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l After studying this chapter, students will be abls to:

Makn masanable esEmates of value of physical quaniibes [of thoss quantifies that are discussed in
Thi bapess alihis grade].

‘Usa thae comventions for indicabng unis. a8 sat outin the 51 unite.

Expriss darived units as products o quotionts of the S base units

Analyze the homopgensity of physical equations [Through dimenelonal analysi)
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gics is the most fundamenial branch of
physical sciences., It provides the basic principles *

and laws which help to understand the mysterias of
other branches of sciences such as asironomy,
chemistry, geology, biology and health sciences,
The foos, lechniques and products of Physics
have transformed our dreams Into realities. The
comforts and pleasures added in our lives are
frutfiul  results  of sclence, lechnology and

engineering in everyday ife. ,
The information technology has entirely changed M
the outlook of mankind. The fast means of

communication have brought people of the entire Eﬁgmmm'ﬁﬁéfﬂ

world in 5o close contact that the whole world has — whather we rrulw a sand o
hecomea agnbd '.rilage‘. :




The foundation of physics depends on physical quantities in
ferms of which the laws of Physics are exprassed. Therefors,
these quantities have to ba measured accurately. These are
mass, length, fime, velocity, force, density, temperature,
alectric currant, and numerous others.

Physical quantities are often divided intc bwo categories: base
guantities and derived guantities, Derved quantities are those
which depend on baze guantities. Examples of derived
guantities are velocity, acceleration, force, etc. Base quantities
are not defined in terms of other physical qguantities. The base  Saiid
guantities are the independent physical quantities in terms of ~ Fariide physice
which the other physical quantities can be defined, Typical  Superfuidity

examples of base quantities are langth, mass and tima, ol e

The maaauram‘rt of a base 1;||.Mzm1;x|hr involve

1.2 HTERHATIGHALE‘I"ETEHDF UNITS Ez’m?’*‘“’

In 1960, an intermational committee agread on a set of definitions and standards to
describe the physical guantities. The system that was established is called the System

International (S1).

Sl units are used by the world's scientific community and
by almost all nations, The system |nternational (SI)
consists of two kinds of units. base units and derived
units.

Base Units

Thera are seven base units for physical guantities
namely: length, mass, time, temperature, sleclric o
current, light or luminous intensity and amount of “W
substance (with special reference to the number of W /-\
partickes). Prefixes such as milll, micrg, kilo,
used with them to express smaller or larger guan

<§F &*c & | me
The names of base urits for t @ terumwymbdsmismdln

Table 1.1,

E(% i l"' "’IIH; i :




Derived units are those unils
which depend on the basze

units. Some of the danved m e Senes -L"m e
units are givan in Tabla. 1.2. — = T T
The units of plane angle and Plang angle o mr.t Mm
solid angle have also besn  Solidangle seradian | e | dimensionless
includad in the list of derived  Fore newion N | kgms?

units since 1995, Wark jouiles J Hm= kg m? 5%
In addition 1o base and  Power watt W e L
derived units, the 51 permits  Electric oharge | coulamb C As

the use of certain additional ~ o pascal Pa | Nmi=kgmigt

units, including:

* The traditional mathematical units for measuring
angles (degres, arcminute, and arcsacond).

= The fraditional unlts for sta

. such as the

decibal
0
] s mrnmnnly used in ordinary life: tha litre
volume and the tonne (metric ton} for large masses.

+  Two non-metric scientific units are atomic mass unit (u)
and the electron vaolt (g},

»  The nautical mile and knot; unils traditionally used at
sea and in meteorology.

*  Theacre and hectare, commaon metric units of land area,

+ The baris a unit of pressure and itis commonly used as
the milibar in meteorology and the kilobar in
engineering.

* The angstrom and the bamn, units used in physics and
astronamy.

Scientific Notation

Mumbers are expressed in standard form called sclentific
notation, which emphys puwers of ten. The intematicnall

digit left of dsmmai 'ﬂms. the

written as 1.34?:; 1 t{"\‘
U




Muost prefixes indicate order of magnitude in steps of 1000
and provide a convenient way lo express large and small
numbers, to eliminate non-significant digits. 51 also
includes four of the other prefixes 1o accommodate
ugage already established before the introduction of 31
{Table 1.3). They are centi={107), deci-{10"), deka-{10")
and hecto-{107),

Conventions for Using Sl Units

Usa of S| units require special care, more particulardy in LN
writing prefixes. Some points io note are: 10
1. Each 51 s reprasented by a symbol ol an abbreviation, 1I:l’I
These symbols are the same in all languages, Hence,
comrect use of the symbol is very important,
For eurnpln For ampere, we shy
“amp"; for seconds “s" not “se

% P
rexample: "m’ fnr melre, “s" for second, elc,  Ageal e Bt 141"
exception "L" for litre. ::‘: 320’

4. Symbols named after scientists have initial letters e L
capital, nommal heartbasts  Bx 10

Period ol auddle

For example: “N" for newton, “Pa” for pascal, "W for  sound un::: =107
walL. raﬁamn':u 110°

5. Symbols and prefixes are printed in upright (roman)  Pariod af vibration

style regardless ofthe type style insurrounding text.  soiw o 110"
For example; a distance of 50m, P
6. Symbols donot take plural form, Approximate Values of Some
Forexample; Tmm, 100mm, 1 kg, B0 kg, Tomh i
7. Mo fullstop or dotis placed after the symbol except at Do You Know 7

the and of the sentence, u.._utrmgut..-.hm
8. Prefixis written before and without space to base unit. fan
Furexampla* “mL" notm L or*ms” not m s

cepebing 15 this eeustion 19
mh:msmn".lnm



oum:l prefixes are not allowed:
Forexample: 1yuF should ba 1 pF.
11. When base unit of multiple is raised to a power, the power applies to whole multiple
and not to base unit alone.
Forexample: 1Tkm' =1 (km} =1x (10" m)’ = 1x10" m".
12, Use negative Index notatlon (m 5'1] Instead of solidus (mis).
13. Use scientific natation, that is, one non-zero digit left of decimal.
Forexample: 143.7=1.437x10°,
14. Do not mix symbols and names in the same expression.
Forexample: metra per second oF m s"’i not metredsec o m'sacond.
15. Practical work should be recorded in most convenient units depending upon the
instruments being used.
Fnr Example: Measuremants uslng sc:raw gauge shnljd be record

AN

reading wnn one lnstrumam, ts limit of rneammanl is the amale«sl division or
graduation on its scale. Hence, every measured quantity has some uncertainty about its
value, Whan a measuremeant is made, it is taken ta the nearest graduation or marking on
the scale, You can estimate the maximum uncerainty as belng one smallest division of
the matrument. This is called absolute uncertainty. It is one millimetre on a metre rule
that is graduated in millimetras. For example, if one edge of the book coincides with
10.0 crm mark and the other with 33.5 em, then the length with uncertainty is given by

(33.5 £ 0.05) ocm - {10.0 £ 0.05) cm = (23-5 £ 0.1) cm
It means that the true length of the book. is in between 23.4 cm and 23.6 cm. Hence, the

maximum uncertainty s £0.05 cm, which is equivalent to an uncertainty of 0.1 em
Infact, itis equal lo least count of the metre rule. Uncedainty may be recorded as:

’ Absolute uncerain
Frachonal uncertainty = it inty
Measured valua

or Percentage uncartain% A @ @@m




l:h.q.lllic l.!.ea:-me-mcltb e

! nd what Is certain: with a digital scale, this is reflected in some fluctuations of
the last digit, If the last digit lucluates by 1 or 2, write down that last digit. If fluctuation is
more than 2 or so in the last digil, it may mean that the reading is being influenced by
some factor such as air currents, Regardless of the reason, a large fluctuation may
mean that the displayed digit is not really significant.

The indication of uncertainty in a recorded value has been simplfied using significant

figures. If a measuremant is recordad using tha knowledge of significant figures, thenits
last digit, which is an estimation, is an indication of the accuracy of the recorded value.

14 USEOF SIGNIFICANT FIGURES

The number of digits of 8 measurement about which we
do feel reasonably sure are called significant figures.
Infact, they reflect the usa of actual instrument used for

that measurement. YWhile uzing a ealculator, the result of
any calculation contains many digits after 1

For Your Information

o

als

?é

point. The additional dbgrls mﬂy | z
ras | ie oo *‘# of e mieem
m- ' Haight of &
@ of the Earth
R e o mmn
calculations to the correct numbers ufsngnlﬁcant ﬁgures-, mhﬂ_
Itis better to quate the resull in sclentific nolation to avoid ol "'""":
any ambiguity regarding the number of significant figures. iy Wiy .
For example, waighing the same object with different g 8 Diatance 1o the
balances: tharkcs
Electronicbalance : mass=3.145+0.001g Order of magnitude of seme
v distances
Lever balance r mass=3.1x0.1g

Usually, the uncerainty £ 0.001 g or 0.1 g is dropped, and it is understood that the
number quoted has an uncertainty of at least 1 unit in the last digit. All digits which are
guoted are called significant figures. In any measuramant, the accurately known digits
and the first estimated or doubtful digit are called significant figures. Proper use of
significant ﬂgures BnsLres H'nat We mn‘ecl!y represent the unmnarnty al our




ing vnth significant figures
(i) Counting significant digits

{a) Al digits 1,2,34,5,6,7,8.9 are significant. However, zeros may or may not be
significant. In case of zeros, the following rules may be adoptad:
(b}  Azerobatwaen two significant figures is itself significant,

{4] Leros tothe left of significant figures are not significant, For exampla, none of the
zaros in 0.00467 or 02.59 s significant.

{d)  Zerostothe right of a significant figure may or may not be significant. In decimal
fraction, zeros to the right of a significant figure are significant, For example,
all the zeros In 3570 or 74000 are significant. However, in integers such as
B, 0040 kg, the number of significant zeros is determined by the precision of the
measuring instrument. If the measuring scale has a least count of 1 kg, then
there are four s:gmfrcant Iiguras mﬂiﬂn in snlanljﬁnndahun as 8.000 x 10° 4.:i

g}  When a measurement is\reco
figures other)
measurama

(i1} iding numbears

umber of significant figures in the product or quotient not more than that
conlained in the least accurate factor e, tha factor containing the least number of
significant figures. For example, the computation of the following using a calculator,
gives
5.348 107 » 384 = 10°
1.336 =345708802 « 10 Remamber Thumb Role

As the factor 3.64 = 107, the least accurale in the above Forealeulation of and result:

calculation has three significant figures, the answer should « Addition / Subsraction; sama

be written to three significant figuras only, The other figures  precision.

are insignificant and should be deleted. While deleting the = Mulliplication / Division: same

figures, the |ast significant figure fo be retained is rounded mm}“m of

off for which the following rules are followed:

(a) If the first digit dropped is less than 5, the last digit retained should remain
unchanged.
{b) Ifthe first digit dropped i more than 5, Il'mtﬂglun beretained isin
ic) Ifthe digit to be dropped is 5, the previows digit wi 2
by one If it Iz add and reta' ;
numhars are rounde




I:h-qllliG Magsunedpies m::n.

75 sroudedofias 438

56.8546 rounded off as 56.9 For average value of many readings:

73650 isroundedoffas 736  * Mean deviaon from an avarage
54.350 is rounded off as 4.4 « Periodic Uncertainty:
, Divide leas! comt of l:ln'lhg deviee
Fnlhwlng_ !Ihs_ I'I..Ill:!n, 'ﬂ'mcurracl answar ]nl' the by the numberof
computation giveninsection (i) is 1.46x 10°.
(liiy  Inadding or subtracting numbers Cuick Quiz

The number of decimal places retained in the 4 s the comact number of significant
answer should be equal to the smallest number of  figures for 2.0054 m, 0.03030 m,
decimal places in any of the quantities being added  40,0m, 0.5m, B.20x 10" m.
ar subtracted. In this case, the number of significant  2,Give the answar to the approprate
figures is not important. It is the position of decimal  number of significant figures,
that matters. For example, suppose we wish to add Mm*mmq»sd.i k37
the following quantities expressed in metres. ﬂ Soear
] 721 (i) LTy,

m 4, Giva thn answer o the appropaate
: nmﬁsbﬂmmmpm

= 8.1273 245510’ MR Z.46m [ 3.6m=?

5.5m 8.13m

In case ([}, the number 72.1 has the smallest decimal places, thus the answer is rounded
aff to tha same position which [s then 75.5 m. In case (i), the number 4.10 has the
smallest number of decimal places and hence, the answer is rounded off to the same
decimal positions which isthen 8.13m.

Limitations of Significant Figures

Significant figures deal with only one source of uncertainties that inherent in reading the
scale. Real expenmental uncerainties have many contributions, including péersonal
errors and sometimes hidden systematic errors. One cannot do better than that what the
scale reading allows, but the total uncerainty may well be more than what the significant
figure of the measurements would suggest.

1.5 PRECISIONANDACCURACY

The terms precision and accuracy are frequently used in
physics measurements. They should be distinguished mrm Liss
u:la:nrl;o‘u| T‘hepractslm nl'a measurament is damrrnh'badbyﬁu AMEE

'& emantiothe exacl g ptadvauanfaphﬁlcalquantllr
e frac! "?‘“‘ grcentage uncerainty. The smaller the fractional or




e lage UHCE'HEJI‘IIM the more accurate is (he [EEERYTTRTN ferTrRetIte

measurement,

For example, the length of an object is recorded as o
25.5 cm by using a metre rule having smallest divigion in
millimeatre. ks precision or absolute uncertainty (least
count)=+£0.1 cm,

Fractional uncertainty = 2‘;;‘;’:‘1 =0.004

Percentage uncertainty = 2{15.151:;; «100= 0.4%

Another measurement taken by Vemier Callipers with
least count 0,01 cmis recorded as 0.45 cm, It has precision ®
ar absolute uncartainty (least count)= + 0.04 cm. "

i — 0.1 cm
E ' a — T B all?
ractional uncertainty e
Percantage uncerainty = 2.1
9 oy 045 ¢
Thus, the reading 25.5 cm taken

less pracise bul is mop af
uncertainty or ermor,

measuremeant which is important. The smaller a physical
guantity, tha maora precise instrumeant should be wsed. Hara
e measurement 0,45 om demands thal a more praciss

count 0.001 cm, should have been usad. Henca, we can
conclude that:

A precise measurement is the one which has less
precision or absolute uncertainty and an accurate
measurement is the one which has less fractional or
parcentage uncertainty.

We can never make an exact measurement, The bast we
can do s o come as closa as possible with in the limitation g
of the measuringinstrument. '

1.6 ASSESSMENT OF TOTAL
UNCERTAINTY IN THE FIHM. I.I
mia gal Cimenio (1657

= 6Ty, In Flarance, They cortained
||"| lhﬁdmhmuﬂm.lﬂmﬂhr




Eh.-pl-iG Mg urediies ma.

For your information

Abealute uncertainties are addad, For example, the A e

distance between two positions x, = 154 £ 0.1 cm colours-cyan, magenta, yallow
and x, =25 6cm £ 0.1 em |s racarded as: and black ko produce the entine

i : I T range of oolours. All the: colours
A da x,l,-‘lﬂ.z * D.Zcm- i this book have besn made
and addition of two lengths is: from just thesa four colours.

f,=85+0.1cmand {,=12.6+ 0.1 cm recorded as.
P=f+0=21.1¢20.2cm
2. For multiplication and division

Percentage unceriainties are added. Forexample, the maximum pessible uncertainty in
the value of resistance R of a conductor determinad by the potential diference Vapplied
across the conductor resulling in current flowing through it is estimated as under:

Let V=34201V Thuml:l Rule for Total Uncedaiity |
I = D.6B£0.05 A :

The value of B will be writtern as:
34V

For your information

A= gema - oom | Teavelume ofigns
Hence, R = 5.0+ 0,5 chms, uncerainty being anestimate  Moan to Earth 1 min 20's
anly, Is recarded by one significant figure. Bun o Earth Bmin 205

3. For Power Factor i ol Shz0s

The percentage uncertainty |s multiplied by the power factor in the formuda. For
examgle, the calculation of cross-sectional area of a cylinder of radius r= 1.25 cm using
formula for Area A = o s given by the %age uncertainty which is A = 2 x %age
uncertainty in radius 7. As uncertainty is mulliplied by power factor. it increases the
precision demand of measuremant, When the radius of a small sphere is measured as
1.25 cm by Verniar Callipers with least count 0.01 cm, then

The radius risrecorded as r=1.259+£0.01cm
Seage unceralnty inradius ris

Total percentage uncertainty in area
Thus



ThusHhe resull should barecordedas A= 4.9120,08 cm

Example 1.1: The length, breadth and thickness of a metal sheet are 2.03m, 1.22 m
and 0.95 cm respectively. Calculate the volume of the sheet correct up to the
appropriate significant digits.
Solution: Given Length f=2.03m

Breadth b=122m

Thickness  h=0.85cm=0.95x10"m

Volume V=Eubxn=2.03mx122mx0.9511n'=rri

=2.35277x10° m’
As the factor 095 cm has minimum number of significant figures equal to two, therafore,
volume is recorded up to 2 significant figures, hence, V=2.4x10°m"
Example 1.2: The mass of a metal box measured by a lever balance is 3.25 kg. Two
gilver coins of masses 10.01 gand 10.02 g measured by a beam balance are 3 .-:--::-‘ﬁ\
What is now the total mass of the box correct up to the appropr @‘
o)

Solution: O

Total mass when silvercoins arss i ‘ +0.0%001 kg + 0.01002 kg
? = 3.27003 kg
- y --.: ﬁhﬂ.hﬂﬂgﬂﬂd&ﬁMphﬁaﬂ,henm'mm
N » e D

»orted o 2 decimal places which is the appropriate precision,
Totalmass = 3.27 kg
Example 1.3: The diamater and langth of a metal cylinder measured with the help of
Vernier Callipers of least count 0.01 cm are 1.25 cm and 3.35 cm, respactively.
Calculate the volume Vofthe cylinder and uncertainty in it,
Solution:  Given
Diameter d=1.25 emwith least count 0.01 cm
Length f=3.35 cwith least count 0.01 cm
Absodute uncertainty in length =0.01cm
Yage uncertainty inlength =(0.01 cm/3.35cm) =100 = 0.3%
Absolute uncertainty in diameter  =0.01 cm
Yhage uncertainty in diameter ={0.01em/1.25¢em) » 100=0.8%
As Volume mari=xn !

Total uncertainty in V= 2 (%age uncertainty in diameter) + (Jage Uncertain ﬁ@l}
@
Then

Thus
where 4,11 cm 2.3 ke




QUANTITIES

Any physical quantity can be described by certain
familiar properties such as length, mass, lime,
temperature, electric current, atc. Thesa measurable
properties are called dimensicns. Dimensions deal with
the qualitative nature of a physical guantity in terms of
fundamental quantities. The quantities such as langth,
depth, height, diameter, light year are all measured in
metre and denoled by the same dimension, basically
known as length given by symbol L written within square
bracket [L]. Similary, the other fundamental quantities,
mass, lime, eleclric current and lemperalure are
denoted by specific symbols [M], [T], [A] and [8],
respectively, Thesa five dimansions have been chasen
as being basic because they are easy to mea
expariments.

The dimensions of 3 oF-gar e [ndicate hew They
are :rala!edmtheb%‘ \‘L% a
ﬂfﬁ.ll‘l Ia 4

1:

e B a combinaticn
s, For example, speed v is
n-metres per second, 30 it has the

dimensions of length [L] divided by time [T ].

V= [LT= LT =17
Astha acceleration a = A/ Af
Dimensions of acceleration are

[E]=[¢ [TI= LT [TI=ILT]
Also, dimensions of force can be written as

[F1= [ [al= (M LT "] = [MLT"]
By the use of dimensionality, we can check the
homogeneity (correctnass) of a physical equation, and
alzo, we can derive formula for a physical guantity.
Homogeneity of Physical Equations
Correctness of an equation can be checked by showing
thal the dimensions of guantities on both sides of the

equation are the same. This is known as pri
homoganeity.




can be ignored. By putting the dimensions of both sides
of the equation:

[S1= [E0t"]
Writing the symbals of dimensions [L]= [LT*] |'I'2]

[L]= LTT7)
ar [L)= L]

Thiz shows thal dimensions on both sides of eguation
are the samea, therefore, the aquation is dimensionally
correcl

D&rh;aﬂm of a Formula

Dimensionality can he-ysad o d o d .
for a physical quan Sl
, ypeEnds

factors onwhi : =
Wﬂm a formula for the centripetal force required to keep an object
m aleng a circle with uniform speed. Assuming that centripetal force depends on

mass of the object, radius of the circle and uniform speed.
Solution: As force depends on mass m of the object, radius rof the circle and uniform
spead v,
Famyvr
F = (constant) m™V'E .. —_—
where the exponents [powers) a, b and ¢ are to be determined. By the principle of
homogeneity, the dimansions on both sides of the equation should be the same, Since,
constant has no dimension so by ignoring it, we write the above equation in terms of
dimensions as,
F1 = [m1v]iF]
[MLTT] = [M]UT L]
MLT] = W°]ILT L
[“LT-:I o MLH‘T-.I —Il’li!ib;-i,lppn i




Solving the above equations, wehavea=1,6=2, ¢=-1

Putting the values of a.b and ¢ in eguation (i), we have
F=(constant) mv'r
or F ={::mstmtjmv2.r'r
The numerical value of the constant cannct be determined by dimensional analysis,

However, it can be found by experiments. In the above equation, numerical value of the
constant happenstobe™1", sothe equation reduces to:

E=mis
Limitations in Dimensional Analysis

The dimensional method cannot Identify whera an equation is wrong, Eve
aquailnn |spmvad mrrecl w&c&m only say the squatmn mlght e

|@ Multiple Choice Questions

Tick (+) the correct answer.
1.1 The purpose of study and discoveries in Physics s,
(a) the probing ofinterstelar spaces
(b}  the betterment of mankind
(e) thedevalopmant of destructive technology in warfare
(d) developmentin aesthetics for the world

1.2 Thelength of a steel pipe s In between 0.7 m 1o/ 0.8 m., Identify from the following. the
apprapriata instrument to be used for an accuracy af 0,001 m,

(@) Amicrometer screw gauge (b) Ametrerule
(B} Atenmetres measunngtape (c)  AVemier Callipers
1.3 The diametar of a steel ball is measured using a

Vearnler callipers and its resding is ghown in the
figure. Whal is the diameler ol ha s ,Eal bll?

(a) 1.306m ;
(c) 1.40cm d‘?




140 ¥Pha figure shows the reading on 8 micromeatar Sy
gauge used o measure diameter of a thin rod. One
completa tum of the imble iz 0.50 mm and thera are
50 lines on the circular scale. The diameter of the rod is:

{a) 3.67 mm (b} 3. 17 mm {er 4.17mm {d) 4.20mm
1.5 Thenumberof significant ligures of a measuremant are dafined as:

{a) they reflect the accuracy of the observation ina measurament

{c) they are the figures which are reasonably reliable

{d) they are the accurately known digits and the first doubtful digit of a

measurement

(c) allofthe above
1.6 The numberof slgnificant figures inthe measured mass 25000 kg is

(@) two (b} three {c) four {d) Ihre
1.7 Thesum1Zkg+2.02 I-cg +5 1 kg sccording tnapnm'n & Pk @

F 9.12 kg

{a) 19kg |
5-0.07268) Is:
(d) 0.15332

: (d) 4.6

1.10 The answer to the mathematical division [45 2 + 6.0) in apprapnate number of
slgnificant figures is:
{a) 7.5 by V.53 {c) 7.533 (d} 7.5333

1.1 Thia anzwar o tha fallewlng malhematical aparation 244 m & 100 &7 5.0 m 1o tha
appropriate number of significant figures is;

{a) 48BOm (b) 4900m {c) 4.88x10°m  (d) 4.9x10°m
1.12 The ratioofthe dimensionsofforce and energy i3
fa) T by T fe) L @ LU

1.13 |dantify which pair from the following does not have identical dimensions.
{a) Workand lorque
{b}  Angular momentum and Planck's constant
{c) Momentofinertia and moment of force
{d} Impulze and momentum

1.14 The following figures are o
Vemsr c:allpars




.12} shows Ihe reading when a solid cWlinder is placed hﬂm BaEn le jaws, ihﬂ
length of the evlinderis

{a) 3.26cm (b} 3.30cm (¢} 3.34cm {d) 4.20cm
1.15 Theleasi count of aninstrumant determines
(a) precisionof a measurement
{c) accuracyofa measurement
{e) fractional uncartainty of a measurement
{d} percentage unceriainty of a measurement
1.16 A measuring 1apa has been graduatad with a minimum scala division of 0.2 cm,
The allowed reading using this tape may bea

(a) 805cm (b) 80.6cm {c) 80.65cm (d) BO0.Tcm
[] Short Answer Questions E]

{I} ML'HFI‘j'th di'l’ld'l 0 Sevard
1.2 Howis the Soala e

Whatis e Ve 7
M@r nurnt:-arainmmmf cnotation,
1437 {b) 206.4x10°

1.5 Write the following numbers using correct prefixes:

(a) 580x10°g (b) 0.45x10°s
1.6 Kinetic energy of a body of mass m moving with speed vis given by 172 mv'. What

are the dimensions of kinetic energy?
1.7 How many significant figures are thare in tha fellowing measuramants?

(i) 3ITkm (i) 0.002953m (i) 7.50034cm  (iv) 200.0m
1.8 Write the dimensionsof: (i) Planck's constant (i} angular velocity

[@ Constructed Response Questions [ |

1.1 Why do we find it useful to have two units for the amount of a substance, the
kilogram and the mola?

1.2 Three students measured the length of a rod with 8 scale on which minimum
division is 1 mm and recorded as: (i) 0.4235m (i) 0.42 m{ﬁl}ﬂ 424 m. ‘\"‘
mmmctandwrr_.r? @
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we datermine dimensionsof P7?

1.5 Whalis the least count of a clock if it has;

(a) Hour'shand, minute’s hand and second’s hand
(b} Hour's hand and minute's hand

1.6 How can the diametar of a round pancll ba measured using metre rula with tha

same sccuracy as that of Vemier CallipersT Describe.

1.7 How would be the readings differ if the screw gauge is used Instaad aof a Vermier

1.8 Write the correct reading of the length of a solid

Callipers to measure the thickness of a glass plate? g»

cylinder as shown in the figure if there is an error
of +0.02 cm in the Vermier Callipers.

1.9 Thare are 50 divisions on the circular scale of a screw gauga Il lha haa %I@gﬁ
glse zero arror as the znd dwlsmn ¥ sl
caincides with the da!mum lina anfze sl

below the da hat

as measured
figure?

thy a dimensionless quantity? Give one example,

student uses a 3Crew gauges to determine
the thickness of & shest of paper. The
student folds the paper threa times and
measures the total thickness of the folded
sheat, Assume that thare is no zaro arrar in
the screw gauge. The reading of screw
gauge is shown in the figure, Find the
thickness of Ihe sheet.

.i-*. B W

1.12 Round off each of the following numbers to 3 significant figures and wnte your

anawer in scientific notation.
{a) 0.02055 (b) 4856.5

'@ Comprehensive Questions |

What is meant by uncertainty in 8 measurement? How the uncertainty in a digital
Fﬂstnumanl Is indicated?




period of a simple pendulum?
ik} The mass of a solid cylinder iz 12.85 g. s length is 3.35 cm and diameter is
1.25 om. Find the densily of its material expressing the uncerainty in the
dansity.
1.4 Explain with examplas the writing of physical guantities info their dimensions. Wrile
its two benafits.

1.5 Check the homogeneity of the relation;

A
V= I
where vi5 the speed of ransvearse wave on a stretchad stnng of tension T, length ¢
and mass m.

@ Numerical Problems [

is the distance that light travels in one year, If 5

one light year in metras? ’ aO V

(Ans:{a)3.2x10"s(b) 3.1 x 107" years)
1.3 The length and width of a rectangular plate are measured fo be 18.3 cm and
14.60 cm, respectively. Find the area of the plate and siate the answer to corecl

A\ms— what is
fhs 2.5 10" m)

number of significant figures. {Ans: 26T cm’)
1.4 Find thesum of the masses given in kg up to appropriate precision:
(Il 3197 (i) 0.068 (i) 13.9 (W}3.28 (Ans:20.4 kg)

1.5 The diameter and length of & metal oWinder measured with the help of a Vemier
Callipers of least count 0.01 cm ara 1.22 em and 5.35 cm respactively. Calculate its
volume and uncertainty in it. (Ans:B.2=0.1cm’)

1.6 Show thal the expression v, — v* = 2a3 is dimensionally correct, where v is the
initial velocity, ais the acceleration and v, s the velocity after covering a distance 5.

1.7 Showthat the famous “Einstein equation” E = mc’ is dimensionally consistent.

1.8 Derive a formula for the time period of a simple pendulum using dimensional
analysis. The various possible factors onwhich the ime period Tmay depend are:

(i) lengihofthe pendulum /

{ii) mass ofthebobm @O@@

(i} angle Awhich the thread ma S it w

' tes e tog \-«'}(‘ U {Ans: T =Constant |
AL

Vg
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After studying this chapter. the students will be able to:
Represant a veclorin 2-0 as two perpendicular companens.
Duscritg th prodiuctof two visctors (Al and sross-product) alng with thalr propeniss,
Duarivey the aruafions of mafion [For uniionm acopieraion cases only, Darve from b definitions of
mm mummnummnmpmmm
‘Solve problems using the equations of motion [For the cases of uniformly accelerated molion in &

resistanca; .
Thiz also lnl;hdns mwhamlmnqu‘ :
ncrmmlmmmmraam .

- adraight line, Including the matien of bodies taling in & uniform gravitational m

i : N unandlsﬂﬂamnammmamﬂmllyﬁmﬁﬁgm

il
[ . ammwmammpmmmmm Sfuations may

-  How fEI"i'muM it gm_slungﬂm lerved [and?

- ‘Where would [ be after a glven tima?

= Hov lomg will it pernasn in Bght 7

Bituabons rmay alao requing siudents o caleulate for 8 projeciBe [aunched from grownd, eight the

- Eaunch angla that resulls in the makimum rango.

- malation between the kaunch angles that resultin the sama ranga.]

Pradict qualitativaly how air resiziance affects pregactile mofion, [This inchicas analysis of both the
horizantal component and varical component of velocily and hence predicling quakitatively the
range of the pm]aﬂt]

Apply the pinciple of conservalion of momentum to salve simple prablems [Inﬂ.mlnn alastic and
inedastic interactions batween objects In both one &nd two dimensions.

Knowledge of the conceptof coefficent of reatitution |s not required.
Examples ol applications nchude:

= karate chope o break a pile of bricks
«  carcrashes

= ball&bat

- tha motion under thrust of a rocket in 8 sfraight line considering short thrusts dumgwhm
s rermaing consinn] ) .
Fmdint:rﬂnnﬂynmﬂmhrtluﬂwdﬂﬂnmﬂ'ﬁlsInnludurmt ;

eollisicn, fotal kinelc energy is cormserved and e el
spaad ulaupamﬁ:rn] Q
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BASIC CONCEPT OF SCALARS AND VECTORS

Scalars and vectors are basic concepts in physics. Many problems in physics require to
distinguish between scalar and vecior guantities to apply the commect mathematical and
conceptual epproaches. Understanding scalars and vectors help us to grasp how
physics applles o real-world siluations, such as calculating the total distance travelled
{scalar) or determining the magnitude and direction of force (vector). Learning these
concepls develops critical thinking and problem-solving skills, This chapter is primarily
concermned with vactor algebra and iis application in unidform accelerated molion, in a
straight line, motion of freely falling bodies in wniform gravitational field, projectile
maoticn, and interaction between objects in one and two dimensions,

Scalars are physical quanties thal are described solely by a magnitude {size or
amount} without anmy mention of direction. Thus, scalars are directionless and

fully characterized by a single number and its associated unil, @ @@W
N ; } o

Examples:
| tplel 2 kg.

Mass: The amountof ma

Distance: .‘-“r“ k=d by an object irespectve of the

Thetate at which an object covers distance. For examgple, 40 kmh'.

The ongoing sequence of events taking place. For example, 20

saconds,

Energy: The capacity to dowork. Forexample, 25 J.

Temperature: A measure of the average kinetic anergy of particles ina substance. For
example, 20°C.

Those physical quantibes which have magnitude well as dirachon for their complate

specification.

Examples:

Displacement: The change in position of an object. It has length, a distance
[magnitude ) and a direction (2.9, 10 m towards west),

Velocity: The speed of an object in a particular direction (e.g., 50 km h” fowards

W‘Bﬁ-ﬂ. m
Acceleration: The rate of change of velo r@@m eclion or

~Hetermined by is magnitude and



A good way o represent a vector guantity is to use a vector diagram, in which vectors
are often represented by armows. The length of the arrows indicates the magnitude and
the head of the arrow shows the direction of the vector, Vectors are typically denoted by
bold face letters (e.g; V. F) or an arrow head above symbol iﬁ].

Rectangular Components of a Vector

A component of 3 vector is ils effective value in a given direction. A vector may be
considered as the resultant of its component vectors along the speacified directions. It is
ustally convenient to resclve a vecior into its components along the mubually
perpendicular direclions, Such components are called rectangular components.,

Let there be a vactor A reprasented by a ine OF making an H
angle 8 with the x-axis. Draw projection OM of vector Aon  NF-------~-
w-axis and projection ON of vector A on y-axis as shown in '
Fig.2.1. Projection OM being along x-direction represented

by A, and projection OM along y-direction is re
A, By applying head to tall rule: Q

AL : Fig. 2.1
Thus, A, and. ‘, )- ‘- ponants of vector A. Since these are at right angle 1o each
ather, = rectangular components of A, Considenng the rght angled
Ir . the magnitude of A, or x-component of A is:
S (2.2)
And the magnitude of A, or y-componentof A is:
LI L .

Determination of a Vector from its Rectangular Components

If the rectangular companants of a vector as shown in Fig.(2.1) are given, we can find
outthe magnitude of the vector by using Pythagorean Theorem.

In the right angle AOMP

(OP)" =(OM)"+ (MP)'
or K m A A AR )

ar A= “m
collk

The direction B is given by tane = % = A EW@O
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le 2.1: Find the angle between two forces of equal magnitude when the
magnitude of their resultant is also equal to the magnitude of either of thesa farces.

Solution: Let B be the angle between two forces £, and F, where F, is along x-axis, Then
x-component of their resultant will be

R.=F,cos0°+F,cos @
R,=F,+F,cosb

And y-component of their resultant is
R, =F,sin0°+F, sin b
R,=F,sin@

TheresullantRisgivenby R'= R +R/]

As R =F,=F=F

Hence

Or

ar

ar

ar

Thera are two types of vector multiplications. The praduct of thesa two typas are known
as scalar product and vector product.

If the product of two vectors results in a scalar quantity then
itis called scalar product while if the product of two vectors
results in a vector quantity then itis called vector product.
Scalar or Dot Product
The scalar product of two vectors A and B is written as A.B and is defined as

whera A and B are the magniludes of vectors A and B and 8 is
the angle between them.

For physical (nterpratation of dot product of wo vactors A and

B, these are first brought to & common origirm{Fig.2.,
A.B =A(projection of B on A) w@




=ABoosB) =ABcos @
Similarky, B.A= BlAcos8)=BAcos B
We come acroas this type of product when we consider
the work done by a force F whose point of application
maoves a distance o in a direction making an angle 8 with
the line of action of F, as shownin Fig. 2.3.

Work done = (Effective component of force in the
direction of motion) x Distance moved

=|{Foosf)d =Fdcosf
Using vector notation
Fd = Fdcos8=Work done
Characteristics of Scalar Product

1, 5inc&A.B=AEmﬁﬁmﬂM=ﬂﬂ T A8 ﬂ
mulliplication is Irralevant. In §theryyds-soalarprad

2, Thescalar ;.
WQMM parallel vectors is equal to the product of their magnitudes.
ug for paraliel vactors (6 = 07)

A.B=ABcos( =AB

For antiparalled vectors (8 = 1807 )
AB=ABcos 180" =-48

The self product of a vector A s equal to square of its magnitude.
AA=AAcos( =A"

Scalar product of two vectors A and B in terms of their rectangular components

AB=AB +AB *AB, ..o 2T)

Equation (2.6} can be used to find the angle between two vectors, Since,
AB=ABcosB=AB, +AB +A B,

Tharsfors cosB= A“E’*A;:' M8 lne) .
O @@@W@O
ol
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ctoror Cross Product
The vector product of two vectors A and B, is a vector which is defined as
AxB=ABsinOn ... f29)

AXE
where i s a unit vector perpendicular 1o the plane ;T
containing A and B as shown in Fig. 2.4 (a). Its direction

can be determined by right hand rule. For that purpose, b

place together the tail of vectors A and B to define the B :
plane of vectors A and B. The direction of the product ( iy
vector is perpendicular to this plane. Rotate the First ; 4 :

vector A into B through the smaller of the two possible
angles and cur the fingers of the right hand in the Fig. 2.44a)

direction of rotation, keeping the thumb erect, The direction of the product vector will be
along the erect thumb, as shown inthe Fig 2.4 (b). Because of this directi
avector opposite insign to Ax B (Fig. 2.4-¢). Hence, a o

TBEA.
Fig. 24(¢ Fig. 240

Characteristics of Cross Product

1. Since Ax Bisnotthe same as B x A, the cross product IS non commutative. so,
AxB » BxA

2, Thecross proaduct of two perpendicular vectors (8 = 90°) has maximum magnitude
AxB=AB sind0°n =ABn.

4, The cross product of two parallel vectors is null vector, because for @@a
t=0"or 180°, Hance, @'@
AxB=ABsin 0" |=ﬂ@r : ‘F dg~°

As a conseguencen A x A =

4. The magnituide hearea of the parallelogram formed with A and B




Examples of Vector Product

i. WWhen a force Fis applied on a rigid body at a point whose position vector is r from
any point on the axis about which the body rotates, then the wming effect of the
force called the torque ©is given by the vector product of rand F.

“=rxF

ii. The force Fon a particle of charge g and velocity win 2 magnetic field of strength B is
given by vector product of v and B,

F = g{v x B}

3t I11 lhlzs uniar lh&:.r
ion and third equation of

' atlun nf First Equatinn of Motion

Suppose a body is maving with uniform acceleration along a straight line with an initial
velocity v,. Let its velocity changes from initial value v, to a final value v, in time interval £
Then the acceleration producad in the body dunng this time interval is given as

Vi—W

d=
: L

Rearranging, we can write
v,=v, = at
v=v+al . (211)

Above equation is the first eguation of motion. It comelates the final velocity attained by a
body with initial velocity and the time interval f, when moving with constant acceleration a.

Derivation of First Equation of Motion By Graphical Method

First equation of mation can be derived using valuc:ty tima graph ﬁ@g
with initial velocity v final velocity v, .U a .

Let the velocity of a hndyatpant : phi 18 ‘ 2t ool [in time interval fas
shown in Fig.2.5. A pe < : to x-axis and another

perperuilwlar BE




0A = v = Initial velocity of the body
BD = v,= Final velacity of the bady E
From the graph if can observed that I
BD=BC+CD i
BD=BC+0A {AsOA=CD) -
; L Tow—¥ D
Therefors W, = Ec+vp--‘-.r---ri--i!rErlri-if-l1r--"{2.12} Flg. 2.5 Velocy-Time Graph

The value of BC in above equation can be datarmined by laking tha slope of line AB,
Which iz equal to acceleration a.

-
AC

As AC=1
So ﬂ=.§§.

or | R @ 1
Combining equati 7 % Ve
: [F’ﬁ” B

T the first equation of motian,

Derivation of Second Equation of Motion
Suppose a body is moving with uniform acceleration a along a straight line with an initial
velocity v, which become v, after time interval . Letit covers a distance S in a parficular
direction during fime f, then using the definition of velocity as rate of change of
displacemant, wa can write

Velocity = Displacemeant/ Time
ar Displacamant = Velocity x time
If velocity of the body is not constant, we can use average velocity instead of velocity,
Thus

Displacement = Average velocity = Time

Displacement = {Final velocity + Initial velocity) % Time

Lising first equation of maotion,



25=2vt+al

S=wi+ 1? A i AR

Thiz is the second equation of mation.
Derivation of Second Equation of Motion by Graphical Method

Second equation of motion can be derived using velocity-time
graph for a body moving with initial vekocity v, which attainza E
final value v, in time interval I, While moving with constant T
acceleration a it covers a displacement S in time £, ;:"
It can be seen from the graph that distance travelled by the &
badyis, S=vxl ——
Also 5 = Area of the figure OABD Fig: 2.6 Vmlocity-Time ﬁrapru
5 = (Area of the ran:!;angle OACD) + (Area of the lnarl-ja

5= {GAxOD}+—{AC
As Of=yand OD = @u
Here BC = at( Aphics presantahmnfﬁmtaquahunn#nmhnn}ﬂypumnglhls
Vg ualmn we have

S= o+ E“x at

1 2
S= i+ —at
g

This is the second equation of mofion,
Derivation of third equation of motion
Consider a body moving along a straight line with an initial velacaty v which attains a final
value v, In tima &. Let the displacement of the body be S during this time interval. Then we
canwrite

S - ( Initial velocity ;— Final velocity

] «Time

P i

25 = (y+v)=xt ., e 2. 15)

Uszimg the first eguation of rm:tlnn
vi=w+at @
Vhu
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28 =y +y ) ‘*‘a”’- )oor 25afyey)(ETh)
2a5 = .,l,r.! _.qi

Thisis the third aquation of motion.

Derivation of third Equation of Motion by Graphical method

In the speed time graph shown in the figure, the 1otal distance S travelled by a body is
grven by the area OABD under the graph. such that

5= i (Sum of parallel sides) x Haight

= _{ﬂA-P BD}:-;G‘D‘

Binca OA=y, BD=v, and OD=t{

T
e

ﬂg, 2.7: Velocity-Time Gragh

Putting t in above equation
S:%{uq— 1':.]["';' - 1!'.}
a

or S=%{v,+ u}u

P S BSRRY 1<  | .)

¥ i

This is the third equation of motion.

The eguations of metion are useful in solving the problems ralating to linear motion with
uniform acceleration, when an object moves along a straight line. If itz direction of
mation does net change, then all the vecior guantities can be manipulated ke scalars.
In such casas initial velocity is taken as positive. Anagative sign |s assigned to guantities
where direction is uppusiia o that of inii.ia velocity. In the absﬂncﬂ of air Tﬂhﬂl‘lﬁi.. all




Example 2.2: Acartravellingat 10 ms’ accelerates uniformally at 2 ms”, Calculate its

velocity after 5 5.
Solution: v=70ms"
a=2mg’
=58
="
uﬁngﬁrslmﬁuriufmuﬁun.w?euﬂnmte
v=v +at
v=10ms’' +2mg'x5s
v=10meg" +10ms"
v=20ms"

Examplﬂ 2.3: A car travels with initial valmhy of 1
2m s” ford seconds, Findthe displwa@'nt

Solution: Gluﬁnm : \g

i =4g
Dlsphmnl 3=7
By using Znd equation of motion

S=yi+ -éﬂt’
Futting the values

S=(15ms'x45)+ -21-[2 ms™) (16 s)’

S=76m

Example 2.4; In a short distance race, a contestant in a car starts from rest and
reaches velocity of 300 km ', after covering a distance of 0.45 km al a constant

acceleration. Find this constani acceleration.

Solution:  Initial velocity =v =0
Final velocity = v,= 300 kmh”
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Distance covered = S=045km=045x 1000 m=45%0m
Initiat velocity = v =0
Final velocity = v,= 300 kmb"'

A 3001000~ 250

; g1
BOxB0
Using third equation of mation, we have
v =y =2as
g 3
[% m'a*’] — (OF =2x 8450 m
» o 59444 ' s*

900 m

‘N ¥ he action of gravity is the most familiar example of uniformiy

‘” achfinear maotion. According to Gallio, all bodies fall freely (in vacuum)
arthe acceleration due to gravity, denoted by 'g". Its experimental value is 2.8 ms™ in

Sl units. This means that different bodies, when allowed fo fall from the same height,

strike the ground with the same velocity. As regards the sign of g, it is taken positive fora

falling body (when initial velocity is zero) and negative for & body projected vertically

upward (when initial velocity 1s nol 2era),

The equations of motion for a freely falling body, on putting @ = g, become

V= gl

; T |
5= h= vi+—-gt*
S=h=vt+1g

v = v’ =2gh

Example 2.4: Aniron ball of mass 1 kg is dropped from a tower. The ball reaches the
ground in 3.34 5. Find, (a) the height of the tower, (b) the velocity of the ball on striking
the ground,

Solution: Since the ball ks falling under the action of gravity, wes -a@m
equations of motion, o
Mass of the ball @ﬁ@@




Accelaton a=g=98ms”

{a)  Using first equation of motion:
vi=¥+gl
v, =0+ (9.8 ms”)(3.34 5)
v=32Tms"

{b)  The velocity of the ball on striking the ground, can be determined by using

third equation of motion.
v-¥  =2gh
(327ms’y - {0 =2x98Bms" xh

Liptill mow we haveGie
in one sian. i

horizontal. Let this velocity be v. According to Newton's
first law of maotion, there will be no acceleration in
harizental direction, unless a horizontally directed forca
acts on the ball. lgnarning the airfriction, only force acting on
the ball during Mght is the force of gravity. There is no
horizontal force acting on it. So its horzontal velocity will
remain unchanged and will be v, until the ball hits ground.
The horizontal motion of ball 1= simple. The ball mowves with
constant horizontal velocity component. Hence horizontal
distanca x is given by

F et A o B L {247
The vertical motion of the ball is also not complicated, it will
accelerate downward under the force of gravity and hence

& = g. This vertical motion is the same as for a freely failin
bady. Since nitial vartical velocity s zpt0, @

o, b
distance y, using Eq.2.14 is giva%&@
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Iﬁe' hLl necessary that an object should be thrown with some initial velocty in the
horizontal direction. A football kicked off by a playver; a ball thrown by & cricketer and a
missile fired from a launching pad, &l projected at some angles with the harizontal, are
callad projectiles.

Projectile motion is two dimensional motion under
constant acceleration due to gravity.

In such cases, the motion of a projectile can be studied easily by resolving it into
horizontal and veriical components which are independent of each ofher. Suppose that
a projectile is fired in a direction angle B with the horizontal by velocity v, a5 shown in
Fig.2.8(b). Let compenants.of velocity v, along the horizontal and vertical diractions be
venst and vsind, respectively. The horizontal acceleration is 8, = 0 because we have
naglected air resistance and no other force is acting along this direction, whereas the
vertical acceleration is &, = g. Hence, the horizontal component v, remains constant and
atany fime {, we have

=y = 9 \
PR T A [ !
O
Now we consider the ve Qg&@

componant of Lh@ﬂ&eqm
direction,

Th i ﬁé&ent v, at any instant ! can be
drtgamni by conzidering the upward motion of
projectile as free fall mobon {8, = —g). Using 1si
equation of motion:

¥y = Wi sinfi— gt (2.19)

The magnitude of velocily al any instant is;

AT < e {2.20)

A HLLNIQWI af fg: balks releﬁm
[Ty 2l madia
The angle ¢ which this resultant velocity makes with the ;:a allaws u?:u bl :: drap &;

harizental can be found from 'ﬂm; ﬂmihﬂﬁaﬂ
h‘ﬁ, : bells ane of the same level, Le ther
tan ¢ =T (2.21) vertical displacemants are sgual
o
In projectile motion one may wish to determine the height to which the projectila ri rusaa
the time of flight and honzontal range. These are described bﬁnm P (C.
Height of the Projectile TAL \' | ./ o A 4:;:-\\-—7\‘“

\\\\\\

In crder to deterrmne me ma}umum hergntfrga ijcjﬂﬂie aﬂama we use the equation of
maoteon; L\ e

J\__J




As body moves upward, a = - g, the inilial vertical velocity v, = v, sinf = v, as v, =0 =w,
because the body comes to rest after reaching the highest point. Since
S =height=h
2gh=0—-v sin's

v* sin®d e
or B e e R AR o

2g
The height of projectile will be reduced in presence of air resistance. In the presence of
airresistance, the upward velocity of the projectile will decrease and henca its height will
also decrease during lime L.

Time of Flight
The time taken by body to cover the distance from the place of its projectio @@u
where it hits the ground is called the time of flight. @

This can be obtained by taking S (

sama level, thus covesn
making angla 8 wil

Whare tis the time of flight of the projectile when itz projacted from the ground.
Range of the projectile
Maximum distance which a projectile covers in the horizontal direction is calied the

e B ol

To detarmine the range R of the projectile, we multiply the
horizental component of the welocity of projection with
total time taken by the body to hit the ground after leaving

the pointof projection. Thus
R = Vu- !t

o R= ¥ COER HEV,EI{I? i-{E J ..:‘ -' - o w;.. .
ar : ﬂ:hghtihmdﬂll:unmhj

= =i —1 2
0 = v sindt EQI
P = .1’_#;-;_“ s (2:23)

Fre range i again s,
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nicosf =sin2f, thus the range of the projectile depands upan the velocity of
projection and the angle of projection.

Tharafors, R= ':'F SNZ0 e (2.24)

For maximum range R, the factorsin 26=1, 50

26=gin”"{1) or 26=90° or @=45°
Air resistance will slow down projectile forward motion, reducing its velocity v. The
reduction in v will resultin a decrease in the range of projectile.
Furthermore, air resistance is not constant throughout the flight of the object. As the
object shows down, the air resislance expenenced by it also decreases, This means thal
the object retards more slowly and accelerates more slowly as it falls down, This results

in a trajectory that is not perfectly parabolic but is skewed, with steeper descent than
ascent.

For Your Information

S0
Height
. _ (30ms'P{o55
=0 ? 196 ms®
h= M1.5m
x o
Range R= %sm_ﬂa = %ﬂnsu»
o |
. o Coneiome oy



Wie are awara of the fact that moving object possesses a guality by virtue of which it
exerts a force on anything that tries to stop it. The faster the object is travelling, the
harder is to stop it Similarly, if two objects move with the same velocity, then it is more
difficult to stop the massive of the two. This quality of the moving body was called the
quantity of motion of the body, by Newtan. This term is now called linear momentum p of
the bady and is dafined by the relation:

In this expression v is the velocity of the mass m. Linear momentum is, therefore, a
vactar quantity and has the direction of velogity, Tha S1 unit of momeantum is kilogram
medre per sacond (kg m 5™ ). Itcan also ba expressed as newton second (M s),
Momentum and Newton's Second Law of Motion

Caonsider a body of mass m moving with an initial valocity v. Suppos
acts upon it for time { after which velocity el

DEBEOmes
this force s given by O @
a=
o \
By Newlon's seco tion I given as:

o a8 = E
fm
Equating the two expressions of acceleration, we have
Fa Mty
m !
Fet=mv, =my, ........1226)

(|} -&._

where mv, is the initial momentum and mv, is the final , _ .
sy Which hui you i the above
mamantum of the bady. aiumsions (a) of ) and fhink why?
The equation (2.26) shows that change in momentum is —
equal Lo the product of force and the time for which force is EEEERCIICECIELY

applied. This form of the second law iz more general than the m:a,;mm oLt hans

form F = ma, bacause it can easiy be extended to account for

changes as the body accelerates when s mass dsn.

changes. For example, as a rocket accelerates, it loses mass Fiak et ke & ﬁ

because its fuel is bumt and ejected to provide greater thrust. zone on your s
From Eq. (2.26) [REm A

MV, = TV n‘ FEE O\ SR ﬂhll'll'l'.hm
o TR
. i ‘A force 80 N woukd ba

Thus, second law @ s of haaded:

momeantum as:
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rate of change of momentum of a body is equal to the applied force.
Impulse

Sometimes we wish to apply the concept of momentum to cases where the applied force
is not constant, it acts for very short time, For example, when a bat hits a crickel bal|, the
force certainly varies from instant to instant during the collizion. In such cases, it is more
convenient to deal with the product of force and time (F x () instead of either guantity
alone. The product of average force F that acts during time tis callad impulse given by

Impulse= Fxi= mv, =¥ ... (2.27)

Example: 2.6: A 1500 kg car has its velocity reduced from 20m s to 15m s in 3.0 5,
How large was the average retarding forca?

