
CHEMISTRY 11

ANNUAL EXAM 2024

(d) Equal number of protons		
<u>19.</u> I gram formula of NaCl is equal t	to:	
(a) 58.5 g (b) 23.5	(c) 35.5 g	(d) 12 g
20. The mass of one mole of electrons	s is:	- 16) ((0)UU
(a) 1.008 mg (b) 0.55 mg	(c) 0.184 mg	(d) 1.073 mg
21. 27 g of Al will react completely w	ith how much mass of	of C ₂ to produce Ai ₂ O ₃ :
(a) 8 g of oxygen	(b) 52 g of exygen	
(c) 32 g of oxygen	d 24 g of orygen	
22. The number of moles of CG2 vili		
(a) 0.25 (b) 0.15	(c) 0.35	(d) 1.45
23. The volume occupied by 1.4 g of 1		
(a) 2.24 dm^3 (b) 22.4 dm^3	(c) 1.12 dm^3	(d) 112 cm^3
24. The calculation based on balance		
(a) Complex calculation		ometric calculation
(c) Non-stoichiometric calculation	(d) None of	
25. The ratio of actual yield to theore		
(a) Complex yield	(b) Experimental yi	
(c) % age yield	(d) None of these	
		t were not aided by a gentle suction, whic
	time consuming if I	i were not alucu by a genue suction, whic
is developed:	ronao un to ita sina	aforanco
(a) If the paper covers the funnel circumfe	-	nerence
(b) If the paper has got small sized pores i		4a
(c) If the stem of the funnel is large so that	t it dips into the filtra	te
(d) If the paper fits tightly	• .• •	
27. During the process of crystallizat		d solution:
(a) Is cooled very slowly to get large sized	•	
(b) Is cooled at moderate rate to get mediu	•	
(c) Is evaporated to get the crystals of the	-	
(d) Is mixed with an immiscible liquid to		of product
28. The drying agent used in a desice		
(a) AgCl (b) NH_4Cl	(c) P_2O_5	(d) AlCl ₃
29. The substance used for decolouri	za <u>tio</u> n of crystalline	substance is:
(a) P_2O_5 (b) Chloroform		(d) Soda Ash
30. Direct conversion of solid into its	vapour is called:	
(a) Crystallization	(b) Sublimation	
(c) Vaporization	$\overline{(d)}$ Distribution	$-\pi (C(0)) U$
31. Which one of the following comp	ound is purified by s	sublination:
(a) Benzoic acid (b) SiO2	$(c)CS_2$ (1)	
32. Which of the following compound		
(a) Ammonium chloride	(b) lodine	
(c) Naphthalene	d Carl on tetra chl	loride
33. Solvent extraction is an equilibri		
(a) Law of mass action	(b) The amount of s	•
	he amount of Solute	
		nique for separation when the product to b
separated is:	sector teening	inque for separation when the product to b
(a) Non-volatile or thermally unstable		
(b) Volatile or thermally stable		
•		
(c) Non-volatile or thermally stable		
(d) Volatile or thermally unstable	- 4 ¹ 1	
35. Chromatography in which the sta		ond is classified as:
	as Chromatography	,
C Adsorption Chromatography (d) T	hin layer Chromatogra	apny
	2	

