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,Major Concepts SREETEL(9 PERIODS) m

The scope of Physics This chapter is built on
SI base, supplementary and derived units Measurement Physics [X
Errors and uncertainties

Use of significant figures

Precision and accuracy

Dimensionality

Students Tearning Outcomes

After studying this unit, the students will be able to:

Describe the scope of Physics in science, technology and society.

State SI base units, derived units, and supplementary units for various measurements.
Express derived units as products or quotients of the base units.

State the conventions for indicating units as set out in the SI units.

Explain why all measurements contain some uncertainty.

Distinguish between systematic errors (including zero errors) and random errors.

Identify that least count or resolution of a measuring instrument is the smallest
increment measurable by it.

Differentiate between precision and accuracy.

Assess the uncertainty in a derived quantity by simple addmon of actual, fractional or
percentage uncertainties.

Quote answers with correct scientific notation, number of significant figures and units
in all numerical and practical work.

Check the homogeneity of physical equations by using dnnensnonallty and base umts
Derive formulae in snmple cases using dimensions. - - s e s |
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INTRODUCTION

Among the creatures, human being is the only creature who has ability of
thinking, reasoning and researching. On account of this ability, he is trying to gain
knowledge about the origin, creation and organization of this vast universe and the
different related laws governing it. He also endeavours to explain the hidden natural
reservoirs and forces (acting and reacting) which cause various events in the
universe. In the past, man was reluctant to think about the universe but at present, he
wishes to make an abode on moon or on any other planet. Quantization rules of
electrons in an atom, a solar system and a massive body like galaxy all these have
become part of the study and observation of the mankind. Similarly, a man
researches to reason out that how the life of living things (plants and animals) get
possibility to exist and evaluate only on earth? How days and nights are formed by
the spin motion of the earth? How changing of seasons are timed by orbital motion
of the earth? In the same way, how the process of evaporization, condensation and
sterilization take place? In short, the knowledge about the nature in terms of
research, observations and practical applications are known as science. Gradually,
due to rapid research, the volume of knowledge about science increases. Therefore,
science is basically classified into two main classes; Biological sciences which deals
with study of living things and Physical sciences which deals with study of non-
living things. Physical sciences can be further sub divided into five main branches
i.e.; Chemistry, Geology, Astronomy, Meteorology and Physibs The word Physics
comes from the Greek word “Physis” Physika or Physnkos meaning the knowledge
of the nature and natural world.

On the other hand, Physics is the study of properties of matter and energy and -
the mutual relationship between them. This chapter deals with the scope of physics
in science, technology and our society. Therefore, we will explain the international
system (SI) for weights and measures. Similarly, we will also study errors,
uncertainties, significant ﬁgures precision, accuracy and dimensions of physical

quantities and their usage in this chapter.

1.1 THE SCOPE OF PHYSICS |
Physics is based on experimental observations, quantitative measurements
and concerned with the fundamental laws of the universe. Therefore, physws is the

most basic branch of physical sciences. :

Like electrons around the nucleus, all the other subjects of physical sciences
are revolving around the physics. Now there is no denial of the fact that physncs has
countless contributions in the field of science and technology and its role in the

development of our society 1s dynamic.
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The principles of physics have not only brought
tremendous changes in every walk of life but also
changed the life style of mankind by the wonderful
contexts of infrastructures. On one hand, the
appliances of physics have introduced an industrial
revolution in the world. On the other hand, these have
turned the world into a global village by fast audio and
video communication system via radio, television,
mobile, computer and internet system. In all these
modes of telecommunication systems, the carrier
signal is electromagnetic wave whose speed is equal to
speed of light (3 x 10® ms™). In addition, the existed
vast libraries and archives which contained millions of
books and documents, all these information and
knowledge have been confined to tiny chips. These
chips have been developed from the basic ideas of
physics. Similarly, in medical sciences, diagnose and
treatment of incurable diseases now have become
possible by introducing considerable advancements
and achicvement of modern technology such as
transplantation, radiotherapy, chemotherapy, x-rays,
magnetic resonance “imaging (MRI), computer
tomography (CT Scan), LASER surgery, operation
without surgery by nano robots.

In the field of engineering, all sort of appliances
such as microwave ovens, vacuum cleaners, washing
machines, air-conditioners, refrigerators, engines,
electric motors, generators, submarines, airplanes,
excavators, robots and many more which are working
under the various laws and principles of physics and
they have made our lives easy and comfort.

~In the same way, the role of physics in genetic
~engineering and transgenetic organism in the
development of new species cannot be neglected.
Summing up, the involvement of physics in each
section of life is a universal truth.
- Physics has a number of branches which are
listed in the box. But all the work and research of
physics has been basically classified into two main

Physics and Technology

One of the most exciting
technological advances in
the world today is the field
of nanotechnology. Nanoro-
bots or nanomachines have
been used to remove Obs-
tructions in the circulatory
system and kills cancerous
tumors  with  precision:
Researchers from McGill
University have achieved a
spectacular breakthrough in
nanotechnology.

Different Branches of
Physics

Classical Phvsics
Mechanics
Optics (Light)
Sound (Acoustics)
Electromagnetism
Heat & Thermodynamics
Modern Physics
Atomic Physics
Nuclear Physics
Molecular Physics
Plasma Physics
Quantum Physics
Space Physics
Solid State Physics
Nanotechnology
Laser Physics  « °
Fluid Dynamics
Aero Dynamics
Hydro Dynamics

I




classes, which are named as classical physics and
modern physics.

The physics upto the end of 19" century is
known as classical physics which consists of Newton’s
laws of motion, gravitational laws, laws of
thermodynamics, kinetic theory, Maxwell’s theory of
electromagnetic wave and the laws about optical
phenomenon. However, the physics after the 19"
century is known as modern physics which includes
discovery of x-rays and radioactivity, Michelson-

Intcl—'disciplinary—f
Branches of Physics

Astro Physics

Bio Physics

Chemical Physics
Relatavistics Physics

Low Temperature Physics |
Condensed Matter Physics
Engineering Physics

Geo Physics .

" Mathematical Physics

Medical Physics

Morley experiment, Max Planck’s quantum theory, 3
| Einstein’s special theory of relativity, Bohr’s atomic theory, De-Broglie hypothesis,
| Schrodinger wave equations and Heisenberg uncertainty principle. All these new
| researches have brought a revolution in the field of physics and other scientific
disciplines: ..

' 12 PHYSICAL QUANTITIES
i ~ - Physics is an experimental science where the measurements are made and we
! usual_lyiiﬁsé some quantities to describe the results of these measurements. Thus the
" quantities which can be measured are known as physical quantities. For example,
| mass length, time, distance, velocity, force, weight, momentum, work, power etc.
| On the other hand, all the laws and equations of Physics can be expressed in terms
1} of these physical quantities. Physical quantities can be classified into two classes,
i.e. base quantities and derived quantities.

| Bage Quantities

"‘ The quantities which are independent and cannot be expressed in terms of
! other physical quantities are known as base quantities. There™ are seven base
quantities such as; mass, length, time, temperature, current, amount of substance and
! intensity of light. '

Dérived Quantities

The quantities which can be expressed in terms of fundamental quantities
using arithmetical operations of product or quotient rule ‘are known as derived
quantities. Fox example, velocity, acceleration, momentum, force, work, power etc.

Product rule: - ; :
According to this rule two or more physical quantities are multiplied such
that their product gives a new-resultant physical quantity. For example, momentum
is derived by the product of mass and velocity. i.e.,
Momentum = mass x velocity
p=mVv
- 3
~ | %
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Quotient rule:

According to this rule, onc physical quantity is divided by another and their
quotient gives a new resultant physical quantity. For example, velocity is the
quotient of displacement and time. i.c.,
displacement

Velocity = T
ime

v =

- | 1

1.3 INTERNATIONAL SYSTEM OF UNITS

The standard and justified measurement of a physical quantity is called unit.
e.g. kilogram, meter, second, ncwton, joule, watt, radian, etc.

In. 1960, a general conference on weight and measure was held in Paris.
After prolong discussion, the international committee for weights and measures
agreed to introduce a common system of units all over the world and they
recommended a metric system for measurements which is called International
System of Units (SI). The SI unit is an improved form of MKS (Metre, Kilogram
and Second) system. SI unit is replaced by CGS (centimeter, gram and second) and
FPS (Foot, pound and second).
There are three main routes of the SI units

(1) = Base Units

(i)  Derived Units

(111)  Supplementary Units

1.3.1 Base Units
The units of base quantities are known as base
units. Base units are isolated and cannot be derived from

any other units. There are seven base units which are
listed in table 1.1. '

Table 1.1: Base S.I Units

Base’lQuantily 1 Uit : 101 .;\n -accu-raﬁ‘ cbp}' o%th_e—
Mass ' kilogramfl kg International Standard
.Len Kilogram kept at Sevres,
T gth hmetre | m France. is housed under a
1me : - | second \ S 4 double bell jar in a vault at
Electric Current ampere A the National Institute of
Temperature kelvin ; Ko Standards andTechnorlofgy.w 7
Intensity of Light | candela | «d |
Amount of substance | mole | mol




1.3.2 Derived Units

The units of derived quantities are called derived units. These derived units
can be obtained under the arithmetical operations of product or quotient rules which
arc explained as:

‘Product Rule
According to this rule, when two or more units and multiplied such that their
product gives a new resultant unit. e.g. metre cube (m’) is the unit of volume and it
-can be obtained by the product of base units as:
' Volume = (lcngth) x (breadth) x (helght)
The derived unit for volume is (m)(m)(m) = m’

Quotient Rule
According this rule, when a unit is divided by another unit such that their
quotient gives a new resultant unit. e.g. Watt (W) which is the unit of power and it
can be obtamed by the quotient of base units as
work _ Joule

P=
;tlme second
kgm?s™ _

= XM S _ em?s?

./ S

P = watt

Somc other dcrlved SI units are mentioned in table 1 2

Table 1.2: Derived SI Units |
| = Initerms of Base

Deérlved Quantity I { - SymbolE S

Force " newton N kg m 572
Work, Energy ' joule ' J N m = kg m’ ga =
| Power watt W | Js'=kgm?s®
‘”PTe‘ssure, stress pascal ; Pa ;I} ke m?
Co-efficient of - . poise H N —23 kg HT

Viscosity . m

Electric Charge ‘ coulomb - C A.s \
Frequency | hertz | Hz 5 : \
men& of Inertia kilogram metre square kg m’ kg m’ g
]

10,
A 4



r
t

r
t

1.3.3 Supplementary Units
T}le two }lnits could not find a room in
base units nor in derived units in the general
conference for weights and measures held in
1960 in Paris. These two units are called
supplementary SI units. Supplementary SI units
are radian and steradian, both are geometrical
units and dimensionless.
(a) Radian
. Radian is a two dimensional plane angle
and it is defined -as, "the angle subtended at the
centre of a circle by an arc equal in length to the
radius of circle”, as shown in Fig.1.1. and it is
equal to the ratio between lengths of the arc to the
radius.

——
” -~

Fig.1.1: A plane angle of radian
subtended by an arc whose
length is equal to the
. radius.
Let an angle ‘0’, which is subtended by an

arc of length ‘S’ along a circle of radius ‘r’ then;

0= §(rad)
For one revolution, ! '

Length of the boundary of the circle (S) = 2nr (circumference)

Thus, equation 1.1. becomes

0= E =27 radians

r
Now if length of the arc ‘s’ = radius ‘r’.
Again equation (1.1) becomes 6 = £(rad).

r
Thus, 6 =1radian, as shown ir Fig 1.1.
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NIST F-1 Cesium Atomic Clock
NIST-FI is the world's most
accurate time and frequency
standard. This atomic clock
developed at the NIST (National
Institute  of  Standard and
Technology)  laboratories  in
Boulder, Colorado USA. NIST-FI
defines Coordinated Universal
Time (UTC). The official world
time.

The uncertainty of NIST-F1 is
continually improving. In 2000 the
uncertainty was about 1 x 1077,
but as of January 2013, the
uncertainty has been reduced to
about 3 x 107", which means it
would neither gain nor lose a
second in more than 100 million
years. First atomic clock was

developed in 1945.

—

Importance of Units i

In September 1999, after nine
months and travelling 650 million
kilometers, the Mars climate
Orbiter (robotic space probe)
suddenly disappeared. The 'root
cause' of this loss was the faulty
unit conversion.




(b)

Steradian
Steradian is a three dlmensmnal solid angle. It is

defined as “the angle subtended at the center of a sphere
by a surface of sphere and it is equal to the ratio between
‘subtended spherical area to the square of the radius™.

But, spherical area= 4nr’

herical area
Al e=sp crlc2 :
r.

(steradian)......

2

(steradian) = 4n steradians

.Angle 8= 4“:

Now if the‘spherical area=1m” and radius r=1m
- Then equation (1.2) becomes

1.3.4 Conventions for indicating SI units

-

Fig.1.2: A solid angle of
steradian subtended by surface
area equal to the square of the

radius.

. 1m-”
Angle 8=1 steradian as shown in Fig.1.2.

A unit system has a great importance in physics as

well as in any other subject of science, because a value or
a result without unit is meaningless. Therefore, a special
care is required in the expression of unit and writing of
prefixes. In this regard, there are some rules which are
related with the using of units and these are summarized

as;
I.

I1.

I11.

The unit’s name should not be written with a
capital initial letter, even if named after a scientist.
For example: newton, pascal, watt, kelvin

The symbols of the units named after scientist
should be written by an initial capital letter.

For example: N for newton, Pa for pascal, W for
watt, K for kelvin

The prefix should be written before the unit
without any space.

For example: 1 x 107 m is written as Ium.

One space is always to be left between the
numbers and the symbols of the unit and also
between the symbols for a compound unit such as
force, momentum, etc.

P

412>
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l nnt )
Life Span of most
unstable particle

Approximate values of some
lime Inlcr\ als in seconds

nfervo)

w1 llm!

10 -24

Time required for lightto | 107
cross a nuclear distance
Period of X-rays 107"
Period of atomic 107"
vibration
Life time of an excited 10" |
state of an atom
Period of radio wave 10°¢
Penod of sound wave 107!
Wink of eye 107"
Time between successive 10° .
heart beats
“Time taken by light from 10°
Sun to Earth
“Time period of satellite 10°
Rotation period of Earth 10° |
otation & revolution 10
periods of the moon
Revolution period of the 10
Earth
ravel time for light 107
from the necarest star
ge of Egyptian 10"
pyramids
Time since dinosaurs 10"

became extinct
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For example: It is not correct to write 2.3m. But the correct representation is
. . — _2
2.3 m; Similarly, kg m s 2 and not as kgms ™~

Compound prefixes are not allowed. For example: 1pum may be written as
Ipm.

No full stop or other punctuation marks should be used within or at the end of
symbols.
For example: 50 m and not as 50 m.

The symbols of the units do not take plural form. For example: 10 kg not as
10 kgs.

When temperature is expressed in Kelvin, the degree sign is omitted.
For example: 273 K not as 273°K

(If expressed in Celsius or Fahrenheit scale, degree sign should be included.
For example, 100°C and not 100 C)

When a multiple of a base unit is raised to a power, the power applies to the

whole multiple and not the base unit alone. Thus Ikm® =1 (km)" = 1x10° m".
Only accepted symbols should be used.

For example: Ampere is represented as A and not as amp. or am; second 1s
represented as s and not as sec.

SCIENTIFIC NOTATION

Sometimes, we come across a value or a result of a physical quantity which

has extremely large or small magnitude. For example, the number of molecules in
one mole is 602,300,000,000,000,000,000,000. Similarly, the radius of hydrogen
atom is 0.000,000,000,053 m. Such notations are difficult ways of expression.
Therefore, these values can be simplified in a decimal form under a process known
as scientific notation or standard form. According to this process the given value is
expressed in term of some power of ten multiplied by a number which lies between
1 and 10. Thus the number of molecules in one mole is written in terms of scientific
notation is 6.023 x 10™ molecules and the radius of the hvdrogen atom is 5.3 x 107"
m. According to the rule only one non-zero digit should be written on the left of the

decimal point. For example, the standard form of 120000 is 1.2 x 10° but not
12 x'10%.

1.5

PREFIXES

The magnitude of physical quantitics vary. over a wide range. When the .

values of physical quantities are very ‘arge or very small then it is difficult to
express them in terms of the fundarental units. For this, we introduce larger and -
smaller units by using specific letters before the fundamental units. These letters are
known as prefixes and these are represented by fixed values in the form of power of

QY




ten. For example, the prefix ‘kilo’ abbreviated as ‘k’. It is always equal to 1000 or

10°. The prefixes can further be explained by the following examples.
. Mass of bag is 2000 g |

2000 g =2 x10°g = 2 kilogram = 2 kg
II. Size of living cell is 0.000001 m
0.000001 m=1 x 10"® m = Imicro m = 1pm
[1I. Time for speed of sound to travel in air through 0.35 m is 0.001 s.
0.001s=1x 107 s = Imiili second = I ms
Different prefixes and their values are given in table 1.3.

Table 1.3: Prefixes and their values

Factor  Prefix = Symbol = Factor = = Prefix® =Sy 610
10% yotta | Y 10" A :
10*' zetta Z 107 centi c\
10" exa E 10° milli wT*
10" peta P 10° ~ micro h?‘
10" tera T 107 nano \n
| 10 giga G | 107 pico | o
10° mega B M 10" f% —\f1
- 10° kilo K 10" ‘atto\_\aw
Trﬂ_hecto H | 107 zepto | \z
0 | dem | D8 | 107 ] oo [
‘ \-

(a) 10" m

(b) 10" m

7
imitof the 2 . (e10'm d)1m 401
':)‘l,)rs!:rvable . Distance 0~ pimeter of g{;)lman (€) 10" m PINHGIIA
universe the Sun the dimensions Diameter ofa () 107 m .

red blood cell Radi
. . alzcr';us Stan (g) 1.0." m
Radlus

- of
. ) . atomic ~ an
s e ST | ~ : Ucley




1.6 SIGNIFICANT FIGURES

The number of accurately known digits and the first doubtful digit are called
significant figures. It is explained as; |

The measurement of physical quantities made by related instruments often
involves some errors or uncertainties. These uncertaintics are due to the following
factors:

(i) The least count of measuring instruments

(ii) Quality and condition of the apparatus

(iii) Skill of the observer

(iv) Different recorded observations by the same apparatus.

In the presence of these complications, the reported result centains both

certain and uncertain digits and the total number of all these certain and uncertain
digits are known as significant figures.

For example, let the reported mass of a sphere is 1.53 kg. In this case 1 and 5
are certain digits while 3 is uncertain and tl)c measured valu.c has three sigpiﬁcan&
figures. Similarly, the reported lgngth of a simple pcndu}um is 102'.5 cm, lhl.S value
has four significant figures, the digits 1, 0 and 2 are certain while 5 is uncertain.

1.6.1 Rules for determining the number of significant figures

The number of significant figure of a measured valuc can be determined
under the following rules.

I All the non-zero digits are significant (1,2,3,4,5,6,7,8,9).

1 Zero may or may not be significant and it is explained as;

a) All the zeros between two non-zero digits are significant, whether decimal
oint exists or does not exist. ;.

c.g. 2003, 2.003, 20.03, in all these cases significant figures are four.

b) Zero to the right of a significant figure may or may not be significant.
¢.g. 6000 calories can be written as -
6 x 10° calories (1 Significant figure)
6.0 x 10° calories (2 Significant figure)
6.00 x 10° calories (3 Significant figure)
6.000 x 10° calories (4 Significant figure)

¢) The terminate zero in a number with decimal point are signifi
10.2300, 0.1540, 3.600

cant e.g.
All these three numbers have for: significant figures each.

d) If the number is less than one, the zcro on the right of decimal point and to
the left of the 1* non zero digit are not significant. e.g. 0.00123 in this case

zeros are not significant .and the number of significant figures is three, i.e.,
0.00123 = 1.23x10™".

Qs




e) When the measurement is reported in scientific notation, then the - figures

other than power of ten are significant figures. e.g. 6. 4Ox1024kg has three

significant figures.
No change occurs in the number of significant figures by changing the unit of

I11.

- the measured value. e.g. 23.15 mm=2.315cm =0.02315m
All these numbers have four significant figures each.

IV.  When measurements are added or subtracted, the answer contains no more
decimal places than the least accurate measurement (less decemal number
value).

The following examples will clarify these rules.
2355.2342  15600.00 15600 13.7
+ 23.24 + 17249  +17249 4+ 13
2378.47 15772.49 15772 15.0
Keep the same number of decimal places as the factor with the least amount.

V. When measurements are multiplied or divided, the answer contains no more
significant figures than the least accurate measurement (least significant
figure value). Some examples:

13.1 13.100 15310 1.00
% 2.25 x 2200 % .23 x 10.04
29.5 29.475 35213 10.04
Keep the same number of significant figures as the factor wnth the least
number of significant figures. r

Examples
4767 4 ssignificant figures (all 1-9 digits are significant)

0.0008 | significant figure (zeros locate only the decimal position)
14.90 4 significant figure (In decimal figure zero is significant)
7000.0 5 significant figure (In decimal figure zero is sngmﬁcant)
8500 4 significant figure .
1121 4 significant figures
1.08701 6 significant figures
0.00254 3 significant figures (2,5 and 4 are significant)
0.2540 4 significant figures (2, 4,.5 and last 0 are significant)
2.15x10° 3 significant figures (2, i, and 5)

1.7 ERRORS AND UNCERTAINTIES

When an observer is making a measurement by using some measuring

instruments, he makes an effort to determine precise and accurate result. But it is 2
difficult job for him because the measuring instruments contam some uncertainties.

\16/




These uncertainties are called errors and these are due to the following
factors. |

(a) Zero error and faulty or poor condition of the instrument.

(b) Irrelevant experimental technique or procedure.

(c) Lack of experience in the setting and using of the apparatus.

(d) Taking observation without precautions.

The error in the measurement can be minimized by using the instrument
which contains small uncertainty. For example, between metre rod and vemier
callipers, the measurement by using vernier callipers is more reliable than metre rod,
because it has small uncertainty.

The errors in measurement can be classified into two main classes.
‘ (i) Systematic Error ~ (1) Random Error

1.7.1 Systematic Errors -

The errors that appear in measurement and repeat in same magnitude and
sign under the same conditions are called systematic errors. Such errors are due to
the following factors i.e., the zero error in instrument, poor calibration of instrument
and incorrect marking. _

Systematic error can be removed by using some standard instruments.

1.7.2 Random Errors

The errors that appear in measurement and repeat in different magnitude and
sign under the same conditions are called random' errors. Such errors occur due to
the following reasons, i.e., personal error, lack of sensitivity of the instrument,
environmental factors (temperature, humidity etc.) and wrong technique of
measurement. .

Random error can be minimized by applying statistical method i.e. repeating
the measurement several times and taking an average of these measurements.

1.8 PRECISION AND ACCURACY . Ca

-When physical quantities are measured by using the. measuring instruments
then there are some uncertainties or errors exist in the measurement and it is due to
the various factors. These uncertainties or errors can be explained in terms precision
and accuracy which are related with the reported result of any measured quantity.
Now the terms precision and accuracy can be distinguished as:

1.8.1 Precision

The precision of a measurement is associated with the least count of the
measuring instrument. This shows that precise measurement depends upon the
resolution or limit of measuring instrument. Precision depends upon absolute
uncertainty e.g. absolute uncertainty of a metre rod is 1 mm or 0.1 cm and the

N




| absolute uncertainty of a Vemier callipers is 0.1 mm or 0.01 cm. It may be noted
| that the smaller the least count of the measuring instrument, the more precise will be
the measurement. e.g. screw gauge is more precise than that of vernier callipers and
vernier callipers is more precise than that of metre rod.

1.8.2 Accuracy
. The accuracy of a .measuremer.lt 1S ‘associ.ated Al e meAsHremEnts Hre '
with the fractional uncertainty or relative uncertainty. subject to uncertainties.
' This shows that accuracy depends upon the closeness | The accuracy of a measure- |
of calculated value with the actual value of the | ment describes how well the |
quantity. Lesser is the fractional uncertainty or result agrees with an accep-

percentage uncertainty of the result, the more accurate il . |
The precision of an instru- |

will be the measurement. e i | met i8 Hiied by the |
Fractional Uncertainty = e smallest division on the
Measured value measurement scale.
; Least Count |
| Percentage Uncertainty = x 100

| Measured value
| Now precision and accuracy can further be explained by the following examplcs
Let, the length of an object is measured by metre rod is 19 5 cm as shown in

Fig.1.3, then;
Absolute Uncertainty (least count) = +0.1cm
. : 0.lcm
Fractional Uncertainty = ————
19.5cm

Fractional Uncertainty = 0.005

Percentage Uncertainty = 1(9) ; x100

Percentége Uncertainty = 0.5%

Fig.1.3: Reading (19.5 cm) on metre rod

- Locking Screw
Internal Jaws ;

Depth Measuring

Main Scale Blade / strip

" Vemier Scale

External Jaws Vernier Callipers
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Similarly, the length of another object as measured by a vernier callipers is
0 51 cm as shown in Fig' ! '-4 then; Main scale

Absolute Uncertainty (least count) =+0.01cm !

, .. 0.0lcm ‘ ‘ l 5
Fractional Uncertainty = Sl T”' |
Vemier

Fractional Uncertainty = 0.019 = 0.02 o oslo
0.0tcm i :
Uncertainty = X Fig.1.4: Reading (0.5 cm) on
 Percentage U , Ky lem 100 vernier Calliper

Percentage Uncertainty = 20/,

In the ﬁrst"':éxample the reading 19.5cm is taken by metre rod and it is less
recise but is more accurate having more absolute uncertainty and less percentage

. uncertainty or error. Whereas in the second example, the reading 0.51 cm is taken

by vernier callipers which is more precise but less accurate having less absolute
uncertainty or least count and more percentage uncertainty.

1.8.3 Assessment of total uncertainty in the final result

The experiments show that the measurement of a physical quantity contains
some €Irors or uncertainties and to calculate the final result, the arithmetic
operations may have to be perfoqned. The total uncertainty in the final result does
not depend only on the uncertainty of the individual but also on the arithmetic
operations as well. The total uncertainty in the final result can be found using the
following rules.

(a) If two measured quantities are added or subtracted, then their absolute

uncertainties are added.

(b) If two (or more) measured quantities are multiplied or divided, then
their relative uncertainties are added.

(c) Ifa measured quantity is raised to a power, then the relative uncertainty
is multiplied by that power.

1.8.4 For addition and subtraction:

" Absolute uncertainties are addcd.

For example, suppose we measure a length of a rod by using metre rod. The
positions of two ends ‘A’ & ‘B’ of the rod are recorded as:
A=11.6x0.1cmand B=39.8+0.1 cm. .
To find the total length of rod we subtract the two points that is
Lengthofrod=B-A=(39.8+0.1)=(11.6£0.1) cm
Length ofrod=B - A =282+ (0.1 +0.1) cm
Length ofrod=B-A=28.2+0.2cm




—

For example, Akmal and Ajmal are acrobats. Akmal is 165 +2 c¢m tall, and Ajmal is
135 £3 cm tall. If Ajmal stands on top of Akmal’s head, how far is his head above
the ground?

To find the combined height of Akmal and Ajmal, we add the two heights.

Combined height = Height of Akmal + Height of Ajmal

Combined height = 185 cm + 145 cm = 330 cm

Uncertainty in combined height=2cm+3 cm=5cm

So the uncertainty in Combined height =330 cm +5 cm

1.8.5 For multiplication and division:

Percentage uncertainties are added.

For example, Find the value of force ‘F’ and determine the total uncertainty by
using F =ma, wherem=60+0.5kganda=5.0+0.2 ms>.
The maximum possible uncertainty in the value of force is determined as follows:

The Percentage uncertainty for m = %—'(’)jx 100 = about 0.8%

The Percentage uncertainty for a = O—ézx 100 = about 4%

The result is thus given as F = ma = 60 x 5 = 300 N with a percentage
uncertainty of 4.8 %.

Thus the total result —
F=300N +4.8% Precision is the degree of
correctness to which a mea-
F=300 N :}:i_S. x 300 surement can be reproduces.
100
F=300+144N

1.8.6 For power factor .

If absolute uncertamty of a measurement is known and that measurement
occurs interms of power in the given formula, then total percentage uncertainty is
calculated by multiplying the power with percentage uncertainty.

For Example

The calculation of the area of cross-section of a cylinder, we use the formula
A=nr’,

Percentage uncertainty in area of cross-section = 2 x %age uncertainty in radius ‘r’.

When uncertainty is multiplied by power factor, then it increases the
precision demand of measurement. If the radius of the cylinder is measured as 1.95

cm by vernier callipers with least count 0.01 cm, then the radius ‘r’ is recorded as:
r=195+0.01 cm

20
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Absolute uncertainty = least count =+ 0.01 cm
Percentage uncertainty in r (radius) = -10% x100% =0.512%=0.5%

Total percentage uncertainty in area of cross-section=A =2 x 0.5
Total percentage uncertainty in area of cross-section = 1.0 %
Thus area of cross-section ~ A= nr?
A=3.14 x (1.95)* = 11.94 cm’
So the area of cross section = A = 11.939 cm? with 1.0 % uncertainty

The uncertainty is % x 11.939 cm* = 0.12 cm’
, Hence the result should be recorded as A = 11.94 +0.12 cm?.
1.9 DIMENSIONS

The concept of dimension was introduced by Joseph Fourier. It is a method
of analysis in which different physical quantities are expressed in terms of their base
quantities, such as, mass, length and time. On the other hand, a dimension analysis
is a mathematical technique which is being used for the following purposes; to
explain the nature of physical quantities, to test the correctness of an equation, to
provide a method of changing of units, to assist in recapitulating the formula and to
suggest relations between fundamental constants.

For example; torque, work and energy are different physical quantities but
dimensionally, they have same nature. Similarly, a distance can be measured in any
unit such as feet, metre, kilometre or even in light year but it is always a distance
and its dimension is length. In order to learn the expression of physical quantities in
terms of their dimension, we use some rules which are related to the process of
dimensions and these are summarized as;

I. Dimensions of physical quantities are represented by capital letters in square

brackets such as [M L T]

II. ~ The dimension of mass is [M], the dimension of length is [L] and the

dimension of time is [T].

IIIl.  The dimensions of the majority of physical quantities are expressed in terms

of three dimensions [M], {L] and [T].

IV.. The quantity which does not exist in the given expression then the power of

its dimension is taken as zero such as, the dimension of velocity [M°L'T" .

V.  The quantity which is placed in denominator, the power of its dimensions is

taken as a negative integer. e.g. v = % = % = [M"LT"]

—




VI.  The integers or specific physical quantities which are defined in terms of
ratio has no dimension, such as 2, 3, «, angle, strain etc.

. Different physical quantities and their dimensions are mentioned in the table 1.4.

T T T———

T nhl( l A: Different physic: 1] qu mlmcs m(l their (lumnsmns

— - — —

“\ sical

{UH “\“' .'l)‘_',‘l‘l"g} : 'y vsi[!}mh “_, .-_ull'.f'b‘.'.[:"l,'.).!.?'.‘.,“_!i!)!1'}U_if:_g :
Distance 7 L—tz‘;igth ' —— [i]_ S
Displacement Length . om _[L] )

IWavelcngth Lcngth | m | [L]

' Area ‘ Lengtthreadth m’ [L] x [L] [M° 1.2 T

| Volume ' Length x breadth x m’ [L] x [L] x [L] = [M°L’T"] !
| height L |

T -3
?Dcnsny , Mass / Volume | kg m i L" o

. i
| Speed | Distance / time | m s % M° ¢ el ;
|
3 | . . =1
| Velocity Dlsplf'xcement / time ; ms % i [M° - ]
| |
erati i ocity / time | m s L
Acceleration | Velocity / tim o [Tz] LT
| T
Momentum Mass X Velocnty - kgm s [M] (LT ] - [M LT
-1-:(_);(;6 o Mass X Accelemuon : N (Newton) [M] x [L "rz] =[M L T2 ]
Pi'—é;sure' 1 ' Force / Area , Nm?orPa | [MLT‘Z] |
| ——==[ML"'T?
| N ﬁ‘] |
- k— | VForce‘x di‘splacem?ent \; J (joul_e) | [MLT";] [L] = [ML? 'I‘z] }
,‘f‘érc;ue Force x momentarm | Nm l [MLT]x[L] [MLzT ] |
power | Work/Time | W (watt) | [MLzT'Z] &
7 | — 2 3 |
[MLT) |
. ol ,
B —————— e — P ‘\

PE—
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\ Ph\smal e TSR _'-': it Dlmemnt»naal Lopmua
,;_uantnty PRI T T A e | SRR o | o s
“ |Impulse Forceleme kg ms’ —NS| [MLT'ZDX [T]=[MLT']
KE Yam vi B 1 J (joule) | [M][LT ')’ = [ML’T"’]
| [PE Mgh JGoule) | [M]ILT?][L]=[ML*T"] |

Stress - Force / Area Pa (Pascal) \ [MLT’Z]

|

|

‘ ' ' ' M0L2T0]
‘ 1.9.1 Principle of homogeneity of dlmensnons

As a mathematical equation is developed under the various arithmetical

operations. If the dimensions of botk sides i.e., right hand side and left hand side of

the given equation are identical then it is considered as homogenous equation. For

example, we test the dimensional homogeneity of the equation v, = v, +at

=M°L"' T

' Dimensional formula of final velocity v, =[LT™']
Dimensional formula of initial velocity v, =[LT™]
Dimensional formula of acceleration and time, at = [LT?) x [T] = [LT"]
LHS=v,=[LT"]
RH.S=v+at=[LT"'] +[LT"'] = 2[LT"]
Here 2 is an integer and dimensionless. So R. H S=[LT™"]

This proves that L.H.S = R.H.S
~ Dimensions on both sides of the equation are the same. Hence, the equation
is dimensionally correct. |

Example 1.1

The rotational kinetic energy of a body is given by K.E,, = %Io)2 , where o is
the angular velocity of the body. Using this equation, find out the dimensional
formula for the moment of inertia I.

Solution:

As we know that rotatlonal kinetic energy = (K.E.) = -%Iu)
2(K E. )

rot
0)2
Using principle of homogeneity of dimensions.

Dimensions of rotational kinetic energy = (K.E.)t = [MLZT‘]
&
1 S

or J=




Dimensions of angular velocity = 0= [T'] |

2[ML’T‘2]
We get I= i
[T]
e 2[ML’_T‘2]
[77]
= 2[ML2T°]

As 2 is an integer and dimensionless, so it should be negleéted,
Hence the dimensions of moment of inertia are = [ML2T°]

Example 1.2
Test the dimensional homogeneity of the following equation

E = mgh +%mv2

where E is the total energy, m is the mass, g is the acceleration due to gravity,
h is the height and v is the velocity.

Solution: LHS = Total Energy = E = [ML*T?]
RHS = mgh + %mv2= [ML’T?] + %[MLsz]
i tht;ck Your Concept

« What are the

2. . : o dimensions of g/G?
Here 3 is a numerical constant and dimensionless, | Wrhatisie the

dimensions of n/p? i

RHS =% [MLT?]

so it should be ignored.
Therefore,

RHS = [ML’T?]
Hence it is proved that dimensions of LHS = dimensions of RHS

1.9.2 Deriving a possible formula

If we have some idea about the physical quantities which depend to one
another then we can use the method of dimensional analysis to develop an equation
or formula relating these physical quantities.
To derive an equation or formulae we must consider the following rules.

(i) Identify that how many factors depend upon the required quantity.

(ii) .All these factors are written in terms of mass, length and time

dimensions.

N
\
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(iif) Equating the powers of M, L and T on both sides of the dimensional
equation, three equations are formed by which the value of unknown
powers can be calculated.

(iv) By substituting these values in the equation, the real form of relation is
achieved.

Example 1.3
Derive an expression for the time period (T) of a simple pendulum by usin
dimensional analysis. 8

Solution:
Let 'T' be the time period of a simple pendulum and it ma

following factors,
(i) mass of the bob of the pendulum (m).

(i) length of the pendulum (¢)
(iii) acceleration due to gravity (g)

(iv) angle 8 which the thread makes with the vertjca]
All these relations can be expressed as;

Let Tocm®, Tocl *, Tocg®, Tox 0°
By combining all these results;

y depend upon the

.| For Your l“nf:)—rFa.tE
Angle = Arc length

g Radius
T oc m**g° 0*
a!:h e Angle = Meter
T=Km*("g0" ... (L.1) Meter
where K is constant and dimensionless Angle =L

Equation (1. 1) in terms of dimension is expressed as, M'iis diniensionless
\-
o [1) =ML LT T[T
MOL°T! = ML T .
MOLOTI . Man+c+d—dT-2c '
- MOLOTI M Lb+cT—2c
By comparing the powers of respective terms we

=0 o i (1.2) i)
b+c=0 asensil 13)
-2c=1 .
1
and . 5. (1.4)
Putting the value of ¢ in equation (1 .3) we |
mgb ¥ get the valye ofbie
-2
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Thus, putting the values of a, b and c in eq. (1.1)
-

T=Km’2g2¢°

[

T=Km’2g2¢° m’=1and 6° =1
1 -l
T=K¢2g?
|
2
T=K€—,=K£
g? g
T=K, |%
g

Example 1.4
.Dcnvc the relation for spced of sound ‘v’ through a gas using dimension
analysis.

Solution:
The velocity of sound depends upon pressure ‘P’, and density ‘p’of the

medium i.c.
V P"pb
V=KP’ ... (1.5)
where 'K' is a dimensionless constant and hence eq. (1.5) can be expressed in
terms of dimensions as; %
[ML'T']=[ML'T?* (ML)
[MOLIT-I] - [Mu L*® T—Zu] [Mb L-Jb]
[MPL'T )= [Me*o L2y (1.6)
By comparing thc+p§w%rs of the lrc7spcctive terms in eq. (1.6) we get;
a =U 7 deiees .
-a-3b=1 ... g 1 .8;

y —2a=~1
1
a= 5 ...... (19)
Putting the value of a in eq. (1.7)
1 +b =0
S =
b=—t...(L10
5 .10)

Thus, putting the values of a and b in equation (1.5), we get

\2y




|
]

{ fl

ol

| . Hence, v=K P2p
t , ¢ V= K\/E
' P
il o Where K is an arbitrary constant and experimentally its value is 1.
P B
v= |—
P

| 1.10 LIMITATIONS OF DIMENSIONAL ANALYSIS

| Although the technique of dimensional analysis is useful and helpful in many
I ". cases but, it has some limitations which are listed below:

L. The method cannot be used to determine the value of: dimensionless
| constants. They have to be determined elther by experimental or

mathematical analysis

j I[I.  This method cannot be used to rclauons involving trigonometric, logarithmic
' and exponential functions.

I1I.  Dimensional analysis does not indicate whether a physical quantity is a scalar
' or vector. For example, speed and velocity both have same dlmensnons

[M°LT].

IV.  Dimensional analysis cannot be used to-derive the exact form of a physical
relation if the physical quantity depends upon more than three physical
quantities (i.e., M, L and T).

V. Dimensional analysis provides the correctness of the given relation only
dimensionally but it does not give the physical correctaess of the relation e.g.

T=2n k It is correct dimensionally.

g
1 [ ; ; . .
T= il It 1s correct both dimensionally but not physically.
T\eg

. * Physics: Physics is the branch of science which deals with the study of matter.
and energy and their mutual interaction.

* Physical Quantities: The quantities which can be measured and have proper
units are called physical quantities.

e  Unit: The quantity used as a standard of measurement is called unit. ;

e International system (SI): The international committee for weights and
measures introduced a metric system for measurement which is called

llf,ll N == ———————————~




international system (SI) of unit and it consists of seven base units, two
supplementary units and a number of derived units.
Scientific notation: A method of expressing of too large or too small value in

terms of some power of ten multiply by a number is called scientific notation or

standard form.

Significant Figures: A reported result by an observer always contain both
certain and uncertain digits. The number of these certain digits and first
uncertain digit are known as significant figures.

Uncertainty: Due to the poor condition of the instrument, irrelevant
experimental technique and carelessness of the observer the reported result
contains some errors which are called uncertainty. |

Systematic Error: The errors which appear in measurement due to known
causes are known as systematic error. These errors repeat in same magnitudes
and signs. '

Random Error: The errors which appear in measurement due to unknown
causes are known as random errors. These errors repeat in different magnitudes
and signs.

Precision: Precision of a measurement depends upon the least count of the
instrument. Smaller the least count, more precise is the measurement.
Accuracy: The accuracy of the measurement depends upon fractional
uncertainty. Smaller the fractional uncertainty more is the accuracy of the
measurement.

Dimensional analysis: A mathematical technique which explains the nature of
the physical quantities is known as dimensional analysis. It can be used to
analyze the homogeneity of a mathematical equation and deriving a possible
formula. : )

Q Choose the best option. :

The main contribution of modern physics is
(a) Newton’s laws of motion (b) Thermodynamics laws

- (c) Kinetic theory (d) Special theory of relativity

The branch of physics which deals with the proberties and interaction of
nuclear particles (protons and neutrons) is called

(a) Molecular physics (b) Plasma physics

(c) Nuclear physics (d) Solid State Physics

&
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14.

[ 18.

10.

11.

12.

13.

The fundamental physical quantities which form the basis of the SI units are
(a) Force weight and time ; (b) Mass, length and time
(c) Mass, length and force (d) Mass, energy and time

Which one of the following is base physical quantity?
(a) Pressure (b) Temperature  (c) Density (d) Energy

Which list of units contains three base quantities and two derived quantities?
(a) Kelvin, newton, second, kilogram, ohm

(b) Volt, joule, ampere, coulomb, meter

(c) Kilogram, meter, second, mole, kelvin

(d) Mole, hertz, kelvin, joule, newton

Light year is the unit of _
(a) Time (b) Distance (c) Speed (d) Velocity
um X mm is equal to

(a) 10°m (b) 10”°m (c) 10°’m? (d) 10°m?

The derived unit joule in terms of base units is

(a)kgms™ (b) kg m* s> (©kgm™ s (d)kgm™s™
The scientific notation of a measured value 0.0092 m

(a) 9.2x10°m (b) 9.2x107m (€)9.2x10°m (d) 9.2x10”m

By using vernier callipers, the length of an object is measured by four students.
Which one of the following is correct?

(a)4.5cm (b) 4.51 cm (c)4.510 cm (d)4.5100 cm
What is the absolute precision of the referred result 8.52 cm.?

(@) 1 cm (b) 0.1 cm (c) 0.01 cm (d) 0.001 cm
The naumber of significant figures of the value 0.0202 is

(a) Two (b) Three (c) Four (d) Five
Which one of the following measurement is the most significant?

(a) 203000 (b) 203x10° (c) 20.3x10* (d) 2.03x10°

The length of a body is measured as 3.51 m, if the accuracy is 0.01 m, then the
percentage uncertainty in the measurements is

(@) 3.51 % (b) 0.035 % (c) 0.28 % (d) 28.65%
The dimensions of moment of inertia is

(a) [MLT’) (b) [ML’T"] () [ML*T) (d) [M°LT"]

29
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16. Which pair of physical quantities has same dimensions?

(a) Velocity and acceleration (b) Mass and weight
(c) Inertia and moment of inertia (d) Work and potential energy "
ORT Q 0 B

e o - 1S b e g 'xf;<;._&‘

Differentiate between base and derived quantmes

How can you obtain the derived physical quantities by using the arithmetic
operations?

Convert one year into months, days, hours, minutes and seconds.

When and where the system of international (SI) for weight and measure came
into being?

Which physical quantity has unit but has no dimension?

Write down the following in scientific notation

(a) Angstrom (A°) (b) Pico metre (c) mega pixels

How can you derive the unit of watt in term of base units?

Identify three physical quantities which have no units and no dimensions?
What is the difference between systematic error and random error?

Between precise and accurate measurement, which one is more reliable?

What are three causes of errors in measurement by instruments?

How can you minimize the error of a reported result?

How accuracy is increased by decreasing the limit of precision?

Write three examples when zeros are not considered as significant figures.
How many expected number of significant figures are in 7000?

What do you know about the uncertainty of an instrument?

Which physical quantities have the same dimension? Give an example.

Find the dimension of gravitational constant G by using F=G m mz

According to Hook’s law, the restoring force F due to a body attached to a
spring is given by F =—kx . Calculate the dimensions of the spring constant k.

DMK 0 G
State and explain the scope, importance and applications of physics in our
daily life activities. p

Describe the physical quantities with all its classes and justify that how can
you obtain derived quantities by using product and quotient rules?

When and where was established the international system of units? Explain all
the branches of SI units.

Explain conventions used for indicating SI units.
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What is role of scientific notation and prefixes in the expression of too large or |
too small quantities.
Explain the significant figures with all its rules.
What do you know about;
a) errors and uncertainties.
b) precision and accuracy.
What are the dimensions of physical quantities? How can you explain the
nature of physical quantities by using the dimensions analysis.
What is the role of dimension analysis in the derivation of formula and

How much distance is covered by light in one year when its speed in space is

3x10° ms™. (9.5 x 10" m)
Mass of neutron is 1.67 x 10‘27 kg. Calculate the number of neutrons in a piece
of metal whose net mass is one gram. (5.99 x 103 neutrons)

Prove that nano seconds in one second is more than the number of seconds in
one year.
Convert the following (a) 20 m s into km h™', (b) 3x10*  m s into km h™"
(©)220kmh ™ intoms™ (@) 72kmh™, (b) 1.08x10" km h™ (c) 61 m s™
(a) Express the following values in terms of prefixes.

(1)0.62 x10*g, (II)2x10'm, (1) 4x107s
(b) Express the following values in terms of scientific notation.

(I) 0.000036, (I1)140000, (1IT) 107000000

(a) (D) 6.2 kg, (IT) 20 Mm, (I1I) 40ps

| (b) (D) 3.6x107°, (II) 1.4x10° (TIM)1.07x10°
The radius of a rod is 0.24 cm. Find its cross sectional area wit(g;;;ropxrile?te

significant figures. 0 2
s _ 18
How many significant figures are there in the given values? ( i

(2) 32.900, (b) 2003, (c) 2.0, (d) 0.0007, (€) 2.73x10°
(@) 5, (b) 4,(c) 2,(d) 1, (e) 3 -

. . Add the given values 12, 13.5, 15.432. Give the answer to correct significant

figures. ' (41
Verify that the given equation S = v;t +at® is dimensionally correct )
The centripetal force ‘F’ acting on a particle (moving uniformly m a circle)
dfapends on the mass ‘m’ of the particle, its velocity ‘v’ and radius ‘r’ of the
circle. Derive dimensionally the formula for the centripetal force ‘F’.

&




For example, velocity vector is represented by vV, momentum vector by p,

and acceleration vector by a etc.
The magnitude of a vector A is denoted by the same letter used for the vector

without arrow A or IA‘ read as magnitude of A. For example, the magnitude of

displacement vector d is denoted as d or }a‘

It is important to note the following points;

e The magnitude of a vector is always positive and scalar.
The magnitude of a vector is also called modulus of the vector and is
represented by enclosing the vector symbol between two vertical lines, for

example, the modulus of displacement vector d can be denoted as ‘c—i|

» Vectors can be added, subtracted and multiplied. However, the division of
a vector by another vector is not valid operation in vector algebra. It is
because the division of a vector L, a direction is not possible.

2.1.2 Graphical representation of vectors o d i,

A vector is represented graphically by a straight Fig2.1: A straight g“c s a
- - . . n H 4 18 S epresents
line with an arrow on its one end as shown in Fig.2.1. The :Tﬁ:\“ﬁn b

length of the line (OA) represents the magnitude of the
given vector d (on suitable scale) while arrow shows the

adiden . : E W
direction of the vector. The starting point (O) of the
vector d :s called tail and the end point (A) is called head S
of the given vector. The graphical representation of vector Reforerice pulnts
is further explained by some examples. RN . ,

Suppose a bike travels 10 km from east to west, we
. a Fig.2.2: A displacement vector
say that the bike undergoes a displacement vector of 10 5o o8 L0

km towards east.
Graphically, it is represented by a straight line

with an arrow using scale. Let 10 km .= 10 cm is the
magnitude of the given displacement vector and arrow
toward the west is in its direction as shown in Fig. 2.2.
Similarly, in case of a vector in two dimensional
plane, let 100 m length of thread of a flying kite making
an angle ‘0’ with ground. In this case, the length of |
thread (100 m = 10 cm) is the magnitude of the given

dlsplacement (vector) while angle ‘0 shows its direction H'L 2. 3k A 100 m thread .of
as shown in Fig. 2.3. ying kite in two dimensions
e & plane making dn[,lc, 9’ wnh

ground.
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CARTESIAN CO-ORDINATE
SYSTEM

In common life we use the reference poing
East-West and North-South for the determination of
position of an object. But for the graphicy
1-cpresqnlation of a yector, we use cartisen co-ordinate
system which consists of two straight lines which are
perpendicular to cach other and it is known as plane
rectangular co-ordinate system or Cartesian co.
ordinate system. The horizontal line is known as x-axis
while the vertical line is known as y-axis. |

The point of intersection of these two lines is
known as origin 'O' as shown in Fig. 2.4 positive x-
axis is taken to the right and negative x-axis is taken to
the left from origin 'O". Similarly, positive y-axis is
taken upward and negative y-axis .is taken downward
from the origin 'O". ,

n Cartesian co-ordinate system, there are four
quadrants. A vector can be drawn in any one of them
according to the angle ‘0" made by the given vector
with x-axis as shown in Fig. 2.5.

In the first quadrant both x and y components of
a vector are positive, in the second quadrant, x-
component is negative and y-component is positive. In
the third quadrant both x and y components are
negative and in the fourth quadrant x-component is
positive while y-component is negative.

In space, a third axis also exists which is called

2.2

z-axis and it is perpendicular to both x-axis and y-axis. -

Now when a vector is drawn in this three dimensional

-space, it makes angles a, B and y with X, y and z
respectively. These angles provide the direction of the
given vector as shown in Fig. 2.6.

2.3 KINDS OF VECTORS

2.3.1 Null or Zero Vectors
. A vector of zero magnitude and with arbitrary
direction is called null vector. This is also called zero

) 35,
N V4

; 1] l IT - .2 v -lv 1 P p——
Ll axis-l [ T T T
R O e L W N
Qg T L
i g A e Quidriing |
|-y | I i 2 = ‘VLL-‘ |
o] )
"-*"--A- ,ﬂ.,’ ,T_TI*
e R o e
] 10 ungir])J I )
i ] S i ) | |
AR i ;_‘._:%_! H
L Quafi .«.(.;#,_._;‘Z
e T WY oy
Lu i ,,:15'_;1_;:
ot | .
Fio.2 4: R e o
. peee%e Rectangular Co-ordinate
Sveren g Co-ordinate
Y
A
| /
X' 8
X
l
\
Fig.2.5 o
12.2.5: A vector in ' quadrant
making angle '8’ with X-axis

N
z:
|

P(a,b,c)

£

X a

Fig.2.6: A vectorin

N‘ A W
!

O=A/\ﬁ/

/

~

three dimen-

stonal space. making angles a, b,

and y with x-axis, v

tespectively.

-axis and z-axis

South pole
A map of the globe which has been

drawn with the help
co-ordinate system.

of cartesian




—

vector and is denoted by ‘O . It is used to balance vector equations. For example, if

A=B,then A-B=0 ) ) Point to ponder
Thus, we can say that if two vectors A and B How can you draw
. . = o . < I i H ” / ll d . 1 C
are equal then their difference A -B is defined as EREARALY IE "C,c“on afa
null vector? |

Zero vector.
On the other hand, the vector whose magnitude is not zero is called proper .

vector.
2.3.2 Unit Vector

A vector whose magnitude is equal to unity is known as unit vector. It has the
same direction as that of the given vector. It is represented by a bold face letter with

a cap and is read as 'A cap' or 'A hat'. For example, A,B,C and D.-A unit vector A

in the direction of the given vector A is expressed as;

. . K
A== .. 2.1)
A]
or A=AlAl

Thus, any vector in the direction of a unit vector
may be written as the product of the unit vector and the

magnitude of that vector of the given vector.
The unit vector has no units and dimensionless
vector. It represents only direction of the given vector.
The unit vectors along x, y and z-axes of three
dimensional Cartesian co-ordinate system are o
represented by vectors, i,j and k respectively as gl'f;cz;n]liﬁ';l;’;:]“g;r"céljgdc’:) _'"

shown in Fig.2.7. ordinate system.
The magnitude of each unit vector is 1. i.e.,

i

Example 2.1

Find the unit vector A in the direction of vector A where A = 3/ 4] O
Solution: A =3i+4]
A

We know that | A=
| Al

Putting the value of A in above equation

QG/




g ditd] A+

[3§+43 P 4 4
- 31 +4] _3§+43
Jo+16 25
A=3i+4j___§l+ﬂ
5 5 5

2.3.3 Position Vector

A vector which is used to specify the posmon of
an object or a point with respect to the origin is known
as position vector. It is represented by T . Graphically, 2
position vector T in two dimensional XY-plane is
represented by a straight line with an arrow head from
origin to point P(x,y) as shown in Fig. 2.8 and it 1S

expressed as;
F=xi+ y]
|?| = \/xz +y?
Similarly a position vector T in three dimen-
sional space from origin ‘O’ to point P(x, y, z) as
shown in Fig. 2.9 and it is expressed as;
T=Xxi+yj+ zk

r|=\/x +y‘+z2

and

and

Example 2.2:

Yl
: 3 -ition veclor T in Xy-
Fig.2.8: A posilio )
plane

P(x,y,2)

-l

X

Fig.2.9: A position vector T in
threc dimension space

The position vector of the points P and Q in space with respect to the origin ‘

are T and T,. If T
magnitude.
Solution:l

rT=0—1

(i 3j+2k)—(2i +3j-K)
Z41-3j+2k-2i-3j+k
=2i-6j+3k

|?<5|=lrl=ﬁ-+<—6>2+32

g -
2
I

=2§+33—f< and ?2345—3j+2f<. Determine P_Q. and its
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- I Point to Ponder
PQ|=(7|= ‘4+"6+9 Equal vectors are called
===, rectors  but
N . parallel ~vee you
PQ=[r|=v49 =7 cannot say that paralle|
= vectors arc also called equal
PQ|=|f|=7 B e |
A
2.3.4 Equal Vectors —
Two vectors which have same magnitude and 5

same direction are known as ecqual vectors.
Mathematlcally_ t\\"o vectors A and B ha\ling S_an]e Fig.z.l(): Two anill veetors /fi
magnitude and direction as shown in Fig. 2.10 ar¢ ;4 B of same magnitude and
expressed as; direction.

A=B

Al=[g ... (2.4)
Equal vectors are also known as paral

lel vectors. Angle ‘0 between parallel

vectors is 0°.

2.3.5 Negative Vector : A "
A vector which has same magnitude but '
opposite in direction o the given vector is called the 7

-

negative vector. The negative vector of the given

= § — ; . Fig.2.11: Two negative vectors A
vector A is representd by —A as shown in Fig.2.11. g

and —A of same magnitude but in

Mathematically Aand —A are expressed as; opposite direction.

A=-A ... (2.5)
Negative vectors are also known as anti-parallel vectors and angle ‘0’
between them is 180°.

2.4 MULTIPLICATION OF A VECTOR BY A SCALAR
When a vector A is multiplied by a positive integer ‘m’ say a scalar then its
resultant vector mA is another vector whose magnitude is ‘m’ times that of vector
A and its direction is the same as that of vector A . Similarly, when the vector A is
multiplied by a negative integer ‘~m’, then the magnitude of resultant vector is
mA but its direction is opposite as that of the A.

- For example, let a vector A is multiplied by a number 2, it gives vector 2A
and shows that the magnitude of the resultant is increased 2 times in the direction of

38,
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A as shown in Fig. 2.12. Similarly, if we multiplied a
vector A by —2 then we get a vector —2A .

This shows that the magnitude of the resultant & 28 / -92A
vector is increased by 2 times but in the reverse

direction of A as shown in Fig. 2.12.

2.5 ADDITION AND SUBTRACTION Fig 2.1%: Multiplication of
OF VECTORS vector A by a number +2,
2.5.1 Addition of Vectors -
Vectors can be added under three different methods.

I. . Parallelogram Method

Let two vectorsMN A and MP=B which
are represented the two adjacent sides of a
parallelogram MNOP.

Accordmg to the law of parallelogram, the

diagonal MO = R is the resultant vector of the given M- T = "N
vectors Aand B as shown in Fig. 2.13. };:‘*Pir‘:m‘;*d:‘a‘r‘:’{“i‘tfh‘oauf’f*
Thus, MO=MN+NO - .
R=A+B .. .. (2.6)
Similarly, = MO=MP+PO
R=B+A ... 2.7)

From eq. 2.6 and eq. 2.7
A+B=B+A . (2.8)
[I. Triangle Method
When two vectors OP = Aand PQ = B which

are represented the two adjacent sides of a triangle
OPQ, then accordmg to law of triangle, the 3 side of

the triangle OQ=R is the resultant vector of the

given vectors A and B as shown in Fig. 2.14. 07
. R Fig 2.14: Addition of vectors
R=A+B ..... ("' ) by triangle method

ITI. Head to Tail Rule

Graphically, two or more than two vectors are added by a rule which is
known as “Head to Tail Rule”. First, select a suitable scale and draw the
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representative lines (i.e. in terms of magnitude and direction) of all given vectors.
Then apply this rule as; join the head of the first vector with the tail of the second
vector according to their respective directions. Similarly, join the head of the second
vector with the tail of third vector.,
Keep on repeating the same process till the last vector is also drawn.
Now the resultant vector of all these vectors is a straight line from the tail end
_ of the first vector to the head end of the last vector.

For example, we have four vectors A,B,C
and D which are acting in their given directions i.c.,
they are represented by arrow lines with suitable

scale. Thus, all these vectors can be added
according to their directions and scale by using

head-to-tail rule. Join the head of vector A with the
tail of vector B, similarly join the head of vector B
with the tail of vector Cand then join the head of
vector C with the tail of vector D.

' ‘Thus, the resultant vector R of these vectors . Fig.2.15: ﬁ:mm(m of \-I:fws
I1s a straight line from the tail of the first vector A to A,B,Cand D by Head to Tail
the head of the last vactor D as shown in Fig.2.15. - nle
Mathematically it can be expressed as;

R=A+B+C+D (2.10)

It is noted that when two vectors are parallel to each other, then the
magnitude of their resultant vector will be maximum and it is equal to the sum of
their magnitudes. Similarly, when two vectors are anti-parallel then the magnitude
of their resultant vector will be minimum and it is equal to the difference of their
magnitudes. | -

2.5.2 Subtraction of Vectors

When we want to subtract a vector B from vectors Athen we draw the
representative lines of vector A and —B i.e. negative of vector B and apply head-
to-tail rule on vectors A and —B in order to get the resultant.

Let us have two vectors A and B. The subtraction of vector B from vector
A is defined as the addition of vector —B (negative of vector B) to vector A.
Thus, A-B=A+(-B) ...... 2.11)

Graphically, the subtraction of vector B from vector A is explained as; first
take the negative vector of vector B i.e. —B. Now according to head to tail rule join
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the head of vector A with the tail of vector —B as shown
in Fig. 2.16 C s 2 /s

) g. 2.16. The resultant vector C of these two vectors 1S A B /-B
the line from tail of vector A to the head of vector =B |
and it is equal to A -B.

|

Example 2.3 |
If A=i+2j-3k and B—zf j—4k . Find A
(a) |A +B] (b) [A-B| Figc2. 6 bmusiiion of
Solution: (a) A+B (1 +2_] 3k) (2;—3—‘““) v & 585
B=i+2j-3k+2i-)-4k

Bl =y3)* + (1)* +(=7)’
A+B|=vo+1+49=159

A+B|=7.68

(b) A= B=(1+2J 3k) - (2?-}—412)
A-B=i+2j-3k-2i+]+4k
A—B=—1+3J+k

A=B| =12 +37 41
|A-B|=vivo+1
A—|= 1T =33

2.6 RESOLUTION OF A VECTOR

The process of splitting or decomposing a single vector into two or more
vectors in different direction called components such that their resultant is again
equal to the given vector is called resolution of a vector. )

If a vector is resolved into two components which are perpendicular to each =
other, then these are called rectangular components of the given vector. It is
explained as;

Consider a vector A, represented by a line OP which is lying in a XY -plane
In order to determine its rectangular components, we draw two perpendlculars PN

AV




_J

and PM on X and Y axes respectively. Then the vectors 1

A.and A, drawn from O to N and O to M are the Mf ______ A €
rectangular components of the vector A. Indeed, these : o E
rectangular components A, and A, are the projections of A ;&‘// !
the given vector A on x-axis and y-axis respectively. " / 0
As shown in Fig.2.17, PM is equal and parallel / E
- ==, ; i 0 <
"to ON, and PN 1s equal and parallel to OM. 0 A, ’N'_“>
Thus, applying law of vector addition for the Fig.2.17: Resolution of vector
right angle triangle ONP and we have A into its rectangular
OP =ON+ NP components A, and A,. ‘
or A=k +A . e (2.12)

As A ,=Ajiand A =A ]
So, eq. 2.12 can also be expressed in terms of i and 3
A = A, i+A _] ...... (2.13)

This is the resultant vector A in terms of its rectangular components
As the rectangular components A, and A, are at right angle, therefore, their
magnitude can be calculated by using the tngonometnc ratios. From AONP,
Base @ ON A,
Hypotenuse OP A
A, =Acos0...... (2.14)

This is the horizontal or x-component of the vector A Similarly,
Perpendicular NP A,

cosfO =

sin® = =
Hypotenuse OP A
. A, =Asin® ... (2.15)
This is the perpendicular or y- :

_ ) . _ airspeed wind
component of the vector A . The magnitude Ve a velocity
and direction of the given vector A canbe . p” ' Vi

calculated by using Pythagorean Theorem. =B .7 .. e p>
Using triangle ONP, we have Resultant ground speed V.
(Hypotenuse) = (Base) + (Perpend:cular) Velocity components of an acroplanc
A’= Al4Al

A= [AZ+A? ....(216)

A4




This is the magnitude of the given vector A .
Dividing equation (2.15) by equation (2.14),
we get

Bl =ﬁ:> tan6=i
cos0 { '
or 0=tan”' L ...... (2.17)

X

where '0' shows the direction of the given
vector A.

Example 2.4

Tahle 2.1 The values of trico

nometric
angle
Z : oSO Tan 6
0° 0 1 0
o l ' -ﬁ =0 866 —"«‘—0577
dl. ' =0.707
45° | —=0.707 5
Ji 2 1
o| VB 1
90° 1 0 -

A person is climbing up on a ladder of length 10 m which is lying with wall
making angle 60° with floor. Calculate the horizontal distance from the floor end of
the ladder to the wall and height of the wall from the floor to the upper end of the

ladder.

Solution: :
Length of ladder = A =10m
Angle =6=60°

Horizontal distance = A =7
Vertical height = Ay =7

A, =Acosf

A, =10xcos60°
A, =10x(0.5) -

A =5m
Similarly, A, =Asinb
A, =10sin60°

A. =10(0.866)
A, =8.66m

Example 2.5

= 30°

T}' 10 m

_ f/sw

E—

Ax

What is the magritude and direction of a vector A which is lyiﬂg in the first
quadrant and when its both perpendicular components are of 5 units?
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Solution:
According to the question A = A =5 units y
l Al=2ando=2 L
I Al = Ai +A§ 3 <
Al =52 +57 =25+25 =450 e '
A|=7.1 units O A,
0 = tan"f‘—y—
AX
‘B tan"-5—= tan”'1
. 5)
0 =45°
2.7 ADDITION OF VECTORS BY RECTANGULAR
COMPONENTS

We have learnt addition of two or more than two vectors by the method of
head-to-tail rule in the previous section. This method of addition was graphical and
there were more chances of error in the determination of the resultant vector.

Now we introduce another analytical method of addition of two or more
vectors which is named as addition of vectors by rectangular components. This
method of addition of vectors is more reliable and accurate than head-to-tail rule. It
is explained as;

Considering two vectors OP = A, and 0Q = A, R

are lying in XY-plane making angles 6, and 0, with X Q / A

x-axis respectively. Let from point 'P' we draw another | s ,/' A,

vector PR which is parallel to A, as Sh.OWI-l- in Fig. | - /\\\ /-%// %

2.18. According to head to tail rule, vector A ‘be the /% ,,g

resultant of vectors A, and A, making angle ‘0’ with  |% ‘ i PAN:Ax, L

X-ax1S, ie., : , ' A, AIE(
A A A 4 Ah A x
A=A+A, . PR e I, I P

Now by resolving all the three vectors A A,  Fig2.18: Addition of two
' vectors by their rectangular

and A, into their rectangular components, then we get;  components

A\




A=Ai+AJ ... (2.19)
A =ALi+ALj......(220)
Ay =Ayi+A,] .....(221)

Putting eq. (2.19), eq.(2.20) and cq. (2.21) in eq. (2.18)

A = A+A
| Ad+AJ=(ALT+A])+(A
(,.Ax)i+(Ay)j.=-’(Alx+A2x) (A 4

Equating the coefficients of i and j we get
Ax = Alx w AZx

A, =A +A,,

+Ay])
Auy)]

Magnitude of the resultant vector A

:]A\ = A2+ A

A=|A| = ﬁ,\+A)_, (A, +h,y (229
Direction of the resultant vector A
9 =tan" —
- | AIV+A"V ~
0 =tan” ——— ......(2.25)
1x + A2x
\f

Addition of 'n' number of Coplanar vectors
The addition of two vectors by the method of
rectangular components can further be extended for °
number of coplanar vectors A,A;,A; A,
which are making angles 6;9 2,09 ,,...,0, with x-axis
respectively as shown Fig. 2.19.
By resolving all the vectors into rectangular

components then equatidn 2.22 and 2.23 become;
A=A +A, +A; +.+A,

= A, cos0, +A,cos0, +A;cos0; +...