Solution: Using the Eq. (2.27)
Frt = mw—mv,
Fx30s= 15[!0!:9: 1

Let us conzider an isolated system. It i2 a systam
on which no external agency exerts any force. For
example, the malecules of a gas enclosed in a
glass ves=el at constant temperature constitute an
isolated system. The molecules can collide with
one another bacause of thelr random motion, but
being enclosed by glass vessel, no external
agency can exerl a force on them,

Consider an isolated system of two smooth hard
interacting balls of masses m, and m,, moving
along the samae straight Ene, in the same direction,
with velocities v, and v, respectively. Both the balls
collide and after collision, ball of mass m, moves
with wvelocity v vand m, moves with velocity v in
the same direction as shown in Fig. (2.9).

Tofind the change in momeantum
Using Eq. (2,2?155'0 &




Do You Know? ’

Similary, for the ball of mass m,, we have

Fl'st= my, - my,
Adding thesa lwo expressions, wa have

(F+F)t = (my, = mu)+ (myvg-mov)
Since the action force F is equal and opposite to the

reaction force F', we have F' ==F, or F4F =0 sothe
left hand side of the equation is zero. Hence,

VWhen a moving car stops quicky,
tha passengars move forward
D= {my=my, |+ (M= mv) Iowards the windshield, Seslbelis
changa the forcas of motion and
In other words, change in momentum of 1stball + change prm:antr:;lf Emger; m
I d moving. Thus, e
in momentum of the 2 ball is zero. | N ity st

or  {my,+myv,) = (mv+m)

total final momentum of the syste
rcmanium n‘fﬂmm e two ba

For such & group r‘ HE

st axist I bt - -‘- : reactlnn force on other abject in the same graup Asa
W‘R momentum of the group of oblects as a whole is always zero. This
ca exprassed in the form of law of conservation of momentum, which states that:

The total linear momentum of an isolated system remains constant.
In applying the conservation law, we must notice that the momentum of a body is a vector
quantity.

Example 2.7: Two spherical balls of 2.0 kg and 3.0 kg

masses are moving towards each other with velocities of
60 m 5" and 4 ms’ mwlvew What must be the
velocity of the smaller hﬂlaﬂm‘ collision, if the velocity of
the bigger ballis 3.0m "7

Solution: As both the balls are moving fowards ong
another, so their velocities are of opposite sign. Let us
supposa that the direction of motion of 2 kg ball is
positive and thal of the 3 kg is negative.

Tha momentum of the system before collisi

L ﬂwﬁﬂillmnhprmnt
gerious injury.
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um of the system after collision = my] +m,v
= 2kgxv+3 kg [-3)ms’
Fram the Iaw of conservation of momentum
[ Momentum of the sl_.rmn] [Mﬂmamumnf-ﬁﬂu arﬂem]
before collision after collision
2kg xv; - Gkgms"'
45ms’
28 ELASTIC ANDINELASTIC COLLISIONS
When two tennis balls collide then, after collision, they will rebound with velocities less
than the velocities before the impact, During this procass, a portion of KLE. is lost, paruy
due to friction as the moleculas in the ball move past one anothar when the balls
and partly due to its change into heat and sound energtes @@
Anuummmwmnhmaﬁ -~

conserved, is call ~' '

She nmal hEIght i loses negigiblke arrmntofenergwn the: -udismwﬁhiheﬁ-ma' Itisto
be noted that momenium and total energy are conserved In all types of collisions.
However, the K.E. is consened only inelastic collisions.

Elastic Collisions in One Dimension

Consider two smooth, nen-rotating balls of masses m, and Q Q
m, moving initially with velocities v, and v, respectively, in

the same direction. They collide and after collision, they E'r cnlinnn
move along the same siraight line without rotation. Let their

velocities after the collision ba v and v respectively, as

o

shown in Fig.{2.10). ~ "
We take the positive direction of the velocity and momanium
to the right. By applying the law of conservation of m,

momentum we have After collision

MV, + MV, = MV + My,

M=) = T (Vo Vo ey “
As the collision is_slastic, s . “ o the sonsariiion of ICE
wa have




1

Smwl*omy] = %m,v;? + Emzvf
ar m, v =v;") = m, ' - )
o myfv v )] )= M ) e (230)
Dividing Eq. (2.29) by (2.30)
v+ =g +4) e 2.31)
or (¥ = w) =(w = 5} = ={y =)

We note that, before collision (v, — v, ] is the velocity of first ball relative ta the second ball,
Simifary (v', —v'.} is the velocity of the first ball relative o the second ball after collision. It
means that relative velocities before and after the collision has the same magnitude but
are reversed after the collision. In other words, the magnitude of relative vel of
approach is equal to the magnitude of relative velocity of separats v@@
ersolhve these
results are

In equations {2.29) and (2.30) m,, m,, ¥y and i,z &‘R
"‘éai' case (i)

equations to find the values of v!
....—in-n{2-321 L0

vl&l: |
R
i =y 2 33) 5
m, my

m, + m, nﬁ+nku
Before collision

L W=,
] -

There are some cases of spacial interest, which are discussed below:
(i} When m,=m,

Fram Eq. (2.32)and {2.33), wa find that M"; coli ‘;’r
r sion
v =k Fig. 2.1
i
and ¥ =v,  (asshowninFig.2,1) i .
—_— ¥
(i} When m, =m,and v,=0 o
In this case, the mass m. be &t rest, and v, = 0, then = m,

Eqgs. (2.32) and (2.33) give Balors coisian

Vi=0D 37 Wy gé;‘
When m, = m, then ball of mass m, afte » ( ’,,
stop and m, will take off wi g S, m,
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a table collidas with exactly similar ball at m, at rest, the case (i)

ball m, stops while m; begins to move wilh the same .8 Y =4
velacity, with which m, was moving initially. Q Q
(i} When a light body cellides with 2 massive i i,

body atrest B‘:": mlm" -
In this case initial velocity v, = 0 and m_>>m,. Under these .«
conditicns m, can be neglected as compared to m.. From ‘E’-’: 0
Eq.{2.33)and (2.32)we have v,'=-v, and v,'=0. ' i,

After collisi

The result is shown in Fig.[2.13). This means that m, will s BRI
bounce back with the same velocity while m, will remain caks (V)

stationary. This factis uzed of by the squash player.
(iv)] When a massive body collides with light
statlonary body

In this case m,==m, and v, = 0, 50 m, can be nﬂglectad in
Egs.(2 32] and (2_33} This glm A tu and v ;

‘&‘ = B

the t ratl:rall Isﬂ m &' o mmmlathuamd ball [salraal. If the: ndlam'wam
parfectly elastic. What would be the velocity of the two balls after the collision?
Solution:

m,=70g v,=0ms' =0

m,=140g v' =7 v, =T
Vile know that;

m; + m,

= [108-1409 | x8ms’=-3ms'
Tlg+i40g’ '




: ASTIC COLLISION IN TWO DIMENSION

When two bodies travelling along an axis do not end up -
traveling along the same initial axis after collision, then it
is a case of two-dimensional collision. When the collision
is elastic, the system of bodies conserves both its total |
linear momentum and total kinetic energy. W—; T
Caonsider two bodies colliding elastically at a certain
glancing angle, showing that the collision i not head-on.

Let m, be the mass of the first body (projectile) moving
with initial velocity v, and m. is the mass of the body Fig. 215

second (tanget), which is initially at rest, v, = 0. As the two bodies collide together, the
impulses generated bebween them, send these bodies off at angles 6. and &, fo the x-
axis, along which the projectile initially travelled.

Analastic colision that s not 2 head-on collision batwean two bodi

@@

m.¥, cosf, and m,v, sinf. Similﬂﬂy. resolve the ﬂnal mmnanlum of targel into
somponents m,v,cosd. and m v, sind._

Momentum conservation along x -axis is:

Momantum befora collision = Momentum after collision
MV, = MV, CO87, + MW, cosd,
mf‘l"“ —m.'l!""GﬂEﬂ‘ = m,v,m; mespg=frrememE= e mrmny {E-Sd}
Momeantum conservation along y-axis is:
Momentum before collision = Mormeaenium after collision
0D = 1MW, SN, - m, v, 5ind,
m ¥, sing, = b H AR R e (2.35)
Conservation of Energy
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A IS Unhﬂ EIJD\I'E‘ Equafﬂﬂ Intere l'|’ lnformation

reveals that there are four mdmnmmmwmm s e R S
unknown quantities, v, v, 8, heat, sound, snd deformation In Inelastic collislon. For exampla,
b, If these guantities can be lhl:ﬁﬂmmﬂnﬂh:ﬁihuﬂlfllﬁudmhlﬂ:ﬂmflﬂd.ﬂﬁﬁ
measured, conservation of because same energy af the bullet is last i the farm of seund and
ot a1 hryCnt Wit ottt
m sare heig & enargy
mﬁ:;;gaﬁﬂ?uam" ), ol Wi b AaRe s Sk b W R BRI

2,10 INELASTIC COLLISION IN ONE DIMENSION

Consider two bodies having masses m,
and m,, moving with velocities v, and w,,
aglong the same line such that v, > v, In
such a case m, is regarded as projectie
and m, as targel. After time ¢ both the
bodies make inelastic collision and sticl
together. Lat thair Combined 3
become m, + m, wh
valocily v, after mlh

Batora collisinn

v, * mgv,, = (m, + my v,

m,

iy

o L W,
m+m, " omr

+

v,

Which gives the common velocity of the body afterinelastic collizion.
In a spacial case when the target m, is at rest, v, =0, the above equation becomas:
mﬂ_v 23
e S
it shows that velocity of m, is reduced by the mass ratic of m, i.e., M .The larger
the mass of m,, the faster the combinalion moves. L, +. ity
Let us invesfigate the kinefic energies of bodies colliding inelastically. The

kinatic energy before collision is: @ @
rm.@@m

Kinetic emargy of com




The fraction of kinetic energy is lost in inelastic collision

[ 1 1
(K.E), - (K.E), E!L Emz“';J- E-:{’"' + m,

K.E} 1. 5 1
( I:Em#ﬁ X E”’n";]
Futting the value of v, from Eq. (2.37)
3

1 1 3 4
_ [ m11'|l:h : E"’Evi . -E{m1+ mz)[ﬁﬁ—‘ Vl?

(K.E), — (K.E};

(KE) Tt e Tmat ]
[Emlvy * Emlvrzl

Again if we consider a special case, Le., if the target m -Is at re: =
solving tnaabﬂvﬂaqualim we have %&O@@%
i’H-E)..-rK-E}, _ @

durlng Inslaatlc collision. From the fc-gmng

Tha mamaomic: collisions are ganerally Inelasuc and da not conserve Kinetic anargy.

The perfect inelastic collision is one in which the colliding objecis stick together to make
a single mass after collision. its analysis can be carnied out as follows:

Let us take two rigid bodies having
masses m, and m. moving with velocities,
v, and w,, respactively, in a two-
dimensional xy-plane. Assume that the
first body is moving along the x-axis while
the second body moves in a direction,
making an angle B with x-axis. Both the
bodias colide at tha origin as shown in
the figure 2.17. Fig. 2.17

After collision, bodies stick together, having combined mass M = m, + m,, which mg:ea

with welocity v, making an angle ¢ with x-axis. Now resolve in r
components v, 3inB and v, cosi. Alsnr& ,mtum 8l

Momentum in the X-direction: E; d




my, sing, + M.V, sinf, = My Sing ............[2.40]
Solving for Final Velocity and Angle
Magnitude of Final Velocity v;:

The magnitude of the final velocity v, can be found by =guaring and then adding
equations (2.39) and (2.40).

= |y, cost + mov, cos i.., M, Sk, + mov, ﬂna;li
T

Final Angle @:
The angle ¢ of the final velocity v, relative 1o the w-axis is obtained by dividing the

equations (2.40) by (2.41);
€O
%ﬂ@

¢ = tan” [ml""m sing, + mﬁ"mﬁnﬂa'"

Since colision is Inal&sﬂc the kinetic energy of colliding system is not consarved. The
loss of kinetic energy is computed az follows:

Initial Kinetic Energy
The total initial kinetic energy K.E of the syatem bef'cu‘ethe collision is:

(KE), = _mﬁ? o m: W) {2.43)

Since K.E. is a scalar quantity, so valnﬁtlaa involmg in the formula of K.E. does nol
reqjuire to break velocities into thelr components,

Final Kinetic Energy
The total final kinetic anergy K_E, after the collision (when the nb}aets stick together) is:

(KE)y = Mv‘r




Thiglost kinetlc energy is transformed into other forms of energy, such as heat, sound, or
deformation.

Using the parameters m,, m,, M, and v}, vi, v} in equations (2.43) and (2.44), we can
calculate the kinetic energy before and after an inelastic collision and determine the
amaount of energy lost,

Some examples of an inelastic collision:

(i) When a karate chop breaks a pile of bricks, it's an example
of an inelastic collision. In this type of collision, the objects
imvolved don't bounce back after impact. Instead, some of
the energy from the sirike is absorbed by the bricks, luming
into heat, =ound, and the force needed to break them. This
means the energy goes into breaking the bricks rather than
causing the hand to rebound. If the Karate chop is not
perfectly vertical and involves some honzontal motion, the
momentum transfer and the resulting f will haye b
horizontal and varﬁcammnpu

(i} In & car cras

‘ Thhs anargy absorption slows dm

. stopping them from bouncing back. Most of the Ry
kineiic energy is kost, tuming into heat, sound, and damage _
tothe vehicles. e rad
(i) In real-world collisions, a ball and bal show an inelastic
behavior. When the bat hits the ball, some of the kinetic i
energy is lost becausea the ball deforms, and enargy is also
converted into heat and sound. Even though the bat is
rigid, [t doesn't transfer energy perfectly and absorbs some
energy itself. The ball compresses upon impact, which
leads to further energy loss, Consaguently, not all of the
inital kinetic anergy 15 conserved, making the collision
overall aninelastic, !
Fig. 2.18

2.12 ROCKET PROPULSION

Rockets move by expelling burning gas through
engines at their rear. The ignited fuel furns to a hlgh
pressure gas which is expelled wilh sxtrema gt

F‘ual and axygen mh: ln

gains momenium 79 Q ,
aexpalied from tha efging




l':hﬂ"@‘ @utluut ﬂil-dfﬂr!}‘E F

engines continue to expel gases after the rocket has begun moving and hence
rocket continues to gain more and more momentumn, So, instead of travelling at steady
speed the rockel gels faster and faster so long the engines are operating.

A rocket carries its own fuel in the form of a liquid or solid hydrogen and oxygen. It can,
therafora work al great helghts whera very litla or no air is present. In erder 10 provide
enough upward thrust to overcome gravity, a typical rocket consumes about 10000 kg s
of fuel and gjects the burmt gases at speeds of over 4000 m &7, In fact, more than 80% of
the launch mass of a rocket consists of fuel only. One way to overcomsa the problem of
mass of fuel is to make the rocket from several rockets inked together,

When ona rocket has dona its job, it is discarded leaving others to carry the space craft
further up at ever greater apeed.,

If mis the mass of the gases ejectad per second with velacity v relative 1o the rocket, the
r.hanga in mumantum per second of the aejecting gases is mv. Thls Bquds thi 111msl

- h [ ITa F=1 -

rrmasaian anghﬂfaﬂ‘ahwa hnrmmalwﬂnaspnd ﬂﬁms andparti:h 'E"rrmss
'ul.rn‘.h‘lli'lv:lhl:xrlzr;:rm!lllallimmglﬂnﬂ’ﬁa"‘mlva!rlhilEu:m-eJ.':l||:n‘-ln'|-=.r.“F Pmmatmllmunlsﬂasﬁs:
im naturs.

Solution:

Initial momentum =M, + M,
=(1kgxE5ms )+ {(1kgxOms')=5kgms’
Final momentum in x-direction = m, v, + m.
=(1kgx3ms’ x cos30%) + (1 kg x4 m s xcos53")
= 260kgms’+240kgms’
= Skgm s’

As momentum is conserved in x-dlr&clm lhsrﬁfnm

(KE), = m.v., iﬂ% @W@ @ m

©)



= 1 i 1 i = 1
( 5 «1%(5F) +{,2 x1x0)=12.5J

: - : )
(KE), = ;my; + S n{-éﬂsc(aﬂ-l-(%ﬂxu}’}

=4.5+8=125J
As both momentum and K.E. are conserved, indicating that collislon is elastic.
Example 2.10: A projectile of mass 2 kg is moving with an initial velocity of 4 m 5™
towards right and hlls'm target al rest of mass 3 kg, after collision the lwo masses slick
together and move as single body with a velocity of 1.6 ms™. Show hwnfmnservahuﬂ of
momentum and energy losses during perfect inelastic collision,

Solution:  |nitial mmhanﬂnm in x-direction
W = MW Y, AE' =i

= (2kg x4 mg’ }+ {Skg Q)= 8
As the combined mass is M=m, +m;= « @

,

= .ﬁ . kg=({4 m E'{i +_% %3 kg =0
= 6kgm's'+0= 16

Final K.E.

1
K Eqp = 5+ )

= % «Skg«(16ms'y = Bakgm's” = 644
Energy Loss = KE,  —KE. ..
=16J-641=08)
This is valid example of a perfectly inelastic collision in 20, where the two bodies
sﬂtk tngether after collision showling that momentum & conserved but Kinetic anargy

T i
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| Multipie Choice Questions |

Choose the corect answer:
21 Tha angie at which dot product becomas equal 1o cross product:

{a) 65 {b) 45° c) 786" {d) 30
2.2  The projectile gains s maximum Balght at an angle of;

@) 0" {b) 45° {c) 60° {d) 90
2.3  The scalar preduct of two vector is maximum il they are:

(8} perpendicular {b) parallel ({c) at 30’ {d) at45

24  The range of projectile is same for twa angles which are mutually!
(g} perpendicular (B} supplemantary

(c) complementary  (d) 270° @ @W%Z@@m

25 The accalaration at tha top o

26
'm {c) Ns {d) Nm'
2 : f?hange of momenium bs:
(a} force {b) impulse (c) acceleration {d) power
2.8  As rockel moves upward during iis jourmay, then its scceleration goes on:
(a} Increasing {b) decreasing

) remains same  (d) it moves with uniform velocity
2.8  Elastic collision Invalves:

{a) koss of energy

{b) gain of energy

{c) no gain, no loss of energy

{d} no refation between anargy and elastic collision

[] _ Short Answer Questions wﬂ
2.1 State right hand ruie fl:lfl"-li'ﬂ'h‘ﬁﬂﬂf‘-ﬁ w.rL. vector product,

2.2 Define impulse and show how it is related to momentum.

2.3 Differentiate between an elastic and an inalastic mlluslnn m

2.4 Show that rate of change in momentum is £

Newton's second law of motion ind@@rms
2.5 State law of ;
holds.




2.6-Show that range of projectile is maximum at an angle of 45",

2.7 Find the time of flight of a projectile to reach the maximum height.

2.8 The maximum horizontal range of a projectile is 800 m. Find the value of height
attained by the projectile at #=60",

|§| Constructed Response Questions |

2.1 Why doeas a hunter aiming a bird in a tree miss the target exactly atthe bird 7

2.2 A person falling on a heap of sand does not hurt more as compared 1o a person
falling on a concrete floor. Why?

2.3 State the conditions under which birds fly in air.

Z4 Describe the circumsiances for which velocity and acceleration of a vehicle are:
{iy v is zero but a is not zero
(i) a ig zero bul v is not zero

{ii) parpendicular to one another | @n@@m

2.5 Describe briefly effects of air rasi&tj!n

cnmmmqu
2.1 Define and \"%nbe down its important characteristics.
22 D : pm-dn.tct of two vectors, Discuss impartant
it of vector product.

Derive three equations of motion by graphical method,
2.4 Whal is projeciile molion? Explain.
2.5 Derive the following expressions for projectile motion:
(i tima af Might
{1} hieight atiained
{itly range for projectile.
2.6 Explain elastic collision in one dimension. Show that relative velocities before
and after collision are the same.
2.7 Derive the aquations for momantum and energy conservation in a two
dimensional coflision,

2.8 Explain an inelastic collision in lwo dimansion,

@ Numerical Problems |

2.7 The magnitude of cross and scalar products of two
respactively. Find tha angle hatm-mm =

Aheic:nptarss asr:andmg arti

2.2

(Ans; 8.0 8)
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23 I jA+B| = ]A-B|then prove that A and B are perpendicular to each other,
[Ans; 6 =507
2.4  Abody of mass M at rest explodes into 3 pieces, two of which of mass M/ 4 each
are thrown off in parpendicular directions with velocities of 3 m 5™ and 4 m s”
respectively. Find the velocity of 3rd piece with which itwill be flown away.

(Ans: 2.8 ms’, opposile lo resullant velocily vector of two pigcas)
2.6 Acricketballis hitupward at an angle of 45° with velocity of 20 m s, Find its:
{a) time of flight (b) maximumheaight (c) how faraway it hits the ground
(Ans: 295 41 m, 10.2m)

2.7 A20g ball hits the wall of a squash court with a constant force of 50 N. Ifthe time of
impact of force ks (.50 5, find the impulse. (Aans:25M 5)

2.8 Abalis kicked by a footballer. The average force on the hall is 24(.1 e
impact lasts for a time interval of 0,25 s, Calculate:
{8} changeinmomentum W
irection of change in

- ] chon of applied force, which is the
it kedthehal} {Ans: 60 N)

Sl ) ing horizontally ata speed of 200 m s~ ata haight of B km to drop
& barb cln a target. Find horizontal distance from the target should the bomb be
released. (Ans: 8.08km)

2.10 Why does range of a projectle remain the same when angle of projection is
changed from © to 6 = 90 - B, Also show that for complementary angles of
projection the ratic 8/ s equalto 1.

O



After studying this chapter, studants will bs abls to:
= Expressaniles inradans

#  Define and calculate angular displacement, angudar velocity uﬁgﬂguh’ﬁq:_ﬂminn [This imvolves.
un-i:f Serd, verm,@en rn'a'rﬂ*'. a!id a "'lr5”f lﬂ‘mmﬂﬂﬂﬁl

O

mﬁmﬂiu&uﬂhamﬁﬂﬂ:ﬁf mﬂmmwammmm 0 solve ileaiial pahbhrrﬁ]
- Emhnwmhlnhj_MhMﬂHﬁﬂiﬂmbhﬂhhﬂm

& Describe how arlificial orevity s created to counter walghtiessnese.

&  Define and cal culate mormends ofinertia of a body and angular momantum,

& Dertve and apply the ralation bebwesen longue, moment of inartia and angulsr acceleration. [listate
the applications of consarvation of angular momentum In real life. [such as by fiywheals 1o store
ratabional energy, by gyroscopes o vigation systems, by ice skaters b acpus! their angutar velocity)
Describe how & centrifuge s used to separale materials using centripetal Torce

.mnng all possible motions of the material bodies, the circular mation is one that
appears to be working in the most of the natural word. Satellites moving in circular orbits
aruund the Earth, orbital and spin motion uf the Earlh itself, a car iurrllrlg arﬁund a8




Consider an angle drawn at the centre ‘0’ of a cirde by an arc 'AB'
as shown in Fig. 3.1, If the length of the arc 'AB’ is equal to the
radius 'r'of the circle, then the anglke is called one radian, Ris the 51
unit of angular measurement and its symbiol is “rad”.

Fig. 3.1

Angular Displacement
Consider the motion of a single pardicle P of mass m in & circular path of radius r.
Suppose this motion is laking place by attaching the particle P at the end of a massless
rigid rod of length rwhose other end is pivoted at the centre O of the circular path, as
shown in Fig, 3.2 (a). As the particle is moving on the circular path, the red OP rotates in
the plane of the circle. The axis of rotation passes through the pivot O and is normal to
the plane of rutaﬁl:in Eunsil:ler a system of axes as shown in Fig. 3.2 (b). The z-axis i
(EE D

taken in the plane of rotation, Whie DPis rofati

0P, making angle O with x-axis_ At a |at&p time ! ;
G+ JHwIlhx-axls{Fu ﬁ-ﬂ} m

Fig. 32(b) Fig. 1.2ic]

Mﬂtaﬂdﬁmhanmﬁrdhﬂinmﬂﬂ op I:lengihl'liml lntlmmt
For very small values of AR, the angular displacement isa uﬂcburqnmm

The angular displacement Al is assigned a positive sign when the
sanso of rotation of OP is counter clock wise, b

The direction associated with At is along the axis of rotation and is

given by right hand rula as shown in Fig 3.2 (d) which states that:
Grasp the axis of rotation in right hand with
fingers curfing in the direction of rotation; the
thumb points in the direction of angular
dhplanlmiﬂt.

; nt, namaly degraes,
g:! urde of radius r(Fig. 3. 3] which



or S=r0 (wheredisinradian) ... (3.1)

If OP is rotating, the point P covers a distance § = 2 nirin one
revolution of P. In radian, it would be;

§'g£.21|
r r
S0 1 revolution = 2 «rad = 360°
a
or 1rad = ﬂ=5?.3°
2m

Angular Velocity

7 : = um ﬁ samimranes (3"3}
Thus ar»n AF '

In the limit when At approaches zero, the angular displacement would be infinitesimally
small. So, it would be a vector quantity and the angular velocity as defined by Eq. 3.3
would also be a vector, Its direction ks along the axis of rotation and is given by right hand
rule as described earier.
Angular velocity is measured in radians per second which is the Sl unit.
Sometimes itis also given in terms of revelution per minute (rpm).

Angular acceleration

When we switch on an electric fan, we notice that its angular velocity goes on increasing.
We say thatit has an angular acceleration. We define angular acceleration as the rate of

change of angular velocity. If o, and w, are the values of instantaneous m
I

rotating body at instants ¢ and ¢, , the average angular accelerationduri
{—t1s given by o@
S Ul
(\

pang 13-4,
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tantaneous angular accelaration is the limit of the ratio f‘ as At approachas

T
zaro. Therefore, instantaneous angular accelaration o ks given by

fn -—s LF"'I ﬂ mrararrEen ta":s}

s A

The angular acceleration is also a vector quantity whose magnitude is given by Eq. 3.5
and its direction is along the axis of rotation, Angular acceleration is expressed in rad s~
Till now we have been considering the motion of a pariicle P on a circular path. The point
P was fixed at the end of a rotating massless rigid rod. Now consider the rotation of a
rigid body as shown in Fig. 3.4. Imagine a point P on the rigid body. Line OF be the
perpendicular dropped from P on the axis of rolation usually ‘

referred as the reference line. As the body rotates, line OP also
rotates with the same angular velocity and angular acceleration.
Thus, the rotation of a rigid body can ba describad by the
rotation of the reference line OF and all the terms lhat
defined with tha help of rotating fine OP are-

rotational motion of a rlgid bndy ancafdr

b ating about z-axis with an angular
o g Showr InF]g 3.5(a)

Imaglnu a point P In the rigid body al a perpendicular distancea r
from the axis of rotation. OP represents the reference line of the
rigid bady, As the body rotates, the point P moves along a circle
of radius rwith a linear velocity v whereas the line OP rotates
with angular velocity o as shown in Fig. 3.5 (b). We are
interested in finding out the relation between m and v. As the
axis of rotation is fixed, so the direction of @ always remains the
same and o can be manipulated as a scalar. As regards the
linear velocity of the point P, we consider its
magnitude only which can also be treated az a scalar,

PP=4AS

Supposa during the course of its motion,

the point P moves through a distance P, P,

=A5 in a time interval Al during which ,
reference line OF covers an angular .

displacement AB radian. So, AS andéﬁ .
are related by Eq. 3.1as: iz
: hhmmMmmME

lays out B tangantial distance S=ri,




T
iding both sides by Af
as_ 8

viih ey (3.6
At At S

In the limit when Af - O the ratio ASfAL represents », the
magnilude of the velocity with which point P is moving on |
the circumference of the circle. Similarky AD/AL represents | '
o ' b You may feel scarad atf the top
the angular velocity i of the referanca line OF. So, Eq. 3.8 gl it
becomes: amusemenl parks bul you
= o IR < ity i sl
From Fig. 3.5(b), it can be seen that the point P is moving along the arc P:Py. In the limit
when Ar — 0, the length of arc P1Pz becomes very small and its direction reprasents the
direction of tangent to the circle at point P, Thus, the velocity with which poirt'R)\is
maving on the circumference of the circle has a magnitude wan Iredit
along tha tangent to the circle at that po E

also known a3 tangential velocity, Ebt
Simiady, Eq. 3.7 @ : : &

Egs. 3.7 and 3.8 show that on a rotaling body, points that are at different distances from
the axis do not have the same speed or acceleration, but all poinis on a rigid body
rotating about a fixed axis do have the same angular displacement, angular spead and
angular acceleration al any instant. Thus, by the use of angular variables, we can
describe the motion of the entire body in a simple wary.

Equations of Angular Motion

The equations (3.2, 3.3, 3.4 and 3.5} of angular motion are exacily analogous to those
in linear mation if 8, w and o be replacad by 5, v and a, respectivaly. As the other
equations of inear motion were obtained by algebraic manipulation of these equations,
it follows that analogous equations will also apply 1o angular motion, Given below are
angular equations together with their Bnear counterparts.

Linear Equations Angular Equations

V= *al Wy =% 4 ..Wﬁ} @@m
> ! o 2
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war equations 3.9 to 3.11 hold true only in the caze when the axis of rotation is
fixed, so that all the angular vectors have the same direction. Hence, they can be
manipulated as scalars.

Example 3.1: An electric fan rotating at 3 rev 5” is switched OFF. It comes to restin

18.0 5, Assuming deceleration to be uniform, find its value. Hu:mmaﬂy revolutions did it
turn before coming to rest?

Do You Know?
Solution: In this problam, we have _

oy = 3,0 rev g, o=0 [=18.08 and a=7 6 G=7
From Eq. 3.9, we have

and from Eq 3.11, we have

nn budy. it produces acceleration in tha same direction, &
force acting on a moving body along the direction of its
velocity will change magnitlude of the velocity (speed)
keeping the direction unchanged. On the other hand, a
constant force acting perpandicular to the velocity of a body :
moving in & circular  path will change the direction but P B0
magnilude of velocily (speed) will remain the same. Such
force makes the body move in a circle by producing a radial
{or cantripetal) acceleration and is called centripatal forca
(Canlre seaking | force. Figure 3.6(a) shows a ball ied al the
end of a string i whirked in a honzontal surface. it would not
confinue in a circular path if the siring is snapped. Careful
observation shows at once that if the string snaps, when the
ball is at the point A, in Fig. 3.6 (b), the ball will follow the
stralght line path AB which is langent AB at point A.

Thus, a force is needed to change the directi
mntlnuuuslyatsa:;h point in circula et
dnesndauar btk only dire

“‘\i\ b

Yo
H ‘ spesd The force thal
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of EAr:ir ular path. Its direction is perpendicular to the tangential velocity at each point,
The force needed to band m,Mnyt path of j!u particle
into a circular path is called the centripetal force.

Fora body of mass m moving with velocity vin a circular path of radius r, centripetal force
F_is given by
=
F =ma =“"""T S (3.12)
where a = v/r isthe centripetal acceleration and its direction is towards the centre of the
circle. As v= riu. 50 the above equation becomes:
F =mrm (3.13)

scceleration of a point on the outar imof the CD? The CO
i% 12 cmin diameter,

The radial acceleration is:
a=nr={7.0rrads"y «0.06 m = 28ms”

Example 3.3: Aball tied to the end of a string, is swung in a
vertical circle of radius runder the action of gravity 85 Shown gy red might at high speed
in Fig, 3.7, What will be the tension in the string when the ball requires a larga centripstal
is at the point A of the path and its speed i v at this paint? force thal makes the stunt

dangerous even [f the alr

Solution: For the ball to travel in a circle, the force acling  planes are notsoclose,
o the ball must provide the reguired centripatal force. In this
case, at point A, two farces act on the ball, the pull of the
slring and the weight wof the ball, These forces acl alang the
radius at A, and so their vector sum must fumish the required
cenfripetal force. We, therefore, have
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e of centripetal force

In eveary clrcular or orbital motion, cantripetal force is needed which is provided by some
ACENCY.

1. When a ball is whirded in a horizontal circle with the help of a string, then tension in the
string provides necessary centripetal force.

2. Foran object placed on a turntable, the frichionis the centripetal force,

3. The gravitational force is the cause of the Earth -Drbltlﬂg around the Sun, Moon and
arfificial satellites revolving around the Earih. Tid-hits

4, Anomal or perpendicular magnetic force compels a
charge pariicle moving along a straight path into a
circular path.

5. When a vehicle takes tum on a road, it also needs
centripetal force which is provided by the friction

batwaen the tyres and the road. I‘flhu road s sllppary

Wi know that an nbjef:t maoves ina ch‘da because of centripetal
force. If the magnitude of applied force falls short of required
cenfripetal forca then the ohject will move away from the centre

principle.

Centrifuge: It is one of the most useful
labaratory device, 1L helps 1o separale oul
denser and lighter particies from a mixture, The
mixture is rotated al high speed for a specific ‘
time. In a laboratory setup, sample tubes ars f .
used where the denser particles will seftle at
the battom and lighter particlas will rise to the e et
{op of the sample tubes {Fig. 3.8-b}

The I:!ryer of the washing rrr.ﬂchine alsn functions on the
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w1 separator is another practical device which is used 1o separate
cream form the milk. In this machine, milk is whirled rapidly, Since milk
is a mixture of light and heavy particles, when It Is rotated, the light
particles gather near the axis of rotation whereas the heavy particles
will go outwards and hanca, craam can easily be separated from milk.

Satellites are objects that orbil in nearly circular path ;
around the Earth. They are put into orbit by rockets and are Fig. 3.10
held in orbits by the gravitational pull of the Earth. The low g
flying Earth satellites have acceleration 9.8 m s towards [ Information
the centre of the Earth. If there is no gravitational pull, ihey
would fly off in a straight line along tangent to the orbit.
When the salellite is moving in a circle, it has an
acceleration " . In a circular orbit around the Earth, the

centripetal accelaration is suppliad bygravltyandmh ‘v ~ &
o T

Q’e Efmﬂl:mh ;ﬁ.mumn'
where v is the m‘bﬁ e The radius of the orular ot el erti

Earth (54 m;m

Do you know 7
Hmhm had ﬂ'ud'nusd - Aot

_. ) 3 me artificiel satelites 300 years
8.8msx84x10%m . THIG B Nt b R
=TO9¥10Pms” =TOkmsg' taken from  his welHknown

This is the minimum velcity necessary to put a sateflite ﬂxﬁ:mi !n

into the orbit, called the critical velacity. The pariod T is object is thrown horizontally with

given by ‘a panicular speed from a place
which is suficiantly high, it will
Tim 3—".‘—,5 - 2y3.14 % %—DE,% slarevehing sround the Earn

= 060 s = 84 min approx.
if, however, a satellite in a circular orbit 3 at a distance b
much greater than R above the Eardh's surface, we
must take into account the exparimeantal fact that the
gravitational acceleration decreases inversely as the
square of the distance from the centra of the Earth
{Fig. 3. 11}




Figure 3.12 shows a satellte going round the Earthin a
circular path. Let the mass of the satellite be m, and v is iis
orbital speed. Tha mass of the Earth is M and rrepresants
the radius of the orbit. A centripatal force m v ris required
o hold the satallite in the orbil, This forcs s provided by the
gravitational force of attraction between the Earth and the
satellite, Equating the gravitational force to the required -
centripetal force, we have Fig. .12

GmM  mv? RS I
-
r !
Tha momeant you switch on your
_|GM : . mabile phone, your location can
& M e (3-15) he tracked immadiately by

global poattioning syate
This shows that the mass of the satellite is unimportant in

describing the satellite's orbit. Thus, ar & sal' lite o @ f
at distance rfrom the Earth's cenfre misl '

speed given by E \ pead g will

bring the satelile t ﬁ% i,

Solution:
As r= R+ h= {6400 + 384000) = 390400 km

satallite Is in circular orbit at

| [GM  [687%107 N mikg® <6107 kg
‘Iﬂhﬂ W= = - — —
Vr 390400 krm :

In 1864, ai a heighl of 100 km

= 1.025 km & above Hawad island with a
Also speed of 20000 km h" Bruce
xR - , 3 1 1day McCandless steppad inta
T ="——=2x3.14 » 390400 kmx :{ : apace from 2 space shultle
% 1025kms'  G0X60X24S 1 pocame the fret human
= 97 7 dei satellite of the Earth.
WeightlessnessinSatellites Do You Know?

When a satellite is launched by a rocket in its desired orbil sy
rrac

i peight slighily’ 2
araund the Earh, then it has been aob ? ‘@ #8
W \ Bjayalnl changes |
N =~ and end of & ride, not during
gritre of  the rest of the ride when that
sEloCily i congstant,




radlus r around the Earth, A body of mass m inside tha
satelite suspended by a spring balance from the
celing of the satellite |z under the action of two forces,
That is, its weight mg acting dowrmward, while the
supporiing force, called normal force F, or tension in
the spring acting upward, as shawn in Fig, 3,13, Thair
resultant force is equal to the centripetal force required
by the mass mwhich is acting towards the centre of tha

Earth, &nd is expressad as:

E =mg-F .= (3.18) Whan a bucket full of water is
v rapidly whirled in & vertical
where F = — circular path, water does not
r el ol aven i the buckat s
mv’ inverted at the maxin

henca == mg=F, e (3.16-a)

Tt
It may be noted that the centripetal forge h Bherfor the veldlatiomoFthe satelite
around the Earth is provided by itafional fo g af aitry ion between the Earth

nd the satellite.
an sate BFQ m

9= -
Hence, Eq. 3.16(a) bacomes:
mg=mg-F, !
ar F =0 Astronaul loating inaice the-cabin of a spaceship,

This shows that the supporting force which is acting on a body inside the satellite is zero.,
Therafore, the bodies as wall as the astronauts in a satellite find thamsalves in a state of
apparentweightiessness.

Artificial Gravity

In a gravity free space, there will be no force that will push anybody to any side of the
spacecrafl. If this spacacraft is to stay in the orbil over an extanded perod of time, tha
weightlessness may affect the performance of the astronauts present in that spacecraft.

Te avercome this dificulty, an arfificial gravity can be created in the spacecraft, This
could enabla the crew of the space ships to function in an almosl Aarm;
e s : 8 The

the "floor’ of the
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P nip s /K and it rotates around its own central axis e
with angular speed m, then its angular acceleration a, Is

8. =R 1o
2 ) i ; ;
Butw = T“ where [ 15 the period of revolution of space ship -

a2 af pin’ Fig. .14

Hence a8, = R~ . :
f t Da Yol Kriaw?

As frequency F = 11, tharefore,

& -R4n’f*
1 |2
f'?= &y LI Lo -3
o in'R m 22y R

As described above, the force of gravity provides the
reguired centripetal acceleration, therefore,

de. =0

A jg
| i I3

,_.s.m'rnm of the rotating
piac-5 i pLShes on an object
, with which I & in contect and
ency, e ihersby provides the centripatal

vided to the inhabitants s neadad o keep the obiect
: Mmm._mlﬁm cukar path,

Consider & mass m attached to the end of a massless rod as
shown in Fig. 3.15. Assume that the bearing at the pivot
point O is frictionless. Let tha systam bein & horizontal plane.
Aforce Fis acting on the mass perpandicular to the rod and
henca, this will accelerate the mass according lo:

F=ma
In doing s0.the forca will cause the mass to rotate about O, mg a1
Since tangential acceleration ar is related to angular . pece F causes o ke

acceleration o« by the equation, about the axis O and ghveg
ar=ra the mass m an anqular
accelsrabon o about the pheol

Sa F=mra paint,

As turming effect is produced by torque T, it would, H'mr&fulé, be betier to write the

equation for rotation in terms of torque. This can be done by multiplying m@e
above equation by r, Thus, o
L

rF=1=




the same robe in angular motion as the mass in linear motion,
It may be noted that moment of inertia depends not only on
mass mbutalsoon r’,

Most rigid bodies have different mass concentration at
different distances from the axis of rotation, which means the
mass distribution is nol uniform, As shown in Fig. 3,16{a), the
rigid body is made up of n small pieces of masses mr, mz,....
at distances r, . 1 ..... from the axis of rotation Q. Let the  Twocylinders of equal masa,
body be ratating with the angular acceleration o, so the i g l:?‘ﬁ”;"nhfﬂﬂf
magnitude ofthe torque acling on mris Totalional inertia, '

L B i"i":"1|"1'2 o
Similarty, the torque on mz is For Your Information

and so on.

Fig. 3.18
Each small piece of mass within a targe, rigid body undengoae the
same angular scosieration about the pivol poink

Thin ring ar Heap
Since the body Is rigid, so all the massas are rotating with tha P= me
same angular acceleration o.
Total forque Tew is then given by

Tigs = (Mafi + Mafs + . 4mL e o

A

o : i i

- E iy ro | i= o
c e | ] ﬂ, -

or 1= la (3.18) (et

where | iz the moment of ineria of the body and is

T ol .@@7
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We have already seen that linear momentum plays an imporiant rofe in translational
motion of bodies. Similarly, another guantity known as angular momentum has
important rola in the study of rotational motion.

A puﬂt:lu is said to possess an anmllnr muminimn about a reference axis if it
s moves that its angular position changes relative to that reference axis.

The angular momentum L of & parfidle of mass m moving
with valocity v and momeantum p (Fig. 3.16) ralative to tha
origin O ie defined as:

L=rxp {3.20)

where ris the position vector of the particle at that instant
relative to the origin Q. Angular momentum 5 & vector
guantity. It magnitude is;

L = rp &inB = m rv sinb

angular valocity @, than angle bﬂhu&&n rand tangential
velocity is B0°, Hence,

L =mrvsin 90° =mrv i) ib
The sphare in {a n
But V=ro Hence L=mfwm th: Sein ﬂh,éh} :vl “h“w'“
Now consider a symmatric rigid body rotating about a fixed  3ow- RS angular velocity and

axis through the centre of mass as shown inFig 3.17. Each 4, h:r ':m 'ﬂlm iha

particle of the rigid body rotates aboul the same axis ina  rotstional axis, as shown by
circle with an angular velocity . The magnitude of the e rght-hand rulein (i),
angular momeantum of the padicle of mass m is m,v rabout
the origin O. The direction of Li is the same as thal of w.
Since vi= n o, the angular momentum of the #h particle is
m, r’'m, Summing this over all parlicles gives the tolal
angularmomerntum of the rigid body.

n
L=(} mr"] o= o

[
where [ is the moment of inertia 1
axisofrotation. O

i
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=xample 3.5: The mass of Earth is 6.00 x 10 kg. The distance r from Earth to the
Sun is 1,50 x 10" m. As seen from the direction of the North Star, the Earth revalves
counter-clockwise around the Sun, Determine the orbital angular momentum of the
Earth about the Sun, assuming that it traverses a circular orbit about the Sun once a
year(3.16x10's),
Solution: To find the Earth's orbital angular momentum, we must first know its orbital
speed from the given data, When the Earth moves around a circle of radius r, ittravels a

distance of 2nrin one year, its orbital speed v, is thus, v, - ?_;'_’
Orbital angular momentum of the Earth = L = myr
_zim
{
E‘It‘l ﬂxiﬂ“m:l' %(6.00 X0k

3,16%10's
- 267 X 10%kg s @ @@@
The sign is positive because the revolotion s 56, 2
a,a-uwnﬁg | 0N

¥ youi iry bo sit an a bike at rest,
N falks, Eu.i'rl‘ﬂ‘:.rhh-ismg;hﬂ.
=2 tha angula momentum of he
L.= L|+L3* via= COMStant spinning whee mﬂﬂﬂh:w
The law of consarvation of angular momentum is ona of the  18ndency 1o changa P
fundamental principles of Physics. it has been venfied from w the hike prgh and
the cosmological to the sub microscopic level, The effact of
the law of conservation of angular momentum s readily
apparent if a single isolated spinning body alters its moment -
of inerlia,
If & body of moment of inertia I, spinning with angular speed
i, altars its moment of ineddia to £, , then its angular speed w,
alzo changes so that its angular momentum remains
constant.

Hanoa foum, =10,
The angular momentum s a vector quantity with direction
along the axis of rotation. Hence, the direction of angular
momenium along the axis of rotation also remai 3

Thisis illuahratadby the fact gwan el o)
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s fact is of great importance for the Earth as it moves around the Sun. No other
$Imabls lorque is expanenced by the Earth, because the major force acting on it is the
pull of the Sun. The Earth's axis of rotation, therefore, remains fixed in one direction with
reference to the universe around us.

Examples of conservation of angular momentum
Aman diving from a diving board

A diver jumping from a springboard has to take a few

somersaults in air before touching the water surface, as

shown in Fig.3.18. After leaving the springboard, ha

curls his body by rolling arms and legs in, Due fo this,

his mament of inertia decraases, and he spins in midair

with a large angular velocity. Whan he is about to touch

the water surface, he stretches out his ams and legs.

He enters the waler atl a gentle speed and gels a

smooth dive. This is an example of the law of @ @
congervation of angular momentum, 3@@

The spinning ice skater

spaad increases. Whan he str&tnhas his hands arxd a
|eg outward, the moment of inerfia increases and hence
anguiar velocity decraases,

A person holding some weight in his hands

standing on aturntable. Rl e ok | Wnertia }{Amhr)
A person is standing on & tumtable with heavy mass A
(dumb-bel)in his hands stretched outon both sides as Lh T o e

shown in Fig. 3:20. As he draws his hands inward, his

Far Your eformation

ltl'ﬂshwn mﬁaﬂﬂ'ﬂlwhunlﬁ m'm
palar cags of Earh msls snd waber lows:
away I the Tarm of rivar; tm mmml ul



angllar speed at once Increazas. This is because the moment of ineria decreases on
drawing the hands inwards, whichincregses the angular speed.

Flywheel Polnt to Ponder

Flywheelis a mechanical device which consists of 8 heavy
wheal with an axle (Fig. 3.21). I is used 10 store ratational
energy, smooth out output fluctuations and provides
stahility in a wide ranga of applications such as bioycles
and other wvehides, industrial machinery, gyroscopes,
ships and spacecrafts.

-

rd

The -Eyruscupu
Agyroscope is a device which is used to maintain its
crientation relative to the Earth's axis or resists
changes in ils orientation. It consists of a mounted
fhywheel pivoted in supporting rings as shown in
Fip. 3.22. It works on the basis of law of
conservation of angular momentum due o is large
moment of inertia. When the gyroscope spins al a
large angular speed, it gainz large angular
mamentum. It is then difficult to change the
arentation of the gyroscope’s rotational axi dua to
its large moment of inertia. A change in orientation
requires a change in its angular momentum, To
change the direction of a large angular momentum,
a mrrﬂspnnding Iarga turqu-a is requirad. E\ran if
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n applications of gyroscope are In the guiding system of asroplanes, submarines
and space vehicles in order to maintain a specific direction in space to keep steady

COUrSE,
Foint to Ponder

Plasets move around the Sun in eliptics orbils with Sun siluated 8i one of B8
mwn&h:m#nﬂammmsm lurmmmmthmrm
Sun, N5 orbital velocily incroases aulomaticaly. Wiw?

|@ Multiple Choice Questions )|

Tick {+ ) the correct answer.
an The ratio of angular speed of minuta's hand and hour's hand of walch s

(a) 1:6 {b) 6:1

(&) 1:12 ) 12:1 m
3.2 A body travellingina cirche at consiant speed. o@@

{a)  hasconstantvelocity O ' : adfial acceleration

(c) is notatcels an cutward radial acceleration
3.3  Astone al tife\s = whided in vertical circle at a canstani speed,

LI EY rz) e seirg will be minimum when the stone is;

@ top of the circle {b)  halfwaydown

(c) atthe bottomn of cirdle {d)  anywhereinthe cirde
34 Evary paint of rotating nigid body has

{a)  sameangularvelocity {b)  samelinear velocity

(&) samelinearaceslaration (d)  samelineardistance
35  Theminlmum velocity necessary to put a satelliie inlo the orbilis called:

(a)  terminal velocity (b}  erticalvelacity

{c) artificial velocity {d)  angularvelocity

36  Anastronautisarblting around the Earth in a large capsule, Than,
{a)  hewill bein a state of weightlessness with respect to capsule
(b}  heistreelyfalling towards the Earth
{c) a ball projected atan angle has a straight line path as observed by him

{d)  altheabove
3.7  Anobject inuniform circutar motion makes 10 revolutionzad2 b@@r
thia folbawing statement s trua’? Y o)
20s

{a) Its periodis 2.0s “‘

s fraquency s 0.2 Hz
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A man inside the artificial salellite feels weightlessness because the force of
attraction due b ihe Earhis:

(a) zero at pole

b balanced by the force of attraction due to the moon

ic) equal lothe centripetal force

(d)  non-effactive due to some particular design of the sateliite

A bottle of soda water is grasped from the neck gnd swung briskly in g vertical
circie, Nearwhich porfion of the botlle do the bubbles collect?

(@)  Mear the bottom (b} In the middie of bottle

{c)  Bubbles remain distributed throughout the volume of the bottle.
(d)  MNesr the neck of the boltle

The mameant al inartla of body depands upon

&) mass of the body and its distribution about axis of rotation

(b) volume of the body

(c)  kinetic energy of the body @ @
{d) angular momeantu lﬁﬂ@@W
ﬁwa

2 er Questions

w of motion in case of rotation.

al is the effect of changing the position of a diver while diving in the pool?
How do we gat butter from the milk?

Mass is a measure of inertia in ingar mation. What is its analogue in rotational
motion? Describe briefhy..

Why is it harder for a car to take turm at higher speed than at lower spead?
What are the benefits of using rare wheels of heavy vehicles consisted of
double tires?

When a moving car tums around a comer to the left, in what direction do the
occupants tend o fall? Explain briefly.

Why is tha accelaration of a body moving unifarmly in a circle, directed
lowards the centra?

How does an astronaut feel weightlessness while orbiting from the Earih in a
space-ship?

[]Ffﬁﬁ‘ﬁi'ﬁﬁéﬁ—nes;pnnie Questions
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Why do we tumble when we take the sharp turn with large speed?

What will be time penicd of a simple pendulum inan artificial satellite?

Is the motion of a satellite in its orbit, uniform or accelerated?

What are the advantages thatradian has been preferred as Sl unit over degree?
In uniform circular motion, what are the average velocity and average
acceleration for one revolution? Explain,

In a rainstorm with a strong wind, what determines the besl position to hold an
umbraila?

A ball is just supported by a string without breaking. If it is whirked in a vertical
circle, it breaks. Explain why.

How the centripetal force supplied In the following cases:

(a) A satellite orbiting around the Earth.

ib)  Acartaking atum onalevel road,

{c}  Astonewhirledin aclrdebymﬂansufastrin @ @@m

ne momeant of inartia. Prove that torque acting on rotating rigid body is
eqgual to the product of its moment of ineria and angular momentum.
What are artificial satellites? Calculate the minimum time period necessary to
put a satellite into the orbit,
Define orbital velocity. Denve an expression for the same.
Winte a note on artificial gravity. Derive an expression for frequency with which
the spaceship rotates to provide artificial gravity.
Prova that; (i) v=rm and (i) a=ra

Numerical Problems E

A laser beam iz directed from the Earth to the moon, The beam spreads ovar a
diameter of 2.50 cm at the moon surface, What is divergence angle of the
beam? The distance of moon fromthe Earthis 3.8 10°m.  (Ans 882107 rad)

A car is moving with a speed of 108 km h”. If its wheel has a.diam
rmditsangularapaadmrads"andrev‘. e

Il mmastnfest

fAns: 300 rgu_l
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3.8

3.8

3.10

A string 0.5 m long halding a stone can withstand maximum tension of 35.6 N.
Find the maximum speed at which a stone of 0.5 kg can be whirled with Rin a
vertical circle, {Ans:5.5ms")
The flywheel of an engine is rotating at 2100 rev min” when the power source is
shut off, What torque is required to stop itin 3 minutes? The moment of inertia of
the flywheel is 36 kg m’, (Ang, 44 N m)

VWWhatis the moment of inertia of 2 200 kg sphere whose diameteris 60 cm,

(Ans: 28,8 kg m')
A sateflite is orbiting the Earth at an altitude of 200 km. Assuming the Earth's
radius is 6400 km, calculate the orbital speed of the satellite.  (Ans.7. TR km b
A space s‘l:alinn has a radius of 20 m and rotates at an angular velocity of

0.5 rad s"'. What is the arfificial gravity experienced by the aﬁl:rmnaut'a. on tha
space station. e

Abmydewhael has an angular mome
2rad s, Find thevalusﬁhsmc@e i

y revalutions nuﬂd he have rnan:lein 1.551‘n:m board to water?
(Ans; 0.6rev)

oI



. After studying this chapter, the students will ba able to: -

&  Denve the formulafor kinetic energy {using the equations of motion]

& Derive an expression for absclute potential energy of a body at 5 cartain position in the
gravitational fiald [including escape velocity]

& Deduce the wark done from farce-displacement graph.