ANNUAL EXAM 2024 CHEMISTRY 11 36. Borax has the chemical formula: (a) KNO₃ (b) NaNO₃ (c) $Na_2B_4O_7.10H_2O$ (d) Na₂CO₃.H₂O The unit millibar is commonly used by: 37. (a) Meteorologists (b) Astronauts (c) Engineers (d) Dalton 38. Temperature and number of moles are kept constant in: (b) Charles's law (a) Boyle's law (c) Avogadro's law (d) Lahon's law of partial pressure If absolute temperature of the gas is doubled and the pressure is reduced to one half the volum 39. of the gas vill. (b) Increase four times (a) Remains wacharged (c) Reduce 10 1/4 (d) Be doubled Formula used for the conversion of °F into °C is: 40. (a) ${}^{o}F = \frac{9}{5}({}^{o}C) + 32$ **(b)** $^{\circ}C = \frac{9}{5} (^{\circ}F - 32)$ (d) ${}^{\circ}C = \frac{5}{2} ({}^{\circ}F - 32)$ (c) ${}^{\circ}F = \frac{9}{5} ({}^{\circ}C) + 32$ Density of an ideal gas can be calculated by using equation: **41**. (a) PV = dRT(b) PM = dPV(c) d = $\frac{RT}{MP}$ (d) PM = dRT42. The sum of mole fraction of gas in a mixture of gases is: (b) Always less than one (a) Always more than one (c) Always one (d) May be less ore more than one The molar volume of CO2 is maximum at: **43**. (a) STP (0° C and 1 atm **(b)** 127° C and 1 atm (d) 273° C and 2 atm (c) 0° C and 2 atm **44**. Mass of 22.4 dm3 of N₂ at STP is: (a) 28 gm (b) 14 gm (c) 1.4 gm (d) 2.8 gm The number of molecules in one dm³ of water is close to: 45. (b) $\frac{12.04}{22.4} \times 10^{23}$ (a) $\frac{\frac{0.1}{22.4}}{\frac{18}{18}}$ $\frac{6.02}{22.4} \times 10^{23}$ (c) $\frac{18}{22.4} \times 10^{23}$ (d) $55.6 \times 6.02 \times 10^{23}$ Partial pressure of oxygen in the air is: **46**. (d) 159 torr (b) 157 torr (c) 158 torr (a) 156 torr 47. The S.I unit of pressure is: (c) Pounds inch⁻² (a) Torr (b) mmHg (d) Nm^{-2} 48. Dalton's law of partial pressure can be derived from: (b) General gas equation All of these (a) Avogadro's (c) Charles's law (d) A'l of dese Pressure remaining constant temperature the volume of a become twice of what it is at 0°C: **49**. (b) 200°C **(c)** 546 K (a) 546° C (d) 273 K Equal masses of methane and oxygen are mixed an empty container at 25 °C. The fraction **50**. total pressure excited by oxygen is: $(d) \frac{16}{17}$ $(c)\frac{1}{c}$ (b) $\frac{8}{2}$ The partial pressure of oxygen in lungs is: (d) 116 torr (a) 760 torr (b) 320 torr (c) 159 torr 52. The spreading of fragrance of a rose or scent in air is due to: (b) Diffusion (c) Osmosis (a) Effusion (d) Evaporation The order of the rate of diffusion of gases NH₃, SO₂, Cl₂ and CO₂ is: 53. (a) $NH_3 > SO_2 > Cl_2 > CO_2$ (b) $NH_3 > CO_2 > SO_2 > Cl_2$ (c) $Cl_2 > SO_2 > CO_2 > NH_3$ (d) $NH_3 > CO_2 > Cd_2 > SO_3$ Which of the following will have highest rate of diffusion? 54. 3

	ANNUAL EXA	M 2024		CHEMISTRY 11
	(a) O ₂	(b) CO ₂	(c) NH	$_{3}$ (d) SO ₂
55	. ,	tion PV = $\frac{1}{2}$ m $\sqrt{6}$		
56 (a)	Maxwell (b) Bo	oltzmann (c) Claus n of gas from idea tm	-	imum at:
57	The tempera (a) 20000°C	ture of a natural (b) 1000	plasma & abou : 2°C (.c) 590	0°C (d) 1000°C
58	(a) Molecules (c) Chloroform	n molecules		oms of neon in gaseous state cules
(7)	Dipole-dipole for London forces		$\overline{(d)}$ Ion-dipole	uced dipole forces forces
60 (a) 61	CH_4	e given has Hydro (b) CCl ₄ m and acetone, ho	(c) NH_3	(d) NaCl toms are responsible for hydrogen bonding?
