th of arithmetico-geometric scquﬂnw is product of ™ term of A.P. and n™

term of G,F‘. Thus. 7" term of such sequence has the form
fa+(n— Ddibr™]
6.8.1 Arithmetico-Geometric Series
Sum of the terms of arithmetico-geometric sequence is called arithmetico-geometric
series. Thus, arithmetico-geometric series has the form

ab 4 (a+dbr+ (a+ 2} + o+ fa+ (n— 1)t b
Sum of nth Terms af Arithmetico-Geometric Series

Let  S.=ab+(a+dbr+(a+2d)br” + o, + [a + (n— Dd]br" (i}
Then »§_ = abr+{a+dy’ + -+ [a+{n- Ddlp" '+ [a+ (n - Db (i)
Subtracting (ii) from (i), we get
(1 AS —ab+[dbrt+dbr+ - +dbr" '] [at(n Ddlb”

dbi(1- ")

= ab + ? [n’ t [PI— 1){3‘]3”"" W@ @ m
NG |—G> %
= ﬁ+{n Lyed |or" (i)

—r)y (I—r}‘ l1—r

which is the rc:qulru] sum of the n terms of anthmetico-geometric serics.
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6.8.2 Sum to Infinity of Arithmetico-Geometric Series
Iflrl =1, then ¥ = Dand " — Dasn — =
ah dhr

+ -
1-r {1-r)
which is the required sum to infinity of arithmetico-geometric series,
Example 19:  Sum the series upto 7 terms: 2:1 +3-2 +4:4 + 5-8— ..,

Therelore, (iii) reduces 1o 8, =

Solution: Let 5, =2-1+3-2+4:22+5:2°+ .. to n terms
nth term of the A.P.,2,3,4,5, ...isa, +(n—1d=2+(n-1)1)
=2+n-1
el
ath term of the G.P_, 1,2, 2], 2°0) . th ;
So.  §,-211 342 % (i)
Multiplying both si ” ir-ratio of G.P., we gel
28 \N W34 5204 .~ (m)2r ! + (n + 1)2° (i)
Sul i) from (i), we get

§—285 =2-1-(3-2)2+(4-3 -2+ 5-42+ _ +(n+1-m2"""—(m+1)2"
S =2 A 24 FE+ R+, #1207 [+ T2
~8 =24+{2+22423 ¢ 4+ 2 N —(p+ 12"

T
-8, =2+2"-2—-n2"-20
—§, ==l

& ="

Example 20:  Sum the series upto n terms: 3:1 +4-2+ 52 + 627 + .
Solution: Let § =3-1+4-2+5-22 =625,

nth term of the AP, 3,4, 5,6, ...15a, Ha- 1M =3 +(n - 1)) m
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Subtracting (ii) from (i), we get
5 —28 =32+{4-3)2+(5-4)2=6-5D+ . +(n+2—n- 12" —(n+2)2"
~8, =31+ 12+ 12418 4.+ 18 {pr 20"
5234 R+ PEPY LY w1
5 =3+ 21 (m+2)2"
2—1
-8, =3+2"-2-n2"-22"
=w = bt dtepdt =238 =l Fl=n - Z)

_§, =1+ (—n—1)2" @@m
S = |=(r+2" o W@O
Example 21: Sum ﬁ@;%% B i

Solutiogs ¢ \ = =4 —+... o 1 terms
3 9 27
nth term of the AP, 2.4, 6,8, ... is =2+ (n—1)2)
=242m-2=2n
, U R TR - - A
mth term of the G.P., 1,—,—_.—,...15{1}||— =—
3 927 L3 i
¥
TR T, L A (i)
[ 2? 3n—l
LR o (if)
3 39 27 3 K
Subtracting {ii) fronn {17, we get
3 2 e = o, 3
(1_1 |S1—2+4 2+|5 4+H ﬁ+m+..n 2:11+.__E
3’ 3 o 27 2 ig 5
2 3 9 |
Ty o [
3 B30 2T
o @)




3 m
_E_E(lJ —3a @O@C@
Rl
Example 22: Find the % ' 1 + 2x + 32 + 4 + .. where

x# L Iipc|=-l 5u1'n

ﬁﬁﬂ

‘w!u ( 2o+ 3t H 4t 4 L ) (i)
_:,S =x+278+370 + L+ (=1 L)

Subtracting (ii) from (i), we get

T L e e o O e

2 J{l=x")
l—x

—nx"

_ el =a)a®
1-x

B ] U Iﬂ (s H‘xll i ,um—l

l—x

1-(n+11x" +nc™
1-x

i w@@mﬂ@ o

(L)%, =

Ifle <1 Lht.n.x”—»@
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P EXERCISE 6.8 4

. Find the 8" term of the arithmetico-geometric sequence, where the arithmetic part

15 1.4, 7, ... and the peometnic part s 5, 10, 20, ...

]

Find the a" lerm of the anithmetic-geometrie sequence, where the arithmetic part
153, 7. 11, ... and the geometnie part 15 2, 6,18, ...

L

Consider the anthmetico-geometric sequence defined by anthmetic part:

y ; , Vi s .
a,,, =2n+35 and geometric part: b_, = T}{ ~3)". Find the »™ term and the sum of

(i) 12+34-58+T716+ ...

tirst three terms of the anthmetico-geometne sequence. m
4. Sum w n terms the following serics: \i @@
s \

5. “50am the following infinite series:
5 facidade i gl
2 4 B C T
| | |

6. Show that 27- 4% - 85- 16" oo =4

7.  Show that +'4 - ¥16 - ¥64 - 256 - =16

8. Sum to # terms the series 2+dc+65" + 87 +... where x=21

1

- e L 3
2n+l ] 2r+1
+ SI ‘ -l_ =

L 2n—1|

o g

. : " : 2n+l

9.  Find the sum to # terms of the series: = | 4 3{
E2H = \

Zn-1)

1Y w
I+— | + - tonterms - n
M

I1. Sum the series to n terms 2+ 5x+8x" +11x" +-.- and dl:fhﬁ,&@@@@i@
if x| <1. o
‘ P
6.9 Harmung gressi

ic Sequence or Harmonic Progression if the
1 1.
- 1A
57

’ S
10. Prove that: 1+2| 1+— +3
i "

A sequence of num
; : S ; 4 1
TECip - s are in arithmetic progression. The scquence |, 5
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Remember that the reciprocal of zero is not defined, so zero cannot be the term of a
harmonic sequence.
The general form of a harmonic sequence is taken as:

I I 1 & ‘ 1
N ; 2o whose v term 15—

a, a+d a+2d w +{n—1d
Example 23: Find the n and 8" terms of H.P. : %, é, i‘

Solution: The reciprocals of the terms of the sequence,

s ame 258 .

1

The numbers 2, 5, 8, ... arein AP, So @o@©
a =2andd=35 : O@@

Putting these value:

bt | —
| —
o0 | —

t’ln — a . -
O
-1
Thus, the n' term of the given sequence = 8 = : and substituting n =8 in - I
a, Jn—1 3n—1
. i I
we get the 8" term of the given H.P, which is -
IxR-1 23

Allernatively, a, ol the A.P. =a, +(8-1)d
=2+73)=23
1

Thus, the 8" term of the given H.P. = 3

1

Example 24: I the 4" term and 7" term of the [ P. are ! and — respectively, find
3

the sequence,

-
Solution: Since the 4% term of the /L.P. = 13 and its 7" term = 2

. the mﬂf“‘
1 &S
. O
and 7" terms of the corresponding 4. 7.4 r ively.
Now taking a,, the m%‘ on difference of the corresponding 4. F.,
wi have, 5
3 . 25
S = (i) and i, + Od = 5 (11]
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Subtracting (i} from (ii), gives

3d=g-§-——-l£=6 —
22
From (i), we get
. N
. 2
; | 5
Thus, a, ofthe AP =a+d ==+2==
> 2 2
and g, ofthe A.P.= g +2d = % +2(2)

Hence the required @A) i
6.9.1 Hg ib% anm (H.M.)
A erfFis said to be the harmonic mean (H.M. ) between two numbers @ and b if
a, H, bare in HF.
Let a, & be the two numbers and A be their HM. Then J : lf : ‘15 arc in A_P.
[y
1 1 b+a
I'herefore 2ad S g gy
H 2 2 2ah
and H= Hab
a+h

For example, H.A{. between 3 and 7 is
2x3x7_2x21_21
37 16 3
6.9.2 n Harmonic Mcans between two Numbers

M, 1, 1, -, ff, are called n harmonic means (H.Ms.) between o ‘:@@m
a, H, H,, H,,.., H,,barein H.P. ll’Owc ami 1o | %ﬁ wand b, we
Q;Sl take their reciprocals to get »

first find i AMx A | '
bm@ 3
HIW | o I JL will be the required s 1L Ms, between

=
O A A A

o &
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1 |
Example 25: Find three harmonic means between £ and Th

Solution: Let A4, 4,, 4, be three 4.Ms. between 5 and 17, that is,
5, A, A, A, 1T arein A.P.

Using a, = a +{n-1)d, we get
17 =5+(5-1)d (v a;,=17 and a,=5)
4d =12

= d=3

Thus, A=5+3=8 4 =5+2(3)=11 and 4, _a+3(3}_%4 ©m
Henee l l l are the regquired hal@um
8 11 14 ; 0\ A/ AN

\)\/

1. Finy * [ollowing harmonic sequences:
-1
T oy o wan (]l} i _lg e
. 5 B
2. Insert [ive harmonic means between the following given numbers:
; =2 2 2 |
() — and — (i) — and —
5 13 4 24

s 2 : | e i ol
3. The frst term of an HLP. is T3 and the fifih term is —. Find its 9™ term.
. 5

4, If 5 is the harmonic mean between 2 and b, find b,

. i ; ; v.
5. Ifthe numbers —, and are in harmonic sequence. hnd &,
ko 2k+1 4k -1
,. a*' +h"!
6. lind n so that ————— may be fLM. between a and b,
Y

7. Ifa’, ¥ and o’ arein AP, show thata -+ b, ¢ + g and b + ¢ are in /.1,

8. Ifthe HM. and AM. between two I'IL;IHIhL"I'\ lln, 4 ¢ LL@. I"the
O

numbers,

9. If the fpn'ﬂm%%

d ct+a—-h g+bh-

16
n fwer numhu\ are 4 and —, find the
5

are in AP, show that . b, ¢ are in H.P.
o
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1. Ita b, e daren HP., show that 3{a—bHe—d)=(b—cHa—d).

12, [If between any two numbers there are inserted two AMs, 4, A2, two G.Ms, O,
r: and two H.Ms, H\, Hy; show that »':.-g'--f—'j-fl i .

(0 H H

13, The HM. of two numbers 1s 4. The AM., A and G.M., {7 sahisty the relation
24 + (*=27. Find the numbers.

14, First three of the four numbers @, #, ¢, d are in A P., and the next three are in H.P.,
show that ad = be.

15. Ifa. b, carein G.P. show that log_x.log, x, log_xare in H.P.

16, Ifa. b, ¢ are in HLP., show that @@

' a—h o
(i) == @ :-lc].
h—o ¢ ;
7. II'Z—.t.S—I“ the value of x.

18. Ifthe I'U- @b — e = ble — akx + ela — b) =0 are equal, prove

6.10 Miscellaneous Series
The Greek letter E{sigma) is used to denote sums of different tvpes, For example, the

nH P.

ol
notation z @, is used to express the sumea, ta,, , ta, .+ .. ta, and the sum

1=m

expression 1 + 3 + 5+ .., to n terms is written aszuk—-]). where 2k — 1 is the k™
k=1

term of the sum and & is called the index of summation, 1™ and » are called the lower
limit and upper limit of summation respectively.

The sum of the first » natural numbers, the sum of squares of the first » natural numbers and
the sum of the cubes of the first 7 natural numbers are expressed in sigma notation as:

1+ 243+ tn=p k; F+ 2+ ¥ +o4n _Zf. P+ 24 3
k=]

n %
W ause this result to

+ [(n=1)" = (n=2Y"]+[n" = (n=-1)"]=n"
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i.e., i [(&" ={k-1)"]=n" Properties of Summation:
&=

i x [i" E‘I[‘ﬂ" "bt } Ea. ‘ihi
If m=1, then ¥ [(k'—(k=1)']=n" ic, X 1=n o
@ San-aYe,

It m =2, then i,[ﬁ:" —(k- |}1 :|: n’
&=l
To Find the Formulae for the Sums
i Yk i YK (i) 34
k=1 k=1 &

(1)

or EE k=n*+n
E=i
Thus ik= min+1)
k=l :'I'
Similarly, we can prove easily
(ii) Ek: X nlan=102n+1) (i) ZH :|:m{n:— 1}|T
=1 ﬁ k=1 2 _|
Fxample 26: Find the sum of the series I’ =3 +5" +__ to n terms.
Solution: T, =(2k iy Co1+ 2061 =28 =1) m
=8k —12k° + 6k -1 @

A

1267 + 6k —1)

Let S, denote the sum of # terms of H(EX)XJ W@O
5=37 O T&g
I, = ( Q

or
-1
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=83 & - 123 K7 +63 k-3
k=1 k= Ei=l =l

= B[MWI_IE[H(MUGM|)|1+ﬁ[uw+iﬂ
2 1 6 ¥

=2n Ur+l]| =2nn+D2n+ D)+ 3n(n+1)—n

=20 (n" = 2n+1)=20(2n° +3n+ 1)+ n(3n+3)—n

= 211[{.!:': +2n + my— {'2:11 =dn+1)]+n{3n+3-1)

= ?n[{u —2n—1}+n(3n+2)

=2n{r' = 2n-1)+n(3n+2) @ @
=n[2n —4n—-2+3n “@ @

=n[2n" €2

= -ﬂ: 3 4
2 §iom |
Ex @27 Find the sum of # terms of series whose n'™ terms is n' + - 4 i +1,

Solution: Given that

3
g =1'1‘*+"EM2 +%n—]

dr

Thus T, =k1+§k3—lk+l
2 2

g e
and S, = Z[k" $2E% %.ﬁ:+] ]

t=1 L

=Zu:k"+iik°+—lik+il
E-1 21 233 i1

_n‘1|{f1+1] 3 n{n+1]{2n+l} n{n+1}-|




. Sum the following series upto 7 terms.

i) Ix1+2x4+3xT7+.. (i) 1x3+3%6+5%x0+ .
i) 1 x4+2xT+3% 10+, (iv) 3x5+5%9+Tx 13+ .
v) P+3¥+5+. (Vi) 2xP+4x2*+6x 3 +..
(vii) 3% 24+ 5x 34+ Tx 4 4. Vil I+ (1 + D)+ (1 +2+3)+ ..

(ix) P+ +23)+(12+2 +30+..
(x) 2%x4xT+3=x6=10+4=x8=13+...

2. Sum the serjes. @O@©m
() P-2243_424 4 4@-@@
%&E 1T L2TTIS

Gy L+ ‘:@%w
i L

© ¥ ierms of the series whose #' terms are given,

]

e+l (i) W =4n+1
4. Given #"™ terms of the series, find the sum to 2 terms.
(D 3 +2n+1 (i) #'+2n +3
6.11 Real Life Problems involving Sequences and Series
Example 28: Vehicle Arrival Sequence
Vehicles arrive at a toll booth at a rate of 4 cars every 5 minutes. Represent the number
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Simple Interest on Loan (Arithmetic Sequence with Particular Term)

Example 29: To buy furniture for a new apartment Tayvab borrowed Rs. 50,000 at 8%
simple interest for 11 vears. How much interest will he pay?

Solution: Since 8%, is the yearly interest rate, we have

Interest atter one year = Rs. 50,000 = % # 1= R, 4000

Interest after two years = Rs, 50,000 X % % 2= Rs. 8000

Therefore. we have the AP,
4000, 8000, 12000, .

Here, a, = 4000, i, = 8000, d = a, —uj— ,n—l @ @ E
Using the formula

|'.'

I(}HD[]{II}

4[:!0(} + 40000

= Rs. 44000
Thus, Tayyab will pay a total interest of Rs, 44000 on borrowed amount of Rs 50,000
after 11 vears.
Compound Lnterest on Loan (Geometric Sequence with Particular Term)
Example 30: Amna invests Rs. 200000 at 3% interest compounded annually. What
total amount will she get after 10 years?
Solution: Let the principal amount be P, Then,

The interest for the first year = P = ﬁ = P(0.05)

The total amount after first vear — P — M0.05) = P11 0.,05)
The interest for the second year = £(1 + 0.05) = 0.05
The total amount after second year — P(1 + 0.03) + (1 + 0.05) = (LOS

P[l [ 'D{H}(I | 'D'U"'p}
‘ 2o

Similarly, the total amount after
Thus, we have scqu@
nsjr, P(1.05Y, ...

which 1s-¢
.'Dﬁ}. F= I.OS, n=10,a,,=
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Using the geometric sequence formula
a,=ar"’
&y = f;lf"”']
=P{1.05) = (1.05)°
~ (2000004 1.05)"" - = 200000
= (200007 1.62889)
=325778.92
Thus, the total amount Amna will get after 10 years will he Rs. 325778.92
Grid Column Distribution (Arithmetic Series Sum of Terms)
-
iy wide.

Example 31: A web designer is using a | 2-column grid _sys 1»;:
inereases in width by [0px from the pr(@in@ dthris 50
Find the total width cccupicd by all W
Solution: This foll&ws ar mﬂk B8 with:

First tepm g-

ommon ditfference = 10
o)
ofterms=n =12

e formula for the sum of an arithmetic series:

§,= > [2a,+(n - Dd]

Usi

8 = %[EI_SG,HUE ) 10)]
=6[100+ 110]=6[210]
= 1260px

Thus, the total width of all 12 columns is 12600
Example 32: Motor Yehicle Leasing Using Arithmetic Sequence
A company leases a motor vehicle with the following terms:
«  The first monthly payment is Rs, 15,000
«  Each subscquent payment inereases by Rs. 500 due to inflation adjustments.

«  The lease term is 24 months.
Find: @

(i) What is the payment i

(i) What is the{fotal amon \
(iii) If the ¢ \w !
3

24-months lease?

CNCFind maximum months g osueh that total, payment S, = 400, 000
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Solution: Given:
First term = a, = 15000
Common difference = d = 501
MNumber of terms = n = 24
(i) Payment in 24Y month:
Using the formula
a,=a, +{n—1)d
ayy = 15000 + (24 — 1 )(500)
= 15000 + 23 = 500
= 15000 + 11500 = Rs. 26300

{1i). Total payment over 24 months using the formula 5 @o@© S S

(a2
Q
KX S000 + 265007 = 12{41500) = Rs. 498000

(iiW&iy afford the lease? No. Total payments (Rs. 498000) exceed the
get of Rs. 400,000 by Rs. 98,000,

(iv) Using: § = ;—J[Ea, F (1)< 400,000

-

Substiluting the values:
;[2{ 13000) + (n— 1HS00)] = 400,000
i [ 15000 + 250n — 250] = 400,000
a(250n + 14750) = 400,000
25007 + 147500 — 400000 < 0
R+ 39— 1600 <0
Associated equation is n° + 590 —1600 =0
_ =594J(59)" = 4(1)(=1600)

n
—59+99.4
T
02
—59-99.4 | \/59A99A @
W= ’
e
n==792 %
Cl :i?}" the ineguality.
So, w=201s the maximum months such that payment 5 = 400L00H).
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P EXERCISE 6.1 4

1. A sum ol Rs. 10400 1s paid ofl in 40 instalment such that cach instalment 1s Rs.10

more than the preceding instalment. Calealate the value of the lirst instalment.
2. An investor mvests Rs. 150000 at an annual compound interest rate of 6%, for 8
years. Find the total amount will he get after B years.

]

The population of a town is 4084 [ 0] at present and five years ago it was 3200000.
Find its rate of increase if it increased peometnically.

4. Determine the total worth of a yvearly Rs, 5000 investment after 20 vears if the

T
. the tapk] Y@@@\@erdue 1o
the leak. Initially, the tank isull u% ajlpns,
(a) llow many pallons s:‘ seks later?!
: 5 \ ¢ tank is half-full?

1g company has manufactured 7 million doses of a vaccine to date. They

mterest rate is 5% compounded annually,

Sy

A water tank develops a leak. Fach we

promase additional production at a rate of 1.4 mullion doses/month over the next

yiCar.

{a) How many doses of the vaccine, in total, will have heen produced after a
year?

(b) The general term a, describes the total number of doses of the vaccine
produced. Describe the meaning of the variable » in the context of this
problem, Find the general term a,

{c)  Find the value of g\ and interpret its meaning in words.

At a toll booth, the number of vehicles passing through during the first minute

is 100, Due to road congestion, each minute only 80% of the vehicles from the

Previous minule manage 1o puss,

(a) Represent the number of vehicles passing cach mi 25 s@m

Q

(b) Find the total number of vehigles

(¢) Whatis tg) axim ‘ : ,
time ¢ —»az) zg
8. Asu R % rerted at 8% simple interest per year. Caleulate the interest

il cach year. Do these mterests Torm an ACP.7 I so find the interest al

he end ol 200 vears making use of this fact.




tased for Rs. 20,000, Depreciates at 6% per annum for the first

i r that 8% per annum for the next six years. Depreciation being
calculared on diminishing value. Find the value of the machine after a period of
10 years.

10, Two cars start logether in the same direetion from the same place. The first goes
with uniform speed of 20km/h. The second goes at a speed of 12kmvh in the first
hour and increase the speed by | kim‘h each succeeding hour. After how many
hours will the second car overtake the first car if both cars go non-stop?

11. 150 workers were engaged to finish a picce of work in a certain number of days.
Five workers dropped the second day, five more workers dropped the third day
and so0 on, [ lakes 10 more days to linish the work now. Find the number of days
in which the work was completed.

12. A radioactive product has a half life of 5 years, If the radioactivity level is 68
microcuries after 20 yvears. Determine the original level of radioactivity.

mﬂm

13, An object moving in a line is given an initial velpec] o
oG wi @ ¢ afeach a velocity of

14, ek ' current of 1080 md, the temperature in the
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Combination
In our daily life, permutation and History

Augustin Louis Cauchy
(1780 — 1857} is the father
of permutation.

combination play vital role in counting
total number of possibilities, in
arrangements and selections of objects
or things. Permutation and combination

are used in many lields of sciences. For : .
Blaise Pascal and Pierre

i e A . de Fermal (1607-1665)
* In probability theory, permutation DG i, b g erate
and combination are used to St et -l
compute how many times an Uhlﬂl.,
event OCCurs 1Im Varous SCCenarios
and used to estimate the odds ob
winning a lottery.

(e lnunr.ll.-r nl" mudl:rn
combinatorics.

. In bin]ngy‘, thesg are

ATIVET lulﬂlh Ij\ usmg some speclfu: characterlstlcs
- Mun:mft,r ll‘an'L are the important parts of many encryption algorithms to ensure
the privacy and integrity of a data set.

7.1 Fundamental Principle of Counting
Danish wants to prepare mvitation cards of 5 different

colours (red, blue, green, orange and vellow) by Challenge!

Make a bee diagram and [od
how many cards can Danish
make?

changing any of 3 shapes (circle, square and rectangle).
How many cards can Danish make?

The problem is to count the total number of ways in
which Danish can make cards. One way Lo find the solution is by making tree diagram.
Let us discuss another scenario: Danish’s father wants to buy a table and has asked his
son to help him decide. He narrowed down his options for manufacturer, types of
material {wood, plastic, glass and marble) and types of shapa (circle, squf{ﬁmd

rectangle). Find the total number of table choices from the ab in @@
Again the problem is to count the total numper of |ﬁ ather can
choose a table. (\ ///(\r

P




From tree diagram, it is clearer there are 12 choices for Danish’s father to buy a table
with one type of material and one type of shape.
2™ Way: By multiplying, Danish’s father can find the total number of table choices to
buy a table with one kind of material and shape,
Total number of table choices = Total types of material = Total types of shape

4 = 3 = 12 choices
These examples show that when making a choice involving multiple stages or
categories, we can [ind the total number of outcomes by multiplying the number of
options at each stage,

Statement
Suppose 4 and B are two events, the event “4™ occurs in “m”_giffe en@ he
event “B" occurs in “n” different ways then t i) 0 events

tota ¥
together can oceur is the pmduu b Wi
\ =mn
Prool: Letd = {a,, % ={b, by by, - bt Lel Podenotes the event

occur together then Plla, bl a,e A, be B 1=i=m, 1 =j
B. Hence the number of wavs in which both events 4 Emd 8 can occur is the
number of elements in A = B which is m.

This principle can be extended to three or more events. For instance, if event 4 can
occur in m ways, evenl B can occur in n ways and R o g

event { can occur in k& ways, the number of ways  If three dice are rolled together, how
many lal numbers of wavs oceur?

that three events can oceur all twgether 15 the
product of m, n and &

Total number of ways =m = n = k
Factorial {1} | History
Suppose there are four chairs to be occupied by four  The factorial notation (1) was
students and we are interested in counting all the Miroduced by Christian  Kramp

POss1DIC “ﬂ}'bt & students can be seated. Thils notafion 55 Frl:qlli‘ﬂlljl' U-ﬁ‘.l:d i

To occupy the first chair there are 4 options, Forthe  wlye permutation and ¢

second chair, only 3 students remain, so there are 3




By the Fundamental Prineiple of Counting. the total number of ways to occupy all
the chairs i1s 4.3.2.1 = 24
Such problems trequently oceur in daily life, where we to multiply the first n natural

numbers: 1,2, 3, --- . n,

We call this product the factorial of n and denote it by n! Or |#. thus for a natural
number n:

nl=|n=nn-1)n-2)..-3.2.1

For some reason we also deline 0! = 1, In general if n s a non-negative integer, then
its factorial is denoted and defined as

M_M_J it n=10
TS en-Der-2y..32.1 ifnzl

N O
20=21=2 ‘*‘iﬁf}&gxqaigy:HEAEQB..!.

ot = o 4 J Can vou find out ;"
OKX E J.S.E_I =120
G!1=654321=720
It can be easily observed that

m=nn— 1) for n=l

! 3 a1
Example 1: Evaluate % Example 3: Evaluate e
81 7.6.54.3.2. 5.7
Soelution: £= w=56 Solution: B, e D &4
6! 6.543.2.1 &!3l a3.2.1)
Example 2: write 8.7.6.5 in the g1 0R7654W
| i ol _ 9.8.7.6.5.4.3! L o
factorial form. S ) B 6543213
Solution: 8765 = ———— = — ol OR7654321
a1 4| o = 2 =8
6! 3! 6.54.3.2.1.3.2.1

¥ EXERCISE 7.1 4

. Letus make paratha roll, We can choose our fillings fiommd -‘wl@m
Meat: Chicken or beef \~['%5mn' '-(R'U”lbi‘l'
Sauee: Mavo or Chutney @

R\@% -nake

How many dil@\%w rg

PR




3. Evaluate each of the following:

B Il e , 10! : 12!
i [ i 1 1y — Wy —
i 7 (i) 9! (111} 5l {iv) 3]
" ot i 3! O .. P
NTET R TETET M apg
; 121 20! i S -
X) — g Xi} — 61.00.2!
(i) 312-3)! ) 20020200 <) o (211}
4. Write each of the following in the factorial form:
(i) B7.6.5 (i) 15140302001 (i) 1918 17.16
o 11.1009.8:7 . 10MET6 . 50.49.48.47
Y] —=r—— ) ey M) e

5.4 54.3.2.1 54.3.2.1
(vii) nlm — 1Hn = 2) (n—3) {viii) (m + 2)n £ )00 |@@m
’ o ; o)
(ix) (n+ 3}(;;2)£H+ 1)(n) m c,\é \@@ .

7.2 Permuta
Chne import i e fundamental principle of counting is to determine the
nu

L ln=r+2)

Drefivifion: An arrangement of all or part of set of objects in a specific order is called
a permutation, Number of permutations of (= n) objects taken from a set of n objects
s written as " or Pla, ¥
!
.l.l.Pr — L
(n=ril
According to fundamental principle of counting; .
(i} Three books of mathematics for grades |, 2 and 3 can be Iu 2 E
2]

whenr<n

arranged in a row taken all at a time (If books are distinct)

IIR i l& o=
e o gy
(3=-3! o

=31=3-2.1=6 ways

(ii)  Number of ways of writing the letters-of the W
ara fime O @@




TR 7) Permutation s Qe.ﬂ.%@@@@w bt (,

n E = !:;

i = Total number of things/ohjects
+= The number of selected things 7 chjects

-4 o
=4!1=432.1=24 ways
Challenge! Do you kmow!
Can wyou make total number of In 1974, “Erno Rubik”™ invenied a popular
permutations for the “WORD™ puzzle, each wm of the purzle shows a
pictorially? permutation of the different colours. The
name of this puzzle is “Rubik’s Cube™,
al

Theorem: Prove that: "P =m(n—1)n—-2) .. n—r+1)=

(rn—r)!
Proof: As there are n different objects to fill up »places. So, the first place can be
lilled in » ways. Since repetitions are nol allowed, so aller placing one object we are
left with (7 — 1) objects, thus the second place can be filled in (r = 1) ways. Simiiarh

the third place can be filled in ( n-'f‘]‘.\ms and so on. This co gs
place which can be filled in s ﬁ@@ by the

Fundamental Frlnnple of C nu p y n different ohjects in
min—1{n- "‘}.._.{n@l
o= n H—r+|}
WM =Din=2).{n—r+Din-r)
(n=r)!
g
{n—r)!

Example 4: How many different 4-digit numbers can be formed out of the
digits 1, 2, 3, 4, 5, 6, when no digit is repeated?
Solution: The total number of digits = 6

The digits firming each number = 4.

S0, the required number of 4-digit numbers is given by:

PPy=— IR, 6.5.4.3=360
(6—4)! 2! 2.1

Example 5: In how many ways can a set of 4 different mathematics books, 3 different
physics books and 2 different chemistry books be placed on a shelf with a space for 9

books. ift r@ @@

{a)  All the books are kept w 1thc-<$r ANy resir

s

W\M



Unit QL

(b) e same subject are kept together.
Iv the mathematics books are kept together,
Solution:
(@) All the books are kept without an¥  peason for defining 0! = 1
restriction, e n! n!
Total number of books =4 +3+2=9 Tl BErmn oo

rﬁmrﬁrﬁ@ﬁﬁ S SO~ B = o=
'p=91=98.7.654321 ¥V 0!
= 362880 ways
(b) All the books of the same subject are kept together.

‘PO LIELP =41,31,20. 3 I@Errrﬁi‘

=31.24.6.2.0

4! mna J'f.-.aw 2% Wilys

=1728 ways m
ic)  Only the mathematics books are kept ether @ @@
P B =416 ‘ @

4! “ﬂ}b
8 ways —————

Etwmmﬂgny ways 5 people are (o be seated on a bench i
(a) re are no restrictions

; i Challenge!
(b) two people can sit next to each other : =
s : I i $iki Find the number of wavs it only
(ch t‘wo people cannot sit next to each other. livptioe bkl g ek tamather:
Solution: T
{(a) when there is no restriction, then F"}P'_. HE C) Ii‘ ['.;L
TP B
Number of ways="P, =5!=120 . |

- : i . 51 ways
when two people can sit next o cac
(b) poog i !.-""""" and B is considered as 1 umnit.

uther, then R s
i
TR l | ‘

il
=41.21=24.2 ..l'—u'waT,L T T

= 48 ways

(c)  when two people cannot sit next to cach other, then

= *A — |2 can sil next o cach other|
=51 48— 20 48 O
72 way A

i




o“ P"EXERCISE 7.2 4
aMare the following:
(1) “I'F; (i1} sﬁ (111} -"PT {iv) IIIP3

b3

Find the value of n when:
(i) "Pi=3504, (i) "YP=1514.13.1211 (i) "Ps:"*P:=540:1
3. Prove from the first principle that:

() "P.=n."P () "Pr=*"Bo+r.* Py
4,  How many signals can be given by 6 flags of different colours, using 2 flags at a
time?

3. From a deck of 13 cards, find in how many ways these are arranging in a

rectangular form? int {order is matter)

(i) All cards (i) & cards (it} 10 cards

In how many ways can the seven alphabetg ¢ £ 1 o u b be arranged irm&?
i) A

i

books are arranged moa row oul ol 12

There are 8 men. Find the number of ways ol arrang
(a} Two old men are at left side)

(b) The youngestman is
%,  How many arg % :

books?

O\ s i
iation of 10 people sitting on a beneh if

9.

a) There are no restriction {b) 3 cannot sit next to cach other.

[0 In how many ways can a set of 4 different blue pens, 3 different red pens and 6
black pens be placed in a rectangular form rack with a space for 10 pens if:
(a) All the pens are placed without any restriction
(b)  All the pens of the same colour are placed together
(c)  Omly the red pens are placed together

Il. Hamza wants to distribute |3 pencils among 6 needy children in this way that the
youngest gets 4 pencils and others get 2 pencils. Find how many ways, there are
of arranging in a row form?

12. In how many ways can & books including 2 on English be arranged on a shelf in
such a way that the English books are never together?

Find the number of arrangements of 3 books on English and 5 hooks on Urdy for

it the girls




B ermutation of Objects Not All Different

Suppose we have to find the permutations of the letters of the word BITTER using all
the letters in it. The word BIT, T,ER consists of 6 different letters which can be
permuted among themselves in 6! ways.

We can sec that all the letters of the word BITTER are not different. It has 2Ts in

it. After replacing 2Ts, we can see there are 21 ways. BITLER BITTER

‘\‘)I! “"ﬂ};s("/

The replacement of the two Ts by T,
Remember!

It there is &, alike objects of one Kind, #, alike
objects of second kind and @

and T, in any other permutation will

give rise to 2 permutations.
Hence, the number of permutations of
the letters of the word BITTER taken all

ahjects taken all at a time 15 given by:
at a time. @
151 6‘5432] i :Y\ i,

Ewmple T: In how %@ ers of the word |MISSISSIPPI| be arranged
when all t % used?
So tal numben of letters in the word =11

, dlike objects of

third kind, then the number of p-emlumuonz. of n

MISSISSIPPL
Iis repeated 4 times = 4! ways

S iz repeated 4 times =4 ways
P is repeated 2 times = 2! ways
M comes once only = 1! ways
11!

Required number of permutations = ———— =34650 ways
TN
Circular Permutation Note: _
‘ S 5 2 The Ful[uwmh circular arrangements ane n:ﬂmlnm of
The permutation in which the objects  wueh other and  considersd 4
are arranged i a circular order is  same when anticlockwise and O O
R e SR e clockwise arrangements ane
known as circular permutation. LA Hletbal

Circular permutation can occur in Iwo cases: @
Case-1: When clockwise and annclnclmis ArrANZ e ﬁ ?g@@h crent
% ‘, i

In a linear arrangement, changing, the ) ew arrangement.
H[)‘I.'pL"vLT Im i LT 'ITH'I'I ] -
distimet drranbn,m\.n

“vireledoes not produce 1 new,
\J J o-




following three linear arrangements
A-B-C B—-C—4 and C — A — B are all considered the same in circular
permutations because cach one 1s simply a rotation of the others.

We conclude that:
3 linear permutations gives 1 circular permutation.

; i ; 1 3t i
3! linear permutations gives ?3 = 3 = 2! permulalions.

Generalizing the above idea if n objects are arranged in a circle, the number of

S ; : . n!
distinct circular permutations is — = (n—1)!
n

Case-11: When clockwise and anticlockwisc arrangcmcms are W&Tﬂ
identical @

In many real-life situations, a ci
considered dit‘fmnb

For example, if thr nd black are arranged in a necklace, then an

DI‘ lTTIEIgL. are not

AITANZCITG 5 setrom {EH shown in the ligure) are considered the same.
In kgl cases, we divide the total number of circular permutations by 2 to eliminate
symmetrical duplicates,
Thus, the number of distinct circular permutations is:
{n=1)!
2
Example 8:  In how many ways can 4 persons be seated at a round table, while:

(1)  clockwise and anticlockwise orders are different

(i) clockwise and anticlockwise orders are identical.
Solution: Let 4, 8, C and D be the 4 persons.

i) If clockwise and aniiclockwise orders are different
According to Case-1
The possible number of ways are:

= {n— 1) ways /?25

—@-1)! =3

=331 Oﬁ\w\%\

v TALLL




The possible number of wayszm:z( 'm}rs {” \), ( \ g”/’ )
(4_ oeoa N &/ \&/

.
w2

-

.

b |

I.;.l

=3 ways

i)
P EXERCISE 7.3 4

I.  How many arrangements of the letters of the following words, taken all together
can be made?

(i) CURRICULUM  (ii}) ADSORPTIVELY (i) PROBABILITY

2. A girl has ¥ marbles. There are 4 red marbles, 3 blue, and 2 green marbleso®\she
arranges them in a row, then find in how many diffege L@‘ - Tan
make take all at time?

3. In how many dll aremnt Ways deons &1 in a round rable?

Hint {Solve .j
(a)

A5e5 )

(b)
ANy m ays can 5 couples sit on a round table if no two women are sitting
together?

7 persons fcy 6 persons

5. How many arrangements of the letters of the word ATTACKED can be made if
each arrangement begins with C and ends with K7

6. How many 6-digit numbers can be formed from the digits 7, 7, 8, 8. 9, 97

15 members of a club form 4 committees of 3, 5, 4, 3 members so that no member

15 a member of more than one commitlee. Find the number of committees.

%, The DC.Os of 11 distnets meet Lo discuss the law-and-order situation in their
districts. In how many ways can they be seated at @ round table, when wo
particular D.C.Os insist on sitting logether!

2. The Governor of the Punjab calls a mecting of 14 officers. In how many ways can
they be seated at a round table?

1) Fatima invites 14 people to a dinner. There are 9 males and § h,mall..-. are

seated at two different tables. Gruests ut one hu 51 Ia lhc
guests of the other sex sit at the seyond, t “a\m m which




P‘ernnta!hCn)lnIl Combima

11. W I
al no two persons of the same sex sit together
12 nany ways can 6 keys be arranged in a circular key ring?

13, How many necklaces can be made from 6 beads of dilferent colours?