\ .

\45/

Fig.2.19: n number of
coplanar vectors in XY-plane

+A_ cosb,
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A, = ZAicos 6,
i=l
| o By = Ay PG R A,
I =A,sin6, +A,sin0, +A,sin6, +...+ A sin6,
& i
A = ZAisin 0,

i=1

Magnitude of the resultant vector

A=,/A§+A§,

Direction of the resultant vector

A
6 =tan" X
AX
ZAisin 0,
@ =tan™' = — (2.27)
ZAicos 0,

" where 0 gives the direction of the resultant vector A which depends upon the
position of A, and A and it can be determined by using the following equation.

1 y

d="tan"

X

Now the value of 6 with the help of ¢ in the four quadrants-can be determined
- (a) In the first quadrant both the components A, and A, of the resultant vector
A are positive as shown in Fig. 2.20 (a). Thus the direction of the resultant
vector is 0 = ¢. .
(b) In the second quadrant A, is negative and A, is positive as shown in Fig.
2.20 (b).Thus the direction of the resultant vector is 6 =180°- ¢.
(c) In the third quadrant both components A, and A, of the 1'eéultaflt vector

A are negative as shown in Fig. 2.20 (c). Thusthe direction of the resultant
vector is given 0 =180°+ ¢. '

46
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(d) In the fourth quadrant A, is positive and Ay is negative as shown in Fig
2.20 (d) the direction of the resultant vector A is given as 0 = 360°— d |

y‘r

M M, y4 ‘r A .
Al | \A . .
.\o=¢ r A /\ 4 0
; il HOS y K\ /\
ARCNR R s W \o"~¢A'Ji
A A ——/A A,
M

Fig.2.20: Vector in four quadrants

(l) When Ax >0 and Ay = O, 0= 00 5 Imnge
(11). When A, =0 and A>0,0=90° | L."":_r." / : 6”::}\1 Source
(i) WhenA,<0and A,=0,0=180° || "N .| ... »
(iv) When A, =0and A,<0, 0 =270° | ,.\% gl i
Example 2.6 | /<
Three concurrent forces are acting on \ / Scene Object

a body at point ‘O’ as shown in figure.
Calculate the magnitude and direction of
their resultant force. Tl{c role of vectors in the formation of
; an image by using a camera.

Solution:
We have F,=19Nat0=0°
F,=15Nat 6 =60°
F3=16N at 6 = 135° (180° - 45° = 135°)
Resolve all the forces into their rectangular components.
' E, =F cos® A

<
E, =19cos0° =19(1)=19N F3 F2
F, =F Sin0 ' o o
il 45 60° F1
F, =195in0° =19(0)=0 —5
E. =F,c088; | | |
= P = = ce forces F,, F.and F,
sz Esy go =15(0-9)= 75N :Trt[:clig;c;f diﬁ'erear:: direction
F,, =F,Sin#,
- F,, =15Sin 60° =15(0.866) =12.99 =13N
F, =Fcos0,
F,, =16cos135° =16(-0.707) =—11.312N
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F.". __FI 5”1 61.
F,, =16sini33" = 16(0,T07) =1 1.312 N

The magnitude of x-component Fy of the resultant foree E.
F, =F +F, +h,

F =19+7.5+(-11.312)

F. =152N

The magnitude of y-component F, of the resultant Borge £
F‘, — F|~, + F;_. +l"='.
F, =0+13+11.312=243N

The magnitude of the resultant foree I is given by,

the
| \IlF.; = |
F = J05.27 <(24.3) =~/231.04 1 590.5 = JR21.54

o
F =28.66 N

F
" (0 =tan™' =
l_:\
24.3 e
70 =tlan” —— =tan 1.6
I:"l: {F

A =58
2.8 PRODUCT OF TWO VYECTORS
When two veclor guantities ore multiplied. then their product may be either

gcalar or a vector quantity. This shows that two vectors can be multiplied in two
different ways, one s called sealar product and other 15 called vector product.

2.8.1 Scalar product or dot product
When the product of two vectors is a scalor quantity, then such product 1s
called scalar or dot product. 2
Let two vectors A and B are making an angle
8" with each other as shown in Fig. 2.21. The scalar
 product of these two vectors A and B is defined as;
~ A-B=ABcosD......(229)
where A and B are the magnitude of the given vectors | —— .
A oand B, and 0 is the angle berween them. QAR g a e vom

n e veriors Aand B
&

—




Explanation:

vectors A and B with their tails at the same point
such that there is an angle ‘0’ between them. The B
Fig.2.22 shows that B, =Bcos0 is the projection of

vector B along the direction of vector A . 9\

To explain the scalar product, we draw two

at
-

Thus, A-Bis defined as the product of  Bx=BcosH A

v

magnitude of A and the component of B along the  Fig-2.22: Projection of vector B

direction of A. i.c.,

Fig.2.23 is expressed as;

in the direction of vector A

A-B=A (Projection of vector B on vector A)
A-B=ABcos0 ...... (2.30)
Similarly, projection of A on B as shown in

B-A =B (Projection of vector A on vector B
B-A =B(Acos0) .
Fxg.Z.‘.’Sj Projection of

B-A = ABcos0 ...... (2.31) vectors A in the direction
From equation (2.30) and equation (2.31) it is  ofvector B

\

cleared that

A-B =B-A

Examples of scalar product of two vectors

(1)  Work is equal to the scalar product of force (F) and displacement (d).

16 W=F-d.

(2) Power is equal to the scalar product of force (F) and velocity (7). i.e.,

—

P=F-¥

Properties of scalar product of two vectors

i

IL.

Scalar or dot product of two vectors is commuiative

Since A-B=ABcos6 and B-A = ABcos8

Thus, A-B =B-A i.e., the scalar product is commutative.

This simply means that the order of vectors in the dot product does not a matter.

The scalar or dot product of two mutualiy perpendicular veciors

IS zero.

Let A and B are two vectors which are mutually perpendiculac to each other
i.e. angle '0' between them is 90°.

49
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Then, A-B=ABcos0 A
A-B=ABcos90° 5
A-B=AB(0)=0 (- co0s90°=0) -
In case of unit vectors, 1,] and k which are o
: A
perpendicular to each ot?hcA:'r th?eﬁrcfore, 0 s e il
i-j=1jc0s90° =(1)(1)(0)=0 perpendicular to cach other,
Similarly ik = ]] “k\ c0s90° = (1) (1) (0) =0 and
k-i =kicos90° = (1) (1) (0)=0 ~i-j=j-k=k-1=0

I11. The scalar or dot product of two parallel vectors is maximum
and equal to the product of their magnitudes.
If A and B are two vectors parallel to cach other then angle ‘0 between them

is 0°, so 0°
A-B = ABcos0 A N\ B
A-B = ABcos0° A =
—— : Vectors A and B parallel to each other
A-B =AB(l) “rcos0’ =1
A-B =AB

Similarly, the scalar or dot product of two anti-parallel vectors is equal to the
product of their magnitudes with —ve sign.
If A and B are anti-parallel to each other than angle (8’ between them is

180°, so; ~ 180°

A-B = ABcos@ PO lox B ..
A-B = ABcos180° Vectors A and B antiparallel to
P = cach other
A-B =AB(-)) "+ cos180° =-1
A-B =-AB
IV. The scalar or dot product of a vector with itself is equal to the
square of its magnitude. i 0° 5
A-A =AAcos0° />|\ -
A-A = AA(]) ‘+cos0° =1 Two identical vectors of same
s magnitude and direction
A-A =AA
A-A=A’

In case of unit vcctors,f, _] and k. Since i is parallel to i (i.e., 6 = 0°) and
each has a unit magnitude, so we have, ‘

\5.0/




iicos0° = (I)(1)(1) =1
‘ ” ,cosO"—(l)(l)(l)—l
kkcos0°=(DH(M)()=1 i

~

-
Similarly je3
and k-k

V. The scalar or dot product obeys the distributive law.

Wl

Let we have three vectors /—\, B and C which are dirccted in their given

directions as shown in Fig. 2.24. Then according to distributive law of
R

M

multiplication
A-(B+C)=A-B+A-C
where A-(B+C) =A{Projection of (B+C)on A}

A-(B+C) =A(0OQ)

A-(B+C) =A(OP+PQ) 6 | 1=
A-(B+C) =A(OP)+A(PQ) O B. P ©C 'O
A- (E 1 C) : A(B,)+A(C,) Fig.2.24: Three vectors A, B and

w B = e S D C explain the distributive law.
A-(B+C) =A-B+A-C
This shows that scalar product obeys distributive law of multiplication.

VI. Scalar product of two vectors also obeys Associative law of

multiplication
nlA-B=A-ln[—3=ll1(A-§)
VII. Scalar product of two vectors A and B in terms of their
rectangular components.
A=Ai+Aj+Ak; B=Bi+B j+Bjk
A-B=(AJ+AJ+AK) (B i +B,]+B,k)
As we know that i-i= _] _] k-k=1and l_]=_) k=k-i=0

A-B= A B, A B +A,B,
Also A-B=ABcos0




——

Example 2.7

Find the angle between the vector A =3i+2j+k and B= 51—2]-3Kk.
Solution:

We have, A =3i+2i+kand B= 51—2_] 3k

As, A-B =ABcosf SO, cosG—A—
AB

where, A -B =(3§+2j+1’<)-(5i—2j-31‘<)
A-B=3)(5)+()(-2)+(1)(-3) ~A-B=AB +AB, +A,B,
A-B=15-4-3=15-7=38
Similarly, A = /A2 +A2 +A’
A=~32+22+1* =\0+4+1 =114 =3.74
and B=\/83+B§+B§
B =45 +(-2)* +(-3)* =/25+4+9 =38 =6.16
A-B 8
AB  3.74x6.16
0 =cos™0.35 =69.5°

Thus, cos0 = =0.347 =0.35

T‘mmplc 2.8
Prove that vectors A=i+2 j+3k and B=2i- _] are perpendicular to each

other.
Solution: .
A=i+2j+3k; B=2i—]

The two vectors are perpendicular if A-B=0

Now A-B= (+2_]+3k) (21-)
A-B=()(2)+(2)(-)+(3)(0) ~A-B=AB +AB, +A,B,
A-B=2-2=2-2=0 |
Since the scalar or dot product of A and B is zero, this proves that the two
vectors are mutually perpendicular.
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‘i 282 Vector product or cross product

When a vector quantity is obtained 'by the 4 AxB=C
I product of two vector quantities then such product of
~ two vectors is called vector product or cross product.

" Consider two vectors A and B making angle | B ABsind
@ with each other as shown in Fig. 2.25. The vector | < A~

g
»

product of these vectors is a vector C and is written as; Fig.2.25: Vector product of two
é _ A " E vectors A and B
C = ABsin6n
AxB =ABsinfi ... (2.32) |
where A and B are the magnitudes of vectors A, B and s called the normal unit
vector and it represents the direction of C. It is always perpendicular to the plane
containing vector A and B.

Right hand rule for determination of resultant vector C
The direction of vector C can be determined by
right hand rule.
According to this right hand rule, curl the
fingers of the right hand in such a way that the first

vector A would rotate towards the second vector B
through the smaller angle between them, the stretched
perpendicular thumb indicates the direction of Fig.2.26: Right Hand Rule

C=AxB as shown in Fig.2.26.

C=AxB
Explanation

To explain the vector product of two vectors A

and B, we join their tails at the same point, such that
there is an angle ‘0’ between them and hence we have

the plane of vectors A and B.
The direction of AxB is determined by rotating

vector A into the vector B through smaller angle ‘0’ as
shown in Fig. 2.27. According to right hand rule, the

direction of C is vertically upward. Fig.2.27: Right Hand Rule
- anticlockwise rotation

&




Thus, AxB=C... (2.33)

Similarly, the dircction of Bx A is determined
hown 1n

i

by rotating vector B into the vector A as s
Fig.2.28. According to right hand rule, the direction 0

C is vertically downward,
Thus, BxA =-C

—(BXA) =C....(2.34)

\J

From eq. (2.33) and eq. (2.34) it is clear that 10,228 Right Hand Rule
(/—\ x E) = —(B X /—31) ...... (2.35) Clockwise rotation

Examples of vector product of two vectors
(i) The torque is equal to cross product of moment arm

applied (F) i.e; T=rxF

(i) The angular momentum L is equal

( ) and the force

to the cross product of position

vector (T) and the linear momentum (p) i.e., L=T>Pp

*
Properties of Vector Product

I. The cross product of the two vectors does

not.obey commutative law -

90°

>
L

As discussed earlier (/—X X E) = —(E X /7\)

—

A

Two vectors A and B which

i.e. AxB#BxA are perpendicular to each other

Therefore, vector product of two vectors is not
commutative.

II. The magnitude vector or cross product of two mutually
perpendicular vectors is maximum and is equal to the product of

their magnitudes.
[,7\ X B’ = AB (Maximum)

Let vectorAis perpendicular to vector B and angle [0’ between them is 90°

A xB = ABsin 0n
AxB =ABsin90°A
AxB = ABf +sin90° =1

~
S N ii—

AT o L T
\
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In case of unit vectors, i,j and k along x- Z
y-axis and z-axis as shown in Fig.2.29. &
According to right hand rule, the direction of ixj is '

Perpendicular axis that equal to z-axis with unit X
vector kJ, Thus, —d

ix]=1jsin90°A '/
=) ()i=hH=k
Similarly, jxk = i

axis,

X

lzx‘i\ _ Fig.2.29: Unit vectors along X,y
=) and Z axes in Cartesian

Using Fig. 2.27, simply reversing the order of  Coordinate system
the unit vectors gives

jxi ==k kxj=-I ixk=-]
[II. The vector or cross product of two parallel vectors is zero.
Let A and B are two non-zero parallel vectors. So in this case, the angle ‘@’

between them is 0° then Z
AxB = ABsin0°A —
AxB =0 +sin0°=0 B

>
—P>

In case of unit vectors, 1, J and k. We have, Two veetors A and B which are
‘i‘x i‘ _ ﬁsin 0°h = (l)(l)-(O)ﬁ -0 parallel to cach other.
and ]xj=0 and kxk =0
Similarly, the vector or cross product of two anti-parallel vectors is equal to zero.
If A and B are anti-parallel to each other than angle ‘0’ between them is

180° so; o . 180
AxB = ABsin 0 . -t LN B
A xB = ABsinl 80°# Two vecetors A and B which are

anti-parallel to each other.

AxB =AB(0)i=0 - sin180°=0

[V. The vector product of a vector with IlS(‘” is equal to zero or Null

vector. Z
AxA = Asm 0n - P s
5 A. . N
AxA=AAsmOn +sin0% =0 -~ B
- = . Two identical vectors of same
AxB = AB(O)II =) magnitude and direction,
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V. Tke vector product obeys the distributive 1aw.

If we have three vectors Az B and C then,
AX(BxC) —AxB+AxC
VI. Vecter preduct of two vectors obeys Associative 1aw of multiplication

mAxB=AxmB= m(AxB)

and B in terms of their rectangular

i.e.,

VII. Vector product of two vectors A

components
A= A1+Ay_|+Ak B= B1+B]+Bk

/_ixB=(Ax1+AyJ+AZk)x(Bx1+ByJ+B,k)

AxB =AB,(ixi)+AB,(ix)+AB (ixk)+
A B (JX1)+A B (_]X_])+A B, (_]Xl()+
AB (kxi)+A,B [(kxj)+A,B (kxk)

As we know that

~

SxG=k  jxk=1 kx ]
s+ %

K=
ek Rxied k=]
and ixi =3xj=ﬁxﬁ=0
AxB=AB,0+AB,K+AB
AyBx(—ﬁ)+AyBy(0)+Asz(§)+ \rAntl-clockwise gives +ve
‘unit vectors clockwise gives

| AB,()+A,B,(-)+A,B,0) —ve unit vectors.
 AxB=ABKk-AB,j-AB, k+AB,i+A,B,j-AB i
AxB=AB,i =A¢By1+A B,j-A BzJ"'A B,k -AB
| (A, 3,_, A B )J+(A A, ;)f‘




ve law of multiplication

ms of their rectangular

For Your Information

Anti-clockwise gives +ve
unit vectors clockwise gives
~ve unit vectors.

-ABj
-A Bk
,-A B )k

VIII. The magnitude of vector product of two vectors represents the area
of the parallelogram formed by them,
'Figure 230 shows a parallelogram OPQR

whose adjacent sides OP and OR represent vectors

A and B respectively and SR is its height.

B

By definition of the magnitude vector product = -
of two vectors A and B is given by; Fig.2.30: Area of parallelogram
A " B — ABsind is cqual to lh_g vector product of

two vectors A and B,

But in triangle ORS,

L] =sinf
B
h =Bsinf
AxB| = Ah
AxB| = (Base) (Height)
AxB]| = Area of parallelogram
| Example 2.9 |
Determme the area of the parallelogram whose adjacent sides are 2i + _]+3k
and i- _]
Solution;

Let A and B be the vectors representing the adjacent sides of the parallelogram.
Here, A= 21+]+3k B=i- ]

The area of parallelogram is equal to the magnitude of the vector product of
A and B.

Now, A . =(2l+j+3k) (| J)

AxB =(2 )1 )(m) +2)(- |)(lXJ)+(1)( )(JXl) +1)F )(JXJ)
+(3)(1)(fxi)+(3) (1) )(kxi)
AxB :2(0)-2(12)+1(-k)-1(0)+3( j)—3(—l)
AxB =0-2k-k-0+3j+3i
AxB =31+3-3k
*- Magnitude of the area of the parallelogram = ‘A X B‘ =y +3+ 32

Magnitude of the area of the parallelogram =+/9+9+9

9




Magnitude of the area of the parallelogram = J27=5.19 .
Magnitude of the area of the parallelogram = 5.19 sq. Units

29 TORQUE

The most common example of turning effect in daily
life is the opening or the closing the doors. That is, when
we open or close the door, we apply a force perpendicular
to the plane of the door. It is our observations that if the
force is applied near the hinges, we are likely to face
difficulty in opening or closing of door. On the other hand,
V\fhen the force is applied at the maximum distance from the -
hinges then it is much easier and we will have to apply ~ Fi2:31: Tuming cffect duc to
less force to open or close it. This example clearly opening or closing the door.
indicates that the turning effect of a force depends upon
not only the applied force but also the distance between
the line of action of force and the axis of rotation. It is

shown in Fig.2.31.
- Similarly, the steering wheel of a car is another

common example of the turning effect of force. In this
case, the turning effect in the car's steering can be

observed when two forces of same magnitude but in A {
opposite directi i i O 3 Fig.2.32: Two forces act @
PP Eiiof avc acimgram{t. LK (9 810 kmgpmas steering to produce a turning

a couple. A couple has a turning effect but does not effect.
cause an object to accelerate. For a couple, the two g
forces must be separated at a distance 'd' as shown in

Fig.2.32.
A force applied on a body is capable of rotating O

the body about an axis. This turning effect of a force is ()

called torque or moment of a force. T " )
' i Fig.2.33: Moment arm
is i el e £ pemd B applied force and bc%wccn the line of action of

moment arm. It is represented by ‘t” and is given as; force and axis of rotation,
t=d)(F) ... (2.36)

where ‘d’ is a moment arm and 'F' is the applied force.

Momentum arm is the perpendicular distance between

line of action of force and axis of rotation as shown in

Fig. 2.33.
Considering a wrench which is pivoted about an

axis through ‘O’ by applying a force at an angle ‘0’ as
shown in Fig. 2.34.

Y door
- hinge

Fig.2.34: A force acts at an angle
0 on a wrench
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Ifr is the distance between the pivoted point
and the point of applied force and d is the

; perpendicular distance from the pivoted point to the
linc of action of force then,
d_ . : serpendicular
' 4 — =5in@ --sin@=L""1 :
r hypotenuse

d =rsin0=Moment arm
Thus, eq. (2.36) becomes
T =(rsin0)F

T =rFsin0
T=TtxF ... (2.37)
Thus, torque can be defined as vector

product of force and moment arm.

This shows that torque is a vector quantity
whose direction is along the axis of rotation.

Torque is taken as negative when the body
is rotated clockwise and it is taken as positive
when the body is rotated anti-clockwise.

Now considering a torque duc to the applied
force F acting on a rigid body at point ‘P’ whose
position vector with respect to pivot O is T as shown
in Fig.2.35. As F is acting at an angle ‘0’ with T so
we resolve it into its rectangular components.

The component of force along T is called
radial component (Fcos0) and there is no torque

due to this component.
The component perpendicular to T is called
tangential component (Fsin0). Actually, the torque

is due to this tangential component that is.

- ‘ T =rF
But F =Fsin0
: T =1Fsin®
' T =TxF

Rotation
axis

ie,2.35; Foree atanangle with
$Tljqedests .

position vectorr

Rotation

Mome
of F
Fig.2,36: Moment arm at an angle
with force F.

Similarly, we can also resolve the position vector rinto its rectangular
components as shown in Fig.2.36. In this case the torque is due to F and r sinf that

18;
T =Frsin0
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T =TXF
ue depends upon magnitude

of force, position vector and angle ‘0°. T

Torq
SJ unit of torque is N-m and its dimensional formula is [MLET'z:\.
Example 2.10
oduces by force of 10N which

Calculate the torque pr
is applied by a man downwar

length Sm.

d at 60° on a crossing level of F ;
qe = 60"

" Solution:
1t =1Fsin0
T = (5)(10)sin 60°
£ =50(=0.30)
t=—15N-m

The negative sign indicates that the torque is In

clockwise direction.

2.10 EQUILIBRIUM

When an engineer designs a
bridge etc., his first priority is to maintain its balance. It
is possible only when all these are at rest or moving with
uniform velocity. This is the basic principle of
equilibrium and it is stated as, "a body is in equilibrium
when either it is at rest or in uniform motion and its |A paratrooper moving downward

acceleration is zero". There are two forms of |with uniform velocity in state of
equilibrium; static equ dynamic equilibrium.

ilibrium (at rest) and dynamic
equilibrium (in motion). Equilibrium can be studied
under the following two conditions. '

1) First condition of equilibrium or

~ translational equilibrium

A body is said to be in translational equilibrium
when the algebraic sum of concurrent forces acting on it
is zero and this is the first condition of equilibrium.
Consider a number of forces (F;, Fa, F3 % |
di_fferent directions are acting on an object as shown in
Fig. 2.37. The object will be in state of equilibrium
when the result force of all these forces is zero.

system, building, |i

—




Mathematically, it is cxpressed as;
F+F+F+F+..+F =0
2F =0
_ This is the mathematical form of 1* condition of -
equilibrium. It is further explained by an example.

. When an aeroplane is in flight, four forces are :
acting on it, its weight is acting downward and lift force pg/( T X Fo
F4

F2_

is upward, while thrust is forward and drag force is
backward as shown in Fig. 2.38. R
Fig.2.37: Number of forces acting
on an object

LA = Thrust

l\\’eight

Air S/)L'L‘(/ >
Lift = Weight
Thrust = Drag

Fig.2.38: Acroplanc in state of equilibrium under the action of four forces

According to 1* condition of equilibrium, the aeroplane will be in equilibrium when;
Weight = Lift
and : Thrust = Drag Force
Now when all the forces are acting on a body along x-axis. Then first
condition of equilibrium is written as
XF,=0

Similarly, for y-axis 2F, =0 and for z-axis 2 F, =0

2)  Second condition of equilibrium or rotational equilibrium

A body is said to be in rotational
equilibrium when the algebraic sum of torques
acting on it is zero. This is the second condition
of equilibrium. It is explained by an example of
two boys who are sitting on the opposite ends of
a seesaw as shown in Fig.2.39.

The boy who is sitting at the end of the
right hand side of the seesaw produces clock
wise torque (~) and the boy who is sitting at g 5 30, A seesaw in state of rotational
the end of left hand side of seesaw produces equilibrium due to clockwise and anti-
anti clock wise torque (+t). Now if the sum of ~clockwise torques.
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all torques is zcro then seesaw is balanced and the whole system is in rotational
equilibrium. .

This example can be extended for ‘n” number of torques acting on a body and

the body is in equilibrium, if the vector sum of all the torques acting on it is zero.
T # 0 ¥ GFutt =0
21, =0

This is the mathematical form of second
condition of equilibrium. It is also called
rotational cquilibrium.

From the above discussion, it is
concluded that if a body salisfies the first
condition of cquilibrium then its linear
acceleration is zcero. Similarly, if a body satisfics
the sccond condition of cquilibrium its angular
acceleration 1s zcro.

A cranc is working under the principle
It is also worth noting that if a body  ofcquilibrium.

satisfics both conditions of cquilibrium then its
lincar as well as angular accclerations arc zero
and such a body is said be a complete or perfect

Poiril to Ponder
The accuracy of a measurement
i describes how well the result
equilibrium. agrees with an accepted value.
Mathematically it is expressed as;

SF =0,ZF =0,XF =0and Zt=0

L D s ' i’ W < R s ;

e Scalars and Veetors: The physical quantities which have only magnitude are
known as scalars whercas the physical quantitics which have both magnitude
and direction are known as veclors.

e Graphical representation of vector: Graphically, a vector quantity is
represented by a straight line with an arrow on its one end. The length of the
straight line represents, according to the chosen scale, the magnitude and the
arrow indicates the direction of the vector.

e Cartesian co-ordinates system: Two lines which are perpendicular to each
other is known as Cartesian co-ordinates system. A vector can be drawn in any

~one of the four quadrant in such Cartesian co-ordinates system.

e Addition of a vector: Vectors can be added by the head to tail rule and by
rectangular components method.

e Position vector: Location of a point in Cartesian co-ordinates system described
by a vector known as position vector.

@
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e Unit vector: A vector whose magnitude is equal to unity is known as unit

vector A = —é‘-
Al

e Resolution of vectors: When a vector is split into two or more vectors then it is
called resolution of a vector.
e Rectangular components of a vector: When a vector A is lying in XY-plane
then its horizontal and vertical components are given as;
A, = Acos0i Ay=/§xsil]0}
The magnitude and direction of the resultant vector A interms of rectangular
components are given as;

(A’ JA 3+A O—tan':—:

e Scalar or dot product: When the product of two vectors is a scalar quantity

then it is called scalar or dot product.

e Vector or cross product: When the product of two vectors is a vector quantity
then it is called vector or cross product.

e Torque: The turning effect of force in a body about its axis is called torque. i.e.,

T=rxF.
e Equilibrium: A body is said to be in equilibrium when it is at rest or moving
with uniform velocity. There are two conditions of equilibrium.
First condition of equilibrium: According to first condition of equilibrium, the
. sum of forces acting on a body is equal to zero. i.e. 2 F =0
Second condition of equilibrium: According to second condition of
equilibrium, the sum oflorques acting on a body is zero. i.e. 2 t=0

T T T R T
b - .., - ’ " ’, _I :.
g+ AN ey ) !" ' i""‘ol__é’bh ;i
- aive !.. .I‘
| —— e e h— =

Q Multiple choice guestions.
1.  Which one of the following is a scalar quantity?

. (a) Force’ (b) Torque (c) Momentum (d) Density
2. Which one of the following is a vector quantity?
(a) Work (b) Power (c) Weight (d) Mass
3.  Which pair includes a scalar and a vector quantity?
(a) K.E. and momentum (b) P.E. and Work
(c) Weight and force (d) Velocity and acceleration

4. Two vectors A and A are making an angle of 90" with each other. What is
their resultant magnitude?

& .
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(a) A} +A3 (b) JA? +A?

(c) AT +AZFAA, (d) A,2+A22+15A,A2

5, The magnitude of two vectors is 3N and 4N respectively. If the angle between
them is 90°, then their resultant vector will be:

(@)5SN (b) 6 N ()TN (d) Zero*
6. At what angle the vertical component of a vector is maximum?.

(a) 0". (b) 30°  (c) 45° (d) 90°

7. In which quadrant a vector can be drawn when its both x and y components are

negative. |

(a) Firsl. (b) Second (c) Third (d) Fourth
8. What is the possible result of (—3?)-(—4])?

(a) Zero (b) One (c) 12k d) 12
9, What is the angle of the given vector 2i + 2] ?

(a) 30° (b) 45° (c) 60° (d) 90°
10. The correct result of the expression j-(kx 1) is;

(a) Zcro (b) One () i (d) ]

11, Which law does not obey by the vector product of two vectors?
(a) Associative  (b) Commutative (c) Distributive ~ (d) Identitive

I 12, The scalar product of two non-zero vectors is equal to zero when angle 0
between them is;

(a) 0° (b) 30° (c) 60° (d) 90°

13, The vector product of two vectors is maximum when both the vectors are
(a) Parallel '(b) Anti-parallel  (c) Perpendicular  (d) Equal

14, What is the expected result of (AxB)*+(A-B)* =?
(a) A’B’cos® (b) A’B’sin0 (c) AB (d) A’B’

18, Self cross product of unit vectors is always
(a) One (b) Zero (c) Linear (d) Non-linear

16, The magnitude of dot and cross products of two vectors are 63 and 6 :
respectively, the angle between the vectors is: |

(a) 90° (b) 60° (c) 30° (d) Zero
17. What torque is produced by 30N force which is acting at 60° on a wrench of
length 30 cm?
~ (a) 5.8 Nm (b) 6.8 Nm | (c) 7.8 Nm (d) 8.8 Nm

&




18.

19.

A force of 10N at 60° is acting on a block, what force in opposite direction will

bring to block at equilibrium.

(@)5N (b) ION (c)ISN (d) 100 N

If the line of action of the force passes through their axis of rotation or origin,
then its torque is:

e g— e ———

1.
2.
3

s

h

0.

()'

1.
11.

(a) Zero (b) Maximum (c) One (d) None of these

= = 7 STTE) ST IO NI AN
e eate o L HORT QUESTIONS .

Why a scalar quantity cannot be added or subtracted with a vector quantity?
What are the characteristics of vectors addition?

When the resultant of two vectors is zero? Explain it with the help of diagram.
Under what condition the resultant vector of three vectors acting

simultaneously on a particle is zero?

What would be the position of a vector when its x-component is positive and
y-component is negative? Explain it with the help of a diagram.

What change takes place in a vector when it is multiplied by a negative
number?

Give any three examples, where a vector is divided by a scalar quantity.

Under what circumstances the rectangular components of a vector give same

magnitude?

* Can the scalar product of two vector quantities be negative? If your answer is

yes, give an example, if no provide a proof?

How scalar product of two vectors obeys commutative law?

Can the magnitude of any one rectangular components greater than the
magnitude of the given vector? :

When the scalar product of two vectors is maximum?

How the direction of the resultant vector for vector product of two vectors can
be determined? _

What are the similarities between torque and work? |

Why both condition of equilibrium are necessary for the complete equilibrium?
Can a body be in equilibrium when three forces are acting on it? Explain with
the help of diagram.

When a system will be in perfect equilibrium?

What do you understand by positive and negative torques?

7 COMPREHENSIVE QUESTIONS

What do you know about the scalar and vector physical quantities? Explain the
representation of vector quantities.
Describe various kinds of vectors.
Define Cartesian co-ordinate system and explain that how one can draw a

vector quantity in this system.
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4, State and explain the addition and subtraction of vector quantities.

5. Explain that how can you multiply a vector quantity by a scalar or a number.

6. Explain the addition of vectors by rectangular components for two and more
than two vectors.

7. State and explain scalar product of two vectors with its properties.

#. What do you know about the vector product of two vectors. Discuss all the
properties of vector product. :

Y.  Define torque with examples. Also mention the kinds of torque.

10. What is cquilibrium? State and explain the first and second conditions of
cquilibrium.

NUMERICAL PROBLEMS

1. ¥ A=i+2j-3k and B=3i-j+ 2Kk then find out (a) [2A+3B| (b) [3A + 28|

11,11
2. What is the unit vector A in the direction of vector A = 2i + 2]+ k. I
2i + 2] +k )
3 J
3. Find the projection of vector A=2i+ 4} on the vector B =4i+3k. (2\
5
4.  What is the magnitude and direction of a vector when its horizontal componc:t
is doubled then its vertical? (2.236, 26.6")
' * 5. . Find the X and Y components of a vector A = 4i + 7} making angle 60" with x-
axis. (4,7)
6. Three forces F, F, and f’, arc acting on a body at point Y
‘O’ such that Ff=20N, F,=40N and F,=30N as F A ¥,
shown in the figure. Calculate the magnitude and 15°
direction of the resultant force of these three forces. 0 = X
(56.4N, 28.7%) 4N, 28.7°)
7. Prove that the three vectors 3§+]+2ﬁ, I—_]—k and L

i+ 5:i —4k are at right angle to one another.

8. The magnitude of dot and cross products of two vectors are 6 and 643
respectively. Find the angle between them. (60°)
9. A force, F =4§—3}+2f< acts on an object and the object is displaced along a
straight line from point A(3,2,-1) to point B(2,-1,4). If force is measured in
newton and displacement in metres then find work done on the object.  (15])
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10. Three forces are acting at one end of the rod of length 80cm. What are the
expected torques due to each force about an axis of rotation ‘O’.

T ~~e (-8 N.m, +8.5 N.m, 0)

Leverarm / g 25N
/ 20N

10N

11. A uniform beam of weight 40 N is subjected by forces as shown.in figure.

What is the magnitude, direction and location of a force that can keep the beam
(0.6N, 49°, 0.163L)

in equilibrium?
50 NI 80N

450"  45.0°

yOON 60.0 N 60.0 N

70N
12. A traffic light hangs from a cable tied to two other cables
fastened to a support as in figure. The upper cables make
angles of 45° with the horizontal. These upper cables are
not as strong as the vertical cable and will break if the
tension in them exceeds 130 N. Find the weight of the

traffic light to keep the system in equilibrium. (85N) W =mg

13. A truck of weight 5000 N is driven across a single span bridge of weight 7000
N and of length 30 m as shown in figure. Find (a) the total reaction at the two
supports A and B when truck is at the center of the bridge. (b) the reaction (R,
and R,) at each support when the truck is 20 m from end A.

(a) (6000 N, 6000 N) , (b) (5167 N, 6833 N)
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FORCES AND MOTION

——

[ Major Coneepts GUPERIODS)

Displacement . ' This chapter is built on
Average velocity and instantancous velocity Kinematics & Dynamics
Average acceleration and instantancous acceleration Physics IX

Review of equations of uniformly accelerated motion
Newton’s laws of motion

Momentum and Impulse

Law of conservation of momentum

Elastic collisions in one dimension

Momentum and explosive forces

Projectile motion

Rocket motion

:_mll)"@)'fft’mn 5

After studying this unit, the students wnll be able to:

Describe vector nature of displacement.

Describe average and instantancous velocities of objects.

Compare average and instantaneous speeds with average and instantancous velocitics.
Interpret displacement-time and velocity-time graphs of objects moving along same
straight line.

Determine the instantancous velocity of an object moving along the same straight line
by measuring the slope ofl displacement-time graph.

Define average acceleration (as rate of change of velocity a, = Av / Al) and
instantancous acceleration (as the limiting value of average acceleration when time
interval At approaches zero).

Distinguish between posmve and negatwe acceleratlon uniform and variable
acceleration. :

Determine the instantaneous acceleration of an object measuring the slope of
velocity-time graph.

Manipulate equation of uniformly accelerated motion to solve problems.
Explain that projectile motion is two dimensional motions in a vertical plane. -
Communicate the.ideas of a projectile in the absence of air resistance that.

68,
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(1)  Horizontal component (Vy) of velocity is constant.
(i) Acceleration is in the vertical direction and is the same as that of a vertically

free falling object.
(iii) The horizontal motion and vertical motion are independent of each other

Evaluate using equations of uniformly accelerated motion that for a given initial.

velocity of frictionless projectile.

.  How higher does it go?

2. How far would it go along the level land?

3.  Where would it be after a given time?

4. How long will it remain in air?
Determinc for a projectile launched from ground height.

1. Launch angle that results in the maximum range.

2. Relation between the launch angles that result in the same range.
Describe how air resistance affects both the horizontal component and vertical
component of velocity and hence the range of the projectile.
Apply Newton’s laws to explain the motion of objects in a variety of context.
Define mass (as the property of a body which resists change in motion).
Describe and use of the concept of weight as the effect of a gravitational field on a
mass.
Describe the Newton’s second law of motion as rate of change of momentum.
Correlate Newton’s third law of motion and conservation of momentum.
Show awareness that Newton’s Laws are not exact but provide a good approximation,
unless an object is moving close to the speed of hght or is small enough that quantum

effects become significant.
Definc Impulse (as a product of impulsive force and time).

Describe the effect of an impulsive force on the momentum of an object, and the
effect of lengthening the time, stopping, or rebounding from the collision.
Describe that while momentum of a system is always conserved in interaction

between bodies some change in K.E. usually takes place.
Solve different problems of elastic and inelastic collisions between two bodies in one

dimension by using law of conservation of momentum.

Describe that momentum is conserved in all situations.
Identify that for a perfectly elastic collision, the relative speed of approach is equal to

the relative speed of separation.
Differentiate between explosion and collision (objects move apart instead of coming

nearer).

————




INTRODUCTION

[t is our common observation that all bodies are

either at rest or in motion. A

body is said to be at rest if it does not change its position with respect to its
surroundings. For example, a book placed on 2 table. "A body is said to be in
motion, if it changes its position with respect to its surroundings"’. For example,
a man, walking a moving car or a train etc. In universe, everything is in perpetual
motion, like motion of an clectron around the nucleus, the motion of the moon
around the carth, earth moves around the sun and so many others. The motion can
be categorized into three types i.c., translational, rotational and vibrational. For
cxample, motion of a car along a highway is a translational motion, motion of fan is
a rotational motion and to and fro motion of a pendulum is a vibrational motion. All
kinds of motion can be cxplained in terms of displacement, veldcity, acceleration
and force. These parameters can be studied in the equations of motion and Newton’s

three laws of motion.
The study of motion of a body under the influence of an applied force is

called mechanics and there are two main branches of mechanics such as kinematics
and dynamics. In kinematics, we study the motion of bodies without reference of
forces or masscs while in dynamics we study the forces that change the motion of
the bodies. Another important aspect of this chapter is the projectile motion, such

motion is a two dimensionally, so the path of the projectile motion is the resultant of

fect on the horizontal and vertical components of their velocitics but

simultancous cf’
(hese componcents act independently such as the vertical components determines the

time of flight while horizontal component determines the rangc of flight.

3.1 DISPLACEMENT

Consider two lengths both having 10 m o
same magnitude of 10 m, but one length has B )
no direction while the other length has m —W
specific direction from East 10 West as
shown in Fig. 3.1.

Thus the length of
covered by a body during its moti
metre. Distance is a scalar quantity. Its value can never be z€ro 0

the motion of an object.
On the other hand, the length between two points in a given direction 15

called displacement. Displacement is also defined in terms of the shortest distance
direction which 18

between the initial and final points of the body in a particular
given by the vector drawn from initial to final position.

Fig.3.1: Distance Vs. Displacement

actual path between (WO points in any direction

on in a given time is called distance. Its unit is
r negative, during
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Displacement is a vector quantity. The SI unit C
of displacement is also metre and its dimensional
formula is [M°LT°]. The displacement is either lcss
or equal but never greater than the actual distance
travelled. It is explained by the following examples.

Let a body moves from point A to point B
then from point B to point C in time ‘t’ as shown in

Fig.3.2. The shortest distance AC from initial point » B
'A' to final point ‘C’ is a displacement, while Fig.3.2: Distance vs displacement

AB+ BC is the actual distance covered.

The motion of a body along a circular path of
circle from point 'A' to point 'B" is shown in Fig. 3.3.
In this case arc AB is a distance while chord AB is its

displacement.

Example 3,1
Compare distance and displacement of a body

when its motion is along circular path from point A
¢ i sphere of radius 10 cm as shown in ; _
@ D ol & fiemt 5 Fig.3.3: Distance and Displacement

Fig 3.4. . between two points A and B.
Solution:
Distancc = length along curved path of heml sphere 10
2nr A O an B
Distance =—>= (3.14) (10) . . .
2 FFig.3.4: Distance along the circular
. _ path and displacement along the
Distance = 31.4cm diameter.

Displacement = Diameter of a hemi sphere
Displacement = 2r

Displacement = 2(10)

Displacement = 20 cm
This example shows that displacement is the shortest distance.

3.2 SPEED

We can calculate the average speed of a moving object if we know the
distance covered by the object and time taken. Thus the average speed is defined as
“The time rate of change of position of the object in any direction”. It is
measured by the distance covered by an object in unit time i.e.,

Average speed = dls.tanc'e COVELEL (3.1)
time interval

7
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Speed is a scalar quantity. Its SI unit is metre/second (m s and its dimensional

formula is [M°LT™"].

The speed of an object can be zero or positive but never negative.

3.3 VELOCITY

Let there be some displacement between a
moving car and a milestone as shown in Fig.3.5.

The  displacement  between  them
decreases with time when the car is moving
toward the milestone and increases with time
when the car is moving away from the
milestone. This change in displacement of the
car with respect to time is called its velocity and
it is defined as;

body is called its velocnty
Mathematically it is expressed as;

" Ad
V=—-.... 3.2
N (3.2)
where Ad represents the difference in

displacements of the body (d; —d,) and At is the
time interval (t; —t,). '

Velocity is a vector quantity its direction
is along the direction of displacement. The S]
unit of a velocity is m s
formula is [M°LT™"].

The magnitude of velocity is equal to
speed of the body.

3.3.1 Uniform Velocity

Velocity of a body is called uniform when
it covers equal displacements in equal intervals
of time. However, small these intervals may be,

3.3.2 Variable Velocity

The velocity of a moving body is said to
be variable (or non-uniform) when it covers
unequal displacements in equal intervals of time
or vice versa.

and its dimensional

\72/
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100
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. _ Quits
Fig.3.5: Velocity of a car
|

Walkmg Ant 0.0'1_‘_’
Human Swimming 2 |
| Human Running 4
 Flying Bec % - -
Tortoise -
100 Meters Dash 10
Running Cheetah 29
Falcon in a dive -
Automobile 62
Jet Airline 267 |
Sound in Air T 333

| Moon around the earth | 1023
Earth around the Sun 29600 |
Sun around galaxy 230000 |
Light (Electromagnetic | 300000000
Wave)

Key Points
(i) The magnitude of velocity is

called the speed

(if) Velocity = Speed x direction
(iif) Speed and velocity, both have

same unit ms™'

(iv) Speed is a scalar quantity
whereas velocity is a vector

e



If a moving body has constant speed but changes in its direction of motion,
then the velocity is variable. In fact, the velocity may be variable due to the two
following reasons.

(1) change in magnitude (speed)

(i1) change in direction

3.3.3 Average Velocity
Average velocity is defined as, “the ratio of total displacement to the total
intervals of time during which the displacement is covered”.
Let d, be the displacement at time-t; and dine od
d, be the displacement at time t; as shown in ?

Fig. 3.6. Then L, < Ad >t
. Change in displacement Ad = Cl2 = d| Fig.3.6: Rate of change of displacement
Interval of time At =t; — t;
.~ Ad
Average velocity =V, = e (3:3)

3.3.4 Instantaneous Velocity

“The velocity of a body at any instant of time where the time approaches
to zero then such velocity of body is called its instantaneous velocity™.

If Ad is the change in displacement in time interval At which approaches to -
zero then the corresponding value of the instantaneous velocity is written as;

Vim = limitéﬂ ...... (3.4) 50

_ = At—=0 At
3.3.5 Displacement - time Graph I“O

The velocity of a moving body is defined ! 5

as the ratio of the change in the displacement to  $
the time taken. Therefore, the graph between S 20
displacement and time is more helpful to =
explain the changing position of the body. The ;10
slope of the displacement-time graph is equal to

the velocity of the body and it can be studied O 2 4 6 8 10

under different cases. . ——> time
: ; . Fiog.3.7: A straight line in displacement-
When the motion of a body is uniform, @  (jme oraph for uniform velocity of a
straight line OP in displacement-time graph ~™M"'< body
represents the uniform velocity of the body as shown in Fig. 3.7
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When the motion of a body is non-uniform then there is a curved line in

displacement-time graph and the chord of this curved is represented the average
velocity of the body as shown in Fig. 3.8.

In case of instantaneous velocity, the slope of the tangent at the point P of the

curved line in displacement-time graph shows instantaneous velocity of the body as ‘
shown in Fig. 3.9.

D50 Q
P
N\ 50
40 , v‘/v\
47 40
T 30 0& T »
s & R
= 20 2 -
810 210 At
Q Q 2
2A4 6A18 1'Boﬁ 2 4 6 8 10
—> lime time —»
Fig.3.8: The chord in displacement-time graph Fig.3.9: A point P in Displacement-time graph
shows average velocity of a moving body

shows instantaneous velocity of a moving body

3.4 ACCELERATION

Generally, bodies do not move with constant velocities. When the velocity of
I a moving body changes with time then it is said to be accelerating. As the velocity 1S

a vector quantity, the change in velocity may be due to the change in magnitude or
change in direction or both. The acceleration is a measure of how fast or slow the
velocity is changing with time. Therefore, the acceleration is defined as “the rate of
change in velocity of a body with respect to time”. If v; be the initial velocity of a
body at time t; and v¢ be its final velocity at time t;, then the acceleration of the body
is given by; '

Vf - Vi _ AV
t -t At

r ! y

a=

Acceleration is a vector quantity. Its direction depends upon the nature of

change in velocity. The SI unit of acceleration is ms~and its dimensions are
[M°LT™].

If the rate of change of velocity of a body is increasing, then its acceleration
is taken as positive and the direction of acceleration is along the direction of
velocity. However, if the rate of change of velocity of a body is decreasing then its
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acceleration 1s taken as negative and the direction of acceleration is opposite to the
direction of velocity. It is also called deceleration or retardation.

3.4.1 Average Acceleration
When the acceleration of a body is duc to the continuous change in

magnitude or direction or both of the velocity then we introduce the average

acceleration which is equal to the total change in velocity over the total time interval

in which that change takes place in velocity. Mathematically, the average
acceleration a_, is expressed as;

= AN

aﬂ\'z_

At

3.4.2 Instantaneous Acceleration
The acceleration of the body at particular instant of time if the time interval

At is infinitesimally small (At — 0), then such acceleration is called instantaneous
acceleration and it is given by

c . . AV

a_ =limt— ... (3.7)

S A-0 At
3.4.3 Uniform Acceleration
A body is said to be moving with uniform acceleration (i.e., constant
acceleration) if the velocity of the body changes by equal amounts in equal intervals
of time. However, small these intervals of time may be.

3.4.4 Variable Acceleration
The acceleration of a body is said to be variable if its velocity changes with

time in terms of magnitude or direction or both. The variable acceleration is also
called non-uniform acceleration.

3.4.5 Graphical representation of
acceleration in velocity-time graph

504

The  graphical  representation  of T30 5"=10 "
acceleration is more easy and helpful to &
understand its nature. The slope of the velocity- §520 s/ A

time graph is equal to the acceleration of the

body which can be studied under the following

various cases. . )
. .\Nhen th-e velocnty of 2 bOd.y - n}creasmg Fig.3.10: Velocity-time graph represents

with time then there is a straight line with  acceleration, uniform acceleration and

positive slope in velocity-time graph which  deceleration

shows the positive acceleration of the body as shown in Fig.3.10 ().
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When the velocity of a body is constant than there is a straight horizontal line
in velocity-time graph, it represents a uniform velocity of a body as shown in
Fig.3.10(1I). In this case, v, = v, and acceleration of the body is zero.

When the velocity of the body is decreasing with time then there is a straight
line with negative slope in velocity-time graph which shows deceleration or ,
retardation or negative acceleration as shown in Fig.3.10(I1I)

In case of instantaneous acceleration, the slope of the tangent at point P of the

curved line in velocity-time graph shows instantaneous acceleration of the body as
shown in Fig. 3.11.

I 50 50
x 40 40
=30 T3o
&
§ 20 P Ad 820
= AN
210 At 10
Q
2 4 6 8 10 2 4 6 8 10
time —» time —»
Fig.3.11: The point 'P' in velocity-time Fig.3.12: A curved line in velocity
showing instantancous acceleration time graph shows variable acceleration
When there is continues change of velocity of a body with respect to time in
I magnitude or direction then there is a curved line in velocity-time graph which

shows the variable acceleration of the body as shown in Fig. 3.12.

3.5 FREE FALL MOTION

In the absence of resistive forces (air resistance), when a body falls freely
under gravity, its rate of change of velocity is
termed as gravitational acceleration. It is
represented by 'g' and its value at sea level is
9.8ms”.

The value of 'g' is taken as negative for
upward vertical motion of a body and is taken as
positive for downward motion. However, in case
of motion of a paratrooper, where its weight and
normal reaction (air resistance) are equal then

Fig.3.13: Acceleration, deceleration and
the motion of paratrooper becomes uniform and  uniform acceleration of a body under

the value of ‘a’ is zero as shown in Fig. 3.13. B

"
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Some examples of free falling objcéls

« A stone dropped from a height, FOR YOUR INFORMATION

» A skydiver is in frecfall until he pulls = IR I a2
his parachute. . Mercury 3.7
« An object, in projectile motion, on its ¥eous 5
’ ’ Earth 9.8
descent.' " Mars =
« A satellite or a spacecraft in Jupiter 231
continuous orbit. . Satum 9.0
« The planets are in free fall as they orbit. Uranus 8.7
the sun. Neptune 11.0
Sun 274

3.6 REVIEW OF EQUATIONS OF UNIFORMLY
ACCELERATED MOTION

There are four parameters time, displacement, velocity and acceleration
which are associated with a moving body. To study these parameters, we have three
important equations of motion which are expressed as;

Let a body starts its motion with initial

vl v
. g ® . S f
velocity 'v;' and after some time ‘t’ its velocity @ }- t @ »

‘ b 2 >
becomes Vl: after COVCflﬂg a dlsp!acemcn.t S as Fig.3.14: Lincar motion of a body along
shown in Fig. 3.14. This change in velocity of astraight path
body with time is called its acceleration, which

can be expressed as;

V, =V, +at...... (3.8)
This is known as 1* the equation of motion. In scalar notation v, =v, +at .
Now by definition of displacement.

S =v,t
But, (Average velocity) v,, = ( M, ; Vi )
Therefore, 8= ( L ; M )t
As | v, =V, +at
S =(V; +:u+vi)t
2
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g - 2vit  at’
2 2

S = vit+%at2 ...... (3.9)

This is the 2™ equation of motion.
Again v, =V, +at
V-V,

t =
a

Put it in equation (3.9)

2
NSWCEARNEEN
a 2 a

2 2 2
. ViV =N +l"r + Vv =2V, V¢

S
a 2 a
& o 2v.v, —2Vi + Vi + V] =2V,V,
2a
G o V? - V?
2a

2aS =v:—v}.....(3.10)
This is the 3™ equation of motion.

Example 3.2

A vehicle start

s from rest and moves with a constant acceleration of 6 m s7°.
Find its velocity and the distance traveled after 5 sec.

Solution:
We have, v, =0
a=6ms"
v, =7
Si=?
t =35s8 -
According to 1* equation of motion.
v, =V, +at
v, =0+(6)(5)
v, =30ms™

Now according to 2™ equation of motion.
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S =vit+lat2
2

S =«(O)(5)'+%(6)(5)2 =0+3(25) |
S=75m

Example 3.3
The velocity of a truck is reduced uniformly from 30 m s™' to 8 m s™' while
traveling a displacement of 210 m. (a) What is the deceleration of the truck? (b)

How much further will the truck move before coming at rest?

Solution:

(1) v,=30ms" (h) S =?
v,=8ms™ v; =8ms”
S =100m | ve =0
a=? a=-2ms™
Using 3" equation of motion. Using 3™ equation of motion.
2a8 =vi -] 2aS = v} + V]
_ Np—=v vi—v?
"o 28 s r2a
a _ 8" -Goy —(30)° | S = 0-(8)°
2(210) 2(-2)
i = 64-900 | _ :ﬁ
420 ' -4
a =-2m™ S =t6m

3.7 NEWTON’S LAWS OF MOTION

Newton's laws of motion have great importance in classical physics. A large
number of theorems and results may be derived from Newton's laws of motion. To
study the basic principles of motion as well as relationship between force and
motion, Sir Isaac Newton published “Laws of Motion” in his famous book
“Principia” in 1687. These laws can be applied to the motion of massive bodies
which have low speed as compared with speed of light. However, for atomic
particles which are moving very fast Einstein's, relativistic mechanics can be
applied for their motion instead of Newton’s laws of motion. The Newton's laws of

motion are summarized below;

\ 4




3.7.1 Newton’s first law of motion

This law is based upon law of nature and
it states that “ In the absence of an external
force, if a body is at rest it will remain at rest
and if a body is moving with uniform velocity,
it will continue its uniform motion”. Newton’s
1st law is also called law of inertia, that is, the
resistive property of a body to resist any change
in its state of rest or uniform motion is known
as inertia. Inertia is also defined as the inherent property of an object due to which it
tends to maintain the state of rest or of uniform motion. The mass of a body is a
quantitative measure of its inertia. The bigger is the mass of a body, the higher will

be the its inertia. Hence, there is a great resistance to any change in velocity for a
big mass. '

3.7.2 Newton’s second law of motion
Newton's second faw of motion is also
known as law of acceleration which is stated as;
“When a force is applied on a body, an
acceleration is produced in a body in the
direction of force as shown in Fig3.15. Fig.3.15: Acceleration in the direction of
According to this law, the acceleration is force
directly proportional to the applied force and
inversely proportional to the mass of the body”.
Hence, we can develop a relation between mass, acceleration, and force
through the following mathematical statement of Newton’s second law.

.
aoc—
m

—

B F
a = Constant—

B m
Lk
m - o .
where 'K' is a constant of proportionality. If its value in S.I units is one than;
F=ma ... .(3.11) '

This is a mathematical form of Newton’s 2nd {aw of motion. Force is a
vector quantity, its SI unit is newton (N) and its dimensional formula is [MLT™].
One newton force can be defined as; "An applied force is said to be one newton if it
produces an acceleration of Ims™ in a body of mass 1 kg".
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Thus, a greater force is required to accelerate a massive body as compared to
a light body as illustrated in Fig. 3.16.

00
?"J/mx EV l

(a) (b)
Fig 3.16: The same force exerted on system of different masses produces diffcn.:nt 'uccclcralions.
(a) A basketball player pushes on a.buskclbnll to mnkg a pass. (lgnor‘c the gravitational force).
(b) The same player exerts an id_t_:_n(;gﬂ @rcrc ona slalmnnryVlgliuvlicinsicr aﬂd prodglccilcss acceleration.

lé.\':ﬁllplu 3.4
What is the force which acts on a moving body of mass 10 kg for 10 s and

reduces the velocity of the body from 9ms™'to 4ms™".

Solution: F=? POINT TO PONDER
m= 15 Kg Why the driver and the passengers
t=>3 sec wear safety belt during their
vi=9m s journey?
vi=4 m 5! -
According to Newton’s 2" law.
F=ma

F m("_i) .
t

p:ls(ﬂ)
A\

F=3(-5)"
"F=-15N
The negative sign shows that the applied force is acting in a direction
opposite to that of motion of the body. .

3.7.3 Newton’s third law of motion it 17 F 7

This law is also known as law of forces Q {ﬂ
and it is stated as; “For every action there must - k:i‘.
be an equal and opposite reaction” where - " i Tyorkinn
action and reaction are forces which have same g{:gﬁo‘lch“:ﬁl;’: e by gt
magnitude, but act in opposite direction. . but act in opposite directions.
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s exist in the form of a pair and never act on

Action and reaction forces alway
the same body.

Consider two bodies of masses M and

m, which exert forces on each other during their | .. DO YfOU KNOW

collision as shown in Fig.3.17. The force ich two forces are acting on 2
flying kite? - -

exerted by.m; on my is Fj and the fqrge.exerted -
by m; on'm; is Fa;.The force F,, may be'called action
called re.qcti__qp'or vice versa. Then aécordihg to Newton
i Fi,==Fa DAY
1 form of Newton's 3 Jaw.
Newton’s third law of

force and the force F,, may be
' third law of motion;

Reactlon force of the table

This is the mathematica
We can observe

motion in our everyday life. -
(1) Consider a book lying (motiomless) on a

table as shown in Fig. 3.18. Its acceleration
is zero. Weight of the book acts
downward, sO another force called normal

reaction provided by
upward on the book.
(i) A rocket is also moving according to the
principle of action and reaction forces. i.e.,
When its fuel burns, hot gases escape from
its tail with a Very high speed. The
reaction of these gases on the rocket
causes it to move in the upward direction
i.e. opposite (O the direction of gases

shown in Fig. 3.19. ‘
(iii) When we walk or run on the ground our

feet pushes the ground backward (action)
while the ground pushes us forward
(reaction).

Limitations of laws of motion

on microscopic objects ‘
Newton’s laws are not valid on the micro

proton, neutron etc. This is because these partic

velocities. When they. move, they behave as wave.

only for a linear motion. '

Objects moving with large velocitics .
The Newton's laws are.not valid for the objects which are moving with 1arge

velocities comparable to the speed of light because at large velocities the mass of

the objects do not remain constant but increases.

lWelght of book

the table top must act Fig.3.18: Action and reaction forces on
book lying on table

- Fig.3.19: Action and reaction forces cause

of motion of a rocket.

scopic objects such as electrons,
les have small masses but large
But Newton's laws can apply
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" gravity.

Similarly, we use quantum mechanics instead of Newton's laws for the study
of motion of sub-atomic particles. .

On macroscopic level, Newton's laws have also limitations because of non-
ideal environmental conditions, for example all equations and formulae are derived
by assuming frictionless motions but practically we cannot have environment where
friction is not present. We can minimize frictional force but cannot eliminate them -

completely. :
384 WEIGHT AND MASS

3.8.1 Weight |
We know that everybody is attracted to the Earth. The attractive force exerted

by the Earth on a body is called the gravitational force. This force is directed
towards the centre of the Earth and its magnitude is called the weight of the body. It
is represented by 'W'and it is calculated as;
W=mg ... (3.12)

Weight is a variable quantity, because it depends upon 'g'. The value of 'g'
decreases with increasing distance from the centre of the Earth and increases with

decreasing distance from the centre of the earth. The SI unit of weight is newton and

_its dimensions are [MLT].

3.8.2 Mass

The quantity of matter in a body is called its mass. It is measured in terms of
kilogram and it is a constant quantity. In other words, mass is that property of a
body which specifies how much resistance a body exhibits to changes in its velocity
i.e., greater the mass of a body, the lesser will be the acceleration in the body for a
given applied force. The mass of a body can be determined by two different

newtons.
Gravitational Mass |
The gravitational mass of a body is defined in term of the ratio between the

weight of the body to the gravitational acceleration i.e.,
5 - .

Gravitational mass is measured at rest on a balance that depends upon-
I1. InCriiul Mass Ba Ll A ST I

s The inertial mass of a body is defined as the ratio between the applied force
F' to the linear acceleration 'a' produced in the body by that applied force i.e.; - '




on gravity.

3.9 LINEAR MOMENTUM

Inertial mass is measured dynamically (while moving) and does not depend

You are quite familiar with the fact that a force is needed to stop a moving
object. The force needed to stop the object will depend on at least two factors: the

mass and velocity of the moving object.
For example, it would be more difficult

to stop a car travelling at. 10 m s”' than a bicycle '
travelling at the same speed. Similarly, it would -

be more difficult to stop a car moving at
10 m s~ than the same car moving at 5 m s

( v
- '- m

A body of mass m moving with velocity
V along a straight path.

This ability to stop a moving object is related to its momentum. The momentum is
the property of moving objects. It is represented by p aad it is defined as “the

product of mass (m) and velocity V"
Mathematically we have

' Momentum is a vector quantity and its
direction is along the direction of velocity of
the body. Its SI unit is kg m s' or N s and its
dimensional formula is [MLT™"].

If there are two bodies of different

masses and velocities, but having the same
" momentum then;

P, =P2

m,v, =m,V,
m _V,

m, v,

Velocity (m/s)

—>
Mass (kg)

Fig.3.20: Velocity-mass graph showing
momentum of a body

This result shows that at constant momentum, velocity of body is inversely
proportional to its mass. Graphically, the relationship between mass and velocity is

shown in Fig. 3.20.

3.9.1 Momentum and Newton’s 2nd law of motion

We have stated that the more is the momentum of an object, the greater will
be the force required to stop it. What is exact relationship between the force and

momentum? Now we will derive the same.

&
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Consider a force F which is applied on a body of mass ‘m’ which is moving
with initial velocity Vv, along a straight line. After some time At its velocity becomes

' v, due to the applied force as shown in Fig.3.21. This change in velocity of body is

L called its acceleration and is given by; £ v v
— _ —-‘ 4 m ‘f_’
. 3 e e s/
At < At >
- = _ = Fig.3.21: Change in velocity of body
But, F=ma P with time by the applied force
i;" =m Ve —V;
At
gom Ve—mYy,
At
o pf = pl
F =
’ At

This equation gives the relationship between the applied force and the
" momentum of the body. This is another form of Newton’s 2nd law. We can also .
state Newton's second law of motion as '"The time rate of change of momentum

of a body is equal to the force applied on it"'.

Example 3.5 .
What is the momentum of a runner of mass 65 kg who covers a displacement

Solution: : When a stone and leaf are dropped
m = Mass of man=65kg from a building simultaneously then
d = Displacement = 100 m why the stone reaches to-the ground
t=Time=40s catlier?
The magnitude of momentum is given by
p=mv
But V= &
t
d
therefore, . p= m(?)
| 100
=i65—
P=>%0
p=162.5kgms™
Note that this momentum is along the direction of velocity of body.

? &




3.9.2 Impulse :

It is a daily life experience that in certain cases the forces act on bodies for a
short interval of time and these forces are called impulsive forces. For example,
when a ball is struck by a tennis racket it exerts a force on the ball for very short

interval of time.

The product of impulsive force and
short interval of time is called impulse.
Mathematically,

Impulse = FxAt......(3.17)

Impulse is a vector quantity. Its unit is
N s and its dimensional formula is [MLT™].
The observations show that impulsive force .
does not remain constant but it varies with
time and it is shown in Fig.3.22. The area At

under the curve in force-time graph shows tt, —» time
impulse and it is equal to the Change I Fig.3.22: Force-time graph show impulse

A

>

——» Force

t,

momentum.
According to Newton’s second law of motion, the tlme of rate of changc of

momentum is equal to the applied force i.e.
= Ap
At
Put it in equation (3.17)
Impulse = ﬂx At
At
Impulse = Ap
Impulse = p, —p;
Impulse = mv, —myv, ......(3.18)

This is termed as impulse-momentum theorem which states that an impulse
always changes the momentum of a body. It is based on the fact that if the total
change in momentum takes place in a very short time, then the applied force should
be very large. If the same change in momentum takes place over a longer interval of
time, then the applied force will be small. For example, if two forces F, and F; act
on a body to produce the same impulse, then their respective times of apphcatlons t

and t, should be such that
Fiti=Ft;

Lt
t2

- |

\8_6/
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practical applications of impulse

~ There are some practical applications of impulse, which are listed below:
‘1. - A cricket player draws the hands back while catching a ball
While catching a fast moving cricket
. ball, a player lowers his hands. In this way the

time of catch increases and the force decreases.
So the player has to apply a less average force.
As a result, the ball will also apply only a smali
force (reaction) on the hands. In this way the
player will not hurt his hands.

. . . i b i i
II.  Automobiles are provided with | Alr bags o g i

. countless lives in accidents. The air
spring systems bag increases the time interval during
When the automobile bumps over an | Which the passenger s bronght tu vest,

: : ) . thereby decreasing the force on the
uneven road, it receives a jerk. The spring | passenger.

increases the time of the jerk, thereby reducing

the force. This minimizes the damage to the automobile.

I

Train bogies are provided with buffers

The buffers increase the time of jerks during shunting and hence reduces
force with which the bogies pull each other.

' FOR YOUR INFORMATION
Example 3.6

Impulsive force is a force which acts
A car has a constant force of 1000 N applied | on body for a very short time.

i . Examples are; (i) A bat hitting th

2 s v 8 He
for 10 s. What impulse has been applied? ball, (i) The collision between two
Solution: ‘ s

Impulse = Force x time
Impulse = 1000 x 10
R Impulse = 10000 Ns.

3.9.3 Law of conservation of rﬁomentum

The law of conservation of momentum states that in the absence of an
external force, the total momentum of an isolated system remains constant.