(a)	• •		c) 3	(d) 4
62			soluble in each other	
	Intermolecular h		(b) Dipole-dip	
	Instantaneous dip		(d) all of the al	bove
63		freezes, its volum		(J) 100/
• •	10%		c) 15%	(d) 18%
64		iven H-Bonding		(d) Diathyl athar
(a) 65	Alcohol When water	(b) Benzene froozes at $0^{\circ}C$ it	(c) Water	(d) Diethyl ether
	Cubic structure of		s density decreases	
~ /		resent in the struct	ure of ice	
	Change of bond		d) Change of bond an	ales
66				ne external pressure should be:
	Between 760 tor		<i>n</i> water at 110 C, ll	it taurnar pressure should be.
· /	between 200 torr			
	765 torr		(d) Any value	of pressure
67		oo <u>int</u> of glycerine		
	280°C	(b) 290°C	(c) 100°C	(d) 110°C
68			the top of Mount Ex	
(a)	59°C	(b) 69°C	(c) 83°C	n (a) 75 (c) ((c) 0
1.			ng point arong the	ydrides of V-A group elements due to:
	Very small size of			
		ctions present on r		
		megative characte	r pr niti ogen	
	Pyramidal struct			
<u>69</u>		System of Sugar i		(d) Trializia
	Menoclinic	(b) Cubic	(c) Hexagonal	
Y	Diamond		an example of cubic	
		(b) Borax	(c) Iodine	(d) Graphite
71	Cubic	ystem of sulphur (b) Hexagonal (c		(d) Monoclinic
(a) 72			\neq 90° then crystal s	
	$\mathbf{H} \mathbf{a} \neq \mathbf{b} \neq \mathbf{c} \mathbf{a}$ Monoclinic	(b) Diclinic	(c) Triclinic	(d) Polyclinic
73				(a) i orychine
15	(a) CaF_2	(b) Glass	(c) NaCl	(d) $CaCl_2$
			() 1 1001	
			4	

ANNUAL EXAM 2024		CHEMISTRY 11
74. Transition temperature of	KNO3 is:	
(a) 13.2 °C (b) 95.5 °C) 32.2 °C
75. Crystal of diamond is:		
(a) Ionic (b) Covalent	(c) Molecular (d) Metall	
	ce energy is for which one of the	
(a) NaI (b) NaF		Maci Ci
77. Ionic solids are characteriz	red by	
(a) Low melting point	(b) Good conductivity in	solid state
(c) High vapours pressure	d Solubility in polar solvent	
78. Diamond is bad conductor	because:	
(a) It has a tight structure	(b) It has a high density	
(c) It is transparent to light		
There are no free electrons pres	sent in the crystal of diamond to	conduct electricity
79. <u>C</u> athode rays strike alumi	na and produce a colour:	
(a) Red (b) Blue	(c) Yellow (d)) Green
80. Positive rays were discover		
(a) J.J Thomson	(b) Goldstein	
(c) William Crookes	(d) Ruther ford	
81. The nature of positive rays	A	
(a) The nature of electrode	(b) The nature of discharge tube	
(c) The nature of residual gas	(d) All of the above	
	ive rays in maximum for the gas	
(a) Hydrogen (b) Helium	(c) Oxygen (d) Nitrog	
	nuclear reaction with nitrogen i	t ejects particles:
(a) α (b) β	(c) γ (d) δ	
84. Mass of an electron is:	$1 > 10^{22}$	
(a) 9.1095×10^{-31} kg	(b) 6.022×10^{22}	
$(c) 6.022 \times 10^{-22}$	(d) 10.10×10^{30}	
85. Rutherford's model of atom		
(a) The atom did not have a nucleu		
(b) It did not account for the attract	-	
(d) There is actually as areas hat		
(d) There is actually no space betw		
86. Bohr Model of atom is con(a) Plank's quantum theory	(b) Dual nature	
(c) Heisen berg's principle	(d) Paul's exclusion principle	
011	tom, the electron is present:	
(a) In the nucleus	(b) In the second shell	n N Cuo
(c) Nearest to the nucleus	(d) Farthest from the num	
88. The velocity of photon is:		
(a) Independent of its wavelength	(b) Depends on its wavelength	
(c) Equal to square of its amplitude		
89. Lyman series lics in spectr		
(2) Infrared Ultra viol	8	None of these
90. Sp itting of spectra lines w		
(a) Zeeman effect	(b) Strak effect	0
(c) Photoelectric effect	(d) Compton effect	
91. De-Broglie equation is rep	· · · ·	
(a) $h = \frac{\lambda}{mv}$ (b) $m = \frac{h}{\lambda v}$		$\lambda = \frac{h}{my}$