4 Differantiata betwaon consarvativa and non-consanativa Topces @o

41 WORK DONE BY A CONSTANT FORCE
Let us consider an object which is being pulled by a constant force F. The force displaces
the object through a displacement d in the direction of force. In such a case, work Wis

defined as the product of the magnitude of the force F and magnitude of the displacement
d. This can be written as:

W= Fd (4.1)
Equation {4.1] shows that if displacement i zero, no work
is done even if a large force is applied. For example,
pushing on a wall may tire your museles, but work done
is zero as shownin Fig. 4.1.
The force applied on a body may not always be in the
direction of force as shown in Fig. (4.2). I the force F




{cnseter (@ Work, Energy and Farea B

W= (Fcosd)d = Fdeost .ooem 14.2)
or W=Fed e (43

Equation (£.3) shows that work is a scalar quantity.
The unit of wark is joule (J). Fram Eq. (4.1), we havea

&
W

1J=1Hm | JFmEB

When a constant force acts through a distance d, the Fig. 4.3
event can be plotted on a simple graph (Fig. 4.4). The
distance is normally plotted along x-axis and the force
along y-axis. As the farce does not vary, in this case, the
graph will be a horizontal straight line. If the mnatﬂﬂt Pl
force F (newton) and the displacement d (mefre
the same direction, then the wo :

meﬂ‘ua definition of work, we find that:

(i) Work is a scalarguantity.

(#) [f6 = 90°, work is done and it is said to be positive work,
(i) If 6= 50", nowork s done.

i) I8 =807, the work done is said to be negative,

(] al I.litnf'wcrk i3 Nmknown as joule (J).

In many cases the force does not remain cunslantdunngthe process of doing work. For
exampla, as a rocket moves away from the Earth, work is done against the force of
gravity, which varies as the inverse square of the distance from the Earth's centre.
Similarty, the force exerled by a spring Incraasas with the amnuntofstralch Hnw
calculate the work done in such situations?

ﬁu pDImC'a




ing each small interval, the force is supposad
to be approximately constant. So, the work dona
for the firstinterval can then be written as

AW, =F,.ad,=F, cosb, Ad,
andin the second interval
AW, =F,.Aad, = F, cosbAd,

and s0 on. The total work done in moving the
object can be calculated by adding all thesa terms.

W =AW + AW+ AW
=F cosd, Ad+ F cosd, Ad+......o+ F cost, Ad,

oF Wi = IF costad e (4

yarses o as shown in Flg. 4.6. The
has been su i B
intervals, ThrEr valu

Po A,

Pig. 4.5
A particle acted upon by a
variable force, moves along
the path shown from point P o
pointil,

[ nral Thus, the work done ghran by Eq - 4 equals the sum nl‘ the areas -nfall the

rectangles. Ifwe sub-divide the distance into a large number of intervals so that each Ad
becomes very small, the work done given by Eq. 4.4 becomes more accurate, If we lal
each Ad toapproach zero, then we obiain an exact resull for the work done, such as:

Wi = Lm'r .E.F’ COBO AL i (4.5)

I this imit Ad approaches zero, the lotal area of the
rectangles (Fig. 4.6) approaches the area betwean
the Foosi verses d curve and x-axis from Pto Q as
shown shaded in Fig. 4.7.

Thus, the work done by a variable fores in moving a
pariicle between two points is equal lo the area
under the F cost verses d curve between the twa
points P and Q as shown in Fig. 4.7.

-DF; 4]

Displacement 0 —
Fig. 4.7



M-rﬁ Wuﬂc F_n-ug'r .md im::t.

o =4 m, plus the area of Iriangular section from d =4 m to
d= 6m.

Hance

Work done represented by the area of rectangle =4mx 5N
'EDH m=20J

Vilork done represented by the area of tiangle = xzmxﬁﬂ

Fib) —»

T —
Fig. 4.8

IE Nm=5J
Therefore, the total wark done =204+51=25d

4.3 CONSERVATIVE AND NON-CONSERVATIVE FORCES

cunsarwatiw Forces m

The space around the Earth in which its 58\ r::allsd the
gravitational field. When anubja lafipna Id the work is done by
magrmﬂtahnnalfur spla it ufgmwtahnnaﬂfnme thework is
positive. If the disp ‘ gravitaunnﬂ force, the work is said o be

negative. ] ‘ T
VW&%W property of the gravitational
fo at when an object is moved from one place to  ©__

another, the work done by the gravitational force does 1
ot depand on the choice of the path. Let us exploreit.
Consider an object of mass m being displaced with E:
constant speed from point Ato B along various paths m
in the presence of a gravitational force (Fig. 4.9). 1N wferrerrr
this casa, the gravitational force is equal to the waight
mg ofthe object.

The work dones by the gravitational force along the path 1 (ADB) can be split into two
parts path 1 (ADB). The work done along AD is zero, because the weight mg s
perpendicular to this path, the work done along DB i3 {=mgh) because the direction of mg
is opposite to that of the displacement i.e., B = 1807, Hence, the work done in displacing a
bndyfmﬁ.tﬂﬂﬂ'mughpem 1is:

o= 0+ - mgh) = - mgh
If we consider the pa1h 2(ACH). th&wk dori alnn«g AC s
done path 2 (ACB) along CB is zero, ms@fu

. ﬂ'remved path to be broken downinto a



sanes of horizontal and vertical steps as shown In v

Fig. 4.10. There iz no waork done along the horizontal T_) by 8
staps, because mg is perpendicular o the displacement N rffT
for these steps. Work is done by the force of gravity only ,-'f"“\k‘\ ¥

along the vertical displacements. During the segment AB, J gj 8
mg is naot negative; (1 s positive. But hare all Ay alemants i A A l
are negative, so the products of mg and Ay for all the J‘:-t‘é ---------------------
elerments will again be nagative, Therefore, we can write: Fig, 4,40

| We=-mgliy, + Ay +Ay,+ L 44y g;mﬂ;ﬂl;‘ mm
Ag Ay, + Ay, ¥ A+ o AR =H ¥ displacements. Work Is done
Hecd W, = - mgh onty during the y dEsplacemants.

The net amount of work done along AB path is still {-mgh). We conclude from the above
discussion that:

Work done by gravitational force is independent
Ean You prove Ihai thi work done, @nn 3

AzBhown al:lcwe. the gravitational force is a8 conservative force, other examples of
conservative force are elecitrostatic force and elastic spring forca,
Non-Conservative Forces
Alltypes of forces are not consarvative forces.
A force is non-conservative if the work done by it in moving an ohject
between two points or in a closed path depends on the path of motion,
The kinetic frictonal force i a non-conservative force. When an object slides over a
surface, the kinetic frictional force acts opposite to the motion and does negative work
equal in magnitude to the fricional force multiplied by the length of the path. Thus,
greater amount of work i3 done over a longer path between any two points. Hence, the
work depends on the choice of path, Moreover, the total work dong by a non-
consanvative force ina dosed path is not zera.
Other example of non-conservative force are air resistance, tension in a string, normal
force and propulsion force of a rockel,
4.4 -PGWER




e (@ Work, Energy and Forca
Power is the measure of the rate at which work is being done.
i work A Wis done in a time interval Af, then the average power Faeduring the interval At
% dafined as:
AW
Pu= A e (4.6)

If work is expressed as a function of time, the instantaneous power F at any instant is
defined as:

P: e—— fomm ey 4-?
L#ﬂﬂg._ﬂ T (4.7)
where AW is the work dome in short interval of time Af

Sinca AW = F Ad

Hence

Sinca

Haht

=
=0 gq‘u. :
egsuremeants, the unit of work is expressed as !

wall second, However, a commercial unit of : """"“""""”:::r 1

electrical energyis kilowatt=hour. - . -
Jumbo Jot Arcrat. 13610

One kilowatt- haur is the work done in one haur by “Car at 90 km i’ 1.1x10"

anagency whose power is one kilowatt., e 2o’
‘Cobaured TV 0

Therefore TEWh=1000W x 3600 s Flarsh light {tweo collt) 15

or TKWh=3.6x10"J=3.6MJ s i A

Example 4.2: A70 kg man runs up a long light of stairs in 4.0 5. The vertical height of
the stairs i= 4.5m. Calculate his power output in watls,

Setiion:- ek

Power = —— It bakas aboul Sx10° J of energy to
f & ﬂ!hlﬂiﬂ and tha car then umes

_ TOkgx9.B8ms™x4.5m about 1X10™ J of energy from geto

&= we S

P mtals e in it life O@@
e

K. Thare are two basic forms of snergy:



i) Kineticenargy 4l
Kinetic energy is the energy possessed by a body due to its motion and potential
uwi&huwmhyammmhwmw '

The kinetic energy and the potential energy both are the kinds of mechanical enargy.
Kineatic Enurgy

Let us derive a formula for the kinetic energy of a maving body. Consider a car running
with a constant speed on a road. If its engine is switched OFF, it will still cover some
distance before stopping. As long as it is moving, it is doing work against the force of
friction of the road, In other words, during this interval, it will exart a force equal in
magnitude 1o the force of frichion £ Let the distance travelled before coming to rest be d,
then the work done by the car would be fo, This work is dona by the car dua 1o its motion.
The ability of a body to do work due to it motion Iz s kinetic energy. Therefore, kinetic
enengy of the caris equal o fd. The acceleration can be found by using Mewton's m

law of mation, i.e., n @ @@

Polanial energy

As the car slows down and fi 5 (e apeaberslion < negative because it is
pmdumdhy!‘nrm@)iﬂ& paite tothe m::tinnnfmnﬂ-nn Thus,

o f
o A

Wetan now determine the ‘-!aluer of {fd ) by using the third equation of maotion, i.e;

Zas5 = '.r —v
Here, Inifial velocity v = For Your Information
Final velocity v,= 0 Approximats Energy Values
Distance S=d ""‘"’" — ‘""’“Mﬂ,‘f"‘
F f Bur ning 1 kan coa
Acceleration as- }{i Burning 11itre petral  SxA0°
Putting values in the above aquation of motion, we have W& “"““’:ﬁm i Ll
23_[ r]d’ 0=y Runining Perscn at Axin
10 hm k'
fd 1 Fissicn of one glom 1Ex107
- Eﬂw ~ of umnum ;
As fd is equal to the kinelic energy of body, therefore, SR ol B
Kinetic energy = ‘Emv’z (4.9)




ﬂw-r@ Work, Energy and Im:::,.

Solution:
Giventhat v=16ms’, d=80m, w=18620Nand f=7
The kinetic energy of the caris equal to the work done by It before slopping, i.e
%mv’ = fd
Here m;ﬂ;w;-]gm ,
9 O0Bms ik
Futting the value in the above eguation, we have
%x'tﬂl]ﬂ kg = (16 m s1)'= =80
or f=3040M

Putential Energ'f
200y gﬁ%f‘sm e.g.

otential Energy b

The absolute gravitational potential energy of an cbject :
ata certain position is the work done by the gravitational a4
force in displacing the object from that position to
infinity where the force of gravity becomes zero.

The refation for the calculation of the work done by the 1 $ﬁr
gravitational force or potential energy is mgh, which is true
only near tha surface of the Earth where the gravitational
force is nearly constant. Bul if the body is displacad through
2

alarge distance in space, let it be from paint 1 ta N (Fig. 4,11)
in the gravitational field. then the gravitational forca will not
remain constant, since i vaneas inversely to the sqguare of the
distance.

In order to overcome this difficulty, we divide the distance |
batween points 1 and M into small steps each of langlh Arsg

= st miae e ]

e — - e ——




53 nedurmgthefrﬁt step 1.8, displacing a body from point 1 to point 2 can be
calculated as below, The distance between the centre of this step and centre of the
Earth will be:

refth et
< =
As f—hHEAT then fa = Al i
Henca rs ‘—-""E—*Mnr,+% A [4.1[]]

The gravitational force & at the centre of this step is

F =G”'_:‘“,_ ....... e (811) .

whera m = mass of an object | A = mass of the Earth
and &= Gravitational constant

Squaring Eqg, 4.10
- YL
-"r""— %ﬁ tra B |2 mora enargy reaching
‘Earth in 10 days of suniight
than in all the fossil fuels on the

Earth,

r1 , 5O {ﬂf:lz can be neglected as compared to i’
Hence rt =r, + A
Futling the value of Af=f —r,
F=g +ri{e-r}=nn
Hence. Eq. 4.11 becomes

F=. E ﬂ ...... e {4'1 2}
hty

As this force is assumed ta be constant during the intarval Ar, so the work done is:

Wi, = F.AT = FAr cos 180° = - GMm f‘_r’
1.2

The nagative sign indicates that the work has to be done on the body from point 1102
becausedisplacement is opposite to gravitational force. Putting the valuenfﬂ@

7 T
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M.rgu:l. Work, Energy and hm::t.

Similarly, the work done during the second step in which the body s displaced from point
2lo3is:
Wo-ss =-GMm | -1
and the work done in the last step is: " 1Mﬁ:mmdm:- ’ﬂ
Wr(.1—3-u =—G-Ml'ﬂ' L—lJ 4 il
Frer T

Henca, the total work done in displacing a body from point 1 to N is calculated by
adding up the work done during all these steps.

Wom = Wias + Woast b W

| | = -G Mm &-%}&-%} ........ +|r"r r—{r
On simplification, we :?:z_ i [ @ @@W ébm
If the point N is ﬁl%

Giim

i
This total work by definiion is the absolute potential energy (F.E} as stated earlier
reprasentad by L

Wiom=—

= GMm

This is alzo known as the ahﬁnrme value of gravitational potential energy of a body at
a distance r from the centre of the Earth,

Mote thal when rincreases, U becomes less negative Le., Uincreases. I means when
we raise a body above the surface of the Earth, its P.E. increases. Therefore, if we want
to raise the body up to infinite distance, we will have to do work on it equal to GMM: o
that its P.E. becomas zer. R

MNow the absolute potential energy on the surface of the Earth is found by putting
r= R{Radius of the Earth), 50




4.6 ESCAPEVELOCITY
It is our daily life experience that an object projectad
upward comes back o the ground after rising to a certain
height. This is due to the force of gravity acting downward.,
With increased initial velocity, the object rises lo the
greater height before coming back. if we go on increasing
the initial velocity of the object, a stage comes when it will
not raturn to the ground. It will ascape oaut of the influanca
of gravity.

The initial velocity of an object with which

it goes out of the Earth's gravitational

field, is known as escape velocity.

The escape velocity coresponds to the initial kinetic energy gained-by ﬂm@m
carmies it to an infinite distance from the surface of the W o}

We know that the ram Earth's surface to an infinite distance is

acual o thed ‘ Ll A
o i MM Mm
WMMS&mPE =0-G-)=6

where M and R are the mass and radius of the Earth respectively. The body will escape
out of the gravitational fiekd if the initial K_E. of the body is equal to increase in BE. Then

1 - Mm
Emk"m = Guﬁf
or Vi = E (4.14)
I R
G G
As 9= 5r ar gR= =
Hence Voe ® 2GR i (4.15)

The value of v comes out to be approximately 11 km €.
-
4.7 WORK-ENERGY THEOREM

Whenewver work is done on a body, it Increases
on 2 body of mass m, initiglly g wi




T a "
' = 4.1
or B2 = {4.16)
From the second law of mation:
F=ma
or a=L T * %2

s
Comparing Eqs. 4.16 and 4.17, we have Tid-bits

F i All tha Sond you eat 0 one day nas
LA [' = ') abaut e Sema energy 83 113 ke
m "~ 24 of petrol,

or Fd= Em\;’ _%mulr.* e {4.18)

This expression is the work-anergy theorem, it states that:

The change in klmiﬂr.mltqy of an nhjn:thlqlﬂlnﬂum
done onit by a netforce. T

W= Ehmgeh klnaik:,elﬂ@r

slance, 2 nh]act wllh Iunalh: enargy can perform work f it is
~ <ﬁnull man-nﬂ'lar-nbject. In this case, the work will be taken as negative
L a i rﬂhtenergy of the object will decrease, The theorem remains valid even if tha
force may vary from polnt to point.

Example 4.4: A motorcycle nder weighing 60 kg is coasting
down a 24° slope. The welght of motorcycle is 30 kg, At the lop of
the slope, the speed of motorcycle is 3.2 m 3. If the kinetic
frictional force is 100 N, what will be the speed of the motorcycle
T2 mdownhill?
Solution: The normal force F, is balanced by the component of weight (mgeos24™)
perpendicular to the slope, Let the kinelic frictional force is £, then the net force Fis:
F= mgsin24"=Ff where m=total mass =60kg +30kg=20kg
of F=(90kg=98ms™ «0.4) -100N
F=.252.8N

Wokdone W =Fd =2528N=72m= 182016 J

As work is positive, so applying work - enargy theoram,

W= (KE) - KE) ?@ LN W



.;-;;sm kgxy! = 182014 +1§asnkgx{3.zms-'r

This gives, v = d4147m's”
v414.Tm2s-2 = 204ns

4.8 INTERCONVERSION OF POTENTIAL ENERGY AND
KINETIC ENERGY

Consider a body of mass m at rest, at a height h above the PE = myh =
surface of the Earth as shown in Fig, 4,12, At position A, the KE=D ey

b-ndy has PE. = mghand K.£. = 0. We release the body w@ @ A\
ZTeY

2
=
n

FE=mgm-xl gw

K.E=mgx ] i
{fx
PE=D ”
HE= n'.gh'—;l:'——*-
Velocity v, at position B, can be calculated from the redation, Fige AR
W= + 28
a5 V=l = : 5=x
Ve =0+ 2gx
e |
Vo = 2gx
Therefore K.E = %m (2gx)
= g

Total energy at position B = PE. + K.E
Total energy =mgfh -ﬂ“b




v, =v +2gh=2gh as w=0

. 1 _ "1

I8 KE = Emvc = E m x 2gh = mgh

Thus, atpoint C, kinetic energy is equal to the original value of the - f,
potential energy of the body. Actually, when a body falls, its IIJ
valocity increases Le., the body is being accelerated under the k. T
action of gravity. The increasa in velocity results in the increase in | b

its kinetic energy. On the other hand, as the body falls, its haight l
decreases and hence, its potential energy also decreases. Thus, i

we see (Fig, 4,13) that:
LossinPE. = GaininK.E

1 : .
mg'fhr—hij=5mtt_§ AN S

whera v, and v, are he velocifies o

result is trua only whenfrictional fore

If we assume that &

of PE. isu a stlnﬂmaqudtaf.h Thammalnng PE mgh—rFh

mgh—fh= % my*
or mgh = %mﬁ fh e (421)
Thus Loss in PE. = Gain in K.E. + Work done against friction
Conversely,

Loss of K.E, = Gain in PE + Waork done against friction

Example4.5:

A car weighing 1100 kg Is moving with a velocity of 12 m s". When it Is at point P, its
engine stops. If the frictional force is 120 N, what will be its velocity at point Q7 How far
bayond Q will it go before coming lo rest?

Solution




%m{vf— V) = whfd
%xﬁmmnﬂm?s"-wh - (1100 kg 9.8 ms*» 1.5 m) + 120 N» 24 m
 550kg (144 m s~ ) = 16170 kg m* s* + 2880 kg m’ &*

16170 kg m* s° + 2880 kg m® s*

‘ 3 q—H': =t . = m: i
(144 m' 5" - ) 550 kg 346m s
v =14dms’ = 346m s’ = 1094 m' s
Velocity at point @, % =+1094m's® =105ms’
Now if the car stops at point R, then using the formula:

1.5
— My =f5
2

Jkg=88ms® x15m= %xB kg{iBms'f +f=15m

441 kgm's” =384 kgm's” + 15muxf
441 kg nv &*— 384 kg m° &*
15m

or F=

=38kgms’ =38N

'@ Multiple Choice Questions [

4.1 A1 kg mass has potential energy of 1 joule relative to the ground when it is at a
height of:
(a) 0.102m (b 1m (c] 9.8m {d) 32m
4.2 An iron sphere whose mass i5 30 kg has the same diameter as an a!umlnm
sphere whose mass is 10.5 kg. The spheres are smltan&uugw drupped
chiff. Wﬂenlhayaremmﬁumhegmund meyham:de tical @
cendial emen : i -Biﬁdglﬂﬁ
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4, e height above the ground of a child on a swing varies from 0.5 m of his lowest
pointto 1.5m at his highest paint, The maximum speed of the child is approximately;
(a) 1.5ms" (b) 44msg"
{¢) 9.Bms" (d] Depends upon child's mass

4.5 When a ball Is thrown vertically upward and then falls back to the ground, which
force can be considered conservative in this scenaria?
(a) Airresistance (b) Gravity
(z) Frictionbetweenballandair (d) Contactforce with hand

46 According towork-anergy principle in linear motion, the work done on body is equal
to:

(a) changainK.E. (b) changeinPE.
[c] zero () sumofK.E.and F.E.
4.7 Powerofalampis6W. How much energy does a lamp give
(a) 12J ib) 20J = @%@
4.8 Adrybﬂl‘b&wu&ndellm D0 anergy t 8 2 W emalhels before the
acl. For b liles doss e batléry run?

(d) 25min
4.8 The ghefgy\acquired by a mass m after travelling a fixed distance fram rest
nde Sohio ufamnst?_r_nfumeldlr&mwpmpﬂmunaltu
(@) “m (b) 1m (c) m id) independentaf m

4.10Abody maves a distance of 10m along a straight line under the action of 5 N force. If
the work done is 25 J, the angle which the force makes with the direction of motion of
the body is:

(a) o (b) 30 (c) &0 (d) 90"
[ Short Answer Questions |

4.1 Why is electrical power required at all when the elevator is descanding? VWhy
should be there ba a limit on the number of passengers in this case ?

4.2, Abody is being raized to 8 height H from surface of Earth. What is the sign of work
done by both? justify.

4.3 Abody falls towards the Earth in air. Will its total mechanical energy be conserved
during fall 7 Justify.

4.4 Calculate power of a crane in kilowatt which lifts a mass AN k@ml
100 min 20 second,

45 Avolley of mass 154::%9 mying

o)
% moving unifermly with a
time, 2and starts leaking out of
1,05 kg 5. What is the spesd of the troliey



4.6 When will you say that a force is conservative? Alsa give an example,

4.7 Give absolute and gravitational units ofwork on M.K.S & C.G.5 syslams.

4.8 A body dropped from & height of H reaches the ground with a speed of 1.2 gH.
Calculate work done by air friction,

4.9 Abicycle has a K.E. of 150 J. What K.E. would the bicycle have if it had?
() Samemassbuthas speed doubla?
(i} Threetimes mass andwas moving with one half of the speed?

4.10 What will be the affect on K.E. of the body having mass m, moving with velocity v
when its momentum becomes double? Justify,

4.11 Does tha international space-station have gravilation PE. ar/and Kinetic enargy?

Explain.
[!Conﬂrurted Response Questions \ @@m
f el
4.1 When will you say that a forceis ﬁi ditiaha,

' 1§ cmentarm, which one has greater K.E. 7

4.2 Abghtand ha rhody b

4.3 Amotorcycleis \ with constant speed on a horzontal track. Is amy work being
don eyt o nel force is acting on it?

4 aetson a ball moving with 14 ms” speed and brings its speedto6ms’, Has

e force done positive or negative work? Explain your answer.

45 A slow moving truck can have more kinetic energy than a fast moving car. How 2
this possible?

46 Whywork done agalnst friction is non-conservative in nafure? Explain briefly.

4.7 Doeswind contain kinetic energy? Explain.

'@ Comprehensive Questions [

4,1 Define K.E. Dernve an expression forthe same,
4.2 Howwork isdone by a:
(i) constant force (] variable force?
4.3 Define conservative field. Show that gravitational Tield s conservative in nature.
4.4 Whatis meant by absolute P.E.7 Derive an expression for absolute P.E.
4.5 State and explain work-anargy theoram in a resistive medium,

4.6 Define escape velocity. Show that an g 32i0p @%@@m
gilenate mdius ‘-' ntfacceleration dus
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@ Numerical Problems P

4.1 Amachina gun fires 8 bullets per minute with a velocity of 700 m &7, If each bullet
hasamass of 40 g, then find power developed by the gun? [Ans: 9800 watl)
4.2 Afamily uses 10 KW of power. Direct solar energy is incxdent on horizontal surface at
an agverage rate of 300 per square metre, If 75% of this energy can be converled
into useful electrical energy, how large area iz needed to supply 10KW?
(Ans: 4444 m')
4.2 Wmass of the Earth Is 6.0 x 10™ kg and mass of Sun ks 1.29 x 10" kg. The sun is 160
million krn away from the Earth, Find the value of gravitational P E. of the Earth,
(Ans; =-4.97 x 107 J)
4.4 Water in a bucket tied with rope is whirled around in a vertical circle radius 0.5 m.
Calculate minimum velocity at the lowest point so thatwater does not spill from it

mnn@qm]

coidt 6 R A (A =] 1B units {11} Rs. 405)
gluurrdrﬂﬂcrmahﬁghtnfﬁmﬂndfalls

4.5 ATSwaIIfamsusad IurE huursuallyfurﬂﬂdays Fi

work done by grautly when the object comes back to the Earth,
{iii} total work done by gravity in upward and downward motion. Also mention
physical significance of the result.
[Ans: (i}-98.J (i) +38 J (i) 0 J significant gravily does nol iransfer any energy fo objeci]
4.7 An glectrical motor of one horse power is used to run a water pump. Water pump
takes 15 minutes to fill a tank of 400 ktres at a height of 10m., Find;
(2} aclual work done by ebectnic motor to full the tank
(b} percentage efficiency of motor, Assume that mass of 1 lifre of water=1 kg).
[Ang: {a) 871400 J{b) 11.6 %)
4.2 Apasszengerjust amived at the airpor and dragging his suitcase toluggage check in
desk. He pulls sirap with a force of 200 N at an angle of 457 to the floor to displace it
50 m to the desk, Determine the value of work done by him on the suitcase,
(Ans: 7 kd)
49 Ahﬂdyﬂfnwas{! Ekgtravelsmastmghtlm&wﬂhvemtyv ay""’ whereas= ’

y=0todm,
410A20&gapﬂa|slrﬁedm1ﬂ

{Ans: 12.1 ms")




After studying this chapter, the students will be able to:
Dlﬂlhplldl hmmmuum of crystalling, amarphous, and polymens sclids.

Describe that deformation of solids in one dimension [That it & coused by & force and that in one
dimnnsion, the determation can b tensle or compressi, ]

Define and use the terms stress, sirain and ihe Young's modulus
Deecrite an exparimant to determine the Young's modulusof a matal wire.
Desoribe pnd I.H lmm ﬁaﬂicmmuum pastic uufnmmmm elaslic Ilmlt

,Inm:luu mojLialion of confinuily h:mhapmbiﬂm

"Explaln that equeszing the and of & rubber plpe results Inincrease In fow velooily

Justify that the souation of continuity is a ferm of the principle of conservation of mass.
Justify thai the pressure difflerence can arise from difterent rates of flow of a fluid [Bemoulll effect)
Explain and apply Bamoul's aquation for horizontal and vertical fiukd flow.

Explainwhy real fluids are viscous fluids,

Describs how visoous forces in a fuld cause a retarding force on an obyect moving thaough e,
Deeonte super fluidity [As the siate in which & louwd will exparisnce zem viscosity. Studants sl1u|.|h:I
hlmlnhrqikﬂuﬂnfmm-a . tha aliows for su mmmmhnﬁladmﬂm

‘bo ‘ermply’ themeslves, |t also mplss that I you sﬁra guparfiuld, tha vorlices will kKeep spinning
Irrdefinitely,]

‘& Analyzethe raal-world applications of the Barnoulli effact [Forexample, stomizers in perfume boltlas,
tne swinging trajectory of a spinning cricket ball and the Bt of a spinning golf tall (the Magnus effect),
e wsmeal Venmmm In -‘lﬂlﬂm angd wenglnmn Hﬁ]ﬂ.ﬂmﬂﬂwﬁm Hﬁ.]

PRSP S ST T

“al‘arials have Spﬂ:l'ﬂc uses depemﬁng upon their characteristics and pmpenie:s such

material. Su'mlarly.th&studg,rom.ndshmn jat i ?- "M’J‘ alys
‘8- S\ A e 3 1 rs |fﬂdb¥“‘lﬂ”$ﬂ



o ervation of energy is the basis of Bernoulli’s ﬂmem :
5.1 CLASSIFICATION OF SOLIDS
Crystalline Solids

In crystaliine solids, there is a regular amangement of atoms & p el
and molecules. The neighbours of every molecule are )\"-“’1“ "#f ~f~;""~
arranged in a reqular pattern that is consistent thraughout the ¢ 0w

crystal. There is, thus, an ordered structure in crystalline sofids. 7:;!_.,.:;4

Most solids, like metals and ceramics have a crystaline . Q0
structure, This means their aloms, molecules or ions are :11,3'4: o Aol
arranged in a regular pattern. The arrangement of O "b'_’_} MR

molecules, atoms or ions within all types of crystalline solids =7 5 *-’:"."'rz:".‘;
can be studied using varous techniques such as X-ray (B ™ ...r )
Diffraction (XRD), Transmission Electron Microscopy (TEM). It MO
should be noted that atoms, moleculas or H:rns ina cr:.rstallme ol m
solid are nof siatic. For example, Bachatu ¥ 3 %@

abnmaﬁuedpnhuvmhan amplitLide raEes with|rss b

up, arnl;l the sulld melts, The transition from solid {order) to liquid [dmurder]- is, therefure.
abrupi or discontinuous. Every crystalline solid has a definite melting point e.g.. Guariz,
Calcite, Sugar, Mica, diamond, ete.

Amorphous or Glassy Solids

The word amorphous means without form or structure, Thus, in amorphous solids thera
is nio regular arrangement of melecules like that in crystalline solids. VWe can, therefore,
gay thal amorphous sclids are mone ke liguids with the disordered structure frozen in.

For example, ordinary glass, which is a solid at Qrdlnar:.' temperature, has no regular
arrangement of molecules. On heating, it
gradually softens into a paste like state
before it becomes a very viscous liquid at
almost 800°C. Thus, amorphous solids
are also called glassy solids, This lypa of
solids has no definite melting point e.g., |
plastic, glass, fused silicen, ele,

Pnlyma ric Solids




synthatic rubbers are termed as polymers because lha'_.r are formed hy pdymenzahm
reactions in which relatively simple molecules are chemically combined into massive
hang chain molecules, or threa-dimeansional structures, These materials have rather low
specific gravity compared with even the lightest of metals, and yet exhibit good strength

towakght ratio.

For Your Information
Polymers consist wholly or in part of chemical combination of '
carbon with oxygen, hydrogen, nitrogen and other metallic or
non metallic elements, Polythene, polystyrens and nylon, stc.,
are examplas of polymers. Natural rubber is composed in the
pure state entirely of a hydrocarbon with the formula (C.H, ).

5.2 MECHANICAL PROPERTIES OF SOLIDS
Deformation in Solids

If we hold a soft rubber ball in our hand and then squeaza It
the srﬂpe or volume of the ball will changﬂ uwa B

hun- il ‘increase under the action of m& applled forca [a;ﬂrigiﬂlntherbﬂll
exerted by our hands, Greater the applied force, larger will be (8) Sgueezed rubber ball
the increase in length. Mow on removing the applied force, the ME:“N farce F by the
string will return to its original length. From these examplas, it (e} Rubber ball aller remaving
is concluded that deformation (i.e., change in shape, length or ~ force

volume) is produced when a body is subjected to some 8_?
external force, i

In crystalline solids, atoms are usually amanged in a certain (&} Uretretched unit o
order, These aloms are held about their equilibrium position, g:g

which depends on the strength of the inter-atomic cohesive T

force between them. Under the influence of external force, (5} Uik oo g aiitwaed

distartion accurs in the solid bodies becausa of tha stralching lnece
displacement of the atoms from their equilibrium position and 8_15__'}
the body is said 10 b in a state of strass. After the remaoval of %

exlernal force, the atoms return to their equilibium pasition, (=] Lﬁﬂ':: Imieind
and the body regains its ariginal shape, ;H‘ﬂﬂdﬂdﬂ'lﬂtextemﬂ rﬁ@m

return to its original shape is
illustrates deforma u pmclu



The results of machanical tests are usually expressed in larms of stress and strain,
which are defined in terms of applied force and deformation,

Stress

It is defined as the force applied per unit area to produce any change in the shape,
volume or length of a body. Mathematically, it is expressed as:

N (5.1)
The Sl unit of stress (o) is newlon per square meter (N m™), which is given the name
pascal (Pa). Stress may cause a change in length, volume and shape, VWhen a stress
changes length, it is called the lansile strass, whan ilchanges the volume, iLis called the
volume stress and when it changes the shape, it is called the shear siress,

p

siress is applled to it In tha ARE
one dimension,
change in length.

the original lang

angainlength (L) say T
~ Original length (L)

Since strain s the ratio of lengths, it s
dimensionless and therefore, has no units. If strain p=
£z due to tensde strass o, (s callad tensile sirain,
and if it is produced as a result of compressive stress
a, itis termed as compressive sirain.

In case when the applied stress changes the volume, I
the change in volume per unit volume is known a3
volumetric strain as shown in Fig, 5.3 (b), thus Fig. 5:3(b): Volmatric sirain

E o Vidurne

{
q
L]
i
i
L]
4
i
i

,
r vy m—
I
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4
r

-

A

Volumetric strain = f e (5.3)

Let y be the distance between two opposite faces of a
rigid body (Fig. 5.3-c), which are subjected to shear ¥
siress one of s face slides through a dia!ama AX,

hrtddilbree m@%

Fig. 5.3(c): Shear strain




: for small value ufanglﬂ H, measurad in For Your Information
radian tand=a, sothat Alhough il s named afier the 19th
i R T ___{55} canfury British Sciantist Thames
: e Yaung, the concept was developed in
Young's Modulus 1727 by Leonhard Eullor,
The stress applied per unit strain

is called Young's modulus

Tensile stress
Tanszila strain

e Y=

.o (5.8)
ALIL,

it has the same unit as that of stress i.e,,
M m™ or Pa. The value of Young's modulus
of different materal is given in Tabbe

Experimantally, the magnitude of Young's modulus for 8 SN pp

material in the form of wire can be found out mostly with
help of searl apparatus as shown In Fig. 5.4.

It consists of two wires, auxiliary or reference wire and test
wire (exparimental wire) of equallengths of same material
having same diameters attached to a rigid support, Both
wires are connected to horizontal bars {frames F, and F.)
at the other ands. Hang a constant weight to the hook of
horizontal bar of reference wire and hanger on test wire so
that wire remains stretched and free from kinks.

Procedure

The following procedure is adopted for finding Young's

modulus of a wire exparimearntally.

1. Measure theinitial length L, "of the wire using a metre
scale.
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iffarfant points along the wire and take avarage.
3. Adjust the spirt level so that it is in horizontal position by turming the micrometer.
Record the micrometer reading 1o use it as the reference reading.

4. Load the test wire with a further weight, the spint level tilts due to elongation of the
test wire.

Adjust the micrometer screw to restore the spirt level in the horzontal position,
Subtract the first micrometer reading from the second micrometer reading to obtain
thie extension of the test wire.

6. Calculate stress and strain from the folkowing formula:;

svess < Weignt _F _mg [

o

Areaofwire A =r  Astael 1o and s rubber band
mnhpdnﬂtaaamixm
Sirain = AL _ Change in length 'Mdﬂ'lm will b
L Original length
7. Repeat the above steps byi ] lpad o @ﬂ@n values of
stresses and strains. “
8. Plot the above) six aph, it should be straight line. Now
determing the -'alue m slope is equal to Young's modulus of
wire,

BEFDMIUH PLASTIC DEFORMATION AND
ELASTIC LIMIT

In a tensile test. matal wire |5 axtended at a specified deformation rate, and siresses
generaied in the wire dunng deformation are continuously measured by a suitable
electronic device fitted in the mechanical testing machine. Force-elongation diagram or
shress-slrain curve is plotted automatically on X-Y chart recorder. A typical stress-strain
curve for a ductile material iz shown in Fig. 5.5.

Inthe initial stage of deformation, stress is increased B : o
linearly with the strain till we reach point A on the
stress-strain curve. This is called proportional limit
(@,). It is defined as the greates! stress that a
material can endure without losing straight Ene
propartionality batwean stress and strain. Hooke's
law which stales that the strain (deformation) is
directly proportional to stress (force or kbad) is
obeyed in the region OA, FrumAh: B, stress anﬁ

g8 -/ Sisdes it
sirain are nof proportional, calddie sty
Elastic limit
if the load is remov i‘ ‘ h and B. The curve will be retraced and the

Stress (o)




aterial will refurn to ts original length. In the region OB, the materdal is said to be
glastic. The point B is called the yield point. The value of stress at B is known as elastic
mit o,

Plastic Deformation

If the siress is increased beyond the yield stress or elastic limit of the material, the
spacirmen becomes permanently changed and does nol recover its original shape or
dimension after the stress is removed, This kind of behaviour is called plasticity. The
region of plasticity is represented by the porticn of the curve from B to C, the point C in
Fig. 5.5 reprasants the ultimate tensile strength (UTS) o,, of the matarial. The UTS |s
defined as the maximum stress that a material can withstand, and can be regarded as
the nominal strength of the material. Once point C correzpending to UTS ks crossed, the
material breaks at point D, respanding the fracture stress (o).

Ductile substance

A slnar wire 12 mm in diameter s fastened to a log and is then pulled
cﬁr The length of steel wire batween the log and the tractor is 11 m. A foree af
1ﬂﬂDﬂNismquiadmmllhalug Calculate the stress in the wire.

Solution:
As tensile stress o = % _
10.000N Why does a ship made of
T 314(6x10°m ) mﬁmgﬂﬁ‘l’“h
= 88.48 = 10E N m*
= 88,46 Mpa

5.6 STRAIN ENERGY IN DEFORMED MATERIALS
When a body is deformed by a force, work is done agains! elastic restoring force. It is

stored in it as its potential energy and is equal 1o the gain in potential energy of the
molecules of a body due (o the displacement of these molecubas fmm

positions. @
Derivation of Expressiar Energy treh:had
Material pr '%;\ﬂ\ ié 55

shown in Fig. 5.6, Itis stretched by a force




sugh extension x. As the extension is directly pmpnmunal
to the stretching force within the elastic limit, therefore the force
increasas uniformly fram zero to £ as shown in Fig. 5.7_Thus, the
average forca that stretches the spring through Ax is1/2F. Hence
work done by the stretching force will be given as:

Work done = Average force « Distance in tha direction of the force
.1

W= 5 Fx A s (5.7)
From Hooke's law F= kfax)
Therefore, W= [%kﬂx}-{ﬁx} =% KAy
or W = Areaof OFQ

The work dome by the stratching force is stored in the *
spring as its strained energy and is equal to the potential
energy stored in its molecules.,

sr'uay per unll volume of the mater;ed will b&glm by

1 FxAL

o= 2 Ax [
For Your Information

1 F_AL o
YsSugrET i i (58) The emount of work dona in

3 stratching a material is egqual to the

= —x x sapiatiie f average force applisd multipiad

U= 5 ® giress = strain {5.9) B s bicea

: ) , s Therafore. he area under & force-
From equation of Young's Modulus (Eq. 5.6} wehave 2002 graph represents the

E =y & woek done 1o stretch the material

i ¥ Work done o stretch the materal

. i : iz also equal 1o ekastic PE. storad
Futting the above expression in Eq. (5.8), strain i the miferial,

anargy par unit voluma is:

u-;nﬂf e!-.LL 1,{ AL 3 @O@@K@




An air-filled balloon immediately shoots up to the surface when released under the
surface of water, The same would happenif & piece ofwood is released under water. We
might have noticed that a mug filled with water feels light under water but feels heavy as
soon as we take it out of water,

Morea than two thousand years ago, the Greek sciantist, Archimedas noticed that there s
an upward force which acts on an object which is kept inside a liquid, As a result, an
apparent loss of weight is cbserved in the object. This upward force acting on the object
is callad iha upthrust of the liquid. Archimades’ principle states that:
When an objectis totally or partially immersed in a liquid, an upthrust
force acts on itequal to the weight of the liquid it displaces.
Consider a solid cylinder of cross-sectional area A and height himmersed in a liguid as

shown in Fig. 5.8. Let i1, and b, ba the depths of the top and bottom faces of the ¢
respectively from the surace of the liquid. Than

h‘_—hr-h @ ::, s
If #.and P, are the AN, | ¥
respectively and gi by 1‘
P l h
a Pgh; 'L
Let the force £, be exerted at the cylinder top by the Fi
liguid due to pressure P, and the force F, be exerted _.
at the bottom of the cylinder by the Bguid due o P,, o e
Then Fig. 5.8: Upthrust on & body
F;‘-F',A‘PQ'PT,A mmersed 0 a liguid & aqui to

The weight of the iquid displaced.
and F,=P,A=pghA
F.and F, are the forces acting on the opposite faces of the cylinder, Therefore, the net
farce F will be agual to the difference of these forces. This net forca Fon the cylinder s
called the upthrust of the liquid. Hence

F:.-— F, = pgh,,.-ﬁ—pgh,ﬁi Far Your Informaticn
B ‘mﬁflhr—'hr}"""'” _______ {5.12} ﬁr-:l-uhﬂd-:m born about 287

BGE. In Syracuse on tha lsland of
Soldier af

or  Upthrustof Bouid = pg Ak

s yalume af tha liguid displaced
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inder, therafore, pg\/is the weight of the liquid displaced. This equation shows
{hat an upthrust acts on a body immersed in a liquid and is equal to the weight of liquid
displaced, which is accarding to Archimada's principle.

EXAMPLE 5.2: Awooden cube of sides 10 cm each has been dipped completely in
water. Calculate the upthurst of water acting onit.
Solution:
Given:
Length of side L=10em=01m
Volume VelU'=s@im=1x10"m'
Density of water P = 1000 kg m”
Upthrust F
Using Archimede's principle

Upthrust of water = pg b w@(}@@ﬁ@

Thus, Llpﬂ’l'l.lﬁtﬂf r acting-on the ‘in-: CuUbete O & N,

Floatation %ﬁ

i ifa weight is greater than the upthrust force acting on it. However, an
o fivats if its weight i egual or less than the upthrust, When an object flcats in a
fluid, the upthrust acting on it is equal to the weight of the object. In case of floating
object, the cbject may be partially immersed. The upthrust is always egual to the weight
of the fiuid displacad by the object. This is the principle of floatation, It states that:

Afioating object displaces a fluid having weight equal o the weight af the object.
Archimedes’ principle Is applicable on liquids as well as cn gases, We find numerous
applications of this principle in our daily life. .
Applications

Following are some important applications of Archimedes’ principle,
1. Hot-air balloon

The reason why hot-air ballcons nise and floal in mid=air is because
of the density of the hot-air balloon is less than the surrounding air,
When the buoyant force of the hot-air balloon is more, it starts to
rige. This s done by varying the quantity of hot air in tha balloon,

2. Wooden block floating on water

Awonden hlﬂck floats on water i it -.,: 3E n volume of water is
rag - * nnclpla m‘ flnataﬂun a body ﬂuats




Inwater,
3. Ships and boats

Ships and boats ara designad on tha same
principle of floatation. They camy passengers
and goods over waler. It would sink in water if
its weight including the weight of its
passengers and goods becomes greater than
the upthrust aof water.

4. Submarine "
A submarine can travel over as well as under Fig5.10 (ak A ship Reating over waler
water using the same principle of fioatation,

It floats over water whan the weaight of water

equal o its volume is greater than its weight.
Linder thiz condition, it iz similar to a ship and

system of tanks which can be fill
emptied from seawater, Whe -
filled with $eaw

g upthrust, it dives Sonar

q". =P e "
up on the surface, the tanks are made empty 9310 (bl Submarine
from seawater.
Example 5.3: An empty meteorological balloon weighs 80 N, It is filled with 10 cubic
metres of hydrogen. How much maximum contents the balloon can lift besides its own
waight? The density of hydrogen is 0.09 kg m™ and the density of airis 1.3 kg™,
Given:
Weight of the balloon w = 80N
Volume of hydrogen V' = 10 m'

Density of hydragen g, = 009 kgm”
Density of air P =13kgm’
Weight of hydrogen  w, =

Waight of the contants w. ‘

Lipthnust F



leight of hydrogen  w, = pVg
=0.08kgm ' x10m'x 9.8 m g*
=882N
Total weight lifted F = wEW, W,
To lift the contents, the total weight of the balloon should not exceed F,
Thus W+w+w =F
BON+BBZN+w, =12T4AN
ar w, =38N

Thus, the maximum weight of 41 N can be lifted by the balloon in addition 1o its own
weight.

5.8 STEADY, NON-VISCOUS AND IDEAL FLUID

Maoving fluids have greatimportance. In order to find 1he h&ha'-.rmu &
we consider thelr flow through the pipes. Whena ; ) placa

in mwaw,enher sh*aanimeur hurbiibeiil,

= “ — s~ T

q‘ a55es a particular pnmt, moves d—'
SHH TR B A T

Jan i path, as followed by particles —— : .
f-‘;‘[ that points earier, R E b ]
In a steady flow of a fiuid, the motion of the particies is smooth and regular, as shown in
Fig. 5.11. The smooth path followed by fluid partickes in laminar flow is called a
sireamline. The streamline may be the straight or curved and tangent to any point gives
the direction of flow of a fluid. The different streambnes cannol cross each other.

Example: Afluid flowing in 2 pipe as shown in
Fig. 512 will have certain velocity v, at P, a
velocity v, al Q and so on, If the velocity of a
particle of the fluid at P, Q and R does not '
change with the passage of timea, than the flow &-'on 12: The velocities of the parﬂdua at
is said to be steady flow or streamline flaw, different points on sireamiing,

The line POR which regresenis the path followed by the
particle is called a streamline. |t reprasents the fixed path
followed by orderdy processing particles. In streamiine flow, all
tha p:;rth:lgs passing |hruugh P aleo pass Ihmugh Cand R, It

Fig. 5.13: Tustilent Nl



fluid becomes unsteady and irregular. Under this
condition, the valacity of tha fluid changes abruptly as
shown in the Fig. 5.13. In this case, the exact path of the
particles cannct be considered.

If two streamlinas cross each other, then the particles will
go in one or in the other directions and flow will not be a
steady flow. Such a flow s a turbulent flow. When the flow  Formuta One racing cars have a
is unsteady or turbulent, there are eddies and whirlpools  Streamiined design.

in the motion and the paths of the particles are
continuously changing.

Ideal Fluid

Tha behaviour of the fiuld which satisfies the following
conditions is called ideal fluid:
1. The fluid iz non-viscous ia.
force between adjacent layers .
2. Thefluidis inmm ssibbe i
3. Thefluid fl'!JhD

Rateo
ufﬂw ﬂuﬂuﬂﬁmuﬁmplﬂalﬂhnvalm of

thiﬂu[dpmh[uﬂumuhin}*iﬂm of pipe per unit time.
Farmula For Rate of Flow

Conslder a fivid flowing through a pipe of area i p ((ﬁ\\
of cross-saction A as shown in Fig, 5,14, Let J u
e

the valocity of the luid be v and it flows through
the pipe for time ¢, then the distance covered by
the fluld in time is:

F =yt Fig- 5.14: Rate of flow of a liquid

whera 1 is the length of the pipe through which the fiuid passes in time £, Volume of the
fluid passing through the pipe in time ¢, is:
Awi=Aw

Thus  The rate of flow of the iquid = Vokite
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- . It is measured in cubic metre per second (M’ s7). Sometimes, it is also
maasuredmlllras persacond (Ls").

Steady Flow

Ifthe overall fiow pattern does not change with time, the flow is called steady flow.
In steady low, every particle of tha flud follows the same llow line as its prewmous parlicls.
5.9 EQUATION OF CONTINUITY

Statement

Tlupmdm:l of cross-sectional area of the piﬁ- and uuﬂumw
(Le., Av) at any point along the pipe is a constant. This constant is
equal to the volume flow per second of the fiuid or simply the flow rate.

Vnhme

Thus Av = Conslant =

siza The panldas in the fluld
lines in a steady state

I we consider the i m. me

nuh:lalthe DWEF Sk \ Ax,

‘M ity wendistance covered b}rlhe fluid is; Fig. 5.75: Steady flow of & fluld

+eneef5.15) Interasting Fact
Let A, be the area of cross-section of the lowerend, then  eujar obtained the cantin ity
volume af the fluid that flows into the tube at A, is: equation for 3 incompressible fuid
with & large numbar of tarma in

V= Aax, 1752, Later, it was transisted by

o V= Al ., Truies dedl from English in 1954,

If o, iz the density of the fluid, then the mass of the fluid contained in the shaded regicn
{ through A,)is:

= Yolume = Density
ar Am,.= AV AL xp
Simiarly, ihe mass of the fluid that moves with velocity 'v." through the upper end of the
pipe having cross-sectional area’A ' in the same time Atis glven by

= A VAL = P,
whara p?ls Ihla danErty' of the fluid ﬂwrlng wuhmugh.ﬁ and Am Irl :




S0, Av . Alxp, = Ay, Alxp,

or R R e {5.17)

Enuation (5.17) is called the aquation of continuity. Since density s constant for the
steady fiow of incompressible fluid, therefore, the equation of continuity becomes:

7 b LT 18 e NS e e gy s,

Equatian {5,18) states that in steady flow, the rate of flow inward is equal to the rate of
flow outward.

This equation justifies the conservation of mass of the fluid which is flowing through
apipe.

EXAMPLE 5.4: A water hose with an internal diameter of 20 mm al the outlet
discharge 30 kg of water in 80 s. Calculste the water speed at the outlet. Assume the
density of water is 1000 kg m™ and its flow is steady,

Solution:
Intermal diameterof water hose

Radius
el
o =1000kgm ’

Tidbits

Speed of water w=7 A
Mass flow per sacond mst = 30kgi60s 'hw-ln:-mmmu&m
= 05kga" area decreages e mandaled by he
continudy agualion.
Cross-sectional area A =zr
=314 x{0.01)

Far Your Information

=314 110" m’
i i
From equation of continuity, the mass of water 'I‘;‘; gﬂgﬂm of continuity is

discharging per second through area A is: (i) hhnilhﬂn anenes and veins
pAv = Mass/Second (Il waterflowinrivers and pipes

_ jii} air flow mduct and ventkation
Mass / Sacond :u}:mm and

PA

e

‘i =




We can increase the flow velocity of water in a rubber pipe by squeezing it, When we
squeeze the rubber pipe, we decrease the cross-sectional area through which the water
flows. Accarding to the aguation of conlinuity,

whera A is the cross-seclional area and v 15 the flow velocity, By decreasing the cross-
sactional area (4, <A ), the velocity of the water (v,) must increase to maintain the same
flow rate. Therefora, squeazing the rubber pipe increases the flow velocity of water,
5.11 BERNOULLI'S EQUATION

Az the fluid moves through a pipe of varying cross-section and height, the pressure will
change along the pipe. Bernoulli's equation is the fundamental equation in fluid
dynamics that relates pressure to fluid speed and height,

In deriving Bernoulli's equation, wa assume that the fluid Is incom ble o
and flows in a steady state manner, Lelus wﬂermW throus

i time £, as shownin Fig. 5.16.

on the fluid, by
id behind it, In moving it
through a distance Ax,, will be;

W, =FAx = PAAx,
Simillarly, the wark done on the

flukd atthe lower end is: Flg. 5_“.,5," ieal flow of fluid through a nnn—unliﬁnn
W, = - E.Ax, = -PAAX, cross-sechon pip at diferent haights.

whera P, is the pressure, A. iz the area of cross-section of lower end and Ax, is the
distance moved by the fluld in sarme time interval |, The work W, |5 taken lo be —ve as this
work is done against the fiuid force. The work done will be;

W=W, + W,
ar W=PAAK - PAAX...........(510)
If v, and v, are the velocities at the upper and lowar ends respactively, then

W =P Avt-P At < '@@m
From equation of continuity (Eqg, 5.18) @' o

ihi shaps of 3 curveball
i relate o Bemoull's

in b




We (P -BV. . ....5.20)
I m |= tha mass and p Is the dansity, than -;%’.
S0, Eq. (5.20) becomes;

A parl of this work is utiized by the fluld in changing its K.E. and a part is used in
changing its gravitational BE.