. Consider two spheres of masses m; and m, which are moving along the same
axis and same direction with velocities v, and v, before collision such that v; > v,
and let both bodies collide and their velocities after collision become v, and V',.
During collision both the bodies exert the forces on each other which are same in -

N




mggnitude but opposite in direction as shown in
Fig.3.23. Let F,, be the force exerted on m, by

m, and K, be the force exerted on m, by m,
then accordmg to . Newton - thlrd law of
motlon ' :

; le =-F,
5 ' R T T s
AdN As '>F='—p‘:‘
$ A
%0 AP 5 20D
a At At
Ap, =-Ap,
’ '
m,v, —m,v, =—(m,v, —m,V,) . .
%3 1 22 4 ;2 .
' _ ' e Fig.3.23: Collision of spheres which
m,v, —m,v, =-m,v, +m,v, follows the law of conservation of
Rearranging the above equation momentum
— ' ’
- ’ ’
mIV, +m2V2 — mlvl +m2V2 ....... (3-19)

This is a mathematical form of law of conservation of momentum. According

to this law the sum of momentum of the given system before collision is equal to the
sum of momentum after collision that is the total momentum of an isolated system

remains constant.

3.10 COLLISION

The impact of two bodies due to their interaction with each other is called
collision. The magnitude and direction of the velocities of the bodies before and
after collision may be same or different. The time in which the bodies remain in
contact is known as impulsive or compression time which is very short interval of

time and it can be neglected. There are two kinds of collision.

Elastic Collision

A collision in which both kinetic energy and momentum are conserved is
called elastic collision. For example, collisions of molecules of a gas is elastlc

collision. An elastic collision has the following characteristics.

(i)  The linear momentum is conserved.

(ii)  The kinetic energy is conserved

(iii) The total energy of a system is conserved.
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Inelastic Collision

A collision in which the linear momentum of a body is conserved, but total
energy 1s not conserved is called inelastic collision. The experiment shows that there
is loss in kinetic energy in inelastic collision. This loss of energy appears in the
other forms of energy, such as heat, sound etc. For example, when a bouncing ball is
dropped on to a hard floor, the collision between the ball and floor is elastic and the
ball would not lose its kinetic energy and so would rebound to its original height.
However practically, the actual rebound height is slightly shorter, showing some
loss of kinetic erergy in collision. Such collision is called inelastic collision.

Simifarly, the collision between cars, mud thrown on the wall and sticking to
it and the collision between bullet and its target are the examples of inelastic
collision.

During inelastic collision kinetic energy is not conserved, it is converted into
various forms especially heat and sound. Hence the final kinetic energy is less than
initial kinetic energy. An inelastic collision has the following characteristics.

(1)  The linear momentum is conserved.

(i1) The total energy of a system is not conserved.

(iii) The whole or a part of kinetic energy energy is converted into any
3 ~ other form of energy (like heat and sound).

3.10.1 Elastlc collision in one dimension

The colhsnon between two bodies is
said to be in one dimension, if.the colliding
bodies continue their motion along the same
straight line after collision. -

. R is explamed by “an ‘exampie. Let us
consider two elastic spheres of masses m; and
m, are moving with velocities v, and v,, where
* v, >v, before collision. After moving a certain

distance, both the bodies collide elastically and
their velocities become v'; and v’ respectively

such that they continue their motion along the
same straight line in the same direction as

shown in F 18 3 ‘24', . Fig.3.24: Elastic collision of two bodies
The values of these velocities after  one dimension

collision can be expressed in terms of velocities
before collision.

\i9/




-Since in an elastic collision, linear momentum is conserved, therefore

according to law of conservation of momentum;

n,v, +m,v, =m,v,+m,v,
As all velocities are in the same direction, we can rearrange the above

equation
m,v, —m,v; =m,v, —m,Vv,
m, (v, —v;) =m,(v;-V,)......(3.20)
Similarly, according to law of conservation of kinetic energy.

1 1 1
—m v} +—m,v: =—mv/4%—m,v?
: 2 2 :

2
Rearrange the above equation
1 . 1 2 1
5™V —Em,v; =5m2v;2——m2v§

m vl’ _ 2 _ 2 2
Vi TV =m,v, —m,v,

2 2) _ 2 2

m, (v, =v;)(v, + V) =m,(V; = V,)(V; +V,) .....(3.21)

Dividing eq. (3.21) by eq. (3.22) we get; .
V,+V =Vy 4V, ... (3.34) ©9999009:92099:00599
= - R HED

" Above equation can be written as;
V,—V, =V, -V, ......(3.23)
Vi=Vy ==(Vj—v3)
This is an interesting result that the
quantity on the left of the equation (3.34) i.e.,
(v, —v,)is the relative velocity of approach of

the two masses while the quantity on the right :
(v;—v;) is the relative velocity of separation. The crumple zone is designed to
‘ absorb cnergy from a collision and

Thus for perfe?tly elastig collision in one reduce the force of collision. Folding
dimension, the relative velocity of approach | during a crash increases the impact
before collision is equal to the relative velocity | time. Time to come to halt is increased

: s so the force is decreased.
of separation after collision and they are ik
opposite. If one object is approaching another at a relative velocity of 10 m s~
A

after collision it will be receding at a relative velocity of 10 m s~ _
Now by solving eq. (3.20), eq. (3.22) and eq. (3.23) we get the value of v/

', then

and v, as:

'\90/




V) = (ﬂ) v, + [MJ Vy e (3.25)
m, +m, m, +m,
Equation (3.24) and equation (3.25) can be studied for different cases.

3.10.2 Elastic collision in one dimension for different cases
Special cases of elastic collision in one Before Collision
dimension. %
Case - I: ”
When both the colliding bodies have
same masses.

©:

1.e.,, m=m;=m. After Collision

Then eq. (3.24) and eq. (3 25) become. vVi=v, V,=V,
Vi=Vy, - -

and V)=V

This shows that if m; = m; as shown in
Fig.3.31, then after one dimensioral elastic Fig3.25: One dimension elastic collision
collision the velocities of the bodies will be

interchanged. Before Collision
V, =

of two bodies where m; = m,.

Case - 11: i»
When both bodies have same mass 1i.e.

m; = m, and the target body m; is at rest (v,=0)

as shown in Fig. 3.26.

Then eq. (3.24) and eq. (3.25) become; After Collision
vll —_ 0 ’ — vfz — v‘

=0
and vh=v, ;
This shows that if m, =m, and m, at @

rest, then after collision the m; moving with
velocity v, comes to rest and m, which was Fig.3.26: One dimension elastic collision
initially at rest starts moving with velocity v,. ©ftwo bodies where m; =m;and v; =0
Clearly, both the momentum and kinetic energy. of the first body are completely

~ transferred to the second body.

'




i - W. o

Case - It
When the body m, is much lighter than

m, (m, <<m,) and m, is at rest (v,=0) as

shown in Fig.3.27.
So mass of lighter body m, can be

neglected (m; = 0) as compared to mass of

second heavier body m; then eq. (3.24) and cq. After Collision
(3.25) become ' V' =V, Viy =
Vig=~=Yj ap—

and vi=0 s

[t means that when a lighter body m, (’:_',')
collides against a heavier body m, at rest, the
lighter body m,; rebounds with its own velocity
or m, starts moving with equal velocity in
opposite dircction after collision while the
heavier one will remain at rest.

dimension clastic collision

Fig.3.27: Onc iy EHOVE ™ 0.

of two bodies where m

Case - 1V:

When the body m; is much heavier than Before Collision
m, (m; >> my) and m; is at rest (v = 0) as v .-
. . . . 1
shown in Fig.3.28. In this case mass of lighter A——— v,
body m; can be ncgl.cctcd (m;, =~ 0) as compared @9
to mass of first hcavier body m,. %
So from eq. (3.24) and eq. (3.25) we get
% ' _) - ( ) € After Collision
Y=V .
and. v, =2v, ___V_'_> v, =2v,
E This shows that the hecavier body m, ‘\'
collides against a lighter body m; at rest, the (’z:z)

heavier keeps on moving with the same ,
velocity of its own and the lighter starts moving  Fig.3.28: Onc dimension clastic collision

- with a velocity double that of heavier. of two bodies where m;>>m, and v, = 0.

Example 3.7
A 10 kg mass traveling with velocity 2 m s™! collides elastically with a 2 kg

mass.travcling with velocity 4 m s~ in the opposite direction. Find the final
velocities of both objects after collision.

Solution:
m; =10 kg



The negative sign is because of the velocity is in the opposite direction.

=2ms”
m, = 2 kg
v;=—4m s~
V'|=?
vi=7?

' (m|—m7
Vl =
\m,+m2
, (10—2 (
\{
\10+2

i )+(i)0

v;_133-133_0

,( 2m,
Vy = Vi
(m, +m,

,—
VI—

, f4o) (32)
Vy, = — |+ — |=
L12) 12
v, =-7—2=6ms'l

I

3.11

e
e
()5

(m,—nyJ

m, +m,
(2

. ._xlO)z (2 )( "

> 10+2 10+2

(R EME

40+ 32
2

COLLISION AND EXPLOSION

ISOLATED SYSTEM
In the absence of an external and
unbalanced force, when two or more
than to bodies are cxerted the forces
to one another during their collision
is called isolated svstem.

@ @

\‘\ef

Heal, sound,
and sometimes
light can be
emilted.

We have studied about the collision i.e. the impact of two bodies to each
other. After collision there will be two possibilities i.e. either the bodies stick to
each other or bounce from each other. In both cases their total momentum will be

conserved but their energy will be cither conserved or changed.
‘ An explosion is an event in which a single body breaks apart into a number
of fragments. Like inelastic collision, total momentum in an explosion is conserved
but total energy of the given system is not conserved, even the potential energy of
the bomb is transferred in the form of kinetic energy of its fragments.




| _ Suppose a bomb is at rest, its momentum ‘ .¥ /'
will be zero because its velocity is zero. Let the 7 \'
bomb explode into seven fragments of masses

M), My, my, my, ms, mg and m; as shown in /. k
Fig.3.29. Let their velocities be v, V2, V3, V4s Vs, /
Ve and v;. Thus their respective momentum will

be given by;
e . Before
Pp=myv,, p,= m,v,, p;=myV;, Py =M4Vs, Fig.3.29: Bomb exploded into seven

Now in the absence of an external force,
the law of conservation of momentum can be
applied. ’ '

~» Momentum after explosion =

Momentum before explosion
| “pitpatpitpstpstpstpr=0

The momentum vectors are shown In
Fig.3.30. Since the momentum of the bomb
was zero before the explosion, it must be zero
after explosion as well. Each piece does have
momentum, but the total momentum of the Fig.3.30: Sum of momentum vectors
exploded bomb must be zero afterwards. This
means that it must be possible to place the M -
momentum vectors head to tail and form a

closed polygon, which shows the vector sum is ———
zero. ,

Similarly, when a bullet of mass ‘m’ is S — — >
fired with velocity 'v' from a gun of mass ‘M’ V! . ¥
as shown in 'Fig.3.31. Initially, the total Fig.3.31: Conservation of momentum in

. firing a gun
momentum of bullet and the gun 1s zero e

because both are at rest. , :
When the gun is fired, a controlled chemical explosion takes place within the

gun. A force Fgg is exerted on the bullet by the-gun through the gases caused by the
exploding gun powder. But by Newton’s third law, an equal but opposite force Fgg
is exerted on the gun by the bullet.Siuce there are no external forces, the net force
on the system of bullet and gun is
Net Force = Fg¢+ Fgy
According to Newton’s third law of motion
Fpc=-Fgp

94
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Therefore, in the absence of external forces, the net force on the system of
uilet and gun is equal to zero:
Net Force = FBG_ F(‘,B= 0
. Hence momentum is conserved, p; = pr
The initial momentum of system of bullet and gun is zero, p; = 0. Therefore,
. according to the law of conservation of momentum, in the absence of an external
force, when the bullet is fired its final momentum of system of bullet and gun must
also be zero.
Since the bullet is moving with a velocity ‘v’ to the right, and therefore has
momentum to the right, the gun must move to the left with the same amount of
momentum in order to keep the momentum constant. Thus the total final momentum

is;
Momentum of bullet + momentum of gun =0
mv +MV'=0
MV'= -mv

This shows that the momentum of the gun is equal to momentum of bullet
but in opposite direction. Solving for the velocity V'of the gun, which is known as
recoil velocity, we get

Vi=—=mv/M ... (3.26)
3.12 PROJECTILE MOTION

The projectile motion of an object is an
important form of two dimensional motion. "

When an object is thrown in air or space
with some initial velocity at an angle 0 with the i
horizontal direction, it moves along a curved
path under the effect of gravitational force.
Such an object is called projectile and its Al/ o B _
motion is called projectile motion. The path ‘= mmmmmmmmmmnT Y

followed by the projectile is called trajectory Fig-?-lsif’;l ‘faJ?C:OWlpa}" of projectile

-and this trajectory is usually a parabola ay et wikisiialvelocity v, making
angle 0 with the ground.

- shown in Fig. 3.15. :

] s Some common examples of projectile are given as:
(1) A rocket or missile fired at a target.
(i1) A kammer or javelin thrown by an athlete.

(ili) A body thrown over the edge of a cliff or building with an initial
horizontal velocity.

(iv) A long jump attempted by an-athlete.

95
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(v) A football kicked by a player.
(vi) A baseball hit by a batter for a home run.
(vii) A cricket ball hit by a batsman for six.

In order to analyze the projectile motion, we make the following three

assumptions:

(a) The acceleration due to gravity, g is constant over the range of motion
(horizontal motion) and its directior. is downward;

(b) The effect of the air resistance is neglected (no horizontal force).

(c) The motion of Earth does not affect the motion of projectile.

Equations of projectile motion

Consider a motion of a projectile in a
verticdl xy-plane with initial velocity v, making
angle ‘0’ with x-axis (horizontal direction) such
that 0 < 0 <.90° as shown in Fig.3.33.

The most important experimental fact shows
that a projectile motion is the combination of
horizontal and vertical motion. These two motions
are completely independent of each other. Thus we
treat its x and y co-ordinates separately. By
neglecting air resistance, there is no horizontal

force

| motion.

A motorcyclist launches off a bike
from the edge of a clifl’ at certain
angle using principle of projectile

Fig.3.33: Projectile motion of a body with constant horizontal component of velocity v,. However, its vertical
component of velocity v, varies at each point. .
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acting on a projectile. So its horizontal velocity v, is constant and hence, the x-
component of acceleration a, is zero. On the other hand, the y-component of the
‘velocity is variable, its magnitude increases in downward motion and decreases in
upward motion. Thus, the y-component of acceleration ay =g and its direction is

downward at each point as shown in Fig.3.33. Now equations for projectile motion
’ can be developed by using equations of motion.

]

A

(i) " Distances in pr o]cctlle motion -
In projectile motion a body covers distances along both x-axis and y-axis
which are calculated as;

Distance 2long horizontal (lu ection (X-axis)

In projectile motion, the distance covered by a projectile along X-axis
remains constant, so we have;

Horizontal distance =S = x =?

Horizontal component of initial velocity = v = v cos0

Horizontal component of acceleration=a =0
Thus, by using these data in the 2nd equation of motion.

S =_’Vit 4—.—a tz

X : -l
' ‘ Sprinkle irrigation Invplves projectlle
x =(v, cosO)t ... (3.27) motion. _

\/
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Distance along vertical direction (Y-axis)
Similarly, for vertical motion of the projectile we have

Vertical distance=S =Y
Vertical component of initial velocity = v, —v sin 6

Vertical component of acceleration = a,, =—g
Again the 2nd equation of motion becomes;

S =vit+la&2
2

_ 1, Practically it is observed that the
Y ew, t+—at shape of the trajectory is greatly
~ 2 affected by the air resistance in the
earth’s atmosphere.

Y =(v,sinp t—%gt2 ...... (3.28)

Equation (3.11) and equation (3.12) represent components of displacement in
projectile motion.

(ii) Velocity of projectile
"~ As motion of a projectile is a two dimensional, its velocity also has two
components i.e., horizontal (v,) and vertical (v,). The values of these two

components can be calculated as;

Velocity along the horizontal direction
' In projectile motion, ‘the horizontal component of velocity v, remains

constant Therefore, a=a, =0.

Thus by usmg the Ist equatlon of motion;
=v, +at

vx =V, ta,t
v, =Vv,c0s0+0
V. =V cosO'. ..... (3.29)

Velocnty along vertical dlrectlon
Slmnfarly, in projectile motion, the velocnty along y axis varies with time.

8o, o ay=-g IR T
Agam the Isrequatlon of motion becomes. K - : ,

'(., : ‘ = o e * —V +at _
Yy=v6y+a‘yt.', i

N
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v' A
. v, =v,sin0+(-git  (wa,=-g)
| v, =vsinB—gt.... (3.30)

b Equation (3.13) and (3.14) represent components of velocity in projectile
- motion.
& _ The magnitude of resultant velocity at any instant can be calculated as;

' v=vi+v]
vV = \/(vo cos0)? + (v, sin0—gt)’
v =/v2cos? 0+ visin®B+g’t’ —2v, sinOgt

Voo \/vf,(cosz 0+sin’0)+g’t? —2v,_sinOgt - cos’O+sin’ 0 =1

v =/v2+git? —2v,sin0gt .....(3.31)
Direction of the resultant velocity |

v, * Projectile motion is a two
' tangp =— - dimensional motion under the
Vx acceleration due to gravity.
v, sinO—gt :
tan ¢ =~ gl ..(332)
v, cos0

Note that the angle ¢ goes on changing with time.

Characteristics of Projectile Motion

In the study of a projectile motion, there are a number of interesting
characteristics like time of the flight (T), maximum vertical height (H) attained by
the projectile and the horizontal range (R) of the projectile. The first two
characteristics (i.e., T and H) are determined from the vertical motion of the
projectile while the third (i.e., R) is calculated from the horizontal motion of the
projectile. All these are described below.

Time of Flight .

. It is the total time taken by a projectile
for which it remains in air above the horizontal

. Plane. In other words, it is the time taken by a
projectile from the instant it is released till it
strikes the target point of projection on the
same horizontal plane (i.e., from A to C) as
shown in Fig.3.34. It is denoted by T and it Fig.3.34: Total time of the flight
consists of two parts: ' ' |

<
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(a) The time of ascent: Tt is the time taken by the projeciile 1o reach from s

releasing point A to the highest point B. =0
(b) The time of descent; It is the time taken by the projectile to go from

highest point B to the target pﬂil'll C on the gl‘DUﬂd at the same level.
These two times taken by projectile can he determined as; . :
In projectile motion at the maximum point the vertical component o! YRR
of the projectile becomes zero. i.e, vy = and 1= b
Thus, eq.3.30) becomes, : |
) O=v sinf—gt

This is the time of ascending, The same
time will be taken by the projectile for
descending i.e.,

_L,smﬂ B34

td T - _ i
e B ey = oy e o e P T
B A firefighter. at o distance from &
' . mghiter. :
Totl time of ﬂlght buming butlding, directs a stresnt of
T = e * Diene water from o fire hose ot angle above the
hortaontal.

Py s
SN TR
e

Mﬂxir'hum Height
' The vertical distance uf projectile from the horizontal plane to the peak point

is known as maximum height. Ttis represented by H.
In order to calculate the maximum height of !lht‘. prajectile covered in time L,
- 4

we use the third equation of motion.
248 = v, — v,

Taking vertical upward motion, we have;
§= Hq VDS' =\';Si“9, a.\' =—g ﬂﬂd Vi =

2—gjH =0—(v,sin0)’
| _2gH = -v;sin" B ;

e |
e dm® gy
i 8

- Horizontal Range s
' In projectile motion, the distance covered by o projectile -axis 15
kmown as horizontal range. [t is denoted by R, s .
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In this case, x = R and the time is equal to the total time of flight T, and thus
eq. 3.11 becomes |

R =v, cosOT
R =VOCOSGX(MJ
g
v2 ; "
R =—22s5inBcosO [. 2sinBcosB=sin20]
4

2

R =~25in20.....(3.37)
g

It is clear that the horizontal range R depends upon angle of projection, for a
given speed v, of the projectile.

Maximum horizontal range -
For a given initial velocity y , the horizontal range of projectile will hg
maximum when sin20 in equation 3.21 is equal to one. i.e.,
sin20 =1
20 =sin™'(1)

20'=90°
0 =45° AN

70°
This shows that in order to achieve /,/
maximum range, the projectile must be 2 ' i

projected at an angle of 45°with horizontal
direction as  shown in Fig. 3.35. The

expression for maximum horizontal range car be obtained by putting 6 = 45° in Aq
(3.37). :

Fig.3.35: The range is maximum at 6 = 45°

!
2

R, =—2sin2(45°)
g

2
R, =-25in90°
g
V2 f
R__ = sing0° =1 ....(3.38)

Two angles of projection for same horizontal range

~When a p.rojecti.le is thrown at an angle 6 with horizontal direction, haying
velocity v, then its horizontal range is given by; e -

R =&sin26 A | '




Now, let R’ 'be the horizontal range of the projectile for angle of projection

(90° —0), having same velocity v,, then
2

R’ = Ye5in2(90° —6)

‘ . -
v R et 3 e U

R" =—25in(180° - 26) 1R

Al Say
[ X

But sin(180° — 20) = sin20, therefore | 4305 &iug‘w,fnr
; vz‘ . When ndm Jumps, she follows
R" = ?sm 20 a trajectories path,

Thus we see that the horizontal range is same for angle of projection 6 and
(90° -0) i.e.,
"R =R
It means that for a given velocity there are two angles of projection for which
the horizontal range is same.
An angle of projection (90°-0) with the horizontal is equivalent to an angle,

@’ with the horizontal or the sum of two angles is 90° (9’ =90° -0 or 0'+0 = 90°)

Hence range will remain same for two angles of projection which are
complementary of each other.

Effect of air resistance

Up until this point, we have ignored a very important aspect of projectile
motion, i.e. air resistance. This force, however, plays a major role in the motion of
objects around us. Air resistance is a force, called the drag force that acts in the
direction opposite to the object motion.

This air resistance affects the path of a projectile such as a bullet or a ball.
When air resistance is taken into account the trajectory of a projectile is changed.
The resistance is often taken as being proportional to either the velocity of the object
or the square of the velocity of the object.

Both the range of a projectile and the maximum helght that it reaches are
affected by air resistance. Figure.3.35 and Fig.3.36 show generally how air
resistance affects both the trajectory and the velocity of a projectile.

|
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Fig.3.35: Trajectory of Projectile motion under air Fig.3.36: Effect of air resistance on vertical and
resistance horizontal velocity of projectile traiectory

The blue lines show the projectile with no air resistance and the red lines
show what happens when air resistance is takea into account. Thus, in the
presence of air resistance the maximum height, the range and the velocity of the
projectile are all reduced.

Example 3.8

A body is projected upward from the horizontal plane at an angle 45° with the
ground has an initial velocity of 45 m s, (a) How long will it take to hit the
ground? (b) How far from the starting point will it strike?

Solution:
Angle of projection = 0 = 45°
Initial velocity = v,= 45 ms™’
(@)  Total time of flight =T =
(b)  Horizontal range = R =?

(a) T - 2v,sin®
g
T - 2x45xsin45° 90x0.707
9.8 9.8
T =6.5s
2
(b) R =25in20
g
(45) o Lava spews i Icanic eruption.
B sin2(45°%) Notice the pa:-(;'{)‘o;cv;:rhs of embers
projected into the air.
R = 2025 b 90° = 2025 (1)
9.8
R =206.6m




Example 3.9

A ball is thrown with a speed of 20 m s™ at an angle 60° above the horizontal
~ plane. Determine (a) The time to reach the ball at maximum height. (b) Maximum

height from the ground.

Solution:
Initial velocity = v, =20 ms™'
Angle of projection = 0 = 60°
g=9.8ms™

(@) Tlme maximum of height =t =7
(b) Maximum height =R =?

@) T - Yosin® - FOR YOUR INFORMATION
. g . Range of projectile is same at
20xsin 60° different angles when the sum of two

angles is 90°.

9.8
T = 20x0.866
9.8
T =1.767s = 1.8s
v2sin §?
H=1e
(b) 2
o _ 20 (sin60°)
2x9.8
b 400x(0.866)2
- 19.6
H =153m

3.13 ROCKET MOTION:‘

A rocket is a spacecraft- vehicle which is
capable to carry heavy objects like missiles or
satellites at certain height to launch in orbit around
the Earth. It is the fastest of all the man made
vehicles. The body of a rocket consists of three main
sections, such as mass of its structure, mass of fue]
and mass of load. It works on the basis of Newton's
third law of motion and law of conservation of linear
momentum, as shown in Fig.3.37. Before a rocket is
fired, the total linear momentum of rocket plus fue] js

l«— Rocket

s s
Force on + 3
rocket I L ;
(Reaction) e

Force c;n l ? ~t, .

gas
(Action)

<«=-(Gas
Fig.3.37: Rocket propulsion

in space

-



zero. Since the system is essentially an isolated system, the linear momentum of the
system remains the same. When rocket is fired, fuel is burnt and very hot gases are
formed. These gases are expelled from the back of the rocket. Since finear
momentum acquired by the gases is directed towards the rear, the rocket must
acquire an equal linear momentum in the opposite direction (upward) in order to
conserve linear momentum.

The exhaust of gases on burning the fuel is action and the up thrust of rocket
is its reaction and this causes the acceleration of rocket in upward direction. Thus
according to Newton's third law of motion;

Up thrust = — (Force due to exhaust gases) ... (3.39)
Let v,, be the velocity of exhaust gases, and Am be the mass of fuel which is
burnt in time At then .
A"l

Rate of burning of fuel = ar (3.40)

According to Newton's Second Law of motion
F =ma

Interesting Information

F =Am Ve— ¥ Space  Shuttle Main  Engines
(SSME’s) each are rated to provide

O=v 1.6 million N of thrust. Powered by
F = Am( °~“h) the combustion of hydrogen and
At oxygen, the SSME’s are throttled
Am anywhere from 65 percent to 99
F =?(—VCJ percent of their rated thrust.
Am
F=—— Ven

We notice that quantity of fuel ejected (—Am) is equal to the loss of mass of
the rocket. Negative sign shows decrease in mass.
Thus equation 3.29 becomes

Am
Up thrust=—| ———v
p ( At ) th)

Up thrust = ’Z—’:‘vexh ..... (3.41)

But, the up thrust force=M a
Where ‘M’ is the total mass of rocket

Am
Ma = '—ATVexh
Substituting At = s in above equation we get,
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Ma = Ariv“h
Isec ~ -
g = %vcxh ...... (3.42)

This is rocket equation which shows that the acceleration of a rocket depends upon

(1) The rate of mass of burning fuel

(i1) The speed of exhaust gases

(1i1) Effective mass of the rocket

It means the speed of a rocket can further be increased.

As the rocket moves under the influence of gravity so its weight can also be

included.

Resultant upward force = Up thrust — Weight
SUMMARY.

Motion: When a body changes its posmon with respect to its surroundings
then the body is in motion.

Displacement: The shortest distance between two points in given direction is
called displacement.

Velocity: The rate of change of displacement is called velocity.

Acceleration: The rate of change of velocity is called acceleration.

Newton’s laws of motion: In the absence of an external force, a body at rest
will always be at rest and a body in motion will be continue its motion with
uniform velocity. This is Newton's Ist law of motion. The acceleration
" produces in a body is directly proportional to the force and invessely
proportional to mass, this is Newton’s second law and every action has a
reaction, this is Newton’s third law.

Momentum: The product of mass and velocity is defined as linear momentum.
The rate of change of momentum is equal to the applied force while change in
momentum is an Impulse.

Impulse: The product of force and short time is called impulse

Elastic and Inelastic collisions: A collision in which energy and momentum
both are conserved called elastic collision while the collision in which
momentum is conserved but energy is not conserved is called inelastic
collision. A collision where the bodies move along the same path and same
direction before and after collision is called elastic collision in one dimension.
Explosion: An explosion is an event where a single body breaks apart into a
number of fragments.

U
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Projectile motion: Two dimensional motion of a body along a curved path
under the action of gravity with initial velocity making angle with horizontal
plane is called projectile motion. The projectile motion depends upon initial
velocity, angle of projection and gravitational acceleration.

Rocket: A rocket is a vehicle which kas more speed than that of any other
man-made vehicle. It works on the basis of action and reaction and it is being
used to launch a satellite in an orbit or a missile.

Multiple choice questions.
What is the displacement of the moving body, shown in the following figure.

< 8t ;
am
y 2m N
3m
6m & )

(a) 6m (b) 7m (c)8m (d)23m
Acceleration due to uniform velocity of a body is:
(a) positive - (b) Negative (c) Maximum (d) Zero
Third equation of motion is independent of:
(a) Time (b) Disptacement  (c) Velocity (d) Acceleration

What is the speed of the cyclist between two points S, and S, as shown in
figure?

S, =20 km S, =80 km
t,=2hrs t,‘= 4 hrs
(a) 10 kmh™ (b) 20 km h™' (c) 30 km h™ (d) 50 km h™

What will be the velocity of a body when it starts its motion from rest and after
5s its acceleration becomes 2 ms™

(@) 5ms” (b) 10ms’ (c)25ms”™ (d)50ms™

What is the velocity of an object when it reaches from point P to point Q in 2 s
along a semicircle of radius 2m?

(a) Zero (b) 1 ms™ (c) 2 ms™ (d) 4 ms™
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10.

'

12.

13.

14.

15,

The SI unit of weight is; :
(a) Gram (b) kilogram “ (c)Pound . (d)Newton

What is the acceleration produced by a force of 0.5 N applied on a body of

mass 0.1 kg?
(a) 0.1 ms™ (b) 0.5 ms™ (c) t ms™ (d) 5 ms™

Three masses which are connected by a massless spring are shown in the
figure. What will be the value of force F,? |

(a) I5N (b) 18 N (c)24N (d)30N
Rate of change of momentum is
(a) Impulse (b) Force (c) Torque (d) Velocity

A body moves from point P to point Q with a speed of 6 m s~ along a straight
line then from Q to P with a speed of 4 m s!. What is its average speed over

the entire trip?
(a) 4m s (b) 4.8 m s (c)5ms™ (d)5.5ms™

What is the value of impulse in the force-time curve as shown in figure.
A
5001 '

400+
3001
200
100

" _t(s)

o 1 2 3 4 5
(a) 1200 N's (b) I350N's (c) 1500N's (d) 1650N's
Impulse has always changed; _
(a) Energy (b) Momentum (c) Velocity (d) Acceleration
In one dimensional elastic collision of two bodies of same masses, what will
happen if the moving body collides with the mass which is initially at rest? .
(a) Their velocities will be interchanged
(b) Velocities of both bodies will be zero
(c) Moving body will continue its motion
(d) Moving body will come at rest and the mass at rest will start its motion

In projectile motion, the horizontal component of acceleration of a body 1S;
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16.

17.

18.

19.

13.

13.
16.

17.

18.

(a) Zero (b) Accelerated (c) Decelerated - (d) Maximum

At what angle a projectile gains its maximum height.

(a)0° (b) 45° (c) 60° (d) 90°

A rocket works on basis of '

(a) Newton's Ist law - (b) Newton's 2nd law

(c) Newton's 3rd law (d) Newton's gravitational faw

The vertical and horizontal distances of the projectile will be equal if angle of

projection is:

(a) 45° (b) 56° . (c) 66° (d) 76°
The quantitative measure of inertia of a body is its: ;
(a) Mass (b) Weight (c) Velocity (d) Momentum

| SHORTQUESTIONSI S0 e
When the magnitude of distance and displacement are equal?

Is it necessary, when the acceleration of a body is zero then its velocity is also
zero? ;

Under what condition the velocity of a body is zero but its acceleration has
some value?

Distinguish between mass and weight. -

Differentiate between inertial mass and gravitational mass.

What is the main difference between equations of motion and laws of motion?
How can you define Newton's first law of motion in terms of inertia?

Why Newton's 2nd law of motion cannot be applied to elementary particles?
Why action and reaction are not acting on the same body?

State the law of conversation of momentum.

. What is the meaning of a straight horizontal line in velocity-time graph?

Will a body be at rest, when the net force on the body is zero?
How is elastic collision in one dimension of two bodies possible?

What will happen, if a moving body with large mass collides with very smatl
body at rest?

How elastic collision is different from inelastic one?
. X E 1
You kick a stone in mseconds and Eseconds time intervals. In which

condition you hurt most?

At what points the velocity of a body is minimum and maximum on the
trajectory of projectile motion? '

How can a body achieve its maximum range in a projectile motion?
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At what angle of projection the horizontal range and maximum height are
equal?

State the values of angle of projection for which the horizontal range of the two .
trajectory paths is same.

How can the speed of a rocket be increased? -

Explain the circumstances in which the velocity v and acceleration a of a car
are (a) Parallel (b) v is zero but a is not (c) a is zero but v is not.

'COMEREHENSIVES QUr“ ISTIONS e

el P LRI

Descnbe the following terms;
a) Distance and displacement,
b) speed and velocity
¢) linear acceleration and gravitational acceleration.

State and explain the graphical representation of all kinds of velocity and
acceleration.

State and explain Newton's three laws of motion with examples.

What is linear momentum? Describe law of conservation of linear momentum.
Also define Newton's second law of motion in terms of rate of change of
momentum.

What do you know about impulse? Explain impulse in terms of change in
momentum.

What is elastic collision in one dlmensmn? Calculate the velocities of the
bodies after their collision and discuss these final velocities under different

‘cases.

What is projectile and pI'O_]CCtlle motion? Discuss displacement, velocity and
acceleration of the projectile along its trajectory path.

Explain the various characteristics of projectile motion such as time of flight,
maximum height and horizontal range. '_.
Define rocket motion and derive an equation for the speed of a rocket.

NUMERICAL PROBLEMS

A train moves with a uniform velocity of 24 m s™'. The driver applies the
brakes and the train comes to rest with a uniform retardation in 12 s. Find (1)
the retardation, (ii) velocity of the train after 4 s and (iii) distance covered by
train after the brakes are applied. ' (i) =2 m s~ (ii) 16 m s~" (iii) 144 m

&y | | |




10.
11.

12.

13,

A coin is dropped from a tower. If the coin reaches the ground in 5 s then

determine (a) height of the tower and (b) Find the speed with which coin-hit
the ground. (a)123m (b) 49 ms™

An electron emitted from a source is subjected to a force of 107N and the
electron is accelerated toward the target. Find (a) the acceleration of electron
(b) How long does the electron takes to reach from source to target at 10 cm

away. (Take mass of electron as 9.1 x 107'kg)
(a) 2.00 x 10’'m s (b) 1.0 x 10~'s
What is the magnitude of the applied force on a body of mass 2 kg which
changes its velocity from 2 m s'to6ms™ in20s? (0.4N)
A force of 12 N acts on a body of mass 6 g for 2 ps. Calculate the impulse and
change in velocity of the body. (24x10°Ns,4x 10" ms™)
What is the recoil velocity of 6 kg gun if its shoots a 9 g bullet with muzzle
velocity of 350 ms™'? (0.6 ms™)

A 4000 kg truck is moving at a speed of 20 m s™' along a straight road, strikes
a 800 kg stationary car and couples to it. What will be their combined speed

after impact? (16.7 ms™)
Two spheres of masses 'm' and '2m' both are moving to the right with velocities
4ms'and2ms™ respectively. If both collides then what will be their final
velocities. (1.33m s to the right, 4 m s to the right)

A cricket ball is hitted upward at an angle 45° with velocity of 20 m s, find

" (a) The maximum height (b) time of flight (c) How far away it hits the ground.

(@) 10.2m (b) 2.9s(c) 41 m
In certain projectile motion, the horizontal range is thrice in the magnitude of
the maximum height. Calculate the angle of projection. (53°)

Prove that the horizontal ranges in projectile motion are same at (45 + 0) and

(45-0).
A rocket is fired in space, which has initial mass 8000 kg and ejects gas at the

rate of 2500 m s~'. How much gas must it eject in the first second to have

acceleration 30 m s> (96 kg)

A projectile rocket emits gases at the rate of 300 ms™'. If it burns 150 kg fuel
in each second, then what is the thrust of the rocket. (4.5 x10°N)

@




?E; WORK AND ENERGY

Students LearninglOufcomes SR OIE RS

(i) Conventional sources of energy
(ii) Non-conventional sources of energy

After studying this umt the students will be able to:.

describe the concept of work in terms of the product of force F and displacement d in
the direction of force (Work as scalar product of F and d).

distinguish between positive, negative and zero work with suitable examples. '
describe that work can be calculated from the area under the force-displacement

graph.
explain gravitational field as an example of field of force and define gravxtatlonal field

strength as force per unit mass at a given point.

prove that gravitational field is a conservative field.

compute and show that the work done by gravity as a mass ‘m’ is moved from one
given point to another does not depend on the path followed.

describe that the gravitational PE is measured from a reference level and can be
positive or negative, to denote the orientation from the reference level.

define potential at a point as work done in bringing unit-mass from infinity to that

point.
explain the concept of escape velocity in term of gravmatlonal constant G, mass m and

radius of planet r.
differentiate conservative and non-conservative forces giving examples of each.

express power as scalar product of force and velocity.
explain that work done against friction is dlssxpated as heat in the envnronment

\19 .
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: Major Concepts (17 PERIODS) GonceptualLinRApe —,“]

e Work done by a constant force This chapter is built on

e Work as scalar product of force and displacement Work and energy

o Work against gravity . Physics IX

e Work done by variable force Gravitation Physics [X

o Gravitational Potential at a point

e Escape velocity

e Power as scalar product of force and velocity

e Work energy principle in resistive medium

e Sources and uses of energy



state the implications of energy losses in practical devices and the concept of

efficiency. ;
utilize work — energy theorem in a resistive medium to solve problems.
discuss and make a list of limitations of some conventional sources of energy.

describe the potentials of some nonconventional sources of energy.

INTRODUCTION

Work and energy are not two different things, but they are correlated to each
other. When work is done by one system on another, indeed energy is transferred
between the two systems. For example, when an engine pulls a train along a
horizontal track, the engine does work. The engine transfers energy to the train. If
we assume that there is no loss of energy, then the amount of energy of the moving
train is equal to the work done. Similarly, when we walk upstairs, we do work; our

work is equal to gain in gravitational Potential Energy (P.E).
Energy is present in the universe in various forms. It can be converted from

one form into other form but neither be created nor be destroyed. This is the
principle of conservation of energy. For example, a heat engine tonverts heat energy
into mechanical energy. A fan converts electrical energy into mechanical energy, a
bulb converts electrical energy into light and heat energy etc. All forms of energy
can be explained in terms of kinetic energy or potential energy. These two are the
most important types of energies. The Kinetic Energy (K.E) is due to motion while

P.E is a stored energy.
Here a question arises, how much work is done or how much energy is

consumed? It is measured in terms of rate of doing work or rate of consumption of

energy which is called power. For example, a boy may carry a box upstairs in 3
minutes while a man may do it in 1 minute. Obviously, the power of the man is
more than the power of the boy. Thus, time factor is important for power. A body
which has the capacity to do work is said to possess energy. The greater the capacity
of the body to do work, the greater is the energy possessed by it. Thus work, energy
and power are related.to each other. In this unit, we shall deal with these three most

important parameters of physics.

4.1 WORK

In our daily life, we use the meaning of work in terms of any physical or
mental activity. For example, reading a book, cooking, shopping etc. all are
regarded as work but in physics, the word work has a different meaning. The work
is only done when the force acting on an object produces a displacement in it in the
direction of force. Thus, for work to be done by a force on an object, the two aspects

must be considered:
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(i)  Displacement of the object. ection of the displacement.

(i) Component of force in the dir

4.1.1 Work done by a constant force

The work done on an object by @ Con_s’ta"t
force is defined as the product of the magqlm .
of displacement and the component of force 11 the
_ direction of the displacement. It is explained as;
Consider an object which is pulled by an

applied constant force F at an angle 0 with a
horizontal axis.and the body is displaced through Fig.4.1: The horizontal component of
a displacement d as shown in Fig. 4.1. | forc'c (F.) in the dircction of displacemeny
The horizontal component of force F in the  (d) does work on the body.
direction of displacement is F cosf. ) ‘ .
Thus, aCF():ording to the definition, work is done on the body. This work done
by a constant force is expressed as: :
Work = (Horizonta} component of force) (Displacement)
Work = F, d
Work =F cos0 d
Work =Fd cos®  ...... (4.1)
Work=F-d ... (4.2) ,
This is a work done in terms of the scalar product of force an<_i dlsplaccmen.t_
Therefore, work is a scalar quantity. It has magnitude but no direction. The SI unit

of work is joule and its dimensional formula is [MLZT‘Z].

Joule .
One joule is defined as the amount of work done when a force of one newton

displaces a body through one metre in its direction. Hence
1 Joule = I newton x 1 metre

1]=1INm {

When the applied force remains constant

during the whole path then graphically, there is a

straight horizontal line in force and displacement

- graph as shown in Fig.4.2. The area under this

straight horizontal line is equal to the work done : i

on the body under a constant force. ‘ Displacement
Equation (4.1) shows that work done on  Fig.4.2: The arca under a straight

the body depends upon force, displacement and  Horizontal line in Force-displacement
graph showing work done by a constant

angle '8' between force and displacement. The force

Force
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term cosO in this equation indicates that the work done may be positive, negative or
zero depending upon the value of 0. Therefore,

g the work done can be studied under the
following three cases;

: I. Positive Work (Maximum)

If 0 < 90° cos 0 is positive so work done
is also positive. Under this condition there is a
component of force in the direction of the
displacement. If the and angle between force
and displacement is zero i.e. 0 = 0° then; : B

Work = Fd cos 0° = Fd 254.3: Positive work done by a man on

This result shows that work donec is
maximum when the applied force is parallel to
the displacement. |

Examples *

(a) When a man pushes a cart on horizontal — p)_mv: ks ralifoatiiil
smooth surface, as shown in Fig. 4.3, the USRS el
force and displacement are in the same
direction.

(b) When a body falls freely under gravity,
then gravitational force and displacement
are in same direction as shown in Fig.4.4.

II. Zero Work
If 0 = 90°, then Cos 0 = 0 and no work is

done by the force on the body. Note that work _ ;
done is also zero when ecither force or Fig.4.5: Zero work done by a man on
_ displacement wall
or both are zero.
Work = Fd cos 90° = Fd (0) =0 -."c0s90° =0

-

FY IR ST Perw T @ et Ew
-4 B ”

g

Examples
(a) When a man pushing a rigid wall with a
i force ard fails to move it, then work done is

zero as shown in Fig. 4.5.

(b) When a man holding a pail in his hand
while moving on a horizontal level surface
as shown in Fig. 4.6 then angle between _
force and displacement is 90°. Work done Fig.4.6: Zero work done on a pail.

by the man is zerq.
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III. Negative Work (-ve Maximum)

If © > 90° then cos® is negative so work done is also negative. If the
component of force is opposite to the direction of the displacement then the angle

between force and displacement is 180°.
- Work =Fd cos180°=Fd (-1)=-Fd :
This result shows that when the applied force is anti hg i Hieginive sionk
C Wor

parallel to the displacement and angle '0' between them is  done by frictional force
180° then the work done will be negative maximum. S S

Examples
(a) When a body makes to slide over the a rough

horizontal surface as shown'in Fig. 4.7, the frictional
force is opposite to the displacement and hence work A
obtained is —ve (displacement).

(b) When a body is thrown up, the gravitational force is 0=180°
vertically downward while the displacement 1is m,
vertically upward. The work done by the body is . {

. negative and against the gravitational field. F

(c) Two masses m; and m, connected by a string which is m:

suspended from a frictionless pulley, as shown in W= me

Fig. 4.8. Gravitational force and displacement are
opposite to each other. So the work done in this case g, T _—
" will be negative if m, is lifted in the upward direction. - by gravitational force

4.1.2 Work done by a variable force
When the applied force on a body remains constant in terms of magnitude
and direction then its work done can be calculated by the following equation;
Work = Fd cosb ......(4.3)
So far we have considered the work done by constant forces. But sometimes

the applied forces in terms of magnitude or ‘
direction, are not constant. For example, when "—F F"‘
a} —d b

a rocket moves away from the earth, the work
is done against the gravitational force which A
varies as the square of the distance from the Fig.4.9: A body is displaced by a
centre of the Earth, thus in case of variable variable force from point a to point b.
force, the work done of an object cannot be determined by using eq.4.3 directly. It
requires another relation which is developed as under;

Consider an object being displaced along the x-axis in a straight line under
the action of a variable force as shown in Fig. 4:9. To find the total work done, we

s
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divide the total displacement (whole path) along x-axis into 'n' number of very short
segments; Ad,, Ad,, Ad,,....... ,Ad_ such that for each segment (displacement) the

forces I‘:,, 1-52, E,..., F‘n respectively may be treated as constant as shown in Fig.4.10.

Thus when the object moves through Ft Arca= A=FxAd
the small distance Ad, under the action of F; 3
approximately constant force F, the small
amount of work done W, is given by;

W, =F cos0,Ad, : :
Similarly, when_ the object moves O—jq Ad; b —d
through dlsplaccment Adz under the action of Fig.4.10: The path which is divided into ‘n’
e 5 B then the work done W, is giVCﬂ as; number of small and equal displacements

W, =F, cos0,Ad,
Since the motion of the object from point ‘a’ to point ‘b’ is divided into ‘rn’ number

of small and equal segments therefore the total work done on the body is given as,
W, = Fcos0,Ad, +F, cos0,Ad, + F,cos0,Ad; +....+ F, cos0, Ad, .... (4.4)

Wrowl = ZEAdi cosO, ......(4.5)

In the limit then, we have,
Ad—»O

n

Work o = lim Y "F, Ad; cos0; ......(4.6)

Ad—0 4
i=|

This is a resultant work done by a
variable force and it shows that the total work
done by a variable force is equal to the sum of
the areas of all the segments (rectangles) from
point ‘a’ to point ‘b’. Graphically,_ when it is
plotted on a variable force-displacement graph SRR | R
then we have a curved path as shown in a b
Fig.4.11 and the area under this curved path is  Fig.d.11: Arca under curved path in the

equal to the work done.by a variable force on a F-d graph is equal to the total work done
body ' by variable force.
oqay.

Example 4.1 -

A man pushes a lawn roller through a distance of 40 m under the action of
force of 50 N which makes an angle of 60° with the direction of motion. Caiculate
the work done.




ﬁ

Solution: F=50N ,
d=40m The r——
— &0° Work 1s done 1009% ..

9_ so a;')plle.d force is acting at myogl\cv%?'.] the
Work= "1 direction of displace in the

k= Fd cos0 be th placement, what woy)q
Work= Fd cos o¢ the angle of applied force when work
Work= (50)(40) cos60° 15 df)ne 50%. r

Work= 2000 (0.5)
Work= 10001

42 WORK DONE IN A GRAVITATIONAL FIELD

The space around the Earth in which the Earth can
attract a body toward its centre is known as a gravitational E
field. Similarly, the gravitational force per unit mass on a
body is called gravitational field strength and its SI unit is N h
kg™ : '

Consider a force F which is applied on a body of
mass ‘m’ and the body is raised from the surface of the m::
Earth with uniform velocity in a gravitational field through a
height ‘h’ as shown in Fig. 4.12. It means that work is done
on the body against the force of gravity and it is given as;

- Work=Fdcos 6

As the body moves under the force of gravity;
so F = W =mg and d = h, and angle 6 between weight (force) and displacement is
180°. ' . ' i

Thus, Work = W h cos 180°

Work =mg h (-1) =-mgh
The gravitational field is a conservative and it has the following properties:
(1) The work done in a field does not depend upon its path but it depends

upon its initial and find points.

Fig..4..l2: Work done on a
body in a gravitational ficld

‘(ii) The work done in a field alonig a closed path is zero. :
(i11) The work done on a body against the direction of gravitational field ‘s
stored in terms of its P.E.

4.2.1 Work done in a gravitational field is independent of path

Consider an object of mass ‘m’ which can be displaced in a gravitational
field with a constant velocity from point ‘A’ to ‘C” along the following two different
paths. The first path is the direct path from ‘A’ to ‘C’ and the other path is from ‘A’
to ‘B’ and then ‘B’ to ‘C’ as shown in Fig. 4.13.

18
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Let us consider the first path which is | . ——

‘ ’ 3 ’ A
direct path from A’ to ‘C’, the work done | S |
along this path is calculated as, | 0
Work =Fdcos0 |
A-C | d
Work = Wdcos® F=W - e\l ;
A—-C
Using triangle ABC | wa
d,
—L =cos0 c< S " B
d l\\l
dl =dcos6 ; Fig.4.13: Work done on an objectin a
. _ gravitational field along two different
.- WAgtc;k = W dl ...... (4.7) pa[hﬁ .

Let us now consider the second path i.e. path AB and path BC. Thus,_thé
work done along AB is give as;

Work =Fd, cos6

A—-B

Work =Wd, cos® “F=W

A-B

~ As the angle ‘0’ between W and d, is 0°
So, Work =Wd, cos0O (because cosd = 1)

A—-B
Work =Wd, ...... (4.8)
A-B — -
Similarly, the work done from B to C is, We can calculate the work done by
Work =Fd 0 a force on an object, but that force
BSE Sty Co8 is not necessarily the cause of the
. displacement. For example, if you
Work = Wd, cos® lift a body, work is done on the
As the angel ‘0’ between W and d, is 90° | object by the gravitational force,

= 5 although gravity is not the cause of
So, \gggk =Wd, c0s90° = c0s90" =0 | the object moving upward.
Work = Wd, (0)
Work =0...... (4.9) The change in the gravitational
B—C potential energy of an object does
From eq. (4.8) and eq. (4.9), we get not depend on the path it takes.
Work =Wd, +0 ‘
A—-B-C
Work = Wd,......(4.10)
A—-B-C %

- By comparing eq.4.7 and eq.4.10, we conclude that work done in a
gravitational field is independent of path followed.
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4.2.2 Work done in a gravitational

field along a closed path is zero

Let us find the work done in a
gravitational field along a closed path ABCA.
We have already calculated work_ along the
path AC, AB and BC in previous section and
these are as under.

Work = Wd,

A-B

Work =0

B-C

Work = Wd, Fig.4.14: Work done on an object in a
A-C gravitational field along a closed path

Work =-Wd, ————————

C—oA

It is noted that work from A to C and work from C to A are same in
magnitude but in opposite direction. -
Total work done in a closed path ABCA = Work+ Work+ Work

A—-B B-C C-oA

Work done in a closed path ABCA = Wd, +0+(-Wd,)

Work done in a closed path ABCA=0 ... (4.11)

Equation (4.11) shows that work done along a closed path in a gravitational
field is zero.

From the above discussion, it is concluded that the work done on the body in
a gravitational field is independent of path followed and the work done on the body
in a gravitational field along a closed path is zero. Thus, the gravitational ficld is a

conservative field.

43 ENERGY

The word energy is derived from the Greek word “Erergeia” which means
work. Hence energy is defined as the ability (or capacity) of a body to do work. This
implies that energy is associated with the performance of work because the more
work is done; the greater the quantity of energy is needed. Work is always done by a
force. It means that a body possessing energy can exert force on any other body to
do work: In other words, when a work is done on a body, an equal amount of energy
is stored in it.

Energy is a scalar quantity. The SI unit of energy is same as that of the work,
i.e., joule (J) and its dimensional formula is [ML*T?).

There are two basic form of energies.

(i) Kinetic Energy (i) Potential Energy

P
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4.3.1 Kinetic Energy

‘ The energy possesses by a body due to its motion is called kinetic energy.
For example, a moving ball can break a window glass and a hammer can drive a nail
1 into wood. These examples show that the K.E of a body depends upon its motion.
The faster a body moves, the greater is it’s K.E. The mathematical expression of
K.E of a body of mass ‘m’ moving with velocity ‘v’ is given as;

KE= El):mv2 ...... (4.12)

4.3.2 Potential Energy

The potential energy of a body is defined as the
energy possesses by the body by virtue of its position
or configuration.

A body can gain potential energy only when
work is done on it. For example, "

[. When a body is lifted to some hcxg,hl

agamst the gravitational force, then there IS
| increase its gravitational P.L.
" 1I. The water at the top of a water fall, or water
stored in a dam possess gravitational P.E
[I. If a sprmg, is compressed, an elastic P.E is
stored in it because a work is done in
compressing the spnng against the elastic
force.
The mathematical relation for gravntallonal P.E. can be m
- expressed as;

Consider a force is applied vertically upward on a
body of mass ‘m’. The body is raised up to a certain
height ‘h’ above the Earth’s surface as shown in Fig.4.15.
It means there is a work done on the body against the m
direction of gravitationa! field and this work is stored in
the body in terms of its potential energy. The value of Fig':'(:S: s d;]’f:(;hc t
such P.E is calculated as; by definition of work done. ksl i

height h against the

Work =F.d gravitational field.
As the body is under gravity, so F =W =mgand d = h.
"Work =mgh
This work is stored in the body in the form of gravitational potential energy
Thus, P.E=mgh ...... (4.13)
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The eq. (4.13) shows that the P.E. of a body depends upon height. That is,
higher a body is above the Earth, the greater will be its P.E. If the height of object |
from the surface of Earth is zero then its P.E is also zero. In this expression, the ,'
surface of Earth is considered as reference point for zero potential energy.

Example 4.2 - |
A neutron of mass 1.67 x 10"’ kg travels a distance of 12 m in 3.6 x 10~*s. If

its speed remains constant, then what is its K.E? |
Solutlon: Mass=m=1.67x102"kg FOR YOUR INFORMATION |

Distance=S= 12 m The matter in 0.453 kg of anything,
when it is completely converted into

Time =t =3.6x10™* 2 i
Kinet 3.6x10™scc energy according to, E = mc”, will
inetic Energy = K.E =? - producc 11400 million kilowatt-
S hours of encrgy.

) | kKWh = 3.6 x 10° joules

12
V= =333x10'm ¢
36x10~ 23 10°ms
‘K.E =1mv2
2

K.E =-2*-(1.67x_10'3") (3'33“04).2

K.E =9.26x107"°]
- 44 WORK - ENERGY THEOREM

This theorem is stated as; "The work done by an applied force on a body
is equal to the change in its energy either K.E or P.E". It is explained as;

When a force is applied on a body in the direction of motion of the body, the
speed and hence kinetic energy of the body increases. According to work-energy
theorem, the increase in kinetic energy of the body is equal to the work done by the
force on the body. _ '

Similarly, if a force is applied on a body in the direction opposite to its
motion, kinetic energy of the body decreases. This decrease in kinetic energy Is
equal to the work done by the body against the retarding force. In either case, the
change in kinetic energy of the body is equal to the work done (positive or negative

work done). A mathematical relation for work-energy theorem is derived as under.

Consider a force ‘F’ which is applied on a body of mass ‘m’ moving with
initial velocity ‘v;” and after some time it covers a displacement ‘d’ and its final
velocity becomes ‘v’ as shown in Fig. 4.16. Now work done on the body is given

as;
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covering a distance of 30 m?

Work=W=Fq . (4.14)
According to Newton’s second law of motjon,

F=ma... (4.15)
According to 3" €quation of motion.

2ad = v{ —v?
2

2 2
or - i

2 2
Ve —V:
v @@
W = MV —my? (K.E), (K.E),
= ) Fig.4.16: Change in K.E of a body due
to Work done
1

W=—mvi-—_my? (4.17)

f 2 1
W = K.Er -K.E

-energy theorem. Here work is expressed

arly, the same principle can be used for P.E 1e.,
Work = (P.E.);— (P.E),

Work = AP.E.
Example 4.3

A force of 1500 N is acting horizontally on a vehicle of mass 200 kg and the
vehicle starts its motion from rest. What will be the speed of the vehicle after

Solution: F=1500 N
m = 200 kg _
0=0°
Vi=0ms’
sz?
d=30m

W =KE,-KE,

‘ 1 1
cho.se =Emv? —Emvf

1 1 2
Fd coslG = -Emv§ — Em(O)
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Fdcosb = lmv?
2

2 2cho§9
B

Vf e~
2 (1500) (30)cos0° _ 90000
A 200 = 7200
vi= 450m’s”
v, =21.2 ms™ |
AL POTENTIAL ENERGY

4.5 GRAVITATION

- When a body is raised to certain height ‘b’ from the surface of Earth in a
' avitational field, then work is said to be done on the body against the gravitational
field. This work 18 stored in the body in the form of its gravitational potential

energy. Its value is given as; ,
Gravitational pPE=mgh . (4.18) ¢ N
This shows that the gravitational PE" ’L‘;

depehds upon height. That is, when the body

gains height, its P.E increases while the value of

‘g’ decreases. Now at very large height where

the value of ‘g’ becomes ZEro and the P.E due 2 ____———I———-”

to the work done on d body from the surface of st >

Earth to above stated point 18 called absolute
avitational potential encrgy whose value can

be calculated as;
Consider a body of mass 'm’ which is

* raised above the surface of Earth ata distance '
from the centre of Earth. Then the gravitational
force between the body and the Earth is given

n

ork done on @ body from the

Fig.d.17: W
surface of earth to the point ‘N’.

by;
F= Gl‘ll}d- o (8.19)
B
where 'G' is a gravitational constant whose value is 6.67 % lO'”Nmzkg’2 and ‘M’ 18,
ravitational force 1S inversely
be used

mass of the Earth. Equation (4.19) shows that the g
proportional to the square of the distance. Therefore, this re
fiirectly to calculate the total work on the body. For this we
into ‘N’ number of points (1,2,3 ..N) at distances (ry, 2, 13, Tdseeor
from the centre of the Earth such that the force in each step almost remains €O

]ation cannot
divide the whole path

In) respective y
stant

.,
— e =




. and 2 at a distance 'r' from centre of earth such that;
L =0th
2
As Ar =1, -1
and r, =0 +Ar
41 AT
Thus ' S———
2
_ 2 +Ar
R 2 A boy bounces on a trampoline.
g ; : The boy-moves upward with an
Squaring both sides ; initial speed v and reaches
) 2 2r +-Ar maximum height with a final
.‘ r = 3 speed of zero. So energy
' i g changes from elastic P.E to K.E
2= 4r” + Ar” +4rAr and then into gravitational P.E

: . because the distance between every two consecutive points is 'Ar' and it remains the
‘ ,
same.

First we consider the points 1 and 2 at distances r, and r, respectively from
the center of the earth, to get an average force, we consider the midpoint between 1

4
Ar? is very small, so this term can be neglected.
r’ =1’ +rAr
Substituting the value of Ar in above equation
i’ =1 +5(5—-5) =1 +15, -1
2

*.

r° =rr,
Hence, Eq. (4.19) becomes -
F=G mM
' )
= Work from 1 to 2 we have,
W,_,, =Fdcos6
- ‘ W,_,, =FArcos180°
wl—»2 = FAI’(—I)
W,,, =—FAr

Negative sign shows that the work is done againgt the gravitational field.
Substituting the values of F and Ar




W, =—GmM| ———| - (4.20)
\h b

e work done from 2to3is

W, |, =-GmM (l—l} ...... @.21)
: n h
to rn 1S

Similarly, th

Rl F’inamy_ the {vork’dOné from In-1
WN_,QN?GmM(L#L} ...... @22)

Tna In
Hence, the total work done from point 1 to N is
Wil = Wit Wyt Wiy Heeess: + Wi-1oN
WTO,H,=-GMm(LL+L-1+ ...... +_L_L}
' n L L B Ina N
1 1
Woowl = —GMm| ——=— (4.23)
n o In
This work cause of P.E of the body from point (1) to point (N). It 1is
represented by Au. Thus according to work energy theorem. ;
- —Totnl
1 1
Uy~ = GmM|=———/ - (4.24)
, n In
If the ry is very large distance say at infinity (r, =), at that point Uy = 0 and u, at
ergy. Thus,

distance 1, from the centre of the earth is known as absolute potential en

eq. 4.24 becomes,
' 1 1) 1
0-u, =GmM|——— o |—=0
I'I CD) o0

X
u, =—GMm| —
~ )
or u, __GMm (4.25)
;



The gravitational potential encrgy is called absolute gravitational.potcntial
energy on the surface of Earth. If r; =R and u, =u. Then, eq.4.25 becomes;

U __ GMm
R
This is the absolute potential energy on the surface of the Earth.
4.6 ESCAPE VELOCITY V=0

When a body is projected vertically upward from
the surface of Earth then due to the gravitational force of
attraction, the velocity of the body decreases and finally
becomes zero at some height and the body returns to the
ground. If we keep on increasing the initial projection
velocity of the object, a stage will be reached such that
its final velocity becomes zero at the point where the
gravitational field becomes zero as shown in Fig.4.18.
The body escapes the gravitational field of the Earth or
any other planct and it will not return back. This
projected velocity is called its escape velocity. Its value
can be calculated as;

When a body is projected upward with maximum
initial velocity, then it loses its K.E and gains P.E. Thus
the escape velocity can be calculated by using the law of
exchange of energy.

Loss of initial K.E. = Gain in absolute P.E. Fig.4.18: Escape velocity of a
body from surface of the carth

PR

| GMm
—mv,, =
v R
2 ZGM .\ '
Vi = =~ Escape Velogities for Planets
_ [2GMm Sun 618033.60 618.03
Ve = T ...... (426) Mercury 4247.56 4.25
) Venus 10360.79 10.36
We know that Earth 11174.36 11.17
_GM Mars 5021.09 5.02
g= R Jupiter 59542.35 59.54
GM Saturn 35457.55 35.46 B
or gR = = . Uranus 21284.62 21.28
R Neptune | 23439.59 23.44
HCHCC, Vcsc _ 2gR Moon 2375.18 .~ D38 |




Ve = \/2(9.8m 57)(6.4x10°m)
v, =11200ms™ - ' |

Vv, =11.2x10°ms™

v, =11.2kms"

This resuit shows that if a body is thrown upward from the surface of Earth
with a velocity of 11.2 km s”' or more, then it will never return to the Earth.

It is worth noting that the escape velocity does not depend on the mass of the
body. It is the same for all masses for a given planet.

4.7 POWER

* The rate at which energy is transferred or work is done by a body is a sign of
power of that body. For example, a boy may carry a box upstairs in 3 minutes while
a man may do it in I min. Obviously, the power of the man is more than the power
of the boy. This example also shows that the time factor is important for the power.
That is, power is defined interms of the ratio between work and time. Thus, it is
stated as the rate of doing work of a body or rate of transfer of energy of a
system is called its power.

et sts

~ 3 W .
Dower=—r ok EISIRY . oo
: - Time  Time :
We can also find another expresston for power. Suppose a force ‘F’ acts on a
body so that it moves with vefocity ‘v’ and it converse a displacement d than by

definition of work

W =F.d
Eq. 4.27 becomes,
p ool Fd g8
Time t t

P=F-v...428) - v=

‘This is a power may be defined as dot product of the force and the velocity of
the body. It is also written as; :
P=F-v=FvcosH
Since power is the dot product of F and v, so it is a scalar quantity i.e., power
has magnitude but no direction. The dimensional formula of power is [ML’T™).

Unit of Power
“The SI unit of power is watt.
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Watt

The power of a body is 1 watt if it is doing 1 J of work in Is, or One watt is
equal to work of one joule per second.

When the rate of doing work is different, then we introduce average power, if
AW be the total amount of work which is done in time At. Then the average power
of the body is given as;

AW
S i 4.29
v (4.29)

avg

Now when the rate of doing work of a body is for very short interval of time
which approaches to zero then the power is called instantaneous power.

P

inst —
Watt is SI unit of power and its use is very common in electrical engineering.
However, in mechanical engineering, horse power is the practicai unit of power. The

relation between horse power (hp) and watt (W) is as under;
1 h.p=746W

Fxample 4.4 _
What is the power of an electric motor when it performs work of 6.45 x 10" ]
in 12 hours?

Solution:
Power =P =?
Work =W =6.45 x 10" J
Time =t =12 hours
Time=t= 12 x 3600 s

t=432x10%s
P=W.ork
Time
6.45%107]
P=—r—t
4.32x10%s
P=149%x10°W

4.8 WORK DONE AGAINST FRICTION

When a body does work then there is a resistive force against the motion of
the body called friction. This friction dissipates the kinetic energy of the body and it
causes decreasing the efficiency of the body in performing work. But its role in the

NG




working of a body cannot be neglected.
Thus in the presence of friction, the work
of the body is called frictional work. To |
calculate the frictional work, we consider Fig4.19: A block is sliding over the horizontal
a block of mass 'm' lying on a rough surface under the action of applied constant force

horizontal surface such that there iIs a againstthe friction forcc. -
coefficient of friction between the two surfaces. In order to move the block, we

applied a constant force F in the horizontal directif)n ‘against the kinetic friction
force f,. Thus, the resultant force acting on the block is given by;
Resultant force = applied force — friction force
ma =F-f, ... (4.31) )
As the applied force causes change in velocity of the body from v, to v,
through a horizontal displacement 'd". So according to 3rd equation of motion;

Y
|
8

2 2
= Ve — 12.6% USED
2ad Vr vi i Z%C‘e-sosi:es to actually move
2 2 17%LOST " ooeration the vehicle
VF - Vi. by idling P down the road
a T e—
2d
Hence equation (4.31) becomes;
2 _v? < > 5.6% LOST
m| JCH | = F—f 4 Losr DS
2d k 100% energy in a 1o engine  friction and
gallon of gas goes friction, slippage
into the engine engine-pumping pag
] 5 1 3 losse?. ahnd tlo
- ¥ wasie hea
2 2 ' A schematic diagram 1ll?strates the energy
= losses in different parts of a car to overcome
Fd = AKE+ fx d the resistive forces by resistive medium
" against motion of the car.
Work = AKE+f, d....(4.32)

This is the work done on a block which is sliding on a horizontal surface.
This shows that a part of work is used for change in K.E. of the block. The
remaining part is used against the friction between the two surfaces.