		mv
	or 2p orbitals / subshell are: 2 (c) $n = 1$, $I = 0$ (d) $n = 2$, $I = 0$	
93. An orbital which is spheric		
20. In orbital which is splittly	ur unu symmetricai 15.	
	-	

ANNUAL EXAM 2024 CHEMISTRY 11 (a) s – orbital (b) p - orbital (c) d - orbital (d) f – orbital 94. Orbitals having same energy are called: (a) Hybrid orbitals (b) Valence orbitals (c) Degenerate orbitals (d) d - orbitals n + I value of 6d orbital is: 95. (a) 08 (b) 09 (c) \vec{t} (d) 19 Most stable electronic configuration is of a / an: **96**. (b) Electrone gative Element (a) Noble Gas (d) Halogen (c) Alkali Metal When 6d orbital is complete, the entering electron goes into: **97**. **(c)** 7p (a) 7f (b) 7s (d) 7d The clement which has maximum numbers of unpaired electron is: 98 a) Cro (b) Ca_{20} (c) F_{26} (d) CH_{29} Octet rule is not followed in the formation of: 99. (a) NF_3 (b) CF₄ (c) CCl_4 (d) PCl_3 100. Which compound does not obey the octet rule? (b) BCl₃ (a) NH_3 (c) H_2O (d) CH₄ 101. The covalent radius of Cl-atom is: (a) 99.4 pm (b) 80 pm (c) 70 pm (d) 66.4 pm 102. Which element has highest ionization potential? (a) Li (b) Be (c) B (d) C 103. The amount of energy released by absorbing electron in the valence shell is: (b) Electron affinity (a) Ionization energy (c) Electronegativity (d) Atomization energy 104. In methanol, bond between carbon and oxygen: (b) Non-Polar (c) Polar (d) Co-ordinate (a) Ionic 105. Which of the following has coordinate covalent bond: (a) NH_4Cl (b) NaCl (c) HCl (d) AlCl₃ 106. Among the following quantum a pair of molecule having similar geometry: **(b)** BF, Alf₃ (a) BF_3 , NH_3 (c) BeF_2 , H_2O (d) BCl_3 , PCl_3 107. The geometry of SO2 molecule is: (a) Angular (b) Linear (c) Tetrahedral (d) Trigonal pyramid 108. Beryllium dichloride follows hybridization: (d) sp^3d^2 (a) sp (b) sp3 (c) sp3 109. The shape of SnCl2 molecule is: (d) Tetrahedra (a) Linear (b) Angular (c) Trigonal planar 110. The structure of water molecule is: (a) Angular (c) Trigona (b) Linear (c)Tr genal pyramidal 111. Orbitals having same energy are called. b) Valence orbitals (a) Hybrid orbitals (c) Degenerate orbitals (d) d-orbitals 112. The bond angle in MH3 molecules is: (a) 109 5% OU **(b)** 107.5° (c) 104.5° (d) 108° The hybridization in ammonia molecule is: (a) dsp^2 (b) sp^2 (c) sp^3 (d) sp 114. The number of bonds in nitrogen molecule is: (d) 4(a) 1 (b) 2(c) 3 115. Dipole moment of CO2 is: (a) 1.25 D (b) 1.85 D (c) 3.1 D (d) Zero 116. Dipole Moments and Molecular Structure 35. Which of the hydrogen halide has the highe percentage of ionic character? (a) HCl (b) HBr (c) HF (d) HI 6

	ANNUAL EXAM 2024		CHEMISTRY 11
117.	molecule has zero dipole mome	nt:	
	(a) CO (b) H_2S (c) SO		
118.	If an endothermic reaction is allowed to		v in the air, the temperature of th
	surrounding air:		
	(a) Remains constant (b) Increases	\sim	
	C Decreases (d) Remain u		11/1/(010)
119.	In endothermic reactions, the next conse		
	(a) Products is more than that of reactan's		
(b) R	eactants is more than that of products		
	oth a and b		
. ,	eactants and products are equal		
	Which of these is not a state function?		