Change in K.E. AKE = %“mug’- %_;mvf .............. (5.22)

Changein PE. APE=mgh,—mgh, .o (5.23)

where h, and h, are the heighis of the upper and lower ends respasti @@m
Applying the law of ::nnmhnn ofene

(A= F‘)

OIS
H&arrmglrbgt 47) wi 2
1 1
P"'Epvfi'pghl =P;+'ipvzz*p'ghz

This is Bernoulli's equation and is often expressed as:

P+%pb"2 + pgh = constant

5.12 USES OF BERNOULLI'S PRINCIPLE

Anumber of devices operate by means of pressure difference that results from changes
in the speed of the fluid.

1. Aeroplane Wings

The wing of an aeroplane is designed to deflect the
air 20 thal sireamlinas ara closer logather above -2
the wing than below it as illustrated in Fig.5.17. We |

have seen that where the streamlines are forced
closer together, the speed is faster, Thus, air is
travelling faster on the upper side of the wing than Fig ST L0 ot ey E

onthelawer. The prassur&wnl be lower at the top of @7‘”@@
- \(\é
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and ramains rough on the other side. The air Frstar ar, __
moves faster over rough side and slows over the ™ =%
smoather. According to Barnoulli's equation, the faster
moving air creales lower pressure, while the slower
moving air creates higher pressure, thizs pressure
difference generates a sideways force, known as
Magnus effect which causes the ball to cum in the air.

3.  Filter Pump

Afilter pump has a constriclion
in the centre, 30 that a et of
waler from the tap flows faster
here, This causes a drop in
pressure near it and air,
therefors, flows in from the
side tube. The air and water
together are expelled through
the lower part of the pumg,

4, Carbure)
The carburator of

Bl i
- \‘ the duct and along a pipe to the

Dedartion fome

The air through the duct moves very fast, creating low
pressure in the duct, which draws petrol vapours info
the air stream.

5. PaintSprayer

Astraam of air passing over a tube dipped Ina Bquid will
cause the liquid 1o rise in tha tube as shown in Flg. 5.21.
This effect is used in perfume botfles and paint
sprayers. Actually when the rubber ball of atomizer is
squeezed, the air is blown through tube and it rushes
out through the narrow aperture with high speed and it
causes fall of pressure. So, the atmosphernc pressure Fig, 5.21: A siream of ar passing
pushes the perfume up leading to the narrow aperiure,  overa m;wm_‘lmu

6. VenturiRelation

Consider a pipe within which a fluid of density o is flowi %@@@ﬂ

cross-zection as showninthe Fig. 5.220

ross-sactional area at




wide and narrow portions respectively. Pressure
P, ard P, indicate the lguld pressure at both
fhe portions by connecting the limbs of the
manameter,

As the pipe s placed horizontally, therefore, we
consider thal average potential energy is the same
at both placas while using Bermoulll's equation.

Thus, Bermoulli's equation can be written as: Fig. 5.22- mm matar

1
Po—pvf
i EP 1

or P=-R

o P-F =

vm}r slow ﬁ md&r pnrhﬂn of the pipe as mmpared to the narmw portion, So, we can
neglect v, on the right-hand side of Eq.(5.25), Henoa

S . (5.26)

This is known as Venturi relation, which is used in venturi meter, & device used to
measure speed of liguid flow,

7. Torricelli's Theorem

Asimple application of Bernoulli's equation is shown in
Fig. 5.23. Supposa a large tank of fluid has two small
orifices Aand B on it, as shown in Fig. 5.23. Let us find
the speed with which the water flows from the orifice A, »,

Since the orifices are 50 small, the efflux speeds v, and
v, will be much larger than the speed v, of the top |
surface of water. Wa can therefore, laka v, as
approximately zero. Hence, Bamuuli‘@aq s
bewrittan as:

A




B P, = P; = Atmaspheric prassure
Therefare, the above equation becomes:
Ve = 20U Padurisss e .{5.27)

This is Tomicelli's theorem which states that:

The speed of efflux is equal to the velocity gained by the fluid in

falling through the distance (h, - h,) under the action of gravity.
Motice that the speed of the efflux of liquid s the same as the speed of a ball that falls
through a heaight (k, - h.), The top lavel of the tank has moved down a litthe and the PE,
has been transferred into K. E. of the efflux of fluid. If the orifice had been pointed upward
al B as shown in Fig.6.4, this K.E. would allow the liquid to rise to the level of water lank.
In practice, viscous-energy losses would alter the result to some extent,

5.13 VISCOUS DRAGAND STOKES' LAW

—— "\”'1\-\‘-‘“ =

Tha mchuna! effect hetween d:ﬁerEni layers of a ﬁu'Mng ﬂuu:!
SCOE(T N5 )y
: 0,013
Aceione 0295
Methanal 0.510
. 0801
stpsities. Ethanat 1.000
Plasma 18
Iharefora a force is raqmred |Ir an ohject ls o be mn'ved Eb‘ﬂﬁn g20

through them. Even the small viscosity of the air causes a : .
large retarding forca on a car as it travels at high speed. If you
shick out vour hand out of the window of a fast moving car, you :
can easdy recognize that considerable force has o be exerted
on your hand to move it through the air. These ara typical
examples of the following fact,

An object maving through & fluld experiences & retarding force
callad a drag force. The drag force increases as the speed of
the object increases.

Even inthe simplest cases. the exact value of the drag force is
difficult to calculate. However, the case of a sphare moving
through a fluid is of great importance.

The drag force F on a sphere of radius r moving slmnly with 55

speed vthrough a fluid of viscosity n is given by Stokes’
under:



Consider a water droplet such as that of fog falling verically, the air drag on the water
droplet increases with speed. The droplet accelerates rapidly under the over powerning
force of gravity which pulls the droplet rapidly downward due to force of gravity
However, the upward drag force on it increases as the speed of the droplet increases.
The net force on the dropletis

As the speed of the droplet continues to increase, the drag force eventually approaches
the walght in the magnitude. Finally, whan the magnitude of the drag force becomes
equal to the weight, the net force acting on the droplet is zero, Then the droplet will fall
with constant speed called terminal velocity,

Ta find the terminal velocity v, in this case, we use Stokes' law for the drag force,
Equating it to the weight of the drop, we have

R RN Al

The mass of the Fag " ia the volume of the sphere.

15.31)

E'm,pin 9.5: A liny water droplet of radius 0,010 cm descends through air from a
high building. Calculate its terminal velocity. Given that n for air = 19x 10" kg m” 5" and
density of water p=1000kgm™.

Solution:
F=1.0x10"m, p=1000kgm®, n=19x10"kgm's"
Putting the above values in Eq. (5.31)
, _2x98ms x(10x 10 m) = 1000 kg m™
= 9x19«10°kgm's '
Terminal velocity =1.1 ms".

5.15 REALFLUIDS ARE VISCOUS FLUIDS @ @@m

Ideal fluid O o
It is & fluid that doas not have vi ‘ ed. This type of fluid
cannot exist practi
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Al types of fluids that possess viscosity are classified as real fluids.
Examples: Kerosana and castor od, honey, alc,
Comparison of Ideal and Real Fluids

An example of ideal flud cannol be provided becausa it does nol exist in the real world
but only in theory, Howeaver, every fluid thal we see around us like water, diesel, petrof,
honey, efc. are real fluids. Moreover, differences in viscosity can be found in real life, for
exampla, honay is mona viscous than water, Bermoulli's equation states that the speed of
flurd flow is increased as a result of a simultaneous decrease in the potential energy of
the fluid or a decrease In the statlc pressure on tha flukd, When a fluid s viscous, it
essentially refers to the thickness of the fluid or the friction the fluid faces while fluid
flows. Therefore, ideal fluids do not face the opposing force and have a non-viscous
flow, while real fluids have a viscous flow. AR

s |deal fluids are mcompressible, This means nenhertheden&rl(\ nth{x{( nl:iﬁﬂfk
fluid changes with pressure. Wharaas, raemuldsvaﬂ!@‘ﬁ Nuk:ﬁ mp}ﬂ@s

*  Bulk modulus va-rsety depveim;lfr n‘sh@wﬂuﬁ@ fsﬁéngé pluma change for ideal
fluids is zero, H\ maﬁaﬁs ﬁ JlEhB/T fiuids. Hc:wmrar real fluids are
subjected to volli N\a\d;h%mgé andithetatore have finite bulk modulus.

m exﬁi\ahhr i Ihec:r}' itis not subjected to surface tension, However, for
\j f\?\'\ surface tanzion becomes applicable.

In simpler words, Ideal fluids are imaginary in nature which means they do not exist in
nature. Whereas real fluids very much existin natura.

Ideal fluids do not have any viscosity or can be said to have zero viscosity. Moreover,
real fluidzs have viscosity.

5.16 SUPERFLUIDS

Superfluidity is a property of fluids where they
have zero viscosily or are [rictionlass. A
substance exhibiting this propery is suparfluid,
Superfluids flow without loss of kinetic energy.
In the laboratary, superfluids form in soma
substances at cryogeniciemperature, not much
above absolute zaro.

Superfluids can flow through incredibly namow
spaces without any resistance. They can defy
gravity and flow upwards agamst itas shnwmn
Fig. 5.24, 4 7%

NS i
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Properties of Superfluids

Superfluids exhibits unigue behaviour not seen in regular fluids and gases, For
instance, helium-3 can cEmb container walls and escape, a phenomenon known as film
flow, and can even pass through container walls. When stirred, superluids create
persistent vortices, unlike regular fluids that settle. Interestingly, when a container of
superfluid is rotated, the liquid inside remains stll, unlike a cup of coffee. Superfluids
consist of a mixiure of normal and superluids components, with mare superfiuld prasent
at lower temperatures, Some superfluids have high thermal conductivity and varnying
compressibility. |1 is important to note that superfluidity differs from superconductivity;
forexample, both superfluids helium-3 and helium=-4 do not conduct electricity,

Examples of Superfluids
Superfiuids halium-4 is the mast sludied example of supeduidity. I changes from a
Bquid fo a superfluids just a few degree below its boiling point of -452°F {-269"13 ord K]n

Suparfiuids helium-4 moving as a narmal clear liquid, but it has nrn SGOS
that once it starts to fiow, it keeps moving past any obsta

I-bruar&nlhersmeﬂuldlty &xam@

2 as superfluids (not all, though))

o Gt D2

Parachules increase air rsslance

* Atomic sodium (drag) by creating a large surface
" zm.mmlurmmmmuf

. Possibly inside nautron stars 4 THE Siche ha pat

Superfluidity Applications Follallowing them to fand safsly,

Currently, there are few practical uses for superfluids. Superdluid helium=-4 serves asa
coolant for high-field magnets. Both helium-3 and helium-4 are utilized in advanced
particle detectors. Researching superfluidity also helps us learn more about
superconductivity.

Liquid helium is recognized for its great thermal _
conductivity and s used in cryogenic applications,

including cooling superconducting magnets, Supedfhuds can ‘chmd” up walls and
scientific research, and medical uses. Additionally,  9ver m of containera mﬂ:ﬂ;
itis employed In industry for leak testing and in the 1Y 90 1t experence fiction

praduction of electronic and optical products.

A -



QUESTIONS

| Muitiple Choice Questions |

Tick () the correct option.
8.1 The region of stress-strain curve which obeys Hooke'slaw s,
(a) propartional imit ({b)elasticBmit  (c)plastic region (d) yield limit
5.2 Which of the following is mone efastic?
(a) Rubber {b)Wood (c) Sponge (d) Steel
§.2 Which of the following is polymer solid?
(&) Wool (b) Glass (¢} Sodium chloride [d}Cuppr

54 The effect of decrease of pressure with the increase in speed of a fluid in hogd
e NeS
(a) Torricelli's effect Ii'6 £
[c:]-"uhntwe'selfacl. 3 effie

§5 The presaura@
qa]zsm (d) constant

mtlnn for siaady streamline fiow, the friction
ries proportionally to velocity of fluid
tbiv_arlas inversely proportional to pressure
(c) does not depend on pressure
{d}firstincreases then decreases

§.7 If a stone is submerged In walar and il weighs lass in waler than in air, this
phenomenaon s duata:

(a) the reduction of mass in water (b} increase of density in walter
{c}buoyant force acting upwards (d) the gravitational force acting upward
5.8 The principle of floatation s a direct application of:
(a) Pascal's law (b) Bernoulli's principle
(c}Archimedes' principal (d) Mewton's third faw
5.8 Anidealilow of any fluid must satisky;
ja) Pascal law (b) Bermoulli's equa‘unn

(¢} Continuity equationanty fd ) Both [b}a
§.10 Thelift force experienced by an H@ : ' .,
nsny of air

e wlng (d] gravitational farce




patients operates is based on!

{a) Newlan's third law (b)Archimedes' principls
fc)Pascals law (d) Bernoulli’s principle
5,12 Which of the following isa dafining charactanstic of a superfiuidy
(a1 Zeroviscosity () Infinite density
(¢} Zera temperalure {d} Infinite thermal conductivity

q Short Answer Questions 1]

8.1 Whatis meant by (i) cohesivaforces (i) viscosity?
5.2 Differentiate between streamline and turbulent flow of & fluid,
5.3 How does pressura changes with depth in fluids?

54 Howisvanationin presauremiatadmmedataﬂuid?

§.10What are some pu:utmhal applications afauparﬂuld;ty"r‘
5.1 Differentiate between siress, strain and Young's modulus. Write down their S1 units.

|§] Constructed Response Questions |

£.1 The ratio stress/strain remains constant for small deformation. What will be effect
an this ratio when the deformation made is very large?

5.2 When pure water falls on a flat glass plate, [t spreads on the plate while the mercury,
when falls on the same plate gets convertad into small globules, Why?

5.3 According to Bermnoulll's thaaram, the pressure of a fluid should remain uniform
in a pipe of uniform radius. But actually, it goes on decreasing. Why is it 507

5.4 Why wings of an aeroplane are rounded outward while flattenad inward?

5.5 What is the diference in real fiuid, ideal fiuid and superfluid? Which one of these
really exits in the world? Explain.

5.6 Why Is the study of superfluids important for advancing gu
temperature physics? v

i
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B i sirain energy and denve mathematical relation for it

5.2 What is Archimedes' principle? Explain it in detail for finding upthrust.

5.4 Justify thal mass remains consarvad when a fluid flows through a pipe.

5.5 Explzintheterm superfiuidity.

5.6 State and derive equation of continuity.

5.7 Siate and prove Bermoulli's equation.

5.8 Give some practical equations of Bernoulli's equation,

5.9 Define ferminal velocity of 8 body and show that terminal velocity is directly
proportionalto the square of radius of the body.

'@ Numerical Problems |

5.1 Asteel wire of length 2 meters and cross-sectional area 2 x 10° m' is stretched by a

force of 400 N. If the Young's modulus of steel is 2 x 10" N m™, ca -

extension of the wire. (@
5.2 Aspring with a spring constant 2006 m\ia v ndHhE elastic PE.
slnred in the spring [Ans: 25.)

=sectional area of 1 x 10°m’ is subjected

g MEsrs & NRSS=
lu:-al’nrcsof abclylate the sfress and strain produced in the wire,
(Ana: SxI0"N m™, 0.00455)
=] - nl‘wmdofmass1Dkganddanmtrufﬁﬂnkgm Eﬂuaungmwatm

Calculate the buoyant force acting on the block. (Density of water = 1000 kg m™.)
{Ans. 98 N)
5.5 Water flaws through a pipe with a diameter of 0.05 m at a velocity of 2 m 57 If the
pipe namows fo a diameter of 0.03 m, Calculate the velocity of water at namow
saction. {(ANs: 5.56BME" )
5.6 Water flows through a horizontal pipe with a velocity of 3 m s and pressure of
200,000 Pa at paoint 1. At the nozzle (point 2), the pressure decréasaes to
atmospheric pressure 101,300 Pa and the velocity increases to 14 m g7, Calculate
the velocity of the water exiting the nozzle. {Ans: 14.3ms")

8.7 Atank filled with water has a hola at a depth of m from the water surface. Calculate
the velocity of water flowing out of the hole. (Ans 9.9ms")

5.8 Calculate the terminal velocity of a spherical raindrop with a radius 0.5 mm falllng
through air. .ﬂah 9
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After a’li:ﬂying this m{' students will ‘bu"abla'm
Describe mmm»wmmmmmmwmmm [including understanding the
Emperaline, mummmw;mrmhm under which an ideal gas is-a good approximation of &
raal gas.|

State Mrﬁghmﬂuuml huhmmmmmmlbmm

»

>4 ¢

\
i M!ﬂhﬂlm In tesrmia of paricies, this relationship between the preasure, temperstune and
volume of 2 pes | Specificay the below caze;
{#) pressusand lemperature at constant volume,
(b)) wolurme and emperalie o constant pressure
{c} pressure and voluime 813 constant temparatuns]
Use the equation, including a graphical reprasantation of the ralabionship between pressure and
wiokirme for 3 gas al constan lemperature,
Jusstify how the first|aw of thermodynamics Wimmm ufarﬂml
Relate ansain hmplrm of & body 0 8n increasa in its intemal anargy.
Stale the working principhe of a heat engine,
Describe the eoncept of reversible and ireversile processes.
State and axplain the second law of themmodynamics.
“State the working principle of Carmol's engine
Deacribia that refrigarator i a heat angine operating in revarss 58 thet of an idaal Heat engine.
Euxpiain that an increase in temparaiure increases the dsorder of the system,
Expiain ihat increase inantropy means degradation of anengy,
Emunthatmrg?hdugmdaddmdlmmdmm
Idgniifying that E,ﬂh—del‘b:I eoome less orderdy over time.
Explain that Entropy, 5, is a hermadynamic quantily thal relales

& *##fi!iﬁ!*#i &
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hermodynamics is the branch of physics that deals with the relationships and

camaersions between heal and other forms of enargy. It encompasses principles
govermning the behaviour of systems at macroscopic scales, such as temperafure,
prassure, and volume. Theremodynamics thus plays key role in technology, since
almost all the raw energy avaikable for our use is iberated in the form of heal. In this
chapter, we shall study the bebaviour of gases and laws of tthermodynamics, their
significance and appplications.

6.1 ASSUMPTIONS OF THE KINETIC THEORY OF GASES

The kinstic theory of gases is a fundamental theory in physics and chemistry that
explains the behaviour of gases based on the motion of their constituent particles. This
theory provides a macroscopic understanding of gas properies such as pressure,
temparature, and volume. Herea are the key assumptions of the kinetic theory of gases
 If Gas Particles are In Constant, Random Mg

Gas molecules are in parpetual, 3
collide with either an

3. Mo Intermolecular Forces

There are no attractive or repulsive forces between the gas molecules. The particles do
not exert any force on each other except during collisions,

4. Elastic Collisions

Collisions between gas molacules, and between molecules and walls of the container
are perfectly elastic. This means that there is no nel loss of kinetic energy during
collizions. The total kinetic energy is conzenved,

5. Large Number of Particles

A gas contains a large number of particles. This large number allows for the use of
statistical mathods to descnbe the properties of the gas,

6. Aver&ge Kinetic Enmgy is F'rupurﬁﬂn alto Tem prnratunz




pressune.

8. Time of Collisions is Megligible

The time taken for collisions between gas particles is exiremely short compared to the
time between collisions. This assumption simplifies the analysis of particle dynamics.
Limitations of Kinetic Molecular Theory

Real Gases

The azsumptions of the kinetic theory hold true for ideal gases, bul real gases exhibit
devialions due to intermolecular forces and finite molecular volume, especially at high
pressures and low temparalures,

In summary, the kinetic theory of gases provides a macroscopic view of gas behaviour,
linking macroscopic properties like pressure and lemperature to the mation of g

particles, and serves as a foundational concept in undarstamﬁng%m@
Agas that obeys k'

statistical mechanics,
al Gas
% 1daal gas. ldeal gas equation is
oivan by

Equation of State foran |
W =ART ... (B)
represants pressure, V (s volume, nis number of moles of the gas, Ris universal

th
gas constant (R =8.3145J mol' K')and T is the temperaturs,

Equation (6.1) implies that product of pressure and volume is directly proportional to the
temperature for an ideal gas.

Real gas to Behave Like an ldeal Gas

According to kinetic theory of gases. 3 gas has no intermolecular interaction and
molecules are far apart fram each other, For a real gas to behave like an ideal gas, some
conditions must be satisfied. P E. of the gas molecules is negligible and this have only
KE:
In Eq. (6.1) nrepresents number of moles which can be given by

Massofgas _ m
Molar mass of gas M

RT  or PM-(V:RT

Wao is constant

S0, Eq. (6.1) becomes: PV

As density; P= 5
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forces will be negligible. So, the real gas behaves like an ideal gas at low prassure
and high temperature.
Ideal Gas Equationin Terms of Boltzmann Constant
From ideal gas equation.

PY=nRT ..o (I}

Here r represenis number of moles of the ideal gas. It can be defined as the number of
atoms are malecules per unit Avogadra's number (N, = 6.02 x 107),

Mathematically,
=N
n N, SHbR e
Substituting Eg. (2) in Eg. (1), we have v
M Fer Your Indarmaton
PV = Rl (i)
: e
The term % is ter as L0
N, Q \ \
Mathematically; KX
(@]
=B ;
WW g (6.2)

Substituting the values of R and N,, we have
k=138 x 10" J K

Substituting Eq. (6.2) in Eq. (i),
PV=NKkT.......... 16.3)

Equation {6.3) gives ideal gas equation in terms of Bolizmann constant.
Example 6.1: One mole of an ideal gas is at a temperature of 300 K. If the
Boltzmann constant |s 1.38 x 107 J K, calculate the volume of the gas at a pressure
of 1 atern, [1atm = 101325 Pa)
Solution: We know that:

PV =nRT

R =N,xk, where p_ R
Here V =nxN,xk.xT/P

N o
ity




Thars are somea variables (state functions) that describe guantity of gas which includas
pressure, volume, and lemperature (P, V. and T ) with change in one variable, the
second varable changes while the thind i3 kept constant, The laws that relate these
variables mutually for an ideal gas are termed as gas laws.

Boyle's Law

This law was introduced by Robert Bayle in 1662, and it provides a relationship between
prassure and voelume of a gas at constant temperature. Itis sated thatfor a fixed mass of
anideal gas, the pressure Fexerted by a gas varies inversely with volume Voccupied by
the gas at conslant temperature.

Mathematically; P‘“ 7, W)

P J,; at constant T

mnslant or PVs o0 @@ O@@

ar PV, Qg} [Py, Vi
Boyle's law s %@ T v
ch§$§5@w -

w relates volume and temperature of an ideal gas for a fixed mass at constant
pressure, This law was formulated in 1870 by a French Physicist Jacques Chares. Itis
stated that the volume of given mass of gas al constant pressure (s directly proportional
tothe abaolute temperature.,

(2]

—

Mathematically; 4
¥ = T atconstantpressure v

ar -%_": = constant

v V.
or i - il d

A ¥4

; ; gt -

Graphically, it can be shown in Fig. 6.2, e Rl T

Gay-lussac's Law Fig. .2

It is stated that for a fixed mass of an ideal gas, the pressure exeried L':',.r & gas
directly with absolute temperature of the gas at constant volume

Y

Mathematically;

@



. R
ar & X
%

Graphically, Gay-lussac's law is shown in Fig. 6.3.

Thermal Equilibrium Fig 6.3

When two bodies are at the same temperature, the thermal energy (which is related to
the Kinetic enargy of partches ) of each bady is aqual. as a resull, there is no drivieg forca
for heat transfer between them, and thus they remain in thermal equilibrium.

Example
Whenwe puta metal spooninto a hot cup of coffee:

ti) initizlly, the coffee is hotter than the spaon,

(i) over time, heat flows from the coffee to the spoon
(i)  evantually, the coffee a

Thermal EquIhHU@
coffee and the spoof) g

T o/t of all forms of r!'mlan:ular mfrg.has“clnuﬁc and
potential) of a substance is termed as its internal energy.

In the study of thermodynamics, usually ideal gas is
considered as a working substance. Tha molecules of an
ideal gas are mere mass poants which exert no forces on
ong another. So, the Internal enargy of an ideal gas
system is generally the translational K.E. of its molecules.
Since the temperature of a system is defined as the
average K.E. of itz molecules, thus for an ideal gas
gystem, the intemal energy is directly proportional to-its
ltemperalure,

According to the kinetic theory of gases, the average
kinetic energy of gas malecules is given by

edmvs =3k T

# =g el 1nnurnatll:dwngl:l:
u{wmmmmﬁhmmﬂﬂﬂ
. w%nﬁchar@gﬁmparmmﬁ.



ocour due to the absorption of heat energy, which
raises the average kinetic anergy of the particles and
thus increases the temperature of the object.

6.3 WORKANDHEAT

We know thalt both heat and work correspond Lo
transfer of energy by some means. The idea was first
applied to the steam engine whera it was natural to
transfer heat in and get work out. Consequently, it
mzde 2 sense to defina both heat in and work out as
positive quantities. Hance, work done by the system on
its environment is considered positive while work done
on the system by the environment is taken as negative.
If an amount of heat @ enters the system, It could
manifest itself as sither an increase in intermal Energy
or as a resulling quantity of work perlorr g
systemon the s-urruundm of b

xfiem occupses volume 1..". am:l &x&rlsapmssum F‘nn
the walls of the cylinder and its piston, The force F
exarted by the gas on the piston is PA,

We assume that the gas expands through AV very
slowly, sa that it remains in equilibrium (Fig, 8.4-b). As
the piston moves up through a small distance Ay, the
waork W done by the gasis:

Far Yaur Information

Irrlunulamrqwﬁatndmufm
Congaquently, It doas nol depend
on path but depends on infial and
final states of the systam. Thus,
Inteenal energy s eimilar to the
gravitational P.E, So, like the
potential enargy, it is the change in
imarmal enengy and not its absolute
value, which & irmgortant,

[

Fig. 6.4
A nag & sesled e cylinder by &
waightless, frictionaless  piston,
The conetani dowrward applied
force F aguals P4, and when the
piston s displaced, dowrnssand
hurhladnmmmagu

W = FAy = PAAy
Since Ady = AV (Changeinvolume) .| __ & r‘““""; Al
Hence W =Ppay (6.4)

The work dane can also be calculated by area of the curve 0

under P—Vgraph as shown in Fig. 6.5.

are in a pnsttlun to describa the ganeral prl 2]

fransformation into mechanica “
1herm=:dymﬂ-¢$ @

T J
g i L i
Al I},




6.4 FIRST LAWOF THERMODYNAMICS

When heat is added to a system there is an increase in the : - -
imtarnal energy due ta the risa in temperalure, an increéase pogitiva -

in pressure of change in the state. If at the same time, a Heal
substance is allowed to do work on its envirenment by -0
expansion, the heat O required will be the heal necassary L

to change the internal energy of the substance from LU, in
the first state fo L. In the second state plus the work W —y—-
dome on tha environment.

Thus = (=) + W : Werk

- (B>

or Q= All+ W 16.5)

slaled as
In any thermod eal ‘
this energy apf SrBASe i nﬁanﬂen&rgyaumm
the sys o hymas?yﬁhmnnmsumnﬂnm.

on Frmclple: The underlying principle of the first law of

thermodynamics is the conservation of energy, It agserts that while energy can
change from one form to another (such as from chemical potential energy to
thermal enargy), the total amount of energy in an isolated system remains constant
over time,

2. Wider Applicability: Beyond mechanical systems, the first law of thermodynamics
applies universally to all forms of energy and all lypes of processes, including
chemical reactions, electrical systems, and nuclear reactions, it provides a
foundational understanding that allows scientists and engineers to predict and
understand energy transformations in various contexts.

The first law of thermodynamics expresses the law of conservation of energy by
affirming that energy 15 a consarved guantity in isolated systems. It provides a
framework to understand how energy is transferred and transformed within systems
without violating the fundamental principle that energy cannot be created nor destroved.
This akgnment underscores the broader applicability and importance of the first law in
understanding the behavior of energy in the universe.  Tremocougle Trapoed m

Ablcyclawmp is agﬂ-od -axamme Whan we purnp un - i




0 Athermocouple connected through the blocked ouflet allows the air temperature
to ba monitored. When plston is rapldly pushed, tharmometer shows a temperatura rise
due to increase of internal energy of the air. The push force does work on the air, thereby,
incraasing its intemal energy, which is shown, by the increase n temperature of the air,

Human metabolism also provides an example of energy consenvation, Human beings
and other animals do work when they walk, run, or move, Work requires energy. Energy
is also needad for growth to make new calis and o raplace old cells that have died.
Energy transforming processes that occur within an organism are named as
metabolism. We can apply the first law of thermaodynamics (AL =0— W), Io an arganism
of the human body. Work done will result in the decrease in inlernal energy of the body.
Consequently, the body temperature or in other wards intemal energy s maintained by
the food we eat,

-,".EENH'I 32.1

The change in internal @nergy is found from first law of thermodynamics
AU=Q-W=42J-321=10J

Isothermal Process

Itis & process which is camied out at constant temperature and hence the condition for
the application of Boyle's law on the gas is fulfiled. Therefore, when gas expands or
compresses isothermally, the product of its pressure and volume during the process
remains constant. If P, V, are initial pressure and volume whereas P, | V, are pressure
and volume after the isothermal change takes place (Fig. 6.7-a), respectively, then

P1'|"f1.= Eﬂ‘v’.' b s LA TR
In case of an ideal gas, the EE. associated with its
molecules is zera, hence, the intemal enargy of an ideal T
gas depends only on its temperatura, which in this case °
remains constant, therefore, AU = 0. Hence, the first law of
thermodynamics reduces o

i
] Camala
: Tamgparansm
i
]

i
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p o another requires tima, hence, to keep the tempearature of the gas canstant, the
expansion or compression must take place slowly. The curve representing an
igothermal process is called an isotherm (Fig, 8.7-8).

= & H ‘.
Adiabatic Process e o)
e o : : Why does the internal
An adiabatic process is the one in which no heat enters or entrgy of an ideal gas
leaves the system. Therafore, AQ = 0 and tha first law of remain constant during
thermodynamics gives W==Al isothermal expansion?

Thus, if the gas expands and does exlemal work, it is done at the expense of the intermal
energy of its molecules and, hence, the temperature of the gas falls. Conversely, an
adiabatic compression causes the temperaiure of the gas to nise because of the work
dane on the gas.

Adiabatic change ocours when the gas expands or is compressed rapidly, particulardy
when the gas is contained in an insulated cylinder, The examples of adiabalic pmms
are:

(i} Therapidescape nfmr froma tyf@
i) : bt'_f)m .

_'E—_

V—2 ¥,
PV = CDHS‘IZHI'H HEI E.T[U:l

whera v is tha ratio of the molar specific heat of the gas at constant pressure 1o molar
specific heat at constant volume. The curve representing an adiabatic process is called
an adiabat (Fig.6.7-b),

6.5 REVERSIBLEANDIRREVERSIBLE PROCESSES

A reversible process is one which can be refraced in exaclly reverse order, without
producing any change In the suroundings. In the reverse process, the working
substance passes through the same stages as in the direct process but thermal and
mechanical effects at each stage are axactly reversad. If heat is absorbed in the direct
process, it will be given oul in the reverse process and if work is done by the substance in
the direct procass, work will be done on the substanca in the reverse process. Hence,
the warking substance |s restored to its onginal conditions.

A succession of events which brings ﬂ*m 5t
mlm lnlﬂalmnrlmﬂn luuallndu ¢




mmprﬂssmn of @ gas in a cylinder is reversible
process as the compression can be changed o axpansion :
by slowly decreasing the pressure on the piston to reverse '
the operation,
If a process cannot be retraced in the backward
direction by mwihgﬂumnwlﬁng factors, it
is an irreversible process.
AR changes which occur suddenly or which involve friction
or dissipation of energy through conduction, convectionor ~ 1he. stsam m
radiation are ireversible. An example of highly irreversible
process is an explosion.

66 HEATENGINE

mmnarhng a5 much heat as possible inte mechanical
work, This process is governed by thermodynamic
principles and s essantial in vanous applications whera
mechanical energy is required from heat sources,

6.7 SECONDLAWOF THERMODYNAMICS

First law of thermodynamics tells us that heat enargy can
be convered into equivalent amount of weork, but Il is
silent abowt the conditions under which this conversion
lakes place. The second law s concemed with the
circumstances in which heat can be converted infto work
and direction of flow of heat,

Bafore initiating the discussion on formal statement of the
second law of thermodynamics, let us analyze hnem' the
factual oparation of an engine. The ang {=
(Fig. 6.8) absorbs a l:|||.ui|l1l.rtz.|I ofk
BOURCE altempem - - \Wwiofk
O o low lnmparat
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prking substance goes through a cyclic process, in which the substance eventually
returns to its initial state, the change in internal energy is zero. Hance, fram the first law
of thermodynamics, net work done should be equal o the net heat absorbed. Le.,

w= Q, b Q,
In practice, the petrol engine of a motor car extracts heat from the burning fuel and
convarts a fraction of this energy to mechanical energy or work and expels the rest to the
atmosphare. It has been observed that petrol angines convert roughly 25% and diesal
engines 35 to 40% available heat energy into work.
The second law of thermodynamics is a fermal statement based on these observations.
it can be stated ina number of different ways:
According to Lord Kelvin's statement based on the working of a heat engine:
It is impossible to devise a process which
may convert heat, extracted from a single
reservoir, entirely into work without leaving
anydlmm in Hll working qw@.

Tidbils

210 1t i haal anargy but cannot be
Gh 0 sal‘ul mechanical work. As 3 conseguence
cond law of tharmadynamics, two bodies at differant
temperatures are essential for the conversion of heat into
work, Hence, for the working of heat engine thers must be

According fo the Kelvin statemant

ol the secand law of

a source of heat al a high lemperature and a sink at low
temperature to which heat may be expelled. The reason
for our inability to ulilize the heat contents of oceans and
atmosphers is that there is no resersair at a temperature
lower than any one of the two,

thermodynamecs, 1he progass
piciured here = impassible. Heat
from & soufce ab 4 single

cannck be cormvankad

ﬂﬂdylrtnm

6.8 CARNOTENGINEAND CARNOT'S THEOREM

Sadi Carnot in 1824 described an ideal engine using only
isothemnal and adiabatic processes. He showed that a
heat engine operating in an ideal reversible cycle
betwean two heal reservoirs at different temperatures,
would be the most efficient engine. A Carnot cycle using
an ideal gas as the working substance s s
diagram {Fig. 6.9). It consists of fol wlr@fu et '
1. The pas is ;
lemperatura




2. The gas is then allowed o expand adiabatically until its temperatura drops to T, The
processis represaented by the curve BC.

3. The gas at this stage is compressed isothermally al temparature T, rejecting heat Q,
to the cold rezervoir. The process iz represented by the curve CO.

4, Finally the gas is compressead adiabatically to restore its initial state at temperature
T.. The process Is representad by the curva DA,

Thermal and mechanical equilibrium is maintained all the time so that each procass is
perfactly reversible. As the working substance raturns to the initial state, there is no
change in its intermal energy i.e.. AU =0,

The nel work done during one cycle equals to the area enclosed by the path ABCDA of
the PV diagram. It can alzo be estimated from net heat AC absorbed inone cycle.

Q=0-0,

From ‘t"lawoﬂhsmmdynamlcs: \ Intrrsting information
Tﬁeal'ﬂc:lan:.'y' e fir :

O _ Output (Work)
"~ Input {Energy)

(6.6)

The energy transfer in an isothermal expansion or
comprassion tums out o be proportional to kelvin
temperature. So Q, and O, are proporional to kelvin
temperatures T, and T, respectively and hence,

Ty =T, T
“.r_& - T: T |

The efficiency is usually taken in percentage, in thal case:

Percentage efficiency = E_%W . 100
1

Ly

Thus, the efficiency of Carnot engine depends on the lempe shetigs
reservoirs, Il is independent of the nalu = A ,.": i
temperature difference of bwo reservo qreater i i ' s Butitcan [bg

oneor 100% unless
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=, Nevertheless, the Camot cycle establishes an upper limit on the efficiency of all
heat engines, Mo practical heat engine can be perfectly reversible and also energy
dissipation is inevitable. This fact is stated in Camof's theorem:

No heat engine can be more efficient than a Carnot
engine operating between the same two temperatures.
The Carnot’s theoram can be extended to state that:

All Carnot's muiwu ﬁperahnghtm the same mm;mamns have
the same efficiency, irrespective of the nature of working substance,

In most practical cases, the cold resenvoir is near room temperature. So, the efficiency
can only ba increasad by raising the tamparature of hot resarvair. All real heat enginas
are less efficient than Camot engine due to friction and other heat losses.

S0 T;-Ty _ 700K-350K 350K 1

T 76K 700K~z 00 OF N =05x100=50%

69 REFRIGERATOR i o

Refrigerator s a device which maintains the
temperature of a body below that of its surrounding. It paH
operates In a cyclic process but in reverse as that of the
heat engine as shown in Fig.6.10. A refrigerator absorbs
heat from a cold reservolr and gives it off to a hot
reservoir. This shows that in a refrigerator, the work is
done an the system while in a heat engine work is done
by the systam,

A refrigerator works on the basis of Clausius statement
of second law of thermodynamics, i.e., a heat engine s
operating in reverse. Heat Q. is drawn from Low
Temperature Reservoir (LTR} by compress

thrown into High Temperature rvélp
help of extemal wg
(@, )is givenby




Q-+ W=0Q, or Weg, -0
The main purpose of refrigerator is to exiract as much heat Q. as possible from LTR with
thie expenditure of as lttle work W as possible.
Co-efficient of Performance of Refrigerator

The ratio of heat removed from LTR (2. to the work done (W) is called co-efficient of
performance of a refngerator.

A better refrigerator will remove a greater amount of heal from ingide the refrigerator for
the expenditure of a smaller mechanical work or electrical energy. The co-efficient of
performance of a refrgerator can bea given by

Q, &

W (} Q,
Co-efficient of performance in terms of temperature, where Q= T, is
Example B.4:

T-T @:; /éi \o @
Amﬁgﬂmtnrhas 32 ‘ enf of per \ Mo '.
then what is the tal “ e Bhwhi :trajemsthahaar?
EE W : &;ﬂ]o
: cient of performance =8

E
Temperatura of cold reservoir (freezer) T, =-23°C=-23+273=250K
E

E=

on

Temperature of hot reservoir [room). =T,=7
Co-efficient of performance & g_rl_r
‘Substituting the values g = 250
T -2
or B(T, -250)= 250 or T,-250 = o
or T = 31264260 = 28125K = 826°C

'B—ﬁ ENTROPY
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(6.8)

Like potential energy or internal energy, it is the change in entropy of the systemwhich is
important,
The change in entropy is positive when heat is added and negative when heat is
remaved from the system. Suppase an amount of heat Q flows from a resendoir at
temperature T, through a conducting rod to a reservoir al temperature T, when T,>T..
The change in enfropy of the reservair, af temperature T,, which loses heat, decreases
by Q/T, and of the resarvoir al temparature T,, which gains heat, increases by Q/T. As
T>T,,50 QT, will be greaterthan QI T, ie. Q7> QIT..
Hence, nat change in entropy | ?——J i positiva.
It follows that in all natural processes where heat flows from one 5y5tem tu amther
Ihara is always a nal hnmas.& in antmpy This s another sla

-H

hrm.'mm

Ause the mnlecl.ﬂas aré Jnlllally snnsl:l aut in hnttar and coaler regions. This order 1S
lost when the system comes 1o thermal equilibrium. Addition of heat to a system
increases its disorder hecause of increase in average molecular speeds and therafore,
the randomness of molecular motion. Similarly, free expansion of gas Increases is
disorder because the molecules have greater randomness of position after expansion
than befora. Thus, in both examplas, entropy is said to be increased,

We can conclude thal only those processes are probable for which entropy of the
systern increasas or remains constant, The process for which entropy remains constant
iz a reversible process; whereas for all ireverzible processes, entropy of the system
increasas.,

Evary tima entropy increases, tha opportunity to convart soma haat into work s lost. For
example, there is an increase in entropy when hot and cold waters ane mixed. Finally,
the warm water cannal be separated into a haot layer and a cold layer. There has been na
Iuss of anarg'_l,r but sume of the energy is no Imgﬁr Ewallahlﬂ for conversion into work.




Jecreases, In other words, the entropy increases. Even if the temperature of some
sya%amdamas thereby decreasing the entropy, it is 2t the expense of netincrease in
entropy for some other system. When all the systems are taken together as the
universe, the enfropy of the universe always increases,

Example 6.5: Calculate the entropy change when 1.0 kg ice at 0 °C melts into water
at0°C. Latent heatof fusion ofice L, =3.36 x 10° J kg .

Solution: m = 1kg

T =20%=2T3K
Ly = 336 %x10° J kg'
¥ Why does a deck of cards
‘where Al = ' becoma more disordenad
whenshufflad?
= ©o
Substituting the mhaa : @

W KX- 123 x10° J K
entropy increases as it changes to water. The increase in eéntropy in this case is

a measure of increase in the disorder of water molecules that change from solid to
Bguld state,

|@ Multiple Choice Questions |

Tick (+) the correct option,
6.1 In an isothermal change, Intemal energy:
{a)decreases (b)increases {c)remains the zame (d)becomes zero
6.2 First law of thermodynamics Is based upon law of conservatlon of;
(ajmass (b)energy {c)momentum {dicharge
6.3  Adevicewhich convarts mechanical enargy inta heat anergy is called:
{ajheatengine (b}Camotengine  (c)refrigerator {d) turbine
B4 When two objecta are made in thermal contact having sama tempe m
thay areat, @

(&) thermal Equilibriurm



6. Whanthe system is expanded by adding heat ensrgy, then the wark done will be:

{a) positive and on the system (b)Y negative and on the system
() positive and by the systam (d)negative and by the system
66  Entropy of asystemin reversible process:
(a)decreases (b)increases (c)isinfinite (d)iszero
67  Whathappansio internal energy of an ehject when its temperature:
(ajdecreaszes (b)remains Constant {c)increases {d} luctuates
68  Thevalueof Bokzmann constantis:
(@) 1.38x 107 JK' (B) 1,38 x 10" JK™
{c)1.38x 10" JK" (dy1.38x 10" J'K
89 Inan adlatatic praocess, there (5 na;
{a)changein temperature {b)exchange of heat
{c) change in internal energy d}wurkdmw
810 Thermodynamics masty dealks with;
[a}meammanquuan @
(b} ransfer of guant) %@
{c]change r

(d | =lais nahar forms of energy
_Short Answer Questions |

6.1 Whatis meant by thermal equilibrium? Explain briefly,

8.2  What iz meant by internal energy? How is it related to temperature of an ideal
gas?

6.3 State 2nd law of thermodynamics in two different formm,

B4 sl possible toconstruct a heat engine of 100% efficiency? Explain.

6.5 Differentiate batween reversible and imeversible processes.

6.6  Whyadiabate Is steaper than isotharm? Explain.

6.7 Arefrigerator transforms heat from cold tohot body, Does this viclate the second
law of thermodynamics? Justify your answer.

6.8 Explain briefly heat death of universe in terms of entropy.
6.2 Is it possible for a cyclic reversible heat engine fo absorb heat at constant
temperature and transformsz it completely into work without rejecting some heat

atlow tamparatura? Explain.

6.10 How does behaviour of real gases dlﬂarfmmﬂaai 85 55|
temperature? Identify the reasons behir hed
tlmyufgases Q

&, 11 Show that areg



[§ Constructed Response Questions |

6.1  Explain how thermodynamics relates to the concept of energy conservation,

6.2 Explain how thermodynamics applies to biological systems, such as human
body,

B3 A gas s expanding adiabatically. Explain what happans to lemparature and
pressure of the the gas.

G4 A coffee cup is laft on a table, and overtime coffes cup cools down. Explain
thermodynamics processes occwring during this process.

65 How we can explain different weather patterns through thermodymical
processes like wind, rain, etc.

|§ Comprehensive Questions |

61 What are the postilates of Kinetic theory of gasas? Deri

6.2
6.3 getall, Give an axample in support of your
B.4 crefrigerator? Explain its working. Derive an exprassion for its

icsant of pamanm.
B.5. Whalis Carnot engine? Describe Carnot cyde. State Camot theorem and derive
an expression for efficiency of Carnol engine.
B5 Define and explain the term "Entropy”,

[] Numerical Problems ﬂ

8.1  AZ2.5gsample of an unknown gas is placed ina 25.0 L container at 300 K. The
pressure of the gas is measured to be 8.21 atm. Calculate molar mass of
unkncwn gas. {(Mns: 37.6gmal™)

6.2  Agasoccupies 8,0 L of volume at a pressure of 12 atm, What will be the valume
of gas if the pressure is increased by 2.0 atm, assuming that temperature
remains constant.

(Ans: 3.8 L)

83 A gas undergoes a thermodynamic process where it absorbs

O~ Ans: 200 J)
£ reservoir at 600 K and



6.5

6.6

8.7

8.8

i) themaximum possible efficiency

(li}  the amount of work output if the angine absorhs 500 J of heat from the
high temperature resenvoir, (Ans: 50%, 250 J)

A refrigerator extracts 1200 J of heat from its interior (the cold reservoir and

releases 1800 J of heat to the surrounding environment) (the hot reservoir)

during each cycle. Calculate:

i) the work input required per cyde.

(i}  theco-efficient of performance (COP) of the refrigerator. (Ans: 6040 J, 2)

Calculate the entropy change when 1.0 mole of ice at 0°C melts to form liquid

water at the same temperature. (Ans:22.0JK")
A gas occupies 400 mb at 20 °C. What volume will it occupy at 80 "C, assuming
constant pressure? {Ans 482 mL)

A gas has a pressure of 2 atm at 300 K, What pressure will it b @.
assuming constant volume? ow" )



. ﬁﬂersiudylng Ihaschaphr the students will be able to:
- lhaﬂtpﬂmlphdmpurpmlﬂnnulwnﬁslnuﬂmpm&fu

& Diffarantiate betwaan construciive and destructive inferierance,

& Apply (he principle of superposibon o axplasin (he working of noise canceting headphones,

® [llestrate expenments thet demonetrale stelionany waves [using microwaves, elretched sinngs and

air columns (it will be assurned that end corrections arm negligible; knowledga of the concepl of and
coneclions i not requined ||

- E:qﬁ'l tha hmmﬂmufa n'laﬂunary'ﬂwumlnggmmtal reprosentatio

- Deenﬁaan‘mpuhmim

'_ ﬂf i=
”-‘ cw beats are generated in musicalinstruments,

rnlty- poret/anes bo sobve problems. Lse inenaity o (amplitude)’ for & progresaive wave 1o
admpml:lmms.

Emlnmhmwhmnmufmundmmmumhmi b0 a stationary observer, th obsared
I\wmcyhdllaruﬂtrunﬂummh@am [eleseritsing mmwaﬂmmnm
spunce ard @ moving cbeanser ts not reguirad].

= I.B-Ilhﬂih;'.lﬂﬂhf L —;— Fo i cbsarved requency when 3 SOUrte of Sound Winves moves
relative o stationary observer,

- Emmmlmtmdhﬂmphr affect [such as radar, sonas, astronomy. satallite, redar spasd
traps and siudying cardiac problems in humansl,

-a are well familiar with various types of waves such as water waves in the ocean
and circular ripples formed on a still pood of water by rain drops. When a musician
plucks a guitar string, sound waves are generated in alr which reach our ear and
produces sensation of music, The vast enargy of the Sum, millions kilometres away, Is
fransferred to the Earth by light waves, In this chapter, we will discuss, formation,
propagation and applications of different types of waves.

7.1 WAVES
Awavea is a regular d:slurbanne :
ﬂ'lesnurce For examgp ‘
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regular and repeated disturbances that travel

through the medium, making its particles o move

up and down or back and forth (lo and fro), Imagine

astone thrown into a pond of water (Fig. 7.1}

« The stone praduces a disturbance (rpple) that
travels through the water {medium).

» The water pariicles move up and down at their own places, creating a repeating
pattern known as wave that spraads out ¥

The displacement of & particle of a

wava s [l dislance in a spacified

direction from is rest / equilibrium

position, If the displacement is

plotted along the y-axis and the time

in the direction of energy travel along

the x-axis, we get a wavefarm as O

shown inFig. 7.2,

Displacemeni

'I'lwwavesmha

1. Amplituge \ imunm Interesting Infarmation
i the wave (or
articles of the medium) from its

equilibrium position.

3. Frequency (f): The number of
oscillationsivibrations or cycles per
second.

3. Wavelangth (i) The distance

between two consecufive similar T
points on the wave that are in phase. Wiy 8hapa af wakst wiva i 30

4, Perlod (T): The time taken by the wave to complete one oscillation or cycle. it is the
reciprocal of the frequency T=1/f,

&, Speed (v): The speed at which the wave travels. If a wave crest moves one
wavelength X in one pered of oscillation Tihe speed visgivenby  w= L/T
as /T=F wehave T SRR s (7.1}

6. Phase(0): The relative position of a point on the wave at a gman irme,

Types of Waves

Waves have various forms, ea mbnef detail of different
types of wavesisg :




These waves require a physical medium [solid, liquid, or gas) o propagate. Examples
are waler waves (ocean, laka, or pond ripples), sound waves (audible vibrations in air,
water, or solids ), seismic waves {earthquakes), etc.

2.  Electromagnetic Wavas

They 4o not reguine a medium to propagate and therefore, can travel through vacuum.
Examples are radiowaves (wireless communicafion), Microwaves (cooking and
heating), Infrared waves (IR or heal radiation), Visible light {sunfight, lamp light),
Ultraviolet waves (UV radiation), X-rays {(medical imaging). Gamma rays (high-energy
radiation), etc.

3. Guantum Waves Do you Khow?
Quantum waves are associated with parficles like elecirons  These wave types are
and photons. Examplas are matter waves/particle waves u“:l SR
{electron waves in atoms|) or de-Broglie waves, pholon waves —ghecive dng sy

{light quanta), ate. bysits, gecitiah. and
4. Surface Waves Q @@@ i
AT MY % ° 4% ifterfaces between two mediums,

Examples are oce: : flven waves), selsmic suface waves, elc.
Tran: , gitudinal Waves  Trasverse waves
a main types of waves which ara
named &s transverse waves and longitudinal
waves. A lransvarsa wave is one in which the
vibrations of the parlicles are at right angle to the ™
direction in which the energy of the wave I8 | gngitudingl waves
travelling. Whereas a longitudinal wave is one in
which the direction of the vibration of the particles
is along or parallel 1o tha the direction in which the
energy of the wave iz travelling.
The transverse wave and longitudinal wave are . ;
llustrated in Figs. 7.3 (a and b). respectively, Fig. 7.3: heamn types of warves:

7.2 PRINCIPLE OF SUPE

If & particle of the medium is simultaneously acted upon by two waves, then the resuftant
displacement of the particle is the algebraic sum of their individual displacemen §$

Fiand

il ALl Tl B

» Fizna
=
: ann_nﬂmmmm&r‘

called principle of superpasition.

ts. This
forma
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Y=y.t¥: P e R
where y, = amplitude of wave 1 o e
v, = amplitude of wave 2 Z BN Wz
and ¥ =rasultantamplitude 3 \\ __,,f”f
Particulary, if y, = v, then resultant displacement H'm\min;mm
will ba: :
y=2y,ory=2y, Y N—

|
{li} If wo waves, which cross each other, have gopgant wee

opposite phase, their resultant displacement FER

will be: Tﬂﬁkmmdm’;?ﬁ
. I.ﬂhfl'.a.. W Fiig-}
F—}'.*f—j"ﬂ mﬂrmﬂ‘lm s
F=.""_Fz

Paﬂiculaﬂy if :»,r. = y, then rasullanldlsplammem will ba y =0,

lmdual n waves be Yoo ¥a 4o\ o ﬂ tam \my
displacement y of 162 parbicle| ‘ ailhe it g

af these n wave

displace o S Wimed
Pl i g TR J + ), l“\ ¥ ,..-’f!
This is called principle of superposition of waves. N =
Mathematically, this can also be representad as: ' & -H"-.\-
Yl =y, ol #yfet) + o * y k) - ]
where y(x.t) is the resultant wave, whereas y(xt), Y \_ﬂ/’f \/
Yl ), y.{x.t)are the individual waves. W T S - mermenad

In the context of waves, yx 1} represents the wave function Ve TeD

ar wava displacement at a given point x and time . It T (B Supeeaion & e

describes the shape of the wave and its evolulion overtime. wae e e fraqisincy

The principle of superposition apphies to linear waves or small “eharsaxacily ol of phass.

Principhe of superposition of waves leads to many interesting phenomena:

(I} Twowaves having same frequency and travelling in the
same direction (Interference).