7.4 Combination

Suppose, a teacher uses the names of few students to make a team for a writing
competition. Such as Ahmad, Sana, Hamza and Danish. As a combination of team
members, { Ahmad, Sana, Hamza and Danish) is equivalent to (Hamza, Ahmad, Danish
and Sana ). Because same students are in the combination. Consequently, you have the

same leam because the order of the name of

Ahmad | Sana |Ilamza | Danish |

Hamrza | Ahmad | Tranish | Sana

the students does nol matler.,

So, we are interesled i the membership ol the
tearm and not in the ways the students are listed (arranged).

Definition

A combination of ¥ objects taken out of n objects is a subset of r-ebje @m
ohjects, ﬁ @

The number of cambinations of i di b at/a time is denoted by "C,

or Cln, ¥) nr

Th rove that "(" =
! J!{n r_}'.'

Proof: Elements of a subset of v objects of a set of n objects can be arranged among
themselves in r! ways. So, each combination will give rise to »! permutation. Thus,
there will be "Crx r!  permutations of n different objects taken r at a time that 1s:
WCrx vl =P,
! '
= A= L Mg

{r—r)! rliin—r)!
Need o know

Which completes the proof.

Corollary:

; : The formulae" P and "C, are also
(i) Ifr=nthen a2, = n' = o known as  counting  formulae.

nlin—n)l  w!O! Because, they are wied to count the

n! i) possible number of ways m
(i) If r=0,then "Ca= R AR efint the ‘.rﬂ @

Ofn—0) Oyl

B AL UL AL ) [E———




y Applications of Combination in Real Life

Example 9: Zain has 8 different fruits. He wants to select 5 fruits out of & fruits to
make a fruit chart. How many combinations of fruits he can select?
Solution: To solve this problem, we have to find the mumber of combinations of 5 fruits
out of § fruits. In this sifuation, 7 = 8 and » = 5.
. 1!
: rlln—r)!
Alter putting values
R &l _ 8!
518=-5) 5.

Ax Tx6x5 BxTx g

TN
=8x 7=356 ways % @@m

Zain has 56 different ways to qelect 5 diffe
The teachm wants to

el
Example 10: In a schopl, a class ‘
sclect 5 students f m fany ways can the students be selected
including? {1 (1) 5 boys (i11) 2 boys
Solytg ﬁbu‘ ol girls =12
Number ol boys = §

3 s, sy A restuurant offers &
(i) Now let’s find the total number of ways o select students gy oue of picen, How

when exactly 2 are girls. many wiys are there o
< . 121 8! 1211100 87.6-51 _ select 2 fMavours of
G C"J_zzlm'_ﬂsr— R TTINE T  aat ples

(i) Let’s find total number of ways to select students when exactly 5 students are boys.
ker 5! . BY B-T7-6-5!
TOSI(E-5) S!130 513.2]
(1ii) Let’s find total number of ways to select students when exactly 2 students are boys.
g b 12 gt 121 &-7-46! 12.-11-10-91 —
(o) C)=ms. == : = 36960
. o 3rel 3190 2.6! 3.2-1.9

7.4.2 Complementary Combinations

Theorem. Prove that: “C. ="Cyr

Proot: If from m ditferent objects, wbkel W Qn]er:t'-‘. are |Eﬂ

Corresponding to e\ -:mnbmw combination of (n — #)
IS e -




Unit € »«-mmiﬁ> > waensis G

objects e Vers us, the number of combinations of # objects taken » at a time
15 e torthe number of combinations of 7 objects taken (n — ») at a time.

5 C’ = “Cﬂ—f
- This result will he found usetil in evaluting
"o 2
= (- -t ) R )
n.l
o a2 For example,
rin=r)! : ; ; 123411

n A l-C.‘IB‘ = l-c"|3-l|f| = I‘Cl = { : }{ 1 i ﬁhll = m

= 2

Example 11: Find the number of the diagonals of a 6-sided figure,
Solution: A f-sided figure has 6 vertices by joining any two verfices, we get a line
segment.

|
Number of line segments = “C: = . ST

& ar @K@
But these line segments include 6 sides of thenfigure @o@
number of diagonals 9 @@

Difference betwee @ﬁ
Qe pustaiiy

Permitation) ) - — Combination
Wﬂﬁﬁt& *  Order is not important
A aly and ba are different (because e, ab and ha are same
order of any object 18 matter) (because order docs not matter)
= Arrangement of objects »  Selection of objects
e.g, arrangement of! e.g. selection of?
* ball of different colours *  different colours
* Lnglish alphabet (letters) *  members in a leam
* people while sitling on chairs * [ood items

Application of Permutations and Combinations in Cryptography

Example 12: Zain wants to generate a password for his laptop to secure the data, He
can take only 6 characters to generate a password, Each character can either be an upper
case letter (A — 2 or digits from (0—9).

Can you tell how many passwords can be generated by using the above letters and
digits:

{1} If repetition of characters is not allpwed f @O@@
(1) It repetition of characters 1s \ ti@




n,.m@ |

Soutgne rnumber of letters = 26
Total number of digits = 10
Total number of letters and digits =26 + 10 = 36
1 = total number of characlers = 36
F = required number of characters =6
{1} Wrepetition of characters is not allowed, we lind out wtal possible permutations as.
cpr g L 31
(36=6)! 30!
_ 36-35-34-33-32-31- 30!
- 30!
=36-35-34-33.32-31
= L402,410,240 ways

Henee, 1,402,410,240 passwords can be generated by using the 26 ulphubum 10

digits. (If repetition of the characters is not allowed) @ @@
(i) [If the repetition of the charactr:a@is ' @ ftal Principle of

Counting:

The total num

Application of permutations to estimate the odd of winning the lottery.
Example 13: A box contains 15 cards from (1 — 15). Danish is to select 5 cards. If all
the selected cards are the first five multiples of 2 then Danish will win the game. Find
Danish's chance of winning the game, when
(v Order is important (i} Order is not important

Solution: » = total number of cards = 15

r=reguired number of cards = 5
(1)  When order is important,
15 p |51

Total possible ways="P = "F, = 155!

|

133
=— =300, 360 ways
1!

Hence, Danish’s chance to win the ganmg

WWMW“
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[IIWWL important
1 = Total number of cards = 15

r = Required number of cards = 5
[ 5]
5101551
18! 15x14x13x 12x 11x ot
Csto st.
15x14x13=12x11
- Sxdx3Ix2xl

—

Total possible ways = "C. = "C, =

= 3003 ways

Hence, Danish’s chance lo win the game = ﬁ= 0.00033

Application of Permutation and Combination to choose different sets of s for
Certain Qccasions @
Example 14: On Independence Dﬂ}f1 I ha 8 #%\ tioral songs. He
wants to select any five miuunﬂl u‘ﬂ /many ways he can select
and play the songs:O
(1) Il the orde m - 50ngs matlers

: - [ playing the songs does nol matter.
When order matlers

n = total number of national songs = 10
= required number of national songs = 5

Total number of ways= "P. = ""P,
T = M), 240 ways
(10-5)! 5!
Henee, the DJ cun play the five national songs in 30,240 different ways.
{11} When order 15 nol matter

i = lolal number ol national songs = 10

r = total number of selected national songs =3
L
S51(10—5)!

]D. '152 y
L
@ ifferent/ ways.

Total number of ways = "C, = '"C, =

Hence, the 1T can play the five ion%
U\

LS,




{E we the following:

i} “°C, iy (i) *c, (iv) '°cC.
2. Find the value of 1, when

. § : . 14.13.12 ... "

() "Co="C, (i) "C,= - (i) "C,= "G,

3. In how many ways can five subjects be selected out of eight subjects to select a
course programme?

4, Find how many ways there are to choose vowel words from the letter of English

alphabet?

In how many ways 3 dishes of Desi foods and 2 dishes of Chinese foods be

selected from 6 dishes of desi foods and & dishes of Chinese foods?

h

6. From a standard dcck of 52 piaw ing cards, there are 2 ,

7. A bag contain
in which five b

~Tind thc total number of possible ways

audd 2 green (i1} 1 red and 4 green
qit) 4 red and 1 green (v} All the red balls
. How many (a) diagonals and (b) triangles can be formed by joining the vertices of
the polygon having:
(1) 5 sides (1) & sides (1) 12 sides?
9. The members of a club are ) boys and & girls. In how many ways can a
committee of & boys and 3 girls be formed?

o]

1. How many commiltees of 3 members can be chosen [rom a group of 8 persons
when cach commitice must melude 2 particular persons?

11. Inhow many ways can a hockey team of |1 players be selected out of 15 players?
how many of them will include a particular player?

12. Show that: *°C, + *C, =

13. There are & men and & women members of a elub. how many Lumm]ttu;xm

can he formed? p@
(i) 3 women (ii) at the n&sat I W]a omen?
14. Prove that “C. + "C._, W @

Wiﬁww




16.

repetition of the alphabets is allowed
(b) repetition of the alphabets is not allowed

Using a ervplographic system, a password is generated with ¥ characters. Each

character can either be a lowercase letter (a—1) or a digit (0-5). How many
passwords can be generated if each password must contain exactly 5 lowercase
letters and 3 digits?

(a) With repetition allowed {b)  Without repetition.

An umn contains the first 15 English letters (A—0). Sania is to randomly select 3
letters from the urn. She will win the pame i’ the selected letters arc the fivst three
vowel letters. Find the probabality of Sanig winming the game if

' ;.@@c&:imr 1
¢ Q

principal wants to

{a) The order of the vowel letters matters
{b) The order of the vowel letters does not matter

cacher 1% list. In how

] elected songs matters
ence of the selected songs does not matter.
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“ matlcal Induction
and Binomial Theorem

INTRODUCTION

Francesco Mourolico (1494-1575) devised the method of induction and applied this
device [irst 10 prove that the sum of the first n odd positive mtegers equals »”. He
presented many properties of mtegers and proved some ol these properties using the
method of mathematical induction. 1n theoretical computer science, il bears the pivolal
role of developing the appropriate cognitive skills necessary for the effective design
and implementation of algorithms, assessing for both their correctness and co xity,

We are aware of the fact that even one exceptmu or s;:aﬂr @ ula is
enough to prove it to be false. Su @su r lhn:, mathematical
formula or smlv:mem i ﬂiled *d

M}v

for each element of the set under consideration,

The ‘.-‘:llldll} ola LU
st IS EST

L‘}'JLIIL[]HE on a variable belonging to a certain

FUTL ple, we consider the statement 8(r) =n” —n+ 41 1s a prime number for every

natural number n. The values of the expression n” —n+ 41 for some first natural
numbers are given in the table as shown below:

n 1 2 3 4 5 6 7 8 9 10 11
i S(n) 41 [ 43 | 47 | 53 | 61 71 B3 | 97 | 113 | 131 | 151 |

I'rom the table, it appears that the statement S({n) has enough chance of being true. If
we go on trying for the next natural numbers, we find » =41 as a counter example
which fails the claim of the above statement. 5o we conclude that to derive a general
formula without proof from some special cases is not a wise step. This example was
discovered by Euler (1707 — 1783).

Now we consider another example and try 1o formulate-t @J@@g find
Yenaigan 8

the sum of the first # odd mmnlwﬁix to see the pattern
of sums.
Sltva
W\fw o\l\l\) RERUE
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Unit et CEEND |

W@ erms) Sum
=15

| +3=4=2"
1+3+5=9=13
1+3+5+7=16=4"
1 +3+5+T7+49=25= 5"

{] 1+3+5+7+9+11=36=6"
The sequence of sums is (1), (2).(3)*.(H°...

EA e L T

We see that each sum is the square of the number of terms in the sum. So the following
slatement seems W be truc.
For each natural number m,

143+5+. . —(2n-1)=n" ... (i) wonth erm = 1-2{n—1)

But it is not possible o verify the statement (i} for cach pas c {; @ -‘ ‘ e il
involves infinitely many calculations which néyer “ &
BAND situations. Usually it is

The method of mathemartical indtdt) Qg .
ng to the set {1,2,3,...} but in some cases,

used to prove the sta
it is also used ents relating to the set {0,1,2.3,...}.

Iy a4 ofhesis is an educated guess or proposed explanation for a statement
based on limited evidence. It serves as a starting point for further investigation and can
be tested through experiments and observation. In scientific research, a hypothesis is
usually framed as a statement that can be tested and either supported or rejected by
data.

Induction of Hypothesis: It refers to the process of formulating a general statement
or hypothesis based on specific examples or parterns observed in particular cases. This
technique is often emploved in mathematical reasoning fo propose conjectures that
can later be proven rigorously using deductive methods.

8.1 Principle of Mathematical Induction

The principle of mathematical induction is stated as follows:

B

It a proposition or statement S{im) for each positive integer n is such that

. Base Case: 5(1)is true i.e., S{#) is true for n = | and @@
2. Induction of Hypothesis: Sk | Bis 7 @m ' '9@% any positive

e
integer k. d
3 Cunclusiou:&'i%%\ or\al ivedmlegers.




* Substituting i = 1, show that the statement is true for n = 1.

o Assuming that the statement is true for any positive integer k. then show that 1t is
true for the next higher integer.

For the second condition, one of the [ollowing two methods can be used:

Sk + 1) is proved using S(k).

S(k + 1) is established by performing algebraic operations on S().

_dn(n+1)

Example 1: Use mathematical induction to prove that 3+6+9+..+3n= for

every positive integer a.
Solutinn: Let S{x) be the given statement, that i,

Sln) 3+6+9+ .4 30 _;"{’HD

Base Case: When n = S{l] 25 } m is er, Le., Ehe base

case 15 satisfied, KX

Induction of t s assume that S(n) is true for any # = ke N, that is,
S(h): 34649+..+3k = MT*” {A)

-

The statement for # — £+1 becomes
_ 3k+D[k+D+1]
Hpiiials :
s IE+1HE+2)

2

Adding 3k +1) on both the sides of {A) gives
3k(k +1 1)
2

346494, + 3+ Ek+]1)

(B)

3+6+9— .. +3k+3 (k1) = +3(k+1)

= Nk +1]{ +]}|

_ 3k +1)k+2) +lj|{.fc 2) 7@ @ m
Thus 50k + 17 15 true if S1E)1 @
Conclusion: Since %@ satisfied, therelore, STr) is true lor cach

pusilive inle
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Exan ¢ Use mathematical induction to prove that for any positive integer a1,
Bl gk | fhE nin+ D2 +1)

f
Solution: Let §(n) be the given statement,
ma+ 1 2r+1)
1]
I+ 1H2x141) _ 1x2x3
6 6
S(1) 15 true, i.e., The base case is satisfied.

S(r): 1P +2° +3 4. 40’ =

Base Case: Ifn=1, 85(1): (1)’ = = . which is true. Thus

Induction of Hyvpothesis: Let us assume that S{£) is true for any &e N, that is,
Hk+1};2‘k+l} (A)
(k+ 1Nk +1+ mz;qr/iﬂj

Stk+D: F+22 43 4., +k~+fk+1i@ang

@)
Adding (£ +1) to bu% el \of eyiation (4), we have
3 PF+. +&+(k+1)P = —H'kﬂ‘]{?kﬂ}+(k+l'}*

e+ DRk + D=6k + 1]
6
(E+1(2k* + k + 6k +6)
- 6
{k+ 12k + Tk +6)
6
_ (kDR +2)(2k + 3)
f

SUE P+ 2" +3 + 4k —

Thus, finmula holds for &+ 1.
Conclusion: Since both the conditions are satisfied, therefore, by mathematical
induction, the given statement holds for all positive integers.

represents an integer Yne N m
@O@@

n +2n

Example 3: Show that

Solution: Let §(n) = ﬂ i

Base Casc: Whe;lﬂ; “\m \ =le ¥ . The base case is satisfied.




Al

S(k) =

-represents an integer.

Now we wanl 1o show that 5(k + 1) 1% also an integer. For n = & + 1, the statement
becomes

(k+ ¥ +2(k+1)

k+
St 3
k3 3k 14 2k+2 (R 20+ (3K +3k+3)
3 3
1 AL 2 I
_ (K uhljtk EBHD) e & RE g

K+ 2k m
As 2 is an nleger by uhxumpllun and: wis know a l@@ pleger as

ke N. S(k+ 1) being sum of inteigers "
Conclusion: Since :

S SR TR | -
mat}W&} at - 5 represents an integer for all positive integral
valuesof 7.

Example 4: Use mathematical ind uction to prove that

ments holds for &+ 1.

-= ansf’ ed, therefore, we conclude by

3+35+43.5 +..+35 = L L " sl . whenever » is non-negative integer,
Solution: Let S{n) be the given statement, that is, The dot (.) hetween two
guil numbers  stands  for
S(r) 3+3.5-3, By +35 = )57 -D multiplication symhbal.
4

=3

) 35" — Ha—1
Base Case: Forn =10, S(0):3.5" —¥ or 3= 1{54 D

Thus 5{0) is true i.e., The base case is satisfied.
Induction of Hypothesis: Let us assume that 5{&) 15 true for any &= A, that 15,

S 7 2 g HET=1) ;
S():3+3.543.5 4., 435 =25 (%}@m
Here § (=11 becomes o m@o@

S+ 3+3543.5 +., 1?{7&@ :
A 4
{13)




oM
o B
%&@@K@ -0

O
Add 5" on both sides of (A), we get
K41 »
343 54+3.50 4,  +35 +350 = wu.s*"
A 14450
4
s+ 4-1) 35t o)
4 4

This shows that S(& + 1) is true when S(&) is true.

Conclusion: Since both the conditions are satisfied, therefore, by the principle of
mathematical induction, S(#) in true foreach n=s W,

Example 5:  Prove that 4" + 6n—1 is divisible by 9 [or all ne ¥

Solution: Lel S{n) be the given stalemen,

S{n)=4"+6m-1 | W@O@©
Base Case: Putn=1, 5{1)=4 «6(1)= @%\g \ \
tble by ’

Which is(d riue forn=1.
Induetion of Hyppt nisc the statement 1s true forn =k 1.e.,
S(k ' Sdivisible by 9 {A)
This implies S(k)=4" + 6k — 1 = 9%, [or some integer &
4 + 6k —1=9k

Mowputn =&+ 1,
Sth+1) =" +6(k+1)-1=4-4"+6k+6-1
= 4(9k, — 6k + 1)+ 6k + 6-1
=30k, — 24k + 4+ 6k + 5
=36k —18k+9
=94k, —2k+1) (B)

Which is divisible by 9.
Thus S(k) is true for n = & + 1. So the statement is true for all natural numbers
Conclusion: Since both the conditions are satisfied, therefore 5 e of

Example 6: Use mathematical in

S L
W @U Uf\ o
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Solu 2l Sin) be the given statement, that is,

Sl Z(z& 3&4-1};

Zi+1
1 "
Base Case: Forr=1, 5(1 - 4
(1x ; 2k - l‘){”k 1] 2n+l

| | I 1
= = =
-3 2141 3 3
Thus 5{0} is true 1.e., The base case is satisfied.
Induction of vanthesis: Let us assume that S{m) is true for n = m, that is,

Sy = (A)

2k - l]{""f. lj 2m+1

Here Sim+1 J bemmes
(zk I]{”R i \g
M {mw—l W 2em+1)

Sl 1
t @\J\Jffmm(zmm (2m+1)(2m+ 3]

mll o om] (B)
"m+3 Zm+2+1 2m+1)+1

This shows that S{k + 1) is true when S(k) 1s true.
Conclusion. Since both the conditions are satisfied, therefore, by the principle of
mathematical induction, S(») in true foreach nes W,
8.1.1 Principle of Extended Mathematical Induction
Let i be an integer, A formula or identity or statement S(n) forn 2 § is such that
1. Base Case: S() is true and
2. Induction of Lypothesis: 5(% +1) is true whenever 5(£) is true for any integer
e,
3. Conclusion: Sfn) is true for all integers # =i,
l:‘.ﬁill'llplﬁ 7: Showthat 1+ 345+ ... 2n+3)=(n+3) " for integral values of n= =2,

Solution:
Base Case: Let 5{ n) be the gnen statement, then for m = a vc@
ahi UL o

ctrue foranym=ke Z, k = -2, so that
(A)




it oo e (R

S(Jiww. F2k+5)+Qk+1+9)=(+1+3)¥ =(k+4)* (B)
Adding (zm + 5} =(2& + 7) on both sides of equation (A) we get,
1+3+5+4+.. +(2%k+35)+(2k+7) =(k+3F+(2k+ 7
=i+ 6k+9+2k+7
=K+ Bk + 16=(k+4)
The formula halds for & + 1.
Conclusion: As both the conditions are satisfied, so we conclude that the equation is
true for all integers n = =2,
Example 8: Show that the inequality 4° > 3" + 4 is true, for integral values of n = 2.
Solution: Let S{r) represents the given statement i.c., Sir) 4° = 37 + 4 for integral
valuesof n =2
Base Casc: For s = 2, 5(2) becomes

S(2): 4° >3 4, ie. 16 > 13 which is true. @ @@m
Thus 52} is true, i.e., The base@cas 37
Induction of H!rpnth is: 1 et n@

S(k): 4* =3¢ +

an} = kiz2)e Z , thatis

Multiplyi mcqu.jllty {A) by 4, we get
47 = 4|L3»t I 4)
or A 3413 416
or 4 >3 1443 412
or 45 5 30 g (. 3k+12>0) iB)

The inequality (B), The formula holds for & + 1.

Conclusion: Since both the conditions are satisfied, thercfore, by the principle of
extended mathematical induction, the given inequality is true for all integers n =2
8.1.2 Real Life Application of Mathematical Induction

Mathematical induction is a powerful method used to prove statements that are
formulated for natural numbers. It is often used in mathematics to justify conclusions
about sequences, series, and other constructs that involve integer values.

Example 9: Mr. Faris starts a savings plan where she depamls Rs. 1 U into

his bank account every month. Using ma manc 8 L etotal
amount saved after » months is given Iﬁ}
S{H"@ (= ;

where n is a positive

HIg llm number of months.
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Mathematics

IR s

Salution

fit S )= 1000y

YFar & = 1: After the first month, Faris save Rs, 1000, Therefore, the total

savings after one month is 1000=1 = 1000 rupees. The base case S(1) holds true.

Induction of Hypothesis: Assume the statement is true for some positive integer &,

i.e., after k£ months, the total savings is S(k) = 1000 = & rupees.

Now, prove that the statement holds for &+ 1 months: Aller £ +1 months, vou would

save an additional Rs. 1000, so the total savings becomes: S(k + 1) = 1000 = & + 1000

= 1000 = (& +1) rupees. Thus, if’ the statement holds for &, it also holds for & +1.

Justification and Communication: Using mathematical induction, we prove that

saving Rs. 1000 monthly for n months totals 1000 = n rupees.

The base case (r = 1) holds, and assuming it's true for & months, we show it for k+1.

Thus, the staternent is valid for all natural numbers 7, making it reliable Tor real-lile

applications.

Example 8: Imagine Ali starts a daily exercise routine v.h::rL cach dﬂj he in m s the
: Lon

number of push-ups he does by 2. On the first day, he does F’ 2

the n™ day, the total number of puah-u Al has-d @
Solution: Base Case: Fm‘ "= 1 f -‘w (

= 10=1-10. The

lnductmn of Hy e the atatement is true for some positive integer &,
¥ pu'-.h-upl»: after k days is S(k) = &* +9k .

Now ve it for k + 1 days: On the (£ + 1)th day, vou do 10 + 2 = & push-ups. The

AR

K +9% +(10+2k) =k +2k¢-1+9ﬂ-+9
=(k+1) +9(k+1)

push-ups. Total push-ups

total after & + | days becomes:

The formula holds for Sk +1).
Conclusion: By mathematical induction, the total number of push-ups after n days is
n'+9n
Example 9: Suppose you aim to lose weight by reducing vour calorie intake hy 50
calories each week, If vou start at 2300 calories, prove that after # weeks, vour daily

intake is 2500-30x calories,

Solution: Basc Case: Forn = 1: After | week, your intake is 2500 — 50 = 2450 calories.
The base case S(1) holds true.

Induction of Hypothesis: Assume the statement is true for some positive integer &,
i.e., after k: weeks, vour intake is S(k): 2500-50k u.n]nries Kﬁ
Now, prove it for & + 1 weeks: Afterk + 1 wee

W ks.
2500 — 50k — 50 = 2500 —50(k ©.1ycald -1
Conclusion: Ly ma%timu t"u% S \i

ryriela alrls for k+
i J.IllSlk.E after n weeks 15 Qﬁﬂﬂ-ﬁﬂn

calories.




(i) 1+3+5+-+(2n D=0’

m oo 1§ 1 1]
(i1} I+?+T+'"+2T=2[I_?|J
(i) 2+6+18+ ~ +2x3"'=3"-1

{iv) 1x3+2:~:5+3~x?+...+nx{'2&:+l'}=w
(v) 2 g 3 + : + ot I =1- :
=2 2x3 3Ix4 aln+1) i+l
(vi) r+ri+e’++r r{: rﬁ), (r#l)
_,'

(vil) a+{a+ d.}+{a+2d]+_.,+[€a+{H—]]d]=i['2ﬂ+{n—‘ @m
N W& @P.

v mathematical induction that for all positive integral values ol n
(i) a*+a is divisible by 2 (ii) 5" =2" is divisible by 3
(iii) 8x10" =2 is divisible by 6

Prove that ¥ #* =
el .
|

. whenever u is a positive integer,

v —yisafactor of X" =" (x 2 ¥)

= 2" —1 for integral values of n 2= 4.

4" »3* +2"" for integral values of 7 2 2.

l+mx£(l+x) fornz2andx >—].

Aliza invests Rs, 1,000,000 in a business that promises a 6% return compounded
annually. Prove by mathematical induction that the amount of money after o years
is 100, DR T, D",

Sikander starts saving Rs. 500 in the first month and me 0
by Rs. 500 Ldk_h month thereatter. He wegnts R %%B (f‘
! j I

nduction to justify
urhulhu hl-. L..né'n M r\ :

ey ings

& saved at

UV T
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10, Prove by uction that if a loan of Rs. 2000000 and pay Rs.

. uul of each year, the remaining balance after n vears is f,
SO0 OO0 S0.000m.
11. Il Salman starts with Rs. 5,000 and saves Rs. 1000 monthly, derive S(n) and

prowe it by induction.
8.2 Binomial Theorem
An algebraic expression consisting of two terms such as a + x, x — 2y, ax + b ele., is
called a binomial or a binomial expression.
We know by actual multiplication that

(a+x) =a® +2ax+x* (i)
(a+x) =a +3a x+3ax’ +x° (i)
The right sides of (1) and (1) are called binomial expansions of the bimomial
a + x for the indices 2 and 3 respectively.
In general, the rule or formula for cxpansmn of a hmurma[

atsed 1o E:&g&vc
integral power # is called the binomial theo 7 m or any
positive integer n, O
i { e 3 K;» P~y r=-
\ M i
MOHH +[ N L (A)
S, n—1) A

L It
or briefly (a + x)" = Z ( }?”"’x’ . where & and x are real numbers,
=0 '._A‘r

The rule of expansion given above is called the binomial theorem and it also holds if @

or x is complex.

Now we prove the Binomial theorem for any positive integer n, using the principle of

mathematical induction,

Proof: Let S{u) he the statement given ahove as (A).

Base Case: [fn=1, weobtam S (1): (a+x‘]' ( {’}1' +(= }1' 'x = a + x which is true.
\ :

The base case is satisfied,

Induction of Hypothesis: Let us assume that the statement is true for any n=ks N, then

e Ty L T
i
G
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Multiplying both sides ol equation (B) by {« + x), we have

Ck 'e e k
(e + .r)(u+_:r:|*- =(a +_r]l| " ]u" 4{] Ju*-._w_ ; Jﬂa-__r T (r_l]ue--qx_r-i

\ L B

PR A 8 [kil]a.r"'" +|~£ ‘].r*:'

LS rl

t2 s (& i L g [k Eorsd_r-
—’Vvl,xu J]ﬂ" '+Lk_I ]ﬂ' 1‘+[1Ja" Xk .i.‘!'ll\ r_]}(l X :
(I .

.-'I‘:'“\
+

W

F .
o) )![ﬁ Jj|g*'_u || i Ii(f ]Ju* et e+
s ?
k .l. nl T k kﬁl Ll
|_'.&P J+[." + [ A ]m +lk;x
, S
s k ?(ml ”k k+1 (k ] k+|]ﬁ:rr0??rf§k
o) L0 2 ) k] L ) Lr=1 P

LY

[a+.r)}" =[k; I]ﬂ"’" +{k-:-1 a' v+ £+ 5 1Jn‘ Gt
*[k;l);a*"'*x"+.._+[k£1 _:.r"‘ +|'§_:_} ...{D)

We find that il the statement is true of 7 = &, then n 15 also true forn=4% + m
sion: '@ ol ' g i it values

inomial coctficicnts.
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TheW@ can be observed in the expansion of (a + x)"
(i) ¢ number of terms 1n the expansion 15 one greater than ils index.

(ii} The sum of exponents of a and x in each term of the expansion is equal to its
index.

{11i) The exponeni of @ decreases from index o zero.

(1v) The exponent of x increases from zero to index.

(v) Thecoeffi cienns of the terms equidistant from beginning and end of the expansion
| { n
'1, ' e

{vi} The (r +10th wrm in the cxpansion is [

are equal as [
A

}1" "x"and we denote it as 1, e,

" (: _— @O@@m
Asall thetenll:mj of the % @W

by puttimg =10, 1, 2,..., n, 50 we
call it as the peneral

I

Exa mld T_ i] and also find its general term.
¥ [
¢ 5 LR
r ] 2z a [=2
Solution: - | :[ 1 ] I
W ap .\ 2 a ...-"_.l
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b ¢ eI B f1r
=0y f ]‘_; S =E ’ }; = -(—trl:’ f ]
Example 11: Evaluate (9.9) using binomial theorem.
Solution: (9.9)° = (10-0.1)°
= (10)° + 5x (10)* % (=0.1) + 10{10)* % {=0.1)* + 10(10)* = (-0.1)*
+ 5(10)—1)* +(=1)°
= 100000 — (0.5 ) 100007 + (10000 0.01) + 1000(—0.001) = 500001 ) — 0.00001

= 100000 — 500 + 100 — 1+ 0,005 — (00001
= 100700 005 — 3001 00001 = 95089 00499

- 1
Example 12: Find the specifi ‘ 1 @ <10k [ x—L] :
Q 2 ix )
i : % (if) the fifth term

om the end.  (iv) coefficient of the term involving <™

M‘t

w1

(i} Let T_ be the term involving xin the expansion of [% t—-}—J , then
X

|!,-'ll‘-..-ir~]ll—r[ ] W
2 Ex,.-

11-r 11=2r
].1 ]3 H—J {: ”r n.—r —r . [: “ [II]3 “tli—?.-

rel T

.\r

2[ | #° 21 f—r
As this term involyes x°, so the exponent of x is 5, that is,
I1-2r=50or —-2r=5-1l=r=3

Thus T A involves x°

4 1=h
Tﬂ. o {."_1) ]]J3 -6 _

11109 3%]@ @ m




Q

Bt <> e O
O

(i) g m T, ,wegetT,,

11y 31 11,1098 ¥
T1={_1)1( w n 1,_1'“_-?' r ] D -_—?_I]
= | g o ) R L
_ 1x10x3 27 St |f.5><z?r3 _ 4455 3
1 128 64 64

(iii) The 6th term from the end term will have (11 + 1) —6& i.e., 6 terms before it,
It will be (6 + 1) th term i.c.. the 7" term of the expansion.
- 11-12 - |
Thus T, = (—1]6[ 1ﬁ1)3 i LH2 ML‘I—I
Sl 54321 2
_Jix6xT A1 1T

I "3x32° %  l6x

(v} :: is the coefficient of the term involving £ . @ @@m
o

8.2.1 The Middle Term in t O m

In the expansion of {a@?&@ ‘& ofterms is i + |

e

Case Wﬁ on then n+1 is odd, so {'T: +1 ]lh term will be the
only ong middle term in the expansion,

: y i 5 +1 ‘n+3)
Case W (ris odd) if # 15 odd then 7 + 1 15 even so[“ ]th and | %Jth terms of
\

&

(]

the expansion will be the two middle terms.

Example 13: Find the following in the expansion of [% + %J :

2 x
1) the term independent of x. 1y the middle term
Solution: 1) Let I be the tenm independent ol x in the expansion of

v - 12
[T*%] . then
S

(2 ~ 2 ) @o@@m
e s

As the term i%n
N O
W\VJ o)




M:Ii-

.54 Binomial
M’Br— 0=r=4

l’l
Therefore, the required term T P |

.2 \'Ea_l: tlj_l:: 12:( le 103‘( 9-2 q__'{'ﬂ

4] 7 43 2x 1
_ 11x45 _ 495
a3 16

(1) In this case, n = 12 which 15 even, so

| ]:_? +1 Jth term 15 the middle term.,

LY

Y = Ylife
r, = [ I—) [—J Because T is the required term.
- 6 A 2 x )

%

120" 2% 12k 1Ix10x9x8xT 4
= X
JZ" BxSxdxIx2xl

IEx | ]x ? 924 m
@O@@)
8.2.2 Some Dtdm un:v. f “Mﬁ\ pansion of (¢ +x)"
Wﬁ know 1:
j ,— l .|-!
i Lig
| .r;‘ X+ -|- m:" s ]x" (A)
G l~.u—l L

(i) Ifweputa=1,in (1), then we have,

o sins TN [ % my o e
{1+ x) =LU']+[E !}r+[2}r +...+[r } -«-...+[n_]}r +Ln]x (B

(ii) Putting « = 1 and replacing x by —x, in (1), we get.

(1-x)" = “ﬂ ]* [ ?]{—xﬁ(g }-—‘f}’ WE x)* + .,,’i (=x)" '@@@Q—ﬂ"

-*@B@%ﬂ e

a coefficients by putting ¢ — 1 and

st s n{r;] 1]‘1:) - i~ 1| # 2::-...(:: r ]J.tf L gty oa
21 !

n

Lo _”{ﬂ—‘l)----(n—i"-l-‘l}(n—f‘)!=n(n—l}....(n—r+l}w
r

ri{n—r)l rifn—r)l ¥l ;

(i) We can find
x=1in




i OFe
SR (1 ) (1)1 (3)
oo 2 =g (1 )8 )renr0)(3)

Thus, the sum of cocfficients in the binomial expansion equals to 27

(iv) Putting a= 1 andx =1, in (I}, we have

“‘”"’(ﬂ '[nﬁl‘[{ s L wey ™ +(—n"(“ |
| i I'z'T\\z 3, e } l?i'—l L n)

£
" l' | 2 3 A
Thus{" ‘_ " n |+ 7 [rr bt e ]H-i}" n J='D
.“J .2 J «_3 &.r;!—l_ "

If# is odd positive integer, then
Y B W
+ |+ s
[ 3 ) "}

TRRE R ( n 'R
| + l+...+ -
KU ‘.2.»" n—1 ‘-..l s

If n is even positive integer, then W@o
' 1Y,
i
MR,

Thus, sum of od
Coe

(7Y n) 3
Example 14: Show that: | . }+2§ g 3[” |+...— n[ " ]= n2™
n

a binomial expansion equals to the sum ol 1ts even

1 V2] L3,
“l \'l = i \I
Solution: [” |- 2 " ]+3( " +ont " Izn+ H{" +3”('lg bt + .4l
3 0 i " 2! al
= n.[l+[n—!};w—.,.+l |
i 2!

o eRg R @ e e
- [.r: 1 JT{N 1 |+i n 1J+---+(H I]E-L .2
O‘ J l 3 L 2 n—l},J

P EXERCISE 8.2 4

.  Using binomial theorem, expand the following;

s B . o
s o 8 @@@‘

i} (0.97)"




T
Y
R O —

. | il amm'urj, the following:
e - S W s ’ I g
(1) {a +4/2 A:) * {ﬁ s ‘.Ex} (i1) (2 + -."EJ 4 (2-=~.s"§:f
4. Expand the following in ascending power of x;
) =l (i) (1-x+x)

5. Find the werm involving:

13
(i) x"in the expansion of (3—2x) {ii) x " in the expansion of ( . J
L

\I\‘

(iii) " in the expansion of (i— a | (iv) »'inthe expansion of (x - ‘|'T]“
x

6. Find the coellicient of}
3 W4 j( 1 In
(i) x7in the expansion of (: -— I {ii)x" in the expansion of | m]

Nk
7.  Find 6th term in the expansi ul W
8. Find the term 1%% IWing expansions.

(i i) 1+ 22 }J(I =

X B .
B etermine ThE msdd]e term in Tih‘;‘ following expansions:
& 1" RE)
I e B 1Y
i | ——=— i) [ xR (i) | 2x=~
r 2.4 o 3x ; 2x
= o B R L7 G—
10, Show that: | |4‘ |+ I— &
5 R 5 ) L#

83 The Biﬁtlmia] Theorem When the Index » is a Negative

Integer or a Fraction
When n is a negative integer or a [raction, then
mn-1) . A aln =11 {n-2) .

- T 3]

rin=1){n-2)...(n— r+|}

L.
| &?&\\
r m@@ o

The series of the type 1+ nx ' + .. is called the

5 3
binomial serics.