On the other hand, the work done against the friction is definitely converted
into heat or thermal energy. As a result, both the surfaces warm up and their
temperature is raised. The gain in thermal energy by the surfaces will then transfer
into the environment. The same process of transfer of heat into the environment will
be observed, when the work is done on a body in a gravitational field or work is

" done on a machine. Thus, equation (4.32) can also be expressed as;
Work = AE ., +AE,,.:..... (4.33)

thCm‘ ------
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4.9 IMPLICATION OF ENERGY LOSSES iN PRACTICAL
DEVICES AND EFFICIENCY:

" According to law of conservation of energy, the energy can transform from
one form to another form through a system or a device but the total energy remains
constant. It is possible only when a system or a device is free from friction. In real
life situation, frictional forces are always present and a device cannot do any work
without friction. Due to presence of frictional forces, it is not possible to convert the
available energy completely into useful work. Only a fraction of energy is converted
into useful work and the rest is wasted in form of heat. How much energy is utilized
for the useful work by the system or device and how much energy is wasted?

In this regard, we can determine the efficiency of any device or system in
terms of ratio using the following relation;

1li tput
Bifigiengys o o S BB 410 e (4.33)
Total input energy

An ideal machine or engine (Camot engine) is a theoretical machine or
engine whose efficiency is 100%. Because, there is no loss of energy in an ideal
machine. i.e., their output is equal to their input. Practically, it is not possible to
design a machine which will have 100% efficiency because frictional forces are
always present. These frictional forces can be minimized but cannot be eliminated
completely.

4.10 CONSERVATIVE AND NON-CONSERVATIVE FORCES
All forces can be classified into two classes on the basis of their different
properties i.e., conservative and non-conservative forces.

4.10.1 Conservative Force

A force is said to be a conservative force, if the work done in moving a body
between any two points is independent of path followed but it depends on the initial
and final positions of the body. In other words, we can also say that a force is
conservative if the work done on a body is zero when the body moves around any

- closed path returning to its initial position.

This definition shows an important feature of conservative force i.e., work
done by a conservative force is recoverable.

-+ The work done by a conservative force is always stored in a body in the form of
potential energy and in the presence of a conservative force; law of conservation of
energy of an isolated system is valid.

Some common examples of conservative forces are:
(t) The gravitational force.

(it) The force exerted by a spring.

(iti) The electrostatic force between two charges.
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4.10.2 Non-Conservative Force o FOR YOUR INTO 1Non l
A force is said to be a non-conservative if Conservalive | cgpseivative

i

the work done by that force in moving a body Forees Forces

I

. —_____,__—-—"——' . .
between two points depends on the path followgd. Gravitational | Friction
Similarly, the work done by a non-conservativé | |————""[Ajr Resistance

1IC
force in moving a body along a closed path is not _féf::ztmc Tension in cord
zero. In other words, work done by a non- Motor or rocket
conservative force cannot be represented by Propulsion
potential energy and the law of conservation of Push or pull by
energy is not valid in the presence of non- @ person

conservative forces.
Some common examples of non-conservative
forces are:

(1) The frictional force.

(i1) The resistance force exerted by

resistive mediums force.

(iii) The tension.

Let us explain a non-conservative force with
an example. Suppose you have to displace a book
between two points A and B on a rough horizontal  Fig.4.20: Work done by a non-
surface such as; a table as shown in Fig.4.20. conservative force (Frictional force)

If the book is displaced in a straight line between the two points, then the
work done by friction force is given as;

W=Fd

However, if the book is moved along a semi-circular path between the two
points, the work done by the frictional force would be greater than the work in a
straight line. Finally, if the book is moved around a closed path, the work done by
the frictional force is not zero. Thus the work done by a non-conservative force is
not recoverable.

4.11 NATURAL SOURCES OF ENERGY

In this technological age,- the demand of
energy is increasing rapidly day by day. Energy is
one of the most important factor of the economic
infrastructure and it is the basic input source to

e maintain economic growth. Thus, one can say that all

“the developments of the countries directly or
indirectly depend upon energy. This is a reason that
why over the last few decades; the scientists are
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paying attention towards the exploring of new energy resources in order to fulfill the
energy demands. The energy sources are classified into two groups.

e Conventional sources or Non-renewable sources of energy

e Non-conventional or Renewable source of energy

4.11.1 Conventional or non-renewable sources of energy AR

Conventional or non-renewable sources of energy are those which can be
used for a long time. These sources are exhaustible and they cannot replenish easily.
Coal, oil and natural gas called fossil fuels arc the qumplcs of nop-renewgble
sources of energy. All these are remnants of plants and animals and their formation
took billion of years. For example, plants and animals store energy qndcr process qf
photosynthesis. This stored energy remains with them when they die. Therefore, it
has been estimated that the fossil fuels were formed by natural process over millions
of years ago when decomposed plants and animals matter was buried in earth's
crust. '

Although the world's major energy sources are fossil fuels but they are
hydro-carbons. That is they contain high percentage of carbon. So, when these fossil
fucls are bumt they release carbon dioxide, Other
methane and nitrogen into the atmosphere. This '
causes the pollution, which leads to smog, acid
rain and a greenhouse effect.

The greenhouse effect refers to the rising
temperature caused by the sun’s energy being
trapped in our atmosphere by these extra gases.
This raises the earth’s temperature. It is estimated
that 71% of the energy is being used in the world
from these conventional sources. The pie chart
about the contribution of various energy sources is -
shown in Fig.4.21. On the other hand, uranium and  Fig.4.21: Pic chart natural sources
hydro are also conventional sources of energy but  of encrgy
they are neither fossil fuels, nor exhaustible and
they also make no pollution.

I. Coal:

Coal is also known as black diamond which
is the most abundant solid form of fossil fuel on
the Earth. The world total coal reserves are
estimated around in trillion metric tons, which is
sufficient for more than 200 years for the energy
generation. Pakistan has the 7" largest coal
reserves in the world.

.

Fig.4.22: Coal thermal power plant




_ Thar coal reserves in Sindh contain 175-bil
like; Shahrag, Marwaar, Duki, Much, Chamalung
etc. also contain coal at large scale. The usage of
coal at the large scale played a vital role in the
industrial revolution in the 19" and 20" centuries

and it still remains essential for the industrial
sector in the 21°" century.

F

Coal is used for electric power generation
and also used directly in heavy industries like

steel making. A typical coal thermal power plant
is shown in Fig.4.22.

j§ Oil:

Oil is a liquid fossil fuel which is found und
form of crude oil through drilling. This crude Oi

products such as, gasoline, diesel fuel, jet fuel,
distillation process.

Oil is not only being used for
transportation but by products of crude oil are
also used in the production of plastic tyres,
polyesters etc. Due to the process of burning of

oil, harmful gases like carbon dioxide are emitted
in atmosphere and it

is a major cause of
greenhouse effect and global warming. An oil

power station is shown in Fig.4.23.

I1X. Natural Gas:

Natural gas is a 3™ form of Fossil fuels. It is
oil deposits. It is mainly composed of methane W
ethane. It burns completely and leaves no ashes. T
emits less carbon dioxide than coal and oil ant
friendly fuel. Natural gas is used for cooking,
heating and transporting as well as in industries.

Natural gas is the 2™ largest energy source
in Pakistan. The first gas field in Pakistan was
discovered in 1952 at Sui in Balochistan.

Sui gas field is contributing 46 percent of

the total installed gas capacity of the country. A
Natural gas power plant is shown in Fig.4.24.
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Fig.4.24: Natural Gas Power Plant

IV. Nuclear Power:

Nuclear power is not a
fossil fuel. It is a conventional
and noh-renewable wonderful
source of energy. It adds up 12%
of the world's total installed
electric capacity. In nuclear
power plant, fission process is
being used to get the nuclear
energy.

Nuclear fission is the
most common technique to

harness nuclear energy in which
uranium, sometimes plutonium is used as a fuel like fossil fuels. The fission of 1 kg
of uranium has the capacity to produce the same amount of energy as one million
ton of coal. Nuclear power plant does not exhaust any greenhouse gases in
atmosphere, but it has its own drawbacks along with benefits. The radioactive waste
products remain dangerous for thousands of years and must be safely locked away
so that they cannot get into the environment. In Pakistan, there are five functional
nuclear power plants i.e. KANUPP in Karachi, CHASNUPP-I, CHASHNUPP-II,
CHASNUPP-I1I, CHASNUPP-IV Miawali district. The total installed capacity of
these plants is 1430 MW while 2500MW is under construction.

V. Hydro Power:

Fig.4.25: Nuclear Power Plant

Hydro power is conventional and renewable form of energy and it is obtained
from hydro power generator. Such generator
operates on running water or water falling from
high potential to low potential. In this
connection a large hydroelectric dam reserviours
are being constructed.

Hydro power is generating 17% of the B
world's total installed electricity. In the field of [
renewable energy, it adds up 70% of the total [ IARERY
installed capacity. In Pakistan the total hydro Fig.4.26: Hy
power stations are generating about 6700 MW.

Ehe main sources of hydro power of the country are Tarbela dam, Ghazi-Brotha
ydro plant, Mangla dam Neelam-Jehlum hydro plant, and Warsak dam.

dro Power Plant

@
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4.12.2 Non-Conventional oF renew

Non-conventional sources  Of
energy are still under development. These
sources are inexhaustible and they ar
replenished quickly. On the other hand,
renewable ~ SOUICES of energy are
inexpensive and pollution free. The range
of non-conventional sources 18 Jimited
and these can be used at domestic level,
some nora—conventional energy SOUrces

are explained below:
I. Solar Energy:

Sun is a tremend
energy. It is 150 mitlion k
from our Earth and we Tre€cC
energy in the form of heat and

it

ous source of
ilometres away
eive solar
light from

ear and cloudless da

On acl
es per second or

may be up t0 10’ joul
m~>. There are severa
solar energy. A direct conversio
energy into electrical energy can be don
using semiconductor devices ca
or photovoltaic cells or silico
These solar cells can also be connec
rechargeable batteries
collected, sO that it can b
darkness or in cloudy weather.

. . _———'—‘_—”-
Similarly, solar energy can also be | - :
converted into thermal energy by using thermal
collectors to heat water in order to produce
steam for running  turbines O produce
electricity. :
X Solar ~ thermal power  systems g
concentrate solar radiation by mirrors. In this [Tau SRSSSEEE —
method sofar radiation heat a fluid such as Solar encrgy ' converted
It it t h hi electrical energy by solar cells,
molten salt to muc igher temperatures, | which s used to run a motor in this
~450°C. Thermal energy from a source at high | solar power aircraft

y the incident solar p
1.4 kW

| techniques 1O hamn
n of solar §

lled photocells
n solar cells.
ted to
which store the energy
e used during the

able sources of energy

How Solar
Works

The Sun radiates
light photons

Excess electnicity goes
to the power geid and

The light photons
youare credited,

ared ysorbed by
the solar panels.
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temperature can be converted into mechanical energy (to drive a turbine). Solar
water heaters are a common sight on roofs of the houses and their use is becoming

more widespread.

[I. Wind Energy:

Wind energy is pollution free and cheap
source but it requires a vast area of land and a
method of storing electricity for use when the
wind drops. Due to the uneven heating and
cooling of the atmosphere by the Sun as well as
the rotation of earth, wind blows from areas of
high pressure to areas of low pressure. Wind
mills are being installed in such areas to rotate
turbines and produce electricity. Wind in

. . Wind Energy Farm: The Gansu
coastal and high altitude areas can be harnessed wind Tarn n ‘Chisa 45 the: bigpsst

up to SMW power from.a Si"gle_ turbine. It is wind farm in the world. It generates
estimated that the capacity of wind energy is | up 7900 MW There are 7000 wind
2% of the total energy produced in the world. turbines in Gobi Desert.

[1I. Biomass Energy:

Biomass is an organic material which originates from plants, trees, crops,
cattle dung, sewages, agricultural and urban wastes and so many other things.
Biomass energy is the conversion of biomass into heat, electricity and liquid fuels.

Biomass energy can be achieved under various processes.

A biomass fuel can be achieved using a
biological method. According to this method, trees and
plants store energy from the Sun in the form of
carbohydrate through the process of photosynthesis. The
carbohydrates are then converted into ethanol or
methanol which can be used as a liquid fuel in vehicles.

Similarly, direct buming of biomass such as
wood, agriculture residue etc., can be used for heating
and cooking purpose.

Energy can also be -extracted from the waste
biomasses such as animal dung, household waste, urban
waste. Ethane and other biogases are produced from the
bacterial decomposition of these wastes. As a result,
heat energy is produced by burning biogas which can be
used to generate steam and operate turbines.
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IV. Geothermal Energy

Geothermal energy is the natural heat present inside the Earth, which is
available in the depth of 10 km and it is present inside the earth due to the following
three reasons,

(a)  Ancient heat stored in the core of Earth at temperature 4000°C,
(b)  Friction of Earth plates

()  Decay of radioactive elements which occur naturally.

|  Generating
facility

4 -y
g 8
Y =
- o
= 2
[~ =]
Q £
Condenser
Steam
—_———— — —_‘—/’-._
Brine 1

Waste Brine ————————»

ff

v

Fig.4.30: Geothermal Energy

The Geothermal energy can be extracted from inside of the Earth in the form
of steam and hot water under the following process.

In the first process, underground hot steam and water which are emitted from
natural existing springs, can operate turbines to produce electricity as shown in
Fig.4.30.

In the second process, holes are drilled into the Earth's crest to put cool water
in and pump out the steam. This steam can be used to rotate the electrical turbines
for the production of electricity. The amount of geothermal energy is enormous. It
has been estimated that only one percent of heat contains in the upper most 10km of

Earth's crest is equivalent to 500 times of the present energy obtained from oil and
gas sources.

@



V. Tidal Energy
Tidal energy is also known /T I - I

as gravitational energy which is i
obtained by the tides of the oceans. ETERE & will
Tides in ocean are due to the
gravitational force of moon as well
as the rotation of the earth. These

tides can operate turbines to |  TIDE COMING IN
This tidal electricity generation works

p!’OdUCC. C]CCtl’lley. A tidal barrage as the tide comes In and again when - :
it goes out. The turbines are driven T"‘T

system is developed to store water
in a tidal basin behind a large dam; ~ 5Yihe powerofthe seain both

by this system the tides are trapped
in the basin to operate the turbine as
shown in Fig.4.31. Simiiarly,
occans tidal strcams and tidal

——

Y

current below the surface of the sea At
' : TIDE GOING OUT
can also be used for the generation ; e
b Fig.4.32: Tidal Energy
of electricity.
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‘ Work: The scalar product of force and displacement is called work. The work
under a constant force = Fd cosO and work under a variable force = ZF;Ad;

co§9
Work done in gravitational field does not depend upon path Work done in a
gravitational field along a closed path is zero.

e  Energy: The ability of a body to do work is called energy.
Kinetic and Potential energies: Kinetic energy is an energy of a body due to

its motion wkile potential energy is the energy of a body due to its position.
Work-energy theorem: Work has always changed the energy (K.E, P.E) of a

body. This is work-energy theorem.
Absolute P.E.: Work on a body from the surface of earth to the infinity where

g =0 is called absolute P.E.

.« U-= -GmM
R

Escape velocity: The projected initial velocity of a body, such that it gets out of
the gravitational field is called escape velocity. Ve,.=+/2gR
e Power: The rate of doing work is called power.
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Law_of conservation of energy: This law is stated as, “the energy in an
isolated system can be transformed from one form to another or transformed
from one body to another; but the total amount of energy remains constant”.

Conservative and non-conservative forces; If work done by a force does not
depend upon path followed, then such force is called conservative force. If the

work done by a force depends on path followed then such force is called non-
conservative force.

Conventional sources of energy: Sources of energy which are exhaustible and

have been in use for long time are called conventional sources of energy such
as coal, oil, gas, hydro and uranium.

Non-conventional sources of energy: Sources of energy which are

inexhaustible and they exhaust no greenhouse gases in environment are called

non-conventional. Solar power, wind powered, Tidal power, geothermal
power, biomass power.

EXERCISE
Q Multiple choice questions.

1.  When the applied force and covered displacement are parallel to cach other
then work done of the body is;

(a) Zero (b) Negative (c) Maximum (d) Minimum

2. A man pulling a bag with force of 15N at angle 60° with horizontal planc. If
bag covers a distance of 10 m, then work done by the man is
(a) 50J (b)751] (c) 10017 (d) 150

3. The area under a curved in a force and displacement graph shows that

(a) Work under a constant force (b) Work under a variable force
(c) Work under a maximum force (d) Work under a minimum force

4. Ifthe velocity is doubled then the K.E of the body will be;

(a) Remain same (b) Double (c) Three times  (d) Four times

5. A bullet of mass 20 g is fired with velocity of 2000 ms~', the K.E of the
bullet is; }
(a) 20007 (b) 4000 () 20000 J (d) 40000 J |

6. A body of mass 100 g is raised vertically from surface of Earth in a
gravitational field. The P.E of the body at height 100 m is;

|
(a) 0.98] (b)9.8] ()98 @980y .
7. What is the power of an electric motor when it consumes energy of 9 % 10°Jmn
3s?
(a) 1hp (b) 2 hp (c)3 hp (d) 4 hp
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8. Absolute potential energy of a body at the surface of the earth is

(a) Gm/R (b) Gm/R? | (c) GmM/R (d) GmM/R?
9. What is the vaiue of potential energy of a body at the height where the value of
‘g’ is zero?
(a) Zero (b) Negative (c) Maximum (d) mgh
1 10. When velocity of body of mass 10 kg is increased from 2 m s to 8 m s then

the work done of the body is
(a) 100J (b) 200J (c)3001) (d) 400 J

11. Which force is a non-conservative?
(a) Gravitational force (b) Friction force
(c) Electrostatic force (d) Magnetic force

Which the following source of energy is not a fossil fuel?
(a) Coal (b) Uranium (c) Oil (d) Gas

13. Conventional method of energy extracted is
(a) Hydro power (b) Wind power (c) Tidal power  (d) Biomass power

14. One megawatt hour is equal to:
(@)3.6x10']  (b)3.6x10°] (©)3.6x10%]  (d)3.6x10"®]

If the speed of an object is tripled, its kinetic energy is increased by;

12.

15.

(a) L times (b) —1- times (c) 6 times (d) 9 times

SHORT QUESTIONS

Using work formula at what angle, the work will be ncgatwe" Give example

of negative work.
Calculate the work of a body when it is moving with uniform velocity.

2.
3.  Why the work done of a body in a gravitational field along a closed path is
zero?
4. Why the value of K.E is always positive?
5. How can you prove mathematically that power is a scalar quantity?
' 6. How can absolute potential energy be achieved?
7. What would be the value of P.E of a body when it gets out the gravitational

field?
8. Does the escape velocity of a body depend upon its mass?
9. Is there any conversion of energy when law of conversation is not valid?

10. What are the three properties of a conservative force?
11. What are the differences between conventlonal and non-conventional sources

of energy?
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12. How many conventional and non-conventional power plants are working in
Pakistan?

13. A meteor burns into ashes when it enters into outer atmosphere of Earth. Why?

14. Can a centripetal force do any work? If yes then explain it.

15. What are the essential conditions for conservative field?

16. A bucket is taken to the bottom of a well, does the bucket possess any potential
energy.

17. A boy drops a glass from a certain height, which breaks into pieces. What
energy changes are involved? %

18.

Does the kmetlc energy of a car changes more when it speeds up from 10 m 5™
to15ms™ or from15ms” "t020ms” explam

Define work done by a constant force and explam with examples of positive
work, negative work and zero work.

(8]

State and explain the work done by a. variable force with its graphical
representation.

»

What is gravitational field? Verify that; (i) the work done in a gravitational

does not depend upon its path, (ii) the work done in a gravitational field along
a closed path is zero.

4, State and explain energy with its two forms such as; kinetic energy and
potential energy. Also describe the work-energy theorem

5. What is gravitational potential energy? Derive an expression for the absolute
gravitational potential energy.

6. Define escape velocity and derive its mathematical relation

7. What do you know about power? Define power in terms of the scalar product
of force and velocity.

8. Study the work done against friction and show that energy is lost due to
friction.

9.

State and explain conventional and non-conventional sources of energy

NUMERICAL PROBLEMS

A ‘man pulls a bag along the ground with a force of 80 N at an angle of 30°
from the ground. How much work done the man do in pulling the bag 10 m?

(693 1))
2. A 250 kg cart is pushed up on an inclined surface. How much work does the

pushing force when the cart moves up and at 3 m above the ground, friction is
neglected? ' (7350 J)
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10.

A pump lifts wa.tcr from a well to a tank 30 m above the well. If there are 100
m° water stored in tank, then how much work against the gravity is done by the
pump. Density of water is 1000 kg m™. 3x10°))
A force of 6000 N is applied horizontal on a van of mass 2500 kg. The van
starts its motion from rest and if it has traveled a distance of 110 m. What will
be its speed and it’s K.E.? (23 ms™, 660 kJ)
A proton of mass 1.67 x 107%" kg is being accelerated along a straight line with
acceleration of 3.6 x 10"* m s If the proton’s initial velocity is 2.4x10'm s™!
and travels a distance of 250 m, what is its final velocity and increase in its
K.E.? (5.56 x 10’ ms™, 2.6 x 107" J)
A car of mass 1500 kg is accelerated from rest to a speed of 30 ms™ in a time
of 10 sec. What is the power of car in hp when friction is neglected? (90.5 hp)
What power is required to raise a block of mass 500 kg vertical to height of 15
m in a time of 50 s? Express your answer in hp. (2 hp)
How much work is required to accelerate a body of mass 200 kg from 5m s to
15 m s~'? If its covers a distance of 150 m what is the net force acting on it.
(2x10'],133N)
A body of mass 'm' is dropped from a tower 100 m above the ground. What
will be the height from ground to the point at which the velocity of body
becomes 30 ms~'. Air resistance is neglected. (54 m)
A block starts from rest at the top of an inclined surface of height 10 m above

the ground, what is its speed when it reaches at the ground and friction is
neglected. Now by including friction and when it reaches at the ground with a

speed of 10 m s™' then what is its energy loses in percent. (14 ms™, 49%)




ROTATIONAL AND
CIRCULAR MOTION

| Major Concepts . _ (21 PERIODS)
e Kinematics of angular motion This chapter is built on
e Centripetal force and centripetal acceleration Dynamics Physics IX
e Orbital velocity 4 Tuming Effect of Forces
e Artificial satellites . Physics IX
e Artificial gravity
e Moment of inertia
e Angular momentum

'Students Learning Outcomes ie s
After studying this unit, the students w1l| I)e ahle lu

Define angular displacement, angular velocity and angular acceleration and express
angular displacement in radians.

Solve problems by using S=r@andv=r .

State and use of equations of angular motion to solve problems involving rotational
motions.

Describe qualitatively motion in a curved path due to a perpendicular force.

Derive and use centripetal acceleration a=r w? a = v?/r.

Solve problems using centripetal force F = mrw?, F = mv2? /r.

Describe situations, in which the centripetal acceleration is caused by a tension force,
a frictional force, a gravitational force, or a normal force.

Explain when a vehicle travels round a banked curve at the specified speed for the

banking angle, the horizontal component of the normal force on the vehicle causes the
centripetal acceleration.

Describe the equation tan 6 = v¥/r g, relatmg banking angle 0 to the speed v of the
vehicle and the radius of curvature r.

Explain that satellites can be put into orbits round the earth because of the
gravitational force between the earth and the satellite.

Explain that the objects in orbiting satellites appear to be weightless.
Describe how artificial gravity is created to counter balance weightless.

Define the term orbital velocity and derive relationship between orbital velocity, the
gravitational constant, mass and the radius of the orbit.

{
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~ plane along the circumference of a circle of radius

e Analyze that satellites can be used to send information between places on the earth
which are far apast, to monitor conditions on earth, including the weather, and to
observe the universe without the atmosphere getting in the way.

e Describe that communication satellites are usually put into orbit high above the
equator and that they orbit the earth once a day so that they appear stationary when

- viewed from earth.

o Define moment of inertia of a body and angular momentum.

e Derive a relation between torque, moment of inertia and angular acceleration.

e Explain conservation of angular momentum as a universal law and describe examples
" of conservation of angular momentum.

¢ Use the formulae of moment of inertia of various bodies for solving problems.

INTRODUCTION

In universe, everything is going on systematically. Summer or winter and
spring or autumn no one comes either before or after, similarly, day and night never
replace each other. All these are taking place at their proper time, because in the
whole universe from electrons in an atom to the galaxies are in uniform rotational

. motion.

In daily life activities, there are a number of examples of rotational motion
such as wheels, propeller, a ceiling fan, a motor pulley, a car shaft, CDs, DVDs,
computer hard disk and so many others. All these rotating bodies require some study
to analyze their motions. For example, what are the rules of centripetal and
centrifugal forces in the rotational motion of a body? How the displacement,
velocity, acceleration, momentum and kinetic energy of a rotating body can be
determined? All these will not be only a part of our discussion in this chapter but we
will also explain rotational inertia, motion of a satellite, orbital velocity,
weightlessness and other parameters which are related to a rotational motion.

51 ANGULAR DISPLACEMENT

Consider the motion of a particle ‘P’ in XY-

OP = r about an axis through centre of circle ‘O’ and
perpendicular to the plane of the circle as shown in
Fig. 5.1. This axis of rotation is taken as Z-axis, Let
at time t, the particle is.at point P, and the position
OP, is making angle 8, with X-axis as shown in Fig.
5.2. After some time t, the particle is at point P, and
the position OP, making angle 6, with x-axis, such

: Fig.5.1: Motion of particle along
that A9 = 0, — 0, be the angle between OP, and OP,. circle about an axis of rotation
(Z-axis). ‘
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Thus in the interval of time At the angle A8 which is
subtended by an Arc P,P, is known as angular
displacement and it is defined as; _
“The angle subtended at the centre of circle
by an arc along which it moves in a given
time is known as angular displacement”.

The following are the properties of angular
displacement. ' ;
(i) It depends upon length of arc. '
(i) For very small angle it is a VeCtOr gy, 52: Angular displacement
quantity. (A8) of a particle between points
\ (iii) For amti-clock wise rotation, angular P and P
displacement is positive.
(iv) For clock wise rotation, angular displacement is negative.
\ (v) lts direction can be determined by right hand rule.

The direction of angular displacement is along the axis of rotation (Z-axis) as

shown in Fig. 5.1 and is given by right hand rule. |
“Hold the axis of rotation in right hand then curl the fingers in the
direction of rotation, the erect thumb will indicate the direction of
angular displacement”.

The angular displacement can be measured in terms of revolution, degree or
radian. All these are explained as;

Revolution:

When a particle completes one round trip along a circular path of a ciscle,
then it is called one revolution. -
Degree:

When a circle is divided into 360° equal parts S
then each part is known as one degree.

Radian: A

Radian is the SI unit of angular displacement and
it is defined as; ''One radian is the angle subtended at
the centre of a circle by an arc whose length is equal
to radius of the circle' as shown in Fig. 5.3. '

i i - Fig.5.3: Length of the arc equal
Relation .hetween radian and dcgree to radius and the corresponding
- A mathematical relation among the three units of ~2"8!€ is one radian.

éngular displacement can be expressed as;
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Consider an arc of length
ath of a circle of radius ‘r* whijc

has been observed that at consta

le.
#nge S0

S=1r6

Now for one complete revolution,
S = 2nr (Circumference) and @ = 360°
Thus eq. (5.1) becomes
; 3600 - ﬂ(rad) — zn(rad)
r
Hence, 1 revolution = 2n(rad) =360°

lIrad = 360
2

I rad =lﬂ
T

lrad =57.3°

or 1° =0.01745 rad
Example 5.1 ‘
Khawar
runs around the e
displacement?
Solution:

According to situation, Khawar's linear dis

S=160m

‘ -
S’ along a circular

. h subtends an angle .
«p’ at the centre of the circle, ag shown in Fig.54. 1t

Stant radius, ¢he length
of the arc is directly proportional to the subtended

Fig.5.4: Arc vs. engle

S=2nr (Circumference)
and 0=360°

360° =2£(rad)
r

360°
2

lrad =

Irad.=0.159 rev.

— —

placement is

Also, the diameter of the circular path, d =20 m

As we know thatd=2r
So d

r=_=

2 2

20=10m

S _
According to formula for angular displacement , 6 = = Ataic)

0= g)-radians

0 = 16 radians

147
N

Now for one complete revolution.

80¢€s around a circular track that has a diameter of 20 m. If he
he entire track for a distance of 160 m, wh‘at is his angular




Example 5.2

n) Convert the following angles from degrees to radians: 30 degrees, 45
degrees, 90 degrees, 180 degrees, 360 degrees

b) Convert the follbwing angles from radians to degrees: gﬁ, 1.2, L

’

5 4
Solution:
180° s M
n) As we know that 1rad = r 1°=——-rad
T 180
30° =30° x——rad = “rad
180 6
e Angle swept by minute hand in
\ 45° =45° x i'Tild == rad one complete rotation is 360°.

e Angle swept by minute hand in
o _ano . _T one minute is 6°. |
\ L et = vad * Angle swept by minute hand in 5 '

minutes is 5 x 6°= 30°.

I
180° =180° xlrad = nrad
180

I
—

360° =360° x —rad = 2n rad ‘
180

b) As we know that 1rad=180
T
2_1t=2_1tx180 =120”
3 3 T
1=1><180 =573
T
2=2><180 =114.6°
T
2_n=£1£x180 _ 790
5 5 s
-3—n-=3—nx180 =135"
4 4 i

5.1.1 Angular Velocity

When a body is moving along the circumference of a circle, then it is often
of our interest to know that how its rotation. gets fast or slow. By its fast or

slow rotation means how much angular displacement is covered by a body over a




A — | |

: ' Y
period of time. This is the angular velocity of 9.
body which is defined as; “The rate of change
"+ of angular displacement is called angular AG ‘

velocity”.
It is generally denoted by w(omega), a

Greek letter and is measured in radians per
second (rad. s™') or revolution per second (rev.
s™. Its dimensional formula is [M°LT™'].
Let a rotating particle makes an angle
‘9,” with x-axis at time ‘t,”. After some time ty,
the angle has changed to 0, as shown in Fig. 5.5.
Then the average angular velocity ®,, of the
" body is the ratio between the change in angular

displacement AB=0,-0, to the time interval
At =t; —t; and given as;
- _6,-6, _A8 (52)

Xy

Fig.5.5: Rate of change of angular
displacement A in time At:

0‘):IV
t,—t, At
When the change in  angular

displacement takes for very short:interval of
time which approaches to zero then its

corresponding velocity is called instantaneous POt ia Be \
velocity. dratonotad 2
_ . AD 8§
@, = M — i (5.3) ;
At—0 At S
It is a vector quantity aad its direction is
q ty Right Hand Rule

along the axis of rotation and its sense is giVen | yoid the axis of rotation in Vour
by right hand rule. According to the right hand right hand then cutl your ﬁn)ée,s
rufe, if we hold the axis of rotation with the | along the direction of rotation the

| right hand so that the fingers are curled in the | erect thumb will point in the
sense of the rotation, the erected thumb then | direction of angular velocity ‘o’

» points in the direction of .
Example 5.3

~ Find the angular velocity of Earth about its own axis.
Solution;

We know that Earth completes one revolution about its own axis in one day.
Angular velocity = 0= 7.




Angular displacement = 0 = 2z radians
Time for one revolution =1 day = 24 hours’ x 3600 seconds

7/ = s = = 3
=24 _snred KLY POINT
Al I day [he direction of @ simply n_:prrs:nt_-.-
2{3.14) rad thut the rotancnal motion is takmg
o Ty pluce perpendicular ta it
24 % 3600 s L _
~ 6.28 rad
M =
B6400 5

w=T727x10 " rads"’

5.1.2 Angular Acceleration
It is our daily lile observation that the angular va
velocity of a ceiling fan can be increased or o
decreased by its regulator. Indeed, this s an anguiar ",.x""‘ \
acceleration or deceleration of the fun. / R o
Angular acceleration of a body is defined as; | e '[ .
“the change of angular velocity ol a body with | /
time is called its angular acceleration™. It 1s N /
generally denoted by 'a'. If ‘o be initial angular ] -__3,/
#‘ﬂlOCit}f ar fime .ti' and erv be the fmal ungular Fig.5.6: Rate of change of angular
velocity at time ‘ty as shown in Fig. 5.6, then the  olocity At in time AL
average angular acceleration @, of the body 1s

given as;
L
a,, =
A
. = iyass 54)
| By =~ (54 =
If the time interval AL1s infinitesimallv small (i.e., At —» 0)then instantaneous

- = o F

angular acceleration is given by

e oL D
aill]l — 1}?" At (1 ljla(S;ﬁ)

Angular acceleration is a vector quantity. Its direction is along the axis of
rotation according to the right hand rule. The S1 unit of angular acceleration is rad
2 dimensional formula is M'LT ). |



Direction of Angular Acceleration

e -__-'{-)

| L.
! o
' ©
Clockwise rotation  Anti-clockwise rotation Clockwisc rotation  Anti-clockwise rotation
(A) (B) ©) (D)

When the angular velocity is increasing, the angular | When the angular velocity is decreasing, the angular
acceleration vector points in the same direction as the facceleration vector points in the direction opposite to
angular velocity, as shown in Fig. (A) and (B). the angular velocity, as shown in Fig. (C) and (D).

Example 5.5 . . .

The angular velocity of a body is increased from 6 rad s™' to 18 rad s™' in
16 s. Calculate the angular acceleration and the number of revolution in this time.
Solution:

Initial angular velocity = o, = 6 rad s

Final angular velocity = @, =18 rads™

Time=t=16s.

Angular acceleration = o =?

Numbers of revolution = n =?

= W —©,
t
18—6
a:
16

a=0.75rad s
Now Ao =0, -®,=18-6=12rad s
‘But © lrad= rev=0.159 rev.

Therefore, ©, —®,=12(0.159 rev.) s™
Ao =@, —0,=1.91 revs™

Thus the number of revolutions in given time = ((mr ~@,)rev.s” ) x time

Numbers of revolutions ="(1.91rev. s ™) x 165
Numbers of revolutions = 30.56 rev.

A
{151
A4




52 RELATION BETWEEN LINEAR AND ANGULAR
VARIABLES e

Consider a rigid body which is rotating with angular velocity ‘o’ about an
axis perpendicular to the plane of the circle of radius ‘r’. Then the body does not
only sweep out an angle ‘0’ but it also covers a linear distance in the form of an arc
of length ‘S’. .
Thus one can say that the motion of each particle of a rigid rotating body has
both linear and angular motions. Hence the important relations among the linear {
variables ‘S’ ‘v’ and ‘a’ and angular variables ‘0’ ‘o’ and ‘a’ can be established as;

' 5.2.1 Relation between linear and angular displacements

Consider the motion a particle along the .

circumference of a circle of radius ‘r’. At time‘t,’, the B \
particle moves from point A to point B and its ;
angular position is 6, which is subtended by arc AB
of length ‘S’ as shown in Fig. 5.7. At time ‘t,” the
particle is at point B, and its angular position is ‘0,
which is subtended by arc AB” has the same length as
that of the radius of the circle. Thus angle 6, =1 rad.
We know that angle ‘0’ is always proportional to the
arc length, therefore ratio of two arcs on the  pjs5.7: Lincar variables vs.
circumference of a circle will be equal to the ratio of  angular variables

the corresponding angles at the centre of the circle i.e.

— e o ———

Arc AB  ZAOB
Arc AB' - ZAOB'
S 6
r lrad | |
Q =Ff seoens (5.6) : |
This is the relationship between linear and angular displacements. : )

5.2.2 Relation between linear and angular velocities

Let S, and 0, be the initial linear and angular displacements respectively at .
time t; and S; and 0, be the final linear and angular displacements respectively at ]

time t,, then , . l

AS—SZ—S, !

| A® =0, -6, !:
g At =t,—t, f

, - ' A \



<
b &

Again eq. (5.6) can be written as;

o AS =r AD

Dividing both sides by At
85 7 a0
At At

In vector form V=TX® =rwsind

This is the relationship between linear and
angular velocities, where 0 is the angle between T
and ®. The direction of ¥ is perpendicular to the
plane containing T and @. Right-hand rule is used
to determine the sense of direction of ¥ i.e. same as
for the cross product of two vectors.

Example 5.4

A particle moves in a circle of radius 200 cm with a linear speed of 20 m ™'

Find the angular velocity.

Solution:
Angular velocity = @ = ?
Radius of the circle =r =200 cm =2 m
Linear velocity = v =20 ms™'

v _ 20ms”

r 2m

—=="—""_ —10rads™

5.2.3 Relation between linear and angular accelerations
If v, and o, are the initial linear and angular velocities at time t, of a particle
which is moving in a circular path, while v, and ®, are the final linear and angular

velocities at time ty, then, -

POINT TO PONDER

If the diameter of a truck tyre is
doubled than the diameter of car tyre
and both are moving with the same
speed. The truck covers a distance .
‘d’ in time ‘t then how much '
distance covers by the car in the
same time ‘t’?

————————

Aw =m; —,
| At =t,—t,
Eq. (5.7) can be written as;
- Av =1A®
Dividing by At
Av- : Aw
At At



In vector form a=Txa =rasinOn

This is the relationship between linear and angular accelerations, where 0 s
the angle between T and @ . The direction of Vv is perpendicular to both T and g .
The equations of motion in terms of linear and angular variables

The three equations of motion for linear variables (S, v and a) and angular

variables (0, w and o) are given as;

Ve =V, +at , o =0, +oat ... (5.9
1
S =vit+5at2 ; 0 =mit+%at ...... (5.10)
2aS =y -V , 200 =0f - ...... (5.11)

5.3 CENTRIPETAL FORCE

As we know that when the velocity of a body is
- changing, it has some acceleration. In the case of
uniform circular motion, the acceleration is quite
different because we have seen, the speed of the body
does not change but its velocity does. According to
Newton’s first law of motion, the acceleration of a
moving body with uniform velocity along a straight
path is zero in the absence of an external force. In case
of uniform circular motior, the acceleration is due to

the continuous change of direction of velocity of the Fig.5.8: The direction of
- velocity particle is tangent and

body the acceleration towards the
. The direction of such acceleration 'is . .

- perpendicular to the tangent of the circular path and is

always directed towards the centre of the circle as i

shown in Fig.5.8. This acceleration is called centripetal /

~

centripetal \\
force

acceleration. Thus it can be defined as; "the, a. \
acceleration of a body moving with uniform speed |
in a circle is directed towards the centre of the | }
circle". | /
The direction of velocity of a body, moving in a \\ /
circle with constant speed, at each point of the circular \ o //
path is tangent as shown in Fig. 5.8. — .
Fig.5.9: The string is pl{lliﬂg in

| For example, a ball connected with a string is
whirled in a horizontal circle by a boy as shown in Fig.

5.9. Unless the boy is pulling the string inward the
circle, the bail continues its motion along the same circular path. Now if the string

ward

T dse,
N

—



breaks then the ball follows a straight line path

which is along the tangent of the circle as shown [ ' ?‘
in Fig. 5.10. | i

| This example shows that the applied force i
by the string changes the direction of velocity of a /
rotating body at each point. Such force is called I/

centripetal force and thus it can be defined as;
"the centripetal force is a force that makes a
body to follow a circular path'. The centripetal
force is always directed towards the centre of the  Fig.5.10: The ball moving outward
circle. i.e., the direction of the centripetal force is
the same as that of centripetal acceleration.

In order to calculate the magnitude of centripetal acceleration and centripetal
force, we consider a uniform circuiar motion of a.
particle of mass ‘m’ along the circumference of a hady byt clangig the direction
circle of radius 'r’. of the body’s velocity without

Consider the motion of a particle In @ | changing the body’s speed.
circle. The arc AB of length 'S' subtends an
angular displacement '0' in time 'At' as shown in
Figure 5.11. |

At point ‘A, the initial velocity of the
particle is v; which is represented by the line AC
Similarly at point ‘B’ the final velocity ve which is
represented by the line BD . The figure shows that
there are two isosceles triangle OAB and ACD.
Now by comparing these two triangles we have,

A centripetal force accelerates a

AD - 1 “ Fig.5.11: Uniform motion of a
AB = CD ' (5 12) p:,iic]e along a circular path of circle
= S=Av 7 ceeeee . ’
OA=AC
=V.=V A (513)
Z/AOB=/CAD
0=A0.....: (5.14)

According to the relation between linear
and angular velocities, we have;
| S=r0
Putting the values of S, r and © from €q-
(5.12), eq. (5.13) and eq. (5.14)
: Av=v AD




e ————————————

e Av'__ AB | POINT TO PONDER
Dividing by At, —=v— ¢ ol mrystimins
At At How a motorcyclist maintains ;g
A=V position in a death well?
¢
But V=IO _ KEY POINT
_V . If speed of particle is not uniform byt
or (== A . .
; r changes during circular motion, thep
v particle possess tangential acceleration
Therefore 8, =v— (ar) in addition to centripetal
r acceleration (a.). Both  these
v2 accelerations are perpendicular to cach’
A, = — eens (515) other. -
r

This is the value of centripetal acceleration and its direction is toward the centre of

circle.

According to Newton’s 2™ law of motion
‘ ~ F=ma
F. = ma,

This is a centripetal force which keeps the body in a uniform circular motion.

5.3.1 Forces causing centripetal acceleration
We have discussed that a body moves in a circular path due to a centripctal

acceleration. This acceleration is being caused by some external forces in various

forms which are explained as; :
(i) Consider a conical pendulum which s S

swinging . in a -circle. The weight of the
pendulum is acting downward. while the
tension 'T" acts along the string. The tension in
the string can be resolved into vertical and
horizontal components as Tcosd and Tsin@
respectively. As there is no motion in the
vertical direction  therefore,  vertjcal
component of tension Tcos® is exactly
balanced by weight (W = mg) of conica]
pendulum ie. Tcos® = mg. The horizonta] — “-.._ e

component of the tension, Tsin®, is equal to .
the . céntripetal force and it causes the Conical pendulum V™8
- centripetal acceleration as shown in Fig.5.12. 25;51:02 :hzenic:: -°°",’p onc;" O,fi:,rn
e el centripetal accelera
&




(ii) In case of a vehicle moving on a flat circular track. The friction force between
the tyres of vehicle and the circular track produces a centripetal acceleration

. inward as shown in Fig. 5.13.
~ l > /_\

Instantaneous Centripetal force
velocity /

f e .
Fig.5.13: The friction force between road Fig.5.14: The gravitational force of
and tyres causes centripetal acceleration attraction between the carth and satellite

* provides centripetal acceleration
(iii) When a satellite is revolving in its orbit around the Earth then there exists a
gravitational force of attraction between satellite and Earth which is responsible
for centripetal acceleration. It is shown in Fig. 5.14. .
Example 5.6
A body of mass 0.5 kg moves along a circular path of radius 30 cm at a
constant speed of 1.5 revs™'. Calculate (a) tangential spccd (b) the centrnpetal
acceleration (c) the required centripetal force.
Solution:
Mass=m = 0.5 kg
Radius =r=30cm=0.3m
Angular velocity =w=1.5rev s
Angular velocity = 1.5x6.28 rad s™'
Angular velocity = 9.42 rad s™'
(@) v=?, (b)a,=?,(c) F, 57

o (@ V=ro
. -1 Roller coaster is the application of
; v =0.3mx9.42 rads centripetal force.
R v=283ms™ e
) o POINTTO PONDER |
& A pail of water can be whirled in a

o

I

Ir \
(2.83ms™)? l vertical path such that none is spilled. |
a Why does the water stay in, even when |
0.3m 5 f the pail is above your head? l
a,=26.70ms™ | em————




.(C) Fc=mac

= (0.5 kg) (26.70 ms™)
F=1335N

E\ample 87

. What is the centripetal force of a car of mass 750 kg driving at 47 Km h
a c1rcular track of radius 24 m?

Solution: ORMATION |
m=750 kg FOR YOUR lNFORMATION
) A stone that is stuck in a tyre of an
v=47kmh™ automobile movmg at  highway
@ 000) -3 speeds experiences a Centnpeta]
—3600 ms™' acceleration of about 2500 mys? o
r=24m -
E=7 .
2
i = mv
r
2
750 kg(]3 m s")
F =
8 24m
F =5281 N

5.4 . BANKING OF ROADS AT THE TURN

‘We often face a portion of curved path (circular arc) on a road when we drive
in our car. At this stage, a centripetal force must act on the car to maintain its
uniform speed. This centripetal force is provided by the friction between the tyres
and the road but this frictioral force is inadequate and the car has tendency to skid.
As.a result the car may leave the curved path.

N N cos 6
N sin 0
F cos 0 « y
Fsin6
F
+ I g
Fig.5.15: Fig.5.16:

A car at the portion of banked road Various forces acting on an obiect at Banked road

158
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To overcome this problem, the road is constructed such that its outer edge is

slightly raised by an angle ‘0’ above the level of the inner edge as shown in

" Fig.5.15. Such construction of road is known as "banking of road" and it provides
the necessary centripetal force to a vehicle.

Consider a car which is moving with speed 'v' around the curved road of
radius 'R', is banked at angle 0, the forces acting on a car at this curved road can be
explained as under. The weight of the car ‘mg’ is acting vertically downward while °
its normal reaction ‘N’ is at angle ‘0’ with y-axis.

The horizontal component of normal reaction Ncos is acting vertically

- upward and it is equal to the weight of the car. | -
NcosO =mg ......(.5.17)

The vertical comporent of the normal reaction N Sin 0 is acting horizontally

toward the inner edge of the road and it is equal to centripetal force;

2
Nsin@ = mRV ...... (5.18)
Dividing eq. 5.18 by eq. 5.17
mv’
Nsin6°_ R
Ncos© mg

Vv
tan =— ...... 5.19
an Rg (5.19)

This shows that the banking angle 6 depends upon the speed of the car and
radius of the turn.

In the eq. (5.19), we have neglected the friction between the tyres and the
road. But if the friction between the tyres and the road is also considered then the
forces acting on a car at the curved road as shown in Fig. 5.16 which are explained
as; The friction 'F' is at an angle '0" with N sin0 and it resists the tendency of the car
to skid towards the outside of curved path. The horizontal component Fcos
provides the necessary centripetal force to the car. Thus the resultant centripetal

. force is given as;

mle

Nsin0+Fcos0 = S e (5.20)

~where F= pN and is.the co-efficient of friction between the tyres and road.
If the friction is neglected i.e.p = 0, then

: v =,/gRtan0 ...... (5.21)
Example 5.8

What is the speed of train when it passes through a curved track of radius
150 m which has been banked at 5°.

© '
N
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Solution:
Velocity =v ="
Radius =r=150m
Banked Angle=0=5" CHE ’ '
. ¥ : CHECK YOUR CON
tan = ;— "~ | Why does a pilot tend to.Cbil::‘
. E | when pulling of a steep diye? o '
v'=rgtan0 '

v = (150m)(9.8 ms'z) tan 5

vi=128.6 m*s™

=1t :
. z ;l}ijnr?rsl ‘_ : | | Axis of rotation
ol Mass,m— "~ | T T~
5.5 MOMENT OF INERTIA - ; " ™
It is a natural phenomenon that a body 0 ;
always resists to any kind of motion a S il P e
(translational, vibrational and rotational) to be
produced in it. This resistive property of a body
is called inertia.

In case O,fa rotational mptipn, a tendency Fig.5.17: A rotating mass in a circle of
of a body to resist any change 1n its state of rest  radius r about an axis perpendicular to
or rotational motion is called moment of inertia  the plane
or rotational inertia. It depends upon mass and
the distance between axis of rotation and centre

of mass of the body.
This shows that the greater the moment of

inertia, the greater is the torque required to rotate
or stop the body about an axis of rotation. Thus
by definition of torque.
T =txF
As the ‘0’ between T and F is 90°
t=1Fsin90°

: =1 F...[(522)
According to Newton’s 2" law Fig.5.18: : A rotating body has
F=ma.... (5.23) irregular shape
Putting eq. (5.23) in eq. (5.22)
. T=rma
As a=ra

£




=rm(ra)
2

T=mr'a ... (5.24)

Torque is proportional to the angular acceleration while mr?® is constant and

it is known as moment of inertia of the body which is represented by I, and it is
eXpresses as;

I=mr’ ......(5.25)
Equation 5.25 can be used to calculate the moment of inertia of a rigid body
when it has a regular geometrical shape as shown in Fig.5.17.
Now consider a rigid body of an irregular shape which is rotating about its axis
of rotation as shown in Fig.5.18. In order to calculate its moment of inertia about a
vertical axis passing through O we divide it into 'n' number of point masses

(m,,m,,m,,...m,) at distances (r,, r,, T;,...r,) respectively perpendicular to the axis of
rotation 'O'. Now when the body is rotating with angular acceleration 'a' then its total
torque is given as;
T T T F Ty e T,
. 2 2 2 2

As the body is rigid so the angular acceleration ‘a’of its all point masses
remains constant. So, 4

_ 2 2 2 2
Trow = Myf O+ MyLo+myo+...+ma

_ 2 2 2 2
Tro = (ML +M,I +m,ry +...4+m 1o

0 Location Moment of
2 Object 0
Trotal = (Zmnra )0' J of axis inertia
i=1 =
' , Axis
Thin hoop, Through .
or t=Ia radius R, centre MR
where I is the moment of inertia of the Axls
rigid body and is expressed as Solid cylinder,  Through

@)y pwe

radius R, centre

I=) mp"....[526)
i=1

where m; is thfe mass and r; is the Uniform sphere, Through
distance of the ith point mass from the radiusg, centre

MR
axis of rotation. Thus, the moment of ’
inertia of a rigid body about a given axis ~
is the sum of the masses Of itS Longuniformrod, Though 255 , .
constituent particles and the square of lengthL, centre * 7w "
their respective distances from the axis  Fig.519t Moment of inettia of diferent bodtes

of rotation. having different peometrival shape

4
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The SI unit of moment of inertia is kg m’. Its dimensional formula is

[MLT].

The moments of inertia of various rigid bodies having different regulaa' geometrical
shapes are given as in Fig. 5.19.

Example 5.9
What is the moment of inertia of a uniform solid sphere of mass 5 kg and

diameter of 100 cm.

Solution:
M=5kg
D =100 cm
100

R=T=500m=0.5m

Moment of inertia of the sphere about its diameter is given by
- 2MR?
5
I= %(5)(0.5)2

[=2(0.25) kgm?
I=0.5kgm’

56 ANGULAR MOMENTUM

We have already discussed that when a
body of mass ‘m’ is in translational motion with
velocity ‘v’ then the product of its mass and
velocity is its linear momentum. Similarly, the
momentum of a rotating body about an axis is
called its angular momentum. It is represented
by ‘L’ and it is equal to the vector product of
linear momentum and position vector as shown f;g:nzgob cﬁj';g“'ar St 98

in Fig.5.20.

L=7x5...(527)

Angular momentum is a vector quantity.

Its direction is along the axis of rotation and its | Angular B eentum s it product of
unit is kg m’s™ or J s. 1 an object’s mass, velocity, and |
If angle 6 between T amd P is 90° then [ distance from centre of rotation. ‘

eq. 5.27 becomes.
e ——




L=rpsin90° ..sin90° =1

L = rmv(l)
; As V=TIm
L = (rm)(rw)
. L= mr’e
As [=mr

L=lo ... (5.28)

This is angular momentum in terms of
moment of inertia. When a rigid body has no regular
geometrical shape as shown in Fig.5.21, then we can
divide it into ‘n’ number of point masses
(mlamzsm:!""mn) at the distances (rl,rz,r3,...rn) .l’lg.5.2l: A rotating body has
from the axis of rotation. If the body is rotating with " shape

angular velocity then its total angular momentum is given as;
L=L+L,+L;+...+L,

L =mro+m;e+m,fo+..m r’o

L =(imiri2)w
=l .
L =0 «::(5.29)

5.6.1 Law of conservation of angular momentum

Just like the law of conservation of linear moment, angular momentum of a
rotating system is also conserved in the absence of external torque. Mathematically,
it can be explained as;

According to the definition of torque
T=TxF
But F = ﬂ
. At
A\
T = l'x—p
: At
. ) A ) )
T=—(Txp) ‘
- ' 2;: This hurricane was photggraphed
T = ' from space. The huge rotating mass
T A_t """" (2-0) of air pressure possesses a large
fum.
In the absence of an external torque, T =9 iy

and eq. (5.30) becomes

163,




|

)
At
AL=0
L,-L,=0
i =L;
I|m|=lf°2

where E, and [—,2 are the angul'ar momenta of the rigid body before and after the

change in angular velocity.
In scalar notation, the above equation becomes;

o =lp, R
This is a mathematical form of law of
conservation of angular momentum and it shows
that in the absence of an external torque, initial
angular momentum of a rigid body is equal to its
final angular momentum.

Examples of conservation of angular

- momentum
A Man Diving from a Diving Board

A diver jumping from spring board has to
take a few somersaults in air before touching the
water surface, as in Fig. 5.22. After leaving the
spring board he curls his body by rolling arms and
legs in.

Due to this his moment of inertia decreases
and he spins in mid air with large angular
velocity. When he is about to touch the water
surface, he stretches out his arms and legs. He
enters into water at gentle speed and gets a dive.
This is an example of law of conservation of

angular momentum.

The Spinning Ice Skater

The familiar picture of the spinning ice
skater, as shown in Fig.5.23, gives another Fig.5.23: An ice skater using angular
example of the conservation of angular ~ momentum
momentum. An ice skater can increase his

&




angular velocity by folding arms and bringing the stretched leg close to the other

leg. By doing so he decreases his moment of inertia. As a result angular speed
increases. When he stretches his hands and a leg outward, the moment of inertia

increases and hence angular velocity decreases.

A person holding some weight in his hands sitting on a rotating stool.

A person is sitting on a rotating stool with
heavy weight in his hands stretched out on both
sides as shown in Fig.5.24 As he draws kis hands
towards the chest, his angular speed at once
increases.

~  This is because the moment of inertia
decreases on drawing the hands towards the
chest, which increases the angular speed.

Example 5.10
The Earth rotates around its axis once in
24 hours (1 day). If it were to expand to twice its

present diameter, what would be its new period
of revotution?

Solution:

Given data

Radius =R, =R _

. Time period T, = 24 hours = 1 day

R, =2R,

Tz =9
Applying the law of conservation of angular
momentum, we have,

I](D| — Iz (V)]
But 1I= %MR2 -+ Earth is a sphere
and o =2_1r
T
(EMRlz)z_n - (EMRg)Z_E
5 T 1
or R—'z = Ei—
Tl
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(b)
Fig.5.24: A person holding weights
on a rotating stool

Angular momentum is conserved
during the performance of figure
skater. To rotate fast, he has closed
his arms and legs, his moment of
inertia is small and his angular
speed is large. To slow down for
the finish of his spin, he moves his
arms and legs outward, which
increases his moment of inertia
and lowers the angular speed.




RZ
I, = R—g xT, |
: :
Putting the given values, we get,

2
T2 = @x Tl
Rl
4R}
2

T, = x 24 hours

1

T, =4x24 hours = 96 hours =4 days
57 ROTATIONAL KINETIC ENERGY

We are famitiar with translational K.E. of a body i.¢.
the energy possesses by a body due to its tfamslatxonal
motion. Similarly, when a body is rotating with angular

¢

velocity as shown in Fig.5.25, then it also possesses K.E. S
which is known as rotational K.E. =~ |N PN
By definition of translation K.E.
KE=lmf
2
But V=10
1 Fig.5.25: Rotational
(K.E) = Emr ‘o’ ; : K.E of a body
K.E= lI(x)z
2

This is the rotational K.E of the body. o _

Now consider a rigid body of mass ‘m’ with irregular shape which is rotating
with uniform angular velocity ‘@’ about its axis. To caiculate its rotational kinetic
energy, we can divide its mass into ‘n’ number of small point masses
(my,m,,m;,...m, ) at distances (f,,,T;,...I,) respectively from the axis of rotation

as shown in Fig. 5.26. Now total K.E. of all the particles is given as;

1 1 1 1
KE =—m,v,2+5m2v§+5m3v32+....+5mnv,2, B
As V=T ®

] 2.2 2,2 . '
= 2.2
R _—(m,v,a) +m, V0" + m,vi;0 +....+mnvno))

K‘Erol - EI(Z m,-rf)mz
i=l

. ©




This is the rotational K.E. of a body in terms of

moment of inertia.

Example 5.11

Calculate the rotational kinetic energy of a 15 kgl
wheel rotating at a 9 rev s™' and the radius of the whee

is 20 cm.

Solution:
Mass=m =15 kg
Angular velocity = ® =9 rev s .
Angular velocity = @ =9 x (6.28)rad s
Angular velocity = © = 56.5 rad 5!
Radius =r=20cm=0.20m '
Rotational Kinetic Energy =?

Rotational K.E. = %Ioo2
Rotational K.E. =T12-mr2co2 (-1I= mrz_)

Retational KB, = -;—(15)(0.20)2(56.5)2
Rotational K.E. =958 ]

ROLLING OF DISC AND
HOOP AT AN INCLINED
PLANE

Consider a hoop (Hollow cylinder) and a
disc (Solid cylinder) each of mass ‘m’ which
are rolling down on an inclined plane at an
angle ‘0’ with horizontal plane and at height ‘h’
from the ground as shown in Fig. 5.27. When
they start rolling then they gain both
translational and rotational kinetic energies due
to increase in their velocities but they lose their
potential energies with decreasing height.
Mathematically it is explained as;

5.8
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" CHECK YOUR CONCEPT |

Fig.5.26: A rotating rigid body
has irregular shape.

Three objects of uniform density a
hollow cylinder, a solid cylinder and
a solid sphere, are placed at the top
of an incline surface. They are all
released from the rest at the same
height and roll without slipping.
Which object reaches the bottom
first? Which reaches at last?

Fig5.27: Motion of hoop and disc on an
inclined surface




Rolhng of Hoop (Hollow cylinder/Ring)
Loss of P. E= Gain in (K.E) Trans + Gain in (K.E) g,

I 1
mgh =—mv*+—
g 5 v > lo?
But moment of inertia of Hoop (I) = mr?

1 1
mgh =—mv? + —mrie?
g 5 2mro)

| Zgh =V2+V2 (...vzrm)
2gh =2v?
v =y/gh....(5.32)

Rolling of Disc (Solid cylinder)
Loss of P. E= Gain in (K.E) 1, + Gain in (K.E) Rot

1 1
mgh =—mv* + -] @
g 5 5 ®
But moment of inertia of Disc (I) = %m r?

mgh =2y +21><%mr20)2

2
1 5 1
gh =Ev2+zv2 - ('-"V=l'(1))
3v?
h=—
. 4

4
V= ‘/ggh ...... (5.33)

Egs. (5.32) and (5.33) clearly indicate that the velocities of hoop and disc are
independent of their masses. It is worth noting that the velocity of disc is greater
than the velocity of hoop due to its relatively large value of the moment of inertia.

59 ARTIFICIAL SATELLITE

In space, every smaller celestial body is revolving around every bigger
celestial body. For example, moon revolves around the Earth, the Earth revolves
around the Sun and so on. Like a natural planet such as moon, earth and so many
others, an artificial satellite is a man-made planet. A rocket is used to launch it in an
orbit around the Earth at certain height and speed.




The orbital motion of a satellite is due to the
gravitational force of attraction between the Earth
and satellite. A satellite is being used for the
purpose  of  communication system (T-V’
Telephone, Mobile, and Radio &ransmiSSIO{l),
weather prediction, spying, guiding missile
system, exploration of mineral resources and
others scientific researches. '

Consider a satellite of mass ‘m’ which 1s
launched in an orbit around the Earth at certain
height ‘h’ from the surface of the Earth as show_n
in Fig.5.28. The centripetal acceleration 1s
provided to satellite by acceleration due to gravity
of the Earth. Thus by definition of centripetal

acceleration;
2

ac= g=_

v=Rg....(534)

v= \[(6.4x106m)(9.8 ms'z)
v =462.72x10°m?s™
v=179x10’ms™
v=79kms™

»%: Artificial sateilite ey olving
orbit around the carth

Figs

in s

This is the minimum velocity required by a satellite to move in an orbit
around the earth. This is also called critical velocity of satellite.

Now the time period of the satellite when its velocity is 7.9Kms™' can be

calculated as;

S S
vV=—ort=—
t

For one revolution

FOR YOUR INFORMATION
According to the data of objects
launched into

outer  space,

S= 2nR
t=T
2nR

T= T ...... (535)
_ 2(3.14)(6.4x10°m)

T
7.9%x10°ms™

maintained by the United Nations
office for Outer Space Affairs
(UNOOSA), there are 4635
satellites currently orbiting the
Ean:th. Only 1738 satellites are
active and 2897 are the piece of
Junk metal revolving around the
Earth at a speed of 7.5 kmys.

»\
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: T=15087.59 s
B - T= 84.79 min = 85 min
'By increasing the height of the orbit from the surface of the earth, the
velocity of the satellite decreases and its time period increases.
If a satellite completes its one revolution in 85 min. at the speed of 7.9 km s™
then such orbit'is at height 400 km from the surface of the Earth and this is the
nearest orbit.

5.10 GEOSTATIONARY SATELLITE

An orbit around the Earth that lies in the plane of the equator and has the
time period equal to the period of the Earth's rotation on its own axis (23 hours 55
minutes and 5 seconds) is known as geosynchronous orbit.

A satellite that revolves in the geosynchronous
orbit is called geostationary or geosynchronous
satellite. It appears from Earth to be stationary and it
always remains over the same point on the equator as
shown in Fig.5.29.

Due to this advantage, the geostationary
satellites are more useful for communication system,
weather forecasting, navigation.etc.

A geostationary satellite revolves round the
Earth at a suitable height and velocity. Its velocity is
same in magnitude and direction as the Earth does

3 : . . " a Fig.5.29: Geo-stationary Satellite
about its own axis and its relative velocity with revolving in its orbit around the

respect to the earth is zero. carth.

Consider a geostationary satellite of mass ‘m’ that is revolving in its orbit of
radius ‘r’ from centre of the Earth as shown in Fig. 5.29. The gravitational force of
attraction between the Earth and the satellite psrovxdes the necessary centripetal

force. 1.e.,

Radius of geostationary satellite

The radius of the geostatlonary orbit can be calculated by using the relation
for the speed of a sateilite. i.e.,

{70
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2nr T ] NS [ A e
=——.....(5.37) S Al T otk v TN
\ £ : r \ i
T + Orbitname Altitnde J} Comments
‘ [ o bt W T (Km) g B :
aring Eq. (5.36) and Eq. (5.37) we get. | LowEanhomit | 200-1200
Comp ; " wEo)
2nr GM Medium Earth | 1200 - 35790
-':[:" - r Orbit (MEO)
Geosynchronous 35790 Orbits once a day,
2.2 Orbit (GSO) but not necessarily
AT _ GM in the same
- r direction as the
T . rotation of the carth
2 Geostationary 35786 Orbits once a day,
rJ ____GMT Orbit (GEO) and moves in the
4 nz or same direction as
the carth, Can only
1 Geosynchronous be above the
) / GMT2 3 cquatoriat orbit equator.
r= ol IR (5.38) High Earth Orbit | Above 35790 | -
(HEQ)
\ T

r=

:

(6.673x10™" Nm?kg x 6x10* mx(24x3600 s)’ J’
2

1 4(3.14)

r=4.23x10"m=4.23x10"km

Height of the geostationary satellite above carth’s surface
The height of satellite from surface of the earth is given as;
h=r-R
h=(42.4x10"m)—(6.4x10°m)
~h=3.59x10"m=3.6x10"m =3.6x10"km
This shows that the orbit of the geostationary satellite is independent of the
mass of the satellite. _
Orbital speed of geostationary satellite
The speed of a geostationary satellite can be calculated as;
W 4

o
2(3.14)(4.23x10"m)
~ T (24%3600)
~v=3.1kms™

=3.1x10°ms™

a7
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This shows that the geostationary
satellite revolves around the earth at a height of
36000 km above Earth’s surface with an orbital

speed of 3.1 kms™".
Example 5.11

A satellite is revolving in an orbit around |

the earth at height 600 km from the surface of
Earth. Calculate the speed and time period of
satellite. Given that the radius of the earth is
6.4 x 10°m

Solution:
h =600 km = 0.6 x 10°m
v="7
R=6.4x 10°m
Radius of the orbit of satellite (r) = R + h
r =6.4x10°m+0.6x10°m

r=7x10°m
By definition of orbital velocity;
GM
V= T ...... (1)
At the surface of Earth
_ GmM
"R
But, F=W= mg
So, mg = GﬂM
R2
GM =gR?