(i) Two waves of slightly different frequencies and
traveling in the same direction {Beats).

{ifi) Two waves of equal frequent tragvelling i
direction { Stationary waves),

Pondar Upon

An o intsferenos palien Remed
wEh white light.



\r\ Ry n-g the principle of superposition of waves, noise-cancelling headphones
affectively eliminate unwanted ncise, providing a more Immersive and peaceful
listening expensnce.,

1. Tha headphonas conlain one or more microphaneas that capture ambkent nolse (like
background chatter or engine rumble orany environmental noise ).

2. The microphona sends the sound signals to an amplifier and a processing unit in the

headphomes.

The processing unit generates an "anti-noise” signal, which is the exact opposite of

the ambient noise (in terms of amplitude and phase).

4. The anti-noise gignal is then played through the headphones, along with the desired
audia (like music or voica),

%

5. When the anti-noize signal meets the ambient noise, the two waves cancel each
other out resulting in a much quietarllsteling SXpenence,

Fig. T.5{a); An expedimantal sehip o - :
abserve intarens noe af sound waves. Fig, 7.5 bl Irerferenca of scound waves

An experimental set up to obeserve Interference effect of sound waves Is shown in
Fig. 7.5(a). Twoluudﬁpeakem s, arll:IE aﬂﬂsrm:u suumesdharmnicmnd

qulhnsmps{cﬁ. 30l a5 ade _= W &
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twrr by turm. in front of the lowd speakers as shown in Fig.7.5(b).
Constructive Interference

Al points P, P, and P, we find that a compréssion meets a compression and a
rarefaction meets a rarefaction. So, the displacement of two waves are added up at
these points according to the principle of superposition and a large resultant
displacement is sean on the CRO screen (Fig.7.5-c).

Interesiing Fact

ﬁLS:SEPl &Py
H— 1_ 1":
.-15—425‘» 32-L A

Similarly, at poinis P, and P, path difference is zero andk, respectively. Here, A is the
wavalength whichis the distance between any two successive solid or dashad lines.

Whenever the path difference is an integral multiple of wavelength, the
two waves are added up. This effect is called constructive interference.
Therefore, the condition for constructive interference can be written as
AS =nA where n=0 112 £3,.........
Destructive Interference

At points P.and P, a compression meets a rarefaction, so that they cancel each other's
effect according to the principle of suparposition, The resultant displacement becomes
zero, as shownin Fig, 7.5{d},

Tha path difference AS batwaen the waves at points P, a C\\\\

o 493 F’@é\iﬁ\\ ?\,




Similarly, at P, the path differance is % .

So, at points where the displacements of two waves cancel each
other's effect, the path difference is an odd integral multiple of
half the wavelength. This effect is called destructive interference.
Therefare, the condition for destructive interference can be written as;
AS = (2n+ 1) 2 wherean=0, 1,42 43, ...

Example 7.1: Two speskers are arranged as
shown in tha figure. The distance batween therm is
3.0 m and they emit a8 constant tone of 344 Hz. A
microphone P is moved along a kne parallel to and
4_0m from the line connecting the two speakers. it
is found that tone of maximum loudness is heard
and displayad on the CRO when microphone is
an the centre of the ling and directly opposite o

each speaker, Calculate the speedufs.@nd @

Solution:

Distance between %@
el o

en speakers and line of motionof PSP =4.0m S —0p——
Speed ofsound v=7

For tone of maximum loudness or the condition for constructive interference, the path
difference mustbe 0, £14, £2A, £34,...

At middle point ‘0" the path difference between two sound waves is zero (3,0 = 5,0),
thus at that paint ‘0’ eonstructiva interfaranca takes place.

For the next point P of constructive interference, the path difference between waves
shouldbe A, S0,  A=pathdifference=5P -5 P,
Mow, we calculate values of 5.P from right angle tnangle 5.5,F,

5,8 =587 +(SPF (By PythagorasThecrem)
5.8 = JI3Y +(4)" = /0478 =/25=5m

Therafore, L=8P. -5P, or A=5—4=1m m

This is the path difference for constructive interference W@ O@@
<1

As r=fi
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7 «2: The wavelength of a signal from a radio [ FRERRY RTRTERFTI
Uansmnterll 1500 m and the frequency is 200 kHz. What
is the wavelength for a transmitier operaling at 1000 kHz
andwith what spaed the radio waves travel ?

Solution:
7, =1500m= 1.5x10°m, f=200KHz = 2.0 «10°Hz
£ =1000 KHz =1 x10°Hz, A, =7, v=7 . As v = fi
Sinca, the speed of both the signals is sama, so
- ﬂ}'”l

= 2.0=10° x 1500

= 3.0 x10"m g’

L, U, e,
1

Also

s :,ﬂaulgm This Ilght:inﬂt
2 miatireof ned and green.

RY WAVES & THEIR FORMATION

Stali ﬁarywams, also known as standing waves, are the waves that oscillate in a fixed
pasition, withaut moving or propagating. They are formed by the superposition of two
wavas with the same frequency and amplitude, travelling in opposite directions, The
resulting wave pattem remains stationary, with nodes (points of zero amplitude] and
antinodes (paints of maximum amplitude) al fixed positions. Examples include waves
on a string. and sound waves in a pipe. The term “standing wave" describes that the
wave pattemn remains fixed in space, oscillating between positive and negative values,
without maving forward or backward,

Let us consider the superposition of two waves moving along & string in opposite
directions. Figures 7.6 (a) and (b) show the profle of two such waves al Instanls
F=0,74, T2 24 Tand T, whera T iz the time period of the wave. We are interasted in
finding out the displacements of the points 1, 2, 3, 4, 5, 6 and T at these instants as the
waveas superposa. It is obvious thal the paints 1,2....7 are distant A4 apar, A being the
wavelength of the waves. We can determine the resultant displacement of !these nomls
by applying the principle of suparposition. o >0

Figure 7.6 (c) shows the resultant displacement of the pmmé'hﬁ E/Efpfd‘?atjb\&a*nsmm‘sr
=0, T4, T/2 3T/ and T- R can be,aeen(thaum keﬁdlantdiﬁm\a;émeﬁl of these points is
always zero. These Puln:s c:fmra il Ium a;e.* Ignﬁww a3 nodes. Hera, the distance
between two :ﬂﬂ&éﬂ.ltwe mges w\ﬁfi .

e
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Flg. 7.6: Staticnary | Sianding woves

and are A2 apart,

patternofn 3

B n'ansfsrs bacause of the motion of the paricles of the madium. The
nodes always remain at rest, so energy cannol flow pasl these points. Hence, energy
remains “standing” in the medium between nodes, although it alternates between
potential and kinetic forms at the antinodes. When the antinodes are all at their extreme
displacemsanis, the energy stored is wholly potential and when they are simultaneausly
passing through thelr equilibrium positions, the energy is wholly kinetic,
Consider a string of length { which is kapt strelched by clamping its ends so that the
tensionin the string is F.
{a) String Plucked atits Middle Paint
If the string is plecked at its middle point, two fransverse waves will originate from this
paint, One of them will move towards the left end of the string and the other towards the
right end. When these waves reach the two clamped ends, they are reflected back thus
grving rise o stafionary waves, As the two ends of the siring
are clampead, no motion will taka place thera, So, nodes wlll
be formed at the two ends and one mode of vibrat i

string will be as shown in Fig.7.
nades with one antinode -
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Reaculive nodes is one half of the wavelength of the waves set up in the string, S0 in
this mode of vibration, the length of the string is

fo= A2
e R R o

whare A, s the wavelength of tha waves set up in this mode. The speed v of the waves in
the string depends uponthe tension Fofthe string and m, the mass perunit length of the
string. It is independent of the point from where string is plucked lo generate wave, ILis

given by :
Ve \(_?, .......... {7.3)
m

Knowing the speed v and wavelength A,, the frequancy f, of the waves is

k. b,
= .~ =

@S@ W@“@@m

(a), waves of frequency f, anly

r

sel up with nodes and anunodea as shnwn In Fig. ?,T (), Nate that now m slring
vibrates in two loops. Thizs particular configuration of nodes and antinodes has
developed because the string was plucked from the position of an antinode. As the
distance batween two conseculive nodes i half the wavelength, sothe length £ of string
is equal to the wavelength of the waves set up in this mode. If A, is the measure of

wavalength of these waves, then,

f =

A; e S e ﬁl.‘ﬂ
Comparizon of Eq. (7.4) with Eq. (7.1) shows that the wavelength in this case is half of

that in the first case, Eq. (7.2) shows that the speed of the WavVes dapanﬂs on ten
and miass per unit length of the string, it is m:ﬁ&p&ndem of the poi M
plucked. So, speed v remains the same in bot} ;

A
b= 2%
2




2

: - X
We know that f:= Y
5o ;= 2f

Thus, when the string vibrates in two loops, its frequency becomes double than when it
vibrates inona loop.
{¢) String Plucked at anArbitrary Point

Let the string resonates in r number of loops with {n + 1) nodes and n antinodes,
we can say that if the string is made to vibrate in n loops, thef #18 n

waves set up on the string will be:

%Mmﬁng wavalang‘m B, | dowss zr ....... IO R i |

wheren=1273.....
It is clear that as the string vibrates in mora than one [oop, 18 frequency F goes on
increasing and the wavelength A gets cormespondingly shorier, However, the product of
the frequency fand wavelength A is always equal to v, the speed of waves,

The above discussion clearly establishes that;

1. The stationary waves have a discrete sel of frequencies f, 2f, 3f,...nf, which s
known as hamonic series, The lowest characieristic frequency of vibration is the
fundamental frequency f. carresponds to the first harmanic, The frequency £, = 2F,
correspands to the second harmonic and so on,

2. In other words, quantum jumps in frequency exist between the resonance
fraquencies. This phenomenon 5 known as the Quantization of Frequencies. It

means £, =nf, wheren =1, 2, 3, ...[Integral multiples). The stationary wavns can be

st up on the string only with the frequencies of harmonic serles determins

tension, length and mass per unit length of the string. Wabves

harmonic series are qun:klydan’pe@:ui
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irings s varied by tightening the pegs on the neck of the instrument, Once the
instrument is luned, the musicans vary the frequancy by moving thedr fingers along
the neck, thereby changing the length of the vibrating portion of the string.
Harmonics
In the above example, the set of all the possible standing waves, having frequencies f,,
2f, 3, ..., nf,, are called harmonics of the system, The lowest or fundamental frequency
of all the harmonlcs iz called the fundamental or first harmonic. Subsequent frequencies
are called as second hamonic, third harmonic, ete.
Example 7.3: A stationary wave is established in a string which |s 120 em long and
fieed at both ends. The sting vibrates in four segments; at a frequency of 120 Hz,
Determine its wavelangth and the fundamental frequency?
Solution:  ; _ 450 ¢ = % m=12m

-4 @K@
e LY

s and the distance between two consecutive

2’.2 Brain |eassr
e o A et
oo 2412 ol
4
A= D.6m

o= nf
[, = 4f | |
Aalalianany wavs |8 jormsad
120 = -‘”; o & siring with & frequsncy
of 100 Hz. Fiha siring 2 m

120
4
W Hz




ﬁm organ pipa is a wind instrument in which sound is produced, dus to salling up of
stationary waves in air colummn. It consisiz of a hollow long tube with both ends open or
with one end open and the other closed. The relationship between the incident wave
and the reflected wave depends upon whether the reflecting end of the pipe is open or
dosad,

{i} Hthe reflecting end s open, the air molecules have complate freedom of moben and
this behaves as an antinode,

{ii} If the reflecting end is closed, then it behaves as a node because the mowvement of the
molecules is restricted.

Modes of Vibrations

Stationary longitudinal waves ocour in a pipe as discussed by the following two
cases:

Lelusmmaﬂﬂanﬂrganplpeuf £ ends, As at the open end,
an air molecube has egmplata-reey it 2 3 Br:llnnda as shown in
Fig.7.8. Inthis fig - 'y “ 28 20 plnsmihe pipe have been represented

by transverse ol |ineg whic prasantihediaplacamantmdampllluda of vibration
af ai 1
{ﬂiﬂ %ndamenmimndenfwbraiinn . —— '

In this case, as shown in Fig.7.8 (a), there is only ong
node N at the middle of the pipe. As both ends of pipe are
apan, there are bwo antincdes at both the ands. If A isthe
wavelength of sound, then

-

{=]

=T V- T S— el

= A,
f,=w/iA
Putting value of A,, we have
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L It b5 second mode of vibration as shown in Fig.7.8 (b). In this case, there ara
three anlinodes and two nodes.

If &, Is the wavelength of sound then,
= Fighs iy
Sl e T
- Ay
s . I8
(1+2+1) 4
or 3=
If = |s the frequency of sound. then speed v of sound becomeas:
¥ = fads
or |
Feg
Putting the value of iz, we have
¥
k=5 O
@)

ir column vibrating in 0 loops is:
f.= nfw2e)
f.= nf,

and wavelangth is
FE T SRRt ¢ 5 |

where n=12345 .. ..

So, the longitudinal stationary waves have a discrete sel of frequencies f, 2f, 3f,...nf,,
which is known as hamonic series. The frequency f, is known as fundamental
frequency and the others are called harmonics.

Case (2): Modes of vibration inan organ pipe closed at one end

Let us consider an organ pipe of length / which is closed at one end. Then at the closed
end, we get a node while at the open end, we getan antinode as shown in the Fig. 7.8,

{a) Fundamental mode of vibration:
Fundamental mode of vibration has ona node and one antinode as shown in @m}
If 4, i the wavelength of fundamental mode IMnIsan O@
Ay
¢ = Q

i

A

Lad

]

Lad
= i<
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The frequency f, is called fundamental frequancy.

{(b) SecondMode of Vibration:

Second mode of vibration contains two nodes and two
anti-nodes as shown in Fig. 7.9 (k).

I &, ks the wavalangth, then langth of the pipa is:

= h.{.ﬁ
4 2

= 2

= 4}_3

Sl v
¥

4
3
Ay
f e i
G T
o £= 3f L =]
4l

This is caled second harmonic.
(e} nthmode of vibration
Ifair column vibration in i loops, then frequency £, is:

¥
=)
1, = nf,
and the wavelangth ., is:

LA a
By = {1:12)

By studying both casgs
harmonics than tha
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Example 7.4: An organ pipe has a length of 50 cm. Find the frequency of its
fundamental note and the next harmonic, when itis:

{a)open at both ends
(b} closed at one end
{speedof sound =350 m =)
Solution: =50 = _.,.59_ =0.5
RN
v= 350 m s
a) When pipe is open at both ends:
Fundamental frequency fi=?
Naxtharrmnil:iraquaﬂw f*= 7 Fonder Lipan

The frequency for nth harmenic in an open organ pipeis: mmdmd’w”'f m: N

=X s add harpranics.
f=no; whenn=123,......... @
so the fundamental frequency is O S \@@ o)

b) When pipe is closed at one end:
Fundamental fraguancy f=?
Mext harmonic frequency f,=7

When the pipe is closed at one end then frequency for nth hamonic is
f=nY  whenn=1357 ...
So fundamental frequency is;




Example 7.5: A church organ consists of pipes, each ocpen at one end, of Vdiﬂsrmt
lengths. The minimum length is 30 mm and the longest is 4 m, Calculate the frequency
range of the fundamental notes. (speed of sound = 340 m &™) )

30
Solution: .= = m=30%102
£ = J0mm 000" 30=107m

L =4 M
v = 340 ms K&\S\S
Frequency range = 7 @o@©
For an organ pimuwnmm%@ﬁ
\ ‘Aﬂuhph}'ll'nuﬂu;!h!ﬂ’llmu
produeng @ pich wiich & slightly
BhBrR. What coukd b the couse of
his proiiem?
y, put n =1
_ 1% 340
430 %107
F, e = 283333 Hz
{if) Maximurm length:
For fundamental frequency, putn = 1
PR
1.m—_4fm
=340
SR 2\ @@Kﬁ@
fa=2128Hz W N
Bquaney y from 21 Hz to 2833 Hz.
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ENT DEMONSTRATING STATIONARY WAVES
HBHIE mnmm

Microwaves are a form of electromagnetic
radiations. Thay are callad "micro” waves
bacause their wavelengths are typically of the
arder of millimetres or centimetres, much shorlar
than radicwaves. Statlonary waves, also known
as standing waves, can be produced by
microwaves when they are confined to a specific
reglon or cavity such as wave guides or resonant
chambers. In these structures, microwaves can
bounce back and forth, creating a sianding wave
pattern with nodes and antinodes. It occurs
when the microwave frequency matches the
resanant frequency of the cavity.

The stationary waves can be cmated [IE3

microwaves by the followi ng &
showninFig. 7. 1ﬂ

Fig. T.10: Expenmertal sehp for Sanonary Walvan Lisng mmwans

The experiment setup consists of a8 microwave source (transmitter), & probe detector
and a metal reflector (a metallic plate for the reflection of microwave). Three of the
menticned are placed inline.

The waves coming oul of microwave source are moving towards the metal plate and
then reflected back. The reflectad wave and incident wava sUperpose and SR
stationary wave pattern, Thiacanbedetectedb‘r elpcion pig
transmitter and metallic plate. The intensit
detector. You can move lhe plate-ar deterts
the distance from gt i




Diffraction of waves is the bending of waves around the

sharp edges or corners of obstacles or the spreading of

waves beyond a bamier. |t occurs when a wave encounters ) :I)
a physical barrier or an opening {a sbt) that is comparablein ,
size Io the wavelength of the wave. The longer the

wavelength, the greater the spreading and vice versa.

Diffraction can be observed in varous types of waves,

inckuding water waves, sound waves, light waves and

eleclromagnetic waves. : \\
Some examples of the phenomenan of diffraction include; : }) ) ) |
» Hearing of sound waves around comars or through /

door way from where they were generated as sound
waves bend around the comers.

« Diffraction of X-rays by crystals aa rays of aloms
ig ofthe order of X-rays wawa

Diffraction is a

applicalmns in vara

Rows & nppl& lank. Kisa
venry useful apparatus not only to
ganerale waber waves, bul also to
demonstrate wave properties
{such as reflection, diffraction and
refraction).

Ripple tank contains water, vibrator
{(g.0. a motorized oscillating
needle), obstacles (e.g. a small
reclangular block or a semicircular e o onen
barrier) and gap widihs of different onsomen
sizes. |t creates a series ol  gg o s o
concentric circles or paraliel waves

using the vibrator. An obsatacle is

placed for creating a gap with a

specific width, The experiment can @
be repeated with different gap

widths.

Itis observed that Tncressst difecion  Lange gap, Decreased dilfracon
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width is small compared to the wavelength, For your Information
diffraction is significant and the waves bend around
the obstacle, creating a semicircular pattern. As the
gap width increases relative to wavelength,
diffraction decreases and the waves pass through
the gap with less bending.

This expenment damonstrates the gualitative affect
of gap width on diffraction in a ripple tank, illustrating
how the relationship between gap width and  pifraction of white ight is shown by
wavealength affects wava behaviour. a fine diffraction grating,

Example 7.6:

In a ripple tank, a wave gemerator
produces 500 pulses in 10 5. Find the

Interesting Infarmation

frequency of the pulses produced?
O ’
Solution: = 500 pulses m :
@m Tha fine Eullnga. esch 0.5 pm
wide, on a compact disc furction
W&M%_l@ _ls a5 a diffraction grating. Whan a
= =) small source of while  light
no500 50 lluminates a dsc, the difracied
1 1 A light forma. coloured lanes that
i T VE0s S0s ara compesits of the difraction
- priattennes from B rullings.
= = 50pulsess™
7.9 BEATS

When two waves of 2lightly different frequencies, travelling in the same direction cverlap
each other then there is a periodic variation of sound between maximum and minimum
lowdness which is called as beats.,

Tuning forks give out pure notes (singhke frequency). i two tuning forks A and B of the
same frequeancy say 32 Hz are sounded separately, they will give out pure notes. | thay
are sounded simultaneously, itwill be difficult to differentiate the notes of one tuning fork
from that of the other, The sound waves of the two will be superposed on each other and
will be heard by the human ear as a single pura note.

i . ” Ao
If the: tuning fork B is loaded with some wax e plasticens, W@@d@ﬂm
slightly, say || becomes 28 Hz. If new thébwio b ;\ﬁﬁ%@ j\ together, a note of
alternately increasi @Rl-d %ﬁxm sty il Eﬂ:l This note is called beat note
or & beat which is duse fo i 1ot e sound waves from luning forks Aand B,




Fig. 1. shows the waveform of the note emitted
from & tuning fork A, Simitarty, Fig. 7.12(b) shows the .il o A A

waveform of the note emitted by tuning fork B. When /LU0 L
both the tuning forks A and B are sounded together, : |
the resultant wavafarm s shown in Fig. 7.92(ek It o /10

A
n'! !'| inil

] ,' ok
Ak asne
[T :I!I||I|||“Il (i

shows how do the beat note occur. Af some instant X, 4
the displacement of the two waves is in the same G A

f H ' e
direction. The resultant displacement is large anda "I. “l II 75:' !I; ..F;;::'ﬂ:. 1 I\i!,"g
loud sound is heard. i,ngL.'_l,;-'v | =<l W V-
Aftar 1/4 s the displacement of the wave due to ona | Dl
tuning fork is opposite to the displacement of the wave Resullant wava
due to the other tuning fork resulting in minimum P, 7,12 Foemation of bets
displacemant at ¥, hence, faint sound or no sound is
heard,
Anothar 1/4 s later, the displacemants are again in the same dineetion g @@@d
heard againat £. o)
As the difference of the | forks s also 4 Hz so, we find that

ference ﬁﬂt\veen the frequencies of

,=28Hz f,=f,
No,ofbeats= f, —f,=32Hz-28Hz=4
However, when the difference between the frequencies of the two sounds is more than
10 Hz. it becomes difficult to recognize the beats.

the number of beats is ‘
the tuning forks.,

Buse Bys{am t r hoerrd Ear

=)

[edmaion

Wiskle gl
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O nuse baats to tune & string instrument. such as piano or violin, by beating a note
agamst a note of known frequency, The siring can then be adjusted o the desired
frequency by tightening orloosening ituntil no beats are heard.

Beat Frequency (f_.)

The difference betwesn the fraquencies of the two waves is termed as beat freguency
£ .o The fime interval between the two successive loud sound is T=1.— 1. Therefore,

Fa
Tuning Musical Instruments
Here are some axamples of how beats are generated in musical instrumeanis:

. Gutar: Wi sy o s v

slightly different tunings, beals are
created. For example, playing a standard
tuned string and a string tunad & few
cents higher or lower,

2, Plarlu F‘tﬂymg hvukewwhlte an\d@a

sllghtly different tunings are playad
simultaneously, beats are created.

5, Flute: When playing two notes with
slightly different embouchure (lip and

facial muscles) positions, beats are 1= =cu peaducad by mastafsiring and wind

generated. glationary wavas of standing waves in thase

6. Organ: When playing two pipes with o one

slightly different tunings. beats are
created,

7. Synthesizer: Genarating two oscillators with slightly differant frequencies crealas
beats.

In each of these examples, the slight difference in frequency belween the two sm.md
sources creates a pencdic increase and decrease in amplitude, r'esulllng In 8"
pulsation effect,

aﬁacts add
e caaes. ba&tsuﬂn

'Eu

‘“«“ﬂ




ample 7.7: Two tuning forks exhibit beats at a beat frequency of 3 Hz. The
fmquem:y of one fork is 256 Hz, Ils frequency Is then lowered slightly by adding a bit of
wiarx. fo one of iis prongs. The two forks then exhibit a beat freguency of 1 Hz. Determine
the frequency of the second tuning fork.
Solution:  Frequency of firsttuning fork =1, =256Hz
Beat frequency before [oading =3 Hz
Beat frequency after loading =1Hz
Frequency of second tuning fork =1,=7

As f-f.=%n

Then f.=fzn

Putiing valuas, we have In 1714, F: J. Shane, who was
£ = 2563 mﬁﬁmmmm

Either [=256+3 or f=256-3 @ @@m
f, = 259Hz . ﬁ] o

Let us consider 259 Hz riect AnSmet (i aiyaney ol

first fork is loaded

254 and Ihus'lhe

than 3-besi

a ‘w

Thus, Gurrectfmquemjmf, =253 Hz
254-253=1Hz

7.10 INTENSITY (/) OF AWAVE

Intensity s defined as the amount of energy transmitted per unit area par unit time in the
direction of propagation of progressive wave. Itis a measure of the power of a wave and
iz usually denoted by the symbal * ", K is measured in units of watts per sguare meter
(W m™).

A progressive wave or travelling wave iz one that travels through a medium in a
consistent direction and transferring energy from ane point to another. It is a wave that
propagates or moves forward, as opposed (D a stationary or standing wave. Examples
of progressive waves inchude water waves, sound waves, lightwaves efc,

By definition, the intensity of a wave, is
E

o oM
B AV
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P . E -
I =% GSi=P)
Here
I = Intansity of wave in (W m™)
E = Energy in joules [J)
I=Time In saconds (s}
P = Power in watls (W)
Wa know thal in machanical waves, such as sound waves, waler waveas, orwavesona
vibrating string. energy i3 stored as kinetic energy and potential energy of the medium's
particles. How much energy is stored depends upon the displacement (ampbtude) of the

particles from the mean position. Therefore, the Infensity | of waves 1= proportional to the
square of the amphtudeA, ie.,

T
ar T S ot 1
Here k' is tha constant of proportionalty ane
of the wave and thg) i,
Example \
(@) Awavefasan intensity of 0.5 W m” at a distance of 3.0 m from the source. What is
fhe Rower of the wave?
{b) Two progressive waves have intensities of 0.5 W m™ and 0.25 W m”. Find total
intensities of two waves,
Solution:
® "
r= 30m Freqguency and amplifude of a
2 travedling weve are independent of
P= ‘wach alhar, That i why yeu can lum
[= up the volume of a - song [McrEse
= = amplitude) without changmng its piteh
A (which cogands on fraquency).
o R i
: dzr®
Putting the values, 0.5 = —— &
o 4 x 314(3.0)

g |
1]

D.51 ®1 E.M

i o
() ' - Tﬁz‘:{‘iﬁ@@@W@O@@

o
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Brain Teaser
[ = L+, : e e
| Coan you find the decibel level
! 0.5+0.25 of a traveling wave whose

Example 7.9: Aspeﬂerisemlmng sound waves with a power of 50 watts, If the sound
waves are spreading out evenly in all directions and the intensity of the sound waves is
maasured at a distance of 5 m from the speaker, what is the intensity of the sound waves
if the area of the sphere (the surface area of a sphere) at that distance is approximately
34 m'?

Solution:  Power(P)= 50W

i

Argalh) = 34m’
Intensity = PArea Tidbits

B

7.11 DOPPLER EFFECT

The apparant change in the frequency (or pitch) of waves due 1o the relative motion
between the source and observer (listener) is called Doppler Effect.

This effect was first observed by John Doppler while he was obsering the frequency of
Eght emitted from a star. In some cases, the frequency of emitted light was found to be
slightly different from that emitted from a similar source on the Earth, He found that the
change of frequency of light depends upon motion of star relative to Earth.

This effect can be observed with sound waves also. For example, when an observer is
standing on a railway platform, the pitch of whistle of an engine coming towards the
platform appears o become higher to an observer standing on the platform. However,
the pitch of whiste of an engine going away from the platform appears 1o become [ower
to an observer standing on the platform.

Consider a source of sound S at rest which emits sound waves having WEI'JE [
spaed of the sound for a stationary observer (iLe., IEsta ?: i {He o Ves

received by observerinone secondi.e. @equ

Q

o
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: [When source of sound moves towards the stationary
observer]

When the source moves towards the stationary observer C with velocity u, then waves
are compressed and their wavelength is decreased as shown in Fig. 7.13 (¢). In this
case, the waves are compressed by an amount given as
& :l‘. — E‘.
. f
The compression of the waves is due fo the fact that
same number of waves are containad in a shorler space
depending upon the velocity of the source. The

wavelength observed by the chserver G isthen

N = A
W i

T P - 4

i Ll
_ -4,

f 9,
Here AA is the decraase in wavel ahe sacond Bnd bl d imauency
is callied Doppler shifl
Thus, the nu by obsarver C in ona second (i.e., changed or
‘ ¥

appar,

¥
Eiggit
E’:’nﬂ
Putting the value of A, we have
¥
foy = "
(V=i )
‘f_,
i
=| —— |F
b _v—ui_l
As A
VU
Tharefors > 1

Thus, the apparent frequency of sound heard by the observer Increases which in tum will
incraase the pitch of sound,

Case 2: | &::nw:nume of smgd @ﬁ@@w
' - . ,.“_\

D with velocity u, then waves
ricreased as shown by Fig. 7.13 (d). In this case,




Ay =t
f

The expansion of the waves is due to the fact that same number of waves are now
contained in a large distance, The wavelength observed by the obsarved Dis then

Ao = he AR
whera AM is the increase in wavelength in one second and is called Doppler shift.
Thus, the number of waves received by obzerver O in one second (i.e., changed or
apparent frequency ) is:

fa=vih,

[y m
%@%@@f\}@@?ﬂ@ -

Futling the value of A, we have

N

Thus, the apparent frequency of sound heard by the observer decreases which in turn
will decrease the pitch of sound.

Do You Know?
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ple 7.10: Two trucks P and Q travelling along a motorway in the same direction,
The loading truck P travels at a steady speed of 12 ms”, the othar truck Q, travelling ata
steady speed of 20 ms”, sound its horn fo emit a steady note which P's driver estimate,
has a frequency of 830 Hz, Whal frequency does Qs own driver hear?

(Speed of sound =340 ms™)
Solution:
u = 12ms’ Source (20 m &' Ltesier {12 m a7

340ms
i, = ?
EmdufﬂmlatwamPlu.-un—m-ED -12=8ms"

e 2™
[ﬁ%& s

ar Fa—[ 240 ]

f, = 810.47Hz
Exampla 7.11: Atrain sounds is hom before it sets off from the station and an obsarver
waiting on the platform estimates its frequency at 1200 Hz, The train then moves off and
accelerates steadily, Fifty seconds after departure, the driver sounds the hom again and
the platiorm observer aslimates the frequency at 1140 Hz. Calculate the train spead 50
after departure. How far from the station is the train after 50 5.

(Speed of sound = 340me™)
Solution:

Original frequency of horn
Apparent frequency

L
e ol & s
5] P
f




Speedofsource (.. frain) =u,=7
Distance covered by the train =35=7

fh) f'=[ E Jf
Vi
Putting the values, we have -
: 340 :
1140 = [34n+u,]ﬂm
| 340« 1200
s e T T
i, = 357.89 - 340
u = 17.89m g’

0 Owﬁ%@@dﬁ ' I

WW 0“ =
5= 448 m

7.12 APPLICATIONS OF DOP

Doppler effect is also apphcable to electromagnetic
waves, One of its important applications is the
radar system, which uses radio waves to determine
the elevation and speed of an aeroplane. RADAR
(RAdio Detection And Ranging) is a device,
which transmits and receives radio waves. If an
aeroplane approaches towards the radar, then the
wavalength of the wave reflacted from aeroplana
would be shorier and # #t moves away, then the

wavelength would be larger as shown in Fig.7.13
{a) & Fig.7.13 (b). respectively. Similady, speed of

satellites moving around the Earih %n ash be— Wb
datﬁrﬂimdbyﬂmmpﬁndﬂam “

Do Yoo Know?




enapun( waves n orssiom:
S i= an acronym derved from "Sound Navigation And Ranging”. It is the general
name for sonic or wirasonic underwales echo-ranging and echo-sounding system,
Sonar is the name of a technigue for detecting the presence of objects under water by
acoustical echo. In Sonar, "Doppler detection” relies upon the relative speed of the
largel and the detector lo provide an indication of tha larget speaed, It employs the
Coppler effect, in which an apparent change in frequency occurs when the source and
the observer are in relative maotion to one ancther, ks known military applications include
the detection and location of submarines, control of antisubmarine weapons, mina
hunting and depth maasurement of sea,

In Astronomy, astronomers uze the Doppler effect o calculate the speeds of distant
stars and galaxies. By comparing the line spactrum of light from the star with light from a
laboratory source, the Doppler shift of the star's light can be maasured. Then, the speed
ofthe star can be calculated.

erad that all the dlslant galaxms are Star receding

ving away from us and by measuring their red A
shifts, they have estimated their speeds.

{ii} Stars moving towards the Earih show a blue shift as
shown in Fig.7.14(c). This is because the wavelangth
of light emitted by the star are shorter than if the star
had been at rest. So, the spectrum is shifted towards
shorter wavelength, le., 1o the blue end of the
spactrum,

Another important application of the Doppler shift using

electromagnatic waves is the radar speed trap.

Microwaves are emitted from a transmitter in short bursts.

Each burst is reflected off by any car in the path of

microwavas in batween sending oul bursts. The

anplar shrf't. the



Satellite Navigation uses D::pp!ef shift o determine satellite velocity and position,
enablng accurate kocation tracking.

Satellite Communication also uses Doppler shift compensation ansuring stable
communication signals,

Doppler radar detects wind valocity and precipitation patterns. Doppler shift helps
measure Earth's surface velocity and defarmation,

Doppler echocardiography measures blood fliow velocity and detects cardiac
abnormalities, such as valve stenosis or regurgitation. Dopplar echocardiography
oplimizes pacamaker satfings,

Doppler ultrazsound measures bfocd flow and calculates cardiac output. Doppler
ultrasound detects vascular slenosis or occhision.

£ F&‘tﬂl’]" measured original wavelength

A=38Tnm=347 x 10°m
Changed or Apparent wavelength  A=478nm=478x10°m
Speed of light c=3x10"ms’
{a) v o= i
c =fiL (ov=c)
= f = %
;o= 3=x10ms’
39710 m
f = 7.56x107 «10" x10°s"

7.56 % 10 Hz

Laboratoy frequency
Apparent frequency '
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A=k or fFr<f
. The galaxy is moving away from the Earth.

- o ¥
o

e 2 s =
f [VE o )f (re=g)
Putting the values, we have

o 310 «10™
6.28x10" = [—3»1:1“34.”*}?.56:: i ‘ |
T Tt A galaxy is moving away from us at
3"“1:“? ”75:: 107 0% of tha speed oflight e, 0.2.2),
B.28x1 ‘vhm:mu_w Ilnl mmm
2255::10"_3 10° -
B.2B

Galactic Motlon

3 10F 4=

@@ =

mpie wave speed equation is represented by
fa}-.f fi. fb}vss/ (e} v =rm {d) v=’—"'%,

7.2 The principle of superposition inwaves i5 stated as:

{a) the displacement of a wave is the sum of the displacemenis of ifs individual
components

(b} thevelocity of a wave is the product of its individual components

{c) thefrequency of a wave is the difference of its individual components

(d) theamplitude of a wave is the ratio of its individual components

7.3 Anodeinastalionary wave s
(a)a point of maximum displacemant (b} a pointof intermeadiate displacement
{c)a point of zero displacement {d}a point of infinite displacemant

7.4 Anantinode ina slationany wave s
(a)a point of maximum displacemant (b} a point of minimum displacamant
(c) & point of zero displacement {d}a point of infinite displacement

1.5 Stationary Na'-.resa-redeﬁnadaf'




{a} integer muliples of a fundamental frequency
(k) integer submultiples of & fundamental frequency
{c) random fraquencies
{d) non-integer multiples of a fundamental frequency
T.7T Theresullof canstnuctive iInterference batweaen two waves isreprasented as:

{a}adecrease inamplitude {b}anincrease inamplitude
{¢)no change in amphtude id)ashiftin phase
7.8 Iithe ampliiude of the wave |s iripled, then the amount of enengy s Increased by
{a)3times {b)Gtimes  (c)9times (d) 12times
7.8 Whattype of waves do haadphonas usa o produce sound 7
{a] Electromagnefic waves b} Mechanical waves

.10 The typical frequency range of microws

{a)10"-10°Hz
{c)10"-10"
Pk | ThEDE"IdII‘I %
(b} reflection
{d)interference
he Doppler Effect used in astronomy isfor:
{a) measuring the dismeters of stars
(b} detarmining valocity of galaxies
{c)analyzing properties of black holes
{d] studying behaviour of slectromagnelic waves

@l short Answer Questions |

7.1 What are the conditions for interference to ocour?

7.2 Differentiate between constructive and destructive interfarence of waves.

7.3 What are cohaerent waves and coherent sources? Give examples,

74 Distinguizh between longliudinal and transverse waves.

1.5 Isit possible for wo identical waves fravelng in the same direction akong a string to
give rise toa stationary wave? How isit so?

ot E Hnwwnuld b apply Dﬂppl&reffectm studymg t:ardtaz:pm E

)

o

{fr}Pres_sum waves _ #‘-“l;}:h‘:ﬂglmdlnal wmé@o @©m

is cafled as:
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@ Constructed Response Questions [j

7.1 Which measurement of 3 wava is the most important when determining the wave's
infensity?

7.2 Can you apply Doppler effact to light waves? Dascribe briefly.

7.3 Can you compare the compressions and rarefactions of the longitudinal wave with
the paaks and troughs of the transverse wave ? Discuss.

T4 How should a source of sound move with respect to an observer so that the
frequency of its sound does not change? Write two examples.

7.5 Why is it difficult to recognize beats when the fraquency difference |s greatar than 10
Hz ¥ Exemplify.

'] Comprehensive Questions ]

7.1 State and explain the principle of superposition of waves. Apply this pri to
dabnratelhewuﬂungnfnnmecanceingheadphnnes.

7.2 Whal are standmg wams? Illus rale a de —“ @Qgsuam the

?SFlndthefrequ 5 b ( 5 -‘ ced’in organ pipe when itis open al ong

alis rrmthy the term beats? Prove that number of beats per second is equal to
the difference between the frequencies of vibrating tuning forks.

7.6 Vhatdo you understand by progressive waves? Discuss the intensity of progressive
WAVES,

.7 Keeping inmind "Doppler effect”. analyze the following cases:
(@) when source of sound moves away from the stationary observer,
(b)) when source of sound moves towards the stationary cheerver
H Hmﬂﬁtamliirnhlems F
7.1 The speed of a wave on a typical siring is 24 ms”. What driving fraquency will it

resonate ifits length is 6.0 m? {Ans; 2 Hz)
7.2 The lowest resonance frequency for a guitar string of length 0.75 m is 400 Hz.
Calculate the speed of a transverse wave on the string, (Ans:B00ms™)

w,

.3 Atuning fork A produces 4 beats per second with ancther tunln fork B m
that by loading B with some wax, the beat frequency inCrégsas C

sacand. Hihelrequancyarhmaz%z@ ; "IN

Q

ren loaded.
(Ans: 314 He)

o



7. & stesl wire hangs vertically from a fixed point, supporting a weight of 80 N al its
lower end. The diameter of the wire is 0.50 mm and its length from the fixed point fo
the weight is 1.5 m. Calculate the fundamental frequency emitted by the wire when
itis plucked. Density of steel wire is 7.8 x 10" kgm™. (Ans: T6.2Hz)

7.5 Average intensity of sunlight on the surface of the Earth is nearly 500 W m™.
Detarmine the amount of energy that falls on a solar panel having an area of 0.50 m'
in four hours. (Ans:3.6x10%d)

7.6 (a) Wtheintensity of a wave is 16 W m™ and the amplitude is 2 m, what is tha value

of constant k7 (Ans 4 Wm™)
{Bb) If the intensity of a wave Is 25 W m™ and the constant k Is 5 W m™, what Is the
amplitude? (fns: 2. 24 m)

7.7 (&) Asound system produces 200 watts of power, If the sound |s directed at a

crowd with an area of 150 m*, what is the intensity of the sound?

(Ans:0.25Wm)
7.8 Aradioa R .;‘ arcaata 500 watts of power. If the signal is received at a distance

' “ whigl i9the intensity of the signal ? (Ansidx 10" Wm™)
A organ pipe has alength of 1 m. Determineg the frequencies of the fundamental and
the first two harmonics;
a) ifthe pipeis openatbothendsand (b} ifthe pipeisdosed atone end.
(@) pipeis Dpe pip
(Speed of sound in air is 340 ms™)

(Ans: 170 Hz, 340 Hz, 510 Hz; B5 Hz, 255 Hz, 425 Hz respectively]

7.10 A train is approaching a station at 90 km b, sounding a whistle of frequency
1000 Hz, What will be the apparent frequency of the whistle as heard by a listener
sitting on the platform? What will be the apparent frequency heard by the same
listener if the train moves away from the station with the same speed? (Speed of
soundis 340 ms’) (Ans: 10754 Hz 931.5 Hz respectively)

o
oI



After studying this chapter, the students will be able to:
Explair thal poiarization (& & phenomenon associated with ransverse waves,

Define and-apply Malus's taw [ = [, cog'B to cakulsts the miensity of ‘@ plane-palarizad
electromagnatic wave after fransmission through a pelarizing filber or a saries of polarzing fillers,
[Calculation of the effect ol & polarizing filer on the infensity of an unpolarized wave is nol
requirad.

Explain the uss of polaroids i sky pholography and siress analysts of matenials,
D&uﬂmlhmwgrmmm waves

* e

LB

mhmlmpmamhmmmsn pward
mmﬂnammau G5

pravitatienal mﬁ]

This chapter deals with two major areas of physics namely polarization of tfransverse
waves and gravitational waves respectively. We will discuss these one by one in this
chapter.

Physical optics with reference to polarization deals with the
behaviour of ight waves and theirinteraction with matier.

Interference and diffraction effects prove the wave nalure of
light, These phenomena, however, do not tell us whether the
light waves are longiludinal or transverse. Polarization oflight g2
suggests that the light waves are fransverse in character, K-

In transverse mechanical waves, such as produced in a
stfetmed sirimg, 13ha ﬁhmlims ol‘ ﬂ'ne particlm m‘ tha

i) bt variical plans; and

ib}ina horizontal plane
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pokarized. The plane of polarization is the plane
containing the direction of vibration of the paricles
of the medium and the direction of propagation of
the wave.

A light wave produced by oscillating charge consists
of a periodic variation of the electric field vector E
accompanied by the magnetic field vector B at nght
angle Io sach ather. Ordinary light has componants
of vibration in all possible planes. Such a kght is
unpolarized. On the other hand, if the vibrations are
confined only in one plane, the light is said to be
polarized. Unpokarized light is shown inFig. 8.2, .
Examples of unpolarized light sources are sunlight,
incandescent fight bulbs, fluorescent light bulbs, Eﬁnfm:," dcbvioad M el
light from & candle or fira. ,

Polarization is the process hy whi

are resfrictad to a single plane of vibys t : 2xhibited by h’Ena'uwst
waves nnly such aﬂ e‘ abacour for Innglludlnal waves such as sound
H Light be Polarized?

rghl can be made polarized by the following methods:
1. F'asslngllghuhm,ngha polarlzing filter (2.0, polaroid sheet).
2. Using a polarizing beam splitter.
3. Employing certainoptical crystals or materiale (e.q., calcite, guanz, olc, ).
The most comman method by which an unpolarized light can be polarized i1s by passing
it through a polarizing filter, such as a polarizing beam splitter or a polaroid sheat, When
an unpolarized kght passes through the polarized filter, only that eleciric field vector
which is parallel o the
axis of polarized filler can
pass through it, while all
ather veciors are blocked.
The resuitant kght then
becomes polarized as
shown in Fig. 8.3.
Thus, in simple words, the
process of ransforming an
unpolarized light in a
polarized light is 5
palarization.




The orientation of the electric field vector E of light
%in:MeMnﬂﬂhﬂuhﬂm of Polarization.

8.2 TYPES OF POLARIZATION

Here are the basic types of polarization of light,

1.  Linear Polarization

When the electric field vector oscillates in & ... ! n
single plane, light 1= said to be linsary polarized .. | w \\V
as shown in Fig.8.4 (a). Example is the kight v 1 ‘
passing through a polarizing filter, like 4

smagm. g iy Fig. B.4 {a): Linear polarization of fight
2.  CircularPolarization

When the slectric fisld rotates circularly, either
dockwise (right-handed), or counterclockwise
{Iaﬂ-handed) the ingh'l is said to I:a 6rcul

Spuge (30

wherethe elecinic field ver.:tortnmes an EIIPI]CEII
path is called elliptical polarization. In elliptical
polarization as shown in Fig.B8.4(c), the two
components of electric field E and E, are not
aqual andfor they differ in phass by an arbltrmy
angle 0. Example is the light passing through a
stress plate or 3 waveplate,

8.3 PRODUCTION AND DETECTION OF PLANE POLARIZED LIGHT

Fig. 8.4 {c): ENiptical polarization of light

Thelight emitted by an ordinary incandescent bulb (and also by the Sun) is unpolarized,
because its (electrical) vibrations are randomly orented in space as shown in
Fig.8.5 (a).

If unpolarized light is made incident an a shae! of polaroid (polarizer), the transrmttad
light will be plane p{:hnzed Ifa sa-mnd shnat of polarcid is placad in such away ihs
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perpendicular as shown iIn
Fig. 8.5(b). The light reappears on further
rotation and becomes brghtest when tha
axes are again parallel to each other,
This experiment proves that light waves are
fransverse waves. If the light waves were
longitudinal, they would never disappear
aven if the two polaroids wera mutually
perpendicular,

| Ponder Upon

lghl uram u'msvam Thnlhua Mll
armows indicate alectric vibrations of fight waves.

In 1808, Malus discovered that pdanzed lightis abhalnedvmenurdmaryhghtls reflectad
{light bouncing back from a surface) by a plane sheet of glass. If the reflectad light s
viewed through a polaroid which is slowly rotated about the line of vision, the light s

Ray Diagram
Mormial
Incident : .
View thraugh a
unpolarizad
light 3 pobriod
{erdinary lighé} i ReBacind g#
, . ight
=8| 4 ; Vibragang
T Plara pataized gt
Medium ¥ n, A a0
Medium2 &
Crown glass m
&\C




praciically extinguished at ona position of the polaroid. The most suitable angle of
incidence " iz about 57° for glazs for which the reflected ray becomes plane polarized,
asillustrated by ray diagram in Fig. (8.8), This proves that the light reflected by the glass
is practically plane polarized. Light reflected from the surface of a table bacomes darker
when viewed through a rotated polaroid, showing thatitis partially plane polarized,

Brewster's Law

The particular anghe of incidence on a transparent medium when the reflected light is
almaost plane polarized is called the polarizing angle. Let a beam of unpolanzed light be
made incident on the surface of medium 2 as shown in Fig.8.6. If the reflacted beam of
light is almost plane polanzed, the reflected and refracted beams are at right angle o
eachothar atthe polarizing angle, /=8, Thus

B+, =80°
or B, =890° -0,
From Snell's law, m
nofl NEANEONa
m, Slﬁﬂ ﬂrﬁ’lﬂﬂ Iivterasting Information

.sm n.sin “ ATl Bt G
% polarization of light in biokegical
SyelBme, guch a3 e polanzation

of light by cell mambranes.
costl,

tana,.,-—i

Thiz equation |12 known as Brewster's law. In this equation, n, is refractive index of
medium 1 and n. is refractive index of medium 2.  medium 1 is air, then equation
bacomes tantl, = n becausa n,= 1 and n, = n. Here n is refractive index of meadium on
which light is incidenl. Hence, Brewester proved thal the tangent of the angle of
palarization is numedcally equalto the refractive index of the medium 2 when medium 1
is air, In Brewster's law, the angle 't for which the reflected ray and refracted ray makes
an angle of 30" between them, is also called the Brewster angle fi_. Then tandl.- nholds.

Example B.1: A beam of light strikes the surface of a plate of glass with a refractive
index of 3 at the polarizing angle. What will be the angle of refraction of the wave of

light? ‘

¢ no= V3.8=7
As tanty = n

or By, =

i
[

Sy .
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LUS'S LAW

Malus's law states that the intensity | of plane polarized light after passing through an
analyzer Is diractly proporional to the square of the cosing of the angle 6 betwaen the
transmission axis of the analyzer and polanizer. Thatis; Polarized light

- with ity |,
| = I cos’8

Initial polarizer
whare /. = Intensity of the
incident polarized light (after
passing through a polarizer)

Actually, Malus's law gives a Fad
mathematical relation betwean  1eeneee
the intensity of tha Bght incidant oo o polsrtosd light el

on the first polaroid {i.e., I e dma -:.ranalyw
polarizer) and the intensity of Fig. 8.7 [a}: s;h e €l nf@ :

light obtained after passing it O @ o
5 a polari ) placed ale & gﬁ ulahunafthe analyzer afl‘eci& the

- furthar reduce tha mta:n-sll;r of ight and also

caahl& af mnﬁmng w-brahc»ns of Ilght Waves in nnry nna piana Such mmnﬂs are
called polaroids which have high directionality in crystal structure, Light can also be
polarized by natural phenamena like reflaction, refraction and scallaring.

IT a pieca of polaroid is rotated in front of a
polarized ray of lighi, # causes a variation in the
intensity of the light that gets through. Thea
reason that causes the variation of intensity is polarizer
the angle between the initial polarizer and the
axis of second polarizer,

When the incident polarized ight of amplitude A,
sirikes the analyzer al an angle 8, it is resolved
into two componenis Accst and A sinll as
shown in Fig., 8.7{b). The component A sini is
absorbed in the analyzer. Since, only A cosd
passes through the analyzer, the amplitude A of

the transmitted tht is therefore,

A =H,}m5ﬂ @ :
Slﬁt}&iﬂtﬂﬂslly.f |$ 9 BOUDE i r&' soluthon of WMW
it can be express “; - \( components of plana polarization light.




For Your Information

or | = A'cos'a
Préarizer-2

I = leogs (v =A)

Here [ is the intensity of the

incident polarzedlighl, Incicdant Basm

There are two exireme conditions

of 0 followed by the above equation

given as,

i. Ife=0%then/=1.This means
the Intensily transmitted
through the analyzer is equal
to the initial light intensity that Light passing through crossed polarizers
passes through the polarizer.

i, If8=980° then | =0. This means the kght is exhngm G
aliowed o pass through the analyz%r)

DpﬁcalActlviiy

S DS TEERS

: o rotate the plann of polarization of light
iz detected with a pn!anzer or analyzer as shown in

p&ssmg thirow : vtz
Fig, o
Y orystals and solutions rotate

the plane of polarization of lght
passing through them. Such
substances are said to be optically
atlive, Examplas are quarlz crystals,
cinnabar (H,5), sugar water, insulin
and collagen. The amount and
direction of rotation depends on
fodlowing factors:

(I} Thetypa of substance

[ii} The concentraticn of the substance (the
amount of a substance present in a given
guantity of a mixture or soluticn).

(iii) Thedistancethe light travels through it, and
(v} Thewavelength oflight

Dptical activity occurs due to the asyr
mnlemlms mhasuhstmm such as be




wation by many degrees. Certain organic substances, such as sugar and tartaric
acid, show optical rotation when thay are in a solution. This proparty of oplically active
substances can be used 1o determine their concentration in the solutions.

Example 8.2: Find the refractive index of a medium if polarizing angle is 54 5°,
Solution:

Do you know?

o, = B4R n=7?
As tanf, = n
or n = fan#,
So n = fanS54.5"
n = 14

Exnmple 8.3: Polarized light with an intensity of 75 W
m™ passes through an analyzer with its axis al 307 to the

polarizer's axis. Whatis the emerging intensity? 1 %
Solution: a @
l = rsw%‘ﬁiﬁ

L.Iainghﬂuaslaw@% o aON o i e

Ty Are Ciosmed, wiey BRR lgh
Cuenama Frnigh
W = TScos’ 30°
75 (0.866)°

TEX0.75
/ = B625Wm”

Example 8.4: A polarized light with an amplitude of 5 units passes through a polarizer
with its electric field aligned at 60° to the orginal polarization direction. Find the
amplitude of the wave after passing through the analizer?

Solution:
A, = Sunits, 6=60"A=7
Using Malus's law.
A = A cosb Brain Teaser
or A = BeosBl” A beam of unpolarized light passes.
= Byx05 through & fogay ﬂmnﬂphm Iall'
polarization stata o 6

Impnrtnnc:gfpaiarla:; O mwo
9 e



Polarization s assamlal for applcalluns like pofarized sunglassas. LCD (Liquid Crystal
Dizplay} screens, and optical communication systems.

2. Imaging and Microscopy

Polarization enhances image quality. reducing glare (unwanted light that interferes with
vision) and improving contrast, espedcially in microscopy and medical imaging.