(l+x) =1+nx+

provided | x <1,




:'!;I::;":ﬂﬂl Induction a

i is heyoend the scope of this book,

,[ n ]{ : ]ﬂc are meaningless when n is a negative inleger or a

[raction.
= {n—-2) . (n—r+ly _

i g
Example 15: Find the general term in the expansion of (14 x)™ when|x < 1.
=) =D 5= -r+1) "

* The general lenm in the expansion i T =

Solution: T, =T _ =

!
. {—1}".3.4-5...{:'+2]I,. ip i 1.2.34.5 ...(.I'+2,)x,
r! 1.2
. 2 : 2) .
= {_l}l ,-.{r+ I) {r+‘—}x_r 2i [—]]r |:1'"+ ]} fr+ )I'
2A 2

Some partu,ular cases of the upﬂnsmn of (1 +x)", n<o.
(B} (Q+x)' =l-x+x’ =2+t (=Ix +. §§\§\§
(i) (1+x) =1-2x+3x" —4x*+, O’I Jx° W@O@@D

(i) (1+x)" =1-3x+
O

- o TR ¢ RS | P
(F+13(r+2)
e e
2
8.3.1 Application of the Binomial Theorem
Approximations: We have seen in the particular cases of the expansion of (1+ x)"

M ) =1+ 3x+6x" +10x" +...+

that the power of ¥ goes on increasing in each expansion. Since | x <1, s0
| X | {| 5 forr=2.3.4
This fact shows that terms in each expansion go on decreasing numerically if | < 1.
Thus, some initial terms ol the binomial serics are enough lor determining the
approximate values of binomial expansions having indices as negative integers or
fractions.
Summation of infinite series: The binomial series are conveniently used for
summation of infinite series. The series {w»‘mw S is re'qmreﬂril s mmpmed
nin—1 W a—1){n— \K\;\S
1+ nx+— ) { ] { i+

! 5 x
to find out the values of 7 am.lx pulunw the values of m

and x in {1+ x)", “

PRI —




me I

decimal,

£ : ; 1 ;
Solution: This expansion is valid only if [2x <1 or 2 <1 or|x|< < .thatis

L ] l[—-ll——u

(1-2x)" = 3.1’. ~2x)+- 3{2_1,' 4-21) + 2 = =),
1820 JRaYE)
_]_ix+3—i"{4x1]+ 3 N 3 - 3 Jf—-g;l'!}'.
3 2.1 ' 3.2.1
=1 ._2 T _4_ z _]_2_'23 __l_.(g_- A1
3 o 333 320
2 4 Hb o,
=1 e — X
3 9 #1

Putting x =.1 in the 1bme expansion we have

(1-2(.1)" —I—{I_n.f—{l}— @ @W@@@

ODI 04
= U[][H":? =1-107159 = 92541

Adtertrative method:

WE _ ey gyl _ = - Lr_mal - )
(LB =il-1" =1 3+—l! -2y + 3

Simplify onward by yourself,
Example 17: Evaluate /30 carrect to three places of decimal.

|
Selution: 430= (30" = (27+3)7

=[2?['1+2*_"_{.]]“ e [ e
a
SRR

a2
uu S A9

G,




o Mathematical Induoction
Binominl Timmu

‘ 3 { 1 (1Y

| + |+ =3dl+—- —|+

~ 119 ) 27 \27,
23 [1 + 03704 — 001372] = 3 [1.035668] = 3.107004

Thus 330 = 3.107

Example 18: Find the coefficient of x” in the expansion of "ll _%-__-
(+x)”

Solution: —x1 =(1=x)14 )
{1+ x)

DED o, CDED2rt D,

g,

=(x D+ 2 (2t
21 rl

Cx D100 D21 1P L. 1Y Xt D" 1 L]
= (24 DT F=102 + 1832+ FELP- V™ T+ DR+ DL
Coefficient of x" = (=D (-1"""'n+ (=D (n+1)
={=D"'n+={—)"(n+ 1) = (=D [n=(n+1}] = (-1)".(2n+

Example 19: [f x is so small that its cube hlgh
[1—x

that |— =l—-x+— @
I+ x Q

Solution: .




& 3
Salution: y= L(—df— }I ]—'3¥ —4] 1 .4 5(—4— +... {A)
T 2l9 Janlo ) g3l o9
Adding | to hoth sides of (A), we obtain
i 2 '3 !
I+r=l+L = +E 3 +1'3'5 A F e (B3)
: 209 42 9 839

Let the series on the right side of (B) be identical with
n(n=1) e n(n—1{n-2) .
2! 3

which is the expansion of {1+ x)" for| x | < land # is not a positive inleger.

1+ mx+

On comparing lenns of hulh the series, we get

“E L 9 @ @@
1) s l-%%@’@ @Q&@??
ll_mlm@@ ° (i)

Substituting x—& in (i), we get
n(n=1) [ 2 T‘ 316 aln=1) 4 3 16

— | — | = —=—.— or — =

2 \% ) B8 8l 2 ‘8in® 8 81
or Hn—-1)="06n or n=1=ln=n= 3

: ICo— -
Putting A S (), et = — =—?

“ %)

Thus l+_v=[l—%)_l’:= {%}_j =[% ""~’= "i‘ @@m
o

or -»}"_(l+ ¥l = Q @
Squaring both the side ‘m m

0 )

Anfﬂ\w

\J\J




Unit 0 Binomial T

b.

Y. SuRye" oo

D

" EXERCISE 8.3 4

Expand the following upto 4 terms, taking the values of x such that the expansion
in each case is valid.

syl e
M 1+ I et Gy 2lede
{1+ x)? =
Using Binomial theorem find the wvalue of the following to three places of
decimals,
(i) 99 (ii) u.nsﬁ it {iv) ¥7
3252 V8

Find the coefficient of x" in the expansion of

; 1+x faxy t} m
(1) : (i} @(:)
If x 15 5o small that s wzu.ir “ eglected, then show that

O

" l=x J2x 3
(1) ,#I (1) =+ —x
& V=X
| 14
7)1 — (16 + 3x) h__y_x (i) Jatx 25
4+ 5x 4 284 (1-x)’ 4
If xis so small that its cube and higher power can be neglected, show that
g« Y — 1 9 . " 1 -
(i) Vl=x=2x2]=—x-—2ux" {ii} ﬁa1+.::+—x*
8 l—x 2

If x is very nearly equal 1, then prove that px® —gx” = (p—g)x™

Identify the following series as binomial expansion and find the sum,
ek b AL N AL T
20 4 b 24 4 3181 4

. ; 2 ]
Use bimomual theorem o show that |+ —+ —

9 | E""\ =

4=
48 4812

~prove that 4y° +4y—1=10




i
" n! L
] = ———  where 0 < r <,

\r Hin—r)!

Pascal's Triangle provides a combinatorial method to compute hinomial coefficients
without dircetly using factorials. The construction of Pascal's Triangle follows these rules:
1. The first row (corresponding to r=0) consists of a single entry: 1.
Each subsequent row begins and ends with 1.
Every interior entry is the sum of the two entries directly above it from the
Previous row.
e Pascal’s Triangle

w12

s m e

=+ Columns
Mathematically, this is expressed by Pascal's Rule:

o 1N Fa=11
Pascal's Rule: ln |=(rI : | fa=d
Ly

Lk l_,+'k i ,-]' for 0<k<n
The entries in the #-th row of Pascal's Triangle correspond to the binomial

o
. CARET i
coeﬁiclentsl :
LHPRW! "

For example, the binomial cocfhicients cormesponding to n =4 are:

'41 4 (4 (4 4
=]1 =41 =ﬁ__ =4, —

5

Example 21: Expand (x + y)* using Pascal’s triangle.
Solution: The hinomial coefficients for the expansion of correspond to W& in
the n=4 row of Pascal’s Triangle: 1 4 6 4 1 é @@
Thus, the binomial expansion using Pasgal s\t o
(x+ L @ P+ 14
e
WWNM ARBIS




q @O@@m
K ' @@ Mathematics
ual Theorem and using Pascal triangle.

Binamial Th
Example 22: Expandﬁ
Solution: mial Theorem:
Wﬁ)% C1 0 (- 2) +3C AU 2P HC - 20 + - 2)

+ (s
=x Il] Fr+40x - 805 R0t 32y
The binomial coefficients for the expansion of correspond to the entries in
the n=3 row of Pascal’s Triangle: 1 5 10 10 5 1
@+ BY ="Coa® B +3C a* b + 3 BE + 30y & B 4+ 3Cuat B +3Cs " B
Replace binomual coeflicient from Pascal wangle anda=x b=-2
(x+2F =0 2°+5x°C 2+ 1050 2P+ 102550 2 +5x( 2)' +( 2)°
=x 10x'%+40x% B0 +80xt 32y
8.5 Application of Binomial Theorem

I Imit 0 Mathematical Induoction

8.5.1 Finding the Remainder using Binomial Theorem
Example Find the remainder when 8™ is divided by @ @
Solution: Express 8 in terms of %@

(] + LY Illllc-v"-?l-lﬁl.ll-’-.l 4+ l"J‘J(__v1 ?Wll S IIIIIL.-Q‘;.?-ZIH_*_ I(ﬂ{;m?‘ullllﬁ

We see that all terms in the sum are divisible by 7 except the last term i.e."C,,, 71"
So, remainder will be given by the last part.
Remainder = "'C,,, 71" = 1. 1.1=1
Example 23: Find the remainder when 2'"" is divided by 3.
Solution: We calculate the binomial expansion.
II-I (1 chﬂ
00, s, o (100 U0 5 IO Y o e
= |\ ; )|3" =1 +[ : ]3*"{—13' +|-\ g PIED et LmJa (-1
= 3" _(100).3" + 4900.3" — ... - (100)(3) +1
= 33" —(100)3™ + (4900}3“? — 1007+ 1
= 3wanintiger + 1




@@m
. @W@o
nwn»mzﬁﬂnmmﬂggék§ﬁ s O
Example 24: FindH] i :
MS& T ) (28 (i) (74
SoluNew: {1) Now 126 can be writing as: 126 =4 = 31 +2

Since, the remainder is “27

S0, 3=

Hence the unit place digit of (43)'*% is 9.
(i) (25"

As the Unit place digit is “5" which always remains 3 at unit place.
(iif) (74)*"

Now 247 can be written as:

247 =4 =61 +3

Since, the remainder is 37

S0, 4" = 64

Hence the unit place digit of (747 is 4.

Example 25: If the fractional part of the number * 4 s x then i @ m

.-‘.‘EIM -_.-1 B
Solution: 2 “@Q&W

WW (,_; 2y

_m i
gEY (31+1)

d

=—'31 |
3‘1{ i+1)

—li&n.“:+l—'l(J
31

8h is an integer, fractional part = ;f:
S0, k=16

Finding Digits of a Number
Example 26: Find the last two digits of the number (11)'2.

Solution:
(¥ =(11%° m
(D - (21 R\&“ @

—{IZD 1(}9;\/(\\

RETTT R

2\ O




Uni 0 Mathematical Indaction and
Lmit Binomial Theorem

=8¢, (120)° + ¢y (12 ‘ﬂ

°Cs (1200 (1) . ‘
20y +5Cs (1208 +5C; (1207 + 0Cy (12007 + 5Cs (120) + |

A multiple of 100 + 6(120) + 1 = 100& + 72. The last two digits are 21.

Divisibility Test

Example 27: Show that (15)'* + (13)'¥ is divisible by 14,

Solution: (15)"* + (1) =14+ )P + ({14 - 1)"?

= [BC x (147 = B0, (142 + B0 (1) +. 483 C1] + [PCo x (14)5 =13 (1) +
1'1(-'2“4_}I1 L% I._S(-_-]“,_”II + .+ ISCH{[“')— mClﬁ]

=B, x (14)* + 80 = (142 + Bx (1) +.. + 1+ B0, x (1497 -0y (14)'*
ot PC (14 1]

= 14[3C, = (14)12 + B4 + B (14)1"+ .+ 1+ 50,140 50, (14)7 +
B

= 144

Which is divisible by 14.

8.6 Real Life Application of Bino nd
Mathematical lnd tlcm @
llere are some exﬂm@ i o ematical induction and the

-mch as F‘unle dnmmn effect, Pascal's

Y e

*ca (12011 = *C4 (120P(1)* +

Example 28: A company wants to estimate the total cost of producing and delivering
a product using a supply chain. Each stage of the chain (production, packaging,
shipping) involves additional costs due to inefficiencies. If the base cost of production
is C, and each stage adds inefficiency costs, modeled by (1+ x)" where x is the
inefficiency rate per stage and n is the number of stages, estimate the cost for small
values of x.

Solution: The binomial theorem allows us to expand (1+ x)" when x 1s small, giving a
more manageable approximation.

mr—0

(1+x)"=1+nx+ = X+ ...

For small x, we can approximate the total cost by only taking the first few terms of
the expansion.

Let’s say ' = Rs. 100,000, the inefficiency rate x =0L05 {5% i th@@g@
o

stages (production, packaging, shlppm
The total cost is; Cost= (" ® {t+{i§

WW“ o




Expanding using the binomial theorem:

(1+005)7=1+3(0.05)+ 33— 1)72 (0.05F =1+0.15 +0.0075 = 1.1575
Thus, the total cost is approximately:

Cost — 100,000 = 11375 — 1157300,

This means the total cost is Rs, 1,157,500, which includes inelliciencies.
Mathematical Induction: Domine Effect
Example 29: A line of 100 dominoes is set up so that when the first domino falls, it
canses the second domino to fall, and so on. Prove that if the first domino falls, all 100
dominoes will fall.
Solution: Base Case (n = 1): For | domino, if it falls, it"s true that it has fallen.
Induction of Hypothesis: Assume that tor g = & if the first k dominoes @WY the

k™ domino will also fall. @

I the first & =1 dominoes are selup, atd the @ 5 S thHen .ﬂ] dominoes, up

to the (k +1)0, wﬂl Kh ' tctive hypothesis), then (& +1)"
1 ‘E;A

domino will also fa
Thus, by m tion, if the first domino falls, all 100 dominoes will fall.
Eco regasting with Compound Interest

Example 3(] A bank offers a compound interest rate of 5% per vear, Sumaira invests
Rs, 100,000 for 3 years, How much will her investment be worth at the end of 3 years?
Solution: Using the compound interest formula, the future value a of the investment is

5

given by: A Fll I ;

where: P = 100,000 (the principal), r = 0.05 (the interest rate). » = | {compounding
once per year), £ =3 (the time in years).
Substitute the values: A=100,000% {1 + 0.05)" " =1000 = (1.05)"
Using the binomial expansion for (1.05)';

(1+ 0,058 = 1 + 3=0.05 + 3 = (0.05)° + (0.05)}

=] =015+ 00075 - 0.000125= 1157625

Mow calculate the future value: A = 100,000 = 1,157625=115762.5 m
So, after 3 years, the investment will be m} l{s 115762, a o@@
Variable Subletting and Growt ;

‘ 0 .' farts with an mnitial mventory of
m. 0 The inventory and restock 100 items. How

alter & months? Use mathematical induction o prove the

Example 31: In a SH
300 items. Every m
umny iter
pullL




Bagh anth 60% of the inventory is sold, meaning only 40%% remains. And
I 00ritems are restocked every month.
Let [ represent the inventory after # months, The recurrence relation is:

T =04 f, + 100,
We can use mduction to prove the formula.
Base Case: n= (), The Initial Inventory is: £, = 50,
Inductive Hypothesis Assume that after n months, the inventory £, is expressed by
the formula: £, = 250+ 250 = {(1L.4)"
This is our inductive hypothesis, We assume it holds for some =k, Now, we need to
show that the formula also holds for = & +1.
We need to prove that 1f the formula holds tor fe. then it also holds for fe e,
Ti+1=250 + 250 % (0.4)F"

i

X {D 4)7 imo this equation:

Start with the recurrence relation:

Distri . thie terms:
Fre) = 0.4 % 250 + 0.4 x 250 = (0.4 + 100
Feer =100+ 100 = (0.4 + 100
Fre1 =200+ 100 x (0.4)°
MNotice that 200 can be rewritten as 250 — 30, so:
1+1=250— 50 + 100 = (0.4)*

Thus, the formula holds for n = &k + 1, completing the inductive step.
Conclusion: By the principle of mathematical induction, since the base case holds
and the inductive step has been proven, the formula:

L= 2500+ 2500 = (0.4)" 15 valid tor all n = 0.
Now that we have t formula, we can caleulate the inventory after 6 months by
substituting # = 6 into the formula:

Is = 250 + 250 = (0.4)°

First, calculate (0.4)" (0.4)° = 0.004096 m/ @O@@D

Morw, substitute this mito the o
&_{] = 1.024 =251.024

So, aller 6 m r\lﬁh | ' 1s approximately 251 ilems.

W=




. ind unit pluce digits in:

(i) (257" (i) (74)" (i) (573y7
2. Find the last twao digits of the number;
i (ant (i) 43y (iii) (9)'"

3 Find the remainder using binomial theorem when:
(i) (33*'is divided by 17 (i) (9)'® is divided by 41

4. Show that & + (g + 27 + (g + 4 + | is divisible by 12, whenever “a™ is an odd
Integer.

5. Show that (15)"7 + (137" is divisible by 14.

6.  Approximate the following:

(i) (1-0.02y" (i) (1-0.01)1 m
7. Find the binomial coetficient (*C1) using Pascal's ARgnyg @O©©
8. A company expects its annughrey iy ":: rale of 6% per vear. The

revenue in ycad s B <) B ate the company’s revenue after

4 years using L'h . ern Tor small growth rates.
2 I iphRystem, a company starts with an initial inventory of 400 items.
wnronth, they sell 80% of the inventory and restock 50 items. How many
items will they have after 8 months? Use mathematical induction to prove the
pattern.

10. A bank offers a compound interest rate of 0% per year. Zafar invests
Rs. 2,000,000 for 4 vears. How much will his investment be worth at the end of
4 years?

Il. Zaid is organizing a sports competition with 8 teams. Every team plavs against
every other team exactly once. How many matches will be playved in total? Tse
Pascal's triangle to solve this.

12, A ling of 70 dominoes is set up so that when the first domino falls, it causes the
second domino to fall, and so on. Prove that if the first domino falls, all 70

dominoes will Fall.
m@\@ the
TOREZSH per month

13, A company starts with an initial inventory of 1,000 jj




INTRODUCTION

Polynomials play a fundamental role in algebra and have wide-ranging applications
in various fields, including engineering, data science and digital communication. This
unit explores polynomial division to determine the quotient and remainder. The
remainder theorem is introduced as a powerful tool for evaluating polynomials
efficiently, while the factor theorem is applied to factorize cubic polynomials, These
concepts extend beyond theoretical mathematics, finding practical applications in
polynomial regression, signal processing and coding theory, By mastering these
techniques, students will develop a deeper understanding of polynomials and their
significance in solving real-world problems.

9.1 Polynomial Function a @O m
A polynomial in x is an expressi ; @& @

ax"+a_x"" (1)
Where n is a non- d the coefficients a ,a, .4, ., .., @, and a are
x in a-polynomial is called the degree ol the polynomial. In the expression (i) i
a, # 0 then it 15 a polynomial of degree n. The polynomials ¥ — 2x + 3,
3x' +2x" —5x+4 are of degree 2 and 3 respectively.

Example 1: Divide the cubic polynomial 3x° —10x" + 13x — 6 by the linear
polynomial x - 2. Also find quotient and remainder.

Solution: T e
x 2) 3 105+ 6
_3.&"1 6x
-4x° + 13x
_2741"'__‘ Bx
3x—-6

_Sx 10

C O\T\J\B
Henee, we can wrile: 3\“!?: Sh%g@“& dr+5)+4
Sao, quﬂtiqﬁ%\ ?f—@ \Eﬂﬁt\u

PR

0\
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Example 2: Divide the IO \{& —Tx+ 2byxr —x+ 1. Also find

quotient and remai d%
S{IEHW o) xX=2x+2
& - x+l J -+ T2

e e} - -
X x X+ X

27+ - Tx
2x —5x+2
_Ex’ilrf2

- 3x

So. gquotient = x* — 2¢ + 2 and remainder = —3x

9.1.1 Remainder Theorem

Statement: I a polynomial f{x) of degreen =1 1s divided by x—a ull no x-term
exists in the remainder. then f(a)is the remainder.

Proof: Suppose we divide a polynomial f{.x) by {T_il\l @Mue
f ﬁ (i)

quotient g(x) and a unique remainder ®s
F(x) = (x- @)
Subslituling ¥x=a in'ct
T

gl.,l

Hence remainder = [{a)
Example 3: Find the remainder when f(x)=x" 4 x" 4+ x” +1 is divided by x+1
without performing division.
Solution: Here f(x)=x"+x'+x +1 and x—a=x+1=a=-1
Remainder = f(-1) { By remainder theorem)
==+ =1y +(=1)+1
=l+(-D)+1+1=
Example 4: Find the value of k if the polynomial x' +/x®—7x+ 6 has a remainder

—4, when divided by x+ 2 .
Solution: Let f{x)=x'+k?—Tx+6andx—a=x+2, we have, a =—2
Remember = f{ 2) (By remainder theorem)

e
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Given that remai

41— = 16

:> k= 4
9.1.2 Factor Theorem
Statement: The polynomial x—ais a factor of the polynomial f(x)iff /{«)=0. In
other words x — 15 a factor of f(x)if and only if x = a is the root of the polynomial
equation f(x)=0,
Proof: Suppose g(x) is the quotient and R is the remainder when a polynomial f( x) is
divided by x  a, till no x-term exists in the remainder, then by remainder theorem

fx)={x aqx)+R
Suppose fla)=0 = R=0

S1x) = (x @) g(x)
(x —a) is a factor of f{ x)

Conversely, if (x —a) is a factor of f{x), then fix) = (x - v‘ C@@mt r)

fla)y=0
which proves the theore

Example 5: Show th flx)= \"' — Tx+6 without factorizing.

Solution: ' Jet6and a=2
f{ 23 2‘ —~T(2)+6 (By lactor theorem)
=8—14+6=0

So, x=2is a factor of f(x).
' To determine if a given lincar polynomial X—a is a factor of f{x), we need to check
whether (a) =10.
FExample 6: If x+1and x— 2 are factors of x' + px” + gx + 2. Find the values of p and g
Selution: Let f(x)=x"+px’+gx+2
Since, x + 1 is 4 factor of f(x).
So, fi-1)=0 = —-l+p—g+2=0D

P—==1 v(1)
Similarly, x—2 is also a factor of f(x).
So, f(d)=

B+4p=2g+2=0 @Om
L o Qe
NN Tl
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By adding (1) and (i1
-—2 n {1}1 we hawve

g=p+l==2+1=-]
9.i.3 Synthetic Division
There is a nice shortcut method for long division of a polynomial fix) by a
polynomial of the form x —a. This process of division is called Synthetic Division.
To divide the polynomial px'+ gy’ +cx+d by x—a
P 4 ¢ d <«— firsthine
O «—— Second line

| -
p/’h /E
»

+—— third line

& B

NSRRI = 3
Coeflicients of S Remainder
quotient

(ut Line of the Method:
(i) Write down the coefficients of the diwi @ﬁ o right in
decreasing order of powe [ ng term.
(1) To the left ofth ‘% 1visor (.r —a).
se the 1 ( 10 write the second and third lines:

(1)  Use the 6 v%
i) Add terms
agonal pattern (*) Multiply by a.

Example 7: If (x = 2) and (x +2 ) are factors of x*=13x> +36, Using synthetic
division, find the other two factors.
Solution: Let f{x)=x'—13x" +36
=x* + 02 1327 —0x+ 36
Hemgx—a=x—2 Sxy=2mdx—a=x+7=3—102) =x=-2

By synthetie Division:

2 |1 -13 0 36
4 -18 -36

0
2

211 2 -9 -18|0
-2
0

1




I 1d remainder and quotient by simplifying the following:

(i) (Gx'=x+2+(x=1) (i) (X' +12x" =3y=4)+ (x-2)

(i) (=52 -8 +13x+12)= (x—6) (iv) (5x' -3 +2x° -1+ (X* +4)

V) OBx'=5x'+4x-6)= (£ =3x+9)

Use the remainder theorem to find the remainder when the tirst polynomial 1s

divided by the second polynomial,

(i) x*+5x+6 , x-2 (i) ¥+527+6 , x+1

(i) x'+x’ = +x+1 | x-1 (iv) x*+x°+1, x+3

(v} #Hex’+2, 242

3. Use the factor theorem to determine 1f the first polynomial is a factor of the
sceeond polynomial.

i) x+1 . x*-=1 (i) x—2,2 \f@
i) 41 ;¥ +x e x-3 Wé’@@

V) x2=-3 -1 +1 Q @
AL\

-2

4. Use svnthetic ¢ by e zero of the polynomial and use the
resull (o faclogz P kst c.umpla:ll:!y.
g r=12 (1) o —28x-48, x=-4

. o+ Tx =4 =2Tx—18, x=2,x=-3

5. Use synthetic division 0 find the quotient and the remainder when the
polynomial +* =10x" =2x+ 4 is divided by x + 3.

6. Ifx+ 1 and x — 2 are factors of x' — px’* + gr+2. Using of synthetie division
find the values of p and ¢.

7. When the polynomial 41" + 23" + &% +13 is divided by x + 1. the remainder is
| 6. Find the value ofk .
8.  When the polynomial ' +x° + x—kis divided by x—1, the reminder is 7. Find

the value ol .
9. Use factor theorem to find the values of p and ¢ if x+1 and x—2are the factors
of the polynomial x* + px’ + gx+ 3,
1. Use factor theorem to find the values of @ and b if -2 and 2 are the roots of the
I‘ﬁlw';mninl 2x 4 :h" b @y 4 h m




Remainder nnd Factor T
munication systems). These applications

encryption and err “ _ icati 1
highlight the si ynomial analysis beyond theoretical mathematics.

Poly ugussmn It is a type of regression analysis where the relationship
between the independent and dependent variables is modeled as an #™-degree
polynomial, It is used when the data shows a curved (non-linear) relationship, but we
still want to fit a smooth, continuous function,

Example 8: Consider a data set of monthly sales figures. A polynomial regression
model P(x)=x"+x"+2x+1 is fitted to this data. If the observed sales in the

3" month are 40 units, find the percentage error,
Solution: Error = Observed — Predicted = 40 - P(3)
Now, P(3) =3 +3+2(3)+1
=27T191611=43
Error — 40 43— -3

-3
So, Percentage Error = | —{x 100 = 7.5%

| 40 @ @Om
Example 9: A quadratic regression mod - f regression model
1 j{w - -
Solution: By factor, theore!
[fx =Mﬁb ’
(=3P +a(=3)+12=0

9-3a+12=0
21-3a=0
a=1

Digital Signal Processing (DSP): It is used in computers or digital devices to
analyze, change or improve signals like sound, images or sensor data. The remainder
theorem is a powerful mathematical tool in DSP that simplifies the evaluation of
system responses, stability checks and frequency analysis. IT the remainder is zero, it
means that the system has no error at that mput.

Example 10: A digital signal processing system is represented by the polynomial
Pz) =z =32 + 22 + z = 5. Find the system response at z = ~lusing the remainder
theorem.

Solution: By remainder theorem
Remainder = P{-1) @ @@

—.[ I -;IDI) g 2-1-5=1(
S.LuceP(-I)—-ﬂ,rherg e ; f —-1

W Uuuv
WWN \l
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Conisider a data set al monthly sales figures. A polynomial regression model
Plxy=x"+2x"+x-3 is fitted to this data. If the observied sales in the

s™ month are 240 units, find the pLreentage error.

A dataset is modeled by the polynomial P(x)=x"—dx +5x -2, Find whether
the point x = 2 lies on the curve,

Designing a low pass filter to remove high frequency noise from an audio
signal, the filter is represented by the polynemial P(x)=x"+x" +2x+4_ Find
whether x+1 is a factor.

Consider a signal processing system represented by the polynomial
S(x) = 2¢" 5y + 4y 3, where v is the input to the system, Answer the
following questions:

(1) Ifthe input to the system is x = 2, find the remainder

(i1) Determine whether the synlc hasa spe %ﬁ @b@ that when

tify the factor.

Consider a signgh e DWW .'_-*numl.uihlr)-i.f =1t® _If the mpul o
the sysig v using remainder theorem.

- signal represented by @ii)=¢ —hf +111-6, determine if the system
response is zero at f=4, If so, identity the factor.
A received message polynomial is P(x)=x"+x'+x+1 and a known error-
detecting polynomial is g(x) = x+ 1. Find whether the received message is error-
free using the remamder theorem,

o SIYE
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%M%nometnc Identities

INTRODUCTION

In this section, we shall first establish the fundamental law of trigonometry before
discussing the Trigonometric Identities. For this we should know the formula to find
the distance between two points in a plane.

10.1 Distance Formula: (Recall)

Let P(x,.v,) and @(x..v,)be two points. If“d " denotes the distance between them,

then 4= PQ| Jnx x} |(J,|—|,‘J W @ m

Example 1: Find dista f' lowing points:
“’WW‘ ° B(5.6)

(i) Pleosx.cosy), O(sinx, sin ¥)

Solution:

(i) Distance = | AB |=4/(3=5)" +(8-6)" =4+4 =22

(i) Distance = 'E)l = J{msr— sinx)* +{cos ¥ —sin y)°

| 2 - - 7 - .
yCos” x+sin’ x—2cosx sinx +cos’ y+sin’ p—2cosy siny

i E - -
= J2—2cosxsimx—2cos )y sin p

+2=2(cos xsin x+ cos v sin y) m

10.1.1 Fundamental Law of [b'"' T @W@ @
Let o and F be any TWo-g @

’@@1 +sina sinff
which iw

ed the Fundamental Law of Trigonometry.
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Unit QT

o)
Proof:  For our con
Consider a unil-gi I& with ‘tentre al

origin

Let terminal sides ol angles o and f cul
the unit circle at A and B respectively.
Evidently m£AOB=a - §

Take a point C on the unit circle such that
mSXOC=mAAO08 = a=f,

Join 4,8 and C.D.

Now angles e, #and e — f are in standard position.

The coordinales ol 4 are (cos @, sin ).
The coordinates ol 8 are (cos 4, sin /)

The coordinates of C are (cos a — &, singe — 4 ) 6 m

and the coordinates of £ are (1, 0,

O
Mow AAO8 and ACOD are con 1%@ i heorem]
Therefore. AR =@ ; Bl = |(1}|’

mula, we have:
(cos'er — cos B)Y + (sin @ — sin §)° = [{cos(e—B-11" + [sin (a—F) - 0]
= cos* a—cos f -2 cos acos §+ sin® o~ sin’ F- 2sin a sin B
= cos{a — ) + 1 - 2 cos(a — ) + sin’(a - )
= 2=2(cos acosF+sinasinf)=2=2cos(ax - )
Hence cos (@ =)= cos e cos F+ sin a sin 5.
Although we have proved this law for a = 8= 0, it is e for all values of o and 4,

Suppose we know the values of sin and cos of two angles o and &, we can find
cos{or — ) using this law as cxplained in the following cxample:

Example 2: Find the value of sin f;—:

£

S T

Solution: As E =T59 =45+ ) = E+— @ @©m




Trigonometric Identities
10.1.2 Deductions HKY

I.  We know that: &
RISt

Putting &= = in it, we get

el

civs o cos -+ sin aosin

3 b3 "
gl —— cos—oos 7+ s1m—sl
| 2 p ] e PR R

= cus(%—ﬁ ]= O.cos @+ 1, s8ing

cos(— =
2

\

e
\.."::,-' [

Il

i

=

2. We know that

cos (a-f) = uﬂ‘l

Putting f=-— init,

\%-m&a Cﬂ'-i[ +'='Hi'll'I"\'ITI[ EJ
@@1:[ i 3 3 2

: J‘I\ i A
sm| -—= '=—5m—=-l
L 2 2

4 :z.'] T
cos| —— [=cos—=10
L 2, 2

i

3
= CO08 a+%}= cos a . 0+ sin e=1)

L

T ] 5 -
GOV [—ﬂ'—rz = —KITVI (i1}
L 2
3. We know that:

COs @ - ﬂ] = sin 8 [{i) above|

Putting = 7 +a in n.%%%@ %& @@@W@ €O




LRETTLEE 100 3 Trigonometric Identitics

oriit

i b3
= Cos g — Sl (E-HI

: fJT .
5m| — 4+ |= COSa (111}
s

4.  We know that:
cos{ar — M) = cos e cos §+ sin e sin §
Replacing # by 4 we get

cos[a—(— )] — cos a@cos(—F) | sin a sin (- )

[ cos(-f)=cos m@@mn,@
= cos(er + )= cosar cosff @q@@@ﬁ@}o
5. We know that: Og@ KX

é;x ¥ o cos 7 - sin o sin
Rephci[w . We get

a0

F

=

i _ | . ,
cos L£+rx |+ﬁ = CO0s £+rch::.wﬁ—sin ﬁ—+a}sin[3
2 J 2 2
IR : ; .
— u0$[5+{ﬂf +ﬁ}1| =—sin @ cos ff— cos a sin §
=% —sinfa+ ) = —[sin a cos + cos o sin ff]
sin{e + ) =sing cos J + cosa sin ff (v}

6.  We know that;
sinfex + ff) = sin @ cos §+ cos a sin F [fro xr]@@m
Replacing # by — #, we pet o @@ @o
i e : s sin(—f) = —sinf
sinfe — /) @W%@Q& AT cos(=) = cos
Wiﬁ cos - cosa sing? (vi)
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7. Wel
cos{a — ) = cos @ cos f+ sinar- sin f§
Let=2xand f =
cos(2ar— ) =cos 2. cos &+ sin 2xsin &

B N {cos 2 = |
l-cos@+0- sind isini:.'::U
= cos ¢ (vii)
8. We know that;
sinfae— A) =sin - cos f—cos ¢ sin 8

sind2a— &) =sin 2x- cos - cos 2 sin &

=0_.cos #—1_sin H“@wl Waﬁ Co 2;r— 1

=_ (wiil)
, ) *-.mrf cos 4 4+ cosa sinfd
9. tan ex £ : —=
cos(e 4 B cosg cosf —sing sinf

sing cos /7 | cose sin ff Dividing
coser cosfi cosa cosf numerator and
cosa cosf sina sin g denominator by
cosa cosfd cosa cosfF cosa cosd
tan & + tan :
tan{af+,3)=—‘ﬂ {ix)
| = tana tan 7
: sinfear — /1) sinee cos T —cosa sin 9
fid. tan(cx— ) = / Fom fv - - ’[_
cos(er —5)  cosa cos ) sina sinfd
sing cosfi - cose sin D“‘ldmb m
_ cose cosf o cosa cchs;fi: 'o
COS msﬂ sm mtm by
cose ¢ cos o cos

% tan fi
Mﬁma tanf (x)
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For example, + &, 907 4, 1807 + o, 270 = a and 3607 + o are some allied angles of a.

Using fundamental law of trigonometry. cosia— 0~ cos @ cos f+ sin & sin 7 and its
deductions, we derive the following identities:

o

N : i i ?
o 2 T i T
sm[%—ﬁ" cos &, cus(?—fl |= sin &, taul E—H )={:{:it &
b o r AN

' : 3
l_-;in[£+|§I l=gos &, cus[£+9 '=sin &, 1ﬂn[£+9 ]= —gal @
‘ 2 / 2 | 2 .

4 o

Isin (r—N=sind ,cos(m—=0)=—cos @, tan{x—F)=—tan J
1si11 (w+NH=—sind, cos{z+)=—cos 0, tan{x + P =1tan &
s

o 5 b
sin{?i—ﬁ? —cos @ *uus[——ﬁ = —sin &, fanf @|@@&S\
: 2 2 (),-'I ) P
. | 3% 3 ‘ @ g b
sin +8 |=- % ,tan| =—+@ J= ~cot &
=¥ g )

L)

b
1
|

)

oL =

S;W& . cos(2 — )= cos 0, tan(27 — ) = — tan &
sin(2r+@)=sin & , cos(2r+&)=cos &, tan(2r + ) =tan &

The bove results also apply to the reciprocals of sine, cosine and tangent, These results
are 1o be applied frequently in the stedy of mgonemetry and they can be remembered
b using the Tollowing device:
s If @ is added to or subtracted from odd multiple of right angle, the
trigonometric ratios change into co-ratios and vice versa,
ie., sin 7= cos, tan T cot, sec T cosec

€.8. siu(%—ﬁ) ~ cos ¢/ and cos(%rﬂﬁ'} ~ sin &
L s

k-3

A
g - 0 3 FLTS e - ‘T s 2l
If & is added to or subtracted (rom an even mul @mmﬂclm

ratios shall remain the samg gg: \@@
3 So far as the si ﬂ s s concerned, it is determined by the quadrant

rm of the angle lies.

in whic rnin
elsia— N —sin .,  tan(x t 0)—tan 7, cos(2a— 01— cos




o

Measureof the angle” | Quad.
NNV f:‘l,l
W2, : -
sin +vie All +ve
T
—+8 orm— @ LIl &' X
2 | 2
iz
m+dor 5 ¢ m tan +ve cos tve
o L Hor2n-8 v .
2
. ] i |
{a) 1In mn] ——1‘?] un[Z—i—H ; Hin[%—ﬂ) and '-.1n| —-HB‘J odd

\ 2 \ 2

N b 3 5
multiplies of — are iny alved. 7@ O@@@

M 2= |will have terminal side in Quad. L

S0, sin [—2——31 cos

A

{ii) iL% +6 ]wi]l have terminal side in Quad. II,
i b
So, sin l%ﬂﬂ J= cos &

p
{iii) | 3%—0 ]-wili have terminal side in Quad. [11,
L ;s

So, sin ——61‘ |—-cos @O@@m

%@@mt R
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{WMH + @), cos(2r - #) and cos(Zx + &), even
O
multiples of %arfe involved,

Therefore. cos will remain as cos.