Eq. (1) becomes

. -/g [ 98
vV=|[|=2 6 _ 3
( r]R ( = 106J64x10 7.57x10°ms™

v=17.57 kms™
_2nr _2(3.14)(7x10°)

v v = 5807 s

7.57x10°
T =97 min. .

~

POINT TO PONDER )

Why a tetherball seems to speed up
as it wraps around the pole?




“body has normal reaction (N) which is also known as

5.11 COMMUNICATION SATELLITES

Like a football, our Earth is of a spherical shape, so there are some technical
complications to set up the communication system among the whole countries of the
world by using towers. These problems are overcome by introducing a satellite
communication system. It consists of several

e —_— mz
geostationary satellites which are orbiting at
different points above the surface of the Earth.
This satellite communication system has

converted the world in a global village.

One such a geostationary satellite has a "-'--ag
capacity to cover.120° of longitude. So three Fig .56 Thse sosmmminiin
satellites are sufficient to cover the whole Earth  Geostationary Satellites which covers the

as shown in Fig. 5.30. whole earth.

Since these geostationary satellites are appear to be stationary over one place
on the Earth, thus continuous communication with ary place of the Earth can be
made. Microwaves signals are used for communication. The energy needed to
amplify and retransmit the signals is provided by a large solar cell panels installed
on the satellites. There are over 200 Earth stations which transmit signals to
satelhtes and receive signals via satellites from other countries.

You can also pick up the signals from the satellites usmg a dish antenna
placed on the roof of your house. The largest satellite system is managed by 126
countries, international telecommunication satellite organization (INTELSAT). The
INTELSAT VI satellite operates at microwave frequencies 4,6,11 and 14 GHz and
has a capacity of 30,000 two-way telephone circuits including three TV channels.

5.12 REAL AND APPARENT WEIGHTS

Weight is a force which is produced in a body by
gravity of the Earth. It depends upon ‘g’ and is always
directed towards the centre of the earth.

According to Newton’s third law of motion, the weight of a

supporting force of the body and it is acting normally
upward. Now when the supporting force is equal to the
weight of the body then the weight is called real weight. e
If the supporting force is greater or less than the  Fi&-531: Two forces
weight of the body, then the weight is called apparent o.ooi it

. . ) . suspanded block,
weight. When the supporting force is zero then the weight of - weight of the block

“the body is weightless and this condition is called doWnwardsand tension

weightlessness. The weightlessness can be observed when ~ °F ¢ string upwards.

Uy




the body falls freely under the action of gravity and the body in a satellite orbiting

around the Earth.

. All the conditions of weights that is real weight, apparent weight and
weightlessness can be studied with the help of spring balance, connects with a block
of mass ‘m’ and is suspended by a string of Tension ‘T’ from the ceiling of the
elevator, as shown in Fig.5.31. It may be noted that weight of the block is acting
downward while tension of the string is acting upward. o

Case I: ‘'When the elevator is at rest or moving
with uniform motion

T
When the elevator is at rest or moving with
uniform motion then its acceleration is zero(a = 0) as shown l
in Fig.5.32. The net force acting on the body will be; %

F=W~-T :
ma=W -T Fig.5.32: Elevator is at
As a=0 rest or moving with
Then T=W ..... (5.39) uniform velocity.

_Objects in freefall experience

This is the real weight which can be )
weightlessness. ;

measured using a spring balance.

Case II: When the elevator is moving

acceleration ‘a’ as shown in Fig.5.33, then T > W and the net

force will be;
F=T-W

T=W+ma....(.540)
This shows that the apparent weight is increased by

‘ ’ 22 PR
an amount ‘ma’. . Fig$3% Elevators -
Case III: When the elevator is moving downwarg = ™°Ving upward

When the elevator is moving downward wit |

T
upward
When the elevator is moving upward with l
vlv

acceleration ‘a’ as shown in Fig.5.34, then T < W anq the net i

force acting on the body will be; -_.
F=W-T : l
T=W-ma.... (5.41) .

This shows that the apparent weight is decreaseq ‘ 4

by an amount ‘ma’. ' . 1 | — f

F ig.§.34: Elcv;tér- is
moving downward.
QEy

, —




case IV: When the elevator is falling freely

~ Suppose the string is broken and the elevator falls freely under the force
of gravity, then a = g;

F=W-T
T=W -ma
T=mg-mg
T=0

The spring balance will show zero reading and this condition is called
weightlessness of a body. .

513 WEIGHTLESSNESS IN SATELLITES

When a satellite is launched by a rocket in an
orbit around the Earth then it has been observed
experimentally that everything inside the satellite
experiences weightlessness because the satellite is a
freely falling body.

Consider a satellite of mass ‘m’ that is revolving
in its orbit of radius ‘r around the Earth of mass 'M".
Two forces are acting on it, that is, weight ‘mg’ of the
satellite is acting downward while the supporting force
N is acting upward as shown in Fig.5.35. The normal Fig-535: Two forces acting
force is less than the weight and the difference between fiz]ﬁi”::lzh;f:f
them provides the centripetal force. According “to i

Sarellite

- Newton’s 2" law the net force on the satellite is given as;

F=mg-N
2
But Fczm:

2
mv — mg —_— N ...... (5.42)

It may be noted that the centripetal force acting on satellite is provided by
gravitational force of attraction between Earth and satellite. i.e.,

Fg=Fc
2
ol Myv
r
v2
e
r




Eq. 5.42 becomes
mg=mg-N
N=mg-mg=0
N=0.....(5.43)

Since N is zero, the force exerted by the support force on the body revolving
in a satellite is zero. Hence, the force that the body exerts on the support is also zero.

apparent weightlessness.

5.14 ARTIFICIAL GRAVITY

It has been observed that when a
spacecraft is revolving in its orbit around the
Earth, then it is in state of weightlessness. The
astronauts inside the satellite face difficulties to
perform their routine work. To overcome these
problems, an artificial gravity is developed by
rotating the spacecraft with certain frequency
about its axis.

Considering a spacecraft of outer radius
R and it is rotating about its axis wi&h‘angul_ar
velocity ‘o’ as shown in Fig.5.36. So 1ts

centripetal acceleration is given as;

2, =R0?......(5.44)

Since o= _2T£’ therefore eq. (5.44) becomes

‘The body and the astronaut in a satellite therefore, find themselves in a state of

Spacestation
orbit about

“Object Inside Earth

W = F = artificial weight
Fig.5.36: Two forces acting on a satellite
which is revolving in its orbit

4n2 . . .
=NT7 .. +io0a] force diminishes as you
* R( T ] gc:’a;::;/o?:om earth, but it is never
5 1 zero.
a. =4n°R ;]—_3 )
a_=4n’Rf? «f=—
a
f?=—2
4n’R
p . |8
2n VR
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The environment inside the satellite will be same as that on the surface of
Earth if a. = g and above equation reduces to;

- 1 g Planets” OThTAINE A0S AD AR
‘; ‘ J :ﬂ E ...... (545) — ;)‘lls't'arlnlcimu\r’elocity Velocit
‘ from Sun m/s y Kmv/s
s Hence, the spacecraft can produce the (million Km)
| required necessary artificial gravity if it is [ Mercury 57.9 4768539 | 47.69
| 1 Venus 108.2 35095.49 35
| rotated at the frequency given by Eq. (5.45). ot i T
Example 5.12 Mars 227.9 2415438 | 2415
A spacecraft consists of two chambers | Jupiter 778.6 13059.18 | 13.06
connected by a tunnel of length 20 m. How [ Satur ;::i;‘ ::;;;; "’6‘;‘
many revolutions per second must be made by :e”"';‘;’e s T
the space craft to provide the required . — '
artificial gravity for the astronauts? FOR YOUR INFORMATION
Solution: ¢=20m 27000 kmm  Eiptical
¢lrcula!_ . a——
R=£=10m AT e
2 { & N\
g =9.8ms™ W N
g Yot
k= 27\VR Satellite Orbits
—2
.8 ms .
-2(311; 9f0mm r £=0.158revs™ or 0.158 Hz

5.15 ORBITAL VELOCITY

A small heavenly body revolves around a
massive body due to the gravitational pull of
massive body. The mass of the bigger body
controls the orbit of small body and also speed
with which it revolves around it. The more
massive the bigger body, the greater is the
*  gravitational pull and faster the smaller body

must revolve.

| It has been observed that all the planets,
stars, satellites and space crafts are revolving in
nearly circular path. These circular paths are

Fig.5.37: A satellite is revolving in
its orbit around the earth with an
known as orbits. The motion of all these bodies orbital velocity.

in their orbits is called orbital motion and their velocities are called orbital velocitv.

177,
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In order to obtain a relation for the orbital velocity, we consider a massive
‘body of mass M around which a smaller body of mass m is revolving. Let the speed
of revolution be ‘v’ and the radius of the orbit be ‘r’ from the centre of the Earth as
shown in the Fig.5.37.

It is a well-known fact that the centripetal force is provided by the
gravitational force between satellite and Earth that is:

Fc = Fg
mv:  GmM Thc velocity of the satellite is
: = £ independent of its mass.
, GM
Vi =—ro

This is the required orbital velocity of the satellite.

Circular motion: The motion of a body along a circular path of constant radius
is called circular motion.

Angular displacement: The angle subtended at the  centre of circle by an arc
along: which it moves in a given time is known as angular displacement. Its
direction can be found by right hand rule.

Angular_velocity @: The rate of change of angular displacement is called
angular velocity.

Angular_Acceleration a: The rate of change of angular velocity is called
angular acceleration.

Relationship between linear and angular variables: Relationship between
lincar and angular variables are ; S =10, v=ro, a=ra

Centripetal force and Centripetal acceleration: The force which keeps the
motion of a body in a circle is called centripetal force. The acceleration produced
by centripetal force is called centripetal acceleration. These are always dlrecﬁed
towards the centre of the circle.

Moment of inertia: The resistive property of a body to oppose any change in its
state of rest or rotational motion is called moment of inertia.

Angular momentum: The vector product of radius and linear momentum is
called angular momentura and it is conserved in the absence of an extemnal
torque.

an
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o Rotational Kinetic energy: The kinetic energy of body due to its rotational
1 motion is called rotational kinetic energy
o Geostationary satellite: A man made artificial planet revolving around the

Earth at certain speed and height is known as satellite and satellite whose time
period is 24 hours is called geostationary sateliite

. o Apparent weight: The weight of the object in equilibrium state is called real

| weight, while variable weight is apparent weight. When the supporting force is

r equal to zero then the object is in the state of weightlessness.

SRR R X ERCISE

O Sclcct the best option of thc following question.

1.  85.95° degree in terms of radian is

(a) %radian (b) 1 radian () I%radian (d) 2 radian
2. What is the circumference of a circle, having radius of 50cm?
(2)3.12m (b)3.14m (c)3.16 m (d)3.18 m
3. What is the angular velocity of a particle when its frequency is 50 Hz?
(@) 312rads™  (b)313rads™ (c)314rads™ (d)315rads™
4. The direction of angular velocity is along;
(a) Tangent the circular path (b) Axis of rotation
(c) Inward the radius (d) Outward the radius
5. Angular speed for annual rotation of Earth in radian per day.
! (a) gradian/day ~ (b) = radian/day
(c) 2n radian/day (d) 365 radian/day

6. A body moves with constant angular velocity in a circle. Magnitude of angular
acceleration is

(a) ro’ (b) Constant (c) zero (d)ro
7. Banking angle does not depend upon
. (a) Mass (b) Speed (c) Radius

(d) Gravitational acceleration ,
8. What will happen if the height of an orbit of a sateilite from surface of 2arth is

—— e ——— s O i A et —
»

increased,
- (a) Speed increases (b) Angular velocity increases
(c) Time period increases (d) Gravitational acceleration increases
i ' .
(179,
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10.

g i X

12.

13.

14.

15.

16.

17,

18.

19.

What is the ratio of translational and rotational kinetic energles of a solid
sphere

3 . 5 - 2
o b) = E d) <
@ ®) 3 @3 @
Angular momentum in terms of moment of inertia is
(a) Io (b) I’ (c) I’ (d) LZ
®

Which one of the following rolling body has 50% translational K.E and 50%
rotational K.E. .

(a) Disc (b) Ring (c) Rod (d) Sphere

A solid cylinder of mass 20 kg rotates about its axis with angular velocity of
10m s~ radius 0.2m. The moment of inertia of the cylmder

(a) 0.2 kg m’ (b) 0.4 kg m* (c) 0.6 kg m (d) 0.8 kg m?
The condition of weightlessness is (N = Normal Reaction and W is weight)
(a) N>W (b) N<W (c) N=W (d N=0

A sphere is rolling without slipping on a horizontal plane The ratio of its
rotational kinetic energy and translational kinetic energy is

(a) 2:3 (b) 2:5 (c)2:7 (d) 2:9
The frequency of artificial gravity is

@) 211\/% (b) 2n \/% ) L \/E @ - \/E

A particte of mass 100g starts its motion from rest along a circular path of
radius 10 cm. If its velocity becomes 10ms™ then its centripetal force is;

(@ 0.1 N (b)IN (c)i0ON (d) 100N

Which one of the following is conserved when the torque acting on a system is

zero? _
(a)K.E (b) Angular momentum

’ (C) Rotational K. E (d) Linear momentum

Orbital velocity of earth’s satellite near the surface is 7 kan/s. If the radius of
the orbit is 4 times than that of Earth’s radius, what will be &he orbital velocity
in that orbit?

(a)3.5kms’  (b)7kms™ (c) 7V2kms”  (d)14 kms™
When a parachutist is moving downward wnth uniform motion then its weight

is;
(a) Decreasing (b) Increasing (c) Remain same  (d) Zero
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20.

4.

8.
9.

An object of mass 1.5 kg is suspended by a string having tension T=5 N ina

lift. When the lift is moving upward with acceleration a = 2 ms™ then its
apparent weight is:

(@) 8N (b)SN (©)2N (d)1.5N
" COMPREHENSIVE QUESTIONS

Dene the following terms;

(i) Angular dlsplacement (ii) Angular velocity  (iii) Angular acceleration
Derive the relationship between linear and angular variables.

State and explain centripetal acceleration and centripetal force. Also derive
their mathematical relations.

Define banking of road and justify that how does it provide a necessary
centripetal force to a vehicle. '

What is moment of inertia? Show that moment of inertia depends upon mass
and radius of the circle in which the bedy is moving.

State and explain angular momentum and law of conservation of momentumn.

What do you know about the artificial satellite. Discuss the speed, time period
and height of an artificial satellite.

Define geostationary satellite and it role in the communication system.
Explain the terms real weight, apparent weight and weightlessness of a body.

10. Describe weightlessness in satellite and the artificial gravity.

1.

9.

~ SHORT QUESTIONS

How many dlfferent umts are used for measurement of angular displacement?
Explain.

How caif you define one radian?

What is the relationship between arc length and angular displacement?
How can a body move along a circle? What is the direction of its velocity?.
How can you calculate the angular velocity of Earth about its axis in rad.s™'?

Why the speed of a rolling disc is greater than the speed of a rolling hoop while
both have same masses?

How does banking road provide a centripetal force to a moving car?
Why torque and work done are not possible by centripetal force?
Under what condition the angular momentum of a body is conserved?

{81




10. There are two spheres of copper and lead of same mass. It is found that the
lead sphere can be rotated more easily. Explain why?
11. What are the values of speed, height and time period of a geostationary
satellite?
Is it possible to launch an artificial satellite in an orbit such that it always
remains visible directly over Quetta? Explain.
13. What is the minimum number of geostationary satellites for world T.V
communication system.
14. Distinguish between real and apparent weights.
15. Is there any difference between orbital motion and rotational motion?

16., How can an artificial gravity be produced? |
17. What is the frequency of oscillations of a simple pendulum inside an artificial

satellite?
The cylinders A and B are of the same mass but the radius of A is greater than

.that of B. Which one will require more force to come into rotation? Why?
What is the angular velocity of the Earth spinning about its axis?
How the rotation of Earth will be affected if its density becomes uniform?

18.

19.
20.

b e 2

The Earth completes one rotation about its axis in 24 hours. Calculate (a) the

1
angular speed of the Earth (b) tangential speed of body at the equator. (Radius
of the Earth is 6.4x10° m) 7.3x107° rad/s, 467 m s~
2. The diameter of the wheels of a car is 70 cm. It starts from rest and accelerates

uniformly to a speed of 12 m s", in time 6 s. Calculate the angular acceleration
y P g

of the wheels and the number of revolutions made in this time.
(5.7 rad s 16 rev.)

3. A geostationary satellite is revoiving around the Earth in the orbit of radius

'42.4x10° m in time period of 24 hours. Calculate (a) tangential speed (b)
centripetal acceleration. - (3x10°ms™,0.23 m s’z)
4. A body of mass ‘m’ connected with a string of length '¢' is whirled in a - o |

N horizontai circle. Find the centripetal force (a) when the length of the string is
doubled (b) when the tangential velocity of the body is doubled.

1
s b 4Fc
(a) 2Fc,( )
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6.

9.

10.

11.

What is the banking angle of a curved road of radius 25 m if a car may make
the turn at a speed of 11 ms™'? (26°)

A 3 kg pulley of radius 30 cm is rotating at the rate of 400 rev/m. Calculate its
moment of inertia and its rotational K.E. (0.27 kg m’, 0.24 kJ)

The gravitational force on a satellite exerted by Earth on its surface is ‘F’.
What will be the gravitational force on the satellite, when it is at a height of
R/50 where ‘R’ is the radius of the Earth. (0.96 F)

An electron of mass 9.1x107*' kg is revolving in its allowed orbit around the

nucleus of radius 5.3x10™"'m with velocity 2.2x10° m s™'. Calculate angular
momentum and rotational K.E. of clectron about the nucleus.

(1.06x10~ Js, 2.2x107® J)

What is the resuitant force acting on 70 kg man in a lift which is accelerating
upward with 9.8 m s? Also calculate the resultant force when the lift falls
freely under gravity. (1372N, 0)
What is the orbital velocity and time period of moon when it is revolving in its
orbit around the Earth at height 384000 km, from surface of the carth? Mass of
Earth is 6 x 10** kg and its radius is 6400 km. (1.01 km s™, 27.5 days)

At what speed of the outer rim of space craft is rotated in order to produce an
artificial gravity equal to 9.8m s™. The radius of space craft is 60 m, also
calculate its time period of rotation. . (422ms", 15.6 s)

With what specd a space station should rotate in order to produce at its outer

rim an artificial gravity equal to 9.8m s™2? The radius of space station is 85 m?
Also calculate its period of rotation? (29ms™, 18.55)




FLUID DYNAMICS
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ISUdEnts Eearning Outcomes

Major Concepts - (18 PERIODS)

SIS CONCE R IE R TS

This chapter is built on
Work & Energy Physics IX
Dynamics Physics IX
Properties of Matter Physics
IX

Streamline and Turbulent flow
Equation of continuity
Bemoulli’s equation -
Applications of Bernoulli’s equation
Viscous fluids
Fluid Friction
Terminal velocity

After studying this unit, the students will be able to:

Defire the terms: steady (streamline or laminar) flow, incompressible flow and non

viscous flow as applied to the motion of an ideal fluid.
Explain that at a sufficiently high velocity, the flow of viscous fluid undergoes a

transition from laminar to turbulence conditions.
Describe that the majority of practical examples of fluid flow and resistance to

motion in fluids involve turbulent rather than laminar conditions.
Describe equation of coatinuity Av = Constant, for the flow of an ideal and

incompressible fluid and solve problems using it.
Identify that the equation of continuity is a form of the principle of conservation of

mass.
Describe that the pressure differencecan arise from different rates of flow of a fluid

(Bemnoulli Effect).
Derive Bernoulli equation in the form P + )2 pv? + pgh = constant for the case of

horizonta! tube of flow. .
Interpret and apply Bernoulli Effect in the: filter pump, Venturi meter, in, atomizers,

flow of air over an aerofoil and in blood physics.
Describe that real fluids are viscous fluids.
Describe that viscous forces in a fluid cause a retarding force on an object moving

through it.
Explain how the magnitude of the viscous force in fluid flow depends on the shape

and velocity of the object.
Apply dimensional analysis to confirm the form of the equation F = A nrv where ‘A’

is a dimensionless constant (Stokes” Law) for the drag force under laminar conditions

in a viscous fluid.
Apply Stokes’ law to derive an expression for terminal velocity of spherical body

falling through a viscous fluid.




INTRODUCTION

Basically, there are three states of matter namely solid, liquid and gas. Each
state has different nature on the basis of its different properties. For example, the
atoms in liquids and gases are not closely bounded but they are at some distance.
Typically, the distance between two molecules of liquid is 107 m and the distance
between molecules of the gases is 10" m. Due to this large space between molecules
of liquid and gases, they have the ability to flow under the influence of some
applied forces and hence they are called fluid. A liquid flows and acquires the shape
of the container. A gas also flows into a container and spreads out until it occupies
the entire volume of the container. \

Moreover, the distance between the molecules of gas is more than the liquids,
so a gas can be compressed while the compression of liquid is almost negligible.
Fluid plays a vital role in many aspect of our everyday life. For example, we drink
them, breath them, swim in them, they circulate through our bodies, airplanes fly
through them, ships float in them. The study of fluids at rest in equilibrium
situations is called fluid statics and the study of fluids in motion is called fluid
dynamics and it is a most complex branch of mechanics. In this chapter, all the
parameters which are related to fluids such as; viscosity, density, pressure, equation
of continuity, Bernoulli’s equation, Torricelli’s theorem and Venturi relation will be
studied. All these are related to incompressible and steady flow and these have been
derived on the basis of law of conservation of mass and law of conservation of
energy.

6.1 VISCOSITY

The property of a liquid by virtue of which it opposes relative motion
between its two adjacent layers is called viscosity.
Some liquids flow more easily than

others. For example, honey is very “thick” and V=0 at wall

flows very slowly while, water is very “thin” as F————————=

. _’ ¢
compared to honey and flows very quickly. In e
other words, honey offers more resistance than [~ =
water. This resistive property of a liquid is ———————.
called its viscosity and it is due to the friction E - e

between the two relative layers of a fluid. It  Fig.6.1: Different layers of fluid having
explained by, considering a flow of liquid ~different velocities.

between two solid surfaces which consists of ‘n” number of layers. The layer in
contact with solid surface i.e. top and bottom solid surfaces is almost stationary,
because its velocity is zero. Consider the layers of liquid above the bottom fixed

185,
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solid surface velocities of upper layers are increasing step by step with distance i.e.,
the greater the distance of a layer from the surface, the greater is its velocity. A
similar phenomenon can be observed for successive layers of liquid below the top

fixed solid surface. Hence, the velocity of

central layer is maximum as shown in Fig. 6.1. : B
Now consider the two parallel relative I y

layers AB and A'B’ separated by distance ‘y’ 5 B

from each other as shown in Fig. 6.2. The
upper layer A'B'has greater velocity than the
velocity of the lower layer AB. Therefore, the layer A'B’ is sliding over the layer
AB with velocity ‘v’, so there is a frictional force between the layers AB and A'B’.
This force is called viscous drag force whick exists between every two parallel and
relative layers of the fluid.

Due to this viscous dragging force, the slower layer exerts a tangential
retarding force F on the faster upper layer and experiences itself an equal and
opposite tangential force due to the upper layer. To overcome the drag force, an

Fig.6.2: Two layers of fluid at a distance Y

external force must be applied. The applied T mrnnliis S |
force -depends upon the factors like area of fj;;i@ﬁ@:ﬁ ‘.:-"-"jr'-"'_!;f’k.""i‘!_'.f.":"“'. S {eeplpin |
layer of fluid (A), velocity of drag of layer (v) (= 0 SIck] |
and separation between two layers y. The || Water 20 117 |
dependence of applied force F is as under: /I‘:'c‘l';" 20 : |
B A Milk 10 2 |
Focv Sulfuric 20 8
| Acid
P — Olive Oil 20 84
. y Glycerin 20 648
Combine all the above results. Shanpoo 3 T
Foc-&- Castor Oil 20 1000
% -|[ Honey 36 2000-10000
Av
F=n—.....(6.1) i
y

where ‘n’ is a constant of proportionality and is known as co-efficient of viscosity.
It depends upon temperature and rature of the fluid. Rearranging Eq. (6.1), we get;

Ay

If A=Im% v = Im s~ and y = lm, then, F = n, thus the co-efficient of
viscosity may be defined as;

@
- ‘ _




]

The coefficient of viscosity of a fluid is the force required per unit area to
mairtain the unit relative velocity between the two relative layers of liquid separated
by distance of Im to each other.

The SI unit of ‘n’ is Ns m™ and its dimensional formula is [ML™'T™3.

Example 6.1
A plate of area 0.1m’ is separated from another plate by a layer of glycenn of

thickness 2 mm. If the co-efficient of viscosity of glycerin is 0.950 Ns m™, calculate
the horizontal force required to the plate moving with velocity 0.1 ms™", '

Solution: A=0.t m’
y=2mm=2 X 10° m
n=0.950 Nsm™

v=0.1 ms™’
F=2
y
- 0.950 Nsm?2x0.1m?x0.1ms™
2x10”° m
F=475N

6.2 STOKE'S LAW AND TERMINAL VELOCITY

When a solid body falls free through a viscous medium, its motion is
opposed by a force called viscous drag force which is due to the relative motion
between the layers of the viscous medium. The magnitude of this viscous drag force
increases with the velocity of the body. It was studied by an English physxc1st Sir
George Gabriel Stoke and the corresponding law is
named after him.

Consider a solid sphere of mass 'm' radius 't which ;
is moving with velocity 'v' in a viscous medium whose
coefficient of viscosity is 'n' as shown in Fig.6.3. O

According to Stoke's the drag force is directly |
proportional to the velocity of the sphere, radius of the v
sphere and coefficient of viscosity of the medium. Hence,

Focv
Focr
. Foc 1
Combincall dressrestits : Fig.6.3: Two opposite forces
Fo nvr acting on a body mov ing
F= kT]Vl’ ' through a viscous medium

{8}




where ‘k’ is a constant of proportionality. For a small perfectly rigid sphere, the
value of k is found to be 6.
F=6mmvr ......(6.2)
The above relation is calied Stoke’s law.

6.2.1 Dimensional analysis of Stokes law
The Stokes' law can further be analyzed by the method of dimensions. Stokes
observed that the drag force on slow moving body through viscous fluid depends
upon the foilowing factors
1. Velocity of the body (F o« v)
2. Radius of the body (F o r)
3. Co-efficient of viscosity (F o« 1)
For dimensional analysis, we can combine these relations as;
F(I v rb 3]c
F= constant v’r’n°
F=kvr'n° ......(6.3)
where ‘k’ is dimensionless constant and a, b and c are the dimensional coefficient of
v, r and 7 respectively.
Now putting the dimensions of the given terms in equation (6.3) we get,
[MLTY=[LT'PLLPML' T
[MLT?=[L]* [T] [L]° [M]° [LT[T]

[MLT?]=[L]""* [T]" [M]*
Comparing the respective terms

M]' = [M]"
L] =[L]**
[T 2= [T) >

c=1,-a—c=-2andat+b-c=1
By solving these relations, we get
c=l,a=landb=1
Putting the values of a, b and ¢ in equation (6.3), we get
F=kvm
As the value of ‘k’ was calculated by Stokes for a small sphere as 6,
therefore. '

F=6mrv




6.2.2 Terminal Velocity

| Consider a solid sphere of mass ‘m’ and radius
‘r’ that falls vertically downward under gravity in a
long column of a viscous liquid. When a body is
dropped 1n a viscous medium (fluid), two forces act on
it; the weight of the body ‘W’ acting downward and the
viscous drag force ‘F’ acting upward as shown in
Fig.6.4.

The analysis shows that the drag force is
proportional to the velocity ‘v’. Initially the weight of
the body is greater and the viscous drag force is zero.
So the sphere is accelerating downward as shown
graphically in Fig.6.5 (at point A).

Now when the velocity of the sphere 1]
increases, the viscous force also increases as 91 R
shown in Fig.6.5 (at point B). At a certain 8 . .
instant, the viscous drag force becomes equal 74 il £
to weight ‘W’ of the sphere. The net force then
becomes zero and now the sphere falls with
constant velocity. This constant velocity is

Fig.6.4: A body (sphere) is
moving with terminal velocity
in viscous medium under the
action of two opposite forces.

o
A

w
A

'S

known as the terminal velocity as shown in
Fig.6.5 (at points C & D). The value of this
terminal velocity can be calculated by using

- Stokes law.
F =6nnrv,
As body is falling under gravity therefore
F =mg
mg = 6nnrv,
v,= —5_ . .(6.4)
6nnr
From the definition of density
_ mass
volume

As the volume of sphere is il-1tr3

P=7

—7[['3

-1'69
N7

w

~N

o

1 T  eE—s

,4/" .

T | Bz ; T T T >
o 1 2 3 4 5 6 7 8 9 10
Fig.6.5: Graph between velocity and
time shows various stages of the velocity
of a body in a viscous medium

INFORMATION

Water

Falling balls of same size and density
through different liquids with the
greatest viscosity hinders the falling
balls speed the greatest.

Honey




So,

3
m =—mnpr
3 p

Substitute this value of m in eq. (6.4)

Vv, = (inprl) &
13 6mnr

2 .
2800 65)

POINT TO PONDER
Why rain drops do not produce any
unpleasant effecton us? |

This result shows that at constant density and viscosity, the terminai velocity
of a spherical body falling freely through a viscous fluid is directly proportional to
the square of its radius. It means that for a given medium, the terminal velocity of a
large sphere is greater than that of a small sphere of the same material.

Example 6.2
What is the terminal velocity of a bail of diameter 4 cm and of average

density of 90 kg m™> which is allowed to fall in oil of viscosity 0.03 Ns m™>?

Solution:
v,=?

D = Diameter=4 cm = 0.04 m

FOR YOUR INFORMATION

. D 0.04 .
R = Radius = — =Tm =0.02 m
3 Condensation nuclei 0.2 0.0000001
p=90kgm Typical cloud
2 droplet 2 04
n= 0.03Nsm Large cloud droplet 100 0.25
B = 9.8m S_2 Large droplet or 200 0.7
" drizzle
_ 2gr P Small raindrop 1000 4
Ve 9 Typical raindrop 2000 6.5
Large raindrop 5000 9

_2(9-8ms™)(0.02m)’(90 kgm™)
9(0.03 Nsm™?)

0.7056

vl = —-
0.27 |
v,=2.6ms™" i

6.3 FLUID FLOW

The study of motion of fluids is an important practical subject and it plays a
vital role in various fields like automobile engineering, aeronautics, civil
engineering, mechanical engineering, marine engineering, sports engineering and
meteorology. It is an established fact that there is a large distance between the atoms




or molecules of a fluid as compared with a solid. Due to this property, a fluid has
ability to flow when an external force is applied on it. This is called fluid flow.
There are two kinds of the flow of fluid i.e. steady flow and turbulent flow.

(i) Steady or laminar Flow
The flow of fluid is said to be steady or
laminar if its each particle passing through a
certain point follows exactly the same vclocxty
' i i aken by the e
as its preceding particles. The path t y hL 58 Bl :d) o me o o

particle of fluid is known as stream line. Stream
lines in steady flow do not cross each other as shown in Fig.6.6. In steady flow the

velocity of the liquid may be different at different points, but the velocity of its each
particle at a particular point and at given instant remains constant. The stream line
may be straight line or curved. The condition of stream line motion depends on the
velocity of the flow of a fluid. The motion of a fluid remains streamlined when the
average velocity of the fluid remains smaller than a certain value called critical

velocity.

(i)  Turbulent Flow | S ——

The irregular or non-steady flow of fluid \_) \j C\""
is called turbulent flow. In turbulent flow there C
are continuous fluctuation in velocity and :

pressure at each point as shown in Fig. 6.7.
If the velocity of fluid is greater than critical velocity, the motion loses all its

orderliness and becomes zigzag. The velocity of fluid molecules at any point is
different in magnitude as well as in directior in a random manner and eddies and
whirlpools are formed in the fluids. Such a flow of fluid is called turbulent flow.

Fig.6.7: Turbulent or Irregular flow

6.3.1 Ideal flow
The experiments show that the study of fluids flow is extremely complex, but
it can be simplified by making a few assumptions. These assumptions are

summarized as:
(i) - The fluid is non-viscous _

A non-viscous fluid is one in which there is no friction between the two
adjacent layers i.e., its viscosity is zero.

(if) The flow is steady:
In steady flow, the velocity of éach partxcle of the fluid at each point remains

same. (Fluid experiences no viscous force).

\l?l/




(ili) The fluid is incompressible:

The fluid is incompressible i.e. its density
remains constant. The flow which possesses such | CHECK YOUR CONCEpT
properties  of  non-viscous, steady  and \Yhy ‘I}?e Sl;aPeS of objects are
incompressible is known as an ideal flow because il
no flow exists in practice which have all these properties.

6.4 EQUATION OF CONTINUITY

In fluid dynamics, equation of continuity is based u

of mass and it is stated as; ""When fluid is flowing through a pipe then its total
mass at any instant and at any cross-section area of the pPipe remains same", It
is possible only when the fluid is incompressible and flow is steady.

To derive a mathematical relation for -V,
equation of continuity, we consider a steady
flow of fluid of density p along the streamlines
through a pipe of non-uniform size as shown in
Fig. 6.8. At point ‘P’ the cross sectional area of
pipe is ‘A" and the velocity of fluid is v,. If AX;  —3» Vi
is the displacement of the fluid in time At then
the mass of the fluid in volume element AV will © (A

be; | Ax,
AmI =px volume Fig.6.8: 1dcal flow of fluid through a pipe
Aml =px AV .. ...(6.6) of non uniform cross section arca.

As the pipe is cylindrical, so the small element of volume of fluid is given by

the product of the cross-sectional area A, and the length of the pipe Ax, containing
the mass Am,, that is,

pon law of conservation

‘AV= A| AX]
But, v, .
At
and AX| =V At
So AV =Avt....... (6.7)

Substitute equation (6.7) into equation (6.6) then the mass Am, of the fluid
becomes; .

Am, =pA,v,At......(6.8)
Similarly, the fluid moves with velocity v, through the upper end ‘Q’ of the

pipe of cross-section area A,. In the same time interval At, the mass m, of the fluid
flowing at the point Q at distance Ax; is given as

Am, =pA,v,At......(6.9)



Assume that the fluid is incompressible, so mass is conserved this according

to the law of conservation of mass.
Mass of fluid ﬂowmg into the pipe = mass of fluid ﬂowmg out of the pipe

Am, = Am,
' pIAlVlAt =pP,A,V,At
Ayv, =A,V,.....(6.10)

e This is a mathematical form of equation of continuity and is in fact the
indirect statement of the law of conservation of mass. The eq.6.10 can be extended
to ‘n’ number of sections. i.e., :

Av,=A,v,=Av;=..=A v,
or Av= Constant ......(6.11)
This relation shows that the speed of fluid is increased by decreasing the
cross-section area through which the fluid flows. On the other hand, the product of

cross-sectional area and speed of fluid is equal "POINT TO PONDER

to the rate of volume flow and has same values | -, you apply the equation of

at all points along the pipe. continuity for the flow of current
through a conductor? .

[,\Am ple 6.3
Water flows through a fire hose of inner diameter 6 cm at the rate of 10ms™'

The fire hose ends on a nozzle with an inner diameter of 2 cm. What is the speed of

water at the nozzle?
. o FOR YOUR INFORMATION
Solution: .
=6cm=0.06m %
=0.03m y
=10 m/s ' '
d,=2cm=0.02m
r, =0.0l m
-0 N Aerodynamic designed helmets such
S2 - S as tear drop shaped helmet is helpful
o ~ Equation of continuity for cyclist to improve the speed.
Avi=A v, ' '
5 A=nr?

2L D
nL'v, =T, V,

2 0.03)’
7  (0.01)

v, =90 ms™




6.5 BERNOULLI’S EQUATION - - : t

Bernoulli’s equation is based upon law of conservation of energy and it is -
stated that “for steady flow of an ideal fluid, the total energy of the fluid remains
constant throughout the flow. According to equation of continuity the speed of fluid
flow varies along the path of the fluid. Similarly, the pressure also varies and it
depends upon height as well as on the speed of the flow. Daniel Bernoulli studied
the variation of speed and pressure of an ideal fluid flow at different heights and
derived an equation which is known as Bemoulli’s equation and it is denved as

- under.

Consider a steady flow of incompressible and non-viscous fluid through a
pipe which has a non-uniform cross-sectional area at different heights as shown in
Fig. 6.9. ( S

|._V,At=Ax,—-1

bt

!

[‘lg 1.6, 9 .An ideal flow of fluid through a non-uniform cross-section pipe at different heights

At pomt ‘R’ and at henght hy, the cross sectional area of the pipe is A;. The velocity
of the fluid at thxs point is V) ‘and its pressure is P,. Thus the work done on the fluid
at distance Ax,.in time At by the applied force F is gwen as;
W= Fdcos0
W,=F,Ax, cos0° ..cos0°= 1
W, =FAx,

: K CRITICAL THINKING
L Since, : P=— o Under what process the nozzle of

A, fire brigade vehicle is working?

F| = PlAl :

SO, : lW|E P|V1AX| ...... (612) ' _

Now at point S at height h; and the cross sectional area of the pipe is Az

while the velocity of the fluid is v; and pressure is P,. Thus the work done on the
fluid at distance Ax, in the same time At by the applied forces F, is given by;




e —

W = F,dcosf
W,= F,Ax;cos 180° .cos180°=-1
. W2= —FzAX2
Since, . P,= 5
; IA2
¢ : F2= Pz Az
' : W,=-— P,AAx; ...... (6 13)
" The total work done on the system is equal POINT TO PONDER
to the sum of the work done on the lower point | wWhy we construct our water tank at
‘R’ and the work done on the upper point ‘S’. the top roof of the building?

Hence, net work done on'the system =W:+ W
Work= P]Alel - Pz Az AXy oves (614)

By definition of velocity
' Ax
vV=—o
At
or Ax = VAt

Equation 6.14 becomes
Work = PAvAt PyA, VAL e (6.15)

From equatlon of continuity,

Ayv, =A,v,=Av
So, eq. 6.15 becomes .
Work =P, AvAt—P, AvAt

Work = (P, —P,) AvAt
Work = (P, —P,) Volume
Work =(P,—P,)V"......(6.16)

We know that for an incompressible and non-viscous fluid both mass and
density remain constant.

Densit '—.p o DOAE
. J Volume
, ' Volume. = Maos —
S . ~ density p
- Thus, Work (P -P ) ...... (6. 17)

According to work and energy theorem work done causes both change in
K.E and change in P.E. i.e.;




Work done = Change in K.E + Change in P.E
(R -P, )E = Elmvi —%mv,2 +mgh, —mgh,

1 1
. B-h =EPV§ T_Epvlz +pgh, —pgh,

If we place all the terms related with the fluid at position ‘R’ on the left-hand
side of the equation and all the terms related-with the fluid at position ‘S’ on the
right-hand side, then we obtain |

P, +%pv,2 +pgh, =P, +%pv§ +pgh, ......(6.18)

This is the mathematical form of Bernoulli’s equation and it can be extended
to ‘n’ number of sections.

1 ' 1 1. .
P+2pvi +pgh; =P, +-pv; +pgh; =P, +-pv; +pgh,

=....=P“+-;—pv§+pghn ...... (6.19)

In general |
P+ %pv2 +pgh = Constant ...... (6.20)

Equation 6.20 is the mathematical statement of Bernoulli’s equation.
It states that “the sum of pressure, K.E per unit volume and P.E per unit

volume of an ideal fluid throughout its steady flow remains constant”.

Example 6.4 .
Water flows through a horizontal pipe of non-uniform cross sectional area,

At one point, the pressure in 4.5 x 10* Pa where as the speed of water is 2 ms™'.
How much pressure falls down at another point where the speed of water is 8 ms™'?

Solution:
As pipe is horizontal so, hy =h,=h
Pi=4.5x10"Pa -
\Th 2 l'l'lS--I
Pp=? " CRITICAL THINKING
V=8 ms”™’ ” To save fuel in the airplane, does it
- p = Density of water= 1000 kg m™ “need to fly at low altitude or high
Using Bernoulli’s equation | altitude. Why?

]
P, +5pv, +pgh, =P, +§pv§ +pgh,

\
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1 s
P, ’fEP"u2 +pgh =P, +%pv§ +pgh

P, =P “%P(Vg—vf)

s 1 2 2
P, =4.5x10 —5(1000)((8) -(2)?)

P, =4.5x10"-500 (64 - 4)

P, =4.5x10*-500(60)=4.5x10* -30000

P, =4.5x10*-3x10*
P,= (4.5-3)x10

P,=1.5x10* Pa
Fall in pressure= P, — P,
P,—P,=4.5x10* - 1.5x10*

P,—P,=4.5x10* - 1.5x10*P, - P,=3x10" Pa
6.6 APPLICATIONS OF BERNOULLY’S EQUATION

6.6.1 Torricelli's Theorem

Consider a large tank that contains a fluid
of density p at height h, from bottom to the
upper surface of fluid as shown in Fig. 6.10.
This tank has also an orifice at height h, from its
bottom. Thus, h, — h, = h be the height of fluid
from orifice to the upper surface of fluid. We
assume that the fluid level falls so slowly that
the liquid velocity at the upper level may be
assumed to be zero. Let v; be the velocity of the
fluid at the upper surface and v, be the velocity
of fluid at orifice which is called velocity of

"efflux. As both the ends are open to the

atmosphere, so the pressure on the upper and

the bottom surfaces is equal to the atmospheric

pressure ‘P’ that is,
P =P,=P

“According to Bernoulli’s equation.

1
P, +%pvl2 +pgh, =P, +-2-PV§ +pgh,

as

hy-h,

* "
Fig.6.10: A tank contains fluid with a
orifice, where fluid flows through orifice

with velocity va.
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P+%p(0)+pgh, =P+%pv§+pgh2 ~v,=0and P, =P, =P
{
pgh, =EPV§ +pgh,
| :
2PV =pgh, ~pgh, -
1, A
=PV, =pg(h,—h,)

2
v =2g(h, -h,)
v, =,/2g(hI -h,)
. v, =4/2gh
In general, . v =2gh ......(6.21)

This is Torricelli’s theorem which states that "The velocity of efflux of the
fluid through an orifice is directly proportional to the square root of the height of
liquid from orifice to the upper surface of fluid". The eq.(6.21) also shows that the
velocity of efflux is independent of the nature of liquid, quantity of liquid in the

tank, and the area of orifice.

Example 65

- A tank containing water has an orifice on one vertical side. If the centre of
the orifice is 10 m below the surface level of water in the tank, calculate the velocity

of efflux.

Solution:

h=10m
g=9.8ms™

. vl , ;
v=/2gh=2(9.8)(10)
v=14ms™

6.6.2 Venturi Relation and Venturimeter
A relation in which we study the variation of pressure as a function of density
and speed of fluid flow along a pipe is known as venture relation. This can be

derived as under;
Consider a steady flow of incompressible liquid through horizontal pipe of

non uniform cross-section area as shown in Fig 6.11.




Fig.6.11: A venture meter measures speed of an incompressible fluid.
Pressure P, is greater than pressure Py while the velocity v, is less than V.

According to equation of continuity at a point of large cross-sectional area
A, velocity v, is low and pressure P, is high. o

However, at small cross-sectional area A,, velocity v, is high and pressure P,
is low. As the pipe is horizontal so the height remains same i.e. (h= hy= h).

Applying Bemoulli.’s equation, we have m '

1 1
E +Epv,2 +pgh, =P, +Epv§ +p.gh2
I 1,
P,+Epvl + pgh =.P2+ipv2+pgh
1 1 |
Pl+5pvl2 =P2+Epv§

P,-P, =12p(v§—vf)
2

: A Venturi meter or tube
P-P, = %pvi Ll - —‘2—] ...... (6.22)
2
Using equation of continuity
AV =A,v,
AZ
Wy, =y
Al

% is very small and it can be neglected.
l . Vi = 0
Equation 6.22 becomes = .

1
P,-P, =5pv§ (1-0)

———

rs in a horizontal “spread cagle

Sky dive sprea
P P, = 1 2 formatjon maximize the (air resistance)
e Epvz ' - drag force.

by
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This is a Venturi relation which shows that tlhc veloaity Lff"ﬂuzu thrig
pipe of different cross-scctional areas depends L e i d.'ﬂt‘"t'ﬂ';c. On
basis of this relation, a venturimeter has been |n»'en‘§ed. A‘ venturimeter is devy.
which is being used for the measurement of velocity of an mcompressihja Ml
through s horizontal pipe.

Example 6.6 ‘

A venturimeter is connected 1o two points along the main pipe, Wher i
radius at A, is 30 cm and at A, is 14 cm while the velocity at A 15 0.3 m s ay
Azis 2ms”'. The level of water column in the Venturi tubes differ by [0 em.
pressure at A, is 3 x 10° Pa, what is the pressure P, in the constricted pipe?
Solution:

A = =3.14%(30) em’
A =2826cm’ =028 m’ '
3 TR a 1

A, =ar =3 14x(14Y em? ‘h,, [
A, =615em’ =0.0615m°

= 0.3m SI

¥a= 2m S'

P;=3x 10’ Pa
Pg'—" 7

g=98ms?
h=10em=01m

Using Bemoulli's equation

1 2 - l -
Pitzpvi+peh =P1+‘2‘P’!'i+ﬂgh

W e
B =Baopvi-vi).

o T ek
P, (in_.ﬂfj_-l-i;1000}((0.3}2-(2)IJ
P =Cx10)4500(0.09-4)
P, = fsulo’-}+;ou(;3._91) ;

®
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P, =3000-1955
P, =1045Pa
Thus, the pressure of the water in the constricted portion of the tube has
decreased to 1045 Pa. ' \

6.6.3 Filter Pump

A filter pump works on the basis of reducing

pressure in a vessel. It consists of a tube which contains ti

three pipes A, B and C. The pipe ‘A’ is used for flow of / [ \

water from reservoir and the cross sectional area of its ¥

outer end is made narrow orifice in the form of a jet. LZ‘ A
The pipe ‘B’ is used to supply air from vessel to :

the tube and the pipe ‘C’ is used to sink the water from

the tube as shown in Fig. 6.12.
When the water is allowed to pass through the

narrow orifice, the velocity of water decreases causing a
gradual fall in its pressure and its value soon becomes
comparable to the atmospheric pressure. On the other
hand, the air from vessel rushes to towards water at low
pressure and it carries the water to be filtered through a

sink as shown in Fig 6.12.

6.6.4 Atomizer

Atomizer or sprayer is an instrument used for
spraying scents, paints or other fluids. Its working
principle is also based on Bernoulli’s equation. When Squeeze
the rubber ball of atomizer is squeezed, then the air is bulb
blown ‘through tube and it rushes out through the
narrow aperture with high velocity and it causes fall of
pressure. So the atmospheric pressure pushes the
perfume up the tube leading to the narrow aperture. Perfume
The perfume spreads out in form of fine spray as  Fig.6.13: A working principle

-shown in Fig.6.13. of an atomizer

6.6.5 Aerofoil Lift

| The flow of streamlines of air around an aeroplane wing is shown in Fig.
6.14. The wings of an aeroplane are designed such that the air speed above the wing
is greater than the speed below the wing. According to Bernoulli’s effect the air

‘

201,
&




pressure above the wing is lower due tq

the higher speed of the air and the 4, ‘ . ‘
ressure below the wing is greater dye LIFT
p to Pressure exerted by fabter-moving 3ir

the lower speed of the air,

This pressure difference between
the upper surface region and the lower
surface region causes a net upward force
and it is called aerofoil [ift of

aerodynamic lift as shown in Fig 6,14, Pressure exerted by slower-moving air
Fig.6.14: Ty, forces on wing

6.6.6 Sphygmomanometer and Measurement of blood P re
Blood is an lpcompresgible fluid that has a density slioht]y " that of
the water. Blood.cuculat;s' in all parts of the body thr By more tay an
_ capillaries due to 1ts pumping by the heart. The rate of bloo(ziug'h aiion lovesy fast-
For instant, in twenty-eight seconds blood is taken from thzliglt;latf 10? LSaZEr{O e
00

" heart and lungs and then to the right foot. The blo : ‘1lari
are o igid but they can stetch ke a rubber iy gd vessels (arteries and capillaries)

, Under normal cqnditions, the volume of ¢he blood is suffici ——
vessels inflated all the times. It means there is a tensjon in wallsu‘ fl C}lfntt)lto d veZSC’S
and consequently, the pressure of the blood inside is greater fh(;ntt ;1: a(():})1 S eiie
pressure. Due to the tension in the walls of the blood vessels conside:able ressure
is needed to force blood through them. This pressure is Suppl,ied by the hearlt) during
a compression stroke called systole. The peak pressure in the vessglls when the heart
completes a contraction is called the systolic pressure. Wher the heart has finished
. contracting, the pressure falls gradually, and heart s being refilled with blood from
the Ve"gﬁdng' e falling horls " Arterfes  Arterfoles  Capillaries

stroke called the diastole, the

pressure falls to its minimum
value which is called diastolic
pressure. Typically, the peak
‘(systole) value of pressure is

120 torr .and the. resting

(diastole) is 80 torr.

Graphically, these two values |

are shown in Fig.6.15. The |

unit of pressure can be taken | =l L) .
in torr. It is employcd fof Fig.6.15: A graphical representation of a blood pressure of a man.

medical instrument called sphygmomanometer, where Itorr =.133.3 Nm™.

&

Arterisl systolic
pressure

Arterisl disstolic
pressure :




Sphygmomanometer

It is a device used to
measure the blood ‘ pressure.
The schematic diagram of
Sphygmomanometer is shown
in Fig. 6.16. It consists of an
inflatable rubber cuff, which is
wrapped around the arm of the
person and a manometer is also
attached with it. When the
external pressure is increased
beyond the systolic pressure by
pumping the rubber ball, then a
force is exerted on the cuff such
that the arm is squeezed and
flow of blood through arteries
is stopped.

When the valve on the rubber ball is opened and the external pressure starts
decreasing then the observer listens a sound with a stethoscope. When the external
pressure becomes equal to the systolic pressure, then the velocity of the blood

becomes high and turbulent.

The external pressure is further decreased such that its value becomes equal
to the diastolic pressure. At this point, the arteries are relaxed. A continuous sound
is heard by the observer and the flow switches from turbulent to laminar. In this
way, the blood pressure can be measured by usmg the sphygmomanometer

liquids and gases.

e  Viscosity: The resistive property of a fluid due to the friction between its two
consecutive relative layers during its alterative motion is called viscosity.

e Drag Force: A resistive force experienced by a body moving through a
viscous medium 1is called drag force and according to Stokes law this force
depends upon, viscosity, velocity and radius. F=6nnvr.

e Terminal velocity: When the weight of the body moving‘ih'rough a fluid
becomes equal to the drag force then it moves with umform velocity. This
velocity is called terminal velocity. -

e Ideal flow: An ideal flow is a steady, non-viscous and incompressible.

Fluid: Anything whlchcan ﬂow is calleda ﬂund The examples of ﬂunds are

SPHYGMOOMET ER g

Fig.6.16: A mcthod of usage of sphygmomanometer

2 ial Lo
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" Laminar flow: A steady flow of fluid is called laminar or streamline flow.

Turbulent Flow: Irregular flow of fluid is called tarbulent.

Equation of continuity: Equation of continuity is based upon conservation of
mass and shows that the product of cross sectional area and velocity of fluid
remains constant.

Bernoulli equation: Bernoulli equation is based upon the law of conservation
of energy and is applicable to steady flow of ideal fluid i.e. non-viscous and
incompressible fluid. It states that the sum of the pressure, K. E per unit

volume and P.E. per urit volume remains constant.
Torricelli's theorem: Torricelli's theorem states that the velocity of efflux
depends upon the height of the fluid. '

Venturimeter: A venturimeter is a device that is used to measure the velocity

of fluid. ,
Venturi effect: The decrease in pressure with the increase in velocity of the

fluid in a horizontal pipe is known as Venturi effect.
Sphygmomanometer: A sphygmomanometer is a device used to measure

blood pressure of a person.

EXERCISE*"

Multiple choice questions.

Viscosity of a fluid depends upon; A
'(a) Mass (b) Density - (c) Volume ° (d) Temperature
Drag force exerted by the fluid on a body does not depend upon:

(a) Viscosity of fluid " (b) Terminal velocity

(c) Shape of a body (d) Volume of fluid -

A steel balt of radius ‘r’ is moving with uniform velocity ‘v’ in the mustard oil,
the drag force acting on the ball is ‘F’. What would be the drag force on the

“steel ball of radius 2r moving with uniform velocity 2v in the mustard oil;

() F (b) 2F (c)4F . (d) 8F

. When two spheres of same volume but different mass fall through a fluid then;.

(a) Both gain their terminal velocity simultaneously

- (b) Neither lighter nor heavier body gains its terminal velocity
(c) Lighter body gains its terminal velocity earlier |

(d) Heavier body gains its terminal velocity earlier

.,

Vs

-
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5. Laminar flow usually occurs at speeds.
(a) Low (b) High
(c) Very High : (d) Some time high & some time low
6. Inincompressible fluid, which parameter remains constant?
(a) Pressure (b) Volume (c) Temperature  (d) Density
7. Equation of continuity has been derived on the basis of law of conservation of
(a) Energy (b) Momentum (c) Mass (d) Force
8. According to equation of continuity A,v, = A;v; = constant. The constant is
equal to

(a) Flow rate (b) Volume of fluid (c) Mass of fluid  (d) Density of fluid

9. When cross-sectional area of a tube is decreased then the speed of fluid
" through it is; A
(a) Increased (b) Decreased (c) Same (d) Zero

10. As the water falls its speed increases, so its cross-sectional area:
(a) Increases (b) Decreases (c) Remains constant (d) Zero
11. Bemnoulli’s equation has been derived on the basis of conservation ofj
(a) Mass (b) Energy (¢) Momentum (d) Force

12. What is the speed of water flow through a tap which is connected with tank
that contains water at height 2.5 m.

(a) S ms™ (b) 6 ms™ (c) 7 ms™ (d) 8 ms™

13. A two-metre high tank is full of water. If a hole api)ears at its middle, then the
speed of efflux is: ‘

(@)4.42ms”  (b)5.42 ms™ (c) 6.42 ms™ (d) 7.42 ms™
14. Venturi-meter is an instrument which is being used for the measurement of;
" (a) Density of fluid (b) Velocity of fluid
(c) Pressure of fluid (d) Viscosity of fluid
15. When velocity of fluid is increased then its pressure is;
- (a) Increased | (b) Decreased
(c) Same | .(d) Not velocity dependent
16. Systolic pressure is called;
(a) Low blood pressure (b) High blood pressure
(c) Normal pressure (d) Irregular blood pressure .

—
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16.

17.

18.

'SHORT QUESTIONS

What are the causes of viscosity of a fluid?
How does a body gain at terminal veloc1ty when it falls through a fluid?

{

'Does a non viscous fluid exist? If yes, how a fluid can be made non-viscous.

Why rain drops do not hurt us?

How a steady flow differs from turbulent flow?

Why liquid is incompressible while gas is compressible?
How can the laminar flow be changed into the turbulent flow?
How variation in pressure is affected by speed of fluid? -
What are the three factors associated with an ideal flow?
How can a Venturi meter be constructed? |

How does filter pump work?

How can aerofoil lift be produced?
What is the process of measurement of blood pressure of a person?

What is the difference between systolic and diastolic blood pressure?
If a high'wind blows near a window, the window may break outwards. Give

reason. :
When water falis from a tap, its cross-sectional area decreases as it comes

down. Why?
If you blow between two limp pieces of paper held hanging down a few inches

© apart, wili the pieces of paper come closer together or farther apart? Explain.

Why a fog droplet appears to be suspended in air?
COMPREHENSIVE QUESTIONS

Deﬁne ﬂuxd and describe the viscosity of a fluid. Also express the relatlon for

viscosity of fluid.- N
gtate and explain the terminal veﬁocxty with the help of Stokes' law.

Discuss flow of fluid and compare steady flow and turbulent flow.
State equation of continuity and derive equatnon of continuity on the basis of

conservational of mass.

Gtate and explain Bemoulhs equanon and denve it on the basis of law of

co.nservatlon of energy. :
Discuss the various appﬂlcanon of Bernoulli's equation such as; (1) Torricelli's

Theorem, (2) Venturi relation, (3) Filler Pump, 4) ‘Atomizer, (5) Aerofoil lift.
Discuss briefly the measurement of blood by using sphygmomanometer.

{0}
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6.

A metal sheet of area 0.4 m’ is attracted by a force of 0.98 N placed over a
liquid thin film which lies between sheet and surface of table. The thickness of

‘liquid film is 0.2 mm. If the sheet starts its motion with uniform velocity
. 0.2ms™', calculate t.he co-efficient of viscosity of the liquid.

(2.45x10°> N m™2s or Pa s)

- What is the terminal velocity of a rain drop of diameter 0.5 mm? The

co-efficient of viscosity of air is taken as 1.83x10™ poise, density of air is 1.3
kg m™, density of water is 1000 kg m™ and value of ‘g’ is 9.8 ms™. (7.4 ms™)

Calculate the average speed of water flowing through a pipe of diameter 10 cm
and delivered 5 m’ of water per hour. (0.18 ms™)

The speed of water is 0.5ms’ flowing in a pipe of diameter 5 cm. What will
be it speed in a pipe of 2.5 cm diameter that is connected with it. Qms™)

Water flows through a horizontal pipe of non-uniform cross sectlon area. The
pressure at a point is 130k Pa where the veloc1ty is 0.4 ms™'. Calculate the
pressure at the point where the velocity is 4 ms™' ~ (128.08k Pa)

What wili be the gauge pressure in a large fine hose if the nozzle is to shoot
water straight upward to a height of 25 m? (2.45x10° Pa)

What is the height of water inside the tank above the orifice if the velocity of

~

efflux of water through orifice is 9.9 ms™. - (Sm)

A liquid of density 8x10° kgm™ is flowing through a horizontal pipe of -
different cross section. If the pressure difference between two points 1s
4 x 10*N m™ then what is the speed of liquid in the tube. (3.16 ms™)

An airplane wmg is designed such that speed of the air across the t0p of the
wing in 450 m s™' and the speed of the air below the wing is 410 ms™'. What is _
the pressure difference between the top and the bottom of the wings? (Density

- of airis 1.29 kg m™) , B (22k Pa)
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v.»ConceptuallCinKageRa:

‘Major Concepts
Simple Harmonic Motion (SHM) - This chapter is built on
Circular motion and SHM ‘ Circular Motion Physics XI
Practical SHM system (mass spring and sxmple Oscillation & Waves Physics
pendulum) XI

Energy conservation in SHM
Free and forced oscillations

Resonance
Damped oscillations N ,
Studénts Learning Outcomes' 0 mmmE—————"—"

After studying this unit, the students will be able to:

e Describe simple examples of free oscillations.
Describe necessary conditions for execution of simple harmonic motions.

‘Describe that when an object moves in a circle, the motion of its projection on the

[ ]
I diameter of the circle is SHM.
Define the terms amplitude, period, frequency, angular frequency and phase

1
difference and express the period in terms of both frequency and angular frequency.
Idertify and use the equation; a= - @’x as the defining equation of SHM.

[ ]

e, Prove that the motion of mass attached to a spring is SHM.

’ e Describe the interchanging between kinetic energy and potential energy during SHM.
e Analyze the motion of a simple pendulum is SHM and calculate its time period.
 Describe practical exampies of free and forced oscillations (resonance).

e Describe graphically how the amplitude of a forced oscillation changes with
frequency near to the natural frequency of the system.

e - Describe practical examples of damped oscillations with particular reference to the
efforts of the degrec of damping and the importance of critical damping in cases such
as a car suspension system.

e Describe qualitatively the factors which determine the frequency response and

sharpness of the resonance.

mne
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i1 INTRODUCTION sy

£ Besides translational and rotational motion, /TN

r s . . P o .

N therc i1s another important kind of motion that is k3 LY

'h\ - . . . . .

41  vibrational motion which has too many applications Y X

<l in physics as well as in our daily life. This kind of d \

' motion of a body is a to and fro motion about its A ,D

i : v : i ; Extame T

j mean position apd l.tS naturc 1s a pen-odlc motion noillinh A e
because the oscillating body repeats itself after a Mean position
regular intervals of time. Some examples of e Centrs position
oscillations are given below. 2%inging of a simple pendulum

(i) Swinging of a simple pendulum when it
is displaced from its mean position and
is made to free.

(i) Motion of a body attached to a spring

_ when it is pulled and then released.
a (iii) Vibration of prongs of the tuning fork
when it is struck on a rubber paid.

All the bodies that undergo vibrational or To e fro mction ofa by

oscillational motion have an equilibrium position or altached to a spring
= mean position. When the body is displaced from this mean position then there is a
restoring force which brings it back to its equilibrium position
= and it causes of vibration or oscillation motion of the body.

' The detailed study of vibrational motion helps us in
the understanding ‘of waves, sounds, light and alternating
current because it has been observed that vibrating bodies
produce waves. For example, a violin string produces sound
waves in air.

Resonance is a striking phenomenon which is related

} with vibrational motion and it plays a dynamic role in
communication system because maximum communication
> energy transfer is processed by transmitter and receiver due to Vibrating tuning fork
l - the resonance phenomenon.
» Though many systems cannot operate without resonance but it should be
l_ avoided in some cases such as aeroplane wings or helicopter rotor and suspension

bridges etc.

In this chapter we will study not only various parameters related to an
osciflating body but will also prove that the motions of a particle along a circle, a
body attached to a string and a simple pendulum are simple harmonic motion.
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| 7.1 SIMPLE HARMONIC MOTION (SHM) = ‘

=
: The back and forth motion of a body e’ | L»""l
it repeats in equal interval of time along the Sanzlc (a) o e [ g
: e

line is called periodic motion. On the other hanc, =0
. simple harmonic motion is the most important o

type of the periodic motion and it occurs when ) i a=0

the restoring force is directly proportional to the ) ’ m |

displacement from an equilibrium position. It e YO, X

can be explained with the example of a body of ._'—_o

mass ‘m’ attached to a spring which oscillates o

about equilibrium position ‘O’ on a horizontal : "'"____i '

frictionless surface as shown in Fig.7.1. Consider (c) W;m | ‘

a force ‘F’ that is applicd to displace the body B et ‘“':_‘fﬁ —
x=0

from its equilibrium position ‘O’ to an extreme

position through a distance ‘x’.
According to Hook’s law, the applied during its SHM

force is equal to kx, Where ‘k’ is a constant and (a) At the right extreme position

is called spring constant, and it has the (b)Atmcan position Ny

dimensions of force per unit length (Nm"). Due (c)Atthe left extreme position
’ / to the elasticity of the spring, an elastic restoring

Fig.7.1: Mass attached with spring

force (~kx)acts on the body whose magnitude is equal to applied force and its
direction is towards the mean position and there is also an acceleration which is
produced by such restoring force. This acceleration causes simple harmonic motion
in the body and is directly proportional to the displacement and is always directed
/ towards the mean position. These two conditions are known as the conditions that

must be obeyed by a body in order to execute simple harmonic motion.
According to Hook’s law the clastic restoring force is given by: -
b F=wlX csones (7.1)
Actording to Newton’s 2™ law of motion
F=ma ...... (7.2) | i
Comparing equation (7.1) and equation (7.2) '
ma=-kx

As the ratio (k/m) is a constant therefore,
r a=—(Constant)x
; aoc —x

7
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This is the mathematical form of simple harmonic motion. It states that the
acceleration of the body executing simple harmonic motion (SHM) is directly
proportional to the displacement and negative sign shows that it is directed toward

its mean position.

Example 7.1

A body of mass 0.25 kg is connected to a spring and it is oscillating on a
horizontal frictionless surface. If the maximum displacement of body is 20cm and
the spring constant is 10 N-m™ then what is the acceleration of the body?

Solution: m_= 0.25 k_gl POINT TO PONDER
k=10 Nm Can a lincar motion of a body be
x=20cm=0.2m SHM?

a="7?

(&
a= —| —|[x
m

a= —(—ﬂ)O.Z =—-8ms™
0.25

Negative sign shows that the motion of body is directed towards its mean position.

7.1.1 Characteristic of simple harmonic motion
Simple harmonic motion is a special kind of \g.\

periodic motion. It can be represented graphically by
demonstrating an experiment of mass spring system.
The experimental set up consists of a block of mass )6 \§

‘m’ attached with a spring which is hanging vertically
and remains at its equilibrium position ‘O’ as shown in \l‘x ;

Fig. 7.2.
) A sheet of paper with a suitable time scale is g I A
placed behind the block which is movirg at a constant Motion \ {
. speed from right to left. There is also a pen which is of paper ™
' attached with the vibrating mass which lightly touches  Fig.7.2: Pen and paper arrange-
the paper in order to record the variations in zi?ltla:?ngdl;:):ya graph of an
. displacement with time during the oscillation of mass.