3. Medical Applications

Polarization is used in cancer diagnaosis, tissue imaging, and laser surgery, leveraging
its ability to distinguish between different tissue typas.

4, Astronomy

Polarization helps us to analyze cosmic phenomena, like the polarization of light from
dislant stars or the cosmic microwsave background radiation,

5. Miscellaneous Fields

Polarization has importance in mmc@ B
imaging and microscopy, blnhg-_.,r and efemis

Two Main Ap ¥

a which is usad to photograph the
clouds is fitted with a Mam. The Ilght Action of polanzed sunglasses
coming from the sky is polanzed by the Wavas vibrating

polaraid. it
In sky photography, polarizers are used o
reduce the glare and haze which are
produced by the scattering of light by
small partides of molecules present in the
atmosphera. Polarizers also enhance tha
contrast by clocking the excessive bright
white light whila allowing the other colours
iz pass through, thus creating a brighter - :
detailed mage. Thus, allows to improve Pedarizad light
the overall image quality,

2. Stress Analysis of Materials

In materials scance, polarzers are usg d@ 1! l matanals
such as plastics, metals, and gl
| materia \-ﬂ‘; ura changes, affecting the way, it
AL\

Light wanes wibrasing
paralial io tha
. highway
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i
qualitative information about the material. By shining polarized light through the
transparent material and analyzing the changes in the light's polarization, the
researchers can:

= with light, and interference patterns on fringes are formed which in turn gives

s detarmine the material's stress patlerns
s jdentify potential weaknesses or defecls
= analyze the matenal's oplical properties
» understand how the matenal will behave under diferent conditions. This technigue

is known as “"photoelasticity” and is widely used in figlds like engineering,
materials science, and quality control.

In both cases described above, polarizers play a crucial role in manipulating light to
achieve specific goals, whether it is enhancing image guality cr anziyzlng miaterial
properies. ;

space and can be
length betwaan

Gravitati

Albert Einstein [1878-1
fabric of spﬂmtimn produced by violent o, bér:{munﬂ

cosmic events, like coliding Black hobes or neutron stars Phyakcist

that travel at the speed of light, carrying information about  One of the Workf's most

their sounce.” Tenowned and the most
irfluential scientists of all

The simplest example to understand GWs is given below: e,

If we throw a stone into 8 pond, the stone creates ripples on the water surface

(spacetime). These npples travel outward, carmying information about the stone (the

cosmic event). They can be detected on the shore (by gravitational wave

observatores), revealing the stone's presence and properties.

Prediction and Detection

Gravitational waves are a prediction of Einstein’s theory of general relativity which is
confirmed by observations and s opening & new window inte the universa's mast
axtreame phenomena.

According to Einstein's general theory of relativity, gravity is not a force, but a cur

uf spacetime causad by massive hudlﬂs Gravlty is IIk& ad da m@@




obegarvation of ls kind: the detection of
gravitational waves, produced from two
colliding neutron stars. In this type, there is a
gradual increase in frequency and amplitude of
Gws.

A Binary Systam (BS) in the contaxt of
gravitational waves refers to "A system
consisting of two compact objects, such as
black holes, neuiron stars, or white dwarfs,
which are crbiting each other and emitting
gravilational waves,”

Four Basic Types of Gws

Thera are four basic types af gravitational
waves, each with different sources and
characternstics:

1. Continuous Gws

When a single rn@
cnnllnunus GWs a

When a binary system, such as binary
neutran stars, binary black holes, ora
neutron star and black hole orbiting
each other, compact inspirational
GWs are producad.

3. BurstGws

These are produced by violent evenls
like zupermovae, gamma-ray bursts,
or cosmic strings.

4. Stochastic Gws BS Maodel

Stochastic GWs are weak, random signals of GWs which are produced by superpasifion
of many waak gravitational wave sources, such as distant binary systems, Thesa G\Ws
are the most difficult to detect.

airplanes, elc. are included in it. Th& ma

are oo small to maka gravit
instrumants.




Dirad ARy
it NI

: binary systems (also termad as
binaries) orbit each other, they emit
gravitational waves, which can be
detected by observatories like LIGO
(Laser Interferometer Gravitational wave
Dbservatory) which iz situated in USAand
Virgo, a large =cale gravitational wawve
cbservatory in Cascina, lialy. The waves
carry information about the system's

mass, spin, and marger dynamics, : '

i . ; : Ficture of a series of concentric sphemes, with the
aﬂ'an_ng hlns:ghlﬁ intg Iha.sa BXITAME Lo evetsm at the cariber, fadiating gravity waves
cosmic objects, and move with the speed  pwward into the cosmas.

of light.

waves thal ¢ i | IF-a
1 bourd by the l:rrrl-alr:.r
5 gra'-.rlt)r instead, they travel freely

through spacetime at the speed of light. The
waves propagate through the universe,
weakening in intensity as they distance

themselves from the source.
The characteristics of GWs depend on the 4. prees cairy the malbematical signatirs of
system’s properties, such as: gravitational waves

+ Massesof the ohjects
» Drhital perod and frequency

o Ecceniricity of the arbil: Eccentrcily ¢ 1s ameasura of the amaunt by which an object
deviates fram a perfact circla.

g =0 Circular orbit

g8 =1 Parabdlic trajecto @ \\\

Hyperbolic
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N \NN M
ENEHII‘NE Distortion / Tidal Forces

Gravitational waves passzing
through a body with mass can cause
tha body o experiance periodic
stretching and compressing, also
known as "spacetime distortion™,
This effect is known as "idal forces®
and is 8 result of the gravitational

wave's oscillating nature. As the -
gravitational wave passes through Spacelime curve of an artificlal and a natural aatallite

the body, it causes the spacetime around the body to oscillate, leading to & periadic

stretching and compressing of the body in the direction perpendicular o the wave's

propagation. This effect is similar to how the fides on Earth are caused hy lhe

gravilational pull of the Moon and Sun, a0
((\

The amount of stretching and compressing deperbds W@dgﬂ@p’f tlj&g?’awtatlunal
wave, as well as the mass and s{ze of (b bty | xmﬁrpﬁﬂanl prediction of
Einstein's theory :)féaneral m}aﬁu\n#
Gravitational waveg g \gﬁqe ‘l;ecl\h\ A\
rarn!’rcalesﬁq Pﬂ\ﬁ\\ﬁ E;tnaame
rﬁfgﬁws D black holes or

lars, pass through the
Earth. However, the amplitude of

these waves is extremely small,

typically of the order of 107 1o
10~ metres. This means that the Spacelime curve shown by twe sabollles

distortion causad by the gravilational wave is incredibly ting, and raquires axtremely
sensitive instruments to detect.

7 )/r\\

Despite their small amphtude, gravitational waves offer a unigue window info
the universe, allowing us to study strong-field gravity, test general relativity, and
gxplove the universe in ways previoushy impossible.

8.7 INTERFEROMETER

An interferometer is an optical tool used in detecting gravitational waves. It is a very
sensitive detection device that may use the interference of LASER (Light Amplificaton
by Stimulated Emission of Radiatoin) beams. The basic Michelson's :nteﬁergm&tef@ﬂ
be seen in Fig, 8.9, r’m Z \

An interferometer that detects g grawta‘m:y\ad waws 15 El ﬁ'ghl? s&nsiﬁrva 1n5trument that
uses LASER light to measure !m:.n' mgnges i disl/aht:ﬁ be:u‘m&n mirrors, caused by
gravitational wam@)passnjg Mrﬁugluqe deleelors. These intedferometers are called

N “ JI ”“
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L (LASER Interferometer g . e
Gravilational Wave Observatory).

The main differences between LIGD

and conventional interferometars

ara:

(a) LIGO is 1000 timas larger than
conventional davice, and
; Input
(b) LIGO uses LASER whereas o e

> Fatry-Peral canily

conventional interfaromatar Eering \*‘ / Fabry-Parmt carvity

has normal light source. i
Basic Components of o H
GW Interferometer e ﬂmr/-’ Crie End

The basic components of a
gravitational wave interffercmetar
are:

2. Power recycli
through the

litter divides the LASER beam inlo two parpendicular beams.

4. Mirrors reflect the beams, creating twio perpendicular amms.

5. Fabry Perot cavity consisis of two mirmars facing sach other, The purpose of the
cavity is to enhance the pathlength.

6. Photodetectors measura the returning beams, detecting liny phase shifts (if any).

7. Arm cavities enhance the LASER light, increazing sensitivity.

Woerking of Interferometer

A lazer beam I split into two perpendicular beams, each ravelling down two identical
paths (arms) of the interferometer. The beams bounce off mirrors at the ends of each
arm and return 1o the starding point, where they are racombined. Il a gravitational wave
passes through, it causes a tiny disturbance in the distance between the mirrors,
resulting in & phase shift between the two beams,

When the beams recombine, they create an interference pattern, which is measured by
a photodetector, Tha lmy phase ahrﬂ cauaad by the gmvlta' B

Gnmpla:LDnM S le . s/uhiveres's g v&awereuhsmadfﬂt
the very first time By \LI wikatd




years for the waves to amrive at the LIGO detector in the USA, On their work on
chservation of GVWs, Rainer Weiss, Barry C. Barisk and Kip 5. Thraone received nable
prize in 2017 It is intaresting to note that one of the leam mambers, Mergis Mavalvala a
professor at MIT (Massachusetts Instituie of Technology), belongs to FPakistan.

Virgo Detection

Similar to LIGO, there is another faclity for measuring gravitational waves. This is called
Virgo, which works under the European Gravitational Observatory (EGO) Cascina near
Plza, ltaly. Virgo ks alss an interferometer with two arms of 3 kmwhereas LIGO has 4 km
arms, The Virgo Observatory is named after the Virgo constellation, which is visible in
the night sky during the months of March, April and May. The Virgo cluster is a group of
about 1,500 galaxies about 50 mLYs (Million Light Years) away. Remember one Light
Year (LY) is a distance which Bght travels in one year, The approximate value of
1LY = 9.5 billion km. Virgo has been involved in detecting gravitational wava EC@IW‘I

the first detection in 2017, EA‘ @

Example 8.5: If the gravi WavBs v (l)'n, find thair
frequency. &
Solution: 3 =4 B3

As
g
0 f = {ev=g
3 4 )
¢ ax10° I'E_ﬁ_"
4x10"m
= (0.75x10°%"
f = 75Hz
Example 8.6: A binary systam emits gravitational For Your Information
waves with a frequency of 10" Hz. What is the THI
wavelength of these waves?

Solution: f = 10'Hz=10"5", ¢ =3:10°ms', A =7

As v o= fi

or L=

¥

| e
—
=

1]
[-=]
o
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@ QUESTIONS

| Multipie Choice Questions [

Choose the correct option.
8.1 Tha phenomenan of polarization of ight is:
(a}the process of scattering oflight
{b} the propearty of light 1o vibrate in a specific plane
{c) the ability of light to travelin a straight line
(d} the phenomenan of light changing colour
8.2 Malus's law states that:
{a)} the intensity of light is directly proportional o the square of the cosine of the
angle betweaean the light wave and the analyzer
(b} the intensity of light is directly proportional to the square of the sine nr

batween the light wave and the analyzer
{c) the intensity of light is drrecﬂy L4 ht Wave
and the analyzer '

{d} the MtEnsI@ the angle between the light wave
and lha AN

T passes mmugh a polarizer:

(b)dacreases
(d) becomes 7ero
8.4 The angle betwean the light wave and the analyzer is caled:
a) paolarization angle (b} refraction angle
b) reflaction angle {diazimuth angle
8.5 Thekey purpose of ananalyzer ina polarization axperimeant is:
{2} to polarize the ght {b) to measure the intensity of light

() 1o change the direction of light {d) 1o filer out unwanted light
8.6 The mathematical representation of Malus's law is:
{a)}l=] cos’@ {byl=1 sin B
{e)l=1itan’8 {dyi=1 cot’6
8.7 The eflect of iIncreasing the angle between the Eght wave-and the analyzer on the
intensity oflight is:
{(a)the intansity increasas (b) tha intansity decreases
(c) the intensity remains the same(d) the intensity becomes zero

8.8 The conditben for maximum intensity of Bght In a ﬁdanzatmz 7

{a} the kghtwave and Bnalj.rzarare ar -




8.8 he unwanted hight that interferes with vision istermed as;

ia)hare {b) glare {c) contrast (d} fiara
8.10 Who predicted the existence of gravitational waves?

(@) Galileo Gallel (b)Albert Einstain

c}ssac Newlon (d) Leonardo da Venci

8.11 Whal ara gravitational waves?
(a) Electromagnetic waves (b} Mechanical Waves

(o) Oceanwaves {d) Ripples in the fabric of spacetime
8.12 Which is the primary mathod used {o detect gravitational waves?
(@) Optical telescopes (b) Radiotelescopes

(c) LASER interferomeldry {d) Gravitational lensing
8.13 Which of the following is a primary source of gravilational waves?

{a) Binary black holemerger  (b) Solar flares

{c] Earthquack {d) Supernovae

8.1 Why are the pﬂlamld
8.2 |slightfrom tHeks

8.3 Howis Malys's ‘& : ‘ ifa?
HW applications of Brewster's angle?
8.9 /N is the space-time curvatura’?

|@ Constructed Response Questions ) |

8.1 Write down some applications of plane polarized and circularly polarized light.

8.2 Would it be possible to use a polarizer as an analyzer? If yes, give at least two
examples.

8.3 Explain how Malus's law iz used in the design of polarized sunglasses, How do
these surfaces reduce glare from reflective surface? Provide an example fo
(ustrate your answer.

8.4 Howwill the sky appearifthere had been no atmospherse?

8.5 Whatisthe significance of detecting gravitational waves?

8.6 How are tidal forces formed?

[] Comprehensive Questions )|
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What is & polaroid? Explain iwo main applications of polarization.

H & What are gravitational waves? Describe the basic types of gravitational waves.
8.7 Whatis aninterferometer? Describe the hasic Michelson's interferometer in detail,
8.8 Whatis meantby opticalactivity? Discuss it

| Numerical Problems ||

8.1 When an unpolarized light of intensity | is incident on a polarizing sheet, find the

intensity of light which does not get transmitted. LAnE: -%'- )
8.2 A polarized light beam passes through a polarizer at an angle of 45°. Find the
intensity of the transmitted kght if the initial intensity is 100Wm", (Ans: 50Wm™)
8.3 AlNght wave passes through a polarizer with its electric field aligned at 30° to the
horizontal. If the amplitude of the wave is 10 unitz, what is the amplitude of the
wave passing through the polarizer? 3
8.4 What angle is required between the diraction of polass)
polarcid filter to reduce s intansi

o

amiuad I|_ght B maxlmum Thmugh what aﬂgla must aither shaal ba rnl,atad if the
imtensity is to be dropped by half? tAns 45"

8.7 We wish to usa a glass plate of refractive index of 1.5 in air as a polarizer. Find the
polarizing angle and angle of refraction. 1Ans 563, 33.7 respectivaly)

8.8 Atwhatangle of incidence, will light reflected from water be completely polarized?
{Ans; 53°)
8.9 Abeam of unpolarized light is incidant on a stack of four polarizing sheets that are
linad up so that the characteristic direction of each is rotated by 30" clockwisa with
respect to the preceding sheet. What fraction in percentage of the in::i:lent

intansily be transmitted? (Ans: 21%)
8.10A polarizer and an anakyzer have their axes aligned at 60°. What is the fraction of
the initial intensity that emearges? (Ans: 0.25)

8.11 Iif the gravitational waves have a wavelength of 3000 km, fi r i
assuming it moves Mlhth&apaedcﬂlwr? ;\\W

Q



Atthe end of this chapterthe student will be able to:
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#
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A e o R e

oo

Diafine and calcufate slectnc fisld strength. AV

[Usa F=gE for {he force on a charge inan skeciric fisld, Use E= — iocalkulale the fisld sirength
il the unifoem ek between ehanged paralied plates] Ad
Describe the effect of a unifonm alectne field on tha motion I:Ifl:lnmﬂd particies,

State that. for a peint cutside a sphenical conductor, the charge on the sphere may be considaered o

e i it iR Al 1S cenine,

Explain how a Faraday cageworks. m
M‘Iﬂuﬂ'ﬂm-iudmﬁlldlﬂmtmw hiﬁm@%@@ yeiric
; 1

fialds]
4 State and apply Coulomib’s law.

State and usa V= WL
Slate anduse P=I P=F Rand P= VR,

Stateanduse F = ﬂ%

State thal the resietance of & light dependent reststor (LDR) decreases as the Bght Intensity
increases,

State Kirchhof's first low and descrbe that itis a consequence of consenvadion of thange.

State Kirchholfs second lvw and describe (hat il is a consequence of conservation of energy. -

Use Kirchholfs |ews tesolve simple-clreult probiams,

State and use the principle of the pofentiomater as 8 means of comparing potential diferences.
Expiain tha usa of a galvanomater in null methods,

Explain the usa of thesmistors and light-depandant resistons In potential dividars.

[io provide a polential difforence that is depandent on termperature and Bght intensity]

Enpiaain the inermal resistance of sources and 18 cons pquences for axtemsal circults,

Expiain how inspectons can easily check the refiability of a concrete bridge with carbon fitres as the
finres conduct aleckiit'_r.




|:Iupul(iI E‘tEfFrublﬂlhjmlﬂFl.l!’[,:’l‘!lﬂ;!‘lll"lﬂ!";_’h
. Thus, any amount of charge qis aninteger multiple of e, 1.2,
g=HMe whera N [z an intager

Electrostatics is the study of phenomena and properties of electric charges at rest,
When charges are in moticn, we callit as an electric current.

Charles de Coulamb (17 36-1806)

Coulomb's meer confrisution to 2cence was in the feld of selecirostatica and
magnatism. During his Metime, he also westigated the strengihs of materiat and
delermined tha forces that afect on beams, thareby, contrbuting to the fiekd of structural
mechanics. |n tha field of ergonomics. his research provided & undamanial |
understanding dlhwhwﬁdﬁmhandlnim:nnhﬂidnm

9.1 COULOMB'S LAW

Coulomb's law = a fundamental principle i
electrostatics that quanﬁﬁea tha force between two

F'hyalclst Charles de E-DLlnmb in
essential in understan :
particles and tha intekactions 1fetgovermany electrical | L,

phenomena. ‘ 5 \of n‘naammants he : I
- A% Con Iu-mh's law. It states that: Fig, 04
between two-point charges is directly (a) Repulsive forces batwean lke

propertional to the praduct of the magnitudes of charges charges and
and inversely proportional o the square of the distance (1) sttractive forces betwesn

between them. It is mathematically expressad as ~ unlike charges,
il il s o ©.1)

where F is the magnitude of the mutual force that acts oneach of the two point charges
4., g. and ris the distance between them. The force F always acts along the line joining
the two point charges (Fig. 12.1), k is the constant of proportionality, Its value depends
upon the nature of medium between the two charges and system of units in which F g
and rare maasurad, If the medium between the two point charges is free spaca and the
system of units is S1, then kis represented as

where ¢_isan ﬂhectm:al constant, known as permittivity of free space In Sl unlls
is8.85x10°° C' N m”. Substituting the value of £, the constant %

1 - ex1PNmice
41“.9 O
Thus, Coulomb's force in free s @@ Dioas mahmm
- % exist bebwesn a charged

B &n uncharged ?




Asstated earlier, Coulombs' force is muiual force, it means that if g, exerts a force on q,
then g, also exerts an equal and opposite force on g, we denote the force exerted on q.
by g, asF,. and thaton charge g, due to g, as F., than

Fu.= -F;, {9.4)

The magnitude of both thase twa forces is the same and is glven by Eq. 9.3. To represant
the direction of these forces, wea infroduce unit vectors. If k, |, is the unit vector directed

fromq, to ¢ and r,. is the unit vector directed from g, 10 g, then Fi
Fo = o oy e (98) “cz"'
Fi= 7 5;!4,2 (9.6) r_,.-“ff }3

T, ,,u,,r b

Theforces F,, and F, are shown in Fig. 12.2 (a&b). ltcanbe  ® o
seanthatr, =-r,,, s0Eqs. 12.5(a & b)show that )

Fh= _Fﬁ

af the presence of a dielectric always reduces the mm‘m 2:?'2:
electrostatic force as compared with that in free space by a S, 2;&!
cerlain factor which is a constant for the given dislectric, This el ',m‘
constant is known as relative permitlivity and is represented  g145: Mica 4.8-10
by . The valuas of relativa permittivity of different dielectrics  Parafined paper | 3-7.5
are given in Table 12,1. Plaxiglass 2
Thus, tha Coulomb's force in a madium of relative permittivity = 284
£,is given by Transformer oll 24

E e A ©7) Water (dslted) | 2.
12 Fﬁ T = 78.5
it can e sean In tha table that 5, for air ks 1,0006. This valug s 50 dose to one thal with
negligible error, the Eq. 12,32 gives the electric force in air., 0 e
Example 9.1: Three point charges g,, g and g, ara lying in Sy
the same plane as shown in Fig. 9.2(a). Find the magnitude =) m

and direction of the net fore actingon g,. W"? @
.

YO
Solution: ge @@ A
Force on g, exerted by o, i attragive G ¢ “DuC czpism 800

Fig. 9.2{a)




Chapon(§) Ebetrostatics and Curent Elocticy [
Fom k0l (93 10°N i’ C )40 10" C){80x1
rr (0.15 m)’
Force on g, exerted by g, is also atiractive. Letitbe .. its magnitude s given by
-2 -8 -5
Hq,qz {8x10°Nm’ C 4D =102 CH50=10°C}) ~1250 N
B {0.12 n)

To find the: resultant of F,, and F,,, let us make free- body diagram,
resolving F, intoits rectangular components, we have

F=F,co860°= 1250 N % 0.5 = 625N
Py =F,sin60" = 1250 N = 0.86 = 1075 N
The x-component of resultant F is

GE) s

Fy=

¥ Fig 2.24b)
F, = F,; + F,ycosB0" Do '\"au Knnw?
F,=960MN =625N
F, = 1585 N

y-component of F is:

5N Ammalmulﬂmmmamymmmﬂmmn
which has been given 8 positive charge by & pawer supply,
Elsotrans are removed from the belt, |eaving it positively
charped_ Asimitar comb al the op allows the net positive charge
o spreadiofhe dome.

—— =068 Why do tha hairs it when VAN DE GRAAFF GENERATOR is

fouched?

Therefore, = 34° with with the line joining g: and g
9.2 ELECTRIC FIELD STRENGTH

We have learnt that a charge experiences an F
electrostatic force in the presence of other charges, Let

us consider a positively charged object O. Ifwe place a 0y

small charge +g at point A, it will axpariance an o}
elecirostatic force F due io the charged body O, Thus, an ]

electric field i3 said to exist at point A, Coulomb's law Pt
suggests thal he field gets stronger as the point A gats |+

doserto O as represented in Fig. 9.3, The strength ofthe ™3
ﬁald ata pﬂslhm i% knmm asnts Intansﬂy atma‘tpnlnL

4-:-2]

-




From Eqg, 9.5, the unit of electric intensity is newton per coulomb N C', The direction of E
isthe same asthatof F. The Eq. 9.5 can alzo ba wnitten as:

F=gk ...... SRS — (9.9}

Example 9.2: Two positive poini charges g, = 16.0 uC &
and g, = 4.0 pC are separated by a distance of 3.0 m, as |““’|

shown in Fig.9.4, Find the spot on the line joining the two o @—;—?ﬂh

charges where electric field is zero. & 55 5
‘ =& M
Solution: Fig. 9.4

Between the two charges, the fields contributed by them have opposite directions. and
eleciric field would be zero at a point P, where the magnitude of E, aquals to E,. In Fig.
9.4, letthe distance of P from g. be d. At P, E, = E, which implies that: i

B %@W@

4xs, (3.0-dF
\ s

i the cham&s where magnlmdas of E1 and E, are equal but cﬂracﬂnns are same. In
this case E, and E, do nol cancel al this spol, The positive value corresponds fo the
location shown in the figure and is the zero filed location, hence, o =+1.0m.

Example 9.3: A proton experiences an electrostatic force equal to its weight at a

particular paint in an electric fisld, What is the field intensity at that point?

Mass of proton =1.67 x 107 kg and charge, e =1.6x 10" C

Solution:

Using E= L

q @

Substituting the values,

2 167 #10% kg *x 98 ms”
- 16x107C

Elentric Field Lines @
| g @ i line
F - o ] - d

i e . ared as a visual
mapuaedtaraprese » direction/ahd alrength © - neldamundamarged

=1,0=x10"NC”




Ta introduce electric fisld
lines, we place positive
test charges +q, each of
magnitude g, at different
places but at equal
distances from a positive L'

-4
& 'o-é+
charge +g as shown In | {
the Fig. 9.5. Each test ’b:"- v,
. ,x{}___#_,ﬂ\
Laj

charge will experience a
repulsive  force, as
indicated by arrows In
Fig. 9.5{a). Therefore,
the electric field created Fiﬂl-i
by the charge +g is
directed radially outward,
Figure 9.5(b) shows
Gurrsspﬂndmg field i n. 5

st charg-e is naw nl‘ aﬂraf:tlnn lndmalng the electric field
points inward.

Figures 8.5 and 9,6 represent two dimensional pictures al
the field lines. However, electric field lines emerge from
the charges in three dimensions, and an infinite number of
lines could be drawn,

The electric field knes "map” also provides information
aboul the strangth of the alectric field. As we nolice in
Figs. 8.5 and 9.6 that field ines are closer to each other
near the charges wheare the field i3 strong while they
continuously spread out indicating a continuous
decrease in the field strength.

The number of lines per unit area passing
perpendicularly through it is proportional to the
magnitude of the electric field.
The electric fiald llnaa are curvad §

Fig 08: The sectric: findd inea are
dhirartac radially Imward bowanss &
mgalive poind charge <3

B.T: The eleciric feld lines
dunmduppnﬂmpuint




al-magnitude. It reveals that the lines in the region

ConpNE iy \
betwaan wo like charges seem o repel each ather. The ' " : % '
behaviour of two identical negatively charges will be o
exactly the same, The middle region shows tha prasence = o' ' 2 200
of a zero field spot or neutral zone, W SRS S
Figure 9.8 shows the electric field pattern of two opposite ~ |
charges of equal magnitudes. The field lines start from ' ~;,\:

positive charge and end on a negative chame. The ' b
electric fiald al points such as 1, 2, 3 is the resullant of N

i " ! it Fig 8.8; The abrciric feld lines ara
fields created by the two charges at these points. The e et Fackall It Scskiarcn 4
directions of the resultant intensities is given by the mﬂmpﬁ'ﬂﬂhﬂfﬂﬂ#

tangants drawn to the field ines at these points.

In the regions where the field lines are parallel and

equally spaced, the same number of lines pass per
mit area and therefore, fiEH is uniform on al puints

middle region wher
We are rmw{n a p

Fig.8.2: In ihe central region of &
parallel plate capacilor, the eleclric
) ) fighd lines ere paraliel-and avenly
2. The tangent tu a field Hna at any point gives the spaced, indicating that the elkeclric

; ale . fiskd thare has the same
direction of the electric field at that point. oty magniude
3. Thelines are closerwhere the field is strong and the
lines are farther apart where the field Iz weak.
ol A This i - There i no electric fleld
4, Motwolinescross each other, This is because E has il e,

only one direction at any given point. If the lines
crogs E could have more than one direction.

9.3 ELECTRIC FLUX
When we place an element of area in an electric field,
some of the lines of forca pass through iL(Fig, 9,10}, The
number of the field lines passing through a cerain
element of area is known as electric flux through that
aréa. It is vsually denoted by Greek lefler 4, Fnr
example the elecmc flux b, Mruughh 3 -: -

Fig.8. A0; Electric: flux through &
surface nonmalio E,



lines are drawn such that the number of field lines e S

passing through a unit area held parpendicular to flald

lines &t a point represent the intensity E of the fieldat —* >

that paint. 1 A ¥
Usually, the element of area is represented by a

veclor area A whose magnitude is equal to the — = | »
surface area A of the element and whosea direction is Sk =

along nomal fo the area,

In Fig.9.11 (a}, area A is hald parpandicular to the flald
lines, ihen EAlines pass through it. The flux ¢,, in this
case (s

#' =FEH8  iienieveniii {E-?}

In Figure 2.11 (k), area A is held parallel to field lines
and, as s obvious no lines cross this area, sothat flux

41, Inthis casa is: | o @@@%/
§ =EA=0 {95}%&

Figure 9.11(c) ..- 5

perpendicular paraiel io ¥ d lines but is inclined
amw e field E. In thiz case, we have to
fi action of the area which is perpendicular

to the fiedld lines. The area of this projection
{Fig. 9.11-c) is A cosB. The flux ¢, in this cases is:

b, =EACDSH .......ovvererar A9.9)
A
The electric flux ¢, through a patch of flat surface in . m
terms of E and A Is then given by Fig.9.11(c)
g, =EAcosB s EA........... (9,10}

where 8 s the angle between the fiekd ines and the
normal to the area. Electric flux being a scalar product,
is a scalar gquantity. Its SlunitisNm® G,

Electric Flux Through a Surface
Enclosing a Charge

Let us calculate the electnc flux through a dosad
surface, in shapam‘a sphereofradius r duetna pnlnl

: auld ﬂmugh' llwiurfmd‘lnliphnl
dua 10 & ehargs g at il et i g,



sphere is divided into n small patches with areas of magnitudes A4, , A4, A4, L,
AA_ respectively as shawn in Fig. 9.12. The direction of each vector area is along
perpendicular drawn outward o the cormesponding patch. The electric intensities at the
contres of vactorareas AR, Ay, MG A Are Ej B By o, B respectivedy.

According to Eq, 9.10, the total flux passing through the cosed surfaca is:

O 8E M FEAMFE A St B M i {9.11}
The direction of electricintensity and vector araa is the same al each pateh. Moraaver,
=|E= = = | |= 1 q
e AN S

Since E is parallel to vector area A, therafore, 8 = 0°
so for each E.AA = EAcosi
=EA cnal”® = EA {'.' cosl® = 1}

Now Imagine that a dosed surface Sis enclosing this — gio g 45

sphere. It can be seen in Fig 8.13 that the flux through

the clozed surface S is the zame as that through the sphere. 5o, we can conclude that
total fiux through a closed surface does not depend upon the shape or geometry of the
clozed surface. W depends upen the medium and the charge endosad,

9.4 GAUSS'S LAW
Suppose point charges q. 9. Qu-.-..- .-, @ra arbitrarily
distributed within an arbitrarily shaped closed surface, as shown

in Fig. 9.14, Since ¢.= q't,. s0 the electnc flux passing through
the dosed surface Is!



Clupl.-r@' El’.Hl.'ruSlnu-u and Curreﬂl Elﬂlnb:'_lll'r e

L T TR +q.. is the lotal charge enclosed by closed surface.
Equation9.14 s mthemalmalem‘eamnncfﬁwsa s law which can be stated as:

The tetal electric flux through any closed surface is 1/, times the total charge
enclosed init.

Applications of Gauss's Law
Gauss's law can be applied to calculate the electric intensity due to differant charga
configurations. In all such cases, an imaginary dosed suface is considered which
passas through the point at which the electric intensity is to be evaluated. This closed
surfaca is known as Gaussian surface. Its chaice is such that the fiux through it can ba
easily evaluated.

Az an example, let us find the electrdc field at any point cutside a sphere on which a
charge gis placed.

The Flek:l ofa Charga:l Cond m:ting Sphnm

U.L- ’ ‘ 4 I;hai fhe ehdm: field is
epe ,nnlynnthedﬁtﬂnner l’mm the centre

Tha araa nl the Gaussian sphar& is 4nr’, and
because E is uniform over the sphere, the
total flux through the whaole surface will be:

Elactric flux fh, =EA=Exdnrt
By Gauss's law,
q
Total flux "
Therefore E xdzr’= %
8 1
E =-—
ar E dgr?
1 q
E 2 i
oF g dzg,

This shows that the field at any point outgide the sphere is the same as thowgh th
charge were concentrated atits cantre, Just outside of the
Emdei i 9.15 S:
i = : e r iz the direction of E.
(\\ tr




Figure 9,16 shows two opposilely charged paraliel Y I [ I ey
plated which produce a uniform electric fiald,

= n

Let us consider a positive charga g which ks allowed 1o
maove in this uniform electric field. The positive charge
will move from plate B toAand will gain K.E. If it is o be
moved from Ao B, an axternal fores 15 naaded to makea
the charge move against the electric field and will gain
PE. Let us impose a condition that as the charge is
moved from A to B, it Is moved keeping electrostatic * L1 _—1__ 1 v
equilibrium, i.e.. it moves with uniform velocify, This  Fha: 898

condition could be achieved by applying & force F equal and opposite to gE at every
point along its path. The work done by the external force against the elect I
uncreavsasala-:tncalpntantlalanargymﬂwwargeﬂm:smvacl

%

9

ﬁ.\ AtanhliE

“ ‘ dr bemmtwupmntsﬁand B in an electric fiekd is defined as the wnrir.
done In carrying a unil positive charge from A 1o B while keeping the charge in

equilibrium, i.e.,
g

dV-VE--V.‘- g -T ....... -{2.17)

- . ' -

where V, and V, are defined as electric polentials at T §" = 7 T~ =E
points A and B respectively. Electric potential energy ¢ —"11F i
difference and electric potential diference between .0 L L 0 0|

the paints Aand B are relatad as: .A.n. EKGG .ra.corda tha ‘w:ltagn

AUSGAV .. ceeesreessssieniesns o [8,18)  DEIWEEA points on human skin
! aenerated by electionl process in the
Thus, the potential difference betweean the two points  heart. This ECG & made in running

R . poetion prowding hhnmhm about
can be :Ieﬁn[sd a5 the difference of the potential b Friads ke i
energy par unit ch=arga

- |
S-S Sy SER S EE R ==




cmnm@ Etﬂumm}u anil Cl.lrrl.-ﬂl Elrtuﬁuw -

al 1z, a potantial diferance of 1 volt exists between twa polnts if work done in maving a
1 coulomb positive charge from one point to the other, keeping eguilibrium, s one jouls,

In order to give a concept of electric potential at a point in an |
electric field, we must have a referance to which we assign

zen electric potential, This point is usually taken at infinity. ruhbnl: :m-hm w“-i.',';:
Thus, in Eq. 9.17, if we take point A to be at infinity and choose  handling slectric appliances?

V=0, the electric potential at B will be |, = l':- - Generally,

Wi (9203
q
which states that the elactric potential at any point in an electnc fiedd is equal to the work
done in bringing a unit positive charge from infinity to that point keeping 11 in equilibrium,
30, the potential 8t a point is always relative to potential at infinity. Both pﬂétanﬂal and
potential differences are scalar quantities because both Wand g are scalars

Electric Field as Potential Gradient al

In this seclion, we wII asbablls e y and potential
differanca. Lat us co h. The electric field between
the two charged p & Tha ;m:tentnal difference betwean A
and B is given

‘l‘ ECG [Normal alpha rhythm)

where W.. = Fd = -gEd (the negative sign  paenia
is neaded because F musl be applled Differance
opposite to gE 50 as to keep it in
equilibrium ). With this, Eq. 9.21 becomes:

V-V, ="’TE“=—Ed

or E =—&§ﬁ ok i 9:22) I ECG {Abnommal)

I the plates A and B are separated by i
infinitesimally small distance Ad, the piterence
Efq. 9.22 lamadified as:

(8.23)




the ela::hc mlanﬁrty is equal to the negalive of lha gradient of potential, The negatlw
sign indicates that the direction of Eis along the decreasing potential,

The unit of electric intensity from Eq.9.23 is voltimetre (V m™) which is equalto N € as
given below:

volt =1 Joulsdfcoulomb =1 newton=metre _ . newtan
metre metre melre x coulomb  coulomb
Example 9.4: Two parallel metal plates are 1.0 cm aparl. These are connected to a
battery of 12 volis. Find the magnitude of electric field intensity between them,
Solution:

Here AV=12V, Ad=1.0cm=1x10"m,E=7?

Usingtheequation g 3Y
M

N O
N\@ ®W@

1 =1NC"

‘ lel metal plates are connected to a 12 volt battery.
- el fro .ﬂmnsgﬂtlv& plate. Dalnfmanamswbatyasltmamasﬂm

The electron is repelled by the negalive plate and atiracted by the positive plate. It will
be accelerated towards positive plate. Therefore, its PE will be lost that will be
convarted into its K.E.

Lossof PE=Gainin ICE
AV =8 =%= mv?
Submitting the values,
12V xifn m‘“c-zum w107 kg x P
v =42 x10%m &
ar v =24x10°ms’
9.6 ELECTRON VOLT

We know that when a particle of charnge g
al potential V; keeping elactrosla

%@@@

ial enargy AL of




appears (n the form of change in K.E.

Suppose charge carmied by the particle isg=e=16x 107'C,
Thus, inthis casa, the enargy acquirad by the charge will ba:
AK E.=gaV =eAV =(1.8x107"C)(AV)

Moreower, assume that AV=1 vaolt, hance,
AKE= gaV =(1.8=107"C)= (1volt)
AKE={18x10"")x (CxV)=16x107"J

The amount of energy equal to 1.6 x 107" is called one electron-volt 2nd is denoted by
1 eV, It is defined as "the amount of energy acquired or lost by an electron as it traverses
apotential difference of one valt”, Thus,

T U T T N e e ..[9.25)

= {Eaxs.u v}-s.n 8V
=6.0x1.6x10"J=96x10"J

9.7 MOTION OF CHARGED PARTICLES IN A UNIFORM
ELECTRIC FIELD

Two oppositely charged parallel metal plates produce uniform electric field between
them. The direclion of electric field is from positive to negative plate. A positive charge +g
placad in the field will move in the diraction of electric field whereas a negative charge -g
will move opposite to the electric fiekd. The magnitude of electric force acting on a charge
qis represented in Fig9.17, glven by

ESQ0E Gilosaidninaean)
whare E is the electric Intensity of the uniform
electric field, If V is the polential difference
between the plates and d is the separation of
plates, then

" -
B o e s o 27
o (8.27)

consider an alactrc@ i F= s
the positive plate d “



V=20V d=20cm=2 10" m, the magnitude of E willba

o 20V e
Emcm ' =1D00 N C'
d 2= 10% m
The acceleration for the electron will be given by

F=ma
fm m

Thecharge onaneleclron g =e= 1.6x10™ C and mass of electron m= 9.1 x 107" kg. So,

_ 160 CxI000NC! i o
a= 91210 kg = 1.76=10"ms

If the alactron is released from the negative plate, the valocity gained by it whea it
reaches positive plate can be found by the third eguation of mots @@
2a8 =v? =y} @o

Here S=d=2x10"m, &k 5( @@
Putting the values in ‘ OVEE ‘ﬁ‘

“ VM E" K2 x 107" m=v
W%\{Nﬁ—@ﬂ#m*s*
or v=2.65x10"ms"

9.8 PATH OF A CHARGED PARTICLE

The pathof a charged parlicle is determined by the
alectric field in the region. The path is typically
straight if the field is uniform and the charged &-{--1--{._ [ |
particle is moving along the field. However, if a i i
charged parlicle enters perpendicularly to the i A
uniform field between the oppositely charged | —t—dt ooty
parallel plates with a certain velocity as shown in
Fig. 918, it will not go straight. Its path will be
parabaolic just like 8 projectile thrown horzontally
in the gravitational field. The horizontal
component of the velocity of the charged particle
remains constant whereas verfical component is
accalarated due o the elaciric forca.




Chuapus @' Electrosnatios aned Cuirrent Elecirbcity e

O other hand, a negatively charged particle is attracted towards the positively
charged plate and axperiences deflaction in that direction.

9.9 SHIELDING FROM EXTERNAL ELECTRIC

An English scientist Michael Faraday invented a structure in 1838, called Faraday cage
or Faraday shigld. Faraday cage is an enclosure that blocks the external elactric fialds in
conductive materials, It acts like a hollow conductor where devices or objects can be put
for protection from electrical external fields. Any electrical shock received by the cage

runs through its auter surface without causing any harm. The elactric field inside the
hollow conducior remains zero,

To understand the working of Faraday cage, suppose thal a piece of conductor (say
copper) carfes 8 numbar of free slactrons, Each alectron will experence a forca of
repulsion because of the electnic field of its neighbouring electrons. As a consequence,
all tha electrans rush 1o the surface of the mnduu:lnr Once staﬂ: equilibrus ks

Thmndmhrshlnldu:.nydurgnvﬂhhﬂ %
from electric fields outside the conductor,

-
+
To eliminate the inlerference of external |o
e
-+

| ™

fislds, circuits are often anclosad within metal |
boxes that provide shielding from such fislds.

Figure 9.19 shows another aspect of how * ]
conductors alter the eleciric field linas
created by external charges, Fig. .19

The lines are alterad bacausea the electric fiald just outside the surface of a conductor |s
perpendicular to the surface at equilibrium under elecirostatic conditions, If the field
were not perpendicular, there would be a component of the field parallel to the surface.
Since ﬂue free electrons on the surface of the wﬁum can move, ﬂ‘:e:.r wnl.uld do s0
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plactrens whereas insulators do not contain free electron, so the insulators can not be
used to construct Faraday cage.

Agood example of Faraday cage in our daily life is that of cars, The chassis and bodies
of cars prolect people inside due to its metal framed structure during the thunderstorms.
The electrical charge travels over the metal surface of the vehicle into the ground and
prevent the passangers inside.

A metal body of the microwave oven acls as a Faraday cage. Thus, they prevent the
microwaves in an aven from expanding into the environment. Matal frame of an airplane
also acts as a Faraday cage. When lightning strikes an airplane, electricity is distributed
along its melal frame surface that keeps passage is and all devices inside the alrplane
safe,

9.10 ELEBTRIG;EURHEHT

within the conductor. The free electrons expe
ﬂ'uaystarl mwlng As afﬂaa plecinohs
1 &

the result that the electrons acquire an auamgevdmtyv called
ocity in the direction of —=E. The drift velocity is of the order of
10%m &". This drift velocily of alectrons forms the electric current. The slow drift velocity
does not meaan that it takes long time for an eleciric current to set up. We know that as
&00n as we switch ON a bulb, it lights up immiedistehy.

The reason is that on tuming the switch ON, all the free electrons in the circuit start
drifling. They repel the neighbouring ones and the disturbance propagates along the
wira almaost instantaneously. That is why, the aleciric current is set up very rapldly.

If a net charge Q passes through any cross-section of 8 conductor in time £, the current /
flowing through itis:!

V. % i (9.2B)

The Sl unit of current is ampera (&) and it is the current due 1o flow of one coulomb
charge per second, |f the charges move around a circull in the same diraction at all
times, the cument i 5a8id to be direct current | 0.C), For example, batteries produce direct
current. If the charges move first one way and then the opposite way, changing dire

in regular intervals, the current is said to be allernating mrranl(& sthy the ﬁ%ﬁ
generators produce A.C. The electricity supplied to ou e by

powear station s A.C. O
Conventional 8 :
As wa have discussed abobe, the ele rrent is due to flow of electrons thiough the




Elupm@ Ebesctrosnathos snil Curr-.-mEl-.-mh‘_iw-
matalwires, but early scientists believed that electric current was due to flow of positive
charges. The scentists have kept the convention and take the direction of current flow to
be the direction in which pasitive charges would move. We call it conventional current.
Conventional current s hypothetical flow of positive charges that would have the
same effect in the circuit as the flow of negative charges that actually does occur.
In Fig. 820 negative electrons arrive at
the positiva terminal of the battery. The Device
same effect would have been achieved if
an equivalant amount of positive charge
has left the positive terminal. Therefore, Comvantional Electran
we can say that the conventional current Vi -
flows from positive terminal towards the -
negative terminal. A conventional current o bs

is consistent with our earier use of a : : m

positive test charge for defining elactric g@
sy from & petitof higher

fields and potantial, The dirsction of c::m

R -

potential towards a point oflo al gt s e NS rminal towards the
nagative terminal. ' apetth et (Al Ay means the Conventional currentl.
9.11 CU ‘ [HROUGH A CONDUCTOR

egment of the current carrying = L
conductor having its langth L and area of [~
cross-section A, The volume of the segment e {_@4—6 f
is AL, as reprasented In Fig. 8.21. Let nba the I:_{i_@ ::g —Q «—0O
number of charge carries per unit volume, |\ « g <@ «—0
then total number of charge camies in the ‘
segment at any time are ndL_ Ifthe charge on Pl %21 Nagative charge camers
acharge carrier is g, the total change prasent

inside the segment at any instant is:

W

= LG e e (9.2 @ Fiow of current s dirsctly proporional
Q= nAlg ..... (9.29) Miflis e A ariic
Usually, the charge carriers in @ conductor are 4 Hqufhmlsdudl;rmpmhndh
free elactrons which have negalive charge, the tamperature difference,
! & Flow of fiuid is directly propodional fo
Suppose that charge carners move towards left the pressura dilfsiencs;

face of the segment whan a potential difference is
applied across the conducior, Then electric

towards right face. Assuming that drift e, 2 . frresred
£ ks o i bion and hamperad by



L

fas

By definition of the current ¥
5 ?
Putling the value of Q and ¢ in the above equation, we have
(=20
v
or 1= RAVE i e 19,300

Example 9.6: A copper wire has a cross-sectional area of 2 x 107 m’ and carries a
current of 3 A, if the number of elections per unit volume is 8.5 x 10" m”, l;:ﬂlr.uhiﬁ the
drift velocity of the electrons in the wire. Charge on an electronis 1.6 x 11]“‘

Solution: a‘
=3 A, Aszxm"m‘.on- @W C. v=?
L.'lslnga-;pahun
m:ﬂﬂ"]wu Bx10™)

u' = 1.1x10'ms’

912 OHM'S LAW
When a potential difference VVis apphed across the ends of a conductor, a current [ starts
flowing through it The Ohm's law stales that:

The current flowing through a conductor is directly proportional
to the potential difference applied across the conductor,
provided there is nocharge inthe physical state of the conductor.

Mathamatically,
Vool
or e = [9:31)

where F is a constant known as resistance of the conducior, The Sl unit of resistance is
ohm denoted by the Greek capital letter omega (1), and is defined as:

Thmslmwnfamductwh1uhnﬂacmuf \
ﬂimu_gh‘ltvmlhipmulldtﬁl : alt is t 8 s,
‘ - "
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it has been expern
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R-::A

or Repl e (832)

A
whare p (rho) is a constant of proportionality known as rasistivity or specific resistance of
the matenzl| of the wire. t may be noted that resistance i the charactenstic of a
parficular wire whizreas the resistivity is the property of the material of which the wire is
made. From Eq. 9.32 we have

The above equation gives the definition of resistivity as the resistance of a metre cube
of amaterial, The Sl unit of resistivity is chm-metra {2 m) @
i aterials.

Conductance is another guantity used to des
In fact, conductance is the reciprocs

W17

sigma ) is the reciprocal of resistivity (p). i.e.

The Slunit of conductivity is ohm™'m™ or mho m™, Resislivity of varous materials is given
in Table 9.2. It may be noted from Table 9.2 that silver and copper are two best
conduciors. That is the reazon that mosi electric wires are made

The resistivity of & substance depends upon the
temperature also. It can be explained by recalling | SUSSEncs |
that the resistance offered by a conductor to the TEZxie |
flow of electric curent is due to collisions, which | Sepper 163« 10
the free electrons encounter with atoms of the | Sod 227 %107 | O
lattice, As the temperature of the conductor ises, | Aluminam [ 2055« 102
the amplitude of vibration of the atoms in the |[Tungsten |500x10° |
lattice increases and hance, the probability of | kon 1.00x 10
their collision with free elecirons albo increases. | Platinum 11.00 x 10"
One may say that the atoms then offer a bigger [ Constanon | 49.00 x 107 |
target, that is the collision cross-section of the [Mersury | 84.00% 1078
atoms increases with temperature. This makes "W\f'%ﬁ@
the collisions between free electrong and Bt Eg_ﬁﬂ-}
atoms in the lattice more frequent an B %_mﬁ
resistance ofthe i Blriﬁﬁl'l, 2300




s merrtally' the change in resistance of 8 metallic conductor with temperature is
found to be nearly linear over a considerable range of temperature above and below 0°C
{Fig.8.22}, Ovar such arange the fractional change in resistance per kelvin is known as

the temperature coefficient (o) of resistance, i.e. -
-~
Rl = Rn
= —t e s 10, 38) 3
Rt T
whare R, and R, are resistances al lemperatures e |
0°C and 1"C respectively. As resistivity p dependsupon = §
the temperature, Eq. 9.32 gives al
ot e
R‘ﬁAm Rd-l;ao_‘q ...... 19.36]
Substituting the values of R and R,inEq. 9.36, wehave  — 1 " n(.é']m__,’m i
= ?ipﬁ EE
nt

wheare p, is the resistivity of a conductorat 0 ®
theremstwty at t"C. Values of temperafOre coef

of resistance of some suhs‘[a DEk /afe g
Table 9.2. There a 9~‘ s lbats

silicon, etc. whose ‘
“'I ‘l"'- ":- ¢ 6 =

peplons can easily check the
fiea of a concrete bridge
slike gen made with carbon fibers. The
ces with increase  fbers conduct alaciricity. i
senzors show (hal elecincal
resistance is increasing over
fima the fibers are saparafing
because of cracks,

Example 9.7: 0.75 A current fiows through an iron wire when a battery of 1.5 V is
connected across s ends. The length of the wire ks 5.0 m and its cross-sectional area ks
25x10°m’, Computa the rasistivity of iron.

Solution:
The resistance R of the wire can be calculated by Eq, 9.31 18,
V. 1.5V :
ﬁ'nT=ﬂ—ﬁ=2ﬂVA =200

The resistivity o of iron of which the wire is made of is given by
A 200x25%10" m* y
p= HI 50m =0=10" 0m

Example 9.8: Aplatinum wire has resistance of 10 Q at 0°C and 20 0 at 123°C., Find
the value of tamperatura mafﬂdamdrashstmnfphﬂnum

Solution: R,=100,R,=200Q, r=4ﬁar=: ‘ @@W@
Temmwremaﬂidanlmraslsia caly nﬂ

=518=107"K"

il

1= T93 K 1,93#.'.



Consider a circult consisting of a battery of amf = connacted in series with a resistanca R
{Fig. 8.23). Asteady current | fiows through the circuit and a steady potential difference V
axizts batwean the terminals A and B of the rezistor R. Terminal A, connectad to the
positive pole of the battery, is at a higher potential than the terminal B, In this circuit the
battery is continuously lfting charge uphill through the potential difference V. Using the
meaning of polential diferance the work done in moving a charge © up through lhea
potential difference Vis given by | —t

Work done = W=V Q...................(9.38) 0 J
This is the energy supplied by the battery.
The rate at which the battery is supplying electrical H

energy is the pawer output or electrical power of the L v &
battery. Using the definition of power, we have .

Electrical power = v E"T!“Wm @@@w@ i@@

#
s

| +

Since 8
o ‘ Fig. 8.23; Thmvmufaham
The above &4 3 R0 §isp B as appears as the powar déssipatad

{g 30) ir By resistanca B,

En 9.39 is a general ralation for power delivered from & source of current |
operating on a voltage V. In the circuit shown in Fig. 9.23 the power supplied by the
battery is expended or dissipated in the resistor R The principle of conservation of
energy tells us that the power dissipated in the resistor is also given by Eq. 5,39,

Power dissipated A=V {
Alternative equation for calculating power can be found by substituting V=R, = WRin
turm In Eq. 9.39.

P=Vxi=IRxI=IR

or P=Vxi=VxV/R=V"/R

Thus, we have three equations for calculating the power dissipated in a resistor.
P=Vxl, P=I'R,

P=VYR ... e {9.40)




inuously supplies energy which |3 dissipated in the resistance of the circuit.
Suppose when a steady currant has been astablished in the drcult, a charge O passes
through any cross-saction of the circuitin time ¢, During the course of mﬂt!{:lrl. ﬂ'ua charge

enters the cell at its low potential end and leaves at its
high potential end. The source must supply energy W io E

the positive charge to compel it lo go to the point of high = B
potential. The emf E of the source is defined as the
enargy supplied lounit charge by the call,

_w pe Fig. 8.24; Electromative forge
LE-. E—Eq.«.-..."-..-.-...{9.41} dﬂml 1

it may be noted that electromotive force is not & force and we do not measure it in
nerwions, The unitl of emif is joule/coulomb which s voll (V). The energy supplied by the
cell 1o the charge carriers ks derved from the conversion of chamical energy into
elecirical energy inside the cell.