Moreover, the angle of measure
{11 {x— &) will have terminal side in Quad. 11, theretore
cos{az— 1) ==cos 7,
(i) {m+ &) will have terminal side in Quad. 111, so
cos{mt M =-cos &
{iii) (2x— &) will have terminal side in Quad. TV, so

{ivy (Z2z+ &) will have termrinal sid

Example 3: Without %&% > te down the values of:
(i} sin 2258 it} tan 600° (iii)  cot (=223} (v} cosec (—4207)

Solution: (1) sin 225° =sm (180 +45)° = —sin 457 = — 2

J2
(i) tan 600F = tan (540 + 60)° = tan (6 x 90 + 60)° = tan 60° = 3
(iii)  cot {(=225°)==cot 225" = =cot{ 180 + 45)° = =cot{4=H+45)" = =(=cot 45°) =1
(iv)  cosec(—420F) = —cosec 420F = —cosec(360 + 60) = —cosec(dx HHG0)"

——msecﬁﬂ“—i

|
sin(180° — &) eos(360° —8) tan(90° +0)
Sin(90° — ) cos(180F + ) an(270° + &)

sin180°-0) =sinf) , cos(360°0 ﬂs@@m
Solution. Because {tan(90°+8) =—cot ’%@ 9

Example 4: Simplify:

}=cotd

s R _ —sinfd
Eos 0~ (—cosd J-cotd —cost

= land




Trigonometric Identitics

AVeellk
IR,
XERCISE 10.1 _d
‘\\"Mu tables, find the values of:

(1) cos (= 1230¢) (1) tun {— 10357) (111} secl]1407)
(1v) cosce(— 690F) {(v) coul320®) (vi) cos (— 240°)

Express each of the following as a trigonomeiric function of an angle of positive

degree measure of less than 43°

(i) cos 168° (i) sin 192° (iii) cos 3337
{iv) tan 2137 (V) cos(—4357) {wi) sin 219
(vii) tan (— 53977) {viii) cos (—1117) (ix) sin (—3907)

Prove the [ollowing:

(i) sin(130° + &) sin{90 — @) — — sin & cos o

(iv) sin 21
P"\

tan( | 80 + ) cnt{i)ﬂ —r }
sin(360° — &) cos(270 +a )

9 %
sin’ {7 + &) tan[giﬂ'? J
2
(ii) e : =cos §
cot” vy 4 J cos’ (7 —0) cosec(2x —8)

b
cos{ " &) sec(—7) tan( 1 80F —&)
sec( 360° — @) sin( 1807 + @) cot(90” — {:‘)

1-- i f S o

i Y
Show that: sec ?—H wL-‘_ '—~——H ' Hn f*—f;' tm —- H-? —m

If ez, B,  are the angles of : jtmn@_m y—\

(1) qln{a+ﬂ}ﬂ%m “ see | = LSL';

{ii%ﬁ@w (iv) tan (e + ) = tan p= 0.
sin{ f+y)
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10.3 Further App
Example 5: \_

Solution:  L.H.S. =sin (e + ) sin{e — i)
= (sin & cos [F + cos & sin M) (sin & cos F — cos a sin )
= sin’ & cos’ f - cos® @ sin’
= gin® (1 — sin® g) - (1 — sin® @) sin® #
=sin’ @ — sin” @ sin” F— sin® §+ sin” @ sin”

ntities
a~+ /1) sin(a—f) = sin’ a—sin’ § (i)

= cos fil—cos” i (11)

=sin® @~ sin’ 8 (i)

—(1—cos’ &) — (1 —cos” )

=]-cos’ a—1+cos’ f

=cos” fi—cos” & (i1}
Example 6: Without using tables, find the values of all triga) l‘l uf 1057

Solution: As 105° = 60° + 45° ‘ @
sin 105* = gin {p0° + @ 607 sin 45°
J_.+I
2 A2 f-l 22
cos 105 = cos (607 + 45%) = cos 60F cos 45° — sin 60" sin 4357
B o o \{3‘ ATy
~2 )I\EJ_[

0 A0

|
2 G

tan 607 + tan 45

tan 03" =tan (60°F +45%) = :
1—tan 607 tan 457
" \EH & I+J§
T T il T
cot 103° = : I_ﬁ

tan105°  1—+/3

“'@@mﬁ@ o

"D_

and :




Trigonometric Identitics
Example 7.  Prove thx il i\l %

I\

Ba= lan 367 = la:‘m(45"' +11%)=

Solution: Consi

tan 45 + tan | 17

1—tan45%tan11®

sinl1®
_ l+tanll® I' cosll1® _-:ﬂsll°+sin11“’_l HS
T l-tanll® i LR “eoslI®—sinlle
coall®

osll + n]l
Hence e =tan 56
cosl I —'ﬂl‘l| 1

.
Example 8: Ifcos o — - %, tan 3 1?'_. the terminal side of the angle of measure o

is in the IT quadrant and that of & is in the III quadrant, find the values of:
(i} sin (o + ) {ii} cos (a +

In which quadrant does the l&rm
(e + ) he? @

Solution: We know théa

Thcn:ﬁlW@;X

As the terminal side of the angle of measure of & is in the 11 quadram, where sin « is
positive.

576 4

g 24
S0 N = —

: WY e 2F 10
Now sec i —+ fl+tan” fi =+ H[ﬁ; =k

As the terminal side of the angle ol measure of 5 in the quadrant 111, so sec # 1s negative

sec fl =— E and cos fi = =

As the terminal arm of the angle ulinii
Q
sin i = m

o (\INVN\U O
NINAVAS

13
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Q
sin (@ + /1) =§W Sa sin ff

— —t l — =
lzsh 1B/ L s 13 325 325
and  cos{a—F) =cosacos f— sin e sin S
7Y 5% [2aY 12Y_ 354288 323
G e
As, sin(a+ F)is-ve and cosia + f#)is +ve
Thus, the terminal arm of the angle of measure (@ + ) is in the quadrant [V,
Example 9:  If . 4, yare the angles of A ABC, prove that:
(i) tanea +tan 8+ tan ¥ = tan ¢ tan G tan y

B A ¥

ok [y
(i) tan > tauEHan tan +lsm

-

Solution: As o ., y are the angles of J.ABC therefcnﬁ]@ @@

e AT
| %m%@@

(i) tan{a~f)=1an

ix
tan —=1

ne tanf
tan  + tan f =—tan ¥+ tan @ tan 7 tan p
tan e + tan &+ tan ¥ = tan @ tan J tan y

@) As a+prp= 180 = Sl Logp

o gl
50 E+‘B=9[}“—?
2 2
™
tan [ﬂ! ’(] t.in(‘ﬂ]”——J
ik sl 2
¥
tan;kmuf—

[-m;—tdn’E: - @ @ m

) mﬁ%@

n—lan +1.dl'l— Lan = +l;m5 lan?=l




Trigosometric deais

Example 10: Expres ﬁ'+ .

of the angle of measuﬁ Jukg

Hu!ulmW =
and 4=

ek

rosin ¢ {i1)
Squaring then adding (i) and (i}

32+ 42 = 2 ppg? é+ r sin’ {fb

Dividing (i1) by (1)
. 2 2 P : 4 IEill;#
= Y416 =r"(cos'g+sing) -=-
3 rceosg
— 25 =47
4
— S 3 = tan ¢
= r=5
PR
¢ 3

Isin@+4cosd = r

S @@%

P~ EXERCISE 10.2 J

Without using table find the values of the following: Hint:

(i) sin 15° (i1) cos 15° (i) tan 15° :;r= [."';:—332]3"“
# 3 - K 5 | :‘“‘ = =4 Y
{iv) sin 103" (vl cos 105° (vi) tan 103 !

Prowe that: (i) =43 + a) J_ {sin & + cos )

(i} cos(a+45") = % (COS & — sin o)

Prove that: {1} tan {45“ + Al‘} tan (45° — 4) =

(ii) lan(-d:-»ﬁ' |+1:an i) s @a@é@ = cos &

gin & — cos &)
- ﬁ@’@ “ 1-tan0 tang _ cos0+9)

I+tanf tang  cos(f—g)




3 e
Trigonomet Mathematics (,
. Shwmj@& cos(a = #) = cos® @ = sin’ § = cos’ f-sin’ a
" sl
I&}

nia + F)+sinfa - )

Show that: , , = lamn rr
cosfex + F)+cos{a — )

coter cotff —1

=Y

L

6. Show that: {i} cot(a | #)

cot e + cotf?
cota cotff +| ..., tang+tan sinfex +
(i) cot(a—4 = kot FOp 1 (i) ﬂ= : Lars
col ff = cota tanee —tan 7 sinfe —5)
7. Show that;
1+ tana tanf 1+cote tand

ity sin(a+f)=
seca seef? ) e cos e i secf

(iiy cot (-5 g +um o sin(e+ )

WSS mut infe— 4
w) o cot(et+ ) = (f \@
k‘;& s = :lL]I cwhere 0 < g- : and 0= 8« : .

(i) cos{e—f)=

cota cot +1

8. If sing-

7 ; 333
Show that sin{a—/7) —}1-1 .
o b : im B s
9. Hsmea=-— und cosfi= —h} where 2o < @< 27 and 7 g —_ Fmd
5 2 2
(i) sin{e+3) (i) cos (@+8) (1ii) tan{a+ 8)
(iv) sin{e— ) (v) cos(o—7) (vi) tan (e — f).
In which quadrants do the terminal sides of the angles of measures (& + &) and
(a— ) lie?
1. Find sin (e + £) and cos (e + ), given that

(1) wne= i Loos fi= 15; and neither the terminal side of the angle of measure

¢ nor that of #1s in the quadrant 1. @ @@m
®)
(ii) tan a=- % and sin # @ﬁ ; me minal side of the angle
of measure "m

i the quadrant TV,

I1. Proy — - = tan 64°.
cos 19 —sin 199
12, Prove that: cos{60° + #) cos(60” &) + sin(60° + &) sin(60° &) = cos 20
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13, Ife B » are the @ m  Fhow that

g cot——mt-— cot’ cot’
2 2

14, If o

15. Express the following in the form  »sin(@ + g)or rsin{# —¢) where terminal

1+ 3= | R0, show that: ¢ola ol J,“j +cot ff col p+col ¥ cola =1

sides of the angles of measures & and ¢ are in the first quadrant:
(i) 24sinf#+Tcos® (i) 12sin#—S5cosé (iii) sin #—cos #
3

S

(iv) Bsin? —6cosd v) — sm - cos & (wi) 13sin 8- 84cos

10.4 Double Angle ldcul'll‘ws

We have discussed the following results;
sin (e + ) = sin ex cos J7+ cos a sin 4

cos (e + 1) =cos e cos f—sine sinf and tan{a+ ﬁi ta“’?ﬂ%

We can use them to obtain the double angle

(i) Put B =o mos' m ‘i

sin (e 4 c:r} - Slll

Hence sin 2 ;
(i) Pu M ocos (o + ) =cos e ocos Ff—sina sin

COs(E = ) = COS @ COS o — SN g S0 i
Hence cos 2 @ = cos® a—sin’ a
cos2a =cos’ @—-sin’ @
cos2a = cos® a=(l =cos’ &) (v sinfa=1=-cos’ @)

= costa— 1 +cos’ o
cos2a=2cos’a- |
cos 2 a = cos® a—sin o
cos 2 @ = (1-sin® @) - sin® @ (- costa=1-sin® )
cos2a=1-2sina

? tan ¢ + tan
(1i1) Put f=eintan{e+ F)= -r—ﬁ'

|=tana tanf
P Mana +tana W@O
i GAE. e 1-tang 1 K @




O
N
LR 03 rrigonomer X\%@

M.m....un(,
10.5 Half"Angle Identities

The formulas proved above can also be written in the form of half angle identities, in
the following way:

3 5 2o 14 cosa o |+ cosea
(1) cosa=2cos ——-1 =2 08 —=s——— = cos—= -
2 2 2 2 2
o (¥ ; | —coger
(i) cosa=1~2sn* — sin” —=— = sin E=: T

sin® I—«:{ma
(iii) lan = i =t tan ——1 ’—:T':;:z
Sy { +COsar
(R 7 5 @O@©m
10.6 Triple Angle ldentltﬁ ZE}@@@W

ﬁ
E
g
=

(i) sin 3@ =3 sin a - 44 €08 3 = 4 cos’ o= 3 cos o

A

Proof: (i) sin3e =sin(2a+ea)

=40 2er cos o+ cos Do sin e
—2sinercos ecosa {1 —2sin’ @) sin &
=2 sin a cos” @ + sin o — 2 sin” e
=2 sin @(1 = sin® @) — sin a - 2 sin’ &
=2sine—2sin’ @+sine-2sin' @
sin 3 =3sine-4sin’ a
(i) cos 3 =cos 2o+ o)

= 08 2o 05 o — 5in 2 sin @
=(2 cos’ e — 1) cos e — 2 5in e cos e sin @ m
=2 cos’ @ - cos & - 2 sin’ & co @©
=2 cos® @ — cos é @
m R+ 2 cos’ @

cos 3 % CO%
(iii) Wm

n(2a + a)
= um ir + laner
l—tan o tang

N @m\m



Ztan e + tan e — tan’ o

siné + sin 7

|- tan’ @ — 2tan’e

Example 11: Prove that: = tanf
1+ cosd + cos X

N LHS. = 5mc‘?+23mﬁc1:)ﬁfi ;:-:mf}{'l +2cosf)
I+eost+2cos -1 cos@(l+ 2cosd)
sin &

= o tan0=RHS.
cosfd
e
Hence M—tﬂﬂﬁ‘
1+cos# +eos2d

Example 12: Show that

2sint! cosf

o
o s8I0 e

u

n- g
2aintt cosd

‘miuan K&m & cosd — :

cos” @ +sin° g

2siné cosd 2simf':’
= cos d o cosd
cos’ B +sin°@ cos @ sin@
cos™ ¢ cos” 8§  cos'd
2t
iy 28 2P0
L4 tan™ &

1 . 3
cos” @ —sin” &
3 a7

cios 24 =cost f—sint # =

(i)

2 .
cos” @ —sin’d

|

sin’ @
cos” O

cos’ @
_Cos 19

cos’@=sin’ @
cos ¢

cost @+ sin28
cos  #

cos’ 0 é@@W@

cos” (0 +sin° 0

Jeous
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Example 13: Reduce cos* 6 to a@‘@m} Action cnf mulnples of

&, raised to the first pﬂ@
1+ cos2d

Solution: We know
—r1|m52{3 = gost ) = 3

cos* 6 = (cos? O = [Mﬂ
2 ]
_ 1+2cos 26 + cos’ ¥

4
N }I[Hz cos 20+ cos® 20)

I+ cosdd |

= %[l +2c08 28 +

1. Find the values of sin 2e, cos 2a and tan 2, when:

; : &4 i 120 T
(i) sing =— (i) cosa =—, where O<a <—
85 169 2
2. Prove the following identities:
sin 2o
(1) cole—tance=2 col2a {i1) = tang
l+cos2a
T e AV () ST, i
Sincr 2 COSF + 81
(v) | +sina o 7 e 2 o cosecH + 2 cosec 268
. . U
\ 1 -sina Siﬂi . m/s@ %
ng 2sin# sin 24
(vit) 1+ tan e ta Yﬁ (i) ST AT = tan20 tand
N cosdd + cos 37

Wwvu



ao@@m
Trigonometiic lfentities W@W il
' m: ig ® cos3f  sind

+ o =deos 20
cosd sind

(%)

tan — = cot— .
- o Sin3f  cos3d
(xi) z—g—secﬁ (i) —— +———=2cot 28
—_— cosd  sind
2 2
. 3+cosdd ] . .. l+s5in28 e
Xiii) ———— = —( tan® @ +cot’@ XV} ————— = tan* —+E?)
( }l—cusr-lﬂ 2{ ) iy 1—sin 28 \ 4

G 37 . 5 L
(xv) cos” —+C0s” —+Cc08” —+ Cos =2
8 8 L] B

show that; 2cos2=+/2 W24 2cosdf

s

4.  Reduce sin”™ & 10 an expression involving only function of multiples of @, raised
Lo the [irst power.

Find the values of sin # and cos & without using tabde Jl@m i is:
: it : o~

(i) 18° (i) 36" O @@ {iv) 72°

Hence prove that@%ﬁﬁ%%x “oos 1447 = -]TIE
SN o“-

L

Hint; Let & =387
i = 6 = 18F
(201 2y - 90 30420 - 1807
i@ =90 —24 g = 180" - 26
sin 3 = sinfQ0° = 2@ ele sin 34 =sinf | 80° = 26 ele.

10.7 Express the Product (of sines and cosines) as Sums or
Differences (of sines and cosines)
We know that:

sin{a + [} —sin @ cos 7 + cos a sin ff (i)

sin (e — ) =sin e cos § — cos o sin S (i)
cos (e~ 1} =cos acos I —sina sin J (iii)
cos (er= ) =cos acos i +s5in @ sin 8 (1v)

Adding (i) and (10} we get

sin(e + F) + sin(a — F)= 2 sin & cos @0@9\4@
Subtracting (ii) from (i) we get Q @@

sin(e + 7)) — sir % (vi)

Adding (iii) and (iv “!
Wﬁ) — 7 ) =2 cos i cos [ (vt}




) e

Subtractio/ (v [?il}l, we get
cos{a+ ) —cos(a—F)=—2 sin o sin § (viit)

So, we get four identities as:
2sin g cos ff = sinfa + N —sinfa— /A
2ecosasinf — sinfo ) - sinfa— 8)
2ecosacos S = coslo + ) + cos(a = 5)
—2sinasingd = cos(o + ) — cos(a— f)
Now putting o + = P and a = = Q. we get

Pro il O

P S L e T O
sin P+ sin {} = 2sin 0
i sin . sl | COs W@O@

H:

o Pel}
cos P—cos ()= —2sn sn
2 2

Example 14: Express 2 sin 76 cos 3/ as a sum or ditference.
Solution: 2 sin 7&cos 3¢ =sin(70+ 3@ + sin(7 = 38)

= sin 108 - gin 44
Example 15: Prove without using table / calculator, that

b | =

sin 197 cos 117 +sin 717 sin 117 =
Solution: LH.5=3sin 19° cos 11° + sin 717 sin 117

1[2 sin 197 cosl 17+ 2 sin 71° sin l]

ﬁm{] §H° ﬁmﬁ”c] coq{'?[ﬂ_lla)]l.]

~cos 8274 coa 60“

Id In—~

|:2 + 5in #° — cos{ NP — 8 )+ — :|




W.m.m p— @@W@mmﬁm

woeos B2 = cos(90° — 87 = 5in 87

1

2

=RHS

Hence, sinl9° ¢cos 117 +sin71° sin | l°=%

Example 16: Express sin 5x + sin 7x as a product.
g2l . ; L oAax+Tx S5x-Tx ;
Solution: sin Sx + sin 7x = 2sin COS = 251N 6x Cos(—x)

2 2
=2 ginfx cosy (. cos(— &)= ms )

Example 17: Express cos 8+ cos 3@ + cos 38+ cos ?ku@

Solution: cos &+ cos 38+ cos —@S‘@

' T - 9 ?H—SH
= 2 COs~f 08
WO 2 2 2
2Cos 28 cos &+ 2 cns 0 cosf

=2 cos Aicos 60+ cos 28)
= stﬂ[zcusw_'LM Cos ﬁ&_wi-l

2 2
=2 cost (2 cos 48 cos 28) =4 cos & cos 28 cos 44

|
Example 18: Show that cos 207 cos 40°F cos 8U° = §
Solution: L.ILS =cos20° cos 407 cos 807
|
= 1{4 cos 207 cos 40F cos 807)

- %['{’2 cos 40° cos 2(F) . 2 cos 8 w@ @
C%%:m f ?\)@d@@

| CGSZG‘" Zonsﬂﬂnlj
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=]

by
M — (cos B0° + cos 100F + cos 60°)

%[ms B0+ cos(180°F — BO™) + cos 607

1 . 1] :
= 1 Cos S[I‘*—msﬂt]‘hilj [+ cos(180—&)=-=cosi |
= 1(1J=l = RHS

4\.2) 8

Express the lollowing produ
(i) zsmmcm m mi&mnw

(i) sin {iv1 2 sin 78 sin 28
) = Vi sin(x—v) (vi) cos(2x + 30°) cos(2y — 107)
{vii) sin 12° sin 467 (viii)sin{x + 45%) sin(x — 457)

Express the following sums or differences as products:

(i) sin 584 sin 38 (i) sin 8d = sin 44

(ili) cos 68+ cos 38 (iv) cos 76— cos @

(vl cos12% — cos 48° (wil sin (x+ 309) + sinfx — 30F)

Prove the followmg identities:

) sinjx—sinx _ G (if) sin8rx+sin2x e
COSX = Cos 3x cossr+oos2x

sin A—sin B sin 80" < si

(i) - e

4+B
sin A+sin 8
Prove that; @
(i) cos 155+ cof m 850 =
., Sin Zp}\m’pﬁg I sin &

(1) = Lun 5¢
ik +¢ﬂs4ﬂ cos 6 4 cos &7

tw‘l




Tigrmemeric

n

6.

9.

Lk

{"Wﬁl —+ )=ama
(iv) '-zml ——6‘ sin 6‘] -Eco-ﬂﬁ’

1 amﬁ‘+ﬁm3ﬁ-rml1515'+.~.m Te
(v) =tan 44
cosfd + cos 39 + cos 57 +cos 74

Prove that:

(i) cos 20F cos 40F cos 6F cos 80° = A

¥

= o2 S s Mt BBy ez £
(i) sin— sin— sin— sin— = —
Q 9 3 9 &

(1) sin 107 sin 30F sin 307 sin 70 =

51n3éi' ig‘f @
Prove that: = &:d E%Q @
rove tha e =sin @

Prove that: tan 752

Pn‘W:&lam 157 =—

sin’ & —sin”
SiM e Cos o —Sin F cos

Provic that:

= tan{a +f )
Prove that:

sina+5in,3+siny—sin[a+,B+;v]=45in| Ezﬂ}s [sz]sm[TaJ




INTRODUCTION

In this unit, students will explore key concepts essential for understanding the role of
trigonometry in mathematics and its real-life applications. We will begin by learning
how to determine the domain and range of trigonometric functions to understand their
behavior. Next, we will discuss even and odd lunctions, along with their periodicity,
which explains their repeating patterns.

Students will then learn how to graph and analyze sine, cosine, and tangent functions,
following this, we will focus on caleulating the maximum and minimum values of
sinusoidal functions and examining their unique properties such as amplitude,

frcquenc:e'. and phﬂsc shifis. m
1 | G Wi . hese trioc senls Lansin LL‘ erms in

. upt]mumg solar

11.1" Domains and Ranges of Sine and Cosine Functions

We have already defined trigonometric functions sin i
&, cos @ tan &, csc &, sec Fand cot 2 We know that

if Plx, ) 1s any point on unit circle with centre at the f,___";'i'}j !
origin (7 such that mZXOP = @ is standard position, / /ﬁ/‘]@“"
then 0[]

cosf = x and sind@ — 1"¢'r.|-1,r.n":, o| = M [agay

= [or any real number & there is one and only one “‘x.__r;:_n. i

value of each x and y i.e., of each cos #and sin &

Hence sin & and cos & are the functions of & and their +  Figure 111

domain is /<., the set of real numbers, "
Since Plx, ¥) is a point on the unit circle with centre at the origin €2, theretor,

-1<x=] and m

= -l=c¢cos?=1 and,

Thus, the range of Hmv;,(a\nd %&vﬁéﬁ
T
QY N




B <

11.1.1 Domains and Ranges of/ ‘ : ‘otangent Functions
From the Figurcll_p @

J iTs
= H#izi.,—i —Eg
2 2

= &= (2n+1)—, where ne £

Daomain of tangent function =R = {x|x={2n+ 1) %. ne 7\

1 1
£y~ lotan® — —asx 0, - s therefore the range of tangent
function = B = set of real numbers.
(ii)  From Figure 11.1

X
cot = —, y=20
v'

= terminal side (P shoyld rot ¢ @&m X-axis)

= Oz0,tat :"

W% angent function = R - {x|x=nmne £}
Hx=1,cotd= la:-: ¥ — 1l L —+ + o therefore range of cotangent

J F
function = R = set of real numbers.
11.1.2 Domains and Ranges of Secant Function
From the Figure 11.1

1
sec = —,x#0
ook
= terminal side OP should not coincide with QY or OF (the Y-axis)

= & 'J_'E,:i:.li5 —H
2. 2 2

= O= (?‘_n—l)%,. where ne £




Vol
@@W s (N

1 ;
=l,secf=1 and -1 =x=0 so, —t-fz—l.secﬂfg—l
As sec ﬂallmm all rLaI values except those between —1 and 1
Range of secant function =R - { x| — 1 =x =1}

11.1.3 Domains and Ranges of Cosecant Function
From the Figure 11.1

csc @=

1
—, yzl
v

terminal side GP should not coincide with OX or QX7 {the X=axis)
f=20tmt2x...

U

I

2z nx, wherene 2

I

Domain of cosecant function = B — {x|x=nn, ne £}

o) O

trigonometric functions:

Az csc & attains all values except those between —1 an

Range of cosccant fum,l] —
The following table mupx\narlzes tﬂ\ﬁnﬁs\@

Function ﬂ\ \Y\‘\ K\l\m\ﬁﬂ Range

v Patmy N
L ANIN

jA \=Jr_-n.3_x {_—'1'-,‘ m)=R [ 15 ]]
P e e e |
V=rcotx R = (—m, "I"} JX#=na ne L {l_'":}s I'EJ =R
s (—eo, ), x=(2n+ ﬂ%,n:— i Gt e
¥ = cosee X (¢, m),x#nm,ne Z (—o, —1] W [1, =)

11.2 Even and Odd Functions
A function [ issaid to be evenif f(—= [f(x), for every [T
number x in the domain of f,

For example: ({3 =x"is even finktj %m g
W\J o\)uv




A ﬂJW b if f{—x)=—F{x}, for every number x in the domain of .
For example: (3 = x is an odd function of x.

Bemember!

i, st 433 T T
Ho Jladla bl - =) =) The graph of odd function is
The function f{#)yfcos for all A R is un even  always syvmmetric about the

function (see figure 9.2). origin.

Here f({—f)=cos(—&)=cosfl= (f). oy

Thus, f{)#cos is an even function, ; . [2r, 1) = {cos 0, sin 0)
Similarly, the function f(6) = sin @ for all (1.0 A I‘; (1. 0’1

e K is an odd function. ' Al 2

Here f{—f)=sin{—) =—sin?=— (). !/: Geciol = oo bk )

Thus, F(F1#sin  is an odd function, {0, -1 ©m
Nli: ] In both the cases, for each t@ m @

d.omam of f, —x must also be in the

11.3 Period of bunctmns
All the 51 nctions repeat their values for each increase or decrease of
e o} heretore, the values of friponometric functions for @ and & + 2ax, where
e Rand w e Z, are the same. This behaviour of trigonometric functions is called
periodicity.
Period of a trigonometric function is the smallest +ve number which, when added to
the original circular measure of the angle, gives the same value of the function. A
function is periodic, if /(8 + p) = f(@), tor all & in domain of function and the least
positive value of p is called the period ol the [unction.
Now, let us discover the periods of the trigonometric functions.
Theorem 11.1: Sine is a periodic function and its period 15 21
Proof: Suppose p is the period of sine function such that

sin (@ + p) =sin dfor all = R (A)

Now put &= (I, we have
sin {00 + p) =sin 0

O
e

W UUu




nit QY @W ﬁ,.,..emﬂ“(,

(i) If p=n.the

sin & (not true) osin( 4+ &) =—sin 7
is not the period of sin &
(1i) If p=2m, then from (A)

sin{é+2n) —  sind, which is true w0 sin(d + 281 —sin 0
As 2w ois the smallest positive real number for which
sin{#+2n) = sind

2r is the period of sin &,
Theorem 11.2: Tangent is a periodic function and its period is .

Proof: Suppose p is the period of tangent function such that

tan(@ + p)=tan & Jorall de R (B)

Now put @ 0, we have Note:
n{l—pi=tan0 = tanp=0 By adopting the procedure used
p=0,7, 2%, In, ... in finding the periods of sine

(i) If p=n, then from (B) tan(& + x) = tan &, and tag o H@mﬂ
which is true -

As 7 is the smallest positi

tan (£ + ) =td
Therefore, © %%@
0

Exa i hi periods of: (1) sin2x (n) 3+ tan%

Solution: (1) We know that the period of sine is 2n
sin (2x + 2r) = sin 2x — sin 2x + ) = sin 2x
It means that the value of sin 2x repeats when x is increased by =
Hence 7 is the period of sin 2x.

(i) To fnd the period of 3 + lan%, consider only Lan % ;s
We know that the period of tangent 15

(1. . % 1 : X
tan | —-Hﬁ": tan — = tan —{x+37) tan—
3 3 3
Wt

X i
It means that the value of tan — repeats when x is increased by 3n,
‘]

ua @.\&"5\ the

Hence the period of 3 ¢ nn 3 is ¥1. The 1dd|t10n of ¢

tangent function does not
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A
\;\'l\—l'}l_,l wing [unctions are even, ﬂ'JLl or nelther odd nor even.

Dretermming

(i) sinx+cosx (iii} sin* x+cos' x
ot | . sinx+sin3
{1v) tanx+secx ¥) —— (vi) il ARl

CoNCeT X L0 X+ 0% 3y
1
(Vi) — (wiil) ——————
A I
SEC X+ ReCT X secx-+cot” x
2. Find the periods of the following functions:
(1) sin 5x (il Cos Tx {iil) tan 3x {iv) col 5
e 2% Jx
(V) |951"n| =g ‘ (vi) cos e’(‘l— ’ {vii) —un{———
W20 - 2 2 2
Z :
f T
{viii) —5—35&0L?£.l’+EJ {ix) 12+1l.ilan| —x

11.4 Values of Trigono

We know the mlueq .
and 907, “ 18

(x) 6-4cot :%+ %] d : wa‘tﬁ?@

blished the following identities:

Wu\y}"— —sin L? cos (=) =cos 0 tan (=2} =<tan 0
sin{r— &) =sin @ cos{im— &) =-—cos # tan (t — &)= —tan &
sin(zx+ #)=-sin # cos(nt + 6) =—cos & tan (m + &} =1tan &
sin(2x— @) = —sin & cosi2n —3) =cos 0 tan (2x — &) = —tan &

By using the above identities, we can easily (ind the values of irigonometric [unctions
ol the angles of the [ollowing measures:

— 307, — 45°, — 60°, — 90F + 120°, £ 135°, & 150°, + 180P

+ 210°, + 225°, + 24(°F, + 27(0F + 3{](!“ +315° + 3300, + 360°
11.4.1 Graphs of Trigonometric Functions
To plot the graph we shall follow these steps:
(i) Table of ordered pairs (x, ¥) is constructed, when x is the measure of the angle

and y is the value of the trigonometric function for the auglr.: af measmm

(i) The measures of the angles are taken along the X
(111) The values of the Lng{mumu{:r\\(_ l% 1 ' @u r thi Y-.ma

i
WWW
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ordel ed pairs are plotted on the graph paper,
1 er;i with the help of smooth curves,

sraph of y = sin x from — 21 to 2

We know that the period of sine function is 27 so, we will first draw the graph for the
interval from 07 to 3607 {from 0 to 21),

To graph the sine function, first, recall that =1 =sinx=<1 forall xe R
We know the range of the sine function is [=1, 1], so the graph will be between
the horizontal lines y=+1 and y=-I

The table of the ordered pairs satisfying v = sin x is as follows

{1 2

i — | =|—| 2=
& ! 2z 3 =] (3] 3 2
x
or ar ar ar ar

= r 25 | &7 Lk

or | ar | or | or
0= | 30F | elF
Simx| 0O [ 05 | 087

180° | 210° | 240F | 270F ] 300F

To draw the graph:

() Takea cnn“"'i&% § ﬁ e ﬂblg ';quare on the jl‘-u‘l?(lﬁ— Iumt
(1} te axes.
the p

(i) oints corresponding to the ordered pairs in the table above
e, (0, 00, (30°, 0.5), (60°, 0.8T) and so on.

(1v) Join the pomts with the help of a smooth curve as shown. So, we get the graph of
v = sin x from 0 to 36(F i.e., from 0 to 2.

As we see that the graphs of trigonometric functions are smooth curves and none of them 1s
line segment or has sharp cormers or breaks within their domain, This behaviour of the curve 15 called
continuity. [t meuns that the trigonometric functions are continuous, wherever they are defined
Muoreover, as the ngonometric functions are periodic so their curves repeat after fxed intervals

40 4y

T T T T T
60 00 1200 150° 1RONZ10P

T T T T
240% TT0F 300° 330° AM0®

g@
25
=
g

[T LL
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TSI 00F D30 1T EREMJIES 41T 200° M00* 150058600

Graph of ¥ =sinx from — 360° to 360°

The graph in the interval [0, 2x] is called a eyele. Since the period of sine function is
21, s0 the sine graph can be exiended on both sides of x-axis through every inlerval
of 2m.

Properties of graph of sine function ( y = sip x) “ @o@@

(i} The domain is the set of realmu _
(1i) The range incl@%&i&rm 1, inclusive, [-1, 1].
(1i1) The graph of si inuous for all real numbers.
(iv) Wwﬁ nction is 2x, Mathematically, we can express it as
+ 2 ) =sind.
(v} The sine function is an odd function. As the graph of sine function is symmetric
about the origin, Mathematically, it can be written as sin{ —# ) = —sing .

¥ ' - . P b
{vi) The maximum value of y=sinxis | when x = 3 +2an , where ne Z.

N e - i
{(vii) The minimum value of y=sinxis—I when x= e +2an, where ne Z,

(wii1) The x-intercept of the sine function occurs at x —san, where ne £
{(ix) The y-intercept of the sine function is 0.

{x) The amplitude of sine function is 1.

(xi} Inunitcircle siné is equal to the y-coordinate of the given point.

W@@h fior

. 17, so the graph will be between the

11.4.3 Graph of y = cos x from - 2 to 2x

We know that the period of cosine functionds 2n




IR G == <> i OO
Q
(L3N
dr | 3

The table of the frﬁ:lf:l*edd pairs sat@f}m (o0 i

IR EEE
. \ I o | 3| =2 6
OﬂT nr T T U or T ar or or
| 30F | a0 [ S0 | 1207 [ 1507 [ 1ROP | 210° | 2407 | 2707 | 3007 | 3307 | F60e

cosx| 1 (087 [ 05| 0 [-05]|-087] -1 |-0&7]-05] 0 [ 05 [037] 1

1w b

g wig

The graph of y = cos x from 0F to 3607 is given below:

&
i

----------------------- R e E LR i |

Graph of p = cos x from 07 to 360° m
ENIALC
; ; VT

In the similar way, we can draw the grap + =3607. This will

complete the graph QC') COS &l e, from=2m to 27, which is given
below; KXX
o
------------------------- 7 F= 1
- k"

A0° olF SITLIE REC LED® 200° 24(EAT00 200° 3300 600

---------------- T EEEEE S L |
Graph of y = cos x from — 3607 to 360°

As in the case of sine praph, the cosine graph is also extended on both sides of r-axis
through an interval of 2r,

Properties of graph of cosine function { y = cos x )

(i) The domain is the set of real numbers (—o < x < o),

{(1i)  The range includes all real numbers from —1 to 1, inclusive, [-1. 1].

(11i)  The graph of cosine function is continuous for all real numbers.

eyl

{(iv)  The period ol cosine function is 2x. Mathematically, we

ms(ﬁ' + 2,*1'_} =cosd,
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Xé ven function, as the graph of cosine function is
ﬁ%the v-axis. Mathematically, it can be written as cos(—6 ) = cos#.

(v} The cosing

(vi)

(vi1) The minimum value of y=cosx is | when x=an, where o is an odd mteger.

e maximum value of y=cosx is | when v=u#. where i is an even integer.

(vi1l) The x-intercept of the cosine function oceurs al x= E +an, where ne Z.

(ix}) The y-intercept of the cosine function is 1.

(x) The amplitude of cosine function is 1.

(xi} Inunitcirele cosé 1s equal to the y-coordinate of the given point.

11.4.4 Graphof y=tan x from—-7to 7

We know that tan (—x) = — tan x and tan (T — x}) = — tan x, 50 the values of
tan x for x = 07, 307, 60°, 207 can help us in making the table,

Also, we know that tan x 15 undefined at x =+ 90°, when
(i} v approaches -}E from left gi % éﬂ ‘ @eh in Quard 1.
(i) rappmachﬁ Uz—(%%m X 5 | . tan x increases indefinitely in Quard 1V,

s T
T . e : . . :
(1i1) x approaches —% from left ic., J:—}| _E] . tan x ncreases indefimitely in
N ;

Ouard 11

(iv) x approaches — E from right i.e., x -%I

tu|l1

‘E'
J , tan x increases indefinitely in

Ouard 111
We know that the period of tangent is o, s0 we shall first draw the graph for the interval
from 0 to o (from 07 to 1807).

The table of ordered pairs satisfying v = tan x is given below:

B> | %
+ | -4
T
i

5
—o|—+0| — | — | =
d - 3 6

or ar ur 063 nr (@m
| | o b sl RINIP

i

oane| g | o539\ e WP iros | Toss| o
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r Graphs
Since the period of t %

to 360°, '
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¥
n.x from— 360° to 36(°

Prnpu“t %}\in"ent funetion { 1 = tan x)

domain is the set of real numbers except the values where function is

—_— .
n' m‘ | -1 80" |'-r g’ T R

T T T T
£

i .5‘.____________.. et
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undefined domain of tan x = (-, ©), x=(2n+ ]’}51 wherene Z
(11) The range includes all real numbers (—oo, o)

(111} The graph of tany is not continuous for all real numbers. It breaks at x={(2n+ 1}—

Jwhercne £

(1v) The period of tan function is © WMathematically, we can express it as
tan{@ + 7) = tan

{v) The tan function is an odd function, as the graph of tan function is symmetric
about the origin, Mathematically, it can be written as tan{—#) = — tan#/

{vi}) The x-intercept of the tangent function oceurs at x =, whm, HE

{vii) The y-intercept of the tangent function is 0

{viii) The amplitude of tangent [u *um%i m has no AR LU O
e ______________________________________________.
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\EXERCISE 11.2 4

R '6f cach of the following function for the intervals mentioned

(1) y=-—sinlx ; xe [F2m, 2] (i} ¥=2cos2x, xe [0, 2n]
(iti) y=tan 2x , xe [-m, ] {iv) v=1tan % . xe [=2rm, 2n]
(v) »=sin %1 . xe [0, 2m) {(vi) y=cos %x . xe [-m 7]

2. Omthe same axes and to the same scale, draw the graphs of the following functions
for their complete period:

(1) y=smyandy=sin2x (ii} y=cosxandy=cos Iy
3. Solve graphically:

(i) sinx=cosx, xe [0, n]

s

11.5 Maximum and ¥
the Type %

. a+beosd

Mﬂ+d} « atbecosicf+d)

*  The reciprocal of the above, where o, b, ¢ and J are real numbers.