When the block is displaced downward from its mean position to its extreme
position at a distance ‘ x’ and is made to free then it starts oscillation. As a result,
displacement against time appears on the paper in the form of sinusoidal-wave
which is known as wave form of simple harmonic motion as shown in Fig. 7.3.

The various parameters related with simple harmonic motion are summarized

@,

-

as:
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I Instantancous displacement

In vibrational motion, the distance from
the mean position at any instant is known as
instantaneous displacement. It is zero at the
instant when the body is at mean position and it
is maximum at the extreme position.

= Fig.7.3: A Sine wave shape of an
II) Amplitude oscillating body '

In Vibrational motion, the maximum distance from the mean position to
either extreme position is known as amplitude. The SI unit of amplitude is metre.

I1I) Vikration

One complete round trip of a body during its vibrational motion is called
vibration. For example, when the body starts its motion from its first extreme
position (=x) to the second extreme position (x) and then from the second extreme
position (x) to the first extreme position {—x) crossing the mean position (o) is called
one vibration as shown in Fig. 7.2.

IV) Time Period

Time period is defined as the time taken to complete one vibration or one
cycle. It is represented by “T” and its SI unit is second ‘s’.
V) Frequency

Frequency is defined as the number of vibrations complcted by the vibrating
body in one sccond. It is expressed in terms of the reciprocal of time period that is;

The unit of frequency is hertz (Hz) and it is equal to per second. The

-dimensional formula of frequency is [M°L°T™'].

VI)" Angular Frequency
Angular frequency is defined as the number of revolutions per unit time. It 1s

represented by ‘@’ and it can be expressed as;
0

- t
Now for one revolution 0 =27 radians and t = T (time period)

2n
0):—
T

v
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Solution:

As T= L
f
Therefore, o=2nf ... (7.5)

Tllxe SI unit of angular frequency is rad.s” and its dimensional formula is
MeLT™']
Example 7.2
A mass connected to a spring makes 15 vibrations in 45 second. Calculate its
period and frequency.
| POINTTO PONDER |
Every vibrating body produces a

sound. Does a simple pendulum also
produce a sound?

Numbers of vibration = 15
Time for 15 vibrations =45 s
T="?
f=2

Time period (T)= jgvent VS

No. of vibs.

Time period (T)=%= 3s

]
Frequency = f= —
] y T

Frequency = f= %c 0.333 Hz

12 CIRCULAR NlOTlON AND Light from projector
SIMPLE HARMONIC MOTION i ] | j | ‘

To study the simple harmonic motion,
consnderﬁa turntable of radius ‘r’ with a ball ——
attached to its rim. A beam of light casts @  motion
shadow of the ball on the screen as shown in  ofbal &;4 in

Fig.7.4.
When the turntable rotates with constant
angular speed ‘®’ then the ball also moves along Shadow P B
it with uniform circular motion. Its shadow on -B .) 4 §crcen
the screen oscillates executing to and fro motion Al Oscl“ﬂllon °f ball's Shadowﬂx

across the screen in the form of simple harmonic  [g.74: The oscillation of the shadow of
the ball on screen. The ball is attached

motion li i '
otion like a body attached to a spring. with uniformly rotating turn table,




—

Now we can study the motion of the ball along the circumference of the turn
table and its resulting shadow on the screen along the diameter for one complete

cycle. .
Let the projection of the ball be on the mean position ‘O’ at t = 0 then after

. T e ; o.
some instant t = 7 the projection will be on the left extreme position ‘A’.
Similarly, after instant t = 5 the projection is again at the mean position 'O',

3T e s ; i .
at t ==, the projection is on the right extreme position ‘B’. Finally at t =T, the

projection reaches at its starting point i.c. the mean position O. Hence, one cycle is
completed. In the same way, the next cycles will also give the same result. When the
graph between displacement and time is plotted then we have a sinusoidal wave as
shown in Fig.7.5. This example clearly indicates that when an object moves along
the circumference of a circle, its projection on the diameter of the circle exccutes
S.H.M. The parameters such as displacement, velocity, acceleration, time period and
phase of the S,H.M by the projection of the particle are explained below.

téI Y
4 ==

2Dy —
t:l 9 IBID 2
2\ O Jt=o [o 1 T\ 3 /T s o
| 2 2\2 4 2
Cc

A : E

o —=|Disp

Fig.7.5: The wave shape
of the projection of the

=3—4T- —=Time ball executing S.H.M
7.2.1 Quantitative Analysis "
Consider a motion of particle ‘P’ along the :
circumference of circle of radius ‘r’ with uniform vy = A
angular velocity ‘®’. Its lincar velocity at point ‘P’ / a,!
is along the tangent (v, = rw) and its acceleration ap .

is directed towards the centre of circle as shown in
Fig. 7.6. The value of acceleration is given as;

a =— VUV=ro
4 r
r‘e’ Fig.7.6: A particle which i_s movipg
ap, = I along a circular path of circle wn.th
: g uniform angular velocity and its

linear velocity v, is tangent.
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The particle *P” is making an angJe ‘g and i -

: A 1t > .
.« which are shown in Fig. 7.7. S Projection point on a diameter
Wherl.ﬂ_le particle moves along the circumference,
arts its motion along the diameter from point 4 1o point B
.4’ about the mean position “O” performing simple h

Its projection ‘Q’ also
then point ‘B’ to point
armonic motion,

Displacemem ;
it (gt~ 0 the particle ‘P’ subtends an 0 P
angle /POQ=0=0t with OQ and the / e
r

displacement of Q is “x” which is equal to OQ as

|
|
|
. . |
shown in Fi1g. Tt B N
Considering triangle POQ o X Q
opP
X

— = cosmt

r Fig.7.7:  Displacement  of  the
L projection Q of particle P along the
X=rcosot ...... (7.7) diameter AB.

Eq. (7.7) gives the instantaneous displacement of
point Q which is exccuting simple harmonic motion (SHM).

Velocity

In Fig. 7.8, the line PR is the horizontal
component of velocity vp of the particle and it is
parallel to the diamecter ‘AB’ of the circle.

C
“ 90-0A P
Therefore, / R
vo=(vp), f X
= v, c0s(90° —0) 3!4 A

AP

Pr - —

v
Q
Since v, =rw and cos(90° —0) =sin0
Vg = rosind . ..... (7.8)

But  sin*0+cos’0=1

‘ ' = 2 Fig.7.8: Velocity of the projection Q
DRSS of particle P along the diameter AB.

Equation 7.8 becomes

Vo = rov1—cos’0

2 X
x . —
Vo =10 1—;—2— [.cose ' ]




Vg =OVE =% sueees (7.9)

It may be noted that at mean position x = 0and velocity is maximum,

Acceleration

Acceleration “a,’ of the particle at point
‘P’ is directed towards the centre of the circle as
shown in Fig.7.9. The horizontal component of
a, is along the diameter. Thus the acceleration of

projection ‘Q’ is equal to the horizontal
component of a,.

aQ= _(al’)x
ag=—ap cos 0 S ; - .
The negative sign indicates that the F/&7:%:A porticle which is moving slong
) ) . . . a circular path of circle its acceleration is
direction of acceleration is always directed girected toward the centre,
towards the mean position. '

X X
aQ= —T®’ (——) { a, =rm’,cos0 = —:|
r _ r

aqQ= AR e (7.11)

As particle is moving in the circle with uniform angular frequency (®) thcr'cfo.rc, Eq.
(7.11) can be rewritten as;

agoc —X

This expression is the mathematical condition of S.H.M i.e. acceleration is
directly proportional to the displacement and negative sign shows that its direction
is towards the mean position. Therefore, it is concluded that when a particle is
moving along a circumference of a circle then its projection executes S.H.M.
Time Period

It is defined as the time is required to complete one vibration by ‘Q’ from

point A to B and then B to A. This is the same time in which the particle completes
one revolution. It is denoted by 'T".

Using the relationship o= 9

For one complete cycle, 0 = 2n radians and t = T (time period).

27

0= —
T

T 28 C
. .
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phase o
The phase of an oscillating body determines its positions and direction of
otion at a particular instant.

Consider the particle that moves along
the circular path of a circle. Let at time t = 0 the
pamc]e is at point ‘P’ and its position vector OP
makes an angle * ¢’ with OA. After some time
« the particle is at point P" as OP makes angle
g=o t with OP. This angle determines both
position and direction of the body at any instant
and it is called phase angle which varies with
time.

m

Now the total angle at point P is 0 + ¢ is
shown in Fig. 7.10. At time t = 0, phase =+¢.
Sometimes at t = 0 the phase = —¢. In general

Fig,7.10; Phase angle and phase constant
of a particle which is moving along a
the phase can be expressed as 0 = ¢ or ot + ¢, circle.

where ¢ is a phase constant which represents
the initial position of a particles and it remains constant.

Example 7.3

A particle vibrates according to the equation x =0. 3cosl6t Find amplitude,

frcquency and its position at t = 0. \

Solution: :
As given x =0.3coslé6t ...... (7.12)
The general equation for displacement of vibrating body is.

X=X,cosot ...... (7.13)

Comparing gquation (7.12) and equation (7.13)
X,=0.3m and ® = 16 vib/s

FOR YOUR INFORMATION

But @ =2nxf In SHM, the acceleration 3 is
_ 0 proportional to the displacement X
. but opposite in direction, and the tW0
\ 16 quantities are related by the square
S — of the angular frequency ©.
2(3.14)
f=2.55Hz
Position att=0
' x=0.3cos0°=0.3(1) sicosDh=]
x=03m

A\
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7.3 MASS-SPRING SYSTEM AND S.H.M

Consider a block of mass ‘m” which is attached to one end of a horizontal
spring. The other end of the spring is connected to a rigid support as shown in
Fig.7.11. Initially the block is at the mean
position on a frictionless horizontal surface i.e.
at rest and x = 0. When the block is displaced
through a small distance ‘x’ to the right then
according to Hook’s law there is a restoring
force which causes the oscillation of the mass
spring system. The acceleration produced by
restoring force is directed towards its mean

position and is given as;

a= —(ij; ..... (7.14)
m

Similarly, the acceleration of the particle moving in a circle executing simple

harmonic motion is given as;
; a=—0X...... (7.15)

Time Period
The time period of a mass attached to a spring, placed on a horizontal

frictionless surface and executes S.H.M., is defined as time taken to complete its one

round trip. Now,

Displacement
The displacement‘x” of the mass attached to the spring at time ‘t’ is given by;

318;
V




x =rcos® [ 0=ot]
_ X =rcosmt
But in case of mass attached to a spring r=x_, where x, is its amplitude

from mean position to extreme position as shown in Fig. 7.11.
Substitute the values of r and @ in x = rcos ot

X =X, cos\/Et " el (7.18)
m

[nstantaneous Velocity

We have studied that the velocity of the projection of the particle moving in a
circle is along the horizontal direction and at any instant of time t is given by:

A% =(D\]I'2-'X2

But in mass spring system, we take r =X, and ® =, |—
m

v =, |— /X2 —x CONCEPT CHECK

The period is the time required to

= complete one cycle.
k x2 (1 x> ] p y

v =,]—.[X] z
m X
k 2

V=X, — (1-%} ...... (7.19)
m X

= x| J1=0
VR = ( )
PR LA . (7.20)
m




7.4 SIMPLE PENDULUM

A simple pendulum is an ideal pendulum which consists of a solid bob of
mass ‘m’ suspended from a rigid support through a light inextensible string of

length ‘¢’. The pendulum stays at a fixed point if the string is in vertical position.
This point is called mean or equilibrium position. The forces acting on the solid bob

are,
(a) the weight of the pendulum “mg’ acting downward and
(b) the tension ‘T’ of the string acting in the upward direction along the
direction of string.
When the pendulum is displaced from its e —
mean position O through an angle ‘0’ to the ' Q\’“"; e
extreme position ‘P’, then a restoring force acts -‘-;r\[ miaseless and

unstretchal e

on the pendulum towards the mean position.
Due to this restoring force, the pendulum starts
oscillation to and fro under the action of gravity (
" along a curved path about the mean position
‘O’ as shown in Fig. 7.12. At extreme position o P,
. ll?e weight. of .the body mak.es an angie = ----Y. i gino
‘0’ with the direction of the string.  We can i,
resolve it into its rectangular components. As- tulvis proguational o <in Y,
the pendufum has no motion along the direction "1/, " <o o wml &
of the string therefore, the component mgcos0  apm vty simyl, n..,;....,..‘n‘m
and tension 'T' are along the same line but in Fig.7.12: An ideal simple pendulum
opposite direction so they cancel the effects of
each other The component mg sin0 provides the necessary restoring force and is
responsible for the motion of simpie pendulum. Thus;
F=-mg sin0
Negative sign shows that the accelcration of the pendulum is always directed
towards its mean position. According Newton’s 2™ law
’ F=ma
Comparing above equations
"ma =-mg sin0
a=-gsind ...... (7.22)
If the angle ‘0’ of the simple pendulum is small (i.e., © < 10°), then the sin0
can be réplaced by the angle 0 itself, expressed in radians. That is, for smal} angles
sin® =~ 0 -
So equation (7.22) is written as;
a=-g0...... (7.23)

@

Boboy naadeded

A% a0 feud it s
{




By the definition of an angular displacement,

5o
[

- where ‘S’ is the actual path length followed by the pendulum. Thus

a= —(5)5
4

In Figure 7.12, ‘x’ is very nearly equal to the arc of length ‘S’ of the circular
path when the angle 0 is small (about 10° or less). Hence,

a= —(%)x ...... (7.24)

If length ‘¢’of the pendulum is fixed and ‘g’ remains constant for a given

place and (g/() is constant. Eq. (7.24) can be rewritten as;

a= —(constant) X
ao—x .
This is the mathematical form of S.H.M and it is concluded that the motion
of a simple pendulum is S.H.M.

As A= —0X ovri (7.25)
Comparing cquation (7.24) and equation (7.25)
=2 !
0 ' POINT TO PONDER
: Docs a vibrating simple pendalum
& = \/% ...... (7.26) produce any sound?
- Time period of a simple pendulum is given as
2n ( 0 21:)
= — ) ==E—=—
® t T
T =2k
&
4

The above expression shows that the time period of simple pendulum is
directly proportional to the square root of the length of the string and inversely
proportional to the square root of acceleration due to gravity. The time period of
motion of the pendulum is independent of the mass m of the bob and amplitude.




A pendulum that completes one vibration in two seconds, i.e., its time period is
two seconds is known a second pendulum.

The simple pendulum can be used to determine the gravitational acceleration
at a particular location. We measure the length / of the pendulum and then set the
pendulum into motion. The time period T of the simple pendulum is measured using

a stopwatch and the acceleration of gravity is calculated by using equation (7.27) in
the following form; .,

. DO YOU KNOW
g a4n2_1 ...... (7.28) If a pendulum is shifted from
i iy Karachi to Quetta than its time
Example 74 period will be increased.
What is the length of a second pendulum?
Solution: ‘
=17 .
T=2s CONCEPT CHECK |
{ A pendulum making small swings
T=2n g undergoes simple harmonic motion.
2 47'[2( |
T" =
l g

| 2 2
. -8l _O8@ _ 9941
4n”  4(3.14)
£=994 cm

75 CONSERVATION OF ENERGY IN S.HM

When a body is executing simple harmonic motion it possesses both potential
energy as well as kinetic energy. Its potential energy is on account of its
displacement from mean position and the kinetic energy is due to its velocity. These
energies vary during the oscillation, but the -total energy at any instant remains
constant in the absence of unbalanced resistive forces. In case of mass-spring
system, when the mass is displaced from the mean position ‘O’ then there is a
restoring force (F) whose value is zero at mean position when x = 0 and its value is
maximum at either extreme positions where x = x,. Thus average value of force
from the mean position to the extreme position is

F _chan+Fexl_O+F_E
“ 2 2 2
When displacement = 0 Force =0
When displacement = x, Force = kx,

B




lekx0
2

when the spring is stretched to its maximum displacement x,, work is done
on the spring which is given as under;
W= f:a = lk X, "X, :.I_kxz
2 2
This work done on the mass attached to a spring stores in terms of potential
energys called elastic potential energy. So we have

PE= %k X .....(129)

It is clear from Eq. (7.29) that potential energy of simple pendulum is zero at
0 and maximum at X = * X, i.e. the extreme position on either side.
After the removal of force, the mass attached to a sprmg starts its motion
with velocity v then the kinetic energy of the mass attached to spring is given as:

KE—lmv

Fromeq 1.19 « V=% ( ’ 1——

We can study the values of P.E. and K.E. at different positions. Using
Egs.(7.29) and (7.30) respectively.

At mean position
At mean position where x =0
Equation 7.29 and equation 7.30 becomes.

PE.=Lk(0)*=0 | CONCEPT CHECK |
2 The amplitude of vibrating body can |

1 0 be increased by the application of ‘
K.E.= > kxi l1-— - small forces at specific intervals. |
- X |
1, 3
K.E.= = kx;




T.E.=P.E+KE
T.E.=0+1kx§
2

1
2
We conclude that the potential energy of a simple pendulum, executing
S.H.M., at mean position is zero and its kinetic energy is maximum.
At extreme position
At extreme position we have x = + x, and Eq.(7.30) becomes;

1 x2) 1 1
K.E =Ekx§[l——2]=—2-kx§(1—l)=§kx§(0)

T.E=—kx1......(731)

X

0

K.E=0
PE= Lk

2
T.E=PE+K.E

We conclude that the kinetic energy of simple pendulum, executing S.H.M.,
at extreme positions on either side is zero and its potential energy is maximum.

At any position |
At any position x, where —x < x <x then we have,

: 2
K.E.=lkx§(1—x—2] |
2 X

0

P.E. = lk X
2
The total energy of simple pendulum, executing S.H.M., can be obtained by
adding above two equations i.€.,

T.E.=P.E+KE
2
TE.= lkx2 +lkx§ -
2 2 :
T.E: =lkx2 +lkx§ —lkx2 .
2 2 2 ;

]

T.E. =—;—kx2 ...... (7.33)

224




Equations (/.31), (7.32) anq (7 35

vhen a body executing SHM, the totq) ’Atx:t’“‘hEene, |

that v of the vibrating system I'€maing COnstant the Kinetj, engf Sal
energyhen the K.E. of the mass jq Maximuyyy, A:'::Oth " ,gy's""
e, w - through the centre of OSCi“ation’ ep°tent|a|eg:'!*-allkinetic
mass % of the mass spring is Zero (x = 0),, \\» Energ, } 0
the P.rsely when the P.E. of  the Spring is .
C(:;Z;um, mass 1s at its eXtreme Position on

m

ther side, the K.E. of the mass is zerq (v=0),
el.the7 13 shows the variation of P.E. ang K.E.
Flgh -displacement ‘X’. But the tota} Cnergy
wltE)-Of the vibrating system remaing constant
gd e i represented by the horizonta [j;e
(brown line).

76 FREE OSCILLATION

Consider a body or a system ¢
its mean position to its extreme
force, it starts oscillation with cers
and the corresponding period is called jts natural tim '
with its own natural frcque_ncy and it is free from al] ¢
then such oscillations of the body are called free oscillations.

For example, oscillations of a simple pendulum, vibrations of
uning fork, vibrations of string of musical instrument etc,

In free oscillations, the tot

conserved. As we are assuming
amplitude of the osc

ody with constant amplitude are shown in Fig.7.14.

apable of oscj]]
position and then lef
ain frequency whic
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Fig.7.14: A graph of free oscillation of a body with co
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prongs of a

al energy of the body remains constant ie. it s
- the absence of resistance force therefore the
illation remains constant. Graphically, the free oscillations of a




7.7 DAMPED OSCILLATION

In free oscillatior, we have studied that the total mechanical energy of the
oscillating body remains constant. But in practices, when a body is oscillating with
its natural frequency, the amplitude of the oscillation gradually decreases with time
and finally it comes to rest. This is due to the presence of resistive forces such as; air
resistance, friction etc. The oscillation with decreasing amplitude in the presence of

various - resistive - forces is called damped
oscillation and the resistive forces are called
damping. forces. Energy dissipates due to

negative work done by these damping forces -

and the body comes to rest in due course of
time.

The damping force depends upon the
speed of the oscillating body and is directed
opposite to the velocity. Graphically the

damped oscillation of the oscillating body is

shown in Fig. 7.15.

Now the damped oscillation can be
studied under the following three different
cases.

(i) - When the damping force is greater than the
oscillating force, the body does not
oscillate, i.e., without performing any
oscillation, the body quickly comes at rest
position. Such motion is called over-

damping; graphically the over damping of '

a body is shown in Fig. 7.16.

When the damping force is equal to the
oscillating force, then the motion of body is
called critical damping. In this case, the

(i)

body returns ‘to the equilibrium (mean)

position with uniform speed along a curved
path without performing oscillation as
shown in Fig. 7.17.

(iii)
- oscillating force then the body is set into
oscillation and is called under-dampmg
Graphically, the under-damping of a body
is shown in Fig. 7.18.

N

o A 1 A 1 L |
0 10 20 30 40

Time (msec)

Fig.7.16: Over damping by a body

When the damping force is less than the

A

amplitude
% F
?/

exponential
envelope
/

Fig.7.15: Damped oscillation of a body
with decreasing amplitude

0 0 20 30 40
Time (msec)
Fig.7.17: Critical damping of a body

Fig.7.18: Under damping of a body




Examples of dampmg devices , v u;cyligﬁcrm':ml:he; to frame
of automobile: relatively stationa
Shock absorber ey %z

In damped oscillation, a small fraction of
he energy of the oscillating system is dissipated
against the friction buF damping in some cases is
very useful. Qne _\V}dely used appllcation of
damped osci}latxon is in the suspension system of
an automobile. A shock absorber is attached to
ihe frame of the vehicle. |

A shock absorber is designed to use
Jamping forces, whiph reduce the vibrations
d with a bumpy ride.

As Fig.7.19 shows, a shock absorber
consists of a piston in a reservoir of viscous fluid
such as oil. When the piston moves up and down
in response to a bump on the road, the oil inside
the pressure tube is forced to go through piston
valve and the base valve to move into the
adjacent chamber. The holes in the valve control
the rate of oil flow. Viscous forces that arise

relate

during this movement cause the damping effc?ct. Lower cylinder attached to
The idea behind a shock absorber is to axle and wheel: moves up and down
case the natural bouncing motion of a spring. The Fig.7.19: Shock absorber

degree of damping of shock absorber is shown in
Fig.7.20. If the shocks are womn, and the
system becomes under damped motion,
then that wheel is going to be bouncing
down the road (red-line). If the shocks are
too aggressive, then it can create a situation
where it delays the time it takes for the tyre
to rebound to its position before the bump ,
(green ]ine). { N s’ Underdamped
At critical damping, the tyre will
rebound as quick]y as it can to the road’ Fig.7.20: Degree of damping of Shock absorber
without overshoot (blue line). In reality,
critical dampening does not occur rather it slightly turns under-damped for a more
comfortable ride. Typical automobile shock absorbers are designed to produce
underdamped motion somewhat like that red line.

o
A 4




7.8 FORCED OSCILLATION AND RESONANCE

In damped osciflation, the oscillator cannot maintain its natural frequency for
long duration due to the resistive forces and the amplitude of the oscillation
decreases gradually with time. But we can maintain constant amplitude by applying
a penodxc external force which is called a driving force. Thus when lhc oscillating
body is subjected to a periodic dr1v1ng force - s
then such oscillation is called " forced : '
oscillation and its frequency is called driving
frequency. The' vibration of a vchicle caused
by the running of engine is an example of
forced vibration. In forced oscillation, the"
amplitude of the oscillation depends upon the
relation between the driving frequency and the
natural frequency of the body.

If the frequency of the driving force is
same as the natural frequency of the C
oscillating body, the amplitude of vibration is  Fig.7.21: A set of five simple pendulums of
very much increased. This phenomenon is different lengths suspended from a common
known as resonance and the oscillations of

large amplitude are called resonant oscillations.
To demonstrate the resonance phcnomenon we perform a sunplc experiment.

The experimental set up consists of two pair of pendulums A & B and C & D such
that the length of A and B is ¢, and length of Cand Dis 7,. All the pcndulums are

suspended by a horizontal rod as shown in Fig. 7.21.
Now we introduce another pendulum ‘P’ whose length can be varied i.e.

either ¢, or £,. Consider the case when the length of pendulum 'P' is equal to ¢,. If

the pendulum ‘P’ is set into vibration, this vibration reaches the other pendulums
through the rod. Then the pendulums A and B receive a driving force through the
rod and they also start vibration and its amplitude increases due to the resonance
“phenomenon because their lengths, natural frequency and natural periods are same.

At the same time the pendulums C and D whose natural frequencies are different
from natural frequency of ‘P’ do not oscillate i.e. they continue to remain at rest. If
the length of the pendulum ‘P’ is made equal to ¢, and allowed to vibrate, then the

pendulums C and D start vibration due to resonance while pendulum ‘A and B’

remain at rest.
The resonance phenomenon can further be explained by some examples
(i) The soldiers are advised to break their steps while crossing a bridge. If

the soldiers march in steps then it is possible that the frequency of their




j footsteps become equal to the natural frequency of the bridge and the
bridge may be set into vibrations with large amplitude due to the
resonance. |
‘ (i) During earthquake, when the frequency of earthquake is equal to the
,‘ : natural frequency of a building then the building will be set into
S vibrations with large amplitude due to the resonance and the building
.‘_ may collapse. |
. (iii) In communication system, all the transmitting signals can be received
| by receivers due to the resonance phenomenon when the frequency of
the receiver is made equal to the frequency of incoming signal. .
| : (iv) Microwave ovens generate super high frequency clectromagnetic waves
'\  (3GHz-30GHz and wavelength of about 12 cm) and scatter them
n throughout the oven. The frequency of microwave excites water
molecules into resonance and causes them to collide with one another.
Friction generated by the collisions changes the kinetic energy of the
water into heat that warms the food. Food containing water molecules
can only be heated by the microwave oven. ' .
(+) The amplitude of a swing can be increased by applying a suitable
periodic force on it.
(vi) The tuning of a radio set for a certain station is also based on resonance
'~ in its LC-circuit.

7.9 SHARPNESS OF RESONANCE

We have studied in the resonance phenomenon that the .amphfude of the ,
oscillation is maximum when the frequency of the driving force is nearly equal to
the natural frequency of the osciliating body. At
The amplitude can be decreased by changing
the frequency of driving force.

If the amplitude of oscillation increases
rapidly at a frequency 'f' slightly different that
from the resonant frequency 'f,, then the
resonance is said to be sharp. Amplitude of the
» resonance oscillation and its sharpness depend

.upon damping that is, smaller the damping,
greater will be the amplitude and more sharp
Wwill be the resonance. Similarly, for greater _ s
:‘ damping, the amplitude of the resonant _,'Q f 3
.- ‘Jpp>oscillation will be small and such resonance s 2 Gk paganey 2
called flat resonance. Fig.7.22 shows the Fig.7.22: Sharpness of resonance

Small damping

Medium damping

Amplitude

Heavy damping

=~
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amplitude as a furction of the applied frequency of the driving force. We see that.
the amplitude is large if the damping is small. Also the resonance is sharp in this
case, that is the amplitude rapidly falls if ‘f* is different from ‘Ts.
In the absence of damping forces, the ' RIS
l amplitude of the oscillation (forced vibration)
will be infinity but practically it is impossible. |
In all real cases some damping is always present
in mechanical systems and the amplitude
remains finite.
~ However, the amplitude may become
very large if the damping is small and the
applied frequency is close to the natural
frequency.

; a . Fig. 7 23: Bt.foru resonance condmon
The resonance effect is very important in =~ Tacoma narrow bridge

the design of bridges and other civil engineering
projects. On July, 1940 the newly constructed
Tacoma Narrow Bridge (Washington) was
opened for traffic as shown in Fig.7.23. Only
four months -after this, a mild wind set up the
bridge in resonant vibrations. In a few hours the
amplitude became so large that the bridge could
not stand the stress and a part broke off and
went into the water below (Fig.7.24). After this
incident the engincers considered the resonance : - 3
phenomenon in the design and construction of  Fig7.24: AﬂLr resonance condition
long span bridgcs. Tacoma narrow bridge

by
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e  Oscillatory motion: To and fro motion of a body about its mean position i
called oscillatory motion. .

e Periodic motion: Motion that repeats itself in equat intervals of time.

e  Displacement: The distance of a vibrating body from its equilibrium position
to its present position.

e Simple Harmonic Motion: The motion of a body is said to be S.H.M. if it A
acteleration is directly proportional to the dlspDacement and is always directed 4
towards the mean position. i"}

e Vibration/Cycle: The complete round tﬂp of an oscnllatmg body is called\
vibration.

B

t

a' »

- l
¢ t,-~




Amplitude: The maximum displacement from mean position of an oscillating

object is called its amplitude.

Time Period: The time taken by the vibrating body to complete one vibration /
cycle.

Frequency: Number of vibrations in one second is called frequency.

Circular Motion related with SHM: The movement of projection of particle
moving in a circle is S.H.M.

Angular Frequency: The number of vibrations per unit time is called angular

frequency. _

Simple Pendulum: A simple pendulum consists of a solid bob suspended by a

string from a rigid support. Its to and fro motion about its mean position is

" S.H.M and its time period depends upon its length 1.e. T = 27t\/z.
g

Inter conversion of energy in SHM: When a body is executing S.H.M. then it
posscsses both K.E. and P.E. which are inter-convertible such that the total
energy remains constant.

Free Oscillations: The oscillation of a body in the absence of resistive force is
called free osciflation.

Forced oscillations: The oscillation which is driven by frequency of a periodic
force is known as forced oscillation.

Damped Oscillations: The oscillation of a body in a resistive medium with
decreasing amplitude is known as damped oscillation.

Over damped: When the damping force is greater than the oscﬂlatmg force
then it is called over damping.

Critical damping: When the damping force is equal to the oscillating force

then the motior of the body is called critical damping.

Under damping: When damping force is smaller than the oscillating force
then the motion of the body is called under-damping.

Natural time period and natural frequency: In the absence of resistive
forces, the time period and frequency of the oscillating body i$ called its
natural period and natural frequency.

Resonance: When a force is applied, whose frequency is equal to the natural
frequency of the system, the system vibrates at maximum amplitude and the
phenomenon is called resonance.
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10.

~ energy is maximum when its displacement is

| S!larpness of resonance: When the frequency of driving force is slightly
different from tl?e resonance frequency then the amplitude will be increased
and resonance will be sharp. Sharpness of resonance depends upon damping.

Multiple choice questions.

The acceleration of a body executing simple harmonic motion is;
(a) Zero at each point (b) Remain same at each point
(c) Maximum at mean position - (d) Minimum at extreme position
What is the value of a spring constant when a 100g mass is attached to a spring
and it is accelerated 0.5m s~ through a displacement of Scm?
(@0.INm' (b)0.5Nm" (c) INm" (d)SNm'
- Ifa spring of forced constant K is cut into two equal parts, then the spring .
constant of each halfis
K K
a) — b) 2K c)K —
O (b) OL G
When a body is performing S.H.M then at its extreme position.
(a) Displacement is zero (b) Amplitude is zero
(c) Velocity is a zero (d) P.E is zero

A particle is executing S.H.M along a straight line with amplitude A, its kinetic

1
3
!

(a) £A (b) i—g— (c) zero : (d) i% |
The time period of a body attached to a spring depends upon. '
(a) Amplitude (b) Mass
(c) Length (d) Displacement
When the length of the peadulum is increased four times then its time period is
increased. ' =
(a) One time {b) Two time (c) Three time (d) Four time
“What is the frequency of the body when its time period is 2 seconds? ' |
(@) 1 Hz (b)2Hz (c) 0.2 Hz (d) 0.5 Hz . k

A second’s pendutum is one who has a time period of
@) 1s b)2s - © —;-s (d)0.2's

In S.H.M.,, at what distance from mean position in terms of amplitude x,, K.E.
and P.E. both will have equal value?



11.

12.

- 13.

(=

14.

15.

16.

17.

What IS thc rolc ofthe lestormg force in the simple harmomc moﬂon"

(a) 9.51x, (b) 0.61x, (c) 0.71x, (d) 0.81x,

The instantaneous K.E of a mass attached to the end of an c]astic spring is:

@ Jkx2-x) () JkxITxD) (@ Fk-x) (@ Flx-x,)

“In S.H.M., we have the conscrvatioh of

(a) Kinetic energy . ~ (b) Potential energy

(c) Total energy (d) Mechanical energy

A free oscillation has constant

(a) Energy (b) Amplitude (¢) Frequency (d) All of these

Wher damping force is equal to the oscillating force then the damping is
called. :

(a) Under damping (b) Critical damping

(c) Over damping (d) No damping

A resonance occurs when driving frequency is

(a) Less than the natural frequency (b) Greater than natural frcquency
(c) Equal to the natural frequency (d) Equal to zero

in the absence of ‘damping force, when driving frequency is equal to the
oscillating frequency then the amplitude of the oscillation will become

(a) Zero (b) Minimum (c) Maximum (d) Infinity
Food is cooked in a microwave oven by the effect of:

(a) Interference (b) Mechanical resonance

(c) Magnctic resonance : (d) Electric resonance

“SHORT QUESTIONS

What are the two main conditions that must be met to produce simple
harmonic motion?

What is the relation of circular motion of body with simple harmonic motion?
What is the difference between the time periods of simple pendulum and a
body attached to a spring?

What is the difference between phase angle and phase constant?

When a body is performing S.H.M then at what condition, its total mechanical
energy is conserved and at what condition, its energy does not conserve?

Show that in S.H.M. the acceleration is zero when the velocity is maximum
and the velocity is zero when the acceleration is maximum.

In the simple harmonic motion of a mass attached to a spring, the velocity of
the mass is equal to zero when the acceleration has its maximum value. How is
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this possible? Can you think of other examples in which a body has zero
velocity with a nonzero acceleration?

9.  What is the difference between free and forced oscillation? ’
10. Give one practical example each of free and forced oscillations.
11. How natural time period of an oscillating body remains constant. e

12. Describe the three kinds of damping?
13. How docs sharpness of resonance occur?
14. How the amplitude of resonant oscillation affected by damping?

15. What happens to the time period of a simple pendulum if its length is
quadrupled?

COMPREHENSIVE QUESTIONS =

Define simple harmonic motion with all its characteristics such as; Vlbratlon
Instantancous displacement, Amplitude, Time period, Frequency and Angular.

2.  Show that if a particlc is moving along a circle, then its projection on the
diameter of the circle exceutes S.11.M.

3.  Prove that the motion of a mass attached to a spring is exccuting S.H.M.

4., Describe simple penduelum and prove that its time period depends upon its

length.
5,  Prove that when a body is pcrformm;, S.H.M, its total energy remains constant.
6. Compare frec and damped oscillations. Also discuss the three types of damped

oscitlations.
7. State and explain with examples the forced oscillation and resonance.

NUMERICAL PROBLEMS

1.  When a 600 g mass is suspended at the end of a vertical spring then the spring
stretches by 0.45 m. What is the spring constant of the spring, and how much
further will it be strctchud if an additional mass of 600 g is hung from it?

(13Nm™, 0.45 m)

A 2 kg mass attached to a spring is exccuting S.H.M. and makes 4 vibrations ..
per second. Calculate the acceleration and the restoring force actmg on the

body when its displacement from mean positionis 7cm. (44.2 m s, 88.4 N)
A particle pcrfonmng S.H. M of amplitude 8 cm. If its velocity while crossing
the mean position is4 ms ' what is its frequency and time period?
(8 Hz, 0. 125 sec)
4. What is the amplitude, frequency, period and position at t = 2s of a vibrating
body whose motion is represented by the equation x = 0.2cos 0.125nt? |

(0.2m, 0.0625 Hz, 165, 0.20 m)

!\)

»
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Calculate the fréquency of simple pendulum of length 0.8 m which is vibrating
on Mars, where weight of object is 0.40 times its weight on earth.  (0.35 Hz)
How much time period of a simple pendulum is increased by increasing its
length from 0.8 m to 0.993 m? (0.2 5)
A block of mass 5 kg is dropped from a height of 0.8 m on to a spring of spring

constant 1960 N m™'. Find the displacement through which the spring will be
compressed. | _ (0.2 m)

A car of mass 1300 kg is constructed using a frame supported by four springs.
Each spring has a spring constant 20000 N m™". If two pcop.lc riding in the car
have a combined mass of 160 kg, find the frequency of vibration qf the car
when it is driven over a pot-hole in the road. Assume the weight is evenly
disturbed. , (1.18 Hz)
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| WAVES

[Majer Concepts” ~ @7 rErions)) (I

This chapter is built on

1w |

Periodic waves

Progréssive waves . Sound Science VII & VIII
Transverse and longitudinal waves Oscillation & Waves Physics:
Speed of sound in air N IX

'Newton’s formula and Laplace correction
Superposition of waves
Stationary waves
Modes of vibration of strings
Fundamental mode and harmonics ¢
Vibrating air columns and organ pipes
Doppler effect and its applications
Generation, detection and use of ullrns'onic -

l'ter sludymg this unit, the slu(lcnls wnll l)c al)lc lu.
Describe what is mcant by wave motion as illustrated by vibrations in ropes, springs

and ripple tank.
Demonstrate that mechanical waves require a medium for their propagatlon while

clectromagnctic waves do not.
' e Decfine and apply the Followlng, terms to the wave model; medium, displacement
amplitude, period, compression, rarcfaction, crest, trough, wavelength, vclocﬂy
Solve problems using the equation: v = fA.
Describe that encrgy is transferred duc to a progressive wave.
Identify that sound waves are vibrations of particles in a medium

Compare transversc and longitudinal waves.
Explain that speed of sound depends on the properties of medium in whlch it

propagates and describe Newton’s formula of speed of waves.
Describe the Laplace correction in Newton's formula for speed of sound in air.

Identify the factors on which speed of sound in air depends.
Describe the principle of superposition of two waves from coherent sources.

Describe the phenomenon of interference of sound waves.
Describe the phenomenon of formation of beats due to interference of non coherent

sourccs.
Explain the formation of stationary waves using graphical method
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e Define the terms, node and antinodes.

e Describe modes of vibration of strings.

e Describe formation of stationary waves in vibrating air columns. .

e Explain the observed change in frequency of a mechanical wave coming from a
moving object as it approaches and moves away (i.e. Doppler Effect).

e Explain that Doppler Effect is also applicable to electromagnetic waves.

o Explain the principle of the gencration and detection of ultrasonic waves using

.. piezoelectric transducers. ‘
e Explain the main -principles behind the use of ultrasound to obtain diagnostic
information about internal structures.

INTRODUCTION

The phenomenon of a wave motion is a vast field in the study of physics.
because we observe daily various kinds of waves and their propagation such as;
sound waves, light waves, waves on the surface of water, waves in a string, seismic
(carth quake) waves, radio waves, x-rays and so on. All these waves are disturbance
produced by vibrating bodies.

The waves can travel from one place to another place through a medium or
without medium. One of the most important properties of waves is that they transfer
cenergy. This transfer of energy is initiated by a vibrational motion. It is the physical
manifestation of the form of energy transfer from one place to another. On the other
hand, a wave does not transmit matter it transfers only energy. For example,
electromagnetic waves from sun carry energy in the form of light and heat, sound
energy from musical instruments causes our ear drums to vibrate. The energy
carricd by scismic waves (carthquakes) can devastate vast areas causing land to
move and building to collapse and also produce tsunami. :

Certain types of waves can travel only through some material called medium.
Those waves which require a medium for their .propagation are known as
mechanical waves. For example, water waves, sound waves, waves on a string and

SO on.
On the other hand, the waves which do not require any medium for their

propagation are called electromagnetic waves. These waves are capable of traveling
even through an empty space without the help of a medium. Such as radio waves,
light waves, x-rays, y-rays, infrared and ultraviolet radiations.

Now according to De-Broglie’s hypothesis, the subatomic particles of matter
such as electrons, protons, ncutrons and other fundamental particles are moving in
the form of wave. This kind of wave is termed as matter or De-Broglie wave which
is usually studied in modern physics.

In this chapter we discuss not only the general properties of waves such as
wavelength, frequency and speed of wave, but also study the behavior of transverse
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and longitudinal waves. In the later part of this chapter our main focus will be on the
sound waves and its characteristics. We will also define the principle of
superposition and explain the phenomenons of interference, beats and stationary
waves. In the last we will study the apparent change in frequency due to relative
.motion of source and observer which is called Doppler Effect.

8.1 PROGRESSIVE WAVES

It is common observation that a disturbance is s
produced on the surface of still water in a pond, when a i
stone is dropped into it. This disturbance causes the
waves which spread out across the surface of water as
shown figure 8.1. If we place a leaf on these ripples, we &
can observe its up and down motion but the teaf does B
not move along the ripples. This example has confirmed = .
that water waves do carry energy only but there is N0 Fig8.1: Progressive waves
movement of matter across the surface of water. Thus a  spread out across the surface
wave which transfers energy from one point to another ~ °' ™"
point by a periodic disturbance is cailed progressive wave or travelling wave. There
are some characteristics of progressive waves which are summarized as;

Crest

The peak of the portion of the wave above its equilibrium or mean level in a
transverse wave is called crest as shown in Fig. 8.1.

. Trough
The peak of the portion of the wave below its equilibrium position in a

transverse wave is called a trough as shown in Fig. 8.1. The direction of a trough is
opposite to that of a crest. ]

Amplitude

In progressive wave, the maximum displacement of a vibrating particle from
the mean level to the peak point of crest or trough is known as amplitude as shown
in Fig 8.1. The unit of amplitude is meter and its dimensional formula is [M°LT’].

Wave Length

The distance between any two consecutive crests or two consecutive troughs
is called wavelength Wavelength is represented by ‘A’ (lambda) and it is measured

in metres.

Time period and frequemy y
The time in which one wave cycle of a wave is passed through a certain point

is called time period. It is represented by T. The unit of time period is second.

238, ;
J/ . : * \/ . . 4




¥

The numbers of waves passing through a certain point in one second is called
frequency. It is measured in Hertz (Hz) and its dimensional formula is [M°L°T“:|.

Frequency and time period are reciprocal to each other that is, f= % A graph of

progressive waves is shown in figure 8.2.

one wavelength direction

of the

transverse
wave
crest
crest osclllation

amplltude Direction of wave
movement

trough w amplltude

- one wavelength

- one wavelength

~

l ig.8.2: Propagation of progressive wave consists of crests-and troughs with certain amphtudg and

wavelength.

8.1.1 Types of progressive waves

Every day, we come across a number of progressive waves. All these waves
can be classified into two classes on the basis of their propagations (i) Transverse

Waves (ii) Longitudinal Waves.

(i) Transverse Waves

The waves in which the particles of the medium vibrate perpendicular to the
direction of propagation of waves are called transverse waves. The wave travelling

along a stretched string is an example of a
transverse wave which is explained as under;
Let one end of a string of length ‘I’ be
connected to a rigid support and the other free
end is moved up and down in a direction

- perpendicular to its length. A wave consisting

of crests and troughs is set up in the string.

This wave is travelling along the length
of the string with speed called wave speed. But
the particles of the string are vibrating up and
down perpendicular to the length of string as
shown in figure 8.3.

@

Ax =)

Crest Crest

W\ [\

w\
N/ M

Fig.8.3: A transverse pulse traveling on

“a stretched string. The direction of

disturbance is perpendicular to the
direction of propagation.
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Another result is also obtained from this example that the wave transfers only
its waveform in the forward direction but the particles of the string remain at their
own places which are vibrating up and down and they do not move forward.

The speed of transverse wave can be calculated by using the general relation
of speed;

Ax
v=—=
At
If Ax =X (Wavelength of the wave)
At =T (Time period)
Then above equation becomes

A
reVI= —
T
But ' T=l"
f
v=FfA.... (8.1)

This is the fundamental equation for speed of a wave and it is equally
applicable to all kinds of wave.

Example 8.1
The radar waves with 3.4 cm wavelength are sent out from a transmitter. If

these waves travel with speed is 3x10*ms™', what is their frequency? .

Solution:

Wavelength (A) = 3.4 cm. = 0.034 m
Speed of waves (v) = 3x10% m s
Frequency (f) =7
According to cquation 8.1

v=fA

_3x10°ms™
0.034m
f=8.8x10°Hz
f=8.8GHz

(i)  Longitudinal Waves _
A wave in which the particles of the medium are vibrating along the direction
of propagation of wave is called longitudinal wave. It is explained as under. .
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Consider two springs of equal
lengths which are connected to a
body such that the body remains
between them. Now let a force is
applied on either side to displace the
body and then it is made to free. The
body sets into oscillation. As a result,
a longitudinal wave is produced
which consists of compression and
rarefaction travelling along the
spring. On the other hand, each
particle of the spring is also vibrating
along the direction of wave in the
spring, as shown in Fig.8.4. In
longitudinal wave, the distance
between the centres of two
consccutive compressions or two
rarcfactions is called its wavelength.

8.2 PERIODIC WAVES
We have defined wave in

terms of disturbance which 1is

produced by a source and travels in a

I “ 1

T AT

T

"

Compression

AT

Compression

Pl
AT

(o
' / Rarefaction ompression

17 T 7777'mmnannmnmnm

Rarefaction Compression

o
NN

UL}

=

Fig.8.4: A longitudinal pulse along a stretched spring.

The

displacement of the coils is parallel to the

direction of the propagation

medium. If a steady vibrating source produces continuous, regular and rhythmic
disturbance in a medium, then it is called periodic wave. A vibrating mass spring
system as shown in Fig.8.5 is a good example of a periodic vibrator that produces a

periodic wave.

Fig.8.5: The éxperimental arrangement of Transverse Periodic Wave
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8.2.1 Transverse periodic waves

A transverse periodic wave can be demonstrated
by the mass-spring experimental setup which consists of a
blogk of mass ‘m’ connected with a vertical hanging
spring, as shown in Fig.8.5. A length of string in the
horizontal direction is also connected with the mass. Now
when a force is applied to displace the block upward from
its mean position ‘O’ to its extreme position ‘A’ at a
distance ‘x,’ and it is made to free, then the block starts
vibrating up and down. At the same time, a transverse
periodic wave is produced in the string which travels
along the length of string. Such waves consist of crests
and troughs as shown in Fig.8.5.

The experiment shows that the mass-spring
vibrator is executing simple harmonic motion. Its
amplitude and time period arc equal to the amplitude and
time period of a transverse periodic wave. This transverse

wave is travelling along the length of the string in the
form of a sinusoidal wave.

»//'

|\
[

t= (1747

A A
Ao

T

| C
N/ANWA
/

AR

Fig.8.6: Wave shape of
Transverse Periodic Wave

Fig.8.6 illustrates .the wave shape of such periodic wave. This graph is
between the time and displacement and it is explained as under.

e If t=0, the block is at extreme point ‘A’ and there is crest of transverse

periodic wave.

T . il
o Ift =7 the mass is at it mean position ‘O’.

T et G T ;
. I_ft=-2—,the mass is at it extreme point ‘-A’ and there is trough.

3T ; e e s
o [ft =—é—,-thcn mass is again at its mean position ‘O’.

e If t=T the mass is again at extreme position and there is again the crest.
Similarly, for the next cycles of wave, the same process is repeated. In this
way, a periodic transverse wave moves to the right as shown in Fig.8.6. )

8.2.2 Longitudinal periodic waves

The generation of longitudinal periodic waves can also be demonstrated by a
coil of spring lying on a horizontat frictionless surface whose one end is tied and
other end is set free. When a force is applied to push forward the free end of the coil
then a few tumns of the spring are compressed. As a result, a compression portion is
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formed at the free end. This compression portion exerts a force on the next few turns
of the spring so that another compression is formed which is transferred in the next

\ section and so on. In this way a compression portion travels along the spring in
forward direction.

i Similarly, when a force is applied to pull backward the free end then a
rarefaction portion is formed in the loops near the free end of the spring. This
rarefaction is transferred to the next section and starts travelling along the spring.

Thus, when a regular and stcady periodic force is applied to push forward

and pull backward the spring at constant rate then a periodic longitudinal wave is set

‘up ‘in the spring, which travels along the spring. It consists of a series of

compressions and rarefaction. Graphically, when this longitudinal wave is drawn on
a graph then a sinusoidal wave (sine or cosine) is obtained as shown in Fig.8.7.

Free end of spring

NS~
TR Fixed
) end of

' .
S \J
, Spring

Pull
hand movement
repeated regularly

—— o ——— — - — -
- e - - - - - -

e

(
(
(

Reat

rarcfaction rarcfaction compression
Fig.8.7: Longitudinal Periodic Wave which is travelling along the spring and graphically
its wave form is a sinusoidal wave. :
Sound wave is also a good example of longitudinal waves and it can be
explained with the help of a tuning fork. When the tuning fork is struck on a rubber
pad, its prongs start vibration. When the prongs move outward then they compress a
small column of air and forms compressions. When the prongs move inward then
rarcfactions is formed in the air column. In this way, a sound wave, which consists
of a series of compressions and rarefactions, travels in air as shown in Fig.8.8.
Compression  Compression

| PR TR A
LI Il|ll|i||l||||||lﬂ_l||||IiIMWNIII

compression

[

; ol
' Fig.8.8: Longitudinal sound wave produced by vibi'ation of tuning fork.
Thus, one can say that sound wave is a longitudinal or compressional wave.

243
A 4
R ———— "




8.3 SPEED OF SOUND IN AIR

Sound wave is a longitudinal or compressionai wave, and it requires g
medium for its propagation. This medium may be sofid, liquid or gas. Experiments
show that the speed of sound depends upon elasticity 'E' and density 'p' of the

medium. Mathematically it can be expressed as;
V= E_ ...... (8.2) Stress = F/A
p Strain = AV/V
But according to Hook’s law
Elasticity (E)= strc?s
strain
AP
E= A__V_ ...... (8.3)
\

Besides, elasticity and density of the medium, the speed of sound also
depends upon the nature of the medium, for example the molecules of solids are
much closer to onc another than in liquids or gases. So a quick disturbance takes
place in solid. Therefore the speed of sound is much higher in solids than in liquids
or gases. The valuc of speed of sound in various solids, liquids and gases is given in

the table 8.1.

Table 8.1: Speed of Sound in different substances in ms~

——— 5 — T T “— - ————

) Snere

(;ases_(Z(l".(;‘)

Hydrogen 1284 | Glycerin 1904 | Iron 5960
Earbon Dioxide | 259 [ Sea Water 1535 | Pyrex Glass 5640
Oxygen 316 | Water 1493 | Aluminum < 5100
Nitrogen 334 | Mercury - 1450 | lead ) 2160
Air 344 Methyl Alcohol | 1103 | Rubber 1550

8.3.1 Newton’s formula for the speed of sound in air

Sound is a longitudinal wave and it consists of a series of compressions and
rarefactions. We know that the temperature of a gas increases on its compression
and fall when allowed to expand. Newton assumed that when a sound travels
through air or a gaseous medium, then the process of formation of compressions and
rarefactions is very slow. So, the temperature in the regions of compression and
rarefaction remains constant i.e. the temperature changes are extremely small and
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can be neglected. Thus, according to the assumption of Newton the propagation of
sound through air or a gaseous medium is under isothermal process in which the
temperature of the medium remains constant.

Consider a certain mass of air having volume ‘V’ and pressure ‘P’. When
sound is travelling through it, then the pressure of air during compression is
increased from ‘P’ to P + AP and its volume is decreased from V to V — AV as
shown in Fig.8.9. The propagation of sound waves through air under isothermal

P+ AP

process follows Boyle’s law i.e.;
i1l .' I
it Il
Hi I I
Wit i1 L }:'
R C
V-AV

Fig.8.9: When sound wave propagates, a change in pressure and volume of the medium occurs due to the
compression and refraction.

~ PV=(P+4P)(V-aV)

PV = PV —-PAV + VAP - APAV

The product of APand AV is very small and it can be neglected.
0= —PAV + VAP

Speaker

PAV = VAP CRITICAL THINKING
AP When explosions due to the fusion
P=— _ reactions occur on the surface of sun
( AV ) then why we cannot hear their sound?
v d
Stress
P= =E ......
Strain E (5:4)

Substltutc ‘the values P for E in equation (8.2), we get:

v=\/E ...... (8.5)
; .

: Eq.(8.5) is referred as Newton's formula for speed of sound
., AtS.T.P . '
> Pressure = | OIxIOSNm

And the density of airis p=1.293 kg m™
By putting these values in equation (8. 5), we have

1.01x10°Nm™
1.29kgm™
v=279ms™"
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This result differs from the experimental result of speed of sound i.e.
333ms~'. The theoretical value of speed of sound is about 16 percent less than the

experimental value.
8.3.2 Laplace’s correction

Laplace has pointed out that during compression, volume of air is decreased
from V to V — AV and pressure is increased from P to P + AP but its temperature
does not remain constant. Because compression and rarefaction arc occurred very
quickly such that air neither loses heat during compression nor gains during
rarcfaction. Thus the propagation of sound through air follows adiabatic process and
we should apply adiabatic equation rather than of Boyle’s law.

PV'= (P+AP)(V-AV)' ... (8.6)
Where [y is adiabatic constant and its value can be calculated in terms of ratio.
_ Molar specific heat of gas at constant pressure
Molar spccific heat of gas at constant volume

Selving equation (3.0) FOR YOUR INFORMATION
pPV'= (P+AP)V7(]—ﬂ J g/lolar Specific Heat of Various
Vv ascs .
Ay Monoatomic  1.67
_ A Diatomic 1.41
P "(P+AP)(]—T) ...(8.7) Polyatomic 1.31

. AvVY, .. . . : . (AV
Solving 1—7 by binomial thcorem and neglecting the higher terms in T) .

we get

Y, ¥ v + neglected terms

Eq. (8.4) becomes

FOR YOUR INFORMATION
Binomial serics expansion
n(n-1)

P =(P+4p (l—yﬂ) (a+x)" =1+nx+ X
\'
p=p_yFPAV _ \p_,APAV
Y= *AP-Y—— [ FOR YOUR INFORMATION
: Because radio waves travel at

The product of AP and AV is again very small and

it can be neglected.
AV
—yP——+AP=0
Y EY,

V

speed 3 x 10° ms™ and sound
waves are slower, 3.4 x 10°ms™, a
broadcast voice can be heard
sooner 1300 miles away then it can
be heard at the back of the room in

which it originated.




AP
P = AV
\Y
YP=E
If we substitute this result in eq.(8.2), we get
v = B (8.8)
P

This is the required Laplace formula for the speed of sound in gaseous medium.
v = 1.4 for diatomic gas at STP
_ [£.4x1.01x10° Nm™
- \/ 1.29kgm™
v =333 ms™

The above value of speed of sound in gaseous medium is in close agreement

with the experimental value. Hence, Laplace formula for the velocity of sound in
gases is correct and widely used.

Example 8.2

Helium is a mono-atomic gas that has a density of 0.179 kg m— at STP and a

temperature of 0°C. Find the- speed of sound in helium at this temperature and
pressure.

Soluilon: | FOR YOUR INFORMATION
i 3 s 3 Vibrating vocal cords produce the
p=0.179 kgm™, P=1.01x10"Nm human voice.
T=0°C=273K : The ear can detect very tiny pressure
As helium is monatomic so y = 1.67. | variations.
v [
P
= [1:67x1.01x10°Nm™
0.179kg m™
v =+9.42x10°ms™
v =970.7ms™’

8.3.3 Effect of various factors on speed of sound in air

Sound waves cannot propagate without any medium. Therefore the speed of

sound is affected by a number of parameters which are related to a medium and
these are summarized as;
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(1) Effect of pressure
According to Laplace, the speed of sound through air is given as;

= ik

P |
But pressure is directly proportional to the density that is;

\'

P -
P o« p or — = constant and 'y' is also constant
p

Therefore, v = constant
This shows that the speed of sound is not affected by the variation in pressure

of the gas (air).
(2) Effect of density

Again the velocity of sound in a gas is given by
FOR YOUR INFORMATION

The Laplace relation shows that at the
same temperature and pressure, the speed of
sound in a gas is inversely proportional to the
square root of its density. Now, let us consider
two gases which are at the same pressure and
the same value of y. If p, and p, be their

- The V-shaped bow wave of a boat g

densities, then velocity of sound in the two
formed because the boat speed js
greater than the speed of the waves jy

vV, = ﬁ and v. = _XE generates. A bow wave is analogous
| P, 2 P, to a shock wave formed by g,
YP

airplanc.
vi _\p

gases are

If the speed of a body in air exceeds
the speed of sound, then it is calleq

supersonic. ~ Such a body leavyes

Vv, yP behind it a conical region of distyr.
P— : bance which spread continuous]y,
2 Such a disturbance is called ‘shock
A waves’. These waves may make
in window panels.
v, Py cracks p —

~ We know that the density of oxygen is
/16 times that of Hydrogen therefore, from equation (8.7), we have

hz‘/P_o= 160y _ /16 =4
Pu |

Vo Py
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. or vy =4v, |
‘ Thus, the speed of sound in hydrogen is greater than (about four times) that
f in Oxygem'

(3) Effect of temperature
The experiments show that at constant pressure, the volume of gas is

increased by increasing temperature, hence its density is decreased and speed of

FOR YOUR INFORMATION

e Sound is produced by vibrating
objects.

e Sound waves are longitudinal

waves.
e Sound has properties of all other

waves: reflection, refraction,

interference, diffraction.

sound will be affected. Mathematically it is explained as; .
o [
*\ p-
As =1
P V
g
m
\Y
v o AR
m

According to ideal gas equation PV = nRT and
for one mole of gas PV = RT

v = [TRT
m
YR

- The factor .[— is constant

m
v = constantﬁ

v /T

| ."‘So‘”

FOR YOUR INFORMATION
e The speed of sound is higher in
liquids and solids than it is in gas.

e The spced of sound in air
increases 0.6 ms™' for each °C
increase. ’

Now the speed of sound at 0°C (273K) is v and at t°C = (t+273)K is v, then

’ vi_ [T
vo Tl
¥ t+273
\Y 273




| —

Using Binomial theorem and expanding (l+%) and neglecting higher

: . 1( t ]
! wer terms, we have 1+— — |+....= 1+ —t
| Po 2(273) 546
¢ M I
| . v, 546 INTERESTING INFORMATION
. 546
'vnt
v, = vn + =
546
As for air v, -332m/s
332t
vV, =V, +
546

v, =v,+0.61t ...... (8.9)
It has been proved experimentally that the speed of sound is increased by
0.61 ms™" for each 1°C temperature risc of the air.
Example 8.3 |
Find the temperature at which the velocity oféound in air will become double
of its value at 27°C.
Solutlon:

Let v, be the velocity of sound in air at t°C and vy be the velocity at 27°C,
T,=27°C+273 = 300 K

R ————
T,=7? : CHECK YOUR CONCEPT
v, = 2v The speed of sound in air is a
o . function of
or L =2 (a) wavclength
\% (b) frequency
v, T (c) temperature
We know that, — 2 (d) amplitude. J
, N TI :
Y ’ 2
v
or L =2
300

Squaring both sides, we get,
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T
_v = 4

300
T, =4x300=1200K
T, =1200 K - 273 =927°C

fxample 8.4

A normal person can hear sound waves tanging i freguency from 20 Hz to
20 kHz. Determine the wavelengths of sounds at these limils. Take the speed of
sound in air as 340 m s

Solution:
Frequency = I, = 20) Hz ,
Frequency = fa= 20 kHz = 20x 10" Hz CHECK YOUR CONCEPT
ey =1 Thie sonmils are carnied by electro-
s | magneiie wives in space. Why
= - AV TS R st hior i
Speed of sound = v = 340 ms Bl it e
Asv=1 L .
x v 3400
)'i — S
L
A =17m
< v A40)
Fy == e
~ f, 20x1u
Ay = 1T%107m
A, =1Tmm or .7 em

84 PRINCIPLE OF SUPERPOSITION

The principle of superposition wis first observed experimentally by Thomas
Young in 1801, It is rolated to the study of combimed ciiect of two or more waves
and it is stated as. “When two or more Waves meet at a point in the same
medium, the resultant amplitude at that point is the algebric sum of the
amplitudes of the individual waves'.

For example, when a man lalks to us while we are listening music, we
receive a complex sound but we ¢an still distinpuish the sound of speech and the
sound of the music from each other. It happens fike that because the fotal sound
waves reaching our ears is the algebric sum of the waves produced by a man voice

- 9 :

ﬂhgthewves produced by music. Superposition principle is applicable t all tvpes
~ of waves including the electro-magnetic wave such ps light.,. AN

@
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Let we consider two waves of amplitudes Y, and Y, which are in phase,
When they are superimposed at the point in the same medium as shown in
Fig.8.10(a) then their resultant amplitude Y at that point is given as;

Y = Y| - & Y2 ,
Similarly, the two waves which are (a) (b)
in opposite phase or out of phase and they /P(Y' N /[\
are superimposed at point in the same U Ky, W
medium then we get the result which is
sho_wn in Fig.8.10(l?). Tl1c amplitude of 5 Ys /N
their resultant wave is given as; /l\’ ’ /P( /’\
o Y=Y-Y, - \l/ \J/
If Y, =Y, o
then Y =0 ey
In general, if there are ‘n’ number /P(\ =Xt Y=Y Y2
of waves passing through- thc same 4
medium then the amplitude of their \V \,/ ,
resultant wave is given as; ' Y, is 180° out of
YEX Yo+ Yo b o F s sonees (8.10) Y;isin phase with Y, phase with Y

This is the mathcmatical form of  Fig.8.10: Superposition of two waves of samc

principle ofsuperposition. frequency (a) The two waves which are at the
same phase and their resultant is increased (b)

g 4 The supcrposotl_on of 6V&f0 ey The two waves which are at the out of phase and
give rise to the following three important  (heir result is decreased (zero).

phenomena:
1. When two waves of same frequency (or wavelength) moving with samc

spceds in the same direction in a medium superpose on cach othcr thcy

give rise to an effect called interference of waves:
2. When two waves of slightly different frcquency (or wavclength) movmg
with same speeds in the same direction in a medium superpose on each

other, they give risc to beats.

3. When two waves of same frequency or wavelength moving with same o
speeds in opposite direction in a medium superpose on each other, they
give rise to stationary waves. ,

8.5 INTERFERENCE

When two or more waves having the same frequency travel through the same
medium and in the same direction are combined, then this results in a phenomenon
called interference. The amplitude of the resultant wave is greater or smaller than
the amplitude of combining individual waves and depends upon the relative phase

of individual waves.




, o

Je

Now when two coherent waves
(the wave having same frequency),
which are exactly in phase, are allowed
o superimpose such that the crests of
one wave coincide with crests of the
other wave and troughs with trough then
the amplitude of the resultant wave will
be increased as shown in Fig.8.11. This
is called constructive interference.

Similarly, when two coherent
waves, which are exactly in opposite
phase, are allowed to superimpose such
that crest of one wave coincide with the
trough of second wave then the
amplitude of the resultant wave IS
decreased, as shown in Fig.8.12 and it is
called destructive interference.

Conditions of Interference

Y
Fig.8.11: Constructive Interference due to the
supcrposition of coherent waves in the same phase

Fig.8.12: Destructive Interference due to the super
position of coherent waves, in the opposite phase.

To demonstrate interference phenomenon, considering two identical sources

of sound S, and S, (loud spcakers) are pl

aced at some distance. These sources

generate continuously spherical waves of same frequency and of same phase which
are called coherence waves. These coherent Waves are propagated in the outward
direction such that they are superimposed at different points as shown in Fig.8.13.
Thus, we have both constructive and destructive interferences at different points. In
figure, the thick lines represent crests while the thin lines represent troughs.

‘ = Constructive Interference

@ = Dcstructive Interference

C,

Source 1
Crest

Source 2
Trough

Fig.8.13: Experimental demonstration of interference of sound waves which are gencrated by two coherent sources
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and troughs with trough
These ar€ represented by red dots as C,, ¢ S, a
here crests coincide with troughs, a destn, é;-CJ
resented by blue dots as ty, b, ts, t, ¢, wte

L. ) "
The points where crests coincide with cres

constructive interference 1S obta'incd.
_..C,. On the other hand, the points W
interference 1S obtained. These are rep

n

constructive interference can be developeq g
b

Ci= AS = Sp_cl S SICI

crest. N
atical condition of .
cn two waves at point €

" Now mathem
Path difference betwe

AS=4L-4 1= 0

Path difference between (wo waves at point C,=AS =S8,C; - 5,C,
AS=4L-3 A= A

path difference between fwo waves at point Cs
AS= 4—'—?»—2—'—}»= 2\

2 2
(ference between (WO Waves for constructive

=AS =S,C3 - §,C;

In general, the path di
interference is given as:

path difference = 0,4\, 2A, 130, % 4)\...mA

(8.11)

Path diffcrence = AS=mA e
m=0,t1,£ 2.43,44...

erference and it shows that for
hole number of wavelength or

where

This is a condition for constructive int
- constructive interference, the path difference isaw

the path difference is intcgral multiple of wavelength.
Similarly, mathematical condition of destructive interference can be

developed as;
Path difference between (wo waves

. AS=4h-3ik= 2
2™ 2

Path difference between (wo waves at point t = AS = Stz — Stz
1 &
AS=3—-A-4A = —l)»
2 2

Path difference between two waves at point t; = AS = Syts — Sits
AS=4X—5%A=§&  ® g

2
In o . - - « ; :
general, the path difference between two waves for destructi¥®

interference is given as;

at point t; = AS = S-t; — Syt

Path difference = iﬁ,i_‘n SA 4 A
A el Sl

Path difference = (m +l ;
P (8.12)



(

A
or Path difference = (2m + 1);
" Where m=0,%1,£2,+3,+4,...