	(a) Temperature (b) Pressure	(c) Volume	(d) Heat
8 VI I V	The net heat change in a chemical reaction		
,	different ways in one or several steps.	It is known as:	0
	(a) Henry's Law	(b) Hess's Law	
	•	aw of conservation of en	nergy
122.	The change in heat contents of a chemical		
	called:		
		ond Energy	
	(c) Heat of Sublimation	(d) Internal Energy C	hange
123.	The change in heat energy of a chemical	reaction at constant	temperature and pressure
	called:		
(a) E	nthalpy Change (b) B	ond energy	
(c) H	eat of sublimation	(d) Internal energy ch	ange
124.	The pressure of oxygen inside the bomb	calorimeter is:	-
	(a) 100 atm (b) 50 atm	(c) 25 atm	(d) 20 atm
125.	One Calorie is equivalent to:		
OR	One thermal calorie is equivalent to:		
(a) 0	4184 J (b) 41.84 J (c) 4.	184 J (d) 418	3.4 J
126.	$\Sigma \Delta H$ (cycle) = 0 The <u>ab</u> ove law is known	as:	
	(a) Henry's Law (b) Hess's Law	(c) Kohlarus Law (d)	
127.	The optimum temperature for the synth		
	(a) $200 ^{\circ}\text{C}$ (b) $300 ^{\circ}\text{C}$	(c) 400 °C	(d) 500 °C
128.	was derived by C.M. guldberg a		
		aw of Mass Action	
		aw of Conservation of F	
129.	The reaction which proceeds in both for		direction is called:
	(a) Irreversible reaction	b Reversible reaction	
1.00	(c) Spontaneous reaction	(d) Non Spontaneous	
130.	Optimum press ire in Habei's process fo		ia is:
	(a) $100 - 150$ atm	(b) $200 - 300$ atm	
	(c) 350 - 450 a m	(d) $500 - 600$ atm	
100	The chief 10 4-noles / dm3 of Ba(OH)2		
N N		aw of Mass Action	
120		aw of Conservation of E	energy
	The pH of 10-4 moles / dm ³ of Ba(OH)2 is (b) 6 4 (c) 7.5		
(a) 4		(d) 10.3	
	The value of Kw at 25° C is:	at 25°C in	
	The value of ionic product (Kw) of water 11×10^{-14} (b) 0.	at 25°C is: 30×10^{-14}	
(a) 0		30×10^{-14} x 10 ⁻¹⁴	
	The pH of human blood is maintained at		
134.	The pri of numan blood is maintained at	μ π.	
		7	

ANNUAL EXAM 2024	CHEMISTRY 11
(a) 7.4 (b) 7.3 (c) 7.	.00 (d) 8.00
135. Sum of pKa and pKb is equal to:	
(a) 7 (b) 1 (c) 14	4 (D) 0
136. By adding NH4CI to NH4OH solu	ation. The ionization of NH4OH:
(a) Increases	(b) Remains same
(c) Decreases	(d) increases 100 times
137. The pH of buffers can be calculat	
(a) Henderson equation	(b) Herst equation
(c) Kinetic equation (d) A 138. Relative lowering of vapour press	Arrhenius equation
	Alle fraction of solvent
(c) Moler ty	(d) Molality
1.9. A thermometer used in landsberg	
(a) 0.1 K (b) 0.01 F	(c) 0.01 K (d) 0.01°C
140. 18 g glucose is dissolved in 90g of	water. The relative lowering of vapour pressure is equal to:
(a) 5 (b) 5.1 (c) $\frac{1}{51}$	(d) 6
	The volume in which 1 g mole of it is dissolved will be:
(a) 1 dm^3 (b) 1.8 dm^3	(c) 200 cm^3 (d) 900 cm^3
142. An aqueous solution of ethanol in	
OR An aqueous solution of ethanol in	
(a) equal to that of water	(b) equal to that of ethanol
	ess than that of water
143. Which of the following solutions h (A) 5.85% solution of sodium chloride	ias the highest bolling point?
(B) 18.0% solution of glucose	
(C) 6.0% solution of gracose	
(D) All have the same boiling point	
144. The oxidation number of C in C12	2H22O11 is:
(a) Zero (b) -6	(c) $+6$ (d) 12
145. The oxidation number of O-atom	-
(a) -2 (b) +2	(c) -1 (d) $+1$
146. Which of the following statements	
(a) anode is negatively charged(c) cathode is positively charged	(b) reduction occurs at anode (d) reduction occurs at cathode
147. The reduction potential of Zn is:	Teduction occurs at canode
(a) $+0.76$ V (b) -0.34 V	(c) +0.34 V (d) -0.76 V
148. The standard redox potential of fe	
(a) -0.76 V (b) 2.87 V	(c) $0.026 v$ (d) 3.045
	rolysis of cil. H2SO4 with I't electrodes is:
	xidation
	either oxidation nor reduction.
150. Stronger the oxidizing agent, grea	
(a) Oxida ior potential (c) recox potential	(b) reduction potential (d) E.M.F of cell
1.51. If the salt bridge is not used betwee	
	ecrease slowly
	rops to zero.
152. If a strip of Cu metal is placed in a	
(a) Cu will be precipitated down (b) F	Fe is precipitated out
	No reaction takes place.
153. The unit of rate constant is the same	
(a) First order reaction	(b) Second order reaction
	8

ANNUAL EXAM 2024	CHEMISTRY 11
c) Zero-order reaction	(d) Third order reaction
	ame as that of the rate of reaction in:
	Second order reaction
	Third order reaction
155. In zero order reaction, the rate	s independent et
(a)Temperature of reaction (b) Conce	tration or reactants
(c) Concentration of products (d)	
excess, then order of reaction is	n $2A+B \rightarrow Froducts is, rate = K[A]2 [B], and A is present in larg$
(a) 1 (b) 2 (c)	
	he reaction proceeds.
(a) Increases (b) Decrea	
	May decrease
	ture, the rate of reaction doubles. This increase in rate of reactio
is due to:	
(a) Decrease in activation energy of rea	ction
(b) Decrease in the number of collision	between reactant molecules.
(c) Increase in activation energy of read	
(d) increase in number of effective coll	
159. Unit of rate constant is the same	at
(a) Zero order reaction (c) 2 nd order Reaction	(b) 1^{st} order Reaction
(c) 2 of a characteristic	(a) 5° order redetion.
160. Glucose can be converted into e(a) Lipase(b) Zymase	
(a) Lipase (b) Zymase	(c) Sucrose (d) Urease
68/68	Marks Challenge
	SECTION-I
	ORT QUESTIONS (SOS)
1. Define molecular ion, write its u	
 Why we use the term relative at Calculate the percentage of Niti 	
	ve same chemical but different physical properties?
5. Define isotopes why they have a	
	p of m/e of an ion in mass spectrometry.
	m in the sample of the element has mass 20.18 amu?
8. Write functions of Mg $(ClO_4)_2$ and	
9. Why oxygen cannot be determine	ed directly in combustion analysis?
10. Differentiate between empirical	
	lecular and empirical formula, Justify.
	s it related with empirical formula?
13. Define limiting reactant. Give an	
	place in our surrounding involve limiting reactants. Give reason
 Define actual yield. write formula Why actual yield is always less t 	a for the calculation of % age yield. an theoretical yield?
	g
	×