The trigonometric functions like sine and cosine are periodic function because the
values of these function repeat over regular intervals. These functions are fundamental
in mathematics because of the repetition of their values at definite cycles and are used
to model various real-life situations, such as radio waves, light wave, and alternating
current in electricity and are also known as a specific case of sinusoidal functions.

The functions of the form f{ 8)=a + b sin &, g(f)=a + bcos &, [0} = a + b sin(cf + d)
and g,(@)=a+beos(cO+d) are the most common types of sinusoidal functions,

Now consider the general form of sinusoidal function f{#)=a+hsin{cf+d) .. .(i)

here ‘o’ represent the vertical shift refers to the vertical translation of the ﬁmaf a

permdm function, achieved by sh1ﬁ1:1g the entire gra a I'his
, ».-\ t ofvs position along the

he maximum height of a
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m:d!mc The period of (i) s equal 1o — . Phase shift “d"
[

indicates the horizontal translation of the graph of a periodic function, determining how
far the wave is shitted left or right along the x-axis. A positive o shifts the graph to the
left, while a negative 4 shifts it to the right, altering the starting point of the wave
without changing its shape or period. £(8) =1+ 3 sin (26)

For Example consider the function A i
f(@)=1+3sin(P ) . Here a = lis ‘

Period

vertical shift, amplitude =[b| = [3=3  Amplitude

; 2% ;
and period= =~ =& as shown in the  Venical
2 shift \\n

adjacent figure.
MNow, finding the maximum and
minimum  values ol the I‘unc'liu-n'i

f(@)=a+bsin(& +d)

\!A o~
gi)y=a+beos(d +d) is nol ﬁ@‘ the maximum absolute
values of sine and ct@ naxumum value of the product bsind
is |B|.

Thu i Ov&lue of fif)is M :r?‘+‘;b|, whenever siné =1 or cosf = |

where M denotes the maximuom value of the tunction.

The mimmum value of a function 18 m = a—|b|, whenever siné = =1 or cosd = -

and m denotes the minimum value of the function,

The sbsolute value of b is called the Amplitude of f{@)=a+ bsind . The value of the
amplitude can also be determined using the formula
Maximuon value — Minimuwm value

2

Amplitude =

Example 2: Find the maximum and minimum values of the following functions:
(i) 2+3sinx (1) 5=2cosdx (i) reciprocal of (ii)
Solution: (i) Let f{x)=2+3sinx

The maximum value of fi) will occur when sinx =1 . Here a=2and F)

Maximum value of the function: W = a4 |h -3 @
The mitirmum value of the ['um..hné)wll

Minirmum value of the funct @

Thus, mawmu Xgﬁm}\ i

and the minimum value is —




S
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(11) Let fix)=5- ]
W@va ue of f{x) will oeeur when cos3xy =1 . Here =5 and H=-2 ,
aximum value of the function: M -2 1 |h - 5112/ - 512

The minimum value of the function will accurs when cos 3y 1.

Minimum value of the function: i =g || =5 | 2/ =5 2=3

Thus, maximum value of the function 15 7 and the minimum value is 3.
(iii}  reciprocal of part (ii)

The reciprocal of 5= 2cos3x is ————
5=2cos3x

Let g(x)=
&) — 20K 3x

To find the maximum and minimum values of g{x}, first we will find the maximum and

minimum values of 3—2¢os3x, which are 7 and 3 respectively.
Alter finding the maximum and minimuom values take their reap he @ml the
maximum value is the minimum of g(x) and thetecipr W @ @
minimum value is the maxi ‘@
| O% .
Maximum valﬂ = l} 33

im valuc of glx)=

LS. 785 ¢
M

11.5.1 Applications

Ferris Wheel Problems

The first Ferris wheel was invented by George W, Ferris. He
built the first one for 1893 World™s Fair, A Ferris wheel is an
important example of periodic motion that can be described
using  wigonometric  functions,  specifically  sinusoidal
functions. When we model the height of a rider on a Ferris
wheel over time, we can use these functions fo capture the § ._&f

periodic nature of the motion, The motion of Ferris wheel can m.am m
be modeled by finy=a + bsinfcr +d) or fi7)=a - bcos(cr +d)

Example 3‘ A Ferris wheel with a rEu:Eius of 45 cht has its Iuwcst point ]n-cated 5 feet above




o T nometric Functions and
o

{one cyele), which is thevper Ferrie wheel, that is period = 60

- = = =
. 6l 30
plitude & which is equal to the radius of a ferris wheel (in this case b = 45).
The vertical shifi « is the height ol the center ol the Ferris wheel above the ground.
Since the lowest point is 5 feet above the ground, soa=5+h=5+ 45 = 50.
we can model the height of a nider nsing (sine or cosine), because it reflects the periodic
nature of the motion, We usually choose a cosine function if the rider starts at the
maximum height, or a sine function if the rider starts at the midpoint.
Since the rider starts at the lowest point and goes up, we can easily model the required
equation as a negative cosine function so.
hiiy=—bcos(ct)+a , where 115 oime and /4 is height.

G g i T )
Now substiluting the above values we gel the unction i) = —45cos [ﬁr I—l— 50,
s

which is the required equation of Ferris wheel.

Next, we find the height of the rider at r = 40 seconds. W«@ @@m
My

Thus, height of rider after 40 second is 72.5 feet.
The graph of the model equation is shown below,

Hueight of a rider after 40 secconds [ 3T i

it =—d45 cm{

.1]4.—50

P

30
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EunW in feet of a tidal river varies throughout the day. ‘Suppose
the levelof the tidal river can be modeled by the equation: Lit) = E—4.-:in[ %f ], where

¢ denotes the time in hours, The water level oscillates 4 feet above and below an average
level of B leel.

{4) Find the water level al £= 3 hours?
{b) What 1s the minimum walter level?

lf H'
Solution: {a) Given equation of water level: Li{s)=8+4sin, %t
L
To find the water level, substitute £ = 3 into the equation
: I
I3} = R+4m’n(£.3]— &+ dsin l*?— |
L6 ¥,
LiZ)=4+4(1)=12
Thus, water level at t=3 hours is 12 feet. @m

function attains its  minimum ‘ e minimum  value of
sin ¢ = — 1, substirute Wﬂ [ito the equation
wam(?] B+4(—1)=8-4=4

Thus, minimum water level of the tudal river is 4 feet.

(b)) MNow, to find the minimum wat%]eézj fic—when the sine

Example 5: From a point 100 m above the surface of a lake, the angle of elevation of
a peak of a cliff is found to be 157 and the angle of depression of the image of the peak
i5 307, Find the height of the peak.

Solution: Let 4 be the top of the peak AM and !
MB he its image. Let P be the point of g - 1€
observation and 7 be the point just below Plon =

the surface of the lake). e T 14

From F, draw E 1AM .
Let m PO = ymetres and mAM = h metres.

mAQ =h=mOM =h—mPL =h— 100

-l;rc-m the figure, @ @©
tan 5% = \AFQA'\H&\ § 'g“dy Yz
I
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By division
R =100
tan 3[]"’ h+100

By Componendo and Dividendo, we have
tan 15°+tan 30 A—100+h+100 2h K
tan 15° —tan 30° ~ h—100- A—100 200 —100
_ lan 30°+ tan 15° 100 = (L.5774+0.2679
tan 30° —tan 15° 3

= h=273.1179.
Hence height of the peak = 273 m. (approximately)

P~ EXERCISE 113 _J

. Find the maximum and minimum values of the following lumllum m
(i) 3-sindx (it} 3+sin i W i x+.~rr)
(v) = +cos| W {vi) 1+’>5m| +E]
(viil) —————

0—2sin3x 7+’3Lm.( 2.1:)

0577402679 ['%

|

[

I'he temperature T in a certain city varies throughout the day according to the

13
equaiion It = —«ml . N
2 L]

|+ 15, where ¢ 15 the time in hours, with f = 0

] | =

corresponding to midmght
{a) Find the maximum and minimum temperature during the day
(h) Find the temperature at r = 9 hours (9:00 a.m.).

3. A manon the top ol a 100 m high lighti-house is in line with two ships on the same
side ol it, whose angles of depression [rom the man are 17° and 19 respectively.
Find the distance between the ships.

4. P and ¢ are two points in line with a tree. If the distance between P and @ be
30 m and the angles of elevation of the top of the tree at P _@ y 15°

respectively, find the height of th troe,
A giant Ferris wheel has a diarfay ‘ '
6 feet above the @ ate

i

'l int of the wheel is located
< one full remlunc-n every 8 seconds.
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tion that represent the height i) of a rider on the Ferris wheel
arany given time £

(b} Find the maximum height of a rider,
{¢)  Find the height of the rider from the ground aller 35 sceonds.
6. A child is plaving on a swing im a plavground, The height M) of the swing scat above the
ground (in meters) at time £ (in seconds) 18 modeled by the function:
h{ry= 1.5 + 1.2 sin{3ar)
{a})  What is the maximum height reached by the swing seat?
(b} What is the minimum height reached by the swing seat?”
{c)  How long does it take for the swing 1o complete one full back-and-forth motion
(period)?
{d)  Acrwhat time(s) does the swing seat first reach a height of 2.12 meters’

A camival nde consists of a vertical wheel with a diameter of 4} f'*cl@tcmrc
(@h spe

of the wheel is 28 feet above the ground. The whegls oai\a @n ed and
takes 1200 seconds to make ongyonip - ) wlel an equation that

i the rider [ : e seconds? Al what times will the rider be
36 feet ahy

o

temperature I in degrees Fahrenheit of Lahore city in 8 month  of

eember  throughoul  the day can be modeled by  the  equation:

Fr=6d+X &;in] FI‘ | where ¢ 15 the time in hours, The temperature oscillates

8 degrees above and below an average temperature of 64 degrees.

{a)  Find the temperature at =9 hours?

(b) At whal time the temperature will be maximum?

(c) Caleculate the maximum temperature.
9. Supposc the population of 4 coasta]l city follows a sinusoidal pattern due w

scasonal migration. The population of the city over the course of a year can be
[ ‘ , Pii} is the
\ 6

=

-.;@@mmg to
o

modeled by the equation: P(¢)= 70000+ 10000 cos

population at time ¢ (¢ 15 the tme in months, with
January 1), where 1 denoted the monghs i i

{a)
(b)
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INTRODUCTION

In mathematics, the concepts of limits and continuity are foundational in understanding
the behavior of functions and sequences, especially when applied to real-world
scenarios, This chapter will introduce and explore how to demonstrate and find the
limit of a sequence and a function, understand continuous and discontinuous functions,

and apply these concepts in various contexts such as economics, finance, and natural
sciences.

This unit will provide you with the tools to understand and apply the fundamental
concepts of limits and continuity, both theoretically and practically. By the end, you
will be able to demonstrate the limit of 2 function, test for continuity and discontinuity,
and apply these ideas to a wide range of real-world problems across variou 5,

including finance, economics, and science. F@ @@
3 . g . . O
12.1 Limit of a Function, O w
3 % s@ I

The concept ol lmitgl: the structure of caleulus rests.

Before the (ln::ﬁnilim
understandi he |

Ataning of the Phrase “x approaches zero™

14 ih
it ot a function, it 1% necessary o have a clear

1 -
Suppose a sequence x, = — assumes a sequence of values as:
B

1

_’_:;'

i
3

1
2

|'|

[l | =t
=)
[

4T

We can see that x 15 becoming smaller and smaller as i inereases and can be made as small

: e B Lo
as we please by taking “n” sufficiently larger. We can see that the sequence x, = — is
e
becoming smaller and smaller as i increases and can be made as small as we please by

: 557 1 .
taking “»” sufficiently large. In other words, x_ = — becoming closer and closer to 0
o

as n becoming large. This unending decrease of x, is denoted by x, — 0 and read as *,




12.1.2 Meaning

Limkt of Sequences
Unit YRt
m%v ._ *“x approaches infinity™
Su; ICI"' assumes values as 1, 10, 10, 10%, ..., 107, ...

It ar-that the sequence x, is becoming larger and larger as » increases and can be
made as large as we please by taking # sufficiently large. This unending increase of the

sequence x, is symbolically written as *x, —=" and is read as “x; approaches infinity™
or “x, tends to infinity™ as n —»uc
12.1.3 Meaning of the Phrase “x approaches a”
Symbolically it is written as "x —a" which " "

. g ' oint to remember:
means that x 15 sulficiently close to a but different T

: The svmbol x — O is quite differemt

from the number o, from both the left and right  fom =0
sides of a that is x—a becomes smaller and  x — 0 means that x is very close o
smaller as we p]gﬂse but x—a=0, zero but oot acmally zeno,
12.1.4 Concept of Limit of a Function '~ " mes ety is acially zero.
(i) By Finding the Area of Circumscribing Regular Polygon
Consider a circle of unit radius which circumscribes a square (4-sided regul @- ‘“{-?1 nj

as shown in Figure 1.
The side of square s 2 and its area i€2 s lh tu. arca of

inscribed 4-sided p : -nrcum—r:m:le

r=3.142(xF :ﬂ'“
o

Y2
Figure 1: 4-sided polygon Figure 2: 8-gided polygon Figure 3:1 6-sided polygon

Bisecting the arcs between the vertices of the square, we get an inscribed B-sided
regular polygon as shown in Figure 2. Its area is Zﬁ = 2.828 square unit which is
closer to the area of circum-circle. A further similar bisection of the arcs gives an
inscribed |6-sided regular polygon as shown in Figure 3 with area 3,061 square unit
which is more closer to the area of circum-circle.

It follows that as “#", the number of sides of the inscribed polygon increases. the area
of polygon increases and becoming neared to 3,142 which is the area of c@m

radius. @
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L R —_—
Ve express v saying that the limiting value of the area of the inscribed
p e'area 01’ the cm:h-;- as i approaches infinity, i.e.,

Area of inscribed polygon — Area of circle as n — =
Thus, area of circle of unit radius = & = 3.142 (approx.)
(ii}) Numerical Approach
Consider the function f'(x) =
The domain of f{x) is the set of all real numbers,
Let us find the limit of f(x) = x* as x approaches 2.
The table of values of f{x) for different values of x as x approaches 2 from left and right

is as follows:
From lefi of 2 »2 o+ from right of 2

1 1] 1.5 18 1.9 | 199 [ 1.999 | 1.9990 (20001 (2001 201 2.1 2 e s |
iy =7 | {3375 [ 5,832 | 6,859 [T.B806[7.6506| 70058 (20012 | 3.012 | 81206 %.26] [ 10648 | 156252

The table shows that, as x gets closer and closer to 2 (sufficiently ¢
sides, f1x) gets closer and closer to 8.

We say that 8 is the limit of f{x) shen@appe
fix %
12.1.5 Limit

2 med in an open mten al near the rmmber b {need not b:: at

number L™ then “1.", is called the limit of fx) as x approaches o, Symbolically it is
written as;
lim f{x)=L read as "limit of f{x) as x — a, 15 L”
Tt is neither desirable nor practicable to find the limit of a function by numerical
approach. We must be able to evaluate a limit in some mechanical way, The theorems
on limits will serve this purpose, Their proofs will be discussed in higher classes.
12.1.6 Theorems on Limits of Functions
Let fand g be two functions for which Lim f{x)=Land Limg{x)= M, then
Theorem 1: (a) The limit of the sum of two functions is equal to the sum of their

limits.

l |111I,f{1}+g{'c]] ,m'l Fix)+ I 1mg( Y=L+M

For example, le {x+5)= Limx +Li
;\rl O X oda




Limikt of Sequences @
and Cnlﬂnnﬂ}' Maanmﬂ:s

(b} The limit of ions is cqunl to the d]fferem:c of their
llmll:s

W L1m|_f|[t} #lxl = L1n1 filx) - llmgh} =M

For example, [1n1{r 5)= l1mx Lm&5=3-5==-2
' 1

=13
{c) If kis any real number, then
Lim[kf(x)]= & le F(xy= kL

For example, Lim(3x)=3Lim (x}=3(2)=6
(d) The limit of the product of the functions is cqual to the product of their limits.
I 1111[ fix) g(x)]= l Im jf('cj l 1m glx)=LM

For example, Liﬁ;l (2x)(x+4)=Lim (2x} l_iﬂ;l (x+4)=(2}5) =10

(¢) The limit of the quotient of the functions is cq ual to the nt @@I@@ts
o

provided the limit of dennminator

j'(x] lef(

le r)# 1 in a neighborhood of

lef(31+4] _6+4 10

Fnrcudmp]r: [lm | =—=
a2 J.+3| L1mg{~c+3} T3 S

(fy Limit of [ /{x)]", where n is an integer
Lim[ /(0] =[Lim /()] = I
h o
For example, I_,-in}{"f’...r—BJ" :(Li_n} (2%~ 3}] =(5)’=125
(g () limx" = ", where p >0 and p= 7
@ time-e

We conclude from the theorems on limits that limits are evalpated by merely
substituting the numhber that ¥ approaches into the function.




1. its of Important Functions

If by substituting the number that x approaches into the function, we pget [% ]_, then we
evaluate the limits as follows:

We simplify the given function by using algebraic technique of making factors if
possible and cancel the common factors, The method explained in the following
important limits.

- &

il : . P »
12.2.1 Lim =na"™' where # is a non-zero integer and a > 0
¥38 g8

Case 10 Suppose /15 a positive integer,

By substituting x = a, we get (% ]ﬁn‘m. sowe make factors as follows: m

"l -1 1. n-3

U rax T s L+ a" )

- =3 '3 & 1 = -
=g vag ot rat avad™ o +a™!

| o =1 =1

=" '+a" '+a" '+ o+ a"  =na

Case [1:  Suppose n is a negative integer (Say n = —m) where m i pUsliE g

Now, = =X =




) 2,000
G@X\J& ‘ @@W i

a—-a : : 2
Ja = where #n is an integer and a = 0.

A — -
x 10 X 2.Ja
e 0 : s
By substituling x = 0, we have [a ] form, so rationalizing the numerator.

X x ’_..\\IG.';F*E.I'+ i

Lim

P

Lim

= ll

Lim[u}= Lim(;w
] _'HI+H+N!; xoad -\‘I.,T+E1+‘Jr;)

|
= Lim

| |
0 Srva+a Jardu 2fu

Example 1:  Evaluate: (i)

Solution: in

4

Limae—s €]

7

(ii) Limf;z@=um(£+£}${‘ﬁ}=um{ﬂ+ﬁ} ~BiE=08
X=r§ X =y e | ( 3] e

12.2.3 Limit at Infinity

Lwhen x — ofa

We have studied the limits of the functions /(x), f{x) gix) and f :I:
glx,

number)

Let us see what happens to the imit of the function fix) if ¢ is + = or = (limits at

infinity) i.e., when x — 4+ and — — oo,

(a) Limitasy —+

Let fix)= 11 whenx £ 10
X

This function has the property that the value of f{x) can be made as close as we gluasc

to zero when the number x 1s sufficiently large. @
&\C

We express this phenomenon by “Titgsng I




U Limit of
PR 12) sud Con m
(h) Limig b

limits are handled in the same way as limits as x — +x,

. i |
ie., Lim —=10 whercx £ ()
E—» W X

The following theorem is useful for evaluating limit at infinity.
Theorem: Let p be a positive rational number. If x” is defined, then

g a , o ; .
Lim — =0 and Lim — =0, where « is any real number.

r—*+m ¥ Ak—m

{ =g
For example, __Lim =0and Lim =}

‘i
£ x I—#+m ."‘j;
12.2.4 Limit of a Sequence

A sequence is a ]lst nf mumbers arranged in a specific order, typically indexed by
nutural numbers 1, i
Let {'l..} be a :.aquenr.e where each term ﬂf the sequem,e is denuted by {as} an

.
I’.

‘ o)
We say that a sequence |} mn'rgen - | hitrarily small positive
number & {epsilon), ) : : h'that for all # > N the
difference bemeen AL AN ER: ) : athemaucally tlusm wrm,en as:

sequience is said to diverge.

Example 2: Consider the sequence [Tun = ! }: As n —» oo, 2 =0
! n

-

kel PRE 1
Solution: For any € =0, we can choose N =—, forn > N,|a, —0 = —<, 50 the
" n

sequence converges to 0, Thus, im_, b .
n
2n+3

nel

Example 3: Find the limit of the sequence a, =

Solution: We can simplify the sequence:

S o1 UO @(@@m




Limit of Seqyiene
U mt @ and Contlyaity

|

: 2+0
1 —— 0, so we are left with: lnma”:-_'——-:E
n ot 1+10
Thus, lim__, i =2,
n+1

Divergent Sequences: A sequence is divergent if it does not approach a finite value.
Divergence can occur in the following ways:

»  The sequence may increase or decrease without bound (e.g., a, = n” diverges 1o infinity).

+ The sequence may oscillate between different values and not settle near any one
value (e.g., an = (—1)" oscillates between -1 and 1, so it does not converge).

12.2.5 Methods for Evaluating the Limits at Infinity

In this case we [irst divide each term of both the numerator and the denominator by the

highest power of x that appears in the denoininator and then use the theorems on limit.

4 2z
Example 4:  Evaluate Lim e L

srvn =3 41057+ 50
Solution: Dividing numerator and denomin

e

. 5x*-10x%4 o
fl‘ ’ — lim-2 0
L e ; lm =
| s i
Evaluate Lim &
s =3 2?1
Solution: Dividing numerator and denominator by x°, we get
4 5
4! - 52 ; - 2 -0
Lim ———— — = Lim —*-% _ - =
Sk ik SR N S L
F X
Example 6:  Evaluate: (i) Lim L {11) le il

Solution: {i} Here Jx_1= j=—xasx<0
. Dividing up and down by —x, we get

2=3x

Lim ————=




::"a:::u@g Q@@@@ -

= t|— xasx>0
Daviding up and down b}r X, we get

_3 " 5%
Lim == = Fim - st i,

r— 4o 5=+ A :ﬂ+4= 2
~J3+4x 244
x
12.2.6 Lml 'I =¢
B — M

By the binomial theorem, we have

1Y 1Y, n(n=D{ 1% nan=Dn=2)( 1Y
[]_+_ I =1+"(_]+ML_ | +H[H—}":|[_J -
Ry f 2! Mo 3! i
T (B A, B
=1+1+— (1——] —|1-=J1-= |+
2 ny 3N m n

When n — +— m, l, - i ... all tends to zero, theretore @ @ m
n n n

@@7

f:fs'.-'+[!*[]4|ﬁ-ﬁﬁ?+ =2 718281 .

B X =43 I
%al .
As approxis I 18281,
1 A1
m L] + _Cj =g WLl We can also show that

i

n—4m n :
i e byl
Deduction: Lim{l+x)" =¢ "%[l+ nT i
I-—=0
5 it HOW 2
We know that Lim| 1+ — | =e (1)
Il—iu'.‘\\ F'
| [, |
Pt p=— n (i} then xr=—
X "
n l
When x—0on— o s0, L1m| I-|-l | —Ltm{]+1]
- al-:.l' xop b
L oo Y

e=Lim(1+x)~

I =0

Henee Lim(l +x}4 =g

x—ll




Limkt of S
Umit and Con

1 i
x—0

Pu a&'—1 =y (i)

then gr="1 "ty

S0, x =log (1 +¥)
From (i) wheny — 0, v — 0

r_ ¥ 'I
LimZ : = Lim J = Lim
=0 x ieoleg,(I+y) 0] S1og,1+)
1
= Lim O = =log; (- Lim(l+ )" =e)
p—tll = log,e xR
log (14 »)"

X-xlk x
We know that Lifil?[ J= log,_a O @W o)
emember

Lime* = oo (ii) Lime" =Lim

= I =—n X=an |
N

'
oo /]
Deduction: L-'Lm[r'— Jz log, e=1

Example 7: Express each limit in terms of .

2x

I
() Lim[1+2 ,I (i) Lm1[l+2n

"_Hx"-. " o ik

#oE

W
Solution: (1)  Observe the resemblance ol the limit with Ln'nl 1+ lJ
"




i Limit of 56

“W ance of the limit with
I
Lim{l+2n)" =e

n—+l
s

Lim(1+42n }n - Lm1[{1+2n)2ﬁ ]

50 w0
put m=2n, when n— 0, m — 1
lef1+2n)u = hm[[1+m} :| =g"
12.2.8 The Sandwich Theorem
Let f. g and k& be functions such that fix) = g(x) = h(x) for all numbers x in some open
interval containing “¢”, except possibly at ¢ itsell,
Ir Ilmj{.ﬂ = £ und Ln‘n h{x)= L.then Limg{x)= L

=y

Many limit problems arise that cannot be directly evaluated by algebraic tecl
They require geometric arguments, o we evaluate an impo @a 1@

‘oof: £ it i : techmque Take & be positive acute
1. m. shown in the hgurc t‘) TE repre'-:entt. a

Giiven I(J'AI— {Jﬁl—l {radii of unit circle)
| 8C |

In the right AOCS, sin 8=—— =| BC|
|OB |
v thie Hlglit AOAD; o= t22 s
OA|

(i) Areaof w.w_% |OA|| BC| = %{1}(51[1 U)—%sin 0

(i1} Area of sector Q48 = % = %[I)[B} = %H and

(iii) Area of AOAD = %l OA|| AD| = %{Il{lan B}=%lan i

From the figure we see that
Area of ACQAR < Area of sector 048 < Area of AD4D

| H
= —sm 0 = —
2 2




o
::r."a::.,@ﬁ- k@ﬁé@@ —

Assmbi wqmn bw - qm 8, we get
l~::‘ _— < (0 <<= |
sinf o cos B 2
: sin sin 0
e, |l # —— =cos B or cos B < T < |

When — 0, cos ) — 1

Lis sandi _
is sandwiched between | and a quantity Note:

Since
The same result holds
approaching 1 itself. So, by Lhe sandwich theorem, it must also L
n 2
approach | that is, I_LT B =1
sin 7H

Example 8:  Evaluate Lim -
A I

Solution: Let x = 70, so that @ e W@o
- e GO
Lim = ‘ ik e =

I—cos @

Example 9: Evaluate Lim

B

l-cos® l-cosB l+cos® 1-cos’B

Solution: = . =
o B 0 l+cosh  B(1+cos B)
sin’0 (Sinﬂ 1
=————=gin ]
B 1+ cos #) Lo _l+msi})
Lim(l_COSH |=Lim sin 8 - leﬂ- Ln'n( 1—{ ]{H ]
00 0 Y] 1 ] il - "-‘t\I'I-CD HJ Ll 1
P~ EXERCISE 12.1
1. Find the limil of the following sequences 11 exists:
et
i) s
S+l




L I_hﬁ I

2.  Evaluate

mﬂmumm of limits:

(11} L1|1'|1(3x ~2x+4) (i) Lim«yx’ +x+4
4 I =% A3
' . 7 . " a a - 2 = S
(1v) Lima/x™ =4 (v] I.lm:}qu+ - x+5  {v1) Lim : +2x
P ) X el R
3. Ewaluate each hmit by using algebraic technigues:
) ' 4. , 3; 1+ a4 k| . ' .‘_3 k|
(1) lex = (i1) Lim th i {m}  Lim
o=l x4 i e o J-'—\_x +l’—fl).
(iv) Lim==32 3=l ) Lm( g (vi) Lim| (2632
5ol x—x sostl gf -] ral x'—4x?
e -2 R Sy : . X —a"
(vii) LunM {vili) Lunriﬂr; (ix) Lim Sz
=2 y—2 A =0 N bl R -
4. Evaluate the following limits:
’  sins: )
(i) Lim e (i1} Lim — m
v —sil x 2

e . ®inxy :
(1v) Lim |
| .. %

(vii)_Li [wiii) lel

@t 1= cos gt
2 & ot
G et gy peod
=y + Ix—4 x>l gt —

5. Express each limit in terms of e.

i o1 : . [h
(i) Lim 1+—J (ii) lell-—] {iii) Lim[l— )
r! N — )

1) ko

i

{iv) Lim (1+LJ‘ (v} L1m| 1+ 4T {vi) Lun{l +3x)
n H

e &=
A L X
(vii) Lil1;1fl+2x’)-“' (wiii) Ling{l—lh}" {ix) L1m[]: J
! 4
(x) Linﬁé"r—_

X Kl




el %@@ e G

12.3 Condi 1 scnntmultv of Functions
% l?d Limits

In defining Lim f{x), we restricted x in an open interval containing ¢ i.c., we studied
X =g

the behaviour of # on both sides ol ¢. However, in some cascs il 18 nocessary (o
mvestigate one sided limits that 1s, the lett hand limit and the right hand limit.

(i) The Left Hand Limit

Lim f(x)=Lis read as the limit of f{x) is equal to L as x approaches ¢ from the left

i.e., for all x sufficiently close to ¢, but less than ¢, the value of f{x) can be made as
close as we please to L.

The Right Hand Limit The riles for
Lim f{x) =M is read as the limit of f{x) is equal to M as r calculating the lcft hand
e and the right hand limits

approaches ¢ from the right i.e., for all x sufficiently close to  are the same as we studied
¢, but greater than ¢, the value of f{x) can be made as close ™ Wl‘;“lm limits m
as we pleasa 1o 'lrir 7 '

I_.lm fl,\} 1f and cJ ‘
Example 10: Det@ {h:} and Llln,f'fx]emqt when

if Uit&E
f{t) a"?—r if 2<x<d
| x if 4<x <6

Soelution: (i) lef{t} Lim(2x+1)=4+1=3

-+T

quy fix)= Lug{? -x)=7-2=5

Since Lim /()= Lim /()=3
12 e el

=5 LLI‘M" (x)exists and is equal to 5.
(i) LitIg f(z)= Lirg(?—x}z T-4=3

Lill‘; fixy= Li111_(x) =4
Simce  Lim f{x}=+ Lim fix)
x »d 1 >4

Therefore, Lll[}f {x) does not exist. v @ @@m
Yo y




e Limit of Se
Unit and Can
of a Function at a Point

(a ortinuous Function

A function f’is said to be continuous at & number “¢™ if and only if the following three
conditions are satisfied.
(i} fle)is defined (i) Lim f(x)exists (iii) Lim f{x)= ()

(b) Discontinuous Function
It one or more of these three conditions fail to hold at *¢”, then the function (s said to
be discontinuous at “c™.

: : . =1 — .
Example 11: Consider the function fi{x}= T discuss the continuity of fatx = 1.
x—

Solution: Iere /1) is not defined.
= flx) is discontinuous at 1.

Example 12:  For ({x)=3x"—5x+4,discuss continuity of fatx= 1.
Solution: Lilnﬂxl: Lim{'h’ ~Sx+4)=3-5+4=2and f(l)=3-5+4= m

=% lef{r} f]]

Therefore, f(x)1

Example 13: Dig Eunuh{}mji,’_x_) and m{x)atx =3
—. i x#3
WN\Q o= x=3 = °

(b) g(.r)={"“ '3 if x#3

X=:
Solution: (a) f(3) =6
Now, le fl(x)y= le

r—=+1 -

_Lim(xm}w
T3 M

= Lin;:‘x+ 1=34+3=06

As  Lim f(x)=6=f(3) (0,3 :
Sx) is continuous atx = 3. 1t is noted that there is no break / - _1.
in the graph. d o




o Ky@@&@@w@mm > |

' — if x=3
{ o} ) x=3 Sh

¥ 15 nol delined at x=3
= gix) s disconlinuous al x =3
It is noted that there 15 a break in the graph at x = 3 near

x=3 {0.3)
Example 14: Discuss continuity of f(x) at x =3, when /
o -

”ﬁxyﬂ}x+l,if 3<x

W

Solution: A sketch of the graph of (is shown in the figure (iii). We can see that there

is a break in the graph at a point when x = 3,
Now fi3)=2(3)+1=7
= Condition (1) is satisfied.
I]mf{ﬂ llm(.\~l) 3-1=2

Lim f(x) = Lim(2x+1)=6+1=7

ngj {x)= I.n-:} Fix)

nol conlinuous 4l x = 3

W%ﬁ EXERCISE 12.2 p

249
_@@W i

4

/_

Determine the left hand limit and the right hand limit and then, find limit of the

following functions when x — ¢
. x° =9
i) f(x=2"+x-5c=1 (i) f(x= —ie=—3
x—3
(iii) f(x)=|x-5].¢=5
2. Duscuss the continuily of fix) al x =
Jx-11if x<1

‘ ) [2x+5 ifx<2 , e=2 -
(i) flxh=- iy f(x)=1{4

[4x+1 if x> 2
2x

L

If fFla) =

if x=1, c=1

if x=>1




Mol

::‘a::;%ﬁ Q@%@@@W -

hm:l “c"" w0 that L|mf{ v} exists,
X>- £

5. Find the \,aluu-i m and »n, 2o that given function fis continuous at x =3

[ mx if x<
mey i x=3
(i)  flx) T n it x=3 (i} [f(x) :.{ &

)
e

= I >3
2%+ if x53 e

P |

3 1

[ 1,1‘2:::+5—Jr+'.'r' s 3
6. f(x)= 52 s
| C ’ =3 i
; ; i x /| x
Find value ol & so that fis continuous x=2. 7 12 3 2 1/0 ‘/i 2 3 4 1
. 58 sm ; 243, x=1
7. Guven the function f(x)= i -2
ks —x+4, =1 ! S
3 R
Discuss the limit and continuity at x = 1. 4 m@ \g\\g\
12.4 its and

prices.

Example 15: Growth and Decay (Radioactive Decay)

The radioactive decay of a substance is given by the function A(r) = 4 ¢V, where 4, is
the initial amount of substance, k is the decayv constant, and 1 is the time in yvears. Find
the limit of the amount of substance as ¢ — 0.

Solution:
We need to compute the limit: Lim A(¢) = Lim 4, "

Ast—=me™ — (), a0 leiiqe =A4,x0=0

[

Thus, the amount of radicactive substance approaches ) as time increases indefinitely.
Example 16: Finance {Compound Interest)

The value of an investment grows according to the formula for co 1ls
r:n:umpmmdmg AE:} Fe7, ‘WhElE I is the initial prmmpal - is the .




pute the limit: ITim A(t) = Lim Pe”

f=—>x
Since'e” —» oo as { — oo for any positive #, the value of the investment grows without
bound:

Lim P ==

d
Thus, the value of the investment increases indelinitely as time approaches infinity.
Example 17: Economics (Supply and Demand)
In economics, the demand function Dip) decreases as the price p increases. Suppose

the demand ftunction 1s given by DN p) = 100 . where 215 the price in dollars. Find the
fri s

limit of the demand as the price becomes very large, i.e., Lim D(p),

& s g ; . 100
Solution: Lim D{p)= Lim
o=, p—tm .Iu.+

: 1
As p —» oo the denominator becomes very large, so Lim m
I y large, S0 Lim— @@
Thus, as the price becomes very large,@he démj uﬂ 25 [
Example 18: Astronomy (Apps ‘ ‘ ' h@;s S ars

The apparent hr‘igh {) (of 8 stardecredses as the distance from Farth increases
f{W@ pare law B(d) = ELj . where L is the star's luminosity. Find the
li “the brightness as d — o0 .
Solution:  Jim A(d) = jm -
As d —» o the denominator becomes very large, so:

Jim 75 =0

Thus, as the distance increases indefinitely. the apparent brightness of the star
approaches 0.

P~ EXERCISE 12.3

I. A substance decays exponentially following the formula A7) = Ape™ ", where A,

15 the mitial amount. Find the limit of A(r) as ==,

3 . g . 10, QO
2. A lwn's population 15 modeled by Plr)= :

—— . What 15 the ?umm
1+ Qe @
population as r —» oo @O




S ——

Q ‘
i id e o csr A e
3. A company s v jalasvin thousands) follow the function 5it) = Whe
o 4 10
it of 8¢ as ¢ —s oo and what does it represent?
[ O

4. Signal strength S{d) at a distance o from a tower is modeled as S{d) = o
i

(i) What is the signal at & = 107
{11) What happens o signal strength as  —x 7
A stock price grows according to the function P(¢)= 50e" "

(1)  Find the limit of P(7) as ¢ —» 0,

i

(i) Calculate the price after 10 vears.