This is the condition for destructive interference and it shows that the path
difference between two waves for destructive interference is an odd integral
multiple of half-wavelengths.

86 BEATS

In interference, we have studied the superposition of two waves having the
same frequency. But what will be the effect of the superposition of two waves when
they have a slight difference in their frequencies? It can be studied in beats
phenomenon. When two sound waves of same amplitude but slightly differing in
frequencies are travelling through a medium in the same direction and they are
allowed to superimpose at a point then a periodic variation in the intensity of
resultant wave is observed at that point. This variation in the intensity of resulting

Wave is in the form of series of loud sound followed by faint sound. This
phenomenon is called beats. It is further explained by an example.

Consider two tuning forks A and B of frequencies 100 Hz and 102 Hz. It

Mmeans that tuning fork 'A' will produce 100 complete waves in one second and

tuning 'B' will produce 102 complete waves in one second when each of them is
Struck against rubber pad. When both tuning forks are sounded together then

Phenomenon of beats takes place. Let us study the variation in the intensity of
resulting sound over a span of one second.

After 2 sccond, the number of waves produced by A are 25 and distance

covered is 25X and the number of waves produced by B are 25l and distance

1 : ' :
- 2557» respectively. The path difference between them is & This is the condition of

destructive interference. At this point two waves cancel to each other and no sound
or faint sound is heard. |

Similarly, after E second, the number of waves produced by A and B are 50

and 51 and corresponding distances covered are 50X and 51\ respectively. The path
~ difference between them is ‘1A, This is the condition of constructive interference.
At this point two waves reinforce each other and loudness is increased.
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After s second the number of waves produced by A and B are 75 and 762

i . The path difference

and corresponding distances covered are 75. and 76 -

o D e ; s o
between them is — which is again the condition of destructive interference. Hence,

no sound or a faint sound is observed because two waves cancel cach other.

After one second, the number of waves produced by A and B arc 100 and
102 and corresponding distances covered arc 100X and 102X, The path difference
between them is ‘21" which is the condition of constructive interference. Hence we

observe a loud sound because two waves reinforce cach other.

This example clearly shows that when the two waves of ncarly same
frequency arc superimposcd then there is increase and decrease in loudness at
regular interval of time. As a result we have a beats phcnomcnon Graphically, it is

shown in Fig.8. l4

First wave

' (a)

I

Second wave ’

—— ““h' ‘l“
ULAARRLL kL

Fig.8.14: Beats arc formed by the comblnauon of two waves of slightly different frequencics travelling in the
same direction; (a) The two individual waves (b) The combined resultant wave has amplitude that oscillates

with time
It may be noted from figure 8.14(b) that [INTERESTING INFORMATION |
Musicians use beats phenomenon 10 .

rise all i intensity of resulting s . : " |
and fall in the i y g sound tune their swring  instruments  like |

(m‘crcz.lsc and decrease in .loudncss} takes place guitar, violn and piano, by beating a
twice in one sccond and difference in frequency | note against a note of known s

of the two sources is also two. In other words | irequency. The strimgs are  then
adjusted o the 'desired frequency by

two beats are produced in one second. ‘ s o] |
Thus it is concluded that, "'the difference | 'ghicuing or looscuing it until no ’

‘ beats are heard. _'J (

i

{

in frequency of the two sources is equal to the
number of beats produced per unit time is called beat frequency". If f, and fj

be the frequencies of sound waves of two sources then; | ‘

|




| number of beat
Byl = 2 e (8.13)

It i§ important to note that beats cannot be observed if the difference in
frequency is more than 10 Hz.

Uses of beats

The phenomepon of beats can be used in the following cases.
1. To determine the frequency of a note

2. Beats are used to tune musical DO YOU KNOW

instrum
5 s ents . | | Metal detector is working under the
. To detect the hidden metals by using‘ | principle of beats phenomenon.

metal detectors.
4. To detect the harmful gases in mines.
5. Beats are used for radio wave reception.

8.7 REFLECTION OF WAVES

A mechanical wave requires a medium for its propagation and its velocity
depends upon the nature of the medium. When the wave comes across the boundary
of two media then all or a part of this travelling wave is reflected back. This
reflected wave has the same wavelength-and frequency but its phase may change
depending upon the nature of the boundary.

The reflection of a wave i ¥ '
at the boundary of the media can  Before reflection ' ':::::dary

be studied by an example of a condition
stretched  string under  two @

- De
dlﬁcrcnt cascs. After roﬂoc:lon m::::“

When one end of the -
stretched string is connected Vi e

with a rigid support and the

other free end in the hand is W R NEi TR T Y.
‘ ' — V| :
X shaken up and down then a  gefore refiection e
| pulse of transverse wave 1S -

condition
produced which travels along

(b) )
'~ the string towards the rigid VR <—
support with velocity vi. Aftar reflection Rere
When the pulse arrives at _

ﬂ:le. end’ it exerts a forf:e an 1 Fig.8.15: A pulsc of a wave along a string reflected from
rigid support. In reaction, the (a) ‘Denscr medium (rigid support) -

rigid support which acts as a (b) Rare medium (ring & rod)
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dense medium also exerts an opposite force on the string. As a result, a reflected
inverted pulse starts travelling along the string in the reverse direction with velocity

vg as shown in Fig.8.15 (a). |
The incident wave and reflected wave are out of phase a change of 180°in

phase and the change in path difference between them is "

If one end of the string is connected with a light ring which can move freely
up and down. This light ring act as a rare medium and it exerts no force on the

string.
FOR YOUR INFORMATION
[ ivivee | podaot (S A reeeton. | T
Longitudinal | Denser Compression as rarefaction n=180"
‘ Rarefaction as compression
Rare Compression as compression 0
Rarefaction as rarefaction
Transverse Denser Crest as trough m=180"
Trough as crest
Rare Crest as crest 0
Trough as trough ,L/

When the pulse of transverse wave arrives at light ring then it reflects in the
reverse direction without any phase change in the reflected wave as shown In
Fig.8.15(b). : .
From the above discussion, it is concluded that a transverse wave which 1S
reflected from a denser medium with phase changé of 180° and path difference of

A . -
—. But when the transverse wave is reflected from a rare medium, no phase change

takes place in the reflected wave.

8.8 STATIONARY WAVE

In interference and beats phenomenons, we have studied the superposition of ¢~
two waves which are-travelling along the same direction. If two waves of same
frequency and amplitude move along a straight line in opposite directions and are
allowed to supcrimpose then the new resultant wave is called stationary or standing '
wave. The formation of standing waves is shown in Fig.8.16.

It can be explained by an example of a string whose one end is connected |
with a support and the free end in hand is oscillated up and down continuously.

Then a transverse waves is produced which travel along the string and reflected
from the support. Due to the superposition of the incident waves with the reﬂected

{s"s/




waves, a pattern of the stationary waves is
obtained in the string as shown in Fig.8.16.
The points in stationary waves which are
permanently at rest with zero amplitudes are
called nodes (N). -

The point between two successive
nodgs where the particles oscillate with
maximum  displacement is called as anti-
node (A).

. It is clear that the distance between ﬁg‘;g'ldﬁc Ec(h?r:,?i:;o (-),r- smi:nary
: . siion of two
Y0 consecutive nodes or consecutive waves moving in opposite direction. The

: ¢ K displacement is marked as node ‘N’ and
antinodes is 5 and the distance between a anti nods A,

. S
node and an adjacent antinode is —.

" Qrapllically, standing waves can be illustrated by considering two waves 'a' and

aving same frequency and amplitude which are travelling along the string
Pposite directions as shown in Fig.8.17. The resultant standing wave "c" at
instants 0,T T 3T

s and T is obtained using the principle of superposition (Fig.8.17)

in o

—— | — G

Wave e | 4_. E \ ALA LN
O N

e ANLA AL NN 1N
\ \[\\J f\% J \V\YL /\\/

N N N'NNL

1z
z_.

z

z

z

Wave "c"

t=0 t=Tia t=TI2 t=3T/4 t=T
Fig.8.17: Formation of stationary waves. The set of figures show the
state of resultant displacement at four different times.

(1) At t=0, both waves “a” and “b” are in phase. After superposition, they
produce resultant wave “c” where the amplitude of its nodes is zero and the
amplitude of its antinodes is maximum, i.e. equal to the sum of amplitudes of
individual waves.
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(i) At trzll‘,"’the'ii wave “a” has travelled a distance —} to the right and wave “}

has travelled diétance % to the left. Therefore, both waves are out of phage,

This is the condition of destructive interference and the amplitude of the

“_"

resultant wave “c” is zero at each point.

(1) At t=%, wave “a” has travelled a distance % to the right and wave “b” has

travelled a distance & to the left. Both waves are in phase where the amplitude

of the nodes of the resultant wave “c” are zero and the amplitudes of anti nodes
are maximum,

Similarly, after t = %r and t=T the results are same as for t =} and t=0

T : . —_—
or — respectively i.e. out of phase and in phase and are shown in Fig.8.17.

The pattern of the resultant wave “c” is known as stationary waves, because
neither the patterns move nor the location of nodes and anti nodes changes.
Notice that stationary waves do not travel to POINT TO PONDER
left or right. Therefore, they cannot transfer energy | what will happen when a
because the energy is confined in antinodes. That's | longitudinal wave is reflected
why stationary waves are also called standing wave. | from a denser medium and from
a rare med:um"

Some features of stationary wave are given | 3rar

below:
1. The disturbance produced is confined to the region where it is produced

i.e. it does not move forward or backward.
Different particles move with different amplitudes.
The particles at nodes always remain at rest.
- All the particles cross their mean positions together.
All the particles between two successive nodes are in phase.
The energy of one region is always confined in that region.

SRR

8.8.1 Staﬁonary waves in a stretched string
Consider a string of length ‘L’ which is stretched between two rigid supports

such that a tension ‘T’ is developed in the string. When the string is plucked from its
centre, two waves, in the form of transverse waves, originate from this point. One of
them moves toward the right end and the other toward the left end of the string.
When these two waves reach to the two rigid supports, they are reflected back and

&
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gperimpos€  to  each other. The resulting
gationary wave is in the form of a single 100P"
It has two nodes and one anti node as shown 1"
Fig8.18.

\ This single loop ‘s't'ationary wave 18 called sy pundamental of F ;m H‘;”“O""C
fundamental mode of vibration. Let f,be its  Fig:o ol¢ loop has two nodes and one
k 4

frequency and ‘A’ be its wavelength, then anti-node:

these parameters are related to the length of the
string 'L as,

-
~~--.‘A”

"
2

(=2 st (8.14)

The wave travels through the string its speed v)

- ;
: , - the string.
and mass Per unit length or linear mass density | U = L of

depends upon tension “T”

’ unit length
The dependence of speed of wave on tension (T) and mass per gth (1)

of the string is given by,

v e (8.15)
1)
AS V=f|7‘|
y
"
on s
f =— ...... 8.16
" QL (8.16)
1T
f =—_[—...... (8.17
TR\ (8.17)

.'ljhis is called the fundament.al frequency or first harmonic of the string. It is
the minimum frequency that can be produced as standing waves in a string.

Second mode of vibration =

L=2, — >
—

one-fourth, three-fourth of its leng th, a stationary

i wave with two loops is set up in tlae string. It has

" three nodes and two anti node:s as shown in
Fig.8.19.

wr

Fi ). . .
h:}t‘.-&ll,f. Second Harmonic with two loops
Ve three nodes and two anti-nodes.
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These two loops of stationary waves are called second mode of vibration. Let
f be its frequency and A be its wavelength which is related with the length of the
string. ‘ _

L=},
As v=f,\, DO YOU KNOW
=fL The speed of a wave along a
LEa stretched ideal string depends only
f = \ on the tension and linear density of
2 E """ (8.18) the string and not on the frequency
of the wave.

But % =f, (from eq. 8.16)

f, =2f,
This frequency is called second harmonic or first overtone. It is clear from
above equation that if the string vibrates in two loops then the frequency of second
harmonic is twice the frequency of first harmonic.

Third mode of vibration
Similarly, if the same string is plucked from one sixth (g)th of its length,

then the string vibrates in three loops, haying four nodes and three antinodes as
shown in Fig.8.20. It is called third mode of vibration. Let f; be its frequency and A3
be its wavelength then;

Lo Il
2
. 2
A, ==L
3
As V= fJ )‘3 Fig.8.19: Third Harmonic with three loops
Fle v have four nodes and three anti-nodes.
3 AJ
f, = 2"
N
3
A%
£fr=3 —
| (ZL]
f,=3f,

‘(ﬂ
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In general, if the string vibrates in ‘n’ number of loops then it has ‘n + 1’
number of nodes and 'n' antinodes. The frequency ‘f, ’ of such stationary wave setup

1 in the string is expressed as;
f = nf, where n=1,2,3...

This is known as quantization of frequencies i.e. the frequencies of the

vanous_(or overtones) are whole number (positive integar > 0) multiple of first
harmonic (the fundamental frequency).

Example 8.4

. Asteel wire hangs vertically from a fixed point, supporting a weight of 80 N
at §ts lower end. The diameter of the wire is 0.50 mm and its length from the fixed
pqmt_tg the weight is 1.5 m. Calculate the fundamental frequency emitted by the
wire 1t 1s plucked? (Density of the steel wire = 7.8 X 10’ kg m™)

Solution:
\g‘elght — renislap T 0N OUR INFORMATION
ameter of wire = d = 0.5 mm = 0.5x107°m OR ¥ ;
Length — e The energy emitted from sound
=1.5m produced by a crowd of 60,000
Density of steel wire = 7.8x10° kg m™ ‘\’V‘a‘;]f°a°g’]‘;)“o?‘t‘;;°h s enough to
By definition of density = p= e

M volume
ass = p x volume

Mass = p x Area x length -
Mass = pxnr®x¢
2
Mass = d
SES PR S | B ' GEOPHYSICS
42 Waves through a solid can be
Mass = pxmt—x¢ either transverse or longitudinal.
4 : An earthquake produces both
. -3 _\2 transverse and longitudinal
>~ Mass = (7:8x10° kgm™)(3.14) (0.5x107m) % 1.5 m| waves that travel through earth.
4 Geologist studying the waves
. Mass= 2.30X10—3kg ‘ with seismograph found that
; . ) ’ longitudinal wave could pass
N-ow linear mass density or mass per unit length 1s through Earth's core, transverse
given as; waves could not. From this
B -3 evidence, they concluded that
n= mass of W“.e = 2.30x107kg Earth's core is liquid. From its
length of wire 1.5m density, it is most likely molten
=1.53x10 kg m™' T
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The fundamental frequency
1 [T

-y L

2L\ p

] 80 N
' 2x1.5m\1.53x10 kg m™
f =76Hz

8.8.2 Stationary waves in air column
We have observed stationary waves along a vibrating stretched string, but

these waves can also be set up in other media. For example, the vibrating air column
of a closed or open organ pipes. Similarly, when air is blown at the mouth of a
bottle, sound is produced due to vibrations of air column inside the bottle. Now .
consider a sound wave from a tuning fork which is allowed to vibrate the air at the
one end of the pipe. This wave will travel along the pipe and will be reflected from
the far end:of the pipe. Thus there are two waves in the pipe i.e. incident wave and
reflected wave. The superpositiorn of incident and reflected waves produces a
stationary wave in the vibrating air column of organ pipe. The refation between
incident wave and reflected wave depends upon the closed and open ends of organ
pipe. The open end of the pipe behaves as anti node due to free motion of molecules
of air whereas the node is formed at the closed end because the movement of
molecules is restricted. Stationary waves in the air column can be studied under the

following two cases.
I.  When one end of the Pipe is closed
Let us consider a pipe of length ‘L’ such that its one end is closed and its
other end is open. In this case all the sound energy is reflected from the closed end
and it causes a stationary wave in the pipe. Node is formed at the closed end and
=gl

antinode at the open end.
] ———l |

First Harmonic

When the stationary wave is formed in NE €
pipe vibrating with a half loop which consists
of one node and an anti-node as shown in
Fig'8'2] then it is called 1" harmonic. Let fi be Fig.8.2l: Fundamental or First Harmonic
its frequency and A, be its wavelength which is  stationary wave with a half loop has one

related with the length of the pipe that is; node and one anti-node.

A

- L =M
4
A, =4L

e ————ii




As v=f %,
oY
xl
5
f=—.inen 8.19
T (8.19)

Second Harmonic

The stationary wave which is vibrating, in one and half loops and contains
two nodes and two anti-nodes is called 2™ harmonic as shown in Fig.8.22. Let f; be
its frequency and A, be its wavelength which is related with the length.of the pipe
as,

£ 3k
4
4
A=-=L
3
As v="f,A,
Fig.8.22: Sccond Harmonic stationary
f = R0 ~ wave with one and half loops have two
- ),2 nodes and two anti-nodcs.
v v
=g~ 3(1)
3
f, =31,

Third Harmonic
In third harmonic, the stationary waves are vibrating with two and half loops

and contain three nodes and three anti-nodes as shown in Fig.8.23. Let f; be its
frequency and A, be it wave length which is related with the length of the pipe as;

_5A _5
L= | L=sh ]
4 N
As v=f\,

Fig.8.23: Third Harmonic stdtionary wave

. .f sl l with two and half loops have three nodes
3 X3 and three anti-node.
£ = ' CRITICAL THINKING
3 4 Under what principle a sound is
' EL produced ina flute?




[V A closed _pipé._reson'a'tes when its
f;=35 I length is an odd number of quarter
wavelengths.
f3 = Sfl l —
In general, if ‘n’ represents the numbers of half loops in the above stated pipe
then its quantization frequency 'f, 'of stationary wave as;
f.=nf
where n=1,3,5,7,...

II. Open Organ Pipe
Consider a pipe of length ‘L’ whose both ends are open. The most of sound
energy is passed outside but some of them is reflected and it causes stationary waves

in the open ended pipe.

First Harmonic

The first or fundamental harmonic stationary wave consists of two antinodes
and one node as shown in Fig.8.24. Let f| be its frequency and A, be its wavelength.
The wavelength is related with the length of pipe as;

A, A A
4 4 2 L=3" =
k,=2L P L
As vi=1fA
A ¥ A
A"
fl T = = e e ]
;"l —— B O 0 9 0> 90—
motion of air molecules ?
f = l ..... (8_20) Fig.8.24: Fundamental or first Harmonic
i M, stationary wave have one node and two

. ti-nodes.
Second Harmonic e .

The second harmonic of stationary wave in open ended pipe consists of three
antinodes and two nodes as shown in Fig.8.25. Let f; and A, be its frequency and
wavelength respectively of the second harmonic stationary wave. The wavelength is

related with the length of pipe as; ' fe——— L=1, —~

A A A A
L=—+—+—+—
_ 4, N

ie . =—=
3 " " A
A,=L 4 4 4 4
Fig.8.25: Second Harmonic stationary
V= lez wave have two nodes and three anti-nodes.
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The third harmonic stationary wave In ’4__——— L=

"")
II
| <

N

b
21

Third Harmonic

open ended pipe consists of three antinodes and | —

two nodes as shown in Fig.8.26. Let f3 be the A
frequency and A4 be the wave of third harmonic A A N

sationary wave in the pipe. The wavelength 1S e —————

related with the length of the pipe as; Fig.8.26: Third Harmonic
A, _ 3M,
L=t ™2
2
A,==L
1.3
v = fiA, .
A\ A%
f,= —=5—
3 ).3 .%L
3
6-3)
2L
f, = 3f,

In general, for nth harmonic the quantization frequency of the stationary
wave in open ended pipe is given as;
£ = v An open pipe resonates when its
n L length is an even number of quarter
£ =nf wavelengths
6 e ;

‘Wheren = 1,2,3,4,...

\ Example 8.5
\ What will be the frequencies of fundamental and first three overtones for a 75
lcm long organ pipe? (a) If it’s both ends are open (b) If its one end is closed. The

speed of sound in air is 340 ms™'
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Solution:
Length of organ pipe=L=75cm=0.75m
Speed of sound = v =340 ms™'

(a)  For an open pipe, the quantized frequency is

340ms™

[2x 0.75 m} B i o
n=1, f, =(1)(226.7)Hz

This the fundamental frequency of the given open pipe.
n=2, f,=2(226.7)Hz =453.4Hz =453Hz
n =3, f, =3(226.7)Hz = 680.1Hz =680Hz
n=4, f, =4(226.7)Hz =906.8Hz =907Hz

"i'he-frequencies of first three overtones are 453 Hz, 680 Hz and 907 Hz
respectively.

(b) Foraclosed pipe, the quantized frequency is given by
f = n(—v—) where n=1,3,5,7,......
2L

n

" =n(113.3s7")=n(113.3)Hz

f =1x(113.3)Hz=113.3Hz

f, =3x(113.3)Hz =339.9 Hz = 340 Hz
f, = 5x(113.3)Hz = 566.5 Hz = 566 Hz
f, =7x(113.3)Hz =793.1Hz = 793Hz

- The fundamental frequency of given closed pipe is 1 13.3 Hz. The frequencies
of the first three overtones are 340 Hz, 566 Hz and 793 Hz respectively.

8.9 DOPPLER EFFECT

It is a common observation that when
the source of sound and the observer both
are at rest; the observer receives the
frequency of sound in its actual form as the
frequency originated from the source.
However, the frequency of the sound
appears to change if there is relative motion
between the source and observer (listener).
The frequency appears to increase as the ) h s —
moving SUUECE, -app roaches the stationary Egrgazs;’:s 1\.&':0111) ltict is0 moving toward the
observer and appears to decrease as the  gbserver and decreases when it is moving
source moves away from the stationary away fromtheobserver

A\
&




- fi1s given as;

observer. For example, let an observer who is standing at a railway platform. The
pitch of the whistle by train increases when the train is approaching toward the
observer and the pitch of the sound decreases when the train is moving away from
the observers-as shown in Fig.8.27. This apparent change in frequency is called
Doppler effect and it is stated as; ""there is an apparent change in the frequency
of sound due to relative motion between the source of sound wave and the
listener"'.

The Doppler effect is named after the Austrian physicist and mathematician
Christian Johann Doppler (1803-1853), who did experiments with both moving
sources and moving observers. The Doppler effect holds not only for sound waves
but also for electromagnetic waves, including microwaves, radio waves, and visible
light. However, here we will discuss only the Doppler effect for sound waves. The
Doppler effect can be studied under the following four cases.

Consider a source of sound which generates a sound waves of frequency ‘f’
and wavelength ‘A’ in all directions. Let v be the velocity of sound, v, be the

velocity of the observer and v; is the velocity of source. We assume that the medium
(air) between source and observer is stationary.

Case I: Observer is moving towards a stationary source.

In this case the observer is moving
towards the stationary source with a

velocity v, as shown in Fig.8.28. If the relative

velocity of sound is 'v' then net velocity
between observer and source is v+v_ . Thus,

the number of waves received in one second

£ = V1V,
1
A
A 9 e v . Fig.8.28: Observer is moving towards a
£ 5 s stationary source.
vty

+
f,= (” ;"—")f ...... (8.21)

This shows that f; > f, the apparent frequency of sound increases.
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Case II: Observer is moving away

. . Waves
from a stationary source raditing
from the

Now the observer is movipg away oo
from the stationary source with velocity v, as
shown in Fig.8.29. The relative velocnty
between observer and source is v—-v,and the o

numbers of waves received in one second f, 1s

given as; Observer

V=V
f2 = A, = Stationary
source
V-V " - :
f.= o Fig.8.29: Obscrver is moving away from a
2 \' stationary source.
£

f, =("'v"°]f ...... (8.22)

This shows that f, < f therefore apparent frequency of sound decreases when
the observer is at rest and source is in motion.

Case I11: When the source is moving towards the stationary observer

When the source is moving with velocity v, towards a stationary
observer as shown in Fig.8.30. The net velocity is v—v,. In this casc, the
wavelength A, measured by observer at rest is shorter than the wavelength A of the

source. The waves are compressed and its frequency ‘f* remains same, this
compression in wavelength is called Doppler shift. It is represented by AA.

=l
f
Now decrease in wavelength during compression of waves is given as;
AL=A-A,

High Frequency o

-
£

)\'3 = k — Al Low Frequency

R 2 l%ﬂ
= s

f f
V=V *
f
As V= f3}.3
£ = v
’ Ay Fig.8.30: Source is in moving towards and moving

away from a stationary observer.

P
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This shows that f; > f thus apparent frequency of sound increases.

Case 1V: When the source is moving away from the stationary
observer

Similarly, when the sources is moving away from the stationary
observer with velocity v, then the wavelength A, of sound waves increases but its

number of waves in one second remains same. In this case the observer measures a
wavelength A4 that is greater than A and hears a decreased frequency.
Thus the increase in wavelength is given as;

AL= A, —A
A= AN+A BIOPHYSICS
V., V_ V4V Physiciaps can detect ic speed of
Aj=—=4—== the moving heart wall in a fetus by
f f f means of Doppler Effect in
v=1fA, ultrasound.
£ = \
oA, POINT TO PONDER
v Canyou apply Doppler Effect for light |
fv= V.tV wave and source of light? E
f
v
f,= | W— (8.24)
vV, tv

This shows that f, <f therefore, the apparent frequency of the observer
increases. ' :

Example 8.6

A train is approaching a station at 108 km h™' sounding a whistle of
frequency 1100 Hz. What will be the apparent frequency of the whistle as heard by
an observer standing on the platform? What will be the apparent frequency heard by
the same observer if the train moves away from the station with the same speed?

Speed of sound is taken as 340 ms™".
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Solution:
Speed of sound=v=340ms™'
Speed of the train=V,=108 kmh™' =30 ms™
Frequency of the source = f= 1100 Hz
Apparent frequency of the whistle when the train is approaching towards

observer = f=?

-1 \
= Sms 11001z
340 ms™ =30 ms

-1
£ = L340 ms

- _,)noOHz
ms

- f=1206Hz
Apparent frequency of the whistle when the train is moving away from the

observer = f=?
f =( v ]f
V-i"Vs

([ -1
= e liiooe
(340 ms™" +30 ms

( -1
£=|220M5 1100z
(370 ms
£ =1011Hz

Applications of the Doppler effect
In addition to sound waves, |
Doppler effect is also applicable to |

electromagnetic waves and its some % A %%
application are summarized as: \\(%\
(i) The Doppler effect provides a ; \\“
method for tracking a satellite. : \\ 5

Suppose the satellite is emitting a : .
radio signal (i.e.,, an electromagnetic ,
wave) of constant frequency f;. The
frequency fi of the signal received on the

Earth decreases as the satellite is passing.
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The received signal is combined with a constant signal generated in the receiver to
produce beat. The beat frequency produces an audible note whose pitch changes as

the satellite passes overhead. _ . i
GPS: Shows pilots their position 7

J

but not normally used by ATC K

Secondary radar: N\

Tracks plane and its \-\\ kY

identity via transponder LS
y

) % ACARS: Transmits
K\‘\\ % aircraft data to the ground
K | : L5 3 1
; | . Flight data . b

|\ ——= | Airtraffic control (ATC)

Primary radar: Can only show approx position. No radar coverage 240km from land
Fig.8.31: Detection of acroplane by RADAR

Similarly, the radar system uses radio waves to determine the elevation and
speed of an aeroplane. Radar is a device, which transmits and receives radio waves.
If an acroplane approaches towards the radar, then the wavelength reflected from
acroplane would be shorter and if it moves away, then the wavelength would be
larger as shown in Fig.8.31.

- (i) Sonar is an acronym derived from “sound navigation and ranging”. Sonar is
the name of the technique for detecting the presence of objects under water by
acoustical echo. -

In Sonar, “Doppler detection” relles upon the relative speed of the target and
the detector to provide an indication of the target speed. It employs the Doppler

~ effect in which an apparent change in {requency occurs when the source and the

observer are in relative motion to one another. It is known military applications
include the detection and location of submarines, control of antisubmarine weaporis,
mine hunting and depth measurement of sca.

(lif)  Astronomers use the Doppler effect to calculate the speeds of distant stars
and galaxies. By comparing the line spectrum of light from the stars with light from
a laboratory source, the Doppler shift of the star’s light can be measured. Then the
speed of the star can be calculated. :

273




4 ] I
S -
P ~
. - t
a2 & -
-

(iv)  Stars moving towards the Earth show a
blue shift. This is-because the wavelength of o
light emitted by the star is shorter than if the Earth: Blue Shift
star had been at rest. So, the spectrum is shifted

F =
towards shorter wavelength, i.e., the blue end of : o E
the spectrum as shown in Fig.8.32. Star is atrest: No Change

Stars moving away from earth show a e : “ <
red shift. The emitted waves have a longer' Surb";';’ A za';&
wavelength than if the star had been at rest. So, . '

the spectrum is shifted towards longer
wavelength, i.e., towards the red end of the
spectrum as shown. in Fig.8.32. Astronomers
have also discovered that all the distant galaxies

Shift

$tar moving towards earth

Earth

Star moving away from earth
are. moving: away from us and by measuring @ W
their red shifts, they have estimated their
SpCCdS. e Fig.8.32: Doppler Blue and Red Shift
R -
(v)  The Do

B 1 ppier f:ffeét is usc;d.i.n measuring the speed of automobile by traffic
police. A 'rada.r gun is ﬁxgd on police car. An electromagnetic signal is-emitted by
the radar gun in the direction of the automobile whose speed is to be checked. The

wave is reflected from the moving automobile and received back.
Outgoing waves

Ve,

; F‘ig.8.33: Doppler speed radar
The reflected wave is then mixed with the locally generated original signral

and beats are produced. The frequency shift is measured using beats and hence the
speed of the automobile is determined.

8.10 ULTRASONIC WAVES

Sound waves can be classified into three classes on the basis of their
frequencies. That is, the sound which frequency less then 20Hz are called infrasonic
waves and it cannot be heard by human ears. Similarly, the waves whose frequency
range lie between 20Hz and 20 kHz are known as sonic or audible waves. These
waves stimulate the human ear. The sound waves of frequency greater than the
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"~

“periodic  contraction and expression.

upper {imit (20 kHz) are called ultrasonic or
supersonic. These waves have high frequencies,
shortest wavelength and carry much energy.
Ultrasonic waves cannot stimulate our ear, but
some animals like bats and dogs show response
to them. Ultrasonic waves deserve special
attention because of its multifarious application

“in metallurgy, medicines, biology and so many

other fields.

There are several methods of gener’ation |
of ultrasonic vibrations such as, mechanical and .|

thermal but we discuss the electrical method
which is named as piezoelectric generator. It
was introduced by J and P. Curie in 1880; it is
defined as electricity produced by pressure.
Now the Piezoelectric method can be explained
as; A slice of quartz crystal having regular faces
is mounted between the two polished metal
plates serving as electrodes. When two opposite
faces of a crystal are subjected to pressurc
(compression or expansion) by the applied
forces as shown in Fig.8.34, then there will be
equal and opposite charges developed on the
two opposite faces of the crystal. The amount of
the developed charges is proportional to the
subjected pressure. In this way, a potential

difference will be developed across these faces. -

This process is called piezoelectric effect as

shown in Fig.8.34.
Conversely, when the two faces of the

crystal are subjected to an alternating potential

“difference as shown in the schematic diagram

8.35, then the crystal set into vibration due to its
The

frequency of the vibration is within "the

-ultrasonic range (250Hz — 100000 kHz). This

process is called inverse piezoelectric effect.
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' Bats use the Doppler effect to detect
,' and catch flying insects. When an

insect is flying faster than a bat, the
reflected frequency is lower, but
when the bat is catching up to the |
insect, as shown in figure, the
reflected frequency is higher this is
known as echolocation.  This
' phenomenon is also using by the
| dolphins and whales to communicate |
| each other and to locate prey.

Scientists continue to studying the

amazing behavior of dolphins and
| bats and to use sound waves.

Force

Fig.8.34: A schematic diagram of
Piezoelectric effect '




; 4
Metal plate - (lead zircoonte

/ titonate)

Voltoge

L

Fig.8.35: A schematic diagram

Compressing produces
eleciricity "
of inverse Piczoclectric effect

rasonic waves can be detected by using “the method

piezoelectric transducer, that is when the ultrasonic Waves fall on the two faces of
the quartz crystal, then the varying electric charges arc produced on the other
perpendicu?ar faces of the crystal as shown in Fig.8.36. The amount of thesc
developed charges is very small but it can be amplified with the help of some
means. Thus, this is the way which is being used to detect the ultrasonic waves.

Transducer Basics '
Allernating Current

Backing /] {o Each Crystal
Pow-er\ F

' The detection of ult

T

\
Matching
Layer

Material
N
Supply

) 7
/— Piezoelectric

Acoustic
- Ci I
Insulator -

. Fig.8.36: A schematic diagram of Piezoelectric transducer

fers energy

Wave: A disturbance of medium by a vibrating body which trans

from one place to another place is known as Wave.

s: There are three kinds of waves, such as mechanical W

o Kinds of waves:
electromagnetic wave and matter wave.

‘e Transverse wave: A wave in which the pasticles of the medium are vibrating'
perpendicular to the direction of propagation of wave is called transverse W
onsist of crest and trough. ' ‘

&

ave,

such waves €




.*  longitudinal wave: A wave in which the particle s of the medium are vibrating
parallel to the, direction of propagation of wave is called longitudinal wave -
such waves consist of compression and rarefaction.

*  Speed of sound: Speed of sound in air at 08Cis 332 ms™~' and it depends upon
elasticity, density and temperature of the medium.

e  Principle of superposition: When two or more waves are travelling in the
same medium, their resultant amplitude is equal to the vector sum of all the
individual amplitudes. This is called principle of superposition.

e Interference: If two or more waves of same frequency travelling in the same
direction are superimposed then the amplitude of their resultant wave increases
or decreases. This phenomenon is known as interference.

e Beats: When two or more waves differing slightly in their frequencies,
travelling in the same direction, are superimposed then at regular interval of
time the loudness of resulting wave increases or decreases. This phenomenon
is known as beats.

e  Stationary waves: Supcxposmon of two waves of same amplitudes and same
frequencies but travelling in the opposite direction are said to form a stationary
wave.

e  Doppler’s Effect: The change in the pitch of sound due to the relative motion
of the source of sound or the listener is called Doppler’s effect.

e  Ultraviolet waves: The waves with frequency greater than 20kHz are known
as ultrasonic waves. These waves cannot be detected by human ears and these

can be detected by piezoelectric method.

*  Piezoelectric generator: A method in which electnc1ty is produced by
applying pressure is called piezoelectric and the process of pxezoelec&rlc
transducer is being used to detect the ultrasonic W'éves

| . EXERCISE
hl Q  Multiple choice questions.

-~

1. Wave is a mechanism which transmits;

(a) Wavelength ‘ (b) Amplitude
“ (c) Mass : ‘ (d) Energy

2. The wave which requn'es a medium for its propagation is known as;
(a) Mechanical waves (b) Electromagnetic waves
(c) Radio waves ; (d) Light waves -

3.. Longitudiral wave consists of; ' ‘, ,

“(a) Crests and troughs - (b) Compression and rarefactions
(c) Crests and compressions - (d) Troughs and rarefactions ’
A0

~
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10.

11.

12.

13.

14.

15.

Transverse wave is different from longitudinal wave, because it possesses a
property of

(a) Reflection (b) Interference

(c) Diffraction ‘ (d) Polarization

Due to high elasticity, the speed of sound is maximum in o
(a) Solids ~ (b)Liquids . (c) Gases . (d) Plazma
The speed of sound does not depend upon; :

(a) Density (b) Elasticity (c) Temperature  (d) Pressure
Which of the following phenomenon is based on superposition principle
(a) Interference  (b) Standing waves (c) Beats (d) All of these

When two waves of same frequency and travelling in the same direction are
superimposed than we have

(a) Interference (b) Beats

(c) Standing wave (d) Stationary wave

Which one of the following change can be observed in the resultant
interference wave?

(a) Amplitude (b) Time pér&od ~ (c) Wavelength . (d) Frequency

How many beats can be observed when the difference in frequencies of two
waves is two;

(a) 1 (b)2 . (c)3 (d) 4

The length between node and antinodes is; :

@ OF (©) @22
4 : 2 :

Which one of the following wave does not transmit energy

(a) Mechanical wave = (b) Standing wave

(c) Matter wave . (d) Electromagnetic wave

The ratio of the flmdamental frcquency of an open ended pipe to a pipe whose
one end is closed is;

(a) 1:1 (b) 12 (c) 2:1 _ (d) 1:4

The number of quantization frequency of stationary wave in plpe when its one
end is closed i 1S}

(a) The whole number (b) Natural number

(c) Even number (d) Odd number

When wave is reflected from denser medium to rare medium then there 1S
phase change of];




ﬁ

T T ’ '
(a) 2 (b) F (c)m (d) 2x
16. The sound which stimulates our ear is known as;
(a) Sonic (b) Infrasonic ~ ~ (c) Ultrasonic (d) Tidal

17. Which one of the following parameter of a-wave does not change when it
transmits through two different media

(a) Amplitude (b) Velocity (c) Frequency (d) Wavelength
18. Piczoelectric effect means to produce the electricity by;

(a) Thermal (b) Mechanical (c) Pressure (d) Tidal
N - SHORT QUESTIONS

Dlstmguush between transverse and longitudinal waves.

3

2. How can the wavelength of compression wave be measured?

3. Why transverse wave can travel in a liquid? '

4. Why does sound travel faster in solids than the gases?

5. How did Laplace correct the formula for the speed of sound in air?

What are the mathematical conditions of constructive and destructive
interferences?

7. By what factor would you have to mwltnply the tension in the string to double
the wave velocity?

8.  Why standing wave cannot transfer energy?

9.  What happens to the wavelength of-a wave that passes from a spring into
another material with (a) Higher linear density (b) Lower linear deasity?

10. Does interference of two waves involve a loss of energy? Explain.

11. How many numbers of nodes and antinodes are there in a stationary wave
vibrating with ‘n’ number of loops?

12. What do you know about the Doppler shift in wavelength?

13. Why the ear does not stimulate by sound which is produced by a. v1brat1ng
snmple penduﬁum"

*

r-

_COMI’RLH ENSIVE QUEST l()NS

1. Deﬁne wave with ail its characteristics such as; crest trough, amplitude,
- wavelength, time period and frequency.

2, Compare transverse and longitudinal periodic waves.

3. What do you know- about the speed of sound? Calculate the Newton's formula
" for the speed of sound. -
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- Discuss that how the Newton's formula for speed of sound was corrected by

Laplace.

Explain the effect of various parameters, pressure, density and temperature on
the speed of sound.

What is principle of supcrposmon of waves.

State and explain interference of sound waves with its two forms such as;
constructive interference and destructive interference.

What are beats and how they can be produced? Write done the uscs of beats.

. State and explain the reflection of waves from rare and dense media.

Explain stationary waves and their formation.

Discuss the stationary waves in a stretched string and in a air column.

State and explain Doppler effect under various cases and- discuss the
applications of Doppler effect.

NUMERICAL PROBLEMS

A pulse of a transverse wave on a string moves a distance of 15 m in 0.075 s. If
the wavelength of transverse wave is 0.8m then; (a) what is the velocity of the
pulse? (b) What is the frequency of a periodic wave on the same frequency?
(200 ms™', 250 Hz)
What is the wavelength of elcctromagncuc wave when its {requency is 600

kHz and its speed is 3 xlO ms™'? (500 m)
A stecl wirc 80 cm lon;, has mass of 8 g. If the wire is under a tension of
110 N, what is the speed of transverse wave in the strmg" (105 ms™)

What is the speed of sound in a diatomic ideal gas that has density of 3.50 kg
m™ and pressure of 215 K Pa.? The value of ‘y’ for diatomic gas is 1.40.
' (293 ms™)
An 80 m long stretched string has a mass per unit length of 9% 10~ kg/m with
tension of 20 N. When the string is plucked, a stationary wave is set up in the
string. Calculate the fundamental frequency and the next three frequencies?
(0.295 Hz, 0.59 Hz, 0.885 Hz, 1.18 Hz)
The fundamental frequency of an oper organ pipe 100 cm long is 180 Hz.
What is the speed of sound in the pipe? What is the frequency of the second
possible overtone of that open plpe? (360 ms™', 360 Hz)
Calculate the length of a pipe that will resonate in air to a sound source of a
fundamental-frequency 240 Hz, if the pipe is (a) closed at one end and (b) open
at both ends. Take the speed of sound in air to be 340 ms™'

(35.7 cm, 70.8 cm)



10.

Two tuning forks A and B produce 14 beats in 2 seconds. The frequency of the
fork “A’ is 512 Hz. When a little wax is attached.to the prongs of the fork ‘B’
the beats disappear. Determine the frequency of fork ‘B’. (519 Hz)
A car traveiling at 90 km h™' sounds its horn which has a frequency 800 Hz.
What frequency is heard by a stationary distant listener as the car approaches?
What frequency is heard after the car has passed? Speed of sound in air is
taken as 340 ms™". (863.5 Hz, 745 Hz)
Two cars P and Q are travelling along a straight road in the same direction, the
leading car P travels at a steady speed of 12 ms ™. The other car Q travell'ing at
steady speed of 20 ms~' sounds its horn to emit a steady note which }s
estimated by P’s driver as a frequency of 830 Hz. Whatlfrequency does Q’s
own driver hear? Speed of sound in air is taken as 340 ms . (810 Hz)

\
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PHYSICAL OPTICS

|Major Concepts  (25PERIODS) | (ST AN 7y7emm
g l\\:/aturcfoflight This chapter is built on |
. Al Properties of Waves Phys;
e Huygen’s principle IX ysics
e Interference

o Young’s double slit experiment
o Michleson’s Intcrferometer
Diffraction

e Polarization !

Studénts Dearning Oufcomes
After studying this unit, the students will be able to:
Describe light waves as a part of electromagnetic waves spectrum.
Describe the concept of wave front. |
State Huygen’s principle and use it to construct wave front after a time interval.
- State the necessary conditions to observe interference of light.

Describe Young’s double slit experiment and the evidence it provides to support the
wave theory of light.

Explain colour pattern due to interference in thin films.
Describe the parts and working of Michleson Interferometer and its uses.

Explain diffraction and identify that interference occurs between waves’ that have
been diffracted. .

Describe that diffraction of light is evidence that hght behaves like waves.
Describe and explain diffraction at a narrow slit.

e . Describe the use of a diffraction grating to detenmne the wavelength of hght and
carry out calculations using dsinf = nA.

Describe the phenomena of diffraction of X-rays through crystals.
Explain polarization as a phenomenon associated with transverse waves.
Identify and express that polarization is produced by a Polaroid.
Explain the effect of rotation of Polaroid on Polarization.

Explain how plane polarized light is produced and detected.

'

-
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INTRODUCTION

The properties and the nature of light was studied by many scientists based
on different theories but two of them were commendable, that is Newton’s
corpuscular theory and Christian Huygen's wave theory. Newton believed that light
consists of smail particles called corpuscles and he was successful in reflection and
refraction phenomenons. There are two experiments photoelectric effect and
Compton’s effect which have been verified the Newton’s corpuscufar theory and
these will be studied in Modern physics in the next class.

In 1676, Huygens cxplmncd the light in terms of wave. According to this
wave theory, light is travelling in the form of a wave. The wave theory can explain
reflection, refraction and the phenomenon of double refraction. The Huygen’s wave
theory of light was not acceptable by Newton and others. Because the knowledge of
waves was confined to mechanical waves only and it requires some medium for its
propagation and there was no idea about electromagnetic waves. Therefore, Huygen
proposed hypothetical medium Ether. One important difference between the two
theories was that the corpuscular theory predicted that light would travel faster in a
material medium than air, whereas the wave theory predicted a slower velocity in a
dense medium. Later on, it was proved experimentally that the velocity of light is
faster in rare medium.

Similarly, James Clark Maxwell presented the idea of electromagnetic waves.
Electromagnetic waves can propagate through vacuum. It has same propcmes as
that of the light and the speed of this wave is equal to speed of light i.e. 3x10° m s™",
Thus, Maxwell concluded that light waves are clectromag,nctlc waves and require no
.- medium such as cther for their propagation.

In 1801, Young provided an experimental proof of wave theory of light by
performing interference of light. Similarly, the result of diffraction is also a strong
evidence of the wave theory of light. The polarization phenomenon has confirmed
that transverse nature of light wave. The
“discussion about the nature of light shows that
light possess dual nature. Sometimes it behaves
like particles but sometimes it behaves like
waves. But it may be noted that these both behaviours cannot be considered
simultaneously. The particle nature of light will be studied in modern physics
meanwhile we will have studied wave nature of light in the present chapter.

9.1 WAVE FRONT

When a stone is dropped into a pond of still water then there is expanding
series of circles formed by crests and troughs. Like water waves, concentric circles
of light waves can be drawn that propagate from a source of light in all directions

POINT TO PONDER
Can you tell whether the unit of
intensity of light is based or derived?

\23}
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with speed ‘c’, as shown in Fig.9.1. The radius of Wave fronts :

each circle is “ct” and each circle has the same
displacement from the centre of source ‘S’ moreover,
all the particles on each circle have same phase. “The
surface on which all the points vibrate in the same
phase in a homogenous medlum is known as a<
wave front”. 5
A line perpendicular to the wave fronts %

Ct

indicating the direction of motion of the waves is
called a ray.

When there is a point source and medium is
homogenous and isotropic then we have spherical — Fig-9.1: Spherical Wave Fronts
wave fronts. In this case, the direction of propagation
of the wave is always normal to the wave front. /

If the disturbance is propagated in a single
direction, the waves are then represented as plane
waves and its corresponding wave fronts are called
plane wave fronts as shown in Fig.9.2.

9.2 HUYGENS’S PRINCIPLE
Huygens’s.principle is a geometrical method
used to develop a new wave front from the Wave fronts

Light
Rays
—

S
el

.

T

THITAN
\llllll\

HENEN
|
l

—

imforma'tion‘ of shape and position of the Fig.9.2: Plan-c wave fronts
primary wave front. According to Huygen : -
wave theory, light travels in the form of
waves and all the points of primary wave
front behave as secondary sources emitting
wavelet in phase with one another which
spread out in forward direction with a °%
speed equal to the speed of propagation of ;
the wave.

, Let a source S produced a pnmary
wave front AB at instant ‘t’ as shown in
Fig.9.3. The dots on the primary wave
front AB behave as secondary sources .

which produce hemisphere each of radius 5,'5,“}-3&1 ;ﬁ:ﬁ,;ﬁg"‘s s o BURad Nader

‘cAt’, known as wavelets. (a) Primary spherical wavelets at ‘t’ and secondary
spherical wavelets at t + Al

The surface which touches all the (b) Primary plane wavelets at't’ and sccondary plane
wavelets from the secondary sources 1s wavelets at t + AL

CAL

8 NS
(a) Spherical Wave'front (b) Plane Wavefront

i/
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the new wave front A'B" at instant t + At for next wave front, the same process is
repeated.

In this way, an infinite number of spherical wave fronts are formed. If the
medium is homogenous then equal amount of energy is transmitted in all direction
by these waves. Similarly, if the medium is non-homogenous then we have a plane

‘primary wave front AB and also Huygen's principle can be applied for the secondary
wave front A'B’ as shown in Fig.9.3. '

9.3 INTERFERENCE OF LIGHT WAVES

We have ‘studied interference of sound waves in the previous chapter. Now
we discuss the interference of light waves. As interference of light is difficult to
observe due to the random emission of light from the source. The following
conditions should be fulfilled in order to observe the interference phenomenon of
light waves.

1. The sources should be monochromatic i.e. these should emit waves of

single wavelength.

2. The sources should be coherent which produce waves of same frequency

‘with zero or constant phase difference.

3. The two sources should be closed to each other.

Consider two coherent waves in the same medium which are superimposed
with each other. At some points there is enhancement in amplitude and at other
points there is cancellation in amplitude. As a result, we have constructive and
destructive interference and therefore bright and dark fringes are obtained on a

screen as shown in Fig. 9.4. This phenomenon is known as interference of light

waves.

Spacing of
Single o
narrow

g UL Il

S
Light Red
bulb T“o narrow slits filter

(about 0.1 mm wide) .
separated by about Fringes visible on a

0.;5 mm transparent screen
Fig.9.4: Experimental arrangement of interference of light

: Constructive Interference

When two coherent waves are superimposed such that the crest of one wave
coincide with crest of the other wave and trough with trough then the amplitude of
its resultant is greater than that of the amplitude of individual wave as shown in
Fig.9.5. This type of interference is called constructive interference.
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Wave A+B
Wave A

Wave B

Amplitude

; .
Fig.9.5: Constructive Interference due to the combination of coherent light waves in same phase.

Amplitude

Destructive Interference 19

In  destructive . interference, the
superposition of two coherent waves, takes
place in such a way that the crest coincide with
trough and trough with crest and the amplitude
of the resultant wave is less than the amplitude
of individual wave as shown in Fig. 9.6.

9.4 YOUNG’S DOUBLE SLIT Fig.9.5: Destructive Interference due to the
> combination of coherent light waves in
EXPERIMENT different phasc.

This is the very first experiment on interference of light, which was
demonstrated by Young in 1801. The result of this experiment provides a strong
evidence for Huygens’s wave theory. ' ‘o

- The -experimental setup consists of a
source of monochromatic light which is placed
in front of a narrow slit ’S’. Two slits S;and S,

of the same size and separated by small s
distance are ptaced in front of narrow slit ‘'S’. 2g
These two slits act as two coherent sources as g.

shown in Fig.9.7. Now the light waves from

these two slits are superimposed at different

points then interference occurs. - N
The points where crests fall on crests or Fig.9.7: ’Brighl and dark - fringes that '

troughs fall on troughs produces constructive  obtained duc to the super position of gwo ;

interference and we have bright fringes. coherent waves in the Young double slit
On the other hand, those points where e

patiern on
screen
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crests fall on troughs produce destructive interference and we have dark fringes. In
this way, a series of bright and dark fringes is obtained on the screen which is placed
at some distance from the slits. The result of Young’s double slit experiment can
also be studied analytically as well.

Let ‘d’ be the distance between two slits §; and S,, ‘L’ be the distance
between centre of slits and centre of the screen and ‘y’ be the distance of any fringe
from the centre of the screen.

In order to derive equations for bnght and dark fringes, we consider a point
‘P’ on the screen at distance QP from the centre
of screen. S;P and S,P are the two rays from §,
and S, respectively reaching at P. The path
difference between S;P and S,P can be
determined by drawing a perpendicular from §,

on S,P. -
As S,P = RP as shown in Fig. 9.8, so §;R
is a path difference between the two rays. ‘4’ 6
In triangle S;S;R S =
S; R ; < —
2_=35in0 ' -
SI S2 Fig.9.8: Two rays from two slits S, and SP
- . which are incident on a screen at point
S R SiS28in 6 such that S;R is a path difference between
['-'S|Sz = d] them.
S;R= dsin0 '

Path difference (S,R)=dsin® .....(9.1)

In interference pattern, bright fringes will be observed on the screen when
path difference between two rays is given by

Path difference (S,R)=mir ... (9.2)
where m= 0,1, +2 +3....
Comparing equations (9.1) and (9.2)

dsind=mr ... (9.3)
Similarly, for destructive interferences (dark fringes)
Path difference (S,R) = (m +%jx ...... (9.4)

Comparmg eq. 9.1 and eq. 9.4
1 .
dsm9 el | SR
( 2) 9.5)

where m=0,+],+2 +3




Now if angle ‘0’ is very small then FOR YOUR INFORMATION
' . sinf~tan® 0° sin® | tano
From triangle OPQ 2 0.035 |.0.035
ang=FQ 4 0.070 | 0.070
0 6 0.104 | 0.105
. o I 8 0.139 | 0.140
o L 10 0.174 | 0.176
Equation 9.3 becomes.
dtan0= mA
dL = mh
I
mAL
=— ... 9.6
| y (9.6)
I Equation (9.6) gives the position of bright fringe
Similarly, : POINT TO PONDER |
dtan0= [ m +_l_ 2 Can you perform the interference
\ 2 phenomenon by using the sun light?
p :
LdX= m+le
L A\ 2
( 1)AL
y = m+;)T ...... 9.7)

Equation 9.7 gives the position of dark fringe
Fringe Spacing

Fringe spacing is defined as the distance between two consccutive bright
fringes or two dark fringes.
~ Width of bright fringe Ay =y, ., -V,

Ay = %(m‘+ l)k—%mk

* Ay =£m)\ +—&—£ml
d d d
Ay = %L ...... (9.8)

Width of dark fringes Ay=y, ., -y,
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Ay = L(m+ 1 +l)k—£(m+l7\)
d 2 d 2

Ay = Em)\+%)\+———mk‘——

Eq. (9.8) and eq. (9.9) show that bright and dark fringes are equally spaced.

Example 9.1
In Young double slit experiment, the distance between two slits is 0.25 cm.

Interference fringes are formed on the screen placed at a distance of 1 m from the
slits. The distance of the third dark fringes from the centre of screen is 0.059 cm.

Find the wavelength of the incident light?

- Solution:
Wehave d=0.25cm=2.5x10"m

L=Im _
Y=0.059 cm=5.9%10"m

For 3" dark fringes, order (m)=2
Wavelength (A) =?
y=| Wb

dy (2.5xl0'3)><(5.9><10'4)_nglo_.,m

Llm+— | x 2+—)
() e

A=590nm “~Ilnm=1 xAIO"’ m

Example 9.2 )

Yellow sodium light of wavelength 589 nm is emitted by a single source and
passcs through two narrow slits | mm apart. The interference pattern is observed on
a screen 225 cm away. How far apart are two adjacent bright fringes?

Solution:
- We have _
A=589nm= 589%10°m =5.89x10"m
| d=1mm=1x10"m '
L=225cm= 2.25m




Width of fringes (Ay) =7
-7
AY = AL _ 5.89x10 ; 2.25
| d 1x10
AY = 1.33x10”m = 1.33 mm
The adjacent fringes will be 1.33 mm apart.

9.5 INTERFERENCE IN THIN FILMS

A thin film is a transparent medium whose thickness is very small. For
example a thin layer of oil floating on water surface or a thin surface of soap bubble,
It is a common obscrvation that when light falls on these thin films of oil surface or
soap bubbie then we observe coloured patterns. This is due to the interference of
reflected light from the two surfaces of thin film and it is explained under.

Consider a ray of light AB from a a
monochromatic source of wavelength ‘A’ that is
~allowed to fall on a transparent thin film of
thickness 'd'. This incident ray is partially
reflected from the upper surface of the film
atong  BC and partially refracted into the
transparent medium of film along BD. At point
D, it is again reflected inside the medium along
DE and then at point E, the ray refracted along
EF as shown in Fig.9.9. Now these two rays BC
- and EF Sl'IpCI'im]’)OSG Will’! CﬂC.h other in order to Fig.9.9: The incident ray is reflected from
produce interference which is detected by our both upper surface and lower surface of
eyes. . : * thin ﬁlmha'nd interference is due to the

The Fig.9.9 shows that, the iﬁcident ray superposition of these two reflected rays.
splits-into two parallel reflected rays BC and EF. The distance covered by these two
reflected rays are not same. The path difference between them depends upon angle
of incident ray and thickness of the film. It is interesting to note that the point at
which the path difference between two reflected rays is zero, a bright fringe should
be formed but there is a dark fringe.

It is due to the fact that when the ray ‘EF’ is reflected from dense medlum

(film) to rare medium than there is an extra path difference of % added to it and due

to this extra path difference the position of bright and dark fringes w1ll be
interchanged. Mathematically, it is explained as,

For bright fringes

Path difference = mA+ %
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PatldiBerence =(m +'%JX .(9.10)

where m=0,1,23,.......

" For dark fringes

Path differencé = (m +l]x &
2 2
Path difference= mA ...... (9.11)
where m=0,1,2,3, ........ thin layer of oil.

9.6 MICHELSON INTERFEROMETER

An interferometer is an optical instrument which is widely used to measure
lengths or change in length with a great accuracy by means of interference fringes. It
was introduced by American Physicists A.A. Michaelson in 1881. A schematic
diagram of interferometer is shown in Fig. 9.10. It consists of a source of
monochromatic light which is placed in front of a partially silver polished glass
plate ‘P’, inclined at an angle of 45° to the horizontal. This plate is called beam
splitter. There are also two highly polished mirrors M; and M,. The mirror M, is
vertical and fixed. While the mirror M; is horizontal and adjustable. Another optical
compensator glass plate P’ same as ‘P’ is fixed between P and M, in order to
climinate the path difference between the two rays. To observe the interference
pattern, a telescope is placed at the bottom in front of ‘P’ as shown in Fig. 9.10.

M1 :
: Ray 1
Co tl
g s
Ray 2
————
| L 5
|
Telescope

Fig.9.10: A schematic diagram of Michelson's Interferometer

The whole apparatus is mounted on rigid frame. When a ray of
' monochromatic light from a source is incident on the beam splitter "P’, it is partially
. reflected and partially refracted. The reflected ray (1) falls on a fixed mirror M, and
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A 4




the refracted ray (2) pass through the compensator ¢ P’ falls on moveable mirror M.
These two incident rays now reflected from mirrors M, and M,. The rays reflected
from mirrors are again refracted and reflected from the plate 'P' and eventually
recombine to produce an interference pattern which can be observed by the
telescope.

. The distance travelled by the two rays (1) and (2) is not same. There is.a path
difference between them. Hence we have interference pattern that consists of a series
of bnght and dark fringes. The numbers of these fnnges that pass through a given
point in certain time can be varied by adjusting the mirror M,.

Optically, there is also an extra path difference between the two rays due to
the reflection and refraction of the rays from one medium to other and to eliminate
this path difference the compensator has been used. Hence, the path difference
between the two rays is made zero and we get first bright fringe. Similarly, to get

the next bright fringe, M, is to be shifted at a distance % On this basis, a general

relation can be obtained. If M, is shifted by-a distance ‘x’, and ‘m’ numbers of
bright fringes are obtained due to this shift then,

A
X=m—  ...... (9.12
G e 91)

This is the fundamental relation of Michalson’s interferometer where
n=0,1.2. 3. :

Example 9.3

When the moveable mirror in the Michelson Interferometer is moved in one
direction there are 400 fringes appear to pass through the field of view. If the light
of wavelength 500 nm is used, then what is the distance through which the mirror
has been moved?.

Solution:

We have
Number of fringes = 400

Wavelength = A= 500 nm = 50010~ =5 x 107 m |
Distance through which movable mirror is moved = x =?

Equation of Michelson Interferometer x = m—

2
A
X=m—
2 . '_7
_ 400x5x10 —1x10%m

x = 0.1 mm ' 4 ;

[ —————



9.7 DIFFRACTION OF LIGHT
Similar to "imterference phenomenon, the diffraction phenomenon also
supports the Huygens’s wave theory of light. This phenomenon can be explained by
an example of a small opaque ball which is placed between a source of light and a

~ screen. Now when the balls is illuminated by light from a source, then we observed
that its shadow is casted on a screen as shown in Fig. 9.11(a). The shadow is
completely dark but it has bright spot at its centre and it gives the following two
interesting results. - ;

\~

|

\

ShadowL [

Ball e |
S s ‘

Source

Fig.9.11(a): Experimental arrangemtn of diffraction of light

1, When light travels through an obstacle, it does not proceed exactly along a
| straight path but bends around the obstacle.
2. When the bending rays of light from the opposite sides of the obstacle are
: superimposed then there is bright spot at the centre due to the constructive
interference.
This phenomenon of bending of light X
around the comers of an obstacle is called A\ | !
-diffraction. ' )>>>>> \
Similarly, when light passes through a / /
narrow slit, the light also bends around the / i

edges of the slit as shown in Fig. 911(b). When : .

this bendirg of light is allowed to fall on the :;ﬁf{nl; f,bf),.;}? ﬁ?ﬁ;ﬁgfg;ﬁ:ﬁ:ow
screen, a diffraction pattern which consists of  slit. ~
bright and dark fringes is obtained on it. These results show that diffraction pattern
depends upon the size:of slit. or obstacle. It may be pointed out that diffraction
phenomenon will be observed only if the wavelength of the incident light is greater
than that of the size of the slit. It means size of obstacle or width of slit should be
comparable with the wavelength of light.

9.8 - DIFFRACTION OF LIGHT DUE TO A SINGLE SLIT

To study the diffraction of light, a simple experiment can be demonstrated.
The experimental setup consists of slit ‘AB” of width ‘d” which is illuminated by

A




beam i.e. parallel rays of monochromatic light frbm a source of wavelength ‘A’. A

screen is placed parallel to the slit in order to observe the diffraction pattern on it, as
shown in Fig. 9.12.

. When beam of light is
incident on slit AB in form of a
primary wave 'front then
according to Huygen, each point
on the wave front at position of
slit acts as a sccondary source
and produces secondary wavelets ™|
which propagate toward the
screen.

—e

When these secondary ——
wavelets are superimposed at
different points then it causes the
formation of a diffraction pattern.
Such pattern can be studied on
the screen as shown in Fig. 9.12.

~ In order to dctermine the
position of maxima and minima
at the screen, we consider the sl
points A,X,Q,Y and B along the Silclon Sy
width of slit such that the width
of AQ, QB and XY is equal to
d : .
7" Tnghl Intensity (1)

lo

—_—

Fig.9.12: Diffraction of light through a single slit

Thus,” there is no path
difference between the light waves
from the points A and B or from X
and Y.
When these rays are
allowed to meet at the centre of o A\
the screen ‘O’, a bright fringe is
formed at that point due to the |
constructive interference. : $
Similarly, we select another Central maximum
point ‘P’ at the screen below the Fig.9.13: Diffraction pattern which consists of bright and dark
point O such that the path fn:nges and it is obtained due to diﬂ'r:'\clion through a single
difference between the waves ™

twice the width
&5 other maxima
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from the points A & B at the point P is A but the path difference between the waves
from the pairs of the points A & Q, X & Y and Q & B at the point P is %

Hence dark fringe is formed at the point P due to the destructive interference
as shown in Fig. 9.13.
A general mathematical relation can be obtained if we take the a half section

) d ) X
of slit AQ as 5 and the path difference between the waves from the points A & Q as

A o G ; R
= which is equal to the points from A to M as shown in Fig. 9.12. Thus in triangle

A . | POINT TO PONDER
ﬂ =sin0 How the fringes of interference are
AQ ] - different than that of the diffraction?
2 i
r&h) =sin0 e
(5) 100 UM S/
A )
— =—sinb
2 " 2
A =dsin0

In general, the condition of ‘m’
orders of maxima on cither side from the
centre of the screen is given as;

dsin® = maA ...... (9.1)

m==1,+£2 £3, ..

9.9 DIFFRACTION GRATING
A diffraction grating is a specially

designed transparent glass plate which is, y
used to study the diffraction phenomenon. g

It consists of a transparent glass slab which
contains a large number of parallel and

C
Das

equidistance slits of same width separated ! N

by an opague portion. The number of slits

on the diffraction grating depends upon the

wavelength of the incident light. For Fig.9.14: Diffraction phenomenon through a
example, the wavelength of visible light i diffraction grating

>

—c. —»

=

{9/




—

400nm -700nm, it requires 4000 — 6000 lines per centimetre in order to observe
diffraction effects by visible light. A typical slit width is given as;

c 2x107° 20 — I
5000 m=2x m = 2000 nm Inm=1x10 m

The parameter 'd" is called grating element. This example shows that if the
size of slit is less than the wavelength of the incident light then the diffraction of the
light could be observed.

Practically, the grating which contains too large number of slits can be made
by using a diamond point (cutter) to scratch equally spaced grooves (slits) on a glass
or metal surface. The opaque paste is used to dip the slab into it. Then it is etched
from the surface and the paste remains inside the grooves, thus the lines are opaque
lines and the transparent portions between them act as number of slits. .

Consider parallel rays of light from a monochromatic source which are
I incident on a grating. These rays, in form of wave fronts, are passed through slits,

such that each slit causes diffraction and the diffracted rays in turn interfere with
one another to produce a pattern. This diffraction pattern is focused on the screen
with the help of a convex lens as shown in Fig. 9.14. Let we take the two rays r, and

r,, such that AC is a path difference between them as shown in Fi |g 9.14. ’
In triangle ABC

‘:_g =sin® FOR YOUR INFORMATION

. . The first man-made diffraction grating
AC (path difference) = dsin® ...... (9.14) was made around 1785 by American

For constructive interference (bright fringes) inventor David Rittenhouse, who
Path difference= mA ...... (9.15) stung hairs between two fincly
Comparing eq. 9.14 and eq. 9.15 threaded screws. This was similar to

notable German Physicist Joseph von
Fraunhofer's wire diffraction grating.

dsin®=mh......(9.16)
m=0,%1,+2,+3,...