Like other companants in a circull, a cell also offers some

inhmal ms!slam::a ras shown in Fig.9.26. Amlmelar of
infinite resistance measures the potential differenca
across the external resistance R or the potential
differance V' across the terminals of the cell. The currant §
flowing through the circuit is given by
e E
R+r Fig. 9.26: The ferminal patential
of E=IR+Jr.....ccc.c.i....(B42)  diffarence Vol & callls E-ir

Here IR = V is the terminal
potential difference of the call in
the presence of current /|, When I= ]'}
the switch S is open, no current
passas through the resistance.
In this case, the voltmater reads
the emf E as terminal voltage.
Thus, terminal voltage in the
presence of the mrrenl [switch

D You Know?
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interpret the Eq. 9.42 on energy considerations. The left side of this equafion s
the emf E of the cell which is equal to energy galned by unit charge as il passes through
the cell from its negative to positive terminal. The right side of the equation gives an
account of the utilization of this. energy as the current passes the circuit. It states that, as
aunit charge passes through the circuil, a part of this anargy equal to iris dissipated into
the cell and the rest of the energy is dissipated into the external resistance R, s given
by potential drop JR. Thus, the amf glves the energy supplied to unlt charge by the cell
and the potential drop across the various slements account for the dissipation of this
energy into ofher forms as the unit charge passes through these elements.

The emf is the “causa” and potential differanca is its “effect”, The emf is always presant
even when no current is drawn through the battery or the cell, but the potential difference
across the conductor is zere when no current fiows through it

Example 9.9: The potential difference between the terminals of a tnat‘tEry in open
circuit is 2.2 V. When it is connected across a resistance of 5.0 Q, the potential @ﬁ

1.8V, Caleulate the current and the internal resistance of the ba
Solution: wa

E=22V, (51
We have fo calcu
Sing
WWM - un -036A
Internal resistance rcan be mlm.ﬂaiadhy using
E=V+Ir
22V=18V+0.36AXr
or r=1av A

9.16 KIRCHHOFF'S RULES

Kirchhoff's rules are two fundamental principles In circult analysis that help 1o determing
the current and vollage in electrical circuits, They are particularly ussful for analysing
complex circuits that cannot be simplified by Ohm's law and series or parallel
combinations.

Kirchhoff's First Rule
it atatas that the sum of all the currants meeting ata pointinthe circult iz zero.
i.8., 3T | A (9.43}

it iz & comvention that a current fl
is taken as positive and that flo
is taken as negativé.)

hraa.




Coosider a situation where four wires meet af a point A
{Flg.8.27), The currents flowing into the point Aare !, and |,

and currents flowing away from the pointare |, and [,

According 1o the convention, currents {, and [, are

positive and cuments [, and /, are negative. Applying
Eg. 9.43, we have

b |'i+ t-Ii}-I- [‘L}=0
or L FL = s [9.44)

‘ P ‘ in Flg 9.27: According to Kirchhoff's
Using Eq.8.44, Kirchholf's first nule can be stated in. SRR

otherwords as
The sum of all the currents flowing ; :
towards a point is equal to the sum of all m'ﬁﬂ'ﬁhw*
the currents flowing away from the peint. @
Kirchhoffs first rule which is also known as Hl ‘ la
of conservation of charge. If ; pumt the total
charge flowing lowards the point fowdreg away fromit.

‘ V nQ lhmugh the circuilt dapands on the cal ha-.rmg the graater am[ Supposa E, s
greater than E., so the current flows in counter clockwise direction. We know that a
steady current is aquivalent to a continuous flow of positive charges through the: cincuit.
We also know that a voltage change or potential difference is equal to the work done ona
unit positive charge or energy gained or lost by it in moving from ane point fo the other.
Thus, when a positive charge Q due o the current | in the dosad circuil (Fig.9.28),
passes through the cell E, from low (-va) to high potential (+ve), it gains energy because
work is done on it. Using Eq. .41 the energy gain is E,Q. When the current passes
through the cell E, , itlosas energy equal o - E,Q because here the charge passes from
high to low potential, In going through the resistor R, the charge Q' loses energy equal to
—IR Qwhere IR, iz potential difference across R, The minus sign shows that the charge
is passing fram high o low patential. Similady, the loss o E

of energy while passing through the resistor R, is -IR, Q. : I'

Finally, the charge reaches the negative terminal of the
cell E,, from where we started. According io the law of
conservation of energy, the total change in energy of our

systam is zaro. Therefore, we can wﬂt&o @ <
aTe| e e = ] o . \ 5 é \ U : s :
B A Top \:3___'{9_45} Fig. §.28: According to Kirchhoffs

e E 1R —E—Ir,=0




irchhoff's second rule and it states that:
The algebraic sum of potential changes in a closed circuit Is zero.

We hawve seen thal this rule is simply a particular way of stating the law of conservation of
energy In electrical problems.

Befora applying this rule for the analysis
of complex network, it is worthwhile to
thoroughly understand the rules for
finding the potential changes.

{i) If a source of emf iz traversed from
pasitive lo negative terminal, the
potential change is positive. It is
nagalive in the opposite direction.

(ii) if a resistor is traversed in the direction of curent, the change in potential is positive.,
Itis negative in the opposite direction. W

Example 9.10: Calculate the curre n- in
resistances of the circuit shown indFig

f
A=100 H,-raun R,v15ﬂ.
E =40V E =60V, A =50V

Flg. 8.29

Aftar salecting the loops, suppose a currant | |5 flowang in the first Inop and £, in tha
second koop, all flowing in the same sense. These currents are called loop currenis. The
actual currents will be calculated with their help. It should be noted that the sense of the
current flowing in all loops should essentially be the same, It may be clockwise or
anficlockwize, Here we have assumed it fo be dockwisa.

We now apply Kirchhof's second rule to oblain the equations reguired 1o calculate the
cuments through the resistances. VWe first consider the loop aboda, Starfing at point & we
follow the loop clockwise. The voltage change while crossing the battery E, iz —E,
because the current flows through it from positive to negative. The valtage change
across R, is -1,R,. The resistance R, is common to both the loops [, and 1. , therefore, the
currents /, and {, simultaneously flow through it. The diractions of curents /, and |, as
flowing through R, are opposite, so we have to decide matwhich nf thesa currarrhs is lo

i “ gond Iunp Hmc:urrnrill
ing this convention the currant
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flowing through R, & (], - 1) and the voltage change across is -1, - [JR. The voliage
change across the batery £, is £, Thus, the Kirchhoff's second rule as applied o the
loop aboda gives

—E=LRi—1l- )R, +E,=D

Subsfitufing the values, we have
— 40NV - x 100 (L-1)x300+60V =0

20V=100x[l+3( =1} =0
or 41 -3lL=2VO =2A ...
Simitarly. applying Kirchhoff's second rule to the loop ebcfe, we have

—-E—-(L-1LIR,- R, +E,=0

Substituting the values

_60V—{l,—1)x 3001, x160+50V =0 m
10V =150 x[), + 2{,~1] W@ @@
O

®1,— iy
Solving Eq.ii} and i) for £
r=066Aand!l,=0224
ing the ‘! 8. currents 1, and |, the actual current flowing through each
aAncEol e circuit can ba determined, Fig. 9.28 shows that /, and /, are the actual
refts through the resistances R, and R, The actual cument through R, is the
difference of [, and /. and its direction ks along the larger curmrant . Thus,

The current through R, =1, = 2/3A=0.68 Aflowing in the direction of /. 1.e., from a tod.

The current through R, =/ = [, = 2/3A- 2/9 A= (.44 A flowing in the direction of /, i.e., from
clob,

The curment through R, =1, = 2/9 A = 0.22 A flowing in the direction of §, |.e., fromfioe.

Procedures of Solution of Circuit Problems

After solving the above problem, we are in a position to apply the same procedure to
analyse other direct current complax networks. While using Kirchnoff's rules in other
problems, itis worthwhile to follow the approach given below;

(i) Dwraw the circuitdiagram.

{ii}) The choice of lnops should be such that each resistance is included at least once in

the selected loops. m
W the 8@@5 same

{m}) Assume a loop current in each loop. Al

sense. R may be either cloc
(i) Write the loop egua



lialand it is negative if raversed from high to low potential.
{v) Solve these equalions forthe unknown quantities.

917 WHEATSTONE BRIDGE

It is an eleciric crcuit. The YWheatstone bridge
circuit shown in Fig. 9.30 consists of four
resistances R, R, R, and R, connected in such
away 30 as to form a mesh ABCDA, A battery is
connected between points A and C, A sensitive
galvanometer of resistance R, is connected
between points B and D, If the switch & is
cdosed, a current will flow through the
galvanomeater. We have to determine the
condition under which no current flows through
the galvanometer even after the switch is
closed. For this purpose, we analyse this circuit
using Kirchhoff's second rule. We conéitle

lnops  ABDA and EGDB Jgls Q

Similarly, by applying the Kirchhoff's second rule to loop BCOB, we have
=L Ry= IR == W R, = 0o (34T

The current flowing thraugh the galvanometer will be zera if, |, — [.=0ar [, = [, With this
condition Eq. 9.46 and Eq. 9.47 reduce to:

O
and Ty s 2 1
Dividing Eq. 9.48 by Eq. 9.4, we have
Ry _ R o d9.50) - Point to ponder]
4R, LR, L Why (e & three pin plug used

insome alectricappliances?
As [, = I, , therefore,

E‘ = Bl LS @m
R, R, O@
Thus, whenever the cnndllhun atisfis nt flows through the
galvanometer and #.3 vargely when the galvanometer in the

RO Eq 9.51 s satisfied. Ifwe connect three



resistances R, R, and R, of known adjustable values and & fourth resistance R, of
unknown value and the resistances |, K, and R, are so adjusted that the galvanometer
shows no deflaction, then from the known resistances R, B, and R, , the unknown
resistanca R, can be determined by using Eq. 5.49.

9.18 POTENTIOMETER

A polentiometar is mainly used to comparea potential differences and to find the value of
anunknown resistance. Itworks on the principle of Whealtstone Bridge.

Working of Potentiometer

Potential difierence is usually measured by an insirument called a volimeter. The
voltmeter is connected across the two peoints in a circuit between which potential
differenca is o be measured, |1is necessary that the resistance of the voltmeter be large

compared to the circuit resistance across which the voltmeter is connected, Otherwise,
an apprm:lablﬂ currﬁnt wll ﬁ::w mmu-gh the unlrnamr whmh will altar tha cn@m

mnmm
A potentiometer consists of a reskstor R in the form of a wire on which a terminal C can
slide (Fig. 9,31-a), The resistance between A and C can be varied from 0 fo R as the
sliding contact C is moved from A to B, If
a battery of emf E is connected across R
{Fig. 9.31-b) the current flowing through it is
| = E/R. IFwe represent the resistance between
Aand C by r, the potantial drop betwaan thase
paoints will be r i = r EAR, Thus, as C is moved
from A fo B, r varies from 0 to R and the
potential drop between A and C changes from
OioE.

Such an arrangement also known as potanlial
divider can be used to measure the unknown
amf of a source h-_.' sing the cir-cuit shown in

e




, 15 conneciad betwean A and the sliding
contact T through a galvanometer G, It should be
noted that the positive terminal of £, and that of the
potential divider are connected Lo tha same paint A,
If, in the loop AGCA, the point G and the negative
terminal of E, are at the same potential, than the
two lerminals of the galvanometer will be at the
same potential and no current will flow through the
galvanomaetar, Therefore, to measure the potantial
E, the paosition of C is so adjusted that the
galvanometer shows no deflection. Under this Fig. .32

condition, the emf E,, of the cell is equal to the potential difference between Aand C
whozse value ERR i3 known. In case of a wire of uniform cross-section, the resistance is
proportional to the length of the wira. Therefore, the unknown emf is also given by

w!‘lemt-_ismgtntallengmufihe yire AR *l 3t dength fro ko C, after C has been
= b5 e Npolenbial thal can be oblained belween A
woeed this value, Dtharw:ﬂe ﬂ'le null

The mathod for measuring the amf{ of a cell as describad abave can ba usad to compara
the emfs E, and E, of two cells. The balancing kengths [, and ¢, are found separately for
the two calls. Then,
P ‘
E,-EI1 and E, -E—f
Dividing these two equations, we have

So, theratiooftheemfsis equaliurahuuftl'le balancing lengths.

919 USE OF A GALVANOMETER

Agalvanometer is an instrument for dalacting a current, We are nol going to discuss its
internal structure and how does it work, We focus unlyan its uses, Itls oﬁen usedin

JI'M:IUES Edjl.ﬁﬂl'lg the circuit wnbil II'IE !.=|‘|v- =4i=
reading. This indicates that certaimme

the electric potentials th-e
gahlvanometer has iz



comeinta play. Tha reason is that, in this condition no current s passing through it. The
null method 15 widely used in bridge circuits such as Whealtstone and potentiometer
sefups.

As we have studied in the previous section, the null method is used to measure an
unknown resistance in the Wheatstone bridge circuits. The galvanometer is connected
batwaean the mid-paints of opposite sides. Tha variabla resistance s adjusted untd the
galvanometer shows no deflection. Atthis point, the bridge is balanced and the unknown
resistance can be calkculated using the ratio of the known resistances.

In & potentiometer, null method is used fo measure an unknown valtage by companson
with & known reference voltage applied across the resistance wire of the patentiometer,
Agalvanometer and a jockey are usad lo make contact along the wire. Al null paint, the
potential difference between the jockey and the end of the wire equals the unknown
valtage. The position of the jockey gives the measure of the unknown voltage.

measurement resulting in 3 P i“'v
2. Galvanometers-a I@ i % \ca 1s 5]
direct and clear condition of balance making it easier to

of 107" ampere.

Athermistor is a heat sensitve resistor, Most
thermistors have negative temperature
coefficient of resistance, i.e., the resistance
of such thermistors decreasas when thair
tempearature is increasad, Themmistors with
positive temperature coefficient are also
avallable.

In the thermistors, resistance decreases ag
temperalure increases. Thizs 12 bacause
increasing temperafure provides more
energy to the charge camers (electrons or
holes), enabling tham to move more freely
and thus reducing resistance.

Thermistors are made by heating under high

pressureg semiconductor ceramic da 3 ’
= o .
‘ Fig. 8.34: Types of thermistors

Fig. 8.33- Thormistors sysmbols

from mixtures of metallic oxid

manganasa, n 2 & oball, coppe i’
i e

5 T
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a1 baked at high temparature. Differant typas of thermistors are shown in Fig. 9.34.

They mayba in the form of beads, rods or washers,

Applications of Thermistors

Temperature Measurement

Thermistors are used n thermometers, and slectrlc devices such as air conditionars,

refrigerators, heaters, microwave ovens, incubators, etc.to monitor temperature.

Thermisiors with high negative temperature coeffickent are very accurate for measuring

low lemperatures especially near 10 K. The higher resistance al low lemperature
enables more accurale measurement possitble,

Thermistors have wide applications as lamperalura sensars, [.a. they convart changes
of temperature into electrical voltage which is duly processed. For example, these are
uzed in coolant temperature sensors in automobille engines to prevent the engine
overheating and in digital thermometers,

Temperature Compensation @m
Thermisiors are used in circuits wﬂam@m
Suchas in oscillators, battery charg)

)
1511::5 gre widely used as voltage divider, As
shown in Fig. 9.35 when temperature of a thermistor
increases, its resistance decreases. This decreases High rissatance
the voltage drop acress the thermistor. A3 & result, the | a1 aedar o k0
potential at point B increases that can be used to , ¥
trigger a circuit connectad to i, In case of a fire alarm,
the use of a thermistor tumns the NOT gate low when it
gels heated. The output of NOT gate goes high and  Fig. 8.35
turms the siren ON.

Light dependent resistor (L DR )is a resistor whose resistance decreases with increasing
light intensity. Due to this property, it is also known as photo resistor. Tha LDRs are
typically made from semiconductor material like cadmium sulphide. The materal is
deposited in a special pattern on an inswating plate.
Work ing Principle




tramafer energy to electrons in the outer orbits, thus, making them free to conduct
electricity. This decreases the resistance of LOR. The amaunt of light hitbng the LDR's
surface determines the number of free elections, Conversely, less light results in
lowering the free elections, thus, making higher resistance. This change in resistance
can be measured and used in circulls to sanse light levels.

Applications of LDRs

Light Sensors

LDRs are commonly used in light sensing circuits such as automatic kghting systemsin
homes and streat lights, An LDR works just like a switch that turns ON at dusk and OFF
atdawn,

Camera Exposure Control
LDRs help in adjusting the exposure time in cameras basad on the amount of available

light. @@m

Voltagae Divider
S the resistance

1 be read by a micro=

&
High ressstance
s, Of ourder of kil
larg& as m-guslarad by a w:!tmatgr When the LDR I8 +| — o B
exposed ta light, the resistance of LOR degreases ta very T
low. Mow, the voltmeber registers a lower reading. Hence, L.
the change in light intensity gives rise 10 change in | (kDR ﬂi‘;‘['
voltage. Therefore, by connecting mid-point B to the base : I :
of a NPN transistor or to a NOT gate. The light sensor can =
be used as a switch, ¥H
Reliability of AConcrete Bridge Fig- 4.0

Inspectors can easdy check the reliability of concrete
bridge with the help of carbon fibers embedded in its slab.
This iz possible because of the conducting proparty of the
carbon fibers. Let us know step by step how does it work?
1. Firststepisto know the electrical properties of carbon

fibers. Carbon fibers are hnnwn o ha pood W

conductors of electricity due ot
content.
2. Secondly, we ithin the

Fig. 8.37; Carbon fibre shests
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Iah of the concrete bridge during its construction. Then we can connect them to
form a conductors nebwork.

3. Inspectors can check the reliability of the concrete bridge by apphlying small electric
current to the carbon fiber network. They can determine the integrity of the concreta
struclure by measuring the resistance of the netwark.

4, The sensor inztalled into the network can show whether the electric resistance s
changing or not. If the resistance ramains the same over time, it indicates that the
concrete bridge is maintaining its structural integrity. However, if the resistance
increases, it means that the concrede is deleriorating or that the carbon fibers are
being damaged.

Some other methods are also used to check the sirength of the concrete bridge. For
example, a type of sensors continuously monitor strain, vibration and temperature.
Internal flaws, such as cracks or voids are detected by using ultrasound waves,

' \a\e separated by 10 m. If the distance between them is
oroe axerted oneach:

Multip
8.1 Two pointche \é\ﬂk i
20X 10} y : 1
} ases to halfits oniginal value

(b} increases to wice the original valua
[c) decreases to one gquarter of its original value
(d) Increases four timas (o s orginal value
9.2 Which electric charge is possible on a particla’?
(a)2.5%10"C (bj3.2x107C (c)1.6x10"C (dy6.02x10"C

93 Which disgram bes! represents the slectric field nes around two oppositely
charged pariclas?




(8} 1.6x10™"eV (b)1.6x10" eV (c)€.25% 107 eV (d) 100 eV
95 The patantialata point situated ala distance of 50 cm from a charge of 50 pC is:
{a)9x 10 volis  (b) 18 = 107 volis (c)8x 10" volis (d) 18 x 10° volts
96 Aballofweight 0.7 N having ann:harg.e of 100 pC remained suspandead betwaan two

appositely charged horizontal metal plates. The eleclric inensity batween the
plales is:

(aj10NC” {py10ONC” (e} t00DONC (d) 10000NC”

9.7 A piece of wire has resistance of 4 (3. It i3 doubled on itself se that its length
bacmmes hall bul ares of cross-section 2 doublad, ts resistance now will ba:

(E]1:14) (by4i1 [c)2i} (dy 162
9.8 The current through a conductor is 3.0 A when It Is sttached across a potential

difference of .0 V. How much power s used? m
{a) 0.5W (B)2.0W (c)0.0V @;

99 The algabraic sum of potential qfangas i $ zeto. It I the
stalement of “
{.a}ﬂhm'slarwo t ,
el Kirg % [d) Kirchhoff's second law

: ! Qurvature of the path of a charged particls in a uniform magnetc field

difactly proporional o

(a) the particle's charge {b) the particle’s momentum
(&) the particle’s energy (d} the flux density of the field

[§___Short Answer Questions |
9.1 How does a moving conductor like an aeroplane acquire charge as it flies through
the air? Describe briafiy.
9.2 Define electric intensity and eleciric potential,
9.3 A battery is rated at 100 A h (ampere-hour). How much charge can this battery
supply?
94 |selectron-volt a unit of potential difference or energy? Explain.

8.5 A copper wire of lenglh L has resistance R. |t is stretched to double of its length,
What will be the resistance of the new length of wire?

8.6 Why does the resistance of a conductor rise with increasa




8. hich materials can be used to construct Faraday's cage and why?

I]Enn:t’rm:ted Response Questions E l
8.1 Electriclines of force never cross each other. Why?

9.2 Is E necessarly zero inside a charged rubber balloon if the balloon is spherical?
Azsume thatchamge is distributed uniformly over the surface.

8.3 Electrostalic force is 10™ times stronger than gravitational force, Argue that our
galaxy shiould be almost electrically neutral,

84 Anuncharged conducting hollow sphers s placed in the fisld of a positive charge g.
What will be the net flux through the shell?

9.5 A potential difference is applied across the ends of a copper wire, What is the effect
on the drift velocity of free elections by

('] Increasing the potential diference’?

(i) decreasing thelength and the tempautureufthe ﬁ@
9.6 Why the lerminal potential ﬂll’fe the current
drawn from it is increased? Y\ ﬁﬂ

o | g‘uﬁ e #e’ﬁuesﬂons

9.3 Whatis a Wheatstone bridge? Explain it with the help of 8 diagram.

94 Whatis alight dapandent resistor (LDRE)T How can thig be usad as ON-0FF swilch
farlighting?

8.5 Whatls a potentiomeater? Descrbe its working.

@ Numerical Problems
9.1 Twounequal poirt charges repel each otherwith a force of 0.4 N when they are 5.0
cm apart. Find the force which each exerts on the other when they ara (a} 2.5 cm
apart(b) 15.0 cmapart. [Ars:(a)1.6N (b) 0.04N]
8.2 A particle of charge +20 uC is placed balween two parallel plates, 10 cm apart and
having a potential difference of 0.5 kV between them. Calculate the electric field
between the plates, and the electric force exerted on the charged parlicla.

9.3

[Ans; =23 % 10™



9.5

9.6

9T

9.8

Affer a pleasant showering, a water droplet of mass 1.2 x 107" kg is located in the
air near the ground., An atmospheric electric field of magnitude 6.0 x 10" N C
paobnts vertically downward in tha vicinity of the watar droplet. The droplat ramains
suspended at rest in the air. Find the electric charge on the droplet?
(Ans: —1.06x 10™ C)

An electron enters the region of a uniform electric filed, with v = 299 x 10" m 8™
and E = 300 N C, The horizontal length of the plates is 10.0 cm. Find the
acceleration of the electron while it is in the electric fiedd. How long will it take to
pass through the fisld?

(Ans: —527 x 10" ms™, 3.34 x 107 8)
A disc of 10 cm’ area is placed in a vertical electric field E= 5 x 10° N C". If the
plane of disc makes an angle of 307 with the horizontal, determine the electnc
fiux through the disc. (Ans: 260/3NmM'CT)
A circular copper rod is 50 cm Iung and has 1 cm diameter, Find the

axpanment a copper wire of Sﬂ m long and 150 um thlclc iz hung
veﬂl-mﬂly, Then a current of 1 A Is passed across s ends for 60 s. Find the
resistance of the wire and the heat dissipated during this process. [Resistivity of
copperis 1.69x 107 (am ] (Ans:4,BG0,2.4x410"J)
810 The emf of a battery s 12 V. It is connected to a 3.6 O resistor. If the infernal
resistance of the battery is 0.2 £, what will be the terminal voltage across the
battery? (Ans:11.41)

oI



After studying this chapter, the stutents will be able to:
& Elabe thal a force might acton a sumeni-carmying conductor placed in.a magnelic field
% Use the equation F=B/Lsin(d] [with directions as interprefed by Flaming's |efi-nand rule 1o sofve
problems]
# Dofine magrietic flux fas the prodect of the magnsiic flux densily and the coss-seclional area
parpendicular o ihe dirsction of the magnetic M denalty]
% Usa 4 = BA o sabve probiems '

# Usa the conceplof magnab flux inkage
@& Dafine magnetic flux densily [as the Torce scting per unit current ped unit lengirona w |
anghes to the magnetic fiald]

# Usa F=BgV¥sinfibo solve problams:
@ Deseribe the mqlﬁn da -:hnrgeﬂ pé

N Liging I e
: Fumﬂy&ﬁdmfshnddgchﬂmmuhln&mﬂmhmm

# Dascribe how ferrofiuids work: [lhey make wse of temporary soft magnetic materials suspended in
liquids to develop fluids that react to the poles of a magnet and have many applications in fislds such
a5 Eechronics]

@ Explain how selsmomelars make use of elechomagnetic induction to the eanhguake detection
[spectficallyin tarms of:

(i any moverment or Wbralon of e rock on which the seismomalar rests [Buried ina protactive casa)
readits n refative molion bebwsen the magnet and the ool (Suspendad by 8 spring from the frame. )
{ii) The amf induced in the coil is directly proportionsd to the displacemernt associabed

.a have already studied that a magnetic fiekd is
produced around a current-carrying conductor. Also, a
changing magnetic field gives rise to a curent in a conductor
placed in it, Electromagnetism is a key area of physies that
studias how electric charges and magnatic fields interact,

In 1820, Hans Christian Orsted found that electricity and
magnetism are correlated.

For ¥Yreur Information
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-magna!.ism is crucial for modam technology, including phones, computers, and
medical devices. In this chapter, we will explore basic concepts like electric fields,
magnetic forces, and electromagnatic induction, and see how these principles affact
both natural phenomena and technology. Understanding these concepts help us
appreciate how efeciromagnetism influences curworkd and drives innowvation,

10.1 FORCE ON A CURRENT-CARRYING CONDUCTOR IN A
UNIFORM MAGNETIC FIELD

It has been observed experimentally that a current-carrying
conducter placed in 8 magnetic field experiences a force, Considera
straight conduclor carrying a steady current placed parpendicular lo
uniform magnetic field. Assume the direction of the current is out of
the paper as shown by = in Fig. 10.2. The direction of magnetic field
produced by the current is also shown.

sude Consequamly the mﬂduct-ur moves lowards the side where the ﬁeld i w&aker
That is, the force on the conductor is directed to the left. Thus, the force F is
parpendicular to both the conductor and the magnetic field. Flaming's lefi-hand rule s
used to predict the direction of the force experienced by a current-carrying conductor in
amagnetic fisld. To apply the rule: Fofe
Position your left hand such that the first
finger points in the direction of magnetic field,
the second finger points In the direction of
current, the thumb will then wn'rt in the
direction of force.

However direction of force can also be found by Fig. 183

uzing nght hand rule thal can be staled as:

Curl fingers of your right hand from current to
field through smail nngh, ma ulrehnhld

m“mdlmﬂ'

T
Curent



ﬂhsem&d that the magm:tude El-f the force armng onthe mndumur iz directly prﬂpﬂmnnal
to the current [ in the conductor, the lengih L of the conductor, and the sirength of the
axternal magnetic fiald 8. The strength of the magnetic fiald iz alse known as tha
magnetic induction B, which has the same direction as the field. Thus, the force Fon a
conductor of length L, carrying a current [ and placed perpendicular 1o a magnetic fiald of

strength B. is given by
F«BIL

F = kBIL
In 51 units, the value of k = 1, Therefore,
F=BIL oo (101)

FramEq. (10.1)wecanseaihal 8 = ":_ sowe candefine Bas:

Thenwgﬁﬁcmngimsmmmlyaqualmmrcm =
anemu'enarrylngamampamcummdla erpendieuls

Equation 8=

We can also consider a vector L which has a magnitude equal to the
length of the conductar and its direction is along the flow of current,

MNow consider a conductor L placed at an angle "6 w.r.t
the magnetic fisld, then we will use the component of L
perpendicular to B i.e., (L sintl), as shown in Fig. 10.4.

Then the Eq. (10.1) willbecome,
F= BISIN cousninsisasissssicasras (10.2)
In the vector form the Eq, 10.2 can be written as ,
i | 157 QRO [+ 7.1 e

Equation (10.2} shows that the force Will Be e oeme e o s

maximum [BiL) when the conductor is perpendicular  magnat. Whara the south magnatic pole is
to the field, i.e.. B = 90°, and it will be zero when the e magats Lole 1 1sanis. tha

conductoris alnngmaﬁeldi;a. #=0. geograpiic sauth pola.
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Current =[ = 10.0A
Strength of magneticfield =8 =0.30T
Angle = § = 40"

Substituting the valuesin Eq. (10.2):  F=10.0Ax0.30 Tx0.20 mxsin40° =039 N
10.2 MAGNETIC FLUX AND FLUX DENSITY
Wi can represent the strength of a magnetic field B by the lines of force in the same way

as for electric field. Then, the population of these linegs in the field per unit area passing
through & surface perpendicular to the field will represent the magnetic flux. Thus,

The magnetic flux through a patch of area A is the AN :
number of magneticlines passing through this area, f \ ATA .
If Brepresants the number of Enes passing through wnit t’ ,f‘i&, 8
area placed perpendicular to the field, then the total flux N N B

through area A parpendicular to the field will ba:

$o = BA cosf {ms}
As B and A both are vectors, sowe canwrite

Y

b, = B.A {10.6) >
Equation (10,6} shows that &, is a scaler guantity. ,.;--""/
Therafora, wa can define magnetic flux as:
The magnetic flux 4,, through a plane element of area —— ————
Alna unﬂmnmaqnaﬂcﬂaldﬁ!nulvmbrdntpm —

Mote thal A is a vector whose magnitude is the area of |,
the element and whose direction is alang the normal t.
io the surface of the element and f is the angle between -
the directions of the vectors B and A (Fig. 10.5). In r——

L B B

¥

Fig 10.7(a), the fekd s directed along the norma to the % ?géﬁ@:
i ¥ '.‘-' .'
=77 =i




i
a of a curved surface placed in a uniform magnetic field, the curved surface is
divided into a number of small surface elements, each element being assumed plane
and the flux through the whole curved surface is calculated by the sum of the
contributions from all the slements of the surface using Eq.(10.5).

From the definition of tesla, the unit of magnetic flux is N m A” which is called weber
{Wh). According 1o Eg. 10.5, the magnatic induction B is the flux per unit area of a
surface perpendicularto B, hence, it is also called as magnetic flux density. |ts unit is Wb
m™. Tharefora, magnetic induction, i.2. the magnetic field strangth is maasured in terms
of Whm“orNA" m” (tesla).

Example 10.2: A rectangular Ioop of wire is placed in a uniform magnetic figld of
magniude 1.2 T. I the loop is 25 cm long and 20 cm wide, determine the rmagnetic lux
through the loop for the three orientations as shown in Fig. 10.9.

)

Fig. 10.8

Solution: For orientation {a), angle between B and area.
vector A is =60

Using = BA cosd
= 1.2Tx 20 em x 25 cm x cos60°
= 1.2Tx5x10"m" x0.5
= 3x 10" Wb

For orientation (b), angle & = 45°

& =12Tx5x107°m x0.707
=42 x10°Wh

Fororientation (¢), angle = 30°

& =12T x5 x10°m’ x 0.866

- ﬁ.znuf%@@




Magnallt‘. flux linkage is a key concept in electromagnetism, particularly in the study of
inductance and electromagnetic induction. Magnetic flux inkage refers fo the product of
the magnetic flux through a coll and the number of lums in the coll. It essantially
measures how much magnetic flux is linked with the coll dee to its multiple turns, and is
an important factor in understanding how coils and inductors operate in electrical

circuits, For Your Informatkon
Magnetic flux linkage=@=N@,........ (10.7)

whare @, is the magnetic flux through a
singke loop of area A and N are the total
number of turns of the cod, Magnetic flux
linkage playvs a cruckal role in the design and
operation of transformers, eleciric motors,
genarators, and inductors. This concept is
particularly |mportant in Famday‘sv‘%v

charges, lt raises the question: do individual charges maving through a magnetic fi ald
also axperence a force? The answer is yes. Experiments show that a charged particla
does experience a force when it moves across a magnefic field, We can calculate this
farce by examining the behaviour of 8 current-carmying conductorin a magnetc fielkd,

Consider a conductor of length L through which N
charged particles, each with charge g, are passing in

- 8 _ Like slectric. skt lines. magnetic
time £ Tha mation of thesa charged particles produces fiekd lines slso never Cross each

Do ‘r'ml Hnn W7

a current fin the conductor, which is given by cther but Instead push agart of
_Q_Ng sach other.
[

where Qs the tatal charge flowing in time L If v is the velocity of charged paricles, then
the velocity of the particles along the conductor is

v=vL

where L Is the unit vector in the direction of the current. The sign(e e
cnvﬂ'raﬂ'rerﬂ'reuhargaqmpﬂslmeorv gative. Howsver, the'u :

along the direction of the current, % e ih obioh o paﬁﬂlvechaa'ga&
Since the partickes(ake ti BOMNSS




v Why does a picture becomes distarted
Ng  Ngv 2 whan a magnetic bar ks brought near to the

Then dmmmd e o {10.8)  zereen of TV, Computer Manilar of
t L Csclioscope?
If this conductor is placad in a uniform magnetic field B, it will expenence a force F,
as given by Egq.10.3. B info 1he papar
o x X x = b ! ® H
Ba PR s {10.9)
- b
A5 L= LL e {10.10)
Substituling the values of | and L in Eq, (10,3}, we have a
F=%(LLKE} PRL IR O

Therefore, the force is maximum when B is perpendicular to v, i.e., 8 = 90°, and force is
zaero when B is in the direction of v, i.e., B = 0. The direction of force can be known by
applying Fleming's left hand rule or fghl hand rule as shown in Fig. (10.8).

1@} The positively charged particle enters into the magnetic field akeng the dotted line on
plane of paper. It exparencas a force in the upward direction due to which it Is
deflected along acurved path (Fig. 10.10-a).

{b) The negatively charged particle is deflected downward by the force acting on it
downwards (Fig. 10.10-b).

Example 10.3: An slection enters into a uniform magnetic field perpendicularly with a
speed of 10°' m <. What path the electron will move along inside the fiald?

(B=25Wbm°, m=911x10"kg, e=16x10"C)

Solution: The FmFanﬂngmﬂwenlhe @ @@K@




keepitin a circle of radius r, Than
evB = ——

O e

Putting the values in above equation, we have

_ 811107 kg 10'm 8’
1.6x10"Cx25Wbm

Fr=23=10"m
The path of electron will be a circle of radius 2.3 = 107 m,

10.5 VELOCITY SELECTOR

A velocily selector is & device used o delermine Iha
wghdty of a mm'ged panich In this da::e simetr:

o

gkl 3 r}

a orm magnetic field B at a right angle to it, with a
velocity v, The magnetic force acts on the partide in the
upward direction, as shown in Fig. 10.11. To balance this
magnetic force, an electric force must act downward on
the particle,

A velocity selector consists of a cylindrical tube located
within a magnetic field B. Inside the tube is a parallel
plate capacitor that creates a uniform electric field E.
The electric field E is onented perpendicular to the Fig. 10.12
magnaticfield B, as shownin Fig, 10,12,

When the charged particle enters the left end of the tube, the magnetic force acls
upward, while the elacirc force acts downward In the direction of the alectric flald E an
the positively charged particle. If the strengths of the electric and magnetic fields are
adjusted appropriately, these farces will cancel each other out, Wllh na net force acting
onthe pamch ite valﬂcllyu mrrﬂins r:nnst:anlln aucnrdanc;e with Mi m@a

; clacity @ nd of

the lube

The particles with 16
end of the tube,



The magnitude of the velocity selected can be determined as below.
As the velocity v is perpendicular to both B and E, therefare,

Magnetic force {upward) = Bgv
Electric force (downward ) =gE
Forno deflection of particle, Bgv = gE

E =
, B it aasaarfannsessin -~ (1S
or v B ( )

Example 10.4: Alpha particles ranging in speed from 1000 ms" to 2000 m 8" enterinto
a velocity selector where the electric intensity is 300 V m” and the magnetic induction
0.20 T. Which particle will move undeviated through the field?

Solution:  E=300Vm =300NC", B=020T

Only those particles will be able to pass through the plate for which the electri E
acting on the particles balances the magnau: force qu on the paficies 1l

Fig. 10.12.
@ Point to ponder
“ A force B exared on a mowving

Therafore gE =
Thus, the salected charged parichs ina magnetic e,
N C Inwhat direction It should maove that
=500 m & e forcse (s nod exered on 17

"B D20NAm
The alpha particles having a speed of 1500 m 5™ will move undeviated through the field.
Example 10.5: A charged particlea moves through a velocity salaut:br at a constant
velocity in a siraight line, The electric fisld of the velocity selectoris 4.8 « 10" N C”, while
the magnatic field i 0.2 T. When the electric filed Is lumed OFF, the charged particle
travels ona circular path of radius 3.0 cm. Find the charge to mass ratio of the particle.
Solution: Sinca tha parlicle is moving in a direction perpandicular ta both E and B, so
the magnitude of velocity v will be given by

gE = Bgv
or Vo= E
=]

When the electric filed is tumed off, the particke will move along a circular path of radiuzs r.
Then the magnetic force provides necessary :enlripetal force, Then

mmmmm “ @X@W@@
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Putting the values of E, B and r, we have

q 48<10°NC" _ .
L = 4 %0
mo {0273 =10° m") kg

10.6 INDUCED EMF AND FARADAY'S LAW

It has been cbserved experimentally that when a conductar moves across a magnetic
fiedd, an electromiotive force (emf) is induced between its ends. The induced emf in the
maoving conductor is similar to that of a battery. That is, if the ends of the conductor ara
connected by a wire to form a dosed circuit, a cument will flow through it

The amf induced by the mation of a conductor
-across a magnetic field is called mational amf.

Consider an expariment as shown in Fig. 10.13. A
conducting rod of length L is pl.a v

B inin ihe papar

currant in thelo-opL If the r::u:! is pulled to the right
with constant valocity v, the galvanomater indicates a current flowing through the loop.
Obwviously, the cumrent is induced due to the motion of the conducting rod across the
magnetic field, Tha maving rod is acting as asource of ernf e=V -V, =AY

When the rod moves, a charge g within the rod also moves with the same velocity v in
the magnetic field B and expenences a force given by, Eqg. 10,13,

F=qvxB
The magnitude of the force is:
F=qvBsini
Since angle # batween vand Bis 80°, so
F=qvB .......[10.16)

Applying right hand rule, we see that the force F acting on the charge qis di
paint a to paint b along the rod. As a result, chargas migrate
s Pi e T p&mj.b

uﬂnn n!d'larga




o
sre thisse two forces on the charge are balanced. If

E is the electric field intensity in this state, then
qE =gvB
ar i) - R |, | |- - 4

The motional emf £ will be equal o tha potental
difference AV = V, - V, between the two ends of the
maoving conductor in this aquilibrium state. The gradient
of potential is given by AV/L. As the eleciric intensity is
given by the nagative of the gradient, therefore,

E = -;ﬂi—v AT AN M 3 1 2 Faint ta ponder!

ar AV ==LE =={lLvB)
The moticnal emfis:
£ =AW m=fvE

i i i : Ve oot abnrmmmm imclugtion. The
Thig is the magnilode\o R el St 16 e
angle betweenva ; whereae that in the plees pot is not.

S T
W SO B Sk Tt e
D the induced emf, positive charges flow along the jndyues i:‘ﬂEI:Ifm - 'ﬁ:

path abeda, therefore, the Induced current is M"“" metal got i haeita
antickockwise in the diagram. As the current flows, the Wﬁmyﬁ;ﬂ i
quantity of charge at the top decreases, which reduces the

alectric field intensity, while the magnatc force remains unchanged. This imbalance
disturbs the equilibrium in favour of the magnetic force. Gonsequently, as the charges
reach the end a of the conductor due to the current flow, they are carried back to the top
end b by the unbalanced magnetic field, and the current continues to flow.

Faraday's Law — Lgescaf Biaile

The motional emf induced in a '
rod maving perpendicular to a
magnetic field is e =-vBL. Tha |=
motional emf as well as other %
induced emfs can be describad
in tarms of magnetic flux
Consider the experiment
shown in Fig, 10.14 again, Lat [l
the conducting rod me : --H*-'Uﬂ'--*l |_ll1|1:|pﬂ.plr
position 1 to position\2in @ _ INAT e 4 i i
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s terval of time At. The distance travelled by the rad

infime Afis x,—x, = Ax.

Since the rod is maving with constant velocity v, theralore, ; 1
. Ax
= = A S U 10.21
2l : - }

Putting this value of vin Eq. 10,19, we have

A x % xx 7

£ 2 =BL==—BL i 10.22) % W R X

af ® ® ® X

As the rod moves through the distance Ax, the increase in ® = ® X
the area of loop s given by A4 = AxL. This increases the %W x x 3

flux throwugh the loop by Ad = (A4)B. Putting (AxL)B = Abin X K3 KX

Eq. 10.22, we have X K » oM

XK K oX

Eo= ..£5L
At

Although the above expression is derved on the basis of
motional emf, but it is true in general, This condusion was
first arrived at by Faraday, so this is known as Faraday's
law of electromagnetic induction which states that.

For Your Informaton

The average emfinduced ina conducting  This heater operates en the principle of
mlummmmmmmuf electromagnatic induction, The water in the metal
the rate at which the magnetic flux potis boling whareas that In the glass pot is not.
rih ilis withine.. Even the glass top of the heatar is cool fo ouch,

" HWEW e The eoil just beneath the top cames. ac thal
The minus sign indicates that the direction  Produces changing magnedic fiux. Flux linking
of the induced emf is such that it opposes "I POIs induce emf in them. c“"“ Ep
the change in flux, LAt




The minus sign in the expression is very important it relates to the direction of the
inducad amf, To determine the direction, we use a principle based on the discoveary
made by the Russian physicist Heinrich Lenz in 1834, He found that the polarity of an
induced emf always produces an induced current thal opposes the change in the
magretic flald tiat caused the amf. This principle is known as Lenz's Law, which states
that

The direction of the induced current is always such that it
opposes the change that caused the current.

Lenz's Law specifically applies to induced currents and not directly to mduced emf, This
means we can apply Lenz's Law to closed conducting loops or coils. If the loop is not
closed, we can imagine it as if it were closed to defermine the direction of the induced
current, and from this, we can infer the direction of the induced emf.

el is

Fig. 10.15 anticiockeise | @ 1

According to Lenz's law, the “push” of the magnet is the "change” that produces the
induced current, and the current acts to oppose the push. On the ather hand, if we pull
the magnet away from the coil, the induced current will oppose th a “pull® by cresting
south pola on the face of coll towards the bar rrmgnﬁt @ ‘
Lenza Iaw is also & rnantfestatl of the law\of\c --:‘ ‘ = “ rmr EI‘Id can be
5 e gli- underaland this, let us
rod rrmvestathe right, an emf is
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mn i, causing an induced current to flow through the leop in anticlockwise
direction, Because the current-carrying rod Is moving within tha magnetic field, it
experiences amagnetic force F_ with the magnitude of F_, =L B sinS°,

According to the right-hand rule, the direction of the magnatic force F | is opposita to that
of the velocity v, soit tends to stop the rod (Fig. 10.16-a). To keep the rod moving with a
constant velacity, an external force equal in magnitude to F_ but opposite in direction
must be applied. This axternal force provides the energy necassary for the induced
current to flow, Thus, electromagnetic induction adheres to the law of conservation of

anergy- ’ B into papar I f— B inty papsr
whef - = .

%0 Acra asaa and tha magnaﬂc force increases further. Thus the motion of the wire is
accelerated more and more. Starting with a minute quantity of energy, we obtain an
ever-increasing kinetic energy of motion apparently from nowhere, Consaquently, the
process becomes sell-perpetuating which ks against the law of conservation of energy.
Example 10.6: A metal rod of length 25 cm is moving at a speed of 0.5 m 57 ina
direction perpendicular to a0.25T magnetic field. Find the amf produced in the rod.

Solution:
‘Speedefrod =y=05ms’
g U pusbaoa ,En?:“m&'m“”mﬁ
Magnetic fluxdensity =8=025T=0.25NA"m" sehg a polential difference
|I'It|l.lﬂﬂd emf N == m"ﬂbﬂﬂ
Using the relation,




~ 3 10.7: Aloop of wire is placed in a uniform magnetic field that is perpendicular
to the plane of the loop. The strength nfmarmgmﬁf.fakilsﬂ B T. The area nfMalnnﬂ
begins to shrink at & constant rate of T": = 0.8 m' 5", What is the magnitude of emf
induced in the loop while itis shrinking?

Solution:  Rate of change of area = %":— =0.8m's"

Magnetic flux density = 8=0.6T = 0.6 N A ni’
Numberofturns  =N=1
Inducad amf =p="
Rate-of change of flux= 28 _ g8 . ne_ g 4
Al At Af
Applying Faraday's law, magnitude of induced amf is;

2. Number of Turns of the Coil

According to Faraday's law induced amf is also propartional to the number of tums of the
coil. More turns result ina greater induced emif.

3. Relative Speed

The speed of the coil (or conductor]) through a magnetic field atso affects the magnitude
of the induced emf. Faster speed increases the rate of change of magnetic flux that
resulls into an increase in the induced ami.

10.9 FERROFLUIDS

Farrofiuid is a unigue material that exhibits bath Bquid and magnetic properies. It
Dpﬂratas lhmugh a combination of magnetic and fluid dynaa‘rics principles.




prevent the particles fram satiling down.
When there s no magnet arcund, a ferrofluid acts |ike a For Your Information
liguid, but when there is 8 magnet nearby the particles
are lemporarily magnetized and the fluld becomes a

The first farrofiuid devaloped by
et : MASA in 1980, was ground from
magnet. They form structures within the fluid causing the  natural magnedite. Famofiuid was

ferrofluid to act more ike a solid, When the magnel is  invented to move liguids through
removed, the particles are demagnetized and the SFace.
ferrofluid acts like aliquid again.

This phanomenon is due to the competition between magnatic forces, surface tension
and gravity. In the presence of strong magnetic field, the formation of chain-like
structures 15 & resull of magnetic forces pulling the fluid upwards while gravity
and surface bension work 1o pull it back down. These chains align akeng the magnetic
field lines and increase ihe
viscosity, making it behave
like a zolid bulging in certain
directions. These  are

commaonly known :’:

Hr.:rwaver. the s

Fig.10.17

The following experiment will exhibit this phenomenan.
Experiment

You need some Aser printer toner, some cooking ofl, a
testiube, a glass bottle, a small stick and a magnet.

Procedura

Four some foner in the test tube., Remember that laser ”
printer toner containg 40 % iron oxide in nanometre — ‘
particle zlze. Add some cooking oil in it and mix it wall _

with the sfick to form ferrofluid. Put this fluid in the
bottle. The fluid will act like a liquid on ghaking the

bottle. Mow bring the magnet near to fluid outside of the |
botthe.

You will observe that the fiuid jumps towards the
magn»ert because il hEIEItSE“bE‘GUI'HBEI'ﬂaR I we

g,‘

Fig-10.18



Thera are many applcations of ferrofluids in the fields of electronics, medicine,
engineering, and active research in Physics and Material science. In electronics,
ferrofluids are usad in rotary seals for computer hard drives and other rotating shaft
motors. In loudspeakers, ferrofluids are used to cool the voice coil which can heat up
durirng operation, The magnetic field holds the fluid in place around the coil, allowing it fo
absorb and dissipate heat more effectively, Fermofluids are also used in speakars o
dampen vibrations and improve sound quality.

In medical applications, ferrofluids can be diracted 1o specific areas in the body using
external magnets, allowing for targeted drug delivery. The magnetic parlickes can carry
drugs directly to a tumor or other targeted site, reducing side effects and improving
treatment efficlency. Ferrofiulds can also be used as contrast agents in magnetic
resonance imaging (MR},

Other applications of ferrafluids indude damping or pten:lsely conl In w@
liquids by manipulating the magnetic field.

spandad by a spring. Whan an aanhquah:a OCCurs, the grnund movas but the waight
tends to stay stationary due to inentia. This  Jlaas

resultz in relative motion between the
weight and the framea of the seismometer
which |5 attached to the ground. The
weight is ofien attached toa magnetwhich
moves inside a coil of wire (Fig.10.19).
This sefup works according o Faraday's
law of electromagnetic induction, that is,
the changing magnetic flux through the
coil induces an emf in the coil. This gives

rise to an induced aelectric current,

¥ : " Fig. 10.18 Seismometar
The induced current is proportional -
to lha vﬂm {;f tha gmund ! For Your Informaticn

motion. The electrical  signals g "m“a“, arg
generailed are then amplified and (displsces
recorded, Thus, dalans provided on m@qu b 6% b
the amplituce, fre :
duration of the eartbguaki



g data is analyzed to determine
various characteristics of the *

For Your Information

earthquake, such as location,
magnitude and depth.

Usually, a ssismometer is buried transvarsain

under the ground at a depth of 50-1000 metres, It is placed in & protective case called a

vault. This is a cylindrical steel tank that is approximately 1 melre wide and 2 melres
deep with a concrete pad at the bottom (Fig. 10.20).

({ Muitiple Choice Questions )|
Choose the correct answer.,

10.1 A current is flowing towards north along 8 powerline, Tha direction of the magnetic
figkd over the wire (= directed lowards:
{a) narth (b} south (c) east (d) west
10.2 The radius of curvature of the path of a charged parficks in a uniform magnetic field
is directly proportional to
(a) the particle’s charge (b) the particle’s momentum
(£) the particle's enargy (d) the flux density of the fiekd miagnesic ik
10.3 The diagram shows a beam of electrons entering 2 magnatic ’
fimbd. What s the affect of magnatic fisld an the alectrons?
(a) They are deflected into the plane af the diagram. Haam
(b) They are deflected cut of the plane of the diagram. m .
(c) Theyare deflected lowards the bottom of the diagram.
(d) They are deflected towards the top of the dl&gﬁm
104 The force axarted ona wire of 1 matre je: i

rightangla to the magnatlc@&l (3¢
(&) magnetic fisldintensit “@
'.ll D‘ L
sgretcraicion |\

%

d) none ;:-fthsaa



1 héi unit of lux dansity is:

{a)NA"m (B)NAm" (e} N mA~ (d)N mA
106 Amoving charged particie is surrocnded by
(a) elactric fisld anky (b) magnetic field anly

ic) both electric and magnetic fizld (d) nofield
10.7 Magnetic forca on the charge g moving parallel to magnatic field with velocity vis

(a] v Bsini (b] qvB (c) zero (d) ILB
10.8 TheunitNA"' m"is called:
[a) weber ib)tesla () coubomby () mone of thase

10.9 Electrons while moving perpendicularly through &
uniform magnetic field are:

(a) deflected lowards narth pole (b) deflectad towards south pole

(c) deflected along circular path (d) not deflected at all m
Ny s |
t&s. the

10.10 A magnet is suspended from a spring. The magne! ascl

galvanometar shows:
{a]daﬂacﬁun@ 5 |af
{5 dﬂﬂactﬁdil

(c 1
M to the laft and right, but the amplitude steadily decreases
[‘ Short Answer Questions m

10.1 it is said that Lenz's law specifically applies 1o induced currents é Spmp
and not directly to induce emf. Explain it briefly. =

10.2 Asquare loop of wire is moving through a uniform magnetic fisld.
Tha normal to the loop IS orientad parallel to the magneatic fisld.

Is anemfinducedin the loop? Give a reason for your answer.

10.2 Does the induced emf always act Lo decrease the magnatic fux
through a circuit?

10.4 When a magnet is pushed inte the salenoid, as shown in the
figure (a), the galvanometar indicates a small current, Why is the (@)
current produced? What will be the magnetic pole produced at
the left end of the solenoid?

10.5 A bar magnet falls through a fixed matal ring (Fig b). Will the

magnet fall with an acceleration of a freely falling body? Give
reason. o@
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10,7 An electron and a proton are projectad inte a magnatic field at ight angles fo it with
acertain velocity. Which of the particles will suffer greater deflection? Why?