6. The factory’s cost funchion s given as:
; 10x+500 af x= 100
= ={|zx+3nn it x>100

Is the cost function continuous at x = 107
Inflation is modeled by /{r) .'::G')'""' “a@ index and t is
the number of years
(1) Yind the n : Q{T sl 4y =100,
(i1} ted price index atter [0 years?
WMHKMILD v units is:

5x+20 if x<10
Clx)=
[6x+10 if x=10

|

Is the cost function continuous at x = 107
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Differentiation

INTRODUCTION

The ancient Greeks knew the concepts of area, volume, centroids etc. which are related
to integral calculus. Later on, in the seventeenth century, Sir Isaac Newton, an English
mathematician (1642 — 1727) and Gottfried Whilhe G. W. Leibniz, a German
mathematician, (1646 — 1716) considered the problem of instantaneous rates of change.
They reached independently to the mvention of differential calculus. After the
development of calculus, mathematics became a powerful tool for dealing with rates

of change and describing the physical universe.
-

13.1 Tangent to a Curve at a Point ‘
Let P(x, f(x)) and Q(x + 8x, f(x + &x)) be two -‘r @

(8] +Eﬂ fix + &)

points on arc A8 of graph of f defi |@1 N j
equation y = flx) as shown in Fl;_.,
et

Where dx is the in
as delta x)

=

S M N
81]:‘1[ ol the curve and slope of PE
Figure 13.1

scedt fine pasamg through P(x, fix)) and Ofx + bx,
fix + ox)) is: m,_ RQ Jilx+dx) - fix) (1)
PR ax

Where my. is slope of the scent line.
Revolving the secant line PQ towards
P, some of its successive positions

PQ. PQ., PQ..... are shown in the

Figure 13.2. Points @0=1 2,3, ..} oy

are getting closer and closer to the —-“"#‘,"":':" >
g G =T OFf'S M N :

point Pand PR i.e.éx(i=123,..) Figure 13.2

are approaching zero,
I\
e,

In other words, as fr — (.the poin( Qapp comes o

\
WW'[‘W QQN\\A\B




Y LA

- The revolving secant line becomes the tangent line PT at P while éx

ches zero, that is,

Slx+8x) — ()
ox

et

m, = Lim
L T
where m denote the slope of tangent line. we sce that m_ is the limit of m_ as Q

approaches P along the curve y = flx)
Example 1: Find the gradient and an equation of tangent line to the graph of

fix) = x*—2 at the point P(—1, —1).

Selution: To find the gradient or slope of the tangent line at point {(—1, 1), putx= -1
in equalion (2)

—

i
=Lim
ol

43249 1z B4

i o ! 4 TES 3 %

B Ve | Ot
1= 28x+ 8% -2-—1’19\? Q @XX ] . = _r
O\ b “ : - . 3

. —28c+6x - b
i t S e =
4 ar [~ | 1 [-3
4

-2+ dx)=-2 . -~

\ji
m J\‘ | J

Now to find the equation of tangent line we use the point slope form of equation of line
with slope = —2 and point (—1, —1)

y—(=D==2( x>-{-1)}) = y+1=-2x-2

or v=-2x-3_ which is the required equation of tangent line.

The graph of fand tangent line are shown in the adjacent Figure.

13.2 Derivative as the Limit of a Difference Quotient

Let f'be a real valued function continuous in the interval (x, x,) < £, (domain of /),

then difference quotient AL L (i)
X=X




provided this limit exists, is called the instantaneous rate of change of fwith respect to
x and is written as f {x).

If x =x+dx e, x,—x=dx, then the expression (i) can be expressed as

0oy
and oo S+ 8x) - f(x) Gii)
= '1_.'. ’.??l Sx 11

provided the limit exist, is defined to be the derivative of f(or differential coefficient
of /') with respect to x and is denoted by /'(x) (read as */— prime of x”). The domain of
S consists of all x for which the limit exists. If y= D and f'(x) exists, then fis said to

be differentiable at x. The process of finding /' is called differh@@@
Anee gf a O

ping’the motion of an object
mOving in a strai ' : S s typically analyzed using position, velocity,
and acceleratic b are-altrelated through denvatives (rates of change).

sus time graph provides a simple interpretation of the average velocity
a given time interval.

Suppose a particle moves in a straight line and its position at time ¢ is given by the
function 5(/). The average velocity over the interval from ¢ to f denoted by v, is
defined as:

_ st )—s(z)
g—t

&!

e
L

Equation (i) also represent the slope of scent line passing through the points
(2.s(r)) and (#,s5(¢,}). If the interval ; —¢ is not small, this average velocity does not

accurately represent the rate of change at time 1.
To illustrate this, consider a particle whose position at time ¢ (in seconds) is given by a

funetion y(¢) = ¢* +¢ in meters. The average rate of change over various time intervals

2o

starting at / = 3 seconds 1s shown in the table below:

s




u..m...m

o 1 @@\\7@«

Yeoul

S—

{\\”r\eh\ﬂzéﬁtnr—‘isccs t= 3 sees o 1= 4 secy i =3 sees 1o ¢ = 3,5 secs
Avmp S5 —st3) 3012 s@)-4» _20-12 S 3
8 =8 |s(3.5)-x(3) 4 —74
velocity 5-3 2 4-3 1 T R .
Y IL’]' T ik-vl'. | I I
50 50
40 40
30 30
20 20 :
RS §2=098
g1 2343619 12345619 123456

We observe that these values are not closely approximate the particle's velocity at
exdetly 3 sceonds. To obtain a better pproximation of velocily at x = 3, we use smaller

intervals:

Interval

Average velocity

{ =3 sces o 7= 3.1 secs

103 n +31*-1'> 07§ W@

Qo

~ “W’M\\uw;

/;z'{?\( (\1\}[\.‘) )j\)u\cimu

0.01
\;\B ’f(ﬁ.ﬂﬂll]‘ +3000 12 0007001
6 1 secs = = 01l
3.00]1-3 0.001

We see as the length of the time interval decreases, the average velocity becomes
mstantaneous velocity at ¢ = 3. Based on the trend. we estimate the instantaneous
velocity to be approximately 7 m/sec.
Thus, over a sufficiently small interval, the velocity changes negligibly. If 1 is very

close to 1, the average velocity over ¢ — ¢ approximates the instantaneous velocity at 7.
As i approaches ¢, the average velocity is called the instantaneous velocity.

This 1s similar to approximating the slope of a tangent line by calculating the slope of
a secanl line. Mathematically, the instantancous velocity denoted by vig 18 given by

the following limit:

v, =Lim

I =*i

i~

5(F)

(Provide the limit exist)

For convenment, 1f t, =t+6t, then as {, — ¢ =>d1 — 0, thus above equation becomes:

v =Lim

st ir iy

sl +d1)—s(1)

(i)

Q] @o@@m
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EWW&MMM&DWW velocity is the derivative of the position function s(#)
with respeet to time.

Example 2: A particle moves along a line such that its position aller ¢ hours is given
by: s(/)=4# + 2t + 1{in miles)
(a) Find the average wvelocily  over  the mmterval 2, 5]
{b) FFind the instantaneous velocity at 1 =3
Solution: (a) give position function s(f) =4 + 2t + 1, where 2<¢< 5
The average velocity is over the interval 2<7< 5 1s:

_s(5)=s(2) _ 4(5) +2(5)+1 _[4(2}%, 2(2)+ ']
5=-2 3

IH1=21 Q0 iy
——mio 30 mileshours

Average velocity= Vo

(b) Instantaneous velocity can be found using the formula @@)m
—————
"

= Lir
e =0 &f
4342680 4+480" ~43 26874 4817
=Lim - = Lim -
B —0 ar & =0 or

o 26 | 4d
" dl r‘_| dr )

&= Lim[Zﬁ 3 451‘.}= 26
=0 O w0
Thus, instantaneous velocity at £ = 3 1s 26 miles‘hour

13.3 Process of Finding Derivative f"(x) by Definition

13.3.1 Notation of Derivative
Several notations are used for derivatives, We have used the functional symbol f(x),

for the derivative of fat x. For the function y = f{x).
pHoy = fix + dy) @ o@‘@

s




O
l]l!eren!h @@ Mnhenuﬂu ‘b
Dividing both th %’ e get

w’ x+ ﬁr} ;'"[ r) g

Tdkmg limit of hnth the '-.lti{:!-. (:uf {v) as dx — (), we have
LimE = Lim Jlstoxy (X
fr —+ 1 a\d &r—0 ,ﬁ'_\_a

L vi)

L]m&—ls denoted by d_ s0 (vi) is written as i— 1ix)
0 Gy dy dlx

- The symbul afy is used for the derivative of y with respect to x and here it is
not a quotient of dy and dx. %i&- also denoted by v

Now we write. in a table the notations for derivative of v = flx) used by different
mathematicians;
Name of mathematician Leibniz Newton Lagrange

Notation used for derivative dy m' if_f_ M@Og%}
_ Y| ¢ @z\gs&%f{r Tox)—f(x) becomes [
‘% Ae i (hie i wdent variable, in Lhis case, 15 x — a.
b )

03 0%)= 1) i written as /()= f(@) (vii)
o x—da

If we replace x | 5
(x)—/(a) and the ¢

So, t

Taking the limit of the expression (vii) when x — a, gives Limm = f'{a).
L=%4 '\'—a

Here f"(a) is called the derivative or gradient of fat x = a.

13.3.2 Finding /°(x) by Definition of Derivative

Ciiven a function £, then f{x) if it exists, can be found by the following four steps:
Step I:  Find f{x — &x)

Step 1: - Simplify flx + 8x) — flx)

Step II1: Divide fix + 8x) — fix) by &x to get f(".*'ag} —/(x) and simplify it.
X

Step 1V: Find Lim flr+ie)—Flx)

Ha sl m
The method of finding derivatives by this process i1s called differentiation by definition
or by ab-initio or from first principles.




¢ derivative of the following functions by definition
)" fixy=e b) flx)=x*
{a) Forflx)=c¢
(N Ax+td)y=c
(i) fixtadx) fixx=¢ ¢=0
(iii) S(x+8x) - f(x) v i
o ax ay
Silx+dx)= fix)
dx

=0

(v} Lim
dy -»

0

= !..[n?}(ﬂ‘,l =0
S = - d
Thus, f(x) = 0, that is, T (c)=0
dx

(b) Ax)=
(i) flr+8)=(x+dxy
(i) Ax+8) fl)=(x+dxp o =+ Db + (Bx) 27 =( 2t ) bie
(]") f{f'l't\ﬂ.jl f(.l':] (z.l"l-bx}bt

=2x+d8x, (Bx=0)

fx

Lim - Hﬂ'&ﬂ f() = Lir m @ @©
{1\.’} br—+ 1)

iic* @

F' r.)[" -J_ al x = [rom [irst principles.

§ Fix)= y"_ . tlhen

(i) flx+8)=+x+dr and (i) flx+d0)- f(0)=vx+ar—fx
- (x+ dx =X W+ ox +/x) {mtionalizing the ]
- Jrtax +x numerator

X+dx—x

mw’_

Le, [flx+dx)- f(x 1
(iii) Dividing both sides of’ (1) by ax, we have

Slx+dx) - f(x) d
fx x(vx + 8 +r)

| ,
T o o

’é

Example 4:




unic QLR
(iv) Takin mmg as & — 0, we have
(.r+i‘ax} fix) L l“’ ]
Lin{ e

E‘: —+ [I ﬁl‘ L

(x>0) and f(a)=——

: ” |
g 2a
Alternate method: ~ Putting x =ain f(x) =[x, gives f(a) =Ja
So, f-flay=+x—a

Using alternative form for the definition of a derivative, we have

f(x) - fla) _Nxa

xX—a X—u

_ W —Jayfr+a)
h—a]{-fﬂf_)

I{t H]{J;+ﬂ"_) x+Ja (Iim W‘@ m

(rationalizing the numerator)

Taking limit of both the sldee of’
Lim f (x)—

£ JEW'_

‘WW “” -

which is the gradient of fat x = a.

Example 5: If = Lj then find dl at x =— 1 by ab-initio method.
&* dx
Solution: Ilere, y - Lﬂ 50 (i)
2
1 >
Ly e (i)
(x+3y)

Subtracting (1) from (i1), we get
O D B et C 500
(x+dx) ¥ X(x+dyy
_ {5+ (x+ax)} {x - (x+dx))
(x+dx)




_ (2x+8x)(-8x) _ —Bu(2x +6x)

= — (i)
X ()’ o x+ dx)
Dividing both sides of (i) by 8x, we have
dy  —ax(2x+dy)  —(2v= i) (5 £0)

fr  x(x+dax)’ Gy T x(x+axy ’
Taking limit as éx — 0, gives

Lim 2 = Ljm 22 3]
G0 By Av—sl oyt (x+ ﬁx}
—(2x) - 2 5 s
- Z20) {Using quotient theorem of limits)
dx X del,_, (-1 -1 dx

The gradient of fat x=—1 ism=2,

O Y o

13.4 Derivation of x" wh @@
m when n is positive integer.
a} en
W} v By = (x4 5x)"

=(x+ax)" - x"
Using the I:lm-;)rmal lhcurcm, we have

by =| o b s P e ey s +(8x)"| —=x"
2 |
e, dv- ﬁx[ru i ”"’B T ] +-|:6.v}""|] (i)
Dividing both sides of (1) by éx, gives
S L Py MY R (i)
Bx 12
Note that each term on the right hand side of (ii) involves dx except the first term, so
taking the limit as dx —» ), we get dy =nx*"!

L. @W@ Oy
agrot )




m.......,. @@W i

O
(b) Lety= n-e mteger
:q sa pomtwe integer), Then
e >
o e (i)
:
: 1 i
and y+dy = 1)
y+aoy 1+ 00)" m
Subtracting (i) from (ii), gives
1 I 2" —(x+8x)"

(x+8x)" x"  2"(x+ b))

o m(m_ [} - 2 i
o - 2" AR o+ (FX)T
2 (Dx) (#x)"]
X" (x+ox)”
(expanding (x + &)™ by binomial theorem)
[ =
I\ m-l m[m l:l m"lﬁl_+ "’(a}:)“ I

- o
- m%@ B e

Taking limit whe
Wﬁwﬂ; " (all terms contaning & x vanish)

Note:
Y
e 2 (") =™ is called
=nx"" [v—m=mn] ilx
" power rule. Where ne R
d ':I) n i gy
or — =

dx
So, we have proved that di(,r_“) =mx", fnelZ
x

The above rule also holds if n € O— Z. i.e. for rational powers.

2 Lo
For example, i(x-“}: E;‘ e i
dy 3 :
£
The proof of .’5_:.‘_‘-").— nx" ' when pe @ — Z is left as an exercise, m
oy
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11.. ‘een Derivatives and Continuity

puwcrh.ll branch of mathematics that allows us to study change and
mulmn T\MJ of its foundational concepts of continuity and derivatives are decply
conneeled. While cach coneept has ils own delinition and application. understanding
how they relale 1o cach other is essential for solving real-world problems in
mathematcs.
As discussed in previous units, a function is continuous at a point if its graph has no
breaks, jumps. or holes at that point. On the other hand, the derivative of a function at
a point measures the mnstantaneous rate of change or equivalently, the slope of the
tangent line at that point, However, this definition depends on the function being well-
behaved around the point. This leads to a well-known result:
If a function is differentiable at a point, it must also be continuous there. This means
that differentiability implies continuity, but the reverse is not necessarily true, For
example, consider the function flx)=lx| , clearly this function is continuous at x =

Figure 1.1). Now we check the differentiability of fix)=|x] atx
9= a @@
F0y =[0] 0 g

Wy

h

0

Th el
us fix= Lm}IM

Because |[dx] = &x when dx =0
and |éx] = &¢  whendr =0, 5
so, we consider one-sided limits
. o , Oy hR —dix
Lim u = Lim _—T:I and Lim lbx_l = Lim =-1

fiy =01’ hx ] b.‘_' Sy == e =+ 11 ht'

Figure 13.3

The right hand and left hand limits are not equal, therefore, the Lim % does not exist.
A =0 X

This implies that derivative of / at x = () does not exist, and thus, there is no tangent
line to the graph of fat this point (see Figure 13.3). however the derivative exists at all
other points of fi.e., it is | on the right side and 1 on the left side. A function can be
continuous at a point but not necessarily differentiable there. @(@




l. ind by delmition, the derivatives wor.t. “x” ol the [ollowing functions defimed as:
i) 20+l () 2—x iy L ) =3

Jx

2. Find dy from first principles and lind gradient of the curve at the given point:
dx
! 2 1
i Jx+2atx=6 (i) atx=a
Jr+a
3. Find the derivative of x* at x — § from the first principle.
3. Find the derivative of x* + 2x + 3 by definition,
4. Find from first principle, the derivatives of the following expression w.r.t, their

respective independent variables:

M) (3x-2)° G @x+3)° (i) (ax+b) ©m
S. Find the gradient and equation of dnyrent §pE o CD@:Z_
6. For the funetion flx) = 204§ \¢; - gabwpy Ll thg tangent line at x = -1,
Ydn

7. Find the coordyiales.s i d the equation of the tangent line
for ix) =x"- ]
8. Findyt s e curve f(x) = 3¢ + 2xatx = 1.

e tradient and an equation of tangent line to the graph of fix) = \E at

k=

b R

|0, The position of a car after ¢ hours is given by: s(/) = 2/7=37 + ¢ (in kilometers)
(a) Find the average velocity over the interval [I, 4]
{(b) Find the instantancous velocity at (=2

1. A stone is thrown upwards and its height after r seconds is given by:
s(t) =—16¢ = 32¢ + 10 (in feet), Find the instantancous velocily al = 1

12. The outdoor temperature (in °C) over time is modeled by: T{t)=—¢ + 12t + 10,
where ¢ is the time in hours, Find the instantanecus rate of change at ¢ = 2.

13.6 Theorems on Differentiation
We have, so, far, proved the following tow formula:

| 8 i(t,-) ={) Le., the derivative of a constant [unction is zero.
dx

2. t%_ (x")=nx""" power formula (or mle) when » is any real number. m




@@7@ oo

l'nit Dﬁﬂn Mﬂhanﬂtlu

r mecmmt formulas (or rules) which are used to determine
5 of different functions efficiently, Henceforth, in all subsequent discussion,
f 2, h etc, all denote functions differentiable at x, unless stated otherwise.
3. Derivative of p = cfix)
Proof: Lety =¢f(x), Then
(i) y+é =cfixt dox)and
(ii) y+8y—y =cflxt &x)—cflx)

or &y = ¢ flxr 8x) —fx)] {Factoring out )
(i) By _ I{f{x +8x) - fi[.r}l-l
dx i '

Taking limit when dx — ()
f(x+hr)—_f(x)|[= o i L8002

ax B —4 0
A constant factor can be taken out from a limit sign ©m
Thus, W—LP[I‘} that is L,f[.t)] -tf&jr @
Example 6: Calcu {Usmg Formula 3)
4 H i .
=3x— 1 x* {Using power rule)

4,  Derivative of a sum or a lll”t‘l’t‘lltt‘ of Tunctions
If f'and g are differentiable at x, then f+ g, f— g are also differentiable at x and

. . L B ce =4t Lo
[f(I]"'S(I}I = f1(x)+ g'(x), that ﬁﬁ-dx[ﬂ_l}"’ g()]= e LA+ e [gtx)]

(1v) leb—} = Limle

dr +0 fy B0

Also [ f(x)-g(x)] = £'(x)-g'(x), that is.iu‘m—g(m =%Lf(-ﬂl—%lgirﬂ

Proof:  Letd(x) =flx)+ gl(x). Then
(i) ¢+ 8x) =fx—_8x) + glx + §x) and
(1) @lx+dx) —@lx) =flx + dx) + glx + &) — [Ax) + g(x)]
= [ flx + dx) — fix) + [glx + 8x) — g(x)]  (rearranging the terms)
(iii) ¢(x+8x)—¢(x) _ flx+8x)- f(x} +g{x+&t)—g(,r)
ox dx A
Taking the limit when dx — 0




[f(x+ﬁrl— Jx)  glx+8n)- alx)
e B Ox l

L mj(.\*+m:j—_f (x) +L-immx+ dx)— glx)
fix =10 o Sx— A

(The limit of a sum is the sum of the limits)
¢'(x) = Fix) + g'(x). that is [fix) ~ g(x)]'=f{x) + g" (x)

dp. A= 2ol
or E[_,{(x)+g{.t}] ;{x[j(I}]+c£r[g(x}]

The proof for the second part is similar,
Sum or difference formula can be extended to find derivative of more than
two functions.

Example 7: Find the derivative ol 1_%_1- +Et +lt 2 e SWL X,

Solution: ,s=gx4+2r +lr +2x+5 @ ©©
& g rghi g @
Differentiating with respect to x,
' ) \ d
ST (1) 4(Le) L e L
dx 4 dr' 3 ar 2 il dx

_[:I =}+ z.im-{j (Using formula 3 and 1)
dx
3 4-1 2 =] | 2-1 1~=13 ; ;
=;(4x _‘.I+E{3.‘c )+5(2r )+2(1.x"7) (By power formula)

=30 +2x° +x+2
Example 8: Find the derivative of y = (x* — S)(x* + 7) with respect 1o x.
Solution: vy = (" S 1 =21 3571 T2 1 35
[hfferentiating with respect to x, we get

d‘t

—':i[r +35x" 4+ 75 +35]
dx  dx

= %(x"ﬂij—;x”ﬁ?%{x’ﬁ i{SS} (Using formulas3 and 4)

O e L] 1
=555 30 4 T2 40 c @@@
=5x*+152" +14x .10
Q
WWWOQ




Find the derivative of y = 2Jx +2)(x-Jx)

Solution: y= (g.\f_;.g. 2)(x— .J_;)
=2 + 11 (=1 = 24 e (r + D - 1)

3 I
=2{x(x=1)=2(xT = x7)
Differentiating with respect to x we have

dy o . 3 1
—— 2 = 2
ol et

also differentiable at x and

3 Fanil & e diffe \ RS
M&‘i W= xgx) + £ (x) g'(x), that is
‘i i I
—[f{x)g(x)] _[EU f-ﬂ]?‘ £ix) +f (x)’tdr[g(ﬂ]]

el

=3x _x—’z:;{_%:k_x' O@@)m
5. Derivative of a (®W@

Proof: Let ®(x)= f(x)g(x). Then
(1) @lx — o) = f(x + dx) glx + dx) and
(i) ¢lx + ax) - dlx) = f(x +8x) glx + o) - F(x) g(x)
Subtracling and adding f(x) g(x + 8x) in step (11), gives
plx =) Bln) = £ (e + Bx) gle + Bx) £ () glx + &) + £ (x) gl + )
Ax)glx)
= [flx + &x) —f(x)] glx + &x) + /(x) [ glx + ax) — g(x)]

glx+8x)—g(x)

2 o

(i) B+ -d(x) _ [f{.w 8x)— f(x)
o B
Takimg hmit when dx — )

arorid)

]g(_l‘-* ax) + ﬂﬂ[

Q




ek glx+80)-g(x)]
s a el se S B

= L ORI s ot o Ui ) L B 5028
ar sl ar E ] fr vl dr il ﬁ;:

(Using limit theorem)
Thus ¢'(x) = £'(x) g(x) + f(x) g'(x) [ Lim g(x +81) = g(x) ﬂ

or *[ftr) g{:}]-hlf{rﬂ glx)+ f{x}[ z{xﬂ

I
r

o] Lcnt)= 0

Example 10:  Find derivative of y = (24¢ | 2){x —+[x) with respect to x.
Solution: ¥ ={(2+/x +2)(x—+x)

@
Differentiating wi . @Q@@Kﬁw@
M mﬂu ~x }]

(J;-HJ *{x '-.f_}+(ﬁ+l)_.[x J_):‘

|
[% | x"ﬁ)”ﬁ-‘gﬂ}x[n%xs" ﬂ

4

2 | (= )+ (T D x [.___1__]}

J_ 2\[;
X—Ix (o.0x—1
Lﬁ | 2 H

_%[ ‘J-+2t J—+2J_ |)]

o el




mm@

uotient (The Quotient Rule)

6 M & ) & .
If fand g are differentiable at x and g(x) # 0, for any xe D(g) then - is differentiable

g

at x and [-"r (x) ]r - S glx)=f EJ\‘J g (x)
H(x} J [g(r)]‘

Shsielage o s
it ie 4. lftx)l _[ x[ftl)hg(l’) ffx]l‘“dx[g(x“jlj
(x)] Tt

Proof: Let g(x)= ‘“} Then

_ flr+ox

glx +dx) = o @b@@Jm

(ii) ¢{x+&r}—¢(x)=ﬂx'{-&r)—f{x} W*@@Q’}\

GO aTa

numerator of step (1), gives

(i) @(x+dx)

= F{x)g(x)— f(x) g{x+dx)+ f{x) 2(x)
glx) glx+dx)

[(f{x+dx)= feNglx)= flx)(glx+dx)- glx))]

 glx) glx+ax)
(iif) DX+ ) =g {x) . I [_f"f.n--iir]f—f{x} : 2lx+ iy —g(x)

dAx #(x) glx+dx) s 8(x)=f1x)-
Taking limit when éx — 0

(iv) LimPL+88) 400
dy —a i ax

s 1 Jx+de)-flx) . .o glx+dr—g(x)
o r!:m[gm g(ﬁm}( ™ 2(x)- f(x) R ]]

Using limit theorems. we have
Lim g{x+ #@W

|.1ﬁ\\' |

)= —— 10 e £ (-
glx)- g




@)
m«f&@%% -

M) _ ) g0 - f(x) g'x)

L&(x) [e()
e : d 1
-~ i{;f{x) “L [EU (.r))||§{xll - fix} {E{g(ﬂ)‘]
del g(x) ) (2P

2x' =3x" +5
41

2x -?Jx' + S' Then
x+1

F=2x"-3x"+5 and g(x)=x"+1

Example 11:  Differentiate with respect to x.

Solution: Let g(x)=

Now Fx)= ?[h‘ 37+ 5]=2(3x7) - 3(20) + 0 = 617 — 6x
X

and £x)= %E.ﬁ +1]=2x+0=2x W@ 0@@@
f;;%gl’,&\@&fg\ 12 We obtain
[N

1 (62" —6x)(x* +1)— (2% —3x" +5)2%)

NN ACE
by 60’ 4 6x’ - b (dx' - 6 4 10x)

(_.'(‘2 +]_]l2
_6x* —6x" + 61" — 6x—4x” +6x" — 10x)
a (x* + 1)

2t +6x7 —l6x
(x* +1)°

P EXERCISE 13.2 _d

Using the quotient formula ¢'(x)\=

I. Differentiate w.r.t ‘x°,
2x=3
2x+1

M) F+2240 (ii) .r“‘+2.r—%+3 (iii)




(x) =X (!:i}
a+x |
2. lll“j -I.::IT il‘_ll'—_ *'N(-;+l:".1l‘_ _!’ ‘(.‘ ;—[:'
LAY -

vl =1

(Jx+1)(x? =1
r 1

: Tl ¥

: = e
4. 1y Z\I’.\’ - . Show that 2 dy . = 3‘."-.'_

‘JT ey ﬁ
If y=yx* 4+ 2 %% +2, prove thal ‘—JII =4x -
- = 4y ﬁw @©

13.7 Application of Di

We will apply conceg
diminishing return .

Differentiate with respect to x.

II-‘

n

spread o N ent ol particles, time-speed in transportation, structural
sh "'LJ required that 18 changes in construction).
Profifs on Diminishing Returns

Example 12: A company's profit function is given by P(x) = 100x — 5x* ,where x is the
number of units produced. Determine the marginal profit when x = 8 units.
Solution: The marginal profit is the derivative of the profit function with respect to x.

F[.‘t)-if] e — 3x" )= 100—10x
dx

Now, substitute v = 8: P(8)=100-10(8)=20

So, the marginal profit when 8 units are produced 1s 20 (in the given currency).
Movement of Particles

Example 13: A particle moves along a line according to the position function s(f) = 4¢
-3¢ + 21, where (1) is the position and ¢ is the time in seconds. Find the velocity and
acceleration at ¢ = 2 seconds.

Soelution: Velocity is the derivative of the position function:

f o
=—(d = +20=12i —0t+2
wii) :.f:.l + 2r) @

3
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w(2)=12(2) - 6(2)+2=48-12+ 2 =18
So, the velocity at £ — 2 1s 38 m/s.
Acceleration is the derivative of the velocity function:

d b ]
)=— (12 =614+ 2)=241- 6
i a'xl 2)

Substitute t = 2
a(2)=24(2)-6=48-6=42
So, the acceleration at £ = 2 is 42 m/s°.
Material Required in Construction
Example 14: A cylindrical tank is being constructed. The cost C to build the tank
depends on the radius r of the base, and is given by C(r) = 3000z + mm_ann where
the first term represents the cost T of the base and the second term represents
of the walls, Find the radius that minimizes the construction ¢

Solution: First, find the derivative of C(r):

C(r) = fﬁnnﬂw +‘°“°°° 0007 @g
To minimize the ¢ . |

10 ﬁ

iply through by 7 1o eliminate the fraction:
L0000 = 100000
Solve for r:
. 100000 10
100007 =
2 11
= (ﬂx = 1.336

Ty

So. the radius that minimizes the cost is approximately 1.336 units.

Fimancial Investments

Example 15: A bank offers a compound interest rate on an investment, and the value
of the investment after ¢ vears is given by F{7) = 5000(1+0.04t)". Find the rate of change
of the investment value after 10 years,

Solution: The rate of change of the investment is the derivative ol F{r) with respect

210

V()= %ISUUWI £ 0040 ) = SOMOE2HT -+ 0,047 )(0.
[
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FU0) = 4001+ 0.04 ¢ 10) = 400¢1 + 0, 40) = 400 1.4 = 560

So, the investment is growing at a rate of Rs 560 per year after 10 vears.

Structural Stress

Example 16: The stress on a beamn under a varying load is modeled by S(x) = 500x —
2x", where S(x) is the stress in pascals (Pa) and x is the distance (in meters) from the
beam’s fixed end. Find the rate of change of stress at x = 5 meters.

Solution: The rate of change of stress is the derivative of S(x) with respecttor,

§'{x)— % (500x - 2x% )= 500 - 62

Substitute x = 5:
§'(3) =300 6(5) = 300 6x 25 =300-150= 350
So, the stress is increasing at a rate of 350 Pa per meter at x = 3 meters.

EXERCISE 13.3 m
’ u @ %@ley by
Ruc Liepie

~ - ~ o=
pPthie function S(y) = 100 — 5x°, where »

I. A car's position at time t is a‘:i\-ﬁs ¥

dilTerentiating the position (gt
2. Swructural stréSy\ob f
N ol the bridge. Find the poinl where the stress 18

ate the rate of change of stress at that point.

pany's revenue funclion is given by R (x) = 1000x —10x°, where is the
number of units produced, The cost function is C(x) = 300y + 2000,

(a) Find the profit function P(x)

(b) Determine the marginal profit whenx = 15

(c) Find the number of units that maximizes profit

An investment grows according to the function A(r) = 10000(1 + 0.0357)", where
A(#) is the value ol the mvestment and ¢ is the time in years,

(a) Find the rate of change of the investment after § years.

(b)  What is the investment value afler 8 vears?

(c) Determine the time at which the investment is growing the fastest,

The position of a particle moving along a line is given by s(f) = 5¢' — 12¢ + 8¢,

o

LA

where s(1) is the position in meters and 1 is the time in seconds.,
(a) Determune the velocity of the particle at { = 4 seconds.
(b) Find the acceleration at £ = 4 seconds

(c) When is the particle at rest? m
ENANCEON
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position of a car traveling along a straight highway is given by

W)= 307 41, where ¥ (1) is the distance traveled in kilometers and ¢ is the ime
in hours,

(a) Find the car's velocity at # = 3 hours,

(b) Determine the car's acceleration at ¢ = 3 hours

(c) After how many hours does the car reach its maximum velocity?

The stress on a beam under a varying load is given by S{x) = 400x —x*, where S(x)
i5 the stress in pascals (Pa) and v is the distance from the fixed end in meters.

{a) Calculate the rate of change of stress at 6 meters,

(b) Find the distance where the stress is maximized.

{c) Is the stress increasing or decreasing at x — 6 meters?

The cost (Xr) to construct a cylmdrical tank depends on the radius of the base.
| 50000

and is given by C(r) — 8000~ 1 . where the first term represents the eqst
.

of the base and the second term represents the cospu {W @@
T . @ } o)

osl at r= 4 melers.
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Vectors in Space

INTRODUCTION

In this unit, we will look into the rectangular coordinate system in three-dimensional
space and explore the fundamental mathematical operations involving vectors in space.
We will begin by understanding the dot product {or scalar product) and the cross product
[or vector product) of two vectors and leamn about their geometric interpretation. Further,
we emphasize their practical applications. For example, we will see how these concepls
can be used to calculare the area of a triangle and the area of a parallelogram. Finally, we
will explore the extensive use of vectors in three-dlmemmnal spac T{S@’I in
physics, where they play an important role in dete g fgre @ nd other

essential physical quantities, For ex < done by a constant force
when moving an Db]&@ ‘
14.1 Vect )

In pr

s0H, WO |Lﬂ.1'|1L‘d aboul two [undamental quantities: scalars and veclors,
A scalar is a quantity that has only magnitude or size, such as mass, time, density.
temperature, length, volume, speed warlk etc. On the other hand, a vector is a quantity
that has both magnitude and direction for example displacement, veloeity, acceleration,
weight, foree, momenturm, electric and magnetic fields, ete.

Geometrically, a vector is represented as a directed line segment Ewith A as its initial
point and £ as the terminal point.

In two-dimension {(R) a vector has components that can be represented by an ordered pair
[, ¥ ol real numbers. For the vector =[x, v|, x and y represent the components ol

Addition of vectors: For any two vectors u = [x,, v ] and v = [x,, 1 ]. we have

gty=[x,mtal=k . sl
Secalar Multiplication of a vector: For n = ﬂ

and wﬁa@@m

and ¥ —[ X;s ¥s ]ut R are said o be equal

Equal Vectors: Two

AN 2
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€ same components. That is,

. 2 -
[Jq,, LN B B }3] if and only if x,=x, and v, =y, and
Wi wWrile w =y T ch
In other words, lwo vector wand v are said 1o be equal, 1f
A [

they have same magnitude and same direction,
Parallel Vectors: Two vectors are parallel if and only if they are non-zero scalar
multiple of each other.

——il

For example, vectors — A8 and

— ——

AB are parallel to A8 — BA.

b | e

Magnitude of a Veetor
‘The magnitude (or norm or length) of a vector in 2D
represents the length of the vector from the origin to the  ¥T

point represented by the vector. For any vector u { x, ¥ C;)
C

in R, we define the magnitud
point P(x, y)from the Origi

W

, 0 ¥
M [+
o
Now, il learn some mathematical operations involving wvectors in three-

dimensional space.

14.1.2 Rectangular Coordinate System in Space
In space a rectangular coordinate system is constructed
using three mutually orthogonal (perpendicular) axes,
which have origin as their common point  of
interscction. When sketching figures, we follow the
convention that the positive r-axis points lowards the
reader, the positive p-axis to the right and the positive
z-axis points upwards. - [

These axes are also labeled in accordance with the right- ’
hand rule. The fingers of the right hand, pointing in the direction

of the positive y-axis, curled images toward the positive @ @

and the thumb will point in the di tm@n n

A point I in space hasthree-coo ,r~1x|5

the second along v-a 1lr:rng z-axis. If the
P l/K\ IN ‘

Q\J N




ors as P a, b, o) (see figure).
14.1.3 Concept of a Vector in Space

The set R* = {(x, v, ¥ x, ¥, = € R} is called 3-dimensional
space. An element (x, v, z) of R* represents a point P(x, v, z),
which is uniquely determined by its coordinates x, v and =,
Given a vector i in space, there exists a unique point P{x, v,
z) in space such that the vector (Tﬁiﬁ equal to u (see figure),
Now each element (x, v, 7) € R® is associated with a unique
ordered triple (x, », z), which represents the wvector
i =Eﬁ =[,r,)-',z} §

14.1.4 Fundamental Mathematical Operations for Vectors mmw

We dehne addition and scalar mu]tipl ication in R* by: ‘a
LOrs: \ i W &3, =] we have

red tnples [x w, 2] of real numbers, together with the rules of addition

and scirlar multiplication is called the set of vectors in B, For the vector

i =[x, v, z), x, v and z are called the components of g. The definition of vectors in &

states that vector addition and scalar multiplication are to be carried oul also for vectors

in space just as for vectors in the plane, Similarly we define in R,

(a) The negative of the vector u = [x, y, z] as —u = (-1 =[ —x,— ¥,— 2]

(b) The difference of two vectors v=[x', ¥, z'] and w = [x" ¥", z"] as

y-w=p+(-w) =[xy -y -]

(c) The zero vector as (= [0, 0, 0]

{d)  Equality of two vectors: Tow veclors ¥ = [r‘. ¥, z'] and w = [x", ¥", 2"] are
equal that is v=w ifand only il x"=x", "= y"and z"=

(e) Position ¥ector
For any point P(x,y,z) in R, a vector u = [x, v, '] 15 represented ected
line segment UP, whose nitial point 15 at origin, @@ called
position vectors in R"

lf:![u,n 1) and 3{6 ' i SRS u:r.ll.}rAE 15
.ITB'_ 1'_[1_t ‘- A\\Z A"
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14.1.5

Wi dc,  the magnitude, norm, or length of a vector uin

a Vector in Space

space by the distance of the point Pix, v, z) from the origin O.