This is the basic relation of diffraction grating. Where ‘m’ is the order of
fringe or image. For example, if all the diffracted rays are focused at 0 = 0 then, m =
0. This is called the zero order maximum. Similarly, if m = 1, m = 2 and so on then

~ there will be bright images.

Example 9.4

The deviation of second order diffracted image formed by an optacaa grating,
having 5000 lines per centimetre is 32°. Calculate the wavelength of the light used.

Solution: , FOR YOUR INFORMATION
We have Diffraction is maximum when the

Order of diffraction=m = 2

- | width of the opening is less than the
| wavelengthoflight.




Number of lines per centimetre = 5000 lines )

Grating element = =l==——2 107 em =2x10°m

N 5000

Angle =0 =32°
Wavelength=A=7?

Equation of diffraction grating dsin®=mA\

2x107%mxsin32°

A=
A=530nm -~

9.10

=5.30x10"m

Inm=1x10"m

DIFFRACTION OF X-RAYS

X-rays are a type of electromagnetic waves with extremely short wavelength.
Typical wavelength of x-rays is of the order of 1A°(10"° ) Therefore a grating

which contains 5x10” numbers of slits per centimetre i.e. grating element of size
2A° (7 x10~ '°m) is required for diffraction of x-rays.

Practically, it is not possible to
construct an optical grating of such too
small size and large number of slits.
To overcome this problem, W.H.
Bragg and W.L. Bragg suggested the
diffraction of x-rays can be observed
by crystals. A crystal is an element
whose atoms are arranged in a regular
array and they are separated uniformly
by a distance of the order of 2.15 A° or
2.15x107'° m. Therefore, the distance
between two atoms can act as a slit.
The diffraction of X-rays takes place
when these are allowed to fall on the
‘crystal. Consider two monochromatic
rays which are incident on a crystal at
angle ‘0’ with the surface of crystal
‘which is called glacing angle. Let these
two rays be reflected from the 1% two

Upper planc =)

; it ~ J
B\ >/ Id
Lower plane = e e \AY 3

Reflected

Incident
Beam

- - J

d SmO

Fig.9.15: A schematic arrangement for diffraction of
x-rays by a crystal.

FOR YOUR INFORMATION

You can produce single slit diffraction by
holding the index and middle fingers of one
hand together and looking at a bright light
through the space between them. Then press
the fingers together to change the opening size
and observe how the diffraction pattern
changes.

planes of atoms separated by a distance ‘d’. A schematic diagram in Fig. 9.15 shows
that the ray reflected from the lower plane travels farther than the ray reflected from
the upper plane. The path difference between these two reflected rays is given as,
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Path diffcrence - BC+CB ... (917}
In triangle BAC
¢ { ol
- =sint

BC = ACsmb cAC=d
BC =d=zing il 9 1H)
similarly from trangle B'AC,
CH" =dsinf i (9:19)
Putting the values of eq. (9.18) and eq, (9.19) m eq. (9.17)
Path difference ~dsin#+d sinf)

Path difference = 2dsm8 eeed 920
For bright images (Constructive mterference )
Path difference=m (921)

Comparing eq. (9.20) and eq. (9.21)
2dsinf =mkh
This is a Brage's law, where m =1,2.34..
Example 9.5 | a _ ‘ ‘
How far apart ure the diffracting plancf- ina .'\';}L.Tl crystal for which x-rays ol
wavelength 1,54 A" makes 4 glacing angle 16" in the first order?

Solution:
We have | -
Distance between (wo planes d=]

5. = Wavelength of incident x-rays =1.54 A
A=154x10"m

Glacing angle = 16

Order of image = m = ]

According to Brage s Law

2dsin B = nA _
d= (1) (1.54x107")/2sin16"

d=2.79x 107%m = 2.79A

0.1 POLARIFATION SR |
s \E’:’ave nature of light has been voicly e m{mmand diffraction,

o these phenomena cannot explain the transverse o longitudinal behaviour
However, o this purpose, the polarization phenomeron is used. Polarization i
"qfhgh : _w.a\' : L exhibits'iﬂﬂlY for @ transverse wavc, If--*ls'e’,‘Phinﬂ%d'bS' 4n exam ple.
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Consider a string which is passed through two
parallel rectangular slits. When the string is
vibrated up and down, a transverse wave which
consists of crests and troughs propagate along the
string. ' :

If the two slits are also parallel to the
vibration of string, then wave is passed through
both slits and each part of the string vibrates freely
in the slits. The amplitude is not affected as shown
in Fig. 9.16. This is a mechanical transverse o
polarized wave. However, if one slit is rotated by Fig.9.16: Polarization phenomenon
90° in its plane, the slit will point along the gyc to string and slits arrangement.
horizontal plane. As the wave arrives at second the ;
slit, the part of string tries to move vertically but the contact force by the horizental
slit does not allow it. Then wave does not pass through it. This shows that the
incident wave is transverse wave. In case of longitudinal periodic wave along a
stretched string, the wave will not be affected by the rotation of slit. This idea helps
us in the explanation of transverse wave nature of light.

Light waves are electromagnetic in nature. An electromagn
of clectric and magnetic field vectors which are vibrating at right a.ngle. to .each
other. The ordinary light is three dimensional and its components are v1brz'1tmg. in all
direction. Therefore, it is called unpolarized light. However, when the vibration of
light is restricted only in one plane then such light is called polarized light or plane
polarized light. '

3

)

gnetic wave consists

'9.11.1 Production and detection of plane polarized light

The ordinary light by lamp, bulb or the sun is unpolarized because its
components are vibrating in all directions. When all the vibrating components are
! removed except those having vibration along the unidirection plane then it is called
) plane polarization. It can be achieved by various methods such as selective I
~ absorption, reflection, refraction from different surfaces and scattering by small
! particles.
. The selective absorption is being used at large scale to obtain plane polarized
lbght by using a device known as “Polaroid”. It was introduced by two American
Sc1f:ntists E.H. Land and Boston. It consists of a transparent sheet of nitrocellulose
Which has embedded special needle-like crystal of herapathite and it has
transmission axis. Thus, the Polaroid transmits those light waves whose electric
field vector vibrates parallel to the polarizing direction.

|



Consider unpolarized light of ; Polarizing filter

intensity ‘I’ from a source which is
incident on the Polaroid sheet (P)),
those electric field vectors which are
parallel to the axis of transmission are
passed through Polaroid (P,) while the
remaining electric field vectors are
absorbed by the Polaroid sheet. In

output, we have the plane polarized
light whose intensity is less than the AXis  polarizing filter
original unpolarized light waves. | AF

In order to confirm whether the | \t\
light has been polarized, we introduce P Dark
another Polaroid ‘P,’ same as that of (b) \
‘P,” but perpendicular in direction to . P
that of P, as shown in Fig.9.17. ~ Fig.9.17: Polarization of light through polarizers.

It is bcing used as analyzer now (a) Unidirectional light pass through both polarizers
when the transmission axes of ‘P,” and () U:l'adr:;c;;mnm .-
‘P,’ are parallel, then the intensity of :
polarized light from both ‘P,” and ‘P’

‘is same. POINT TO PONDER
' Why the reflected light from surface

WHen the analyzer P, is rotated such that the : ;
( et f p d ‘P’ of water or a mirror cost unplcasing
ransmission axes o | an 2’ @€ | erof in our eyes?

“perpendicular then no light will be transmitted
through the analyzer ‘P,’. Thus, this result has confirmed that light waves are

transverse. If it were longitudinal, then light would not disappear by the rotation of

- the analyzer ‘P;’.
| Nature of light: The light has a dual nature that is Newton defined it in terms

of corpuscle while Huygen defined it in terms of wave.
Wave front: The surface on which all the particles vibrate in the same phase

L J
and have same displacement from the source is called wave front. When the
medium is homogenous then sphencal wave fronts are propagated outward
from the source.

" Huygen s Principle: According to Huygen’s pnncxple each point on the wave

front is being considered as the secondary source tlnat produces secondary

wavelets.
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‘Coherent and monochromatic waves: The waves which have same

frequency with zero phase or constant phase difference are known as coherent
waves and the waves which have single wavelength are known as
monochromatic waves.

Interference: When two or more coherent waves are superimposed then the
amplitude of the resultant wave is increased or decreased and as a result bright
and dark fringe are obtained. This phenomenon is known as interference of
light.

Young's double_slits experiment: The result of Young’s double slit

experiment is a proof of Huygen’s wave theory of light. According to this
experiment the position of bright and dark fringe at the screen are given as;

For bright fringes, dsin® = mA

l
For dark fringes, dsin0= (111+E)k

Fringe spacing between two successive bright and dark fringes is given as

AL
-
Y=

Thin film: A thin film is a transparent medium with thickness comparable with
the wavelength of light falling on it. Due to an extra path difference, the
position of bright and dark fringes is interchanged in thin film.

Interferometry: It is the technique of diagnosing the properties of two or more
waves by studying the pattern of interference created by their superposition.

Interferometer: The instrument used to interfere the waves together is called

an interferometer.

Michelson _interferometer: It is an optiéal" instrument which is used to

measure extremely small distance with high precision using interference
phenomenon. ‘

Diffraction: Bending of light through edges of slit is known as diffraction.

Diffraction grating: A diffraction grating is a specially designed transparent

glass plate which is used to study the diffraction phenomenon. A mathematical
relation for diffraction grating is given as dsin0 = mA

X-ray Diffraction: X-rays have shorter wavelength and these can be diffracted
by a crystal, w‘here the inter atomic distance between two atoms acts as slit.
Bragg’s law for x-ray diffraction is given as 2dsin0 = mA

Y




«  Polarization: The confinement of beam of light in a given direction or pl.ane is
called polarization of light. This phenomenon proves that the nature of light is

transverse.

e  Polarized light: A light wave in which its electric field vectors are vibrating in
unidircctional is known as polarized light. Polarization phenomenon proves

that the nature of light is transversc.

O  Multiple choice questions.
1. Who presented the corpuscular theory of light?

(a) Huygen (b) Newton (¢) Young (d) Maxwell
2. - Which phenomenon docs not explain the of wave theory of light?
(a) Polarization (b) Interference (c) Diffraction (d) Compton effect
3. Interference of light occurs when the source of light are; ]
(a) Monochromatic (b) Coherent
(c) Closed to cach other (d) All of these

4. In Young’s double slit experiment, if the distance between (Wo slits is halved
and distance between slits and screen is doubled then what will be the fringe

width? :
' (a) Remain same (b) Halved (c) Doubled (d) Quadrupled
5. In Young's doublc slit experiment, the ratio of fringe width of bright to dark
fringe is;
(a) 1:1 (b) 1:2 (c) 2:1 (d)2:3

6. In the Young's double slit experiment if white light is used then;
(a) Bright fringes witl be seen '
(b) Dark fringes will be seen
(c) Alternate dark and bright fringes will be scen
(d) No interference fringes will be seen
7. When light is reflected from dense medium to rare medium then its path
difference. P

. (a) Remains same (b) Changes by (2‘_)
2

(c) Changes by A (d) Changes by % .
\ /
8. Michelson interferometer is an optical instrument which is being used for the
measurement of} ' : '
(a) Velocity (b) Frequency (c) Amplitude . {d) Wavelength




10.
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11,

13.

14.

16.

Mathematical condition of destructive interference in thin film is;
(a) m. o) = © (m%)x (@ (m+2)

Which parameter of light does not change when light is reflected from dense

medium to rare medium? |
(a) Frequency (b) Wavelength (c) Velocity (d) Amplitude

In Michelson interferometer, a fringe is changed by changing the position of
movable mirror at a distance

A A

(a) — b) = (c) A (d)2x
4 2 .

Number of slits in a diffraction grating depends upon.

(a) Speed of light (b) Frequency of light

(c) Wavelength of light (d) Amplitude of light

If the wavelength of the incident x-rays is 2x10™'"m then the required number
of slits per centimetre for its diffraction should be

(a) 5x10° (b) 5x10’ (c) 5><108 (d) 5x10°
Which phenomenon has-confirmed that light i is transverse wave?
(a) Interference  (b) Diffraction (c) Reflection (d) Polarization

If the unpolarized incident light with intensity ‘I’ is polarized by a Polaroid
shcct then the intensity of plane polarized light will be;

oF (b) VI ()1 @ 21
Which one of the following cannot be polarized.

(a) X-rays - : (b) Radio waves

(c) Ultravno?ct waves (d) Sound waves

" SHORT QUESTIONS

How can you define light?

Does the ether exist as proposed by Huygen for wave theory?

Under what condition, the spherical wave fronts are formed?

What is Huygen's principle? ' |

What are the conditions for interference of light?

How coloured fringes are obtained on soap bubble?

How many phenomenons are there in the favour of wave theory of light?
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8.

9.
10.

12

L

I11.

16.

. Find the grating element of the diffraction grating contammg 2000 lmes/cm ?

' and detection of polarization of light. - 5
| ~ NUMERICAL PROBLEMS 3

1.

L) .

What is the cause of changing the position of bright and dark fringes in
interference by thin film?

What is the difference between interference and diffraction? - i

How diffraction pattern is obtained on the screen by using principle of
superposition? .

Why diffraction of x-rays is possible only by a crystal”

2. What are Polaroid and polarizer?
13.
14.
15.

How can polarized light be detected?
Can visible light produce interference fringes?

In the Young s double slit experiment, one of the slits is covered wnth blue
filter and other with red filter. What would be the pattern of light intensity on
the screen?

State whether the frmgc w1dlh for bright and dark fringes in Young’s
interference is always constant?

—

T — -

" COMPREHENSIVE QUESTIONS =

What is meant by wave front? Under what conditions the spherical and planc
wave fronts are formed. !

What is the Huygens's prmcnple" Explain that how can you obtain the
secondary wave front by the primary wave front.

State and explain the Young's double experiment for the interference of light.
Also discuss the position and width of bright and dark fringes.

Explain the interference phenomenon in thin film and derive its mathematical |
formula for a constructive and destructive interference. -

‘State and explain Michelson interferometer and it working principle in the i
determination of wavelength of bright fringes.

What is diffraction of light? Explain the diffraction of light.due to a single slit.
State and explain diffraction grating and its working principle. - ’ "
Discuss the diffraction of x-rays by a crystal and explain Bragg's law. . !
What do you know about the polarization? State and explain the production

~

Light of wavelength 400 nm is allowed to illuminate the slits of Young’s
experiment. The separation between the slits is 0.10 mm and the distance of the

@
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screen from the slits where interference effects are observed is 20 cm. At what
angle the first minimum will fall? What will be the linear distance on the
screen between adjacent maxima? (0.11°, 0.8mm)

In a double slit interference experiment, the distance between the slits is 2 mm
and the fringe spacing is 0.45 mm on a screen which is 200 cm away from the
slits. Find the wavelength of the light. (450 nm)

Interference fringes were produced by two slits, 'spaced 0.2 mm apart, on-a
screen at a distance of 150 cm from the slits. The third bright fringe is found to
be displaced 7.5 mm from the central fringes. What is the wavelength of light
producing the fringes? ‘ (333 nm)
Green light of wavelength 540 nm is diffracted by grating having 2000
lines/cm. (a) Compute the angular deviation of the third order image. (b) Is 12t
order image possible? (18.9°, impossible)
Sodium light of wavelength 590 nm is incident normally on a grating having
600 lines per millimetre. What is the highest order of the spectrum obtained
with the grating? (2)
How many fringes will pass a reference- point if the moveable mirror of
Michelson’s interferometer is moved through a distance 0.07 mm using light of -
wavelength 580 rm\l? ’ : (241)
In a Michelson interferometer, 100 fringes cross the field of view when the
movable mirror is displaced by 0.02948 mm, calculate the wavelength of the
monochromatic source. (5896 A)

Cilculate the distance through which the mirror of .the Michelson
interferometer has to be displaced between two consecutive positions of
maximum distinctness of D, and D; lines of sodium. Wavelength of D, line is
5890A and of D, line is 5896A. (0.2894 mm)

X-rays of wavelength 1.50 nm are observed to undergo a second order
reflection at a Bragg’s angle of 15° from'a quartz (SiO,) crystal. What is the -
interplanar spacing of the reflecting planes in the crystal? (5.79 nm)
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Students Learning Outcomes”
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Thermal equilibrium _ This chapter is built on

Heat and work : 35 Heat Physics IX

Internal energy :
First law of thermodynamics Thermo Chemistry X]

Molar specific heats of a gas
Heat engine

Second law of thermodynamics
Camnot’s cycle

Refrigerator

Entropy

After studying this unit, the students will be able to:

Describe that thermal energy is transferred from a region of higher temperature to
region of lower temperature.

Describe that regions of cqual temperatures are in thermal equilibrium.

Describe that heat flow and work are two forms of energy transfer between systems
and calculate heat being transferred.

Define thermodynamics and various terms associated with it. .

Relate a rise in temperature of a body to an increase in its internal energy.

Describe the mechanical equivalent of heat concept, as it was historically developed,

and solve problems involving work being done and temperature change.

Explain that internal energy is determined by the state of the system and that it can be
expressed as the sum of the random distribution of kinetic and potential energies
associated with the molecules of the system.

Calculate work done by a thermodynamic system during a volume change.

Describe the first law of thermodynamics expressed in terms of the change in internal
energy, the heating of the system and work done on the system.

Explain that first law of thermodynamics expresses the conservation of energy

Define the terms, specific heat and molar specific heats of a gas.

Apply first law of thermodynamics to derive C,-C, =R.

State the working principle of heat engine.

Describe the concept of reversible and irreversible processes.

State and explain second law of thermodynamics.
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.o Explain the working principle of Camot’s engine ‘
Explain that the efficiency of a Camot engine is mdependent of the nature of the
working substance and depends on the temperatures of hot and cold reservoirs.

Describe that refrigerator is a heat engine operating in reverse as that of an ideal heat
engine. '

Derive an expression for the coefficient of performance of a refrigerator.

Describe that change in entropy is positive when heat is added and negative when
heat is removed from the system. '

Explain that increase in temperature increases the disorder of the system
Explain that increase in entropy means degradation of energy.

Explain that energy is degraded during all natural processes.

Identify that system tend to become less orderly over time.

INTRODUCTION

In the past, the scientists believed in the caloric theory of heat. According to
this theory, heat is a fluid called caloric which flows from the hot body to the cold
body. After the development of kinetic theory, it has become a well known fact that
heat is a form of energy called thermal energy and it flows from the hot body to the
cold body till the two bodies attain the same temperature. This state of the same
temperature of the bodies is called thermal equilibrium.

The kinetic theory also explains the random motion of atoms and-molecules
of matter. Such motion of atoms and molecules depends upon the temperature. The
sum of kinetic energies and potential energies of the moving atoms and molecules of
a substance is called its internal energy. '

Thermodynamics is the study of heat energy and its transformation into other
forms of energy and vice versa. It is an experimental science based on the study of
the behaviour of solids, liquids and gases using the concepts of heat and
temperature. In this chapter, thermodynamics can be explained under the following
two laws. The first law of thermodynamics is based upon law of conservation of
energy and it deals with the relationship between work and heat energy, that is, how
the heat energy is converted into the other forms of energy and.vice versa. The
second law of thermodynamics explains not only the proper method of conversion
of heat energy into mechanical work but also a specific direction of flow of heat.
| We will study the efficiency of a heat engine, theory of Camot engine,
Carnot theorem, working of a refrigerator and the concept of entropy in lhlS chapter.’

10.1 THERMAL EQUILIBRIUM

We have studied mechanical equilibrium in unit 2 titled as 'Vectors and
Equilibrium'. But-in this chapter we deal with thermal equilibrium. The thermal

U
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equilibrium can be explained by an example of two
bodies at different temperatures which are made in
thermal contact. If both the bodies are good
conductor of heat, then there is a transfer of heat
energy from the hotter body to the cooler body as
shown in Fig. 10.1. _ k PR e O
In other words, the hotter body loses thermal Nonethestfow
energy whereas cooler body gains thermal energy. Fig.10.1: A state of Thermal
This process of transfer of heat energy continues -dvilibrium of the two bodics having
till both the bodies attain the same temperature. f:a::ftin;‘f’;?;? {fcf’\{‘fc‘:ﬁ;‘c,',j -
This state of the same temperature of the bodies is '
termed as thermal equilibrium which is stated as,

The bodies are said to be in thermal equilibrium when they have same
temperature and there is no transfer of heat energy between them

For example, if we feel that we have fever, we might place a thermometer in
our mouth and wait for a few minutes. There is transfer of heat cnergy between the
thermometer and our body. Because our body is hot as con;parcd to the
thermometer, therefore, the reading of the thermometer increases. After some time,
the rate of transfer of energy between the thermometer and our body becomes cqual
and our body and the thermometer are then at the same temperature. At this point
our body and the thermometer are said to be in the thermal equilibrium.

10.2 INTERNAL ENERGY

All matter is made up ?f atoms and POINT TO PONDER |
molecules. According to the kinetic lheory, Motmial teniperatife of @ man: ]
these atoms and molccules are always in | 37°C. What will be the temperature
motion. For example, atoms in solids vibrate | of a dead body? ‘ ’J
back and forth about their equilibrium -

_ positions. In liquids, the molecules wander around the other molecules. In gases, the
molecules are in random motion with high speeds and have frequent elastic _.
collisions with ope another. The motion may be translational, vibrational and
rotational. . .

The atoms and molecules of a gas possess both kinetic erergy due to their ¢
translational, rotational and vibrational motion and potential energy associated with
the forces between molecules.

Thus, the internal energy of the gas is defined in terms of the sum of the
random distribution of kinetic and potential energies of its atoms or molecules.

It is stated as the sum of all kinds of kinetic and potential energies of the
system, comprising of gas molecules, is called its internal energy
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In the study of thermodynamics, usually ideal gas (mono-atomic gas) is

. Considered as a working substance. The molecules of an ideal gas do not exert inter

molecu]ar forces, therefore, its molecules do not possess potential energy. So, the
internal energy-of an ideal gas is only due to the translational kinetic energy of the -

- molecules. In case of diatomic gas, the molecules possess transitional, vibrational

and rotational kinetic energy as well as potential energy. Therefore, the internal

tnergy of dia-atomic gas is a sum of all kinds of kinetic and potential energies of
their molecules.

10.2.1 Thermodynamics Systems

Thermodynamics is a branch of physics in
which we study about the heat energy and its
conversion into other forms of energy and vice versa.
For example, the conversion of heat energy into
mechanical. This conversion of energy from one
form to another can be studied by making a separate 3
environment within a boundary has its own specific §°““d“'y
values, as shown in Fig.10.2. The boundary may . ' _
enclose a solid, liquid or gas. This is called system Eﬁi&tquﬁgmlﬂ
and defined as; The collection of matter within a  distinct boundary.
distinct boundary is called system. ‘

Everything outside the boundaries of the system which has a direct bearing
on its behaviour is known as surrounding. A system may have the potential to
exchange energy with its surrounding. Because the values of thermodynamics -

variables pressure, volume and temperature of a system are different from the values
of the surrounding.

- There are three types of systems as shown in Fig.10.3. These are explained as;’
(i) Open System

" A system which can interact with its surroundings both in terms of heat
energy and matter is called open system e.g. plants and animals.

(ii) Closed System -

A system which can interact with its surroundings only in terms of heat
energy is called closed system e.g. balloon and cylinder.

(iii) Isolated System
A system which has no interaction with its surroundings in terms of heat

Surroundings -

Surroundings

- energy and matter is called isolated system e. g. thermos flask.
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“Matter | (water vapor)

y and matter, (b) A closed system which transfers .
er energy nor matter. ‘

transfer both cnerg

Fig.10.3: (a) An open system which
system which transfers neith

only energy, (c) An isolated

10.3° WORK AND HEAT .
but they are related to each other.

Work and heat are two different quantities
plain such relationship between work and

to ex
output is work

A heat engine is a good example
heat. For example, in heat engine, heat energy serves as input and its
'f heat energy in a heat engine enters into a

done. Similarly, when an amount 0
cases the internal energy of this system and work is
sitive, while

‘thermodynamics system, it incr
done by the system. The work done by the system is‘considered as po
. work donc on the system is considered as negative.

Rumford observed that a large amount of heat was

A British engincer Count
liberated during boring the barrel of cannon. He concluded from this experiment that
heat can also be produced by friction and its amount depends upon the mechanical

work against the friction. Later on Joules did a series of experiments and established
a relationship between mechanical work and heat energy- According to his results,

work done is directly proportional to the amount of heat generated.

W Q
: , -wW=JQ ,

where J is'a mechanical equivalent of heat and its value is 4.1 86 joule per caloric.

Now we study further the relationship ArcaA Final
between. work and heat by an example of a . piston
system (Cylinder) which contains gas at ' . Position
pressure P. The cylinde? has a moveable piston — Xx '
of cross-sectional area ‘A’ and at equilibrium AV:"A*{ (E—— 1L
state. The volume occupied by gas is V™. - saaeoagh

When the pressurc is reduced, the B 1 Or iginal "
volume of the system is increased from V, to AR ::::;:;:m
V, at a distance ‘Ax’ as shown in Fig.10.4. ULk J i

It means that work is done by the system which
. : Fig.10.4: W ork done by 2 system due 10

is given as; _
, " the expansion of volume by reducing

W=FAx the pressure.

: -éio ’
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But F=PA
W= PAAx | . _
W=PAV * AV = A Ax = (Change in volume)

W=P(V,-V,) .....(10.1)

This is a work done by the system. The work done at constant and at variable
pressure can be represented graphically on a PV-diagram in the form of -a straight
horizontal line and a curved line respectively as shown in Fig.10.5. The area under
these lines is equal to-work done on the system.

Thus, these graphs show that the work done on or by the system depends
upon the limiting values and the path followed.

Pressure

" Work=W=area=PAV,

e e AV‘-V,—V

)
|
|

o

Pressure

Work- W-aua‘

(a) i 1 o L i 1 - (b) i 1 A 1 4 1
Vi Volume V2 Vi Volume Vi

Fig.10.5: Thermodynamics work (a) The arca under the straight line in PV-graph shows the work
done at constant pressure (b) The area under a curved line shows the work done at variable pressure

Example 10.1

How much work is done by an ideal gas during expansion from its initial

volume of 4 litres to a final volume of 24 litres at constant pressure of 8.08x10°
Nm™? | : “« -

Solution:

Work =W =? ;

Initial Volume = V,; =4 litres = 4x 10°'m’

Final Volume = V, = 24 litres = 24x10~> m’

Change in volume = AV =V, -V,

Change in volume = AV = 20;<10'3m3

Pressure = P = 8.08x10°Nm™

Work = PAV

Work = 8.08x10°x20x107
=16.2x10°J
=16.2kJ

\ﬂy
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10.4 FIRST LAW OF THERMODYNAMICS

First law of thermodynamics is based upon the law of conversion of energy
i.c. when heat energy is transformed into other forms of energy or when the other
forms of energy is transformed into heat energy, then the total energy of the closed
system remains constant. Let heat energy ‘Q’ is added into a thermodynamic system
and the system does not work during the process of transfer of heat but the internal
cnergy of the system increases from its initial state U, to its final state Up This
change in internal energy AU is equal to Q, that is, AU = Q.

When a system does work ‘W’ due to its expansion but no heat is added
during the process then internal energy decreases that is, when ‘W’ is positive, AU
is negative and vice versa. Now when heat transfers and both change in internal
energy and work done by the system occur then the heat Q is given as;

Q=AU+W ....(10.2)

This is the mathematical form of first law of thermodynamics which is stated
as; "When heat Q is added to a system, a part of this heat is used to change the
internal energy of the system and the remaining energy for work done by the
system". This statement of first law of thermodynamics also provides universal
truth that energy is neither created nor destroyed in any thermodynamic system.

In using first law of thermodynamics, a proper sign should be used. That is,
Q is taken as positive when heat energy is supplied to the system and negative when
heat energy is taken from the system. Similarly, W is taken as positive when the
work is done by the system and negative whenit is done on the system.

Example 10.2
When 400 J heat is transferred to the system during expansion then 350
joules of work is done by the system. What is the change in its internal energy?

Solution:
Heat energy added to system =AQ =400 J
Work done by the system = AW =3501J
Internal energy =AU=?
From first law of thermodynamics AQ =AV + AW
AU =AQ~AW
AU =400-350
- AU =50)

10.4.1 Applications of first law of thermodyhamics

The first law of thermodynamics can be studied under the following four
processes; each has its different conditions and properties.

A
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(a) Isochoric Process

It is a process in which the volume of gas of the '

given system remains constant,

Consider a finite volume of gas enclosed ip
cylinder which has non-conducting walls and piston but g
conducting base. Let an amount of heat ‘Q’ is supplied to > e
the system. When gas is heated at constant volume (fixed /

piston) its pressure increases from P; to P, but the work is AQ f AV=(
neither done by the system nor on the system because

- there is no expansion or compression of the system that is

AV =0 as shown in Fig.10.6.
Thus the first law of thermodynamics becomes,

AU =AQ+AW
AQ =AU +PAV
As AV = 0 therefore

AQ =AU ...... (10.3)

This result shows that under isochoric
process all the supplied energy is used to increase
the internal energy of the system.

Graphically, a straight vertical line in P-V
graph represents first law of thermodynamics under
isochoric process as given in Fig. 10.7.

(b) Isobaric Process

A process in which the pressure of the gas of
the given system remains constant is known as
isobaric process. :

Consider a finite volume of gas is enclosed in
cylinder with moveable piston. The walls and piston

of the cylinder are insulator whereas its base is’

conductor as shown in Fig.10.8. Let an amount of
heat ‘Q’ is added to the system at constant pressure
. «then its temperature increases from T, to T,. As a
result, gas is expanded from V,; to V, due the
increase in its internal energy. If-the piston moves

Fig.10.6: Isochorie Process
When volume remaing
constant and no work is

done on or by the system

A
Vi
g AV=(
g
o
)
Volume T
Fig.10.7: A straight vertical line in

l)

-V graph shows isochoric process

2 ]

o< —a |
- "

1
Fig.10.8: Isobaric Process, where

pressure remains constant and work
is done on the system.

slowly and the displacement of the piston is kept very small, the pressure of the gas
will not change much and can be considered constant, and some work is done by the
system. Thus first law of thermodynamics under these conditions becomes,'
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" thermodynamic

AQ =AU AW
As W =Fd
W = FAy | ;
y = change in volume

. W =PAAy =PAV AV=AD

’ | pQ=BU+PAV-- (10.4) \
Under isobaric process, all the supplied p1,V1,Ti

heat energy ©Of the system 18 converted into "

work done and increase in intern
Graphically, 2 straight horizontal lin€ in

: pl,VZ,TZ '

p-v  graph represents first law of [

s under isobaric ~ process as o

0.9. The P-V graph of isobaric : . _ o
Fig.10.9: A straight horizontal linc 1n P-V

shown in Fig.1
Isobar. graph shows isobaric process

process is called.

() Isothermal Process
. A process in which the temperature of ‘ ||
gas of the given system remains constant is
known as isothermal process- = 1T ol e LY— d

| Consider a gas which is enclosed in @ ’ Tainking 1] -
cylinder that has non-conducting walls and 1" 0 . ..

iston but its base is conducting as shown in Y% o s g .
Fig.”10.10. When heat energy AQ is added to i - -/——'}T&“

ture of the gas AQ Rescrvoir

the system then the tempera

increases. 10 keep temperature constant, the

system is allowed to expand slowly from V, to Fig.10.10: lsolhcr.m:ﬂ Process in which

V2- ' ; temperaturc r}cmams constant

The internal energy of the gas does not change during this isothermal

expansion, as the temperature of the gas remains constant. So, AU=0 and hence at
e first law of thermodynamics s written as; '

constant temperature, th
; AQ=AU+ AW y. . APV
AQ=PAV .....(10.5) P N

_ This equation shows that the heat energy \c"os,,"‘"/"““‘ Eapassic?
supplied appears in »the form of work. Since the : ' B (P:V>) -
work is don€ by the system, so AW is positive. _ ‘

Graphically, 2 curved line called isotherm ° 4_)_.5.———\7——/'
represents the first law of thgnnpdynamics under - g 10.11: A curved line . p.v graph
wn in Fig. 10.11. repxiese.ms. he isothermal process:

isothermal process as sho



e =

Conversely, if the gas is compressed, the work is being done on the system
and an amount of heat AQ has to be allowed to leave the system.

(d) Adiabatic Process

; A process in which heat energy neither "
enters nor leaves the system is called adiabatic ===
process. : et JAY=d
Considering a gas which is enclosed in a l

cylinder that has non-conducting walls and
piSton as shown in Fig. 10.12. When the system
is placed on an insulator stand then there is no
transfer of heat into or out of the system, tha& is
AQ=0.

Now when the system is allowed to
expand by reducing the. pressure the internal
energy of the system decreases due to decrease in temperature. Similarly, when the
system is compressed by applying pressure the internal energy of the system
increases by increasing the temperature. Now first law of thermodynamics under the

adiabatic process becomes
0=AU + AW
AU=-KW. . P
AU = -PAV ......(10.6)

In adiabatic process, the work is done at
the cost of internal energy. of the system. In
other words, if the gas expand it will be cooled
and it will be heated on compression. ,
Graphically, a curved line in P-V graph shows : B B

" adiabatic process, but the curve of adiabatic is. ' A
steeper than that of the curve of isothermal as
shown of Fig.10.13, because of the rapid %

~ \variations in temperature in adiabatic process | &10-13: The curved lines of Adiabatic

and Isothermal P-V graph, where the cure
take place durmg its expansion or compressxon of Adiabatic is faster.

Example 10.3

A gas is enclosed in a cylinder with a moveable piston of cross-section area
0.1 m. If the piston of the cylinder is allowed to expand through a distance of 5 cm
by adding heat energy of 45 J to the gas, then what is the change in internal energy
inside the cylinder at constant pressure of 8000 Nm™.

fo— < —|

Insulator Insulator

Stand Stand

Fig.10.12: Adiabatic Process in which .
heat energy is not transferred.

2>

Isothermal

. N o
Adiabatic = S5 C

e -
-
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Solution: .
Cross-sectional area of the piston = A= 0.1 m ,
Distance covered by the piston = AX = 5cm=5x10"m
=451]

Heat energy added to system =
Internal energy = AU = ?
Pressure = P = 8000 Nm™
Work done by the system
~ Work =PAV
Work = PAAX
Work = 8000 x 0.1 x5 X 107
~ Work= 401]
According to first law of thermodynamics
AU =AQ - AW
© AU=45-40 |
AU=51]
10.5 SPECIFIC HEAT AND MOLAR SPECIFIC HEAT

If a substance is heated then its temperature raises. This raise in temperaturc
is the mass of the substance, more

of a substance depends upon its mass i.e., more 1
heat is requi ise i .
at is required to raise 1 temperature. Thus, ~olar Specific Heats of

the amount of heat energy required to raise Various G
the temperature of any substance through 2 || netsr Sp’:crl'l;’c“:m’:;s:';mohm

unit degree s called heat capacity. The |FGos TG | Cv |CrCv]| I°
Cp/Cy

experiment shows that the heat encrgy is
directly proportional to the temperature, that is “Monoatomic gases
AQ < AT- e 1211 B | 8 LIS
AQ =CAT : Ar 21 | 13 | 833 .67 |
‘ . . AQ : Ne 21 | 13 | 812 1.64
Heat capacity (C) m=_  (10.7) || Kr 21 | 12 | 849 1.69
=2 ‘ AT Diatomicgases i
Some materials are easier to heat than the |[Hy |29 | 20 g33 | 14! _
others. For example, it takes more erergy to N, 29 | 21 | 833 1.4
raise the temperature Of lkg of aluminum O 29 | 21 | 833 14
through 1°C, than to raise the temperature of | co, | 29 | 2 833 | Lo+
lkg iron by the same temperature. Therefore, Clh 1.3 L 20 _ -?iﬁ.:;:lz.ﬁf‘
the amount of heat required to raise the ‘goom'o%&zg.--‘;'g —T 1.3
temperature of unit mass of a substance So: =20 | 31 é“:ﬁ
through a unit degree is called specific heat [ H0 [ 35 27 837 | 13
and its value can be calculated as; CH, | 36 | 27 841 ____'_3,1/
y

AQ < AT -
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AQ ocm

AQ o« mAT
AQ =cmAT
AQ

C=—..... 10.8
mAT (, )

The unit of specific heat 'c' is Jkg™'K™'. As one kilogram mass of different

substances contains different number of molecules and has different specific heats
so mass of substance is replaced by mole because one mole of any substance
contains the same number of molecules. Thus the specific heat capacity in term of
moles is known as molar specific heat. It is stated as; ""the amount 0f heat energy
required to raise the temperature of one mole of a substance through one
kelvin is called molar specific heat". The equation for molar specific heat is given

by,

where ‘n’ is the number of moles of the given sample.

In case of solids and liquids, the change in their volume and pressure due to
increase in temperature are very small and can be neglected. In case of gases the
situation is different, because there is variation in pressure as well as in volume of
gas with the raise in temperature. To study the heating effect of the gas, either
volume or pressure of the gas should be constant. Thus, molar specific heat of a gas
is defined under the following two ways.

1)  Molar specific heat of gas at constant volumc

The amount of heat required to raise the temperature of one mole of gas
through 1 K at constant volume is called its molar specific heat at constant
_ volume. It is denoted by Cy and it is expressed as;

AQ
Cy=—=.....(10.10
v =y mann(10.10)

2)  Molar specific heat of gas at constant pressure
The amount of heat required to raise the temperature of one mole of gas

through 1 K at constant pressure is called its molar specific heat at constant
- pressure. It is denoted by Cp and it is expressed as;

:—Aﬂ (10.11)
nAT: e
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10.5.1 Prove that Cp —Cy =R

Consider two systems that contain equal amount of gas but heat is added to
first at constant volume and heat is added to the second at constant pressure as
shown in Fig. 10.14. When both systems are heated to raise their temperatures then
the heat energy increases their internal energy. But the experiment shows that the

system at constant pressure requires more heat than the system at constant volume
for the same temperature increase. That is,

AQ, >AQ,
AQ, =AQ, + Work done due to expansion of the system

nC,AT =nC AT + PAV
As PV =nRT
PAV =nRAT % REpALEN
HCPAT = nCvAT + HRAT A iy Cossmnl : I‘m{qrt .
nC,AT =nAT(C, +R) aoscars | [ oune
¢, =C 4R - f 1
C,-C, =R.....(10.12) 0=f)"AT Q :‘f)"”
Equation (10.12) shows that Cp > Cy by an gy 10.14: 1cat transfer into the
amount equal to universal gas constant ‘R’. system (a) at constant volume and

(b) at constant pressure

Example 10.4
The temperature of a silver bar rises by 10°C when it absorbs 1.23 kJ of heat
energy. The mass of the bar is 525 g. Determine the specific heat of the silver.

Solution: AT =10°C - 0°C = 10°C
AQ =1.23kJ=1.23x10")J
m =525 g=0.525 kg

csilvcr_
Csi!vcr = AQ
mAT
_ 1.23x10°

Canes = =234 Jkg™'C™"
"= 0.525x10 el

10.5.2 Adiabatic Equation

Consider a system (container) which contains a gas. The walls and
moveable piston of the container are perfectly insulated from the surroundings. So
heat energy neither enters nor feaves the system and AQ = 0. It sneans the work done
under adiabatic process is possible only at the cost of its internal energy during the

3,



compression and expansion of the system. Thus, 1* law of thermodynamics under
adiabatic process is given by;
0= AU + PAV
AU=-PAV ......(10.13)
According to molar specific heat at constant volume
AQ=nC,AT
But 1* law of thermodynamics under isochoric process
AQ=AU -
AU=nC,AT
Putting the value of AU in equation (10.13), we get
LA nC,AT=-PAV ......(10.14) -
As PV=nRT

= VAP=nRAT (at constant volume)
= AT= Ay
nR -
Substitute this value of AT in equation (10.14) |
nC, - LI POINT TO PONDER
nR ; Why there is space between the two
AP ‘R AV | walls of a thermo flask?
=——X
P C, .V |
Bllt, CP —C\' — R . \v nw] ) I F""!
AP _ (cC,-c, AV | ﬂ |
- P i\ Cv A ' ' ;
AP (Cp "/ Insulation
e i ~1 '
P . Cv J . System |
CP ' e .  S——— Y |
But, **=-=¥= Ratio of specific heats ==
CV 4 ' An diabatic process is that
AP : AV. process in which the heat
=k _(Y = 1)_ energy ncither enters not
P . Vv - leaves the system.
AP __ AV AV |
P Vv \"%
As —'is very small so it can be neglected.
AP __ AV
P v




£+7_A—-Y- =0

\'} : : :
By the operation of integration, the following result 1 obtamed as;

py’ =Constant - (10.15)- |
This is known as adiabatic equation and 'y’ 1S adiabatic constant.

10.6 REVERSIBLE AND IRREVE
When a thermodynamic proces is operated by changing the values of the

given system then there are two possibilities, the state of the system remains same
due to the reverse direction of the process after the succession of an event or the

state of the system changes due 10 procccding the process in one direction. Thus on
the basis of these two reasons, & process of thermodynamics is defined under the

following two ways such as reversible and irreversible process:

1) Reversible Process
When a thermodynamics system operatcs
such that a change takes place and it returns 10 its
initial state after 8 certain fixed interval of time
then the process is called a reversible process
For example, motion of a piston in a heat
engine when it completes one cycle under four
steps 1S 4 reversible process as (shown ‘in
Fig.10.15. Similarly, the conversion of jce into

water then water into ice is also an example of
the reversible process. [n other word, a reversible  Fig.10.15: Reversible and |

process is 0ne which can be retraced in exactly process in one cycle
reverse order and it does not produce any change in the surrounding

done by the substance.

ey crsible

if the work 18

2) lrricvcrsiblc Process:

e %cn a thcn.nodynamic system operates such that its function ch
its initial value to its final value but does not returns to its initial value
process 1S called irreversible process. For example, the flow of heat from a hot body
to a cold body 1s an sreversible process because heat never flow from 2 cold body 1

a hot body. Simitasly, burning of fuel and burst tyre are also irreversible process:

A heat engine 1Is an important device which converts heat en¢
duced-

mgchani.ca} energy or Work. In the beginning a steam heat engine Was intro
this enginé water was boiled in a vessel cailed steam boiler and engine ok hea!

. 10.7 HEAT ENGINE : :
rgy ¢nto

32



B A e e L

from this steam boiler and converted a part of it into work. Now in the present age,
petrol engines and diesel engines are being used at large scale. These engines
consist of a cylinder which contains a gas such as air with a moveable piston, hot

reservoir (source) and cold reservoir (sink).

Working of heat engine
A schematic diagram of a heat engine is shown in
" Fig. 10.16. It shows that a heat engine that works between
hot and cold reservoirs. That is, the engine gains heat
energy from a source at a high temperature and converts a
part of this heat energy into a mechanical work and the
remaining part of energy is rejected through a sink as
shown in Fig.10.16.

In order to get a continuous steady mechanical ' Q.
energy, the heat engine is made to operate in a cyclic _« 8
process which absorbs heat Q, and rejects heat Q,. The [ Cold reservoiratT,
initial and final internal energies of the system under this n _

. . Fig.10.16: Schematic diagram
cyclic process remain same. . of heat engine, where engine is
Thus first law of thermodynamics becomes working between hot and cold

AQ =AU - Work reservoirs
But AU =U,-U, =0

Q,—Q, =Work ...... (10.16)
The efficiency of a heat engine is defined as the ratio between the work done

by the engine to the supplied heat energy.
Output POINT TO PONDER
Efficiency (1) = What is the main difference between
~ Input steam and diesel engine?
Efficieicy (i) = Wo.rk done
: Supplied energy
Efficiency (r)'="2=%
. | Q,
n=1-2 (1017
) Ql

This result shows that the efficiency of a heat engine depends upon the
absorbed heat Q; and discarded heat Q,. As heat energy is proportional to the
temperature, so the efficiency of heat engine can also be expressed as; |

T, N
S [ S 10.18
n T ( )




av - 1F Ty = 0K (-273°C) called absolute temperature then the efficiency of heat.
engine wouild be 100% but this is an ideal or a theoretical case. |

- Eanipletg.d o

I v o P LN LA TR . .. p . ' . .

R'N’E,l <3 '".,' € tHEs maximypm:: possible efficiency of a heat engine operating
emperature limits of 150°C and 450°C. |

. Efﬁcicncy (m) =7
" =, :Initial temperature= T =450°C =450 + 273 = 723 K
£ g a3 “ .;!—‘:i‘l.]al__',t.cmp(;'rlaturc= T,= 150°C = 150 + 273 = 423 K
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T LT
by s fe oo =140.585
B ,\ e 11 =0415
> N T Lot - LY 2
e e F ey =1 =0.415x100 = 41.5%
i, Foroenigge Blficiency =n :

“"*Jo.8 SECONDLAW OF THERMODYNAMICS
' In first law of thermodynamics, we have
.discussc-d the conversation of heat energy intq a
 useful work. Now second law of lhcrmodynmmcs
a ﬁdt only \{ériﬁCS'lllc,ﬁl'St law of thermodynamics,
'y but A al.s'q';“.’éixp.lgéns the proper method of
s “eonversion, of hicat’into mechanical work and the
‘-'s'peciﬁc direction of flow of heat. .'
This law is based upon law of nature that is : : -
the expéﬁméntd evidcn.c?s ﬂl:Ol'lt lthc 1|1an'|rc 1S~hm1v Hot ' Cold
© that water-2ow from higher level to lower level.

g by " : . Fig.10.17: Two reservoirs at different

"-"‘Simllfi_fly;;‘. “&t"_ﬂe\rgy flows from 'hOt bOdy !0 temperature where, heat flows from hot

8 5,, 1d bbdyv. WI oLk can be performed as shown in body to cold body.
~5,~$-1-_99A;_1‘6'«1‘4§Ii’i ype noted that it is impossible to .

k?.‘f?gge a"‘éﬂo‘l:& reservoir at OK. Based upon these notions, the second law of -
-3 . Syt ’

can be defined under the following two statements.

N -
» 7
2

ihermodynamics

RelVin Statement

.*.,\«.‘.-4-;“.--. a.this statement, “it is impossible to construct a heat engine
Byhich absorbs heat energy from a hot reservoir and converts it




Rudolf Clausius Statement

This is another statement of the second law of thermodynamics. According to
this statement "Heat cnergy cannot flow from cold body to hot body without
expenditure of energy ". It can be studied in the working principle of refrigerator. -

10.9 CARNOT ENGINE AND CARNOT CYCLE .

In order to improve the efficiency of a heat engine, French military engineer
Sadi Carnot in 1824 introduced a theoretical engine which is known as Carnot
engine. It consists of a cylinder that contains gas with a moveable piston. The walls
and piston of the cylinder are insulators but its basc is conductor. It is assumed that
there is no friction between walls and piston. The Carnot engine operates in a cycle
known as Carnot cycle which is completed in four steps; two under isothermal and
two under adiabatic conditions as shown in Fig.10.18. Here three parameters of gas
i.c. P,V and T are considered which control the behaviour of gas contained in the

cylinder.

, Adiabatic
cxpansio
Isothermal il Isothermal
Adiabatic S compression
compression t l

- — &
' _ Insulalin.g ' 3 Qc
; 'Hot teacrvour. Th > Stano Cold reservoir, T

, . L . . |
.-

Sl e, o v

Fig.10.18: Schcmnuc dlagmms whnch explain the operation of.x Camol engine and it gompluw one cycle in |
four steps.

(i) Isothcrmal F\p‘msmn

< When the system is allowed to expand by reducing the pressure on the piston
then the temperatire decreases but temperature should remain constant in isothermal
..process: Therefore, heat energy Q, is supplied from the hot reservoir.

Thus, the values of parameters change from P,V T, to P,V,T,. Graphically it
is represented by curve AB in P-V graph as shown in Fig.10.19. , \

(ii) Adiabatic Expansion

When the system is further allowed to expand this time it follows adiabatic
-process Therefore, the temperature decreases and thus the values of parameters
change from P,V,T; to P3Y3T2. It is represented by <urve BC in Fig.10.19.

&
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(11i) JIsothermal Compression

After the expansion, when the system is.
compressed by applying the pressure on the piston
then the temperature should increase but to keep
temperature constant heat energy Q- is released to ,
the cold reservoir and the values of parameters ‘
change from P;V;T5 to P4,V,Ts.

Graphically it is represented by curve CD
in P—V graph as shown in Fig.10.19.

(iv) Adiabatic Compression . - C,I,E
' Finally, when the system is further compressed.
increased and the reversible cycle is completed.

Thus, the system rcturns back to its initial stage
P.V4Ts to P,V ,T,. Graphically it is represented by curve
Carnot engine operates under reversible g

equilibrium is maintained in the whole process by at
rejecting heat energy Q..

Thus the internal energy of the system remains ¢
first law of thermodynamics becomes

.
AQ =AU+ Work _ :
Q,—Q, =Work "
The efficiency of a Carnot engine is defined as:
Efficiency () = futput
Input
Bificioncy () = Wo.rk done
Supplied energy
Efficiency () = Qi=Q,
- Q,
n =1—Q2 ...... (10.19) A
QI : ’ phy
As heat energy is proportional to the |[-The
temperature so efficiency in terms of temperature wor
is given as; thed
T.
o
n T,
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- 7 adiabatie
adiabatic A gxmns‘on
compression

.

isothermal C
compression

.
—

: ; .
( The P-V diagram of Camgy
ngine exccuting a Camot cycle

d, this time the temperature i

ve and the values change from
ve DA in Fig.10.19.

process, therefore, thermal
absorbing heat energy Q, and

 constant that 1s AU = 0. Now

Nicolas Leonard Sadi Carnot
(1796 - 1832)

 French military engineer and
hysicist known as “Father of
hermodynamics” His excellent
orks are Camot cycle, Camot

eorem and Camot heat engine.

The efficiency in percentage is given as

T
. =(l—?~)x100% ...... (10.20)

This shows that the efficiency of a Camot engine depends on temperature of
hot and cold reservoirs. |

It is clear from Eq.(10.20) that efficiency of Camot engine will be 100
percent if either the temperature of hot reservoir is at infinity or the temperature of
cold reservoir is 0K. These two conditions cannot be met experimentally. Hence, the
efficiency of Camot engine is always less than 100 percent and depends on the
temperature of hot and cold reservoirs.

Carnot Theorem Hot reservoir st T,
After the drawing of the nomenclature of a heat NG
engine, Camot derived the following two results called i
Carnot's theorems. That is; _ W
1) No heat engine can be more efficient than a Heat Pump P

reversible engine working between the same

two temperatures. Q. U"
2) All the reversible engines have the same /,/ /ZI

efficiency when they are working between M—L

/ tures. S i
N RTIG IW fommpect Fig.10.20: A Schematic diagram

L n e

It is a device which maintains the temperature Of  peqween the cold and hot
a body below that of its surrounding. It operates
in a cyclic process but in reverse as that of the
heat engine as shown in Fig.10.20.

A refrigerator absorbs heat from a col.d
reservoir and gives it off to a hot reservoir. This
shows that in a refrigerator, the work is done on
the system while in a heat engine work is done
by the system.

A refrigerator consists of 2 compressor,
condenser, expansion valve, exporter {md a gas
as the working substance which 1S called
refrigerant as shown in Fig.10.21.

The refrigerant at low pressure and a!
low temperature from the cold reservorr hIS
compressed by the compressor a0 tne
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and temperaturc are increased as
1t at high pressurc and at high
e of its heat to the

compression is adiabatic. So both pressure
expands

compared to its surrounding. Now the refrigeral
temperature passes through the condenser where it loses som

~surrounding and partly condenses tO liquid. The refrigerant nNOw
or at a rate controlled by the expansion valve. This

adiabatically into the evaporat
adiabatic expansion causcs cooling of refrigerant in the evaporator coil, which is
cooler than its surrounding. Finally, the refrigerant again enters the compressor to

start the next cycle.
Refrigerator operates in a cyclic process;
reservoir and leaves heat energy Q to hot reservoi
0.- Now according

with constant internal encrgy AU

it takes heat energy Q, from cold

r due to work done on the system
to first -law of

thermodynamics
: AQ =AU+ Work
Q, -Q, =0+W e (10.21)
Co-efficient of performance of a refrigerator is defined as the ratio of hcat
temperature t0 the work done on the system. That IS

extracted from reservoir at low
hdR

Co-efficient of performance= o

-

Co-efficient of performance= Qi o (10.22)
Qz = Q| -
Co-efficient in terms of temperature, where Qoc T
L - (10.23)

Co-efficient of performance=
- T, - T,

performance. 8. If temperaturc in the

Example 10.5
a Co-cfficient of
hich it rejects the heat?

A refrigerator has
nperaturc at w

freezer is —23°C then: what is the ter

Solution:
Co-efficient of performance = 8
_23°C=-23+273=250K

re of cold reservoir (freezer) =T, =

Temperatu
reservoir (room) =Tz = ?

Temperature of hot

Co-efficient of performance = L
T, -T
g = 250
T, —250
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8(T, —250) =250
8T, —8x250 = 250
8T, =250+8x250

- 250+ 2000
-= 2250 A

2250 " | This nuclmr power plant generates |
T, =—— electric energy at the rate of 1000 |
8 : iMW At the same time, by design, it |

T, =281L.25K |d|scards energy; int6 the nearby river; -
: 2 ‘at_the rate of 2000 MW This plantl
T, =8.1"C and all others like it “throw - awayl

more energy than they deliver in |
uscful  form. They are real[
lcountcr’pans of the ideal engine. ‘.

10.11 ENTROPY
_ In the'laws of thermodynamics, a state of a function has been explained by
variables such as pressure, volume, temperature and internal energy« Rudolf
Clausius in 1856 introduced another variable named as entropy Wthh descrlbes the
state of the system as well as providing a quantitative relationship to the second law
of thermodynamics and it is always being used as the measurement of disorder of
‘the system. For example, if a system undergoes a reversible process by taking heat
encrgy AQ from a hot reservoir at the thermodynamic temperature ‘T’ then the

increase in the state variable called entlopy It is represcntcd by 'S' 'and ltS value is
given by; | A R N S

The unit of entropy is J K™ . Change in entropy of
the system is positive when heat is added and is negative
when heat is removed. It is explained by an example of two
reservoirs at different temperatures T, and T, such that T, |

. .> Ty as shown m Fog 10. 22(3) ‘When both reservoirs are atdi.t}'ccmt..mpcmmre \\hm-".'
heat flows fromt bof.to cold
made in thermal contact with each other then there is flow

reservoir pérforms work.
«'N
of heat ‘Q’ from hot reservoir to cold reservoirs, i.e., Heat

s lost in hot reservoir with negative entropy(—gj while heat is added m.cold

reserv01r~w1th positive entropy | —= |, . ‘:..t‘a;, o P

)

-

~
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Thus change in entropy = Q.9
g PY T, T,

2

| When the temperature of both reservoirs becomes
equal as shown in Fig.10.22(b), flow of heat stops and no |~ == S
work is possible. It means the heat energy which is present g, 19.22(b): Both reservoirs

in the system but not available for useful work. Hence have same temperature. There
f is no flow of heat and no work

entropy can also be defined as, "the unavailability of i demit
energy for useful work". '
Entropy of reversible and irreversible process
| Let a system undergoes a reversible process absorbs heat Q, at temperature
T, and releases heat Q, at temperature T,. Then its total entropy as shown in Fig.

10.23 is given as.

S =8,+S,+5,+S, Entropy differs from energy, which
does not obey law of conservation of ..

S=g'-+0—&+0 energy.

| TZ
§=_Q
T, T,
As Q = L7}
. T, T,
Therefore, S =0

This shows that entropy of a system under reversible process remains constant.
When the system undergoes an irreversible process at temperatures T, and

Tathen according to Camot theorem the efficiency of irreversible is less than that of
the efficiency of the reversible i.e. v

f./ll nim:v <rlrcv
1"’? ' l—& <1—12-
! T




The above results show that entropy of a system under irreversible process
increases. By applying these two results of reversible and irreversible process to the
universe or a natural process we conclude the entropy of the universe either remains
constant or increases. This is called law of increase of entropy and this is another
statement of second law of thermodynamics which is stated as “in any natural
process the entropy increases and the available .energy for doing work
decreases”. '
Entropy and Heat Death

It is a universal truth that hot places are becoming cold and cold places are
becoming hot. This is according to law of nature. This process is continued till the
temperatures will become same everywhere. At this stage, where the temperature
difference for useful work is not available and entropy will be maximum. This is
termed as heat death i.e., the available energy could not be brought in its respective
function i.e. it could not be used for useful work.

Example 10.6
Calculate the entropy change when 1 kg of ice at 0°C melts into water at 0°C. .

Litent heat of fusion of ice is 3.36 x 10° J-Kg™'.
Solution:
Mass=m=1Kg
Temperature = T=0°C =273 K
Latent heat of fusion = Ly=3.36 x 10° J-Kg™'
Entropy =AS=7?

As=2Q _mb,
T i

5
AS=1><,3.36><10
T ¥ i e
AS=1.23x10* JK!

SUMMARY: i

- ®  Thermal equilibrium: The condition of a system in which the flow of heat

between the bodies is zero called thermal equilibrium.

. Internal energy: The sum of all forms of molecular energies of a substance is

known as its internal energy.

. First law of thermodynamics: This law states that “When heat energy is
converted into other form of energies or other form of energies are converted

into heat energy but total energy remains constant” Mathematically AU = AQ +
AW, '
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Molar specific heat: It is the amount of heat required to raise the temperature

of one mole of a gas through one Kelvin.
Molar specific heat at constant volume is the amount of heat required to raise

l the temperature of one mole of a gas through one Kelvin keeping volume

constant.
Molar specific heat at constant pressure is the amount of heat required to

raisc the temperature of one mole of a gas through one Kelvin keeping volume
constant.

Reversible process: A process in which the system is in equilibrium at any
instant duc to its reverse direction is a reversible process.

. Irreversible process: A process which cannot be retraced m the' reverse
| direction and the system does not remain in equilibrium is an irreversible

process.
Heat engine: It is a device which converts heat energy into mechanical encrgy.

Sccond _law_of thermodynamics: This law is stated as “There is no heat
engine which takes heat and converts it completely into mechanical work”.
Carnot cycle: It is a reversible cycle which is completed under four steps, two |

; for expansion and two for compression.
Carnot theorem: According to this thcorem there is no-heat engine which is

|
|
|
l
temperatures. ‘

L]
more cfficient than reversible engine working between the same  two
e  Refrigerator: It is a device to maintain the temperature of a body below than
" the temperatuge of its surrounding,.
e  Entropy: Mcasurcment of disorder is called cntropy
e  Degradation of energy: It is the transfer of heat energy from hot reservoir to

cold reservoir.

, QO Multiple choice questions.
f 1. When two bodies are made at thermal contact having the same temperature

B then they are at: .
: (a) Physical equilibrium (b) Thermal equilibrium

(c) Mechanical equilibrium (d) Chemical equilibrium

Normal temperature of a human body is 98.6°F while its. atmosphere

2.
" temperature is 84.6°F. What will be the temperature of the dead body in such
- atmosphere . :
(a) 84.6°F (b) 98.6°F (c) 92.5°F: (d) 185°F -

3. When the system is expanded by adding heat energy.then the work done is:

. 8 .@




10.

1.

13.

14.

15.
16.
17.

18,

~ (a) Positive and on the system (b) Negative and on the system

(c) Pasitive and by the system (d) Negative and by the system
Which substance possesses the largest internal energy at t°C

(a) Solid . (b) Liquid ; (c) Gas (d) All of these
Internal energy of a substance is defined in terms of : '
(a) Pand V (b)Pand T (c) Tand V (P, Vand T
The ratio between work done and heat energy is equal to:

(a) Adiabatic constant (b) Joul’s constant

(c) Specific heat constant (d) Real gas constant

A system which transfers neither mass not energy is called,;

(a) Open system ~ (b) Close system

(c) Isolated system ¢ (d) Non-tyclic system

First law of thermodynamics is based upon law of conservation of;

(a) Mass (b) Energy (c) Momentum (d) Charges

A process in which all the hcat cnergy is used for increasing internal cnergy of
the system is known as:

(a) Isobaric (b) Isochoric” (c) Isothermal (d) Adiabatic
In which process the internal energy is used for doing work:

(a) Isobaric (b) Isochoric (c¢) Isothermal (d) Adiabatic
Specific heat of a gas in an isothermal process is:

(a) Zcero d. (b) Remains constant

(c) Negative (d) Infinite

A process in which the systcm remains at thermal equilibrium is known as:
(a) Isobaric (b) Isochoric (c) Isothermal (d) Adiabatic -
The value of adiabatic constant for mono-atomic gas is;

(a) 1.40 (b) 1.44 (c) 1.60 -(d) 1.66

The efficiency of a heat engine will be 100% when

(a) Engine takes huge amount of heat from source

(b) Engine exhaust a very small amount of heat from sink

(c) The temperature of cold reservoir is 0°C

(d) The temperature of cold reservoir is 0 K

Second law of thermodynamics provides the proper direction of;

(a) Temperature (b) Farce “  (c) Pressure (d) Flow of heat
A device which converts mechanical energy into heat energy is known as:
(a) Heat engine (b) Carnot Engine (c) Refrigerator ~ (d) Turbine
Entropy of a system in a reversible process; o
(a) Decreases (b) Increases (c) Inﬁmte . (d) Zero
Entropy remains constant in the process of;

(a) Isochoric (b) Isobaric (c) Isothermal (d) Adiabatic
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13.
14.

" Also show the graphi

SHORT QUESTIONS.

Give the short answers of the following questions.

What is the condition of perfect thermal equilibrium?
n thermal equilibrium with the sun?

m and work done by

Why is the earth not i
What is the difference between the work done on the syste

the system?

In which process the internal energy of the syste
Which variable remains constant in adiabatic process? .
Why the curve of adiabatic is steeper than isothermal process
Why the measurement of molar specific heat is being prefe

heat?
Why molar specific heat at constant pressure is greater than mol

at constant volume?

What is the difference between reversible and irreversible process?

Why the construction of a heat engine with 100% efficiency is impossible?
What is the difference between heat engine and refrigerator?

How can a Camnot cycle be completed?

What do you know about the heat death?

What will be the work done by a system when its hot and cold reservoirs arc at

same temperature? ,
-« COMPREH ENSIVEQUES

scuss the condition of perfec

m remains constant?

?
red than specific

ar specific heat

t thermal

What is thermal equilibrium? Di
equilibrium. ‘
Define internal energy of the given system in terms of the ki
the molecules of the gas.

State and explain thermodynamics system with all

system, closed system and isolated system.
Explain that how did Rumford observe the relation between work and heat?
cal representation of the work done.

: law of thermodynamics and discuss its
Compare specific heat and molar specific heat. Also prove tha

State z.md prove adiabatic equation, PV"*= Constant.
Explain reversible_and irreversible processes with examples. e
What is heat engine? Show the working principle and efficiency of a heat

engine.
State and explain the secon

netic energies of

its kinds such as; open

four applicatiohs.

State and explain first
t Cp -Cyv= R.

d law of thermodynamics with examples.
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11.

12,

h
.

10,

" the gas; determine the final volume of the gas. ' B x 10" m®)

Define Camnot engine, Camot cycle, efficiency of Camot engine and Camot
theorem. .

What is refrigerator? Explain the working principle and co-efficient of
performance of a refrigerator. _
State and explain entropy. Calculate entropy of reversible and irreversible
process. Also discuss the condition of heat death.

to a volume of 33 litres at constant pressure of 2.5 atm.? (7.6 kJ)
A sample of gas is compressed to one half of its initial volume at constant
pressureiof LIS | 0° Nm™2. During the compression, 100 J of werk is done on

An ideal gas undergoes an isobaric expansion at 2.5 kPa. If the volume
increases from 2m° to 5m’ and 13 kJ of energy is transferred to the gas by heat, -
what is the change in its internal energy. (5.5 kJ)
The temperature of 2 kg metal block is raised from 15°C to 90°C by absorbing
heat energy 86 kJ. Calculate the specific heat of the metal block.

‘ (5735 J/kg °C) -
A mechanical engineer develops an engine, working between 327°C and 27°C
and claims to have an efficiency of 50%. Does he claim correctly? Explain.(Yes)
A heat engine has a power output of 6 kW and an cfficiency of 30%. Assume
that the engine exhausts 8 kJ of heat energy in cach cycle. Find (a) energy
absorbed in each cycle and (b) the time for cach cycle. (11.4 kJ, 0.555)
In a refrigerator, heat from inside at 277 K is transferred to a room at 300 K. -
How much joule of heat will be delivered to the room for each joule of
electrical energy consumed ideally? (12))
A. Carnot engine utilizes an ideal gas. The source temperature is 227°C and the
sink temperature is 127°C. Find the efficiency of the engine. Also find the heat
mput from the source and heat rejected to the sink when 10000 J of work is
done. | (20%, 5 x 10* J, 4 x 10* J)
How much work does on ideal Camot refrigerator require to remove 1 J of
energy from liquid helium at 4K and rejects this thermal energy to a room
temperature 293 K environment. (72.3 )
336 J of energy is required to melt 1 g of ice at 0°C. What is the change in
entropy of 30 g of water at 0°C as it is changed to ice at 0°C by a refrigerator?

(-36.8J K™