10.8 Can a single moving proton produce magnetic field?

10.9 Amagnetic field s necassary if thare is to ba a magneatic flux passing through a coll

of wire. Yet, just because there is a magnetic field does not mean that a magnetic

fluix will pass through a coll. Aceount for this situation,

|@ Constructed Response Questions |

10.1 Acharge is lying stationary between the opposite poles By — Metulring
of two magnets. |s a magnetic force exerted on it? Why? L
10,2 When the swilch in the circuit is closed, a current is
established in the coil and the metal ring jumps
upward, Why? Describe what would happen lo the ring
if the battery polarity wera reversed?
10.3 Weﬁgweahwmacmlnfwwemthex ¥ Rl
magnalic field directad alc' *-}‘
ufﬂmthrea-c dinate axiz &u i

3

10.4 I ‘n‘- =5 ‘ Aﬁ.‘ AN

Reld passing through the koop and still not >

10.5 Does Ihe application uf uniform magnetic ﬁ-eld toa
maving charged particle rasull in a change in
kinetic energy of the particle’y Explain.

10.6 A uniform electric field and a magnetic fisld act in the sarne direction. A proton is
projected, [nto the space, with a unifarm velocity in opposite direction. What will
happen to the proton?

10.7 A conductor moves in a magnetic Meld when a currant is passed Ihrough the
conductor. Would yvou expect the reverse effect to occur? That is, would a cument
be produced if a conductor is moved across the magnetic field ?

10.8 Consider a conducting rod of langth L moving

with velocity v to the right as shown in the

figure. Left ends of the conducting rails are
connected to a bulb. Due to motion of the mod
through the magnetic field, an emf is

&mdumd across the ends of the rod. This

Carducting rails

,

£—




108 What will yvou do if you want to save a sensitive instrument from stray magnetic

fiedds?

'§ Comprehensive Questions |

10.1 Distinguish batween magnetic flux and flux density. How are they related?

10.2  Find an expression forthe force exerted on a current-carnying conducior placed in
auniform magnetic field.

10.3 State and explain Faraday's law and Lenz's law. Also describe factors affecting
the induced emf.

10.4 Determine the force acling on a charged particle moving through a uniferm
magnetic field.

10.5 Whatis a velocily selector? Explain its working,

10.6 Explain how ferroffuids work?

'@ Numerical Problems |/
10,1 Apuﬁ!lvﬂymargad particla is p pecled perpar =) a %Icﬂﬂmma

sp-eedoﬂﬁﬂﬂms Ite:pe =

: spaaduizmﬂma snl.halll
(Ans: = 48)

force that an eleclron can axpariam:a. c:ans: 41210 N)
10.3 A sguare coil of side 15 cm each consists of 60 turns. Initially, it is lbcated ina
uniform magnetic field of magnitude 0.8 T such that plane of the col is
perpendicular to the fiedd. The coll is then tumed through an angle of 8 = 30°in a
fime of 2 5. Determine the average induced emf. (Ans: 0.54 )
10.4 Ametallic rod |2 moving through a uniform magnetic fiald of 0.2 T. Tha amf inducad
acrossits ends is found to be 0.8 V. Itis required toinduce anemi of 2.4V across its
ends, How much field stréngth is needed for this? (06T
10.5 A copper ring has a radius of 4.0 cm and resistance of 1.0 mt). A magnetic field is
applied aver the ring, perpendicular o its plane. If the magnetic fisld increases
from 0.2 T to 0.4 Tin a time interval of 52107 s, what is the currant in the ring during
thisinterval? [Ans: 201 4)
106 A coil of 10 turns and 35 cm’ area is in a perpendicular magnarljs: field of 0.
coll iz pulled out of the field in 1.0 5. Find the induced emfindh A% (tis
out of the field.
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curvature of the path of the proton. m=1.67=10% kg. e = 1.6 10" C.
(Anz: 11.16'cm)
10,8 A proton enters a uniform magnetic field B = 0.300 weber m” in a direction making
an angle 45" with the magnetic fisld. What will be the radius of the ciroular path if the
velocity of proton ks 100 m ™. (Ans 246% 107 m)
10.9Three identical conducting rods L, L, and L,
ara moving In different planes with the same speeds
v, =, = v, = 25 m g” as shown in the figure. The
length of each rod is 60 cm, A constant magnetic field
of magnitude B = 0.5 T iz directed along Zz-axis. Fird
the magnitude of emfinduced ineach rod and indicate
which end of the rod is positive, [(Rod L) eml =075V,
andend a, (Rod L,)emf=0(Rod L,)emf=0]].

b A A
VI

L.,

10,10 An eamf of 0.5 V Is Inducad across the ands of a meat:

magnetic field of 0.4 T. If an emf of 1.- ! A5 ‘ t"\ E a‘ el strength
mmnmmmnhm?m Al :‘I % Ay =Tygll : "

O (Ans; 1.2T)
7.11 A charged pa% \ thraugh & velocity selector at a constant velocity of
4.96. W[5 | perpendicular to bath E and B. If the magnetic fisld
0.114 T, what should be the magnitude of electric field intensity so that
particle meves undeflected? (Ans: B ES10°NCT) >
T2 A curment-carrying conductor PO of length 2 m is placed apﬂ' 3
perpendicudary to 8 magnetic field of flux density 0.5 T >
as shown in the figure. The mesdlling force on Lhe | B
conductor is 1 N acting into the plane of the paper. What >
is the magnitude and direction of the curreni? Tt »
(Ans: 1A, Qo P) = 3

o
O



Aftor studying this chapter, the studants will bo able to:

Ditinguish betweean inertial and non-Inerlal frames of reference,

Describe the significance of Einstein's assumption ofthe constancy of tha speed of ight.
Dt it thist if & - constant 1hen space and time become ralalive,

State the postulales of Special theary of relatiuity

Explain qualitativaly and quantiatvely the consequances of special ralativity
Specifically in lhe case of
The relativity of simuttansity,

Q@Q&@W@ oo

nth‘lnmhmau'mhlng and cpmlmlun mmmmammmmm ]

oo

".“-"Fr}'-'FF

ll the beginning of the 20th century, new experiments and theomstical calculations
revaaled that classical physics, based on Newton's laws, could not explain phenomeana
imvolving extremely small particles or very high velocities, This led to the development of
relativistic machanics, which offered a more comprahensive framawork than classical
mechanics and fundamentally changed our view of the universe, Albert Einstein's
Special Theory of Relativity, introduced in 1205, addressed these issues by proposing
that the laws of Physics are the same for all abservers and thal the speed of light is
constant, regardless of the observer's motion. This theory not only resolved the conflicts
betwesan classical mechanics and electromagnetic theory but also revolutionized our
understanding of tima, space, and motion, forming the basis of what is now known as
madern physics, This chapter will explore how Einstein's theory reshaped our view of
the unlverse and continues to infiuence our understanding of the physical wn@m

11.1 RELATIVEMOTION

Consider throwing a ball to }rﬂur i
his |sft, This illustrate :




Elllﬁbﬂ@ EpedalTltlﬂ'r ufﬂehllull'n.

siationary to passengers inside the train but appear to be moving o someone
manddng nntha ground. Thus, we cannal dafinitively say whathar an object (s absolutaly
at rest or in mofion; all motions are relative to the cbserver or to the reference frame
being used. This becomes avident with the following example: An observer in a closed
train compartment uses the compartment as his frame of referance, To determine the
train's motion, the observer drops a ball and measures the horizontal distance travelled
by the ball, keaping the vertical distance the same in each case. |1 is assumed thal the
vertical distance is coveredin “1" saconds in all scenarios,

Case (a): Suppose the train is stationary. In that case, the horizontal velocity of the ball
will be zera, and the horizontal distance travelled will also be zera. In this scenario, tha
abservations made by the
obzerver inside the train and
by someone culside the train
will be identical. The ball will
have fallen to a paint on the
floor directly below the paint
from where it was dropped
{Fig.11.1-a).

Case (b): The traipd

an initial hunzna ‘

sées that the hal fals. tu a point on thra ilmr darer;ﬂ'; ba!n::w where it was dropped. In
contrast, an obsenser outside e i
the train will see the ball o , e

following a projectile path, { Lk

as shown In Fig. 11.1(b). i j‘k‘ .............
Thus, observers in differant iy
frames of reference, moving _*‘ *

with uniform velocity relative g e in the
to each other, will perceive mouing trem
molicn differently.

- i .
Cbserver outside the moving train
Fig. 11.1(b)

1.2 FRAHES OF REWGE




ﬂ’\BS& atara from tha frame of refarance.
Inertial and Non-inertial Frame of Reference

An inertial frame of referance is defined as a coordinate system in which tha law of
inerfia is valid, This means a body at rest remaing af rest unless acted upon by an
unbalanced force thal produces accaleration. Other laws of nature also apply insuch a
system. For instance, a body placed on the Earth remains at rest unless an unbalanced
force acts upon it, indicating that the Earth can be considered an inerdial frame of
referance. A bady in a car moving with uniform velocity relative to the Earth also remains
at rest, so the car is also an inertial frame of reference. Thus, any frame of reference
maving with uniform velocity relative to aninertial frame is al3o an inertial frame.

However, if IhE muving car is 5udden!y stapped Sl For Your Information

speaking a non-inartial frame, Itis

framaduetullsral

c. <" | =11

nhanamana The spuclal l.huuw of mlallultyr addrasses '

problems involving inertial {non-accelerating) frames of S § VI
reference. There is another theory, called the general % |

; of itted

thaory of relativity, that deals with problems invelving m’:ﬂ mml s :;r ;";
frames of reference that are accelerating relative to one oibmervers, one mavingin the carwith
another. Tha special theory of relativity is based on two ‘spead v and oiher standing on the

postlates, which can be stated as follows: road.
1. The laws of physics are the same in all inertial frames (Principle of Relativity).
2, The speed of light in free space has the same value for all observers,
regardless of the state of motion of the source or the observer (Principle of
Constancy of Light).

The first postulate generalizes tha fact that all physical laws are the same in frames of
reference moving with uniform velnut'_.r relative to one another. If the laws of Ph ; s

stationary and which was mwmg H:Jwever L
that there is no way to detect absolute unifor
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elative. For example, if you are sitting in & train moving at the speed of light and
you hold up a mirror in front of you at arm's langth, you will still saa your reflaction in the
mirror, This is because, according to the principle of relativity, no experiment can detect
the constant motion ofthe train relative to the person inside it

Thesea simple postulates have far-reaching consequences. They include phanomena
such as the slowing down of docks and the contraction of kengths in moving reference
frames as observed by a stationary observer, Some intenesting resulls of the special
theary of relativity can be summarized as follows, without going into their mathematical
details.

The Relativity of Simultaneity

If two events in different locations are observed by one observer to be simultanecus,
they will generally notl be observed as simultaneous by another obsarver in a differant
frame of reference moving relative to the first obsarver, In other words, whether fwo
avents are seen as simulianeous dapﬂnds on the observer's frame of reference.

If yioLi are i & fraeme of reference
Siahy, moving at constant velocity
} S the back door apen before the front door, This is m""‘lm, ?ﬁ”mﬁﬂ
because the back door is moving towards the light waves, & oo 4o 0 know it v':'"i i

while the front door is moving away from the lightwaves.  moving orat rest,

Time Dilation

According to the special theory of relativity, time is not an absolute quantity; it depends
an the motion of the frame of rafarencea.

Suppose an observer is stationary in an inerlial frame and measures the fime interval
betwesn two evants inthis frame. Let this time interval ba £ This is known as proper time.
If the observer is moving with respect to the frame of events with refativistic velocity v, orif
the frame of events is moving with respect to the observer with 8 uniform relativistic
velocity v, the lime measurad by the obsarver will notbe £, but rather L given by

. T

'3
s

2
As the quantity ,1- Zs



chermicall and biolegical. Even the aging process of the human body is slowed by motion
at vary high speads or relativistic speeds.

For example, if 2 traveler on a plane moving at 0.8 ¢ picks up and opens a book, the
event takes one second as measured by the traveler. However, to a parson standing
outsida the plane, the sama event takes 1.7 seconds,

Length Contraction

The distance from Earih to a star measured by an observer in a moving spaceship would
appearsmallerthan the distance measured by an cbhserver on the Earth, In other words,
if you are in motion relative to two points thal are a fized distance apart, the distance
betweaen the two points appears shorter than if you were at rest redative to them, This
effect is known as length contraction. Length contraction occurs only akong the direction
of mation; no such contraction is obsarvad parpendicular 1o the direction of motion, The
length of an abject or the distance between two points measured by an abserverwho is
at rest relative 1o them s called the proper length ¢ . If an ohjasc:land an uh in
relative motion with speed v then the mnlracbedlength'r' is gl ;xtg {X
W (11 2]

Letatrain thatis mess x‘ 0 s plres ,ngvmanairﬂsttauelatﬂﬂ% ufmaspead
aof Ilghl {IJ & c A )

9y the side of the frack will observe the train to be only 60 mstraslung
ty, which is the shortening of length in the direction of motion, is due

Mass Fariatlan

According 1o the special theary of ralativity, the mass of an abject is a variable quantity
that depends on the object's speed. An object whose mass is measured at rest is called
its rast mass m, , will have an increased mass m when observed 1o ba moving at speed

v. Theyererelated by
1 v
&
The increase in mass indicates the increase in inertia that an object has at high speeds.
As v approaches ¢, it raquires a greater force to change the object's spaed.

As w—n:,-g——ﬂ. therafore, 1-——;0

Thus i —» oo
= ﬁi




space is 300,000 km s”. This |s why Newton's laws ara valld In everyday situations.
However, when dealing with subatomic partides moving at velocities approaching the
speed of light, relativistic effects become very prominent. and experimental results
cannot be explained without considering Einstein's equations,

11.4 THEEQUILANCE BETWEEN MASS AND ENERGY

According to the special theory of relativity, mass and energy are distinot entities but are
interconvertible. The total energy £ and mass m of an object are related by the
axpression:

e AR e e e e (11.4)

where m depends on the speed of the object. Atrest. the energy equivalent of an object's
mass m, is callad its rest mass enargy E,. Thus,
E =mc

As mc’ is greater than m ¢, the difference ﬂf anargy frmc” = E
and it represents the kinetic energy of the mas

e

s8¢15 a very large quantity, this implies that small changes in mass require very
large changes in energy. In our everyday world, energy changes are too small to pravide
measurable mass changes, However, energy and mass changes in nuclear reactons
are found to be exactly in accordance with the aforementioned equations.
11.5 SPACE-TIME IN RELATIVITY
Space is said io be a three-dimensional extent in which all objects and events occur. It
provides a framawork to define the position and motion of varous objects under the
influence of some force,
Time measures the sequence and duration of evenis. In the theory of relativity, ime is
nat absolute; it (s considared the fourth dimension. For example, oscillalory motion,
such as that of & swinging pendulum, relies on fime to determine the frequency of
ascillations. Another example is ime dilation, a phenomenon discussed earier in this
chapter, where time passes more slowly for an obsarver moving at extremely high
speeds compared to one at rest. The special theory of relativity explains that space and

time are related to each other. It describes how spa::aam:li time are influenced b .l\‘\
and speed, such as the bending oflight around massive ub; cts likesiars \

% into a singla
i tlrrua and their relation
pace-ime is curved especially near

Bpaca-um& is, in fact, a matham&tlc@ maogla




m\agﬁjr& bﬂdlas and for speeds
approaching the speed of light. We can
hypothefically visualize this as a fabric
sheet. If a heavy ball iz placed over this
sheel, il curves as shown in Fig, 11.2,

Objects such as stars and planets cause
space-time o curve arcund themselves,
much like an elastic fabric deforms when
holding & ball. The more massive the
abject, the deeper the curve.
Consaquenthy, we do not speak of a force of gravity acting on bodies; instead, we say
that bodies and light rays move along geodesics {analogous to siraight Enes in plane
geomealry) in curved space-time, Thus, a body at rest or moving glowly near a massive
ahﬁc:i wiould fﬂlawagendeaictnw-ﬂrd that ijeﬂ

Fig. 11.2

of gr;al.'lilj,|I bul axplicitly stal
explanation for why . gravi
Einsiein’s theory

inverse squam Fs

thatgh I encompasses Newlon's thaory and yleldg thee
same rasulls as Mewton's theory in all but very sirong
gravitational fields.

The bending of starlight caused by the Sun's gravity was :

measured during a solar eclipse in 1919. The results B’“‘d‘:g “ﬂiﬂ:g';ﬁ the 5“";
maiched Einstein’s lhe‘cur;.-' ra%her than Newton's, leading ﬁwn':mhniﬁhsum% ml: itsl
to Einstein's theory being hailed as a scientific tiumph, way to Earth. We see the star
Another success of Einstein's theory was the detection of 1n_the apparant diraction B,
gravitational waves, produced by some celestial events ﬁ:ﬁ:ﬁﬁ: :T:“?:_S' m
causing disturbances (squeezes and siretches) in th_ne of angle which it Sonirod o s
curvature of space-time. These waves were detecled in  the same duning the solar eclipse

2015 and announced in 2016, of 1919,

Example 11.1: The period of a pendulum is measured to be 3 0sinthe |
reference frame of the pendulum, What is its period measured by b
alaspeedof (. QScMH'Imquclmma rid
Solution:

. @V\m%
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J1 (0.95¢c 1-(0.957
g

Example 11.2: Abar 1.0 m in length and located along x-axis moves with a speed of
0.75 ¢ with respecl lo a stalionary observer, What is the length of the bar as measured
by the stationany obserer?
Solution: For your Information

f=10m , v=075¢, (=7 The fasier you ane moving o dose
t0 3 strong source of grawity, the

Using pe= "1-""_2 """“"“’"‘W‘“""m

075¢f L\
f =1 0mx 1= ' :

i
Eﬂmpln 1.3: @ abject with spead 0.8 2.
Sﬂll.l

m ] vg Interesting Information
e If you are on some spaceship

m, moving exremealy fast ihaough
m = - apace near a bleck hole ke in

or
@_E.‘i?f -y ["-' By mavie, ‘Intersteller” then you
could miss T years on the Earh in
I hoear,
o m= 167m, avery

Hypothetical Example of Space Time

Let a spaceship be travelling to a star with half of tha speed of light. Let it takes eight
years o reach to the star, from the point of view of the observer on the Earth. From the
Earth's point of view, the clocks on the spaceship are moving zlowly, so that less time
passes nntrmspacaship mrrq:samd to the Earth.

mmarmansmmo R\A@X @ ®®




|§ Multipie Choice Questions ||

Tick () the correct option:
1.1 Relativislic machanic yields results difierent from chkassical mechanics for
abjects maoving with:

ia) low velocity {b) velocity equal to that of sound waves
(c) welocity greater than sound waves (d) velocity approaching that of light

1.2 i an observer is moving in the same direction a5 & sound wave, the velocity of the
wWave seams fobea:

{a) more {b) less

{c) constant (d) sum of the twp-aloxjt @m
1% s fest mass ofa particle m, i@!‘ea ek, . [, then its
kinetic energy is: Kﬁ () @

—m. ) & @12{m-m)¢

1.4 The spe i ‘ \hLbFa Car whila moving with high speed as comgpared lo
102w
Qj l ﬁ}ﬁr&a’ﬂ' (b} iess (&) same (d) zero

11.5 A pholon is a parfiche of light. What |s its mass whan it moves with 0.9 c7
(@) 9.1 x 10" kg (B} 167 x 10" kg (c)1.67x 10" kg  (d) Zerc

[] Short Answer Questions P
1.1 Whatis meant by inertial frame of reference and a non-inerial frame of reference?
11.2 Whatare the wo postulates of spacial theory of relativity ?
11.3 Describe why it is impossible for a material parbcle to move with speed of light,
114 Doestheory of relativity contradicts Newton's laws of motion? Explain briefly.
1.5 Whatis meant by proper time, and proper length?
116 Whatis meant by relativistic mass, length and time?
1.7 Why mass of a moving objectincreases?
11.8 Allmotion are relatives. Does space-time s absolute? Explaiabr f@@@

119 Explain that speed oflight is an ulti it fors
11.10 Give axamples where the il
Q

o




Chapar3 Special Theoeyof Relatyiy |
|| Constructed Response Questions [ |

11.1 Spoeed of sound is affected by relative motion between the observer and the
sourca, Does this apply to speed of ight as well? Describe briefly.

1.2 Izt ever possible to see a star moving away from us at a uniform velocity equal to
thevelocity of light?

11.3 Ifthe speed of light is just 50 m s”_ how would every day events appear to?

11.4 | the speed of light were infiniie, what would the equations of special theory of
redativity reduce to?

11.5 According to Einstein's equation; £ = mc’, is it possible to create a single electron
from energy? Explain.

ﬂ Comprehensive Questions i

11.1 What is meant by the "frame of reference™? Distinguish between inerial frame of
referance and nen inertial frame of reference by giving exam

11.2 Describe the Einstein's rnass-em-g'_.r i}

memydayllrawuhataml ek
1.3 State the Ei QRIRS)
according tot

" Numerical Problems E|
11 nelectron is acc:eierated o3 speed of 0,995 ¢ which passes down an evacuated

tube 500 m long. How long will the tube appear to the alactron? (Ans=50m)

11.2 Ansautron, being not a stable particle. disintigerates in 20 minutes on the average.
How bong will it seem to exiztif shoots out from a nucleus with a speed of 0.5 c?
pAns: 333 min)
11.3 Aspaceship is measured 100 mlong while it Iz at rest with respect to an observer, if
this spacaship now flies by the cbserver with a spead of 0,99 ¢, what length will the
observer find for the spaceship? [Ans: 14.m)
11.4 The rest mass af an electron is 9.11 x 107" kg. Calculate the correspanding rest-
Mass energy. (fns; 8.2x 10" JorD.57 MeV)
11.5 An electron is accelerated to a speed v = 0,85 ¢, Calculate ifs total energy and
kinetic energy in electron volt. (Ans: 0.97 Mey, 0.459 MeV)
11.6 Atwhatspeead wauld tha mass of a proton ina particla accelerator be tripled?

‘ﬁ 2 mphs
e. Describe the view of gravity

aith ek

I,AII‘.: 9 h &)
redocity of 0.9 ¢, what will
[Ans: 1:15kq)
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* After studying this chapter students will be able to:
slate that nucleon number and charge are conserved In nuckear processas
describe the composition, mass and charge of o, - and y-radiations [both f- (slecirons) and
fH{positrons] anes inchadad)
Explain that an anlipariichs has fhe sames mass but oppesile charge 1o the cormespanding partice
[giva tha axarnpla that a positron s the antiparticla of an elactron|

state that {slectron) antineutrines are produced during P-decay and (eleciron) pe

produced during (4 decay

Eapiain that o-particles have disceie & MEfL gies
unurnluhnmxtm'ﬁl]mm s esrife

umm:mmmmmmmmmpmmgﬁ.mp-m

state that elestrons-and neuirings ars fundamental particles called laptons

State, W, Z, gluon, and photons as fundamental particies called exchangs panticles o force
RTINS

State the Higas Boson asa lundamental particle which e responsible for the particle’s mass,

Explain that every subatomic particle has & comespanding antiparticle [that has the same mass as
agiven particle but opposite slectric or magnetic proparties according to.he Standard Model of

Particke Physics]]

Explain thet there are venous contending theoras about what ‘mass' and 'force’ sre generated
from [e.g. (hal these are generated from quantum fiekds whan they ars energleed, or rom mull
dimensional “strings’ that vibirats in higher dimensions b give rise o partices {no further technical
knovwledge bayond theza simple descriptions is axpectad at this laval)

Ihuesirabe ihat ardipariches usually have the same weight, bl opposite drarge, compared o Bhei
matter Counterpens

Stiafe that meslal the matiarinthe ahsandaile unlverss i3 maties

‘Dascriba the asymmatry of matisrand antmatharin the universe-asas |
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e believe that all atoms are made up of neutrons, protons, and electrons. The

antiparticles of thase threa paricles are also known. The positron (a positive
electron), the neutring, and the photon are also known, By the end of 1960s, many new
types of particles similar to the neutron and the proton were discovered. These were
called mesans whose masses ware mostly less than nucleon masses but more than the
electron mass, Afterwards, other mesons ware also found that have masses greater
than nudeons. Physicists starled to ook for more fundamental pariicles which must
have even smaller congtituents which was later confirmed by experiments. These were
named as guarks. Wa will discuss in this chapter, the basic building blocks of matter,

12.1 STRUCTURE AND PROPERTIES OF THE NUCLEUS
The atomic nucleus comprises two types of particles: protons and neutrons. A proton s
the nucleus of the simplest aium. hydrogen, called a pru'lium Thepn:rtnn has a positive

number of protons in a nucleusis ca.lled the atomic number represeniad by the symbal
£, The tatal number of nucleans, the sum of nautrans and protons, is represantad by the
symbaol A and is called the atomie mass number, or simply mass number. It i2 written
as N=A-Z, (12.1)

whers M represents the nautron number.

In order to specify the given nudei, the symbol X is commonly used as :X, Whera X is
the chamical symbol fior the element, To indicate tha mass of atomic particles, Instead of
kilogram, unified mass scale (u) is generally used, By definition 1u is exactly one
twelveth the mass of carbon' atom (1u = 1.6606 x 107 kg = 831 MeV), In this unil the
mass of a proton is 1.007276 u and that of a neutron is 1.008655 u while that of an
elactron 15 0,00055 u,

For a particular atom (e.g., carbon), nuchked are found to contain different numbers of
nautrnns aitru:mgh they all have the same number of pmtuna For exam
: e i
i} B e cﬁél@ i




: VUHDMEHTHL FORCES OF NATURE

To understand the structure of the nucleus, it is important to know the nature of the
forces that bind the nudieon together. But before that, we should know the basic forces in
ratura, Despite the apparent complexity within the universa, all interactions in the
universa are govemned by the four basic forces known as fundamental forces, These
forces control how objects move, inleract and behave at different scales from tiny atoms
to massive galaxies. The four fundamental forces are gravity, electromagnetism, weak
nuclear force, and strong nuclear force.

Gravitational force or gravity s one of the four fundamental forces of nature. It is the
weakest of the four but it is a long-range force. It is an attractive force and arises due to
the gravitational interachon between the bodies. The gravitational force batween two
bodies iz proportional 1o the product of their masses and inversely proportional to the
square of the distance between them. When considered for massive objects, such as
the sun, or giant planets, gravllatlnnal force is mnsldared to be slgnl fcant as

to be negligibly weak,
The alnuhrumaynltlc faru is

'i chammal handmg to Elﬂd]’ll:l’f'f. rnagnal}sm. and m
James Clerk Maxwell (1861) farmulated a sat of four fundamental
eqtations that unified electricity and magnetism into electromagnetism. These
equations descnbe how electric and magnetic fields interact and how electromagnetic
waves propagate, These equations showed that electric and magnetic flalds are not
separate forces but are two aspects of a single electromagnetic force,
Out of the four fundamental forces, nuclear forces are the strongest atiractive forcas.
Electromagnetism holds matter together, but there was no explanation on how the
nucleus is held together in the atom. If we only consider the forces of electromagnetism
and gravity, the nucleus should fly off in different directions, The stability of the nucleus
implies that another force should exist within the nucleus whrch ls shunger than the
gravitational force and electromagnetic Bl 12.1
force. This is where nuclear forces
come into play, Strong nuclear forces Edrce
are responsible for halding the nuclei of S

gtoms together. They only exist inside teompared to sheng force) -y

e ————
‘ : ' i O \O~ [ g
acts as an attractive force betw an a(j“@\r\ V\V’\\WU <10 m
nucleons, protons an ‘ ut

Thus, pratons attragtes
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nudear force at the same time they repel each other via the electric force. A
neutran, being electncally neutral, can attract other neutrons or protons via the strong
nuciear force. Weak nuclear forces are responsible for the radicactive decay,
particularly the beta decay and interactions invaolving neutrino. Unlike the other
fundamental forces, the weak force can change the identity of particles, making it
essantial for processes like nuclear fusion in stars and the decay of unstable alomic
nuckei, The relative strength and range of the above four forces are given in Table 12.1,

12.3 MATTER AND ANTI-MATTER

It was predicted by Paul Dirac in 1928 that the Far Your Information
fundamental parﬂdeg haufe thair antl-partides. The 1.4 parlile e——
rest masses of the anti-particles are the sameastl‘miuf maching that sccalerstes charged
"'lBi‘l" mffﬁﬁpﬂnding pﬂl‘ﬁ'ﬂ‘ﬂﬁ hul.‘ wlth ﬁppbslta pgrtlclgr.a, such ag Elactmna
charges. For example, positron is the anti-particle of an  peotons, o lons, to extramety high
electron. It is represented by . The rest mass of the m&awm
pnsitmn i& the same as ﬁ'uamf an ebectron bu o

For their work on this discovery,

BS el ! dei
esented by a letier with & bar over I, €., anti- Lies S0 Anderson recehved ine

pru-inn is represented by pantineutrino by Vand so on.  and Anderson in 1036, In 1855,

The quarks and leptons have been recognized as the 5":';* -‘“‘: mwﬂ:ﬂw
lum:_lamenlal particlas also knnm as elemaptary ::mﬁ::ﬁ::n: “:2 aﬁ::;dz;
particles among the too many discovered particles. Nobe! Prize in physics in 1958 for
These efementary particles have also antiparticles, theirdiscovery of anb-proton.

{f) The cosmic rays ane high-anargy paricias cofming fram the outer-apace with unknawn sources, Their
saurca may ba the sun or tha olhar sars. These particias consist mosty of protons, neutrons and
heavier msclel, which are conlinually bombarding the Eanh, When these parlicles interact with the
aloms of the gases of the Earth's atmosphere, thay produce showees of secondany parficles which
raain chown on us all the lime,

(&} ‘Wnan rrur:lal of unatabls radicactve alumanl Hﬂf E.‘iﬁ- 'I.I I.I'Iﬂ!mﬂ fizalon reactions in the nuciaw




Pair production ocours when a gamma ray photon (high energy photon) passes nearby
an atomic nuclaus. As a result, an electron-positron pair is emitted as shown in Fig. 12.1.
The presence of a third particke, such as a nucleus, is necessary to conserve linear
momentum, According to the law of mass-enargy equivalance, the minimum energy of a
photon for pair production must be equal o the sum of the rest mass energies of the
created particles. The rest mass energy of the eleciron-positron pair is
2m.c’ = 1.02 MeV which has been verifiad experimentally. A gamma ray phaton with
energy less than 1.02 MeV cannot produce an
electron-positron pair wheraas a photon with
energy greater than 1.02 MeV creates an The par Fﬂd“"“"“ cannol taks: placs
electron-positron pair and the excess energy :w"'" or space. The pair pruduction can
; e - ppen only in the presence of an exiemal
goes into the kinelic energies ofthe parickes.  guien ke an atomic nudeus which_can
The process of pair production satisfies the ewperience some recoll ‘"‘f“ﬂ
laws of conservation of charge, momentum and “"’m s
ENETgy. ®)

Annihilation of Matte:

B+ & =+ y+y

The energy of each gamma ray photon is 0.51 MeV which is equal to the rest mass
energy of an electron or a positron, i.e. E=m.g’. In an annihilation reaction energy and
momentum are conserved, Besides the electron and positron annibilation, the
annihilation reactions of othar particles and their anti-particles can also be carmed out
.g., proton and anfiproton, lepton and antilepton, quark and antiquark, ete.
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Hi \én-ergy collisions between
the particles at CERN have
revegled that some mass of
caolliding paricles 5 changed
to  electromagnetic  radiation
according to Einstein’s equation
and left over mass appears in
the form of new sub-atomic
particles.

Figure 12,3: A high enengalic pp collision producing 18 new
particlas.

12,4 RADIOACTIVITY

can also be produced
a stable al&m&nt is

alpha

mgh energy parices, such a5 neulmnﬁ prmnns
ys, causing it to become unstable and emit radiation. This is
radinactivity and radioactive isolopes are named radicisotopes or

radfonuclides.

The o-particles, f-particles and y-radiations are fraversed differently when passed
through the electric field as shown in Fig. 12.4. itis seen that a-particies deflect towards
the negafive terminal of the electric field, showing they have a positive charge. The a-
particles are emitted at high speeds, typically a few percent of the speed of light.
However, a-particles can travel only several centimetres in the air doe to their large
meass, The f-particles deflect towards the pasitive terminal of the electric field, showing

Lead block
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py hiave a negative charge. The deflaction of B-particles is more than the a-particles,
proving that they are lighter particles than a-paricles. The B-particles are fast-moving
electrons and move with speeds up to 08995 of the speed of light, The y-radiations
passed through the electric field withouwt deflection, showing they have no charge, The -
radiations are electromagnelic radiations which consist of photons. They move with the
speed of light with the highest penelrating power but the lowest ionization power.
The process of emitting a-paricles, B-particles and y-radiations from the nucleus is
called o-decay, B-dacay and y-decay, respectively, and are discussed below.
Alpha Decay
If the nucleus has more prolons than the number of neutrons, the electrostabic toroe of
repulsion becomes greater than the strong nuclear force of attraction. In this case, the
nudleus becomes unstable and emits alpha particles in radivactive decay. An a-particle
iz equivalent to a helivm {He) nucleus which consists of two protons and two neufrons.
This means the nucleus loses two pmf.uns and neutrons in the o-decs

Is an exampla of a-decay:
A radium-226 isotope | “.Ra ) emits an alpha particle

and decays into a daughter nucleus radon-222 [ “_Rn ).

™Ra = TRn + iHe e i (12.3)

I the abﬂvﬁ nuclear reaction, the daughter nucleus ( ~, Rn)is diffarent from the parant
nudaus{ w2 ). This transition of one element into another is called the transmutation
of the elements. It is axparimeantally found that the mass of the parent nucleus is greater
than the total mass of the daughter nucleus and the mass of the «-particle. Thus the total
mass-energy (E=mc’) of the decay products isless than the mass-energy of the ariginal
nudide, This difference in mass-anaergy is called tha disintegration energy Q. or the Q-
value of the decay.

Beta Decay

There are two types of P-decay, beta-minus decay and betasplus decay. @m
(1) B'-Decay @




| Chagrimi €I Mucloar zmd Farticie Piyysic =

on and an electron, plus another particle called antineutring which is the anfi-
particie of nautring, The neutrine ks danoted by a Greek symbal v (nu) and antinautring
iz denoted by a barover the v. The decay process is given by the following relation:
h EIRE e T B e

One of the neutrons changes to a proton and in order to conserve charge it emits an
electron, These electrons are called beta particles, However, they are indistinguishable
from orbital electrons. Both the neutring and the anti-neutring have zero charge and
very small mass, which is why they are very difficult to observe when passing through
the matter. No nucleons are lost whan a f-particle is emifted, and the total number af
nuciaons A remains the same but the mass number £ changes. Beta decay process can
be written as;

Ao M +ler ¥ For Your Information
, o , Tha nisutrin was first proposad by
From the above equation, it is clear that the parent Wiligang Pasl in 1930 to cbeythe

element of atomic number Z |g transmuted to another
element of atomic numbar (Z+1). An example is the
isotope of thorium, which is un e dnd de
: h-power nuclear reactor, On
this discowery, F. Ralnes raceived

protactinium by beta emissi e %} e and C. L
represented as. Q
KX 3 \ps « 14 7 the Nobel prize in 1685,

(i \ o)

Thire are also nuclidas that have neutron-to-proton ratio (M/F) too amall for stability and
decay by emitting a positron instead of an electron. The positron (e+) has the same
mass as the alectran but it has a positive charge. The pasitron |8 the antiparticle of the
electron. In this process, a proton in the nucleus decays into a neutron and a positron,
plus a neutring, The generalized decay is given befow:

A X +tlarw
An example of a decay of Neon into Flourine by emitting positron and neutring is;

whe —+ TF +le+ v
Energy of Alpha and Beta Particles in Radioactive Decay
In both o-decay and B-decay, for a particular A
radionuclide, the same amount of energy is
released, In a a-decay of a particular radionuclide,
every emitted a-particle has the same sharply
defined kinetic energy, When the number of

a-particies is plotted against kinatic energy, thera 2 CC;& 2 @ S
are distinct spikes that appear on the)gr @fﬁ\ =

of a-particlas (W]

shown in Fig. 12.
s

Einatic Enangy {av')
Figura 12.5: Discrete enemgy values of w-paricles




energy is shared between B-particle and anti-
naeutrino In varying proportions. The sum of
electron (or positron) energy and the anti-
neutrina's {or neutrina's) energy, however, in
every case remains the same. Thus in f-decay,
the energy of an alectron or a positron may
rangea from zero to a maximum value, When the >
number of B-paricles is plotied against kinetic Karsatic Enaegy (e

anergy, the graph shows a curve as shown in Flgure 12.6: Contimios spactrum

Fig. 12.6. This demonsirates that beta paricles of f-partichs

{electrons or positrons] have a confinuous range of energies, The pnnciple of
consarvation of momentum and anergy applies in both alpha and beta emission.

{iii) Gamma Radiation

Ma. af f-particlas (M)

pﬁ
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When a nucleus |2 smashed in an ulira high energy paricle accelerator. or bwo hight
energy particles are collided, entirely new types of particles are created which
apparantly do not exist within lhe atoms of the ordinary mattes, They are the oulcomea of
the violent collizions needed to probe the basic structure of matier. More than a hundred
new particles have been identified o be dassified into families with similar properties,
Many of these were accounted well with the scheme of theoretical physicist while the
rest were named "strange particle”. They are always created in pairs, 8.9, when a pion
(r') collides with a proton, two strange particles k° and A” are created. Tha nuclear
reaction is

T+p=+ K+ N
Al particles spin on their axes and the spin of charged particles makes them tiny
magnets. The characteristic spin of electrons, protons, neulrons and is 112 and the spin

of photen is 1 and of pions is taken az zera. Half spin particles obey the Paul
principle which says that only one particle of a klnd OCCUR H @m‘
These parlicles are called "fermions” {he e PN Aumber spin do
not obey !hls prmclpie Theyare talled, The Hose-Einstein statistics,

) & do not interact strongly with nucleons, and are called leptons (small)
along with the electrons, tau and neutring.

Both of the f-decay (beta-minus and beta-plus) processes provide evidence that the
profons and neutrons are not thie fundamental particles. By the 1960s many new types
of particles similar to the neutron and proton were discaovered, as well as many
‘midsized” particles called mesons whose masses were mostly less than nucleon
masses but mere than the electron mass (other mesons, found later, have masses
greatar than nucleons), The strongly attractive particles are called n meson or pions
while the weakly interacting particles were named u MesoNs or MWONS.

This discovery led to the conclusion that these partickes could nat be fundamental
particles, and must be made up of even smaller constituents | which were given the
NEME JLErks,

Hadrons and Leptons
F-'arhc:lea can alsu bhe l:lass:ﬁed based on the Il:lur fundﬂrrml}al farces Ehat act an the




are called leptons. Examples of hadrons include protons, neutrons, and pions, whereas
alecirons and neulrinos are classified as leptons,

Hadrons are composite subatomic particles that can be further divided into fwo broad
categories: some are bosons, referred 1o as mesons such as pion, while othars are
fermions, known as baryons, with profons and neufrons being the key examples.
Barvons are made of an odd number of guarks (usually three quarks), and mesons are
made up of an even number of quarks (usually two qQuarks: one quark and one
antiguark].

Tha laplons interact only through weak or alectromagnetic interactions. Mo exparimeants
have yet been able to reveal any internal struciure for the lepions; they appear o be
truly fundamental particles that cannct be splt into smaller particles, All known
leptons have spin Y5, so they all are fermicns. The six known leptons are gmupad
as Ihre-e palrs ﬂ'fpﬂﬂldes as shown in Table 12.3 Each pair mn;:ludes acha

Particle
s Electron ot 0.511 A -
EIBClion | Elegron neutino | v, » 1107 0 W
Niaon Muan et 1057 o =
Muan neutring ¥ » 1=107 0 7.
T Tau ! 1777 -1 =
Tau MNeulring W, W 1107 0 %

126 QUARKS

In 1964, M. Gell-Mann and George Zweig propesed that none of the hadrons, not even
the praton and nautron, are truly fundamental, but instead are made up of combinations
of three more fundamental enfities called quarks or quark flavours. Quarks are
considered to be truly fundamental particles, like leptons, Three guarks originally
proposed were named up, down, and strange, with abbreviations u, d and
respectively, Presently, we are aware of six quarks, JI.IBI as there W -*"‘ 84
a presumed wm:eny:n nature, 'I'hearl B8 (U *d C

W-m qua-rks{see Table



made up of combinationsof quarks 3 .
(plus the gluons that hold them ; N l—
together), and their properties are {ﬂl Maviii permicle m-
de=zcribed by looking at their quark Up u 4.3 5 m = E
content, Mesons consist of a = 3 3
quark—antiquark pair. For example, Dawn d|_1 it a s
an mesonis a ud combination. A = 3 3
can be made of ull). N 2 | 4500 _ 2
Charm ol ¢ =
Each baryon, on the other hand, — 3 A 3
consists of three quarks, suchas:  srange | s | _1 | 2 | ¢ | .1
The proton has a quark composition = — 3
of ud and so its charge quantum Top i +E 175000 | P _g
e L =
o i _; = Emﬂm b e -
aludd)= 5+ 3 -z} =+ B0 . ﬁﬂ%m@@ -

Meutron has a quark compaositio @)
udd and its char “ O ; ETEe
number is O%
- 1
ddy = m LY

Mesons are quark—antiquark pairs. Consider the meson n°, which consists of an up-
quark u and an antidown quark o, We sea that the charge guantum number of tha up
quark is +273 and that of the antidown quark is +1/3. This adds nicely to a charge
quantumnumber of +1 forthe 1° meson; thatis, glu)=2/3+ 113=+1,

Mot long after the quark theory was proposed, it was suggested that quarks have another
property (or gquality) called colour, or “colour charge” (analogous o electric charge),
According to this theory, each fiavour of quark can have one of three colours, usually
designated red, green, and blue. Note that the names *colour” and *flavour” have nothing
1o dio with our sanses, but are purely whimsical—as are other names, such as charm, in
this new field. The antiguarks are colored antired, anligreen, and antiblue. Baryons are
madea up of three quarks, one of each colour, Mesons consist of a quark—antiquark pair of
Prodon Pl Lacny Artipeohon

e

re 12.7 (b): A colourless anfibaryone:
antilua + Briired + aniigresan = white




N
rafticular cofour and its anticolour, Both baryons and mesons are thus colourless or
white, Each quark is assumed lo carry a colowr charge, analogous to an electric charge,
and the strong force between quarks is referred to as the colour foree. Thizs theory of the
strong force is called quantum chromodynamics or QCD, fo indicate that the force acls
betwean colour charges (and not between, say, electric charges). The strong force
between two hadrons is considered to be a force between the quarks that make them up.

Beta Decay in Terms of Quarks D& You Mnow?

When a neutren in the nucleus decays into a proton and an 2 e 1 anly nsie &
electron (beta particle), an antineutring is also produced in quclous. Free neutons decay
the reaction and the decay process is given as mammﬂr‘ags.
n wp+la+v

Now, we can identify that a neutran with composition udd
can convert inlo a proton with composition wad by
changing a down quark into an up quark. The fundarmental
decay process can now be expressed as

ity intricate levels. The quark model not anly
siructures but also provides ingight into their

Fundamental particles are considerad to be the six quarks, the six leptons and the
gauge bosons (Higgs bosons), which are the camriers of the fundamental forces.
Leptons and quarks interact with each other by sending and receiving bosons. For
example, sleciromagnelic interactions occur when two positively charged particles
send and receive (exchange) photons. The photons are said to "carry” the force
between charged particles. Likewise, altraction belween two quarks in an atomic
nudeus occurs when two quarks send and recelve gluons. Similary, the W, W and Z
are the bosons that are the carmiers of weak nudear force and gravilons are the carriers
of gravitational force. The Higgs boson is a special particle discovered in 2012 at large
hadron collider at CERN. It is associated with the Higg's field that permeates all of the
space, Its crucial role is that it provides explanation for how the other particles get mass
by interacting withit.

The particles that interact strongly with Higg's field get mare ucll@ml
3 | '.'J:. TS 0
gt b .1 ‘ ‘ “n‘- :‘ : % .l:=': -: . “




zns of dark ber due toits distincti cha rlstir:sanl:lnron-erries
12.8 CONSERVATION LAWS
All nuclear process such as nuclear reactions For Your Information
and nuclear decays obey conservation laws P

sLch as: s

1. conservation of energy, momenium baryons, =.g. prolans, neulrons, omegs,
and charge. |l includes the nucleon sigrna and lambda parlicles
number (M) and charge number (Z). Non-hadrons |

2, baryan number ﬁm including alectrons, muon,

3 lepton number

12,9 THE ASYMMETRY OF MA
THE UNIVERSE

Many observations-si
Thig is the most renta

any contribution of anhhydmg:en or anti-helium atoms in the mrm:nsmorn of the
universea,

The experimental resulis explain that the matter and antimatter asymmetry is indeed
dua to tha violation of consarvation of baryan number. |.e., thera is imbalance number af
baryons and its anti-baryons. Now if the particle-antiparticle symmetry is also viclaled
then there will be a machanism for making more quarks than antiquarks, more leptons
than antileptons and eventually more matter than antimatier. Hence, il is concluded that
the preblem asymmetry of matter and antimatier is still mysterny.

12.10 MOST OF THE MATTER IN THE OBSERVABLE UNIVERSE
ISPLASMA

Our universe is more vast than our thinking, bacause we still know about its 5% part bul
we 5till do not know about its remaining 95% part. For example, our universe mntslsts of
aboul 27% of unknown matter called dark matter and about 68% a

antigravity material known as dark energy. By addmg 2T% GRS W

means 95% universe is out of our tl‘!l83
LUnivarse, @

On the ot

"‘ %o[lha

atwe know about it, consists of 68%




almost iru the plasma state Threrafnre. thesa figures lndmate that EE% af the 5% of the
observable universe is the plasma state, whila the remaining 5% Is in the form of matter,
Hence, itis concleded that most of the matier in the observable universe is plasma.

12.11 THETHEORIES ABOUT THE FORCES BETWEEN THE
MASSES OF PARTICLES

To explain the interactions between the masses of tha For Your Information
particles through different mediators, we have the s
following two theories, the quanium field theory and
the string theory.

2.  Thequantum field theory

According to this theory, each particle iz represented
by a field called quantum field and it is responsible to
transmit a force from one particle to another by a

mediator. For example, et a positive cl'@'g
prn:luces an electric ﬂald in space

mentum of all fields ara quanllzed The quanta that i;
exchange momentum and energy from one type of !
particle to another in their field are called fiekd |
particles, Thus, we can say lhat the interactions |
between particles are deszcribed in terms of me
exchange of field parlicle or guanta which are all -
bosons. For example, the electromagnetic force s |
mediated by photons called quanta of the |
electromagnetic field. Similarly, the strong nuclear ﬁ
force is mediated by field particles called gluons, the ®
weak force is mediated by the field paricles called E
Bosons (W' and Z) and the gravitational forces Is
mediated by field paricles called gravitons.
2.  String Theory E

String Theory is an advanced concept m
theoretical physics proposing that the funds
particles of the universe, instead.of
are actually tiny, vibrati iNgs
be open or closet



| Chagrimi QI Mucloar amd Farticie ﬁr:.'ull

ine the properties of particles, including mass and force. String Thaory
framework, offering a potential theory of everythmg, still remains unpmved
axperimentally, . ,

12,12 THESTANDARD MODEL

The standard modelis the collection of theories
that describe the smallesi experimentally
observed paricles of matter and interaction
between energy and matter. Three calegories
of particles form the standard model as shown |
in Fig. 12.8. Matter, which makes up only 5% of |
the universe is composed of quarks and
leptons, The fundamantal boscns provide
three forces: electromagnetism, the strong
nudear force and the weak nuclear force,

The Higg's boson discoverad in 2(]12 |d 8\ d wi ; ‘
an explanation furhl;rw tha ofhe s - -
mass. ‘77 12.8: Elarmentary partiches in the

shanctard model
mpma Currently, it is unahle to explain many
Known unlv&rs& wchas {I} gravity (i) dark matter (27% of

'@ Multiple Choice Questions Jj|

12,1 Which one of the fallowing is the fundamental particle:

ia) proton (b} neutron i) elactron id) meson
12.2 The first discovered anfi-narticla is:
{a} anti-proton (b} antineutrino {c) anti-Photon {d}) antielectron

123 Which one of the following pair of paricles creales annihilatson:
{a) proton-proten (b) proton=rweutron
{c) neutron-photon (d) electron-positron

12.4 The strang nuclear force belween the lwo particlas is medialad by,

{a) gluons (b} photon Wa

12, 5'Which ane of the following forces lq&?r

(&) strong nuclear force %




128V en a neuiron changes into a proton then we will observe;

(a) p-decay  (b)p'-decay (c)y-decay  (d)o-decay
127 Baryonisformed by combination of:

(a) 2 quark (b 3 quark

(c) 4 quark (d)Aquark and an anti-quark
12.8 Which ona of the following forces has negligitle effect between the slementary

particles:

(a) sirong nudlear force (k) weak force

(c) gravitational force (d}electromagnetic force
12,8 Which particles are produced by strong interaction:

(a) graviton (b)leptons  (c)hadrons  (d)mesons
12.10 Astrong nuclear force exists between the nuclecns of;

(@lp-p {byn—n (e)p—n
12.11 Which ana of the following radiaimniparigle

(a)o b} P '
12,12 Whichaneo

paficles has tha highest penelrating power

ia 5 (e} i (d)y

1 e aecurs in atomic membar of 3 nucleus but its mass numBar ramalns the
same by decay ol
(a)w {byp (c)y (djaandy

12,14 In a nuclaus, a neutron changes into & proton the atomic number changes by
ona; ihe mass number will be

(a)decreased (b}increasad (c)remainsame (d) none of thesa
12,16 Tha alectroweak theony was introducad by:

(a) Dirac b Einstein (c)Anderson  (d) Dr. Abdul Salam
12,16 The asymmetry of matter and antimatteris due to imbalance number of:
{a) hadron (b leplon (c)baryon (d) photons
12.17 Which one of the following paricle is respansible for the mass of the fundamenial
particla:
(a) quarks {b) antiquark () leplon {d) higgs boson
12.18 Aprotonis composod of up and down quarks, the ordar of 5 s @
(a) udd {b) udu . O@

12,19 The number of guarks tha
(a)2




12.1

122
123
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126
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12.3

124
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@ Short Answer Questions )|
What do different isotopes of a given element have in common? How are
they diffarant?

Identify the element thal has 87 nuckeons and 50 neutrons.

What are the similarities and differences between the strong nuclear force and
the electric force?

Fill in the missing particle or nucleus:
wCa—=T7+E + ¥

mOU — 2 47

Why neutrino must be released in the positron emission?
Distinguish between fermions and bosons,
Hnwdn-asslrm‘ng force hold the nucleus?

Why alec‘.lmn-pnaﬂmn pair cannot decay into a single photon’?

State the role of Higgs Bason in the generation of mass in madern physics
theories.

What are Mesons? Give example.

[ Constructed Response Questions |

Why doas Beta particle have continuous anergy spectrum?
Is meson or boson or fermion? Give reason.

Why does an alpha emitter emit alpha particles instead of four separate
necleons?

Which is mora anergetic Alpha decay or Bata decay? Justify your answer.

Anudeus undergoes Gamma decay, emitting Gamma ray photon with energy
1.5 MeV, Calculate,

()] frequency of Gamma ray
(i) F Gamma fay
{iii)




|§ Comprehensive Questions [J|

12,1 What is meani by radicactivity? Compare the properties and behavior of three
types of radiations.

122 Elaborate the phenomenon of beta-positive decay and beta-negative decay with
axamples.

12.3  What iz the difference between matter and antimatter? Discuss reasons why our
universe is almost entirely composed of matter.

124  Explaln the phenomenon of pair annihilation with an example, Explain the wtility
of its principle in the medical field.

125 Explain the law of conservation of energy and momentum in electron-positron
pair annihilation.

128 Describe protans and neutrons in terms of their quark compaosition.

12,7  Describe four fundamental forces in nature.

12,8 Describethe classification of elems pﬁrﬁm @O@@S

R
12,1 Urani i ter. In the process, itis transmutaled into a daughter
Wﬁ ig the mass number {A) and charge number (Z) of the daughter
eus? What is its chemical symbol? (Ans: A-234, 2=90, Thorum)

12.2 Polonium “,,Po is a beta minus emitter. What will be the mass number (&) and
charge number (£) of the daughter nucleus? (Ans A=218, Z=85)

123 Nitrogen "N bombarded by alpha particle results into |0, What is the product
particle in this nudlear reaction? (Ans: Hproton)

12.4 Show that nucleon number (N) and charge number (£) ara conserved in the
numerical guestion 12.3.
12,5 Determine the rest mass energy of electron in eV, Its rest mass s 0.0000555 u?
fAne: 0.51 MeV)