0P} = u] =
Example 1: For the vectors, = [, -2, 3], ¢ =[2, |, 3] and
w = [—1, 4, 0, find the following;
() v-w (i) 2w (i) Jul
(iv) [u—2w] (v) [2u—x+ 3w
Solution: (1) v+w=[2-1,1+4,3+0]=[1, 5, 3]
(i) 2w=2[ 1,4,0]=[2,80]

i) Jul=[1,- 2.3] = 1 (27 13 =TT 419=A14
(iv) Ju—2m|=I[2+2, 1—8, 3 0] = |[4, -7, 3 @m
_EPHED ) _ I @o@

[2u - v+ 3w = 2f}
i

14. 1.8 Komponents of a Vector %

2 2 2
X+ ¥ +z

=3P (P + () = J9+4t:w 9= J_

As in plane, we introduce three special vectorsy - [1, 0, 0],
f=10,1.0]and &k =[0,0,1]in R

As magnitude of § = JI' + 0 + 0¥ =1
magnitude of j = 4/0° +1° + 0° =1 and
magnitude of & = J{}-’ +0P+ 1 =1.80,i, j

and £ are called unit vectors along x-axis, p-axis and z-axis respectively. Using the

(1, 0,0y

X

definition of addition and scalar multiplication, the vector [x, v. 2] can be written as:
=[xzl =[x 0,0]+[0, v, 0]+ 0,0 2

=1, 0, 0] = {0, 1. 0] + [U{}I]—w+1.;+*§m

Thus, each vector [x, v. z] in & can be uniquely re
Unit Yector Q
A unit vector is defiped T q wde is unity. In three-dimensional

space Lhe UHWE = xi+ yj + zk is wrillen as u {rcad as u hat) and
N 4

nﬂ(\r\

NINBR A
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i"'l JT -l‘l-J -l-.a JT -v-'l'+7_

In terms ol unit vector i, §, and £, the sum g + ¥ ol lwo veclors.

i :[J'i VW ,3,] and 1’2[.r:,,1-':,zz] is wrillen as:
u+v=[x+x.3+ 1.7 +5]
=(x N+ 405 (2 + 2k
Example 2: Find the unit vectorof n =2/ + 57 -k .

Solution: Given vector u=2i+ 57—k, to find the unit vector

= |ul=J@F+ (5P +(-1) =430

The unit vector is:
u 2] + 5_] .lt

— u = :— B 2 +3f W@ @@ S
O%@% raqmrﬁl unit vector.
Exampl Sk, v=4i+ 6+ 2k and w=-6i 973k, then show

that w are parallel to each other.
hul’ulmn. g—4g+6£+2£—2(2§+3i+£}
y=2u

=» wand v are parallel vectors.
w=—6i-9; -3k
=-32i+3j+K) & w=-3u
== 1 and w are parallel vectors,
Hence w.vand w are parallel to each other.

14.1.7 Properties of Vectors
Let u, v and w be vectors in the plane or in space and let a, & € R, then they have the
following properties:

() uty=ptu (C{:mmumme propet rty)
(i) (u++w=u+(p+w) : O@©m

(iii) w+0=0
(v) ut+t{-lju=u

V) aly+ w2

(vi)  albu ET
;@

tributive property)
[ Scalar multiplication)




L6 QTR

I {z} Vectars In Mmhenmﬂn(_
anW&ny two real numbers . b € R, a + b= b+ a, it follows that for

any two vectors y = [x, », z] and ¥ = [x', 1, '] in R, where components of uand v
belong to £
We have iy =[xyt [x. ¥, 2
=[x+x,y+y,z+2]
=[x'+x,y +yp +7] voa+h=hb+a
= 2]+
=v+u
So, addition of vectors in R is commutative.
(1i) Since for any three real numbers a, b, ce R {a+ by +e=a +{b+ c'}, it follows
that for any three vectors, x = [x. v 2], ¥ = [x. . 2] and w = [x", +", 2"] in &
Where components of &, v and w belong 1o £

We have ('r_.l‘g-w— B oS T Bt Ko b
[(x+x")+ "{_L %
[x + ¥\ ‘ +2")]
Q

Slat+b+e=a+(b+c)

MH [¥+a",y + ', 2 + 2]
WWO =g+t

S0, addition of vectors in B is associative.

{111} Since for any real number g and 0
a + 8= a_ it follows that
for any vectors, ¥ = [x, y, z], and 0 = [0, 0, 0], where 0 is the zero vector in R*.

We have ut =[x, v z]+[0,0, 0]
=[x+0,y+0z+0]
=[x, pnz]l=n

w+0=u

Thus 0 is the additive identity in R
(iv) Since for any real number a, there exist —a such that
a+i—al=a—a=1 il [ollows that
for any veetor, u =[x, y, =), there exists —u = [-x, v, —z] in &°
Such that gt )=l 2+ Z]=[x+{=x)L¥» 1-')@

=[x X y-yz- @
& @&@1 e identity
Thus —u is the ﬂdtililp%m
The pmu 15 are lell as an exercise [or the students,
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14.1.8 e«en Two Points in Space
If d OI % are IhE position vectors of the 4z

points P 1:,,1«, =} and P[:.r“!.,,a ] o

The vector PR 15 given by

PP OP OP—[L, o = I z]

Distance between | and P, =

= =x V(- n) +Hz -2 )

This is called distance formula between two points P and P, in R*.

Example 4: Suppose a butterfly's [ight path passed through points (2, 4, 7) and
(6, 1,3). where each unit represents a meter. What is the magm of lhemem
the butlerﬂj, experienced in traveling betweg : i : ‘ é @

Solution: Distance between tworpol % '

formula A=)

Pn) +(z-a)

al space is given by the

Suhs seoordinates of the given points into the formula:

d= {6=2F ~(1-4] +(3-7]
o = -.!hl")+9+]f) =“j"ﬁ= 6.40

The magnitude of the displacement the butterfly experienced in traveling between
these two points is approximately 6.40 metres.

14.1.9 Direction Angles and Direction Cosines of a Vector
Lel r —OP = xi+ ¥ Jj+zk be anon-zero vector, lel a, § and y
denote the angles formed between » and the unit coordinate
vectors i, jand k respectively,

where O<a<a, 0=f<rand 0=y =x

(i) The angles e, § and y are called the directio

angles. —
(i} The numl %’S@% 0 [Ted dm&ctmu cosines of the

vector » .

NI

% S {\J\VI\J"




Prove that cos’ & ~cos” f+cos’ ¥ =1
Proof: Let
e=[x, p,z]=xi+ pj+ 2k

—
=y + =
o] =

. x ¥y £l ; P § ; -
then |’; = [— . i,—} is the unit vector in the director of the vector r = OF
i R e

It can be visualized that the triangle QAP is a right 'y

triangle with m 2.4 =90".
Therefore, in right triangle (24P,

o1 x . .
COs o = :P ==, similarly

L W
T
- AT
ro
The numbers coser &5 \¢o z
- AV
ofﬂww

=—and cosy =— are called the direction cosines

»

2 2 : S S 2

2 2 2 ¥ T A e o e #
cos gteos fres’ y=—m+5+5=—"7—=—=I

= r i

P EXERCISE 14.1 4

. Letu=3i+2;-5k, v=i-5j-kandw=—-4i- j+ 7k, Find the following:

() w+2vtw (i) v-3w (i) [3y+
2. Find the magnitude of the vector v and write the direction cosines of v,

(i) v=3i-2j+6k (i) v=-4i+4;42k (i) v=-6i+8]
3. Find i, sothat |2§+»:r—lr_;—r§ =+/13
4.  Find a unit vector m the direction of y=-{+4 -8k

to du—3v+ 2w,

6.  Find a vector wipy!

(i) magnitud i% is paratlel to 3i+4)j-k
W&%?md is parallel to —i+ j+£.

5., Hu=2+j7-3k v=—i+4j+2k and w=3i—-2j+& n@@mru]lcl
v = ®)
@@3 :




v/ —3k and w=-2i-3/ represent the sides of a

angle. Find the value of x and v.
8. The position vectors ol the points 4, 8, Cand Dare w=i+ 2j+ k. v=Ti+8j+ 4L,

=¥ & ¥ |

M i - - - . s =]
w=—i+k and z =i+ 2+ 2k respectively. Show that A8 is parallel o CD.

9.  We say that two vectors v and w in space are paralle] if there is a scalar ¢ such
that v = cx. The vectors point in the same direction if ¢ > 0 and the vectors point
in the opposite direction ifc <0
{a) Find two vectors of length 2 parallel to the vector v=2i—4; + 44.

{b) Find the constant g so that the vectors v=i- 37+ 4k and w=ai+ 9/ 12k

are parallel.

(¢) Find a vector of length 3 in the direction opposite tha of@@'@ 3k

(d) Find & and b so that the vegtors 3~ f= 2k are parallel.
10. A s ]’sdu..k.].l“@ %
kilometers. Wl \

=50} to point {130, 210, 80} in

ude of lln_ displacement vector in kilometers?

1. cosines for the given vector:
{.{l’!;llk (i) v=4i+2;-5k
I{"iii) PQ, where P(9.3,13) and (1 1 6,19).
12, Which of the following triple can be the direction angles of a single vector:

(1) 457, 45°, 60° (i) 307, 45°, 60° (1) 457, 60°, 60°
Product of Two Vectors: Multiplication of two vectors is an important algebraic
operation in vector algebra. This algebraic operation plays a fundamental role for
understanding  various physical and mathematical real-life sitwation. Unlike the
multiplication of numbers, product of veetor can be performed in two distinet ways.
The two primary types ol vector muluplication are the dot produet and the cross
product. The dot product is a scalar number while cross product is a vector quantity.

14.2 Dot or Scalar Product

14.2.1 Dot or Scalar Product of Two YVectors an

We shall now consider produc

and engineering, T@\ ep

scalar pmduct of twio\veg n

\jauas



] mt Vectars In Mathe c
Definition 1: @é sfors i and v, in the plam: or in space, have some
initial roduct of u and v, written as u- v, is defined by

u-v=|u Illwhﬂ

[ Ra=)

> ¥ HY
Where @ in the angle between g and yand 0 =8 <n
Definition 2:

I=

(a) 10 w=ai+hjand v=a,i+b, jare iwo non-zero vectors in the plane. The dot
product - v s defmed by:

u-y=aa,tbb,

b, j = kare W‘ @@\S@w

7 5 192 gl {‘1
The : o referred as the sealar product or the inner product.
Examy ‘e that equivalence of following two definitions of dot product of two
vectors:

(b) Wu=ai+hj+ck and v=a,i

The dot pmduct u- vis defined

(i) Iy =[x, ¥ ]and w=[x,, ] are two vectors in the plane, then vw =x,x, + ¥, ¥,
(i1} If v and w are two non-zero vectors in the plane, then v- w= ¥ | [w cos #, where

s the angle between vy and wand 0 =6 < 1.
Proof:  Letyand w be the sides of a triangle then the
third side opposite to the angle 8, has length » - w
By law of cosines,

|u—w| =y [+ wf-2| vl cos (1)
if = [x,, ] and w = [x,, ¥,], then

- =[x — Xy —»l

So, equation (1) becomes:




_— e

14.2.2 Dc{lmln
n Dfdt}i pmductto unit vectors i, J and k ., we have

(a) “1=1] | cos 0° = ®  ij=i]j]eos90°=0
joj= || ] eos0e =1 jk=|j]Jk|cos90°=0
k.k= |k”k|cmu“ 1 k.i=|kl|i|cos90r =0

() u.v=ulycosd
= [lu] cos(-6)
~ efeos®)
=y

= H.V=1.4

14.2.3 Prnjection of a Vector al(mg .-=\nr_nther Vector

along a given direction. For th1s pu@a €.\ WE
the other vector, KX
Let O = w and (K ‘

Let 0 be the bietyyetd them, such that 0 =0 =
D U ¥4, Then OM is called the projection of

valong u.

From the figure : O:H = ¢cos 0, that is.
9]

OM =|OB|cos® =|v|cos ® (n
Now, w.v=u||v|cosd =|u|(|v|cogd ) =|u|(OM)
= (magnitude of u). (projection of v along u)
Thus, geometrically, the dot product ol lwo veclors represents the product ol the
magnitude of one vector and the projection of the other vector onto it In other words,
the dot product of two vectors shows how much one vector extends in the direction of

another.
o

Now, by definition,

From (1) and (2
O




Projection of v along 4 = ==

Similarly, projection of w along v~ = =%

14.2.4 Properties of Dot Product
Let i, v and w be vectors and let ¢ be any real number, then

(i) u.v=0 = u=0or v=0

{in) H.V=1 (Commutative property)
(i) wlv+wl=n.v+u.w (Distributive property )
{ivi  (cudy=clu.v) {c is scalar)

{(v) ] '”;|”|2

14.2.5 Dot Product of Vectors in terms m‘
letg=amit+t i+t cakandy=azit+ b+ '\ tms
From distributive law we can writ KE{

u-¥= {G1§+b|._-"l
N i)+ hb(j Dtbe,(i- k)

= wv= auL + bb + ge, ol A

Hence the dot product of two vectors i8 the sum of 1h product of their corresponding
components,

Example 6:  Show that the components of a vector are the projections of that vector
along {, f and & respectively.

Proof:  Let v =ai+ bj + ck,then

Projection of v alnn;__,z—v——(m+b;+rk} =g
JI

Projection of v along j === = (ai + bJ +ck) j=b

g O@@m

Pru_]-:::,lmn of va i‘j =g
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Dve that in any triangle ABC
(i} =P +cF-2bccos A (Cosine Law)
(i1 a=hcos C+ccos 8 {Projection Law)
Proof:  Let the vectors g, b and ¢ be along the sides BC, CA and 4F of the triangle
ABC as shown in the figure,
i} atite=0

= ga=-{b+g)
Now  a-a=(b+tg(b+c
= =b:b+h-g+
= & = b 2b- ¢
— a=h -+ 2bc cos(m
=0+ —2bccos A
(ii) a+b+c=0

abcos(n ) accos(n B
=-gb{-cos O} ac{ cos B)
a =ah cos C+accos B
—- a=bcosC+ccos B
Example 8:  Prove that: cos (o — 1= cos a cos § + sin a sin
Proof: Tet OA and OB be the unit vectors in the ¥
xy  plane making angles & and § with the positive r-axis.

So that 2408 = a—§
Now OA = cos @i+ sing j

—
and OB =cos fii + sin 8

54'- ﬁ {cos i+ sina S (cos i+ W
oy |Oﬁ||ﬁ3 COs : % ér sin §
cosi o

e

(v |OA| = | OB| = 1)




14.2 gondlity of Two Vectors

Definition: Two non-zero vectors u and v are parpuldicular itand only ifu- v =10.

Fd
Since angle between u and v is = and cos — — 0

As - =10, for cvery vector &, 5o,
wyelullyjeos T e 0 wcr s e o be
u.y=0
Corollaries  {i) [If0 =0 or n, the vectors u and v are collinear,
(i) If _E cosB=0 = u-y=10

So, the vectors i and v are perpendicular or orthogonal.

Example 9: If =3 — j -2k and\—a+2_; k. then find u- @ @@@

Solution: -y =(3)1)+ [—l}("} t {— % ©
Example 10: If uro"’ then prove that wand v are

orthogonal.
lemw 1 { 4]{ NHSH-H=0
— uand v are perpendicular

Example 11: Find a scalar & so that the vectors 2i+earj + 5& and 3i+ j + ek are
orthogonal.
Solution: Let u=2i+aj+5kand v=3i+j& &k
It is given that g and v are orthogonal
uy =0
= (2i + @ j+5k).(3i + j 4 k)
= 6+a+3x=0
=i
14.2.7 Angle Between Two Vectors
The angle between two vectors u and v is determined from the definition of d uct,
that is
(a)




fu=ait+hj+ck and v=a,i+b, j+e, k. then

u-v = auh, + b+ o,

and  |v|=4fa; +5 + )

aa, + b, + o0,
Jaf' +8 +c] v{a +b +¢;
Example 12: Find the angle between the vectors.
u=2—j+k and y=—i+j

cos 8=

Solution: .y =(2i— j+&)(~i+ j+ 0k)
=)=+ D)+ ()
and  Ju|=2i-j+k]| NG,

=% cmH:«f—-—:ff:_ 3
PO
f

Example 13: Show that the vectors 2i — j+ & ,1—3j — 5k and 3/ - 4] — 4k are the
sides of a rig_hl triangle. .
Proof: Let AR = 2i — j+ &, BC={-3j -5k and

AC=3i—4j— 4k

Now AB+B8C = (2i— j + k) + (i —3j - 5k)
= 3 —4j— 4k=AC (third side)
*ﬁ B_.C and .4_(: fDﬂ‘l_l a triangle A8C.

}-:uﬂher we prove that AdBC is a right %@ -
= AB-BC = Qjsry+k &;@
@@:&% (TH=5)=2+3-5=0

= (Egi ;
ce, AABC is a right triangle.




¢ done By a Constant

Force

Il'a constant [oree £, applied to a body, acls
al an angle © Lo the dircction ol motion,
then the work done by £71s delined 1o be the
product of the component of £ in the
direction of the displacement and the
distance that the body moves,
In figure, a constant force F acting on a
body, displaces it from A to 8.

Work done = {component of F along AB) (displacement)

=(Feos Q)AB) =F AB=F d

Example 14: The constant forces E{O S+ Bk g @@ﬁ@nn a body,

displaced form position P(4, -3,

Solution: Tum] "
o i+3 ¥ 5k

The dishlactment of the body = PO = (6—4) + (1+3)/ + (—3+ 2}k
= d=2i+4j &
Waorle done = F- d

B

= (i + 3/ +5k0(2+ 4/ —k)=2+12-5=9 Nm

P EXERCISE 14.2

I. Find the cosines of the angle @ between u and »:

(i) w=2+3j+k v=—i+2j+2k (i) w=>i-2j+k v=3i+47+2k
(i) #=[-3.2,5], v=[1.6,-2] vy u=[2.-31],x=[2.4.1]
2. Calculate the projection of g along & and projection of b along @ when:

(i) a@=2i+3j-k b=i-2j+4k (i) a=4i-2j+34%,

a2

Find a real number a so that the \-’8‘1m: | e AN W)
(i) t_4=a{+3%r ; FF% gi+icf -k v=i+aj+3k
4. Find the numbe e with vertices A(3, 0, =2, &0,3,1)and

ngle with right al C.




& VS v =0, find w
6. Show that the vectors 3i—2j+k, i—3j+5k and 2i + j -4k form a right
triangle.

(11)  Show that the sct of points P(4,—1, 2, (X1.3, —lyand R(-2, 4, 6) form a
right triangle.

Prove that the cos{er + /7)) = cosa cos 7 —sina sin /7

8. Prove thal in any tnangle A5C .
(i} b=ccosd +acosC {ii}y c=acosB+bcos A
(iii) #* =¢" +a* —2cacos B {iv) ¢ =a’ +b" -2abcosC

9. Find the work done. if the point at which the constant foree F=2i+57+ 3k 1s
applicd to an object, moves it from P(2.—=3, 1) to B(7. 5, 3).

10, A particle, acted by constant forces F =3i+4j-3k .mi l (B

]
@@ ‘i?1 the point B8i(6,2,-2),

Clined by 104 /4 L1k, 4i4+357+9% and

displacement from  A(2,1,3) to Bl‘i

11. A particle is displaced fror %
Under the actio %\
ETEN ‘ it

the total work done by the foree is 102 Nm.

mree of magnitude 6 units acting parallel to 4i+ 3 f—fdisplace the point of

application from A{2,—1.3) to 8{7.3.2). Find the work done.

14.3 Cross Product or Vector Product
14.3.1 The Cross Product or Vector Product of Two Vectors and its
Geometrical Interpretation

One of the key multiplication operations involving vectors in space is the cross product.
Unlike the dot product, which results 15 a scalar, the eross product of two veetors yields
a vector quantily. The vector product ol two veclors is widely used in Physics,
particularly in fields, mechanics and electricity. It is only defined for vectors in space.
Let n and v be two non-zero vectors. The cross or vector prﬂduct of u am:l v gives a
vector that is perpendicular to both the vectors w and v, wnttc by

perpendicular to the with direction given by the right-hand rule.

:.r| W
where 0 is the ﬂnglc%@ =mand #ais a unil veclor

WJ\J\J”



Figure (a) R
Figure (h)
Right hand rule

(1) Ifthe fingers of the right hand point along the vector i and then curl towards
the vector v, then the thumb will give the direction of & which is u = . I is
shown in the figure (a).
(i) In figure (b), the right hand rule shows the direction of p » u
14.3.2 Parallel Vectors

If u and v are parallel vectors, th (B ‘i , I@
UX Y= % | sip
HX Y =}ﬂ |H X m|

And {
Lither sin 0= 0 or |uj=0 or J|u|=0
(i) Ifsin @ =0 = 08=0"o0r 180°, Which shows that the vectors u and v are
parallel.

(i) If u = [ or v = 0, then since the zeroe vector has no specific direction, we adopt
the convention that the zero vector is parallel to every vector.
Zevo veetor s both parallel and perpendicular o every vector, This apparent
eontradiction will cause no trouble, since the angle between two vectors is never applicd
when one of them is zero vector.

14.3.3 Derivation of Useful Results of Cross Products
By applying the delinition of cross product to unit
vectors I, J and &, we have;

§ V@@ iy

o

i

.II:.
=QIL\M
N\
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Wx k=1Jl] s_c||==m9@[§k=f

kxi=|k||i|sin90 j=j

(¢} wuxy=|ully|sinBp=|v||u|sin{ O)n=|v||u|sinBa
= EXy=yx
; K
(d)  wuxw=|ullulsin0n=0
Note: The cross product of i, i and & are written in the cyelic pattern.
i J

The given figure is helpful in remembering this pattern., L
14.3.4 Properties of Cross Product o=t
The cross product possesses the following propertics:

(i) uxy=0ifu=0or y=0 (i) wxv= wxu

iy u= {v-ﬁ-w}=u XVHUH W (v) = () =ikw)

(v) uxu= @

The proofs of these pro emeq ar

14.3.5 J|;I].I|1brlm :ll K ¥ (Determinant lformula for & % v)

and V=, a+h.._,r~—cz.fc then
Bxw ,;+rk}x{a:+b;+rﬂ
= i, [.!" i} +ab,(ix J_F}'*-'ff,f;{_ ixk) ( by distribulive property)
+ b, (D bby(jx rbe,(jxk) | vixj=k=-jxi,
+ I:!I':"'z'[giI= f]+i'|h3(£ s E}“'L'l"-'z(& x k) J'XJE; '

=ahk ac,j bak+he,iteae obi
= wxy={he, —oh)i—(ac, —qu)j + (ah, — ba, )k {1}

The expression of 3 = 3 determinant
S

= |a, I;I c ={|'|JC~—C||"J'JJ'—[EIC-. .-:a..]j-s—(a]h i @@m

a? Y
The terms on R.H. "'-i. uati % ; terfis in the expansion of the
above determinant, “ﬁ




which 15 known as determinant formula Tor e = v

The expression on BH.S. of equation {111 15 not an actual determinenl, since its entries ane
not all scalars, Tt s simply a way of remembering the complicated expression on BLH.S of
equation {i).

Example 15: Find a vector perpendicular to each of the vectors.
a=2-j+k and BH=4i+2j-k

Solution: A vector perpendicular to hoth the vectors @ and b is a = b,

Verification:

aaxb=(i ' ‘* |
:+21 -U (—i+6) +3#} (4){_—1)+[2}[26}-{—1_)(3’}=

Hene His perpend:culnr to both the vectors ¢ and b.
143.6 Angle Between Two Vectors (Cross Product)
The angle between two vectors @ and b is determined from the definition of cross
product.
If 0 is the angle between g and b, then |g b3 f_}| =@l |f#]sind
igxpl
allbl
Example 16: If g2 =4i+3 _g_ +kand h =2 _}_ +2k . Find a unit vector perpendicular

== sin b=

to both g and 5. Also find the sine of the angle between the veetors g and b,
k

J
3 1|=7i-6j-10k

=% "r\ @O@@m
WW

i
Solution: axh=\4
2

and  |ax b|= (7

Ti—bj—10k

A % culur g and b = b
ol R
VAV
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o~ (@) + 3F + (1) =26
B = (207 + 1P+ (2 =3
IF'8 is the angle between g and b, then |.g xbl=al|b|sind

laxh| 185
lal|b] 326

Example IT;_’Prm'E]lat sin (e + ) = sin & cos ff + cos & sin fi
Proof: Let €4 and 28 be unit vectors in the xy-plane making angles & and - with
the positive x-axis respectively,

S0 that m.LdOB a+f
Now {H = cos @i+ sing J

and UB cos (— )i+ sin (- &) f

=cos fii— sin fij
OB x 04 = (wsﬁ:—am%@@m
% k= [cos i —sin @ 0
cos sing ()

= sin 0=

sinfex + = (sine cos f+cos a sin J)k
sinfa + #) =sine cos fi+cos a sin fi

Example 18:  In any triangle ABC, prove that

h " .
B e BB (Law of Sines)

sind sinB  sinC
Proof:  Suppose vectors g, b and ¢ are along the sides BC, C4 and AF respectively

of the triangle ABC.
atbie=0
= bte=—a

Take cross product with ¢
brotoxg=—axc

bep=pxa

= |bxc|=|exa|

|&| e sin(x S
=2 be sin A = h :.m

{\I\‘l \J




s (O

s GV i

s y&@
WNW\\” © h

= (ii)
gin#  sin A
Similarly, by taking cross product of {i) with &, we have
F i
=— {iii)
sind sinC

» i h ¢
From (ii) and (iii), we get = =
sind sinf sinC

Example 19: If = 2{'—£+£ and £=4£+2£'—£., find by determinant formula

(1) wx u (1) wxv (111) v

¥
Solution: u=2{—j+k and y=4i+2j-k

o
W@Sﬂ? @@

By determinant formula

L
(iii) yxu=4 2
2 =1 1

14.3.7 Real World Applications on Cross or Vector Product
(a) Areaof Parallelogram
If & and v are two non-zero vectors and 4 is

=M=

the angle between r and v, then ig|and |l_|

represent the length of the adjacent sides of
a parallelogram. (see figure). We know that:

Avrea of parallelogram = Base * Height @ -
?@" s

0 =B ()

3 Amaw‘g
o (\N\VN ©
\J

YRES




Q
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From figure it is clv:ar that

Area of triangle = — (Area of parallelogram)

¥

5
1

Arca of triangle = = g« p| it

e
where y and v are vectors along two adjacent sides of the triangle.
Example 20: Find area of the parallelogram whose vertices are
P(0,0, 0), O(-1,2,4). R(2, -1, 4) and 5(1, 1, 8),
.‘iuiuliun: Area nfparailelngrmn |F’Q # PR|
Where IPQI and IFRI are two adjacent sides of the parallelogram
PO=0Q- 0P =(-1-0)i+(2—0)] +(4—0}=—i+2]+dk

PR~ OR— 0P = (2—0)i + (<1 —0}] 1 (4—0)k = w%@

—4=-8)j+(1-Hk

WRNW =120+12) -3k

» Area of parallelogram = |P‘Q X PR| = |I 2i+12§ 1k|

= 144 + 144 + 9 = 297 square units
Example 21: Find the area of the triangle with vertices A{1,—1.1), #£2,1, d)and
Ci{=1,1,2). Also find a unit vector perpendicular to the plane of triangle ABC.

Solution: A8 = DB — Od=(2— Di+(1 +1)j + (-1 = 1%k =i +2j- %k
— — — 5 B
AC=0C-0A=(-1-1)i+(1+1)) +(2-Dk=-2i+2]+k

k

2| = (24 )i~ (1 —4)j+ (2 + k= 6i+ 3+ 6k

1

o

W

=

Tiv

Il

it e
b b2

The area of the parallelogram with adjacent sides |AB| and |4C| and is gm

—s —
?ﬂf nits
2

AR 4(1_|6:+1J+m[_ 1ﬁ+9+m5—
A umil veelor xAC l{1'1.1+1}_,f+l'-ni:) *2{+_}'+2£)
A lAﬂx A[| ) 1

Area of mangle = —|A3x A —@:
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Let j
moment of &~ about O
= Product of force § and perpendicular O the direction of "

=~ (POXON(x) ~ (POXOP) sin 8 (2)

- 0P x PQ=p*E
Example 22:  Find the moment about the point M (-2, 4, —6) of
the force represented by AB, where coordinates of points A and B are (1, 2, —3) and
(3,—.2) reqpecm ely.
Solution: AE OB O’;‘I (3-1)i+(-4- EU (2+3¥k=2i- E‘ﬁ_,f + 3k

Mfi (1+2)i+(2- 4U+{—%+ﬁ)k 1:—2;4-33:
Moment of A8 about M(=2, 4, —6) — r = F = MA * AB

o
N N
o R

=i

Magngugc ol the moment J{E}“ +{—9)F +{=14)" =341

I EXERCISE 14.3

I.  Compute the cross product gxband b= @ Check your answer by showing that

Moment of £

cach a and b are perpendicular to g« s and b= .
() a=2i+j-k b=i-j+k (i) @=i+3j+2k b=2i-j+k
(i) @=20-2j+k , b=—i+j+3k  (iv) a=-4i+ -2k h=2i+ j+k

F-J

Find a unit vector perpendicular to the plane containing g and 5. Also [ind sine
of the angle between them:

(i) a=i+6j-3k b=2i+jB4% (i) a=-i-j-k b= 2;-— 4k

(iii) @a=i+j+k bh=i-jk ﬁ%ﬂ @ 2i+4j+k
Find the area ut “ 11‘» P, Fand R.
7’35% {n}P(ﬂDHQ{” 1,2): R( 1,3,2)
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16,

K@ @7@ o™

mﬂ
= l. ] Lil]L','TdITl whose vertices arc:

D]l B(1,2,3); C2,-1,1):H-1,3,2)
{ii) A{l, 1, 1); B(4,2,3); C(5,6,7);1IX2,35,5)
(i) A#.5.6);8(1,3,2); C( 2,0,1),X1,2,3)
If the cross product of the vectors # = Ti—4j+ 5k and v=ai—h /+ 3k is zero, then
find the values of @ and b,
Which vectors, if any, are perpendicular or parallel

(iy u=5i- _;+kv -5k w=-15+ 3j 3k

il z = s 5 T .
(i) w=i+2j-kiv=—i+j+hk;w=—"i-mj+—k
==F = == 2 =5 X
Lse the definition of cross product, for any vectors i, v, w and scalar & m @ that

(i) wx(—a=0 (ii i v= @
@@ EARE FTETY]

Prove that: ax . _'x (a+h)=I

(11) (k)= (ku}xu .Hu

Prove thal; sin 1::;; - )=sina cos A+ cosa sin

Ifg = b=0anda-bh=10, what conclusion can be drawn about g or A7
Lise the definition of cross product, prove that for any vectors u and v
(u+v)x(u—v)=—2uxv)

- - ] - m =y
Find the moment about the point M{1, =3, 3) of the force represented by A5 |
where the coordinates of points A4, 3. 1) and B(—, 3, 7) arc given.

"
A force FF=6i+4 -4k is applied ar the point 4(1.—1.2). Find the moment of

the force about the point 8(3,—2,3).

™
Give a foree £=2/+ /-3 Kacting at a point 4(1,-2,1. Find the mumcn[ of £

about the point 8(2,0,—2)

A force F=—2i+ J 3kis %@@m il 5 nmmem about the

peint (4, 2, 20
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14.4 Scalar %Ig Ict

14.4 iple Product of Vectors
The scalar triple product is a key concept in vector calculus with wide-ranging
applications covering various fields. In three-dimensional space, it provides a
significant role in ¢aleulating the volume of geometric shapes such as parallelepipeds
and tetrahedrons, defined by three vectors, which we will learn later in this chapter.
Additionally, it plays as a vital tool for determining the coplanarity of vectors,
providing a condition to verify whether three vectors lie within the same plane.
There are two types of triple product of vectors:

{a) Scalar Triple Product: & (v * n)

{(b)  Vector Triple Product: = (v = w)
In this section we shall study the scalar triple product only.
Secalar Triple Product

Let g, v and w be three non-zero vectors @©m
B\

The scalar triple product of vector u, ¢ 8‘
- (= w) W) fux v)
The scalar triple pr %ﬁ‘i
% oy wi=[u v wl
14.4 N\ Iur?w of the Parallelepiped

The triple scalar product (u = ¥) - w
represents the volume of the parallelepiped

having . v and w as its conterminous edges. wh?

As it is seen from the formula that: height = |w| cos E'I =7 : \in}
o V- w=|uxy||w|cos @ o )
(s p)-w=|uxy||w o nﬁ;a:'e

Hence, (i} |u= v= area of the =™
parallelogram with two adjacent sides u and v.
(li) |w|cos 8- height of the parallelepiped
(= vhew = = v||wl cos 0 = {Arca of Parallelogram) (height)
= Volume of the parallelepiped
Similarly, be taking the base plane formed by v and w, we have

The volume of the parallelepiped = (v * w)- u @ @@m
ing the bas | woapd u, v o




o
e
e n@@ @ —

14.4 ‘odume of the Tetrahedron

1 "
Volume of the tetrahedron ABCD = % {area of AABC)height
of O above the place ABC)
- ;_ ® _i_ E X if)

i

=é { Area of parallelogram with A8 and AC as adjacent sides) (/)

—% (Volume of the parallelepiped with u, v, w as edges) (Note: ]

As volume i3 always positive
1 1 S0 ignoTe negative sign if
Thus, Volume = E (Exy)-w= E v {3 1) - 1% negative.

14.4.4 Scalar Triple Product of Vectors in Terms 4

Letu=ai+hj+ck, L-ar+b_;-|@ g

= v W= (he, —he i - (e, —aye ) f+H(ah, —adh )k

g .{1_" # E] = ﬂ: {ﬂ'l("-; —b'l{:'!}— bl [ﬂ;.ﬁ'; = ‘136:\}4- c|{ailb3 _ﬂih:]
a b g
= u{vx W= iy b} G
a, b o
Which is called the determinant formula for scalar triple product of &, v and w in
component form.
Example 23: Prove that dot and cross product are inter changeable in scalar triple
product.
Solution: Consider u=ai+hj+ck v=ai+hj+c,k and w=ai+h j+ck

are the arbitrary vectors. @
The determinant formula for scalar lnpl& product of W@@@ by

IR
o




==l b g Interchanging R, and R,

dy: b &
a, B
=la,. & g Interchanging R, and R,
a b G
) = )W (a-b=b-a)

Hence, u- (v> wh=(uxy) w
Thus, the position of dot and cross can be interchanged in scalar triple pmduct
Example 24: Assuming i, jand k are unit vectors in a -cartemfa 1@

Prove that I jxk=j.kx ik @ W
Solution: Given {, | %
So, we can Wi ﬂmj 08 + j+0k, k=0i+ 0j+k then determinant
YGWM product of unit vectors . jand k can be wrilten as:

L0
fjxk=[0 1 0/=1(1-0)-0(0-1)+0(0-0)=1
00 1
01 0 0ol
Jokxi=[0 0 1/=00-0)-10-1)+00-0)=land k.ix j=|I 0 0=
100 010

Therefore i. fx k= j. kxi=k.ix |

Example 25:  Find the volume of the parallelepiped determined by
u=i+2j-k v=i{-2j+3k, w=i-7j-4k

Solution: Volume of the parallg
O

= 3 Qﬁ@in 204 3 W T+2)=29+14+5
= 48 cubic units




%%@Q@ e O

Exar i the volume of the tetrahedron whose vertices are A(2,
B(3, 2™, ((2 1, 4)311:1{}{3 3, 00

Selution: A8 = OF — E)A—{3 Di+(2-1)j+(9-8Bk =i+ j+k
AC=0C 04=2-Di+(1-1}j+(@d-8k =0i- ”i ak
-8k

AD=0D  Od= (+3—z)f+{1-1}' +HO-%)_

Volume of the tetrahedron = — [43 AC AD]

11 1
-—%n 0 —4—%[l{n+8]—l{ﬂ+4)—l(ﬁl—{}}]—%[R—:I]r
12 -3

cubic units

4
6

| e

Vectors
Vectors are coplanar 1f th-w lie i
combined in the sam
l_'“nmider the three 1: :md win a plane as

The \Vm\’\fs\ L 2 W gwes a vector that is perpendicular
the vectors vand w, AS w.y and ware coplanar, so
v wis also perpendicular to y

14.4.5 Coplanar Vectors and Condition for C npl:gnant@ hree

P W

i

Thus, the dot product of w and v« wis zero. i.e..
e (v = w0 o I veclors g and b oare perpndicular then a-h =0
Thus, we conclude that if the three vectors u, v and w are coplanar then their scalar
triple product is zero.
Properties of triple sealar product
. Tfu, v and w are coplanar, then the volume of the parallelepiped zo formed is zero
that is (& % ¥} w = 0 and hence the vectors w, v, w are coplanar < (= ¥} w0
2. Ilany two veclors ol scalar triple product are equal, then its value is zero de.,
[Muw]=[uyy]=[uww]=0
Example 27:  Prove that four points

A3, 5,4), 1 B[—I 1, 1), C-1,2,2) and D3, 4, =5) are c&pla@i@c@m

Proof: AB=OH- UA = (-1+23)i +8 ,
A{’—(J(‘ ‘ : % A E =36k
J- ; +{4 ‘i}j+f ‘5+4)k=ﬂg‘—j—g= f-k
Vﬂlu lgleplped formed fIE AC and ,«1}') 15 ) )




Vectors In

6 —2{3 @)+ H-2-01+5-2-0)

=15-8-10=10
As the volume is zero, so the points 4, B, C and D are coplaner.

Example 28:  Find the value of a, so that ai+/, i+ j+3k and i+ j-2k are

coplanar,
Solution: Letu=ai+j+ 0k , y=i+j+3k and w=2{+ j- 2k be three given
vectors. Scalar triple product of given vectors is
a 1 0
[uvw] =1 1 3|=a(-2-3)—-1(-2-6)+0(1-2)= ~F +8
21 =2

G T

The vectors will be coplanar if —5a + 8@
14.4.6 Applica {cal World

Example 29; m erts a force of 30 pounds along the negative y-axis on a
lever ; m’u:hmr: The pivat point of the lever is at the origin (0, 0, 0), and
the forte 1s applied at the point (1.2 ft, 0.5 fi. 0 ft). Determine the torque produced by

this force about the pivot point.
Solution: The position vector r from the origin Tocapin. imeaihel. the

: g jorsal effost of a Foece applicd fo an obj
to the point (1.2, 0.5, 0) is given by i Gt e T AR b
r=1.2{+ 0-5! + fhe cross product of the position vector

) — ) {which exemls om the pival pont e the
The force F is exerted downward along negative  puint where the farce is applicd) asd the faree

y-axis with a magnitude of 30 pounds is  veetor £ isull. w1 T
F=0i— 30+ 0k e

Torque T produced by the force = rx F

Using determinant formula of cross product




avecl
. WY
Vectars in mm Mathematics (_
W- 0 - 36k

—36k pound-feet
Thus, the torque is 36 feet-pounds in the negative z-direction
Example 30: During a building construction, a crane exerts a force to pull a concrete
block, represented by the vector F = [4500, 3300, 2140] Newton, Each component
corresponds to the force exerted along the x, 3. and z axes, respectively. What is the
magnitude of this force?
Solution: Using the formula for the magnitude of a vector in three-dimensional space

|| =37 + 37 + 23 = 45007 + 3300° + 2140°

= /20250000 + 10890000 + 4579600 = 35719600 = 59? 59
The magnitude of the foree exerted by the crane is uppm " @

? §
S 0@@ “M.m the respective
t a store. The components of

mt the respective prices (in rupees) per unit for

Example 31: The components of

number of jackets, shoes,
;3SD{J:+4ED{]'I -l -

il % v and explain what the result tells us in real life.

Solufion: The dot product of u and v =u- v
=(3007 + 2507 + 180k )-( 35008 + 4200 + ﬁmu.*_c]
= 1,050,000 + 1,050,000 + 1,231,200 = 3,331,200

The result 5 v= 3,331,200 tells us that total revenue generated from selling all the
three product is Rs, 3,331,200,

P EXERCISE 14.4 4

.  Find the volume of parallelepiped for which the given vectors are three edges

(i) w=3i+2k; f=_ﬂ'+2£”~'f~ w==f+4k

w=24-3j @ @
(i) u=i-2j+3%k; J‘ENQ§X€§§§7
2. Verify that a- %&
H‘a— =4i+3j-2k and c=2i+3j+k

(ii) a=i—4g—k;




Umit it}

A

6.

1,

Prove

- 2i+3f—4k and { -3 j+ 5k are coplanar.

¢ constant & such that the vectors are coplanar.
(@) i-j+k, i-2j-3kand Ji-aj+5k
(i) i-2ej-k, (-2j+2kand @i-2j+k
Prove that the points whose position vectors are A(—6i+37+ 2k
B(3i—2j+4k), C(5i+7 j+3k), IX(-13i+17 j—k) are coplanar.
(a) Find the value of :
M) 2x2jk G 3pkxi G [kij] v [iik]
(b) Prove that u- (v w)+v- () +w (wx v) = 3u- (v= w)

Find volume of tetrahedron with the vertices

® 0.1,2, G20 (12D and s, m@o@@m
i) (21,8, (3,2,9) @

Prove that the \ % 5 are A(3i+27-k), B(i—2j+k),
Cl6i+4)~ m_

m three non-zero vector o, v and w

) are coplanar.,

(1 +v) {v+11r}>< {w+u}] 2[u ¥ H]
Consider a parallelepiped determined by the vector w = 2i+ 4 f - 3k,

v=5-3j+6k and w=& -7 j - 2k [f the base of the parallelepiped is
define by the vectors u and v then find the height of the parallelepiped.

A mechanic applies a force of 30 pounds along the positive x-axis on a wrench
connected to a bolt, The pivot point of the wrench is at the arigin (0, O, 0), and
the force is applied at the point (0 fi, 2 i, 3 ft). Determine the torque produced
by this force aboul the pivol point.

A drone flies from point (1, 2, 5) wo point (4, 6, 9), with each unit representing a

meter, What is the magnitude of the displacement the drog L:—.pbr‘mmmg
this flight? @
e B

pants, and shirts were

sold at a store. TH ) D50 1 ,-.E_'I'[_'Hf].t_’l shows the price {in rupees)



Unit 4 wlﬂm

14,

I3,

of each item, Fi g % a E =
A force F = [ 0@ MO)NTs applied at a point /A2, =1, 4) in 3D space. The

s a1, 2, —3) . Caleulate the torgue produced by this force about

the pivot point AL

An electric shop sells three tvpes of appliances; Fans, Heaters, and Owens, The
monthly sales quantities are 500 units of Fans, 300 units of Hearters and 200 units
of Owvens. The profit per unit for each appliance is Rs 5(H) for Fans, Rs 400 for
Heaters, and Rs 2,000 for Ovens.

{a) Represent the monthly sales quantities and the profit per unit as vectors,
(b) Caleulate the total monthly profit using vector operations,




EXERCISE 1.1

5 5 i ey e ) S ATy ‘.’J_
1. (1) i (i) ¢ (un) io(iv) F 4 (1) E:E?] (u)i '(m} [](J]
=27 18 =17 T, i -4 117, 11 - 2%,
S J-GIE Shep  pe Bl Ggy
7. () 24145 (i) 149 (i) 1354 (v) 1003109
EXERCISE 1.2
1 (i) ¥=-19,y=22 (i) ¥=9,y=6 (il x=—11,y=28 2. x=14.y=9
Bl | _ 47
i — =% = = ii — i — 2_ J= 3 iii =—_. ¥ ERE
3 () x¥x=9.y=5orx= 9= 5 (i) x=12, p=20rx= 12,) (i) x 300" ‘30[!
4 o=-2 6 x=dy=3 a=Lb=1 T (i) 3-dior-3+4i 111]'3-”“-1
(mi) 3—6ior—3—00 (iv) 12+ Sior-12- ‘J i .1 m‘l@
5
M., x= ,‘ =
RL[':.I-_.I
I. m 3«*—:41')){3& —idl) (iity 3(x+iv)(x —iv) (V) da+iSp)(da —i5y)
[ i} (u} (z+3=2)z+3+2)  (vil){ z42=i){ 2+ 2=}
e (L N1=3Y  1143i
{viii} I‘z— 3 ]L_ 3 ]
Z, (1) (:.-'+2]|:z—[l—.fﬁ})(z—(l+r'-\f’:] (i (z+3)’:—34}ﬁ|:~3wfﬁJ
(i) (z-2)(z—4Wz+40)  (iv) [2—2)(z=2)(2—20)(2+2i)
() (z 2)z 1 2i) =z D)(z0 1) (v lZ"I‘J:i' :-ﬁ){.-.ﬁ-ﬁ.’*}l{z-ﬁr'}
3. Rools: 3. 3. 45 45 Linm.rl'm:lur:{:+3:){:-—3}[:+4f:|(_:—-4f} 4. (1) = 31:‘-@
(ii) z=2+ W21 (i) z=3+/  (iv) 2=-2=3} (v) :=—%t%;’ [vi]::“‘;"'l‘ﬁ
5 x= 20462 -F2+24 6. x=102'+302 40 T. xr= 32 +62"+4227 — 062 +96
EXERCISE 1.4
1. i) §2,2;, 2&32; i) {—2.—2(}).—2&1’:} i) 13, 3m, 3‘”J @
V) {-’l__-‘-1~w_4w,} 2 1) 256 ia ' vy =32
e N o\ 8 P 0

AL
G



2,60

= g

]
]
| -&
|

1. 1 i) 1)
iv) > v) vi)
vii) \«tlll @@ i l
2 i 5(@;\553.” r r.m—«}mrn 4] iy 1 | cm"—}ﬂun%]
=3 543
S l.l.hT +¢sin —_4-“] .0 212430 b ?3+%i iy —6.47-2.17

vl —10.69 -2.85 v) 2434286 vi) L6R—1.09¢ wii) ~12+k

4, 1) —G3+1532 (1) -146+6.68( {iii) 4::| ms-?ziwsm-!-:;—g- '
/
. & ¢ o g — —
{iv) = cnsT-ds:nF 5 0) =L62+12471 (iiy=12.69 +1.01: (i) 74.04=1925
- 4

i
(iv) {Iwe & ~l+if3 1 5fsm & |;g=zﬁ.mg{z)=‘—f+zm

;
9, y=ix-2J3+1 12.y=2 13 x=1 14 y=> 158 120 mi-esini]

!
3 L

16. Rectangular form: O+ 187, Polar From: lEIms +isin— Z

)
EXERCISE 2.1 m
La) () 8 (i) -1 (i) x° —dx @w@ @©
o TR




. (R 5 4
u++JsmL—— | Gind” +3ah+ h+3a + 2a
. & 2;

sinh

{iv 3. (a) A:i b C=2fgd (© S=6r®
hcosacos(a+h) 16

4. (i) Domain g = (—=,w),Range g=(—».x)
(i} Domain g =[-2,=),Range g=[0,=)
(iii) Domain g = (==, %), Range g=[0,2)

(iv) Domain g = (-, =), Range g=(—»,2)

(v) Domain g = (—o0, @), Range g~ (—=,2)w[7,0)
5. g=2,86= 26 Domaing —(—o,3)0(3,),Range & (—0,—1)(-1,%)
7.6 (a) 30m b}y 175 m (c) 1L1m (i) x=2sec
8. (i) Domain f = (—,o),Range £~ (—e,o0)

(1) Yes, the function is one<to-one, because equal oupuis implies equal inputs.

(1) Yes, the function is onto when the codamain is all real numbers, m
9.() Domain f=R~-{~1},Range f = R—[2} (i) fix)isns '5@@‘ ke
r:m@@
Q.1(1)
o%@ D\ f\é“

(i} (iii)

(v)

Q.2(1)




fviif)

{vii)



- % Q@@ D
W“ m (c) Illm (i) 2seconds 7. (i) 14months (i) 3732
s

EXERCISE 3.
l.
(1) Mimimum valueatxy= 3is4d (i) Mimmum valueatx= 21is 4
(iMaximum value at x =415 29 (1v)Maximum value atx = %3 18 _T“
= _ : -1, 169
(v) Minimum valueat x = — lis—16  {vi)Maximum value at x = T is 5

p 3
(i) Minimum value atx = 2 is - 4; Domain /= { «, @), Range /= [ 4, =)
(11) Minimum value at x = % is _Tl; Domain f=( =, @); Range f= [_—l L o)

sin

(nnMaximum value atx = 1 15 7; Domain /= ( =5, «); Range f=( o=, '.'-’
(iv)Minimum value at x = 2 is 0; Domain /= (-, =); Range @

(v) Minimum valueat x = — 1 is—9, 36!01 7 """
(vi)Maximum value at = !!‘ ge = (—om, “—4’]

; Q@ﬁ\
() ' (x)s ain ' =[ 3, =) Range ' = ( ,0]

133)

(i1) AV =3- -JS x ; Domam f = (- 5, «); Range 7' = (— 3, @)
Tt I i “*'2_;"” - Domain £ = [ 3, «c); Range £ = [2. =)
(v (= 217 “'3;  Domain £ = [71, «); Range ' =[5, )

W f'x)=3+ ,‘x—:—] : Domain ' = [1, «); Range f' = [3, )

(vi)f‘ (= —4— [F %), . Domtin 1 =mo-5); Range £ = (eo—4]

) 2,2} (i) {1, —4} (ii){3— v5,3+45}
|1 Jr
(iv)

1.3 3+ E J_
3 5 '2' . }(‘!]‘ {(—3.3)} {H)“ ’

A0
wmw&%muﬁ C&ﬂ&fﬂ@
@Nmﬁﬁﬂi_________-

3+J—




Bl 5 \0 > Mabernaies (113

Oy @2y e wfor 2

ah Ta+h
W {3 {'»i){;..‘;"} Gi) W (dE) (A0

(ix){2}  (x) 4} (xi){0.2} (xii) {0, -3}
o) 24 e 23 ) (-1

2, 15 sheep 3. 97 dozen eggs 4. & hours

5. 20 days 6.0 =5 =4756 km/h 7. [0.586 sec, 3.414 sec)

Exercise 4.1
3 =% B m
Q2G) |2 o -3 @W@c@?@
1 W
i e .

- s 3 -251 |7V -1 g
Q.5 (l]X=[l | (1) |[=I1 -3 —IU"

iy o O@@ﬁﬁ
Sarestind 2

L. ()21 (ii) —14% o
Q4 (i) A4,=—3.4,




(ii) 3|=_2v3m=_|-33-3=2*lal=_1
Q.5() x=2or-1 (i) x=0orl (iii)x=2o0r3
Q.7(G) 147,0 (ii) 0, 96
I
O
94=3
Q . Exercise 4.3
o 2 [2 2 7] -13 8 26]
4 2 5 5 5 3 3 3
=) 4 3 -4 8 =i =4
o ol agyl= = 3 @i = = =
Qim (5 Y Wy 7 5 @3 3

[N S . 2 -l “

3 6 3 |35 5 5] 3 B m
Q2(1) pank =3 ik =3 -[m @ @@
Qa6 [(1,0.1)} m
Q4W Q% : (i (1,1,1)]

19 9 12 . hf22 1 =103 [[ -13))
Sty 3| i P
QM 23 2°23) ("}i[a 3179 J W67 16 )

Q.6(i) {(0_, 0,0} (i) x=20%=—tx=
(iii) x, = =3t.x, = 2¢.x, =1 for any value of ¢

" for any value of t

161361 21]
7. A, B(25, 000, 3) 8. A(=6-4,1) 10, 22{ 43 2

15[ 49| 161
11, 1lold Fire
EXERCISE 5.1
| | —dls l | | 5
% 2(3'—|l-3[:¢'l_|2| 7Y 3"d[x-|f:+2‘4[xw3}
- 30 ) 4 12

a4, : + T 5. "5!'4‘ 4+
Wx-2) Nr+3)~ Alx+2) Ha—1) M2x+D)

3

6. |+ 3[-‘1-—2) 4{x 4} 3[.: fi W@@
a b (—

T.
@ bud By Ifll -l \E\Hr“( d ) e

Rjane™




7™
— Qﬁ&%@@ e O

| | 2
Wﬁj@g{t-l) & 2_{,;+:1}- o+ 27 "'-.l‘—l_r+l+f.\:‘+|)z

mz 288 32
=2 3a—3) | Ix+2)

L

S(x + 2§

EXERCISE 5.2

1Tx=6 I7 > I l=x 3 =2 g 2y 33
) I ’114-:) 13 x+ 1)

L

SE 4 1) 21 +x%) 13(x" + 4)
2 x+1 | x+ 1 x+ 1
6. : 4 7 = ¥
HetD) " ger oy =1 P4y i1y
-1 At2 st14
¥ B—n T L

3605 12) B 1 2F
EXERCISE 6.1

L.(i) 24, 28, 32, 36 (i) —3,-5,-7.-9 ©©m

z.mﬂ.ll 14 (i) 3,5, 13 (iii) 4. =3, 0(iy) =1, @ @o
) 3, 4, (vi) 1, 255929 “ i) —7. 28, —63
3.120 4.4a) Gar L] Iﬁm e l{-l:l:) 1im=26

Ll EXERCISE 6.2
L d=T;3037 (iDd=vZ5+32,5+42 2. ®2,1528 (D12, -1,-14
330+ T.4+6n 4D (47 575 6.No 7.58.25 9.62 10.7,12,17,...; 502
s PR L
12128 13164 14.| 75 4} ‘NojYes 15,13
E\u:nczsm.x
¥

L2, (e’ +8 2.1.21 1m Q_E m F ﬁ 4.5, 90r957.0

EXERCISE 6.4

L.(i) 630 I{u]l 1‘!—: 2.01) 1300 (1) 230 (iii} 1932 3 .22 4 14 3l
5. Qe 12em, 150m o (1) n(3n =23 (1) g{‘?#-— 13} 7. 650 8. 3RS
9.200000 10,3+ T+ 11+ ... 11.73 1258 [l or 1,8 8 13.32
14.5.7.92. 110¢ 11,9, 7. 5 15.3.4,5.6,70r7,6,5.4,3 17. 11
EXERCISE 6.5 m
- - 5
Ll—g 26561 3, 54.0) 243, 81,27, 9% 3 (i) 339, —— j',.'g B % @©

5.—64 6.2,6, I}'&,O. -3
r\“ a (\

NPTAL




Answers

12,2, 7% ]20r|

EXERCISE ﬁ.ﬁ

L.[il4 or —4r (i) 4 or =4 (iii) W6 or— 3\)’6 2.6,12, 24 48 al»% 5. 4 lborl6d

6, 2Hor?2
EXERCISE 6.7

1:;;;;:; 2.4, 1723.() 5 |: -1( — J] (ﬂ]l[u(ll'-l}-n}

10"
a1 - 5)(1 - &™) - b(1 - a)(1 - 5") i il —» - k"r“){}
40 (a=B)(1-a)(1-b) W% T=r " 1-#
lﬂ!_ﬂ
. 8
EXERCISE 6.8

114080 2 2{dn— 133" 3, (2n+3)(=3)" =195  40)6+(4n—06}2°

‘,n-l
l_ii]%[l — (= 13" + 3] (i) 4 — 4‘ —nn 1;(4

L 15 5 o sfl 1 1 '_)“rl | m
(iv) 5~ (2= I)( j —| 5) (v) 45_:(3”_ 5 1Y @ @©
: T+ O
3 ()6 (m— (n"-lhﬂ; 20h @
2 3.rll— x" ] C{},ﬁ
= {umw
EXERCISE 6.9
o 20 12355 W5 H W Ha 4
b

4.=10 5 6.-1 K3 borald 9,2 Ror g, 2
EXERCISE .10

2 1)4n—1) o
L2 (2 +n-1) i = iy i+ 12

32 pr; lE

(03 @20 +16) 3 (407 1) (vi)
(vii) g (3n° + 16n% +30m+23) (v M}ﬂ
{ix)én{n+l){u“+3n+2) (x) 5 (907 + 580 + 1350 +134)
2 (0-n2n+1) (i) 3¢ (4n% +15n+17) 3giin(n® +20+2) i) 5(20% + 150+ 19)
a(iyn(8n2+10m+5) (i) n(4n® +4n> + 50 +8)

EXERCISE 6.11

LRs. 63 2 Rs 23W77.50 3. 5% -‘ti 3. 13591? - 53%4@@@@@

5. (@) YO0 litres, (b) 2000 wecks, (e) 400 w»xk'e
{c) 21 7. (a) 100, 80, 64, 51,2, ...((k) 43




@
= %“@\@@@@W@
NN S

9. Rs. 5 10. 17 hours 11. 25 days 12, 1088
13, 7.2 seconds 14, 310.4mA
EXERCISE 7.1

L 12 kinds of rolls 2, 12 carcerpaths 3. 1) 5040 31) 362,580 iy 90 vy 1320

v) 36 wi) 10 vii) 25,200 viii) 110880 0x) 220 x) | ai) 40,320 xii) 1440
4o B iy 13 FTT) R T 10 SRS N {11 - S e 11 N
4! 10 i5! 56! 51 51 5l 46! (=4
|
iy D gy fwel gy W
(n=231  (n=-1) 5! (m—=r+1)
EXERCISE 7.2
1. i) 30240 i} 20 iii) 5040 i) 7200 2, i} 9 i) 5 i) 10 4. 30 m
5. 1)6,227.020.800 i) 51,801 840 iii) 1.037836,800 6. 5S040 7. fu

8. 663,280 9. a) 3628800 b) 338688 @&@ UBfJ ) 239,500,800
11. 120 12, 240 13 144
Al m AL
W& 1600 ) 9979240 ) T TOESIHE 2. 1260
1. a) -1:3040, case-11: 25200 b) case-L: 720, case-l1: 360  ¢) case-1: 120, case-[1: 60 4. 2580

50180 6 360 7. 12612600 B. 725,764 & 6,227,020,800 wiys 0. WHTRRO

11, 2880 12, 3 13. 60
EXERCISE 7.4

L) 10 i) S6 di 1 i) 120 208 iy 14 i) 15 3 56 4. 65780
5. 560 6. 171028000 7. i)1176 ii)280  iii)490 iv) 56 R.)10 @120 i) 54
0. 1176 10,20 11 13651000 13 (i) 840 (i) 1016 i) 1008 15 (i) 358,800

(i) 14950 16 (86400 120 1T (i)

i) L 18 (i) 518400 ii) 14.400
453

2730
EXERCISE 8.2
o i E—Z—?+(’?——q+(’,‘:

64 B 4 X x X X

-|
(i) 128a" — 448ax + 6720"x" — S60ax' +280 - 84 5 L1455 @@S \

.4 ha’ 15a
{|1}—_—,-~'——+—-30+

£ x O
Q92023968016  (1v] 40%

(1)




- Q\g@.

4. (i +¥“+2ﬂt‘ 29—+ a8 () 1 =4+ 1027 = 16+ 19x° = 1625 + |t

- 3 a’ . g . —1530
-+ 8 (i)13120x* (i) — 411845 Lilt} 4032 ° —; (W)462 ¥y 6. (i) . 3 $
x

I -15
e 15309

& {nh’ > 8

| .. 45 s

8. ) —xad (1) T (i} 33
EXERCISE 8.3

2., 14 - 2 9 27

| M
1. (@) l—=x+=x'——x"+ <1 iy 2——x——x" ——x
W 1=33 3" & W 8

— ... s valid if

4

C
X<l= |r| {:f:- (i) 1 —x+ 22 -27 +, . isvalidif [y <1 (iv) 1 +2c+ :2-.-*.';"'11‘3 +,.. is valid

if |x| < % 2. (1) 9950 ppproximate (Corvect 10 tiree decimal places) (i) LOLD approximale

{Correct 1o three decimal places) (i) 0.33] approximate (Correct 1o thuee decimal places)
{iv) 0.935 approximate (Correct (o three decimal places)

Lo@Eem @a T @w@0@©

.

(i 56 8. Rs 12,616,000
. 28 Tnatchc*a 130 180,160 items

EXERCISE 9.1

1. (i) Quotient = 3x + 2 . Remainder =4 (i) Quotient = x* = 14x + 25 ,
Remainder =54  (iii) Quotient=x"+x* 2r+1 . Remainder= 18
(iv)Quotient = 5x* = 3x— 18 , Remainder=12x+ 71  (v) Quotient = 3x” + 4x —

3 , Remainder=-25x+9 2, (i) 20 (u) 10 (m)S ()91 (v) 10
. (i) x+lisafactorof ¥’ —1 (ii)x—2isa factorof ¥ —5x~6
(iii)x + 1 is not a factor of x* +¥* + ¥ — 3 (iv)x - 2 isa factorof x* +x* — Tx +2
(ivix—=3 isnota factor of x' =37 + F—x + |
4, (1 (=2 x=10x+3) (i(x+ Dle—0Nxt2)
(ii)x 2} (x+3Ix+ 1) (2x+3)
§. Quotient=x"-3x"—x+ 1, Remainder =1 6. p=2.q=—1 7. k=18. k=8
-5 -1

2 P =—
P “ 2

A 10.g=—8,6=- 16
2 &

Exercise 9.2

4 x + 1 is not a factor ofp(x} 5 CRC=20

1. 2625% 2 x=—lisavalidpoint 3. x=2licsonthee @@m
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W EXERCISE 10.1
d - , B e T ok : SR i
i) > fy-1 i} 2 iv) =2 | = 2. i) —cos 12%ii) —sin 127 iii) cos 27

v \ﬁ wi)
v) tan 32" ¥) sin 157 vi)  sin 39" wii) cot33° vim)  sin2|® k) sm 207

Exercise 10.2

oo a1 o oofia] o wf33 . af¥ad |-\f v
1) E\ﬁ 1) m 1) \!3 +1 1wl E\E ,"J; vl 15
2 56 . KX 36 16 63 ;

1) - 65 i) -85 iil) S 3 ) a5 ¥l e vi) o

+

as

The terminal orms ol engles of measure and o — Foand & F are i 1 and T gquodrants

respectively.
33 ) 5
i ;_5,—% i) %, % 14. 1) 13 sinder + g, lun-ﬁi—_ iy S sin (04 qﬂ 5

J2sin(@+g) tang=—1 iv) 541 &in

" % “@w@,z sin {ew) tan
@ =1 vi) 31
W m F.!-(ERC]SF.' 103

Li9 120 24 ¥
iy 41 2o = l{";l ens i = qu.m2a~—m u]-ier):—zs cos L= =33.nle=="3

i —4 cos 26+ cos 4 b e T
gin® @ = potgos S0 Fsos e 15. 1) sin 13*—‘—%“" =cos 72° 1) sin 54° =

b
L, i,
y‘% = o8 36° i) cos |87 - 3@ = sin 727 1v) cos 347 - @ = sin 36°

EXERCISE 10.4

1) smdd+sn2@ i) sin8@=sin 28 ) :l)'(ﬁian?-rs:in;’aﬂj W) cosS5@-cos 8

%(sin 2v —sin 2v) u‘i}l% (cos 4r + cos 607 vii) % {cos 34" — cos 38%) wiii) % 1c0s W — cos 2y)

i) 2sindficosd i) 2cos6fsin2# i) 2 cns? n::ns @—*@@‘@@
v) 2008 30 ¢os 18" wi) 2 sinx ofs IJ"O ? |'
ﬂ (m oo
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Q. ,‘ @°@©m
- o Z@“@%se 11.1 o

1. & cither even norodd  {in) even  (iv) neither even norodd — (v) odd

i) 60 () vt (i) v d. ) 33""' (i} ‘1';’ Gty : Gy 2 ey e i
g

A8 o B 4x 4
? {viii) E {ix) 30 (BN 5 inil 3

Exercise 11.2

(i) | Y T 6w 1 ' T

PR

Exercise 11.3

3 -1 o 1
1. (i) Max=4, Min=2 (ii) Max=4, Min=2 (iii} Max~ 5 Min;—i- (iv) Max- 5 , Min= E

I
(v) Max=4, Min==2 (vi) Max=3, Min==1 (wii) Ma.t=§,M'rrl= l—" [wrii) Max=z,

| | [
Min=— (ix) Mux=— Min= — 2. (u} maximum lemperature= 21.5 | minimum

10 2
temperature= 8,5 (b) Temperature at @ AM =8 89" 3,  distance=3678m 4. height=30.92m
‘
5. (a) b{:):ﬁ!’]cnﬂ%r}dﬁ (b 6 feet (¢) 6372fcet 6. {a) 27m (b))  03m
|\
b
LY
O
2K

9. (a) 63000

second () 005 second 7. da) W =28 - 20cos

,--\.
(=
—
L | k2

alll

(c) 37.87sand K2.13s
(b ROMIO




L G2 G)o i) 4 (V)0 (V)0 (vi) %

3G 2 (4 (i) ? (iv) 0 (v) _IE (vid 1 (vii) ﬁ (viii) #

@) 2 4 5 ()2 o @1 @2 )l (i) 2 @0
m 180 i

(x) 1 (xi)

ha | el

1 . waw ] . 1 -
(%i1) —% 5 (i} e (n) Je {1it) 3 (iv) &' (v) & (vi)e'

" [ |
(vil) & (viiip (ix) - =z =1 D |
[ e

EXERCISE 12.2

1. (i) =2 (OG0 2 () fis discontinwous at x = 2 (ii) fis discont] @@%:
3 () Jis discontinuous at x = 2 (i) (s discoptinuous s ﬁ@@?
Q
£ ) m=Ln=3 (i} ' @mi ntinuous at x = |
“@EL ISE 12.3
1 0 4. () 10O 5 (i) = i) 8244
o. 1) Iﬁls% (i} 13494 ¥ yes
o) 2 (4 {m}l — (V)0 (v —:L (viy I (vii) ﬁ (i) ﬁ
() Lo 4, () S (i) = G0 (v 1 (v S il (vii) 2 (X0
m ISH b
EXERCISE 124
L 10% 2. 15% 3. 8% 4. 1400 5. 18000 6. Year | = 4R00. vear 2= 3600

7. depreciable cost = 90000 , year 2 = 24000 8. 2250 9. 2667 1. 67300
[l. Year [ =32000. Year 2 = 22404
EXERCISE 13.1

= "_l _l A2 e
I, (iydx (ii) 2‘\& (iiil 5T (iv)2x=3 2. (i} {(11} 4‘\F'HP

3. Ifl).,’ (ii) 2 + 2 4(‘)[3;62}‘ (i) ITONZx + 3 (i) Tafax + &0 m

NELe)




Ansywers

10, (a) 28&m'h [h]

differenti
EXERCISE 13.2

—3x ’
1. (14 v @ 2x [t} — 3( : j (i) 2 i Iy {iv) IE_\GJ' W l=2x*1x 2

a " ?{{.'“I!’-B - 3 ’ X+2
(vi)8—2x {vii) ‘_(Jril-]ll): ) {vu)ﬁ {Lx]ﬁ

M _3x+2 R F gt e |

—r . —2x
L pparger S o Y -y T 2\G (=17 o (22 - 5

EXERCISE 13.3

4w I5F—6rt | 5. Max. stress — 100, Rate of change ~ 0
6. (a) P(x)==11"+ T00x = 2000 (b) Rs. 400 (c) 35 units

8. (a) 2940 (b) 27440 (C) as lime increases rale increases

h2
@m br=144m
\ I:\Lll( ISE 14.1
2 -2 2 4 1
00 7 "‘% 6333 3 (i) 10; "'-"-U 3.,,%15

.

11, (a) 1532m/s (b} 96m's” (¢) += 047 sec and ¢ =

{c) 2.50rs 13, (3) 292Pa'm (b)x=11\5

‘-l

174=12f= 16k

TS RAT ST gleen 26 Af267  Af26 -
7 K

2 4 . 4 4 A4+ Mi-15k
9.(u) ‘3':‘—“3’_;‘4‘5.(" aml—"‘H“j— k=3 )y = _“[—4

3 | 6 3 z 4 s
{d ———Jr—— 10, [0+ 179 Kilometers 1L 733 =
) a==3 /179 =35 507w { 5

12. Only the triple (iii} 43°, 61F, 60F satisfies the condition for direction angles
of a single vector,
EXERCISE 14.2

14 9 -1, .=l
1.(0) if: {ii) _ﬁ {iﬁ}_lsﬁ ﬁﬂﬁ
B 0 8 | @m
2.4i) Projection of g along & — 2] ‘+2li 314 o -0"' 4@




i) 3 (i) Im'—q 4, 2 or—3

6.(1i) The points {4 =12} 1.3, =1), R(=2, 4_6) do not lorm a right uiangle,
9.56 Mm 10,32 New 1. 2 ]%215 N

' EXERCISE 14.3
Liygxb=—3j-3k: hxg=3j+3k @axh=5i+3j-Thk pxg=-5i-3j+Tk
(i)axb==Ti=T) 1bxa=Ti+7) (W) a*xh=3i-6k ;bxg==3i+6f

.Zl_f—gj—“k —7f+1;+ﬁk ﬂ .r k A@
240) e R \"_ \J_ﬁ psink = \[r—(llli \JF’ 1ginf = 3
o 13i+ j+ 22 . }E : BIE

) 634 18in&= “Jmn 3"(“ square unirs (i) SqUALS Unis

4() 54/3 square nits (ii) 4/237 square units (iii) /190 square vnits

b
5 a= :5'-1 h= ]- 6.(i) Parallel vectors: @ and w ; Perpendicultar vccmr7 @@m

(i) Parallel vectors: g and w ; Perpendicular \-lurs

11, Conclusion: Al least one oﬁhe vectors igthe ke ﬂ
13, 48 =4/+30% 140 ' A TS i=15/=154
XERCISE 144
M 14 cubic units (i) 10 cubic units 4.00) 5 ('u}il

i J
ofapiys ()3 (il (iv) 0 7A0) % cubic units (i) § cubic units

10.—3%5 11, 150,/ = 100 & (in pound feet) 12,41 meters

13, Rs, 532500, which is the total revenue from the sales of all items,

T4 =207+ 1O+ 500& Mer 15.0a) [S00, 300, 2000, [500, 400, 20007 (b) Rs. THI0M



%mm@@\s\w gueo™

Complex Numbers: The numbers of the form Z = ¢+ i where a.be 75 una §= J—_l pre called
complex numbers,

Conjugate Complex Numbers: Let 2 = @ + i be a compler number, then @ it s called the complex conjugale
of o+ b, Complex palynemial: Complex polynomlal Piz)isa pnlylmmial finetion of the complex variable 2 with
T tl+az+a,.

Zeros of the function: 11 #(2) 15 2 polypomial functien, the values of 7 that satsfy Miz) = Dane called the zesos (or

roots) of the function.
L+ 1430
and a
2

3

Glossary

complex coefficients. It is expressed in the general form us: P(z) =a z U

w-l Z

called complex or imaginary cube roots of unity,
Llements of the matriv: [he numbers wsed in movws or columms aee said 1o be the entries or elements of the matns.

Order of matrix: A bracketed rectangular array of apen elements @, (1= 12,3, .m; j = m. i,

arrenged 0 m rows and @ columns is colled an or by 0 maeis (writ

the order of the matrix.

Row Marrix or Row m ‘ -

[{i'_., Gy Qg e % WRALIE OF @ 10w veelor
i d\N 1P 71 & 1, then the marrix is colled o reviunpEnlar matrix of order 8% B thot is, the marix

number of Tows is not equal to the number of columns, 15 suid to be o rectungelar matrix,

X M is called
c \o

l*n mamix of the form

Saquare Matrix: 1o = o, then the matnx ol order 812 0 15 saud (o be a siguare masins of osder 9 or o se, e
marrix which has the same number of rows and columns is called a square matrix.

Null Matrix or Zero Matriv: A syuare or rectangalar malrix whose each element 15 zero, is called o mal! or zers
MG,

Transpose of a Matrix: T4 s a mateix of order 73 R then an 7730 1 maleix obtained by iterchanging the
rows and columns of 4. is called the transpose of AL 1t i3 denoted by A",

Inverse of a Square Matrix of Order n 2 3: Let 4 be o nun-singelar sguare matros of order n, 1 there exists matriy

Bzuchthat AB=BA=1 o~ then 8 is called the multiplicative inverse of A and is denoted by A ’
Parrial Fraetion: Expicasing a rational function as a sum of pamial fractions is called Partial Fractio.

Rational Fraction: The quotient of two pal}.-nmnmlaf‘u where Q(x) # 0, with ne common fuctors, 15 called a
hx

Ratwona) Frachon,

Py .
Oixl

polynomial v} in the numerator is bess than the degree of the polynomial ((x) in the dETkDmI]iEItiJ

@El@ = chn.i. ol the

Proper Rational Fraction: A rational function is called a Proper Rational Fraction if the degree of the

polynomial Pixd in the numerator is og

Irreducible Fovtor: A ichiaras i
real coefticients. For cxg




Vel
w@@@wd
G e G

qmwwo o
0“
Fund al Law of Trigonometry: Let o and & be any two angles {real numbers), then

cos(ar — ) = coser cos fF + sine sin ff which is called the Fundamental Law of Trigenometry.

Allied Angles: The angles nssocited with basee angles ol measure @ o a right angle or ik multple are called Alled
Angles,

Function: A function is a rule or correspondence. relating rwo sets in such a way that each element in the
first s¢t corresponds to +ne and only onc clement in the second set,

Dommin: A lunction §from o sel X o o sel Vis o role or o correspondence (hal assipgng loe ench element v in X
a unbgue element p in ¥. The set X is called the domain of £

Range: The set of corresponding elements y in ¥ is called the range of £

Even Funetion: A function [ is said to be an even if f{—x) = f(x) . for every number x in the domain of |
Odd Funetion: A function [ is said o be an odd if f{=x)= = f (), for every number v in the domain of § .
Veotor: A vestor is o gquintity that bias both magnitude and direction for examples displacement, velocity,
acccleration, weight, foree, momentum, electric and magnetie ficlds, ere.

Scalar: A scalar is a quantity that has only magnitude ov size, such as mass, time, density, temperamure, kengh,
volume, speed work e,

Uit Vector: A unil veeior is delined as 2 vecior whose magnitude is unity,
Orthogonality of Two Yectors: Two noes-zere voeows a and ¥ are perpendicnlar if and
Hypathesis: A hvpothesis is an educated guess or proposed explanation for a siicmics

Induction of Hypothesis: [ relers (o the process of formulgmang o Y
Q
c

examples or patierns observed in paricular cas
Binomial Expression; An algebraic express g@

S Itiphy a mmber by every positive integer below it eill 1
et 'ohjects taken A= @) o1 4 time s an arrangement of the » objects.

anly if
- Adence.
e on specilic

binomiad ar a bmomial ex)
Factorial: Factorial is a ma

Permutation: & pe i

Circular | Al permutation, there ane (7 — 1) ways for n distinct things or objects because
i relstl, gements of things ( objecls can be mtated (o 1) times,

Limit netion: Lot a function £ x) be defined in an open interval near the number "™ {need not o be at g™
1f, as v approaches o™ fiom both left and right sides of *'a™. #ix) approaches a specitic number “L™. Then L is
called the limit of £.x) as x approaches to a

Divergent Sequences. A sequence is divergent if it does not approach a finite value.

Monotonic Sequences: A seguence is monotonic iU i1 is either entirely non-inereasing or non=tecrensing. Monotanie
sequences often converge, but not always,

Bounded Sequences: A sequence is bounded if there exists some real number M such that Jan] < M for all o, A
bounded sequence may o miy nol converge,

Arithmetie progression (APp An arithmetic progression is a sequence in which each renm after the first is found
by adding a constant to the previous teem, This constaat is called common difference of the arithmetic progression
und 15 usually denoted by d®

Serles: The sum of the terms of a sequence is called the series of the eorresponding, sequence.

Creometric Progression (GP1 A peomelniy progression of Ceometne sequence 15 o sequensce in which each term
alter the Aest is found by multiplying the peevious teem by a nonzero constant r called comman ratio,

Arithmetic geometric sequence (AGS): A soquence which is formed by multiplying the corresponding terms of
an AP, and a G s called arithmetic-greomeine sequence,

Quadratie funetion: A quadratic function is a polvnemial function of de Tda thpicgll @ in the
standard form: fiap= ax® — e + ¢, where o, band Ejm e @m . cC o

Polynuomial Tunction: :ll l OENLY) % ' @n al e

pPression form

=1

a,'.x‘" +da X +a, o '+ Yol o+ 0, where wis o non-nemative imleger and

the coeflicients_¢
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