CHEMISTRY PART-!

(OBJECTIVE TAP?) OJ.

1. The number ol atoms present id 01 nole ofoxygen gas is:
(a) 6.02×10^{22}
(b) $3.101 \cdot 0^{23}$
(c) $2 \times 6.02 \times 10^{22}$
(d) 9.03×10^{22}
2. The number cfisptepen cadrsium is:
(a) 3
(h)
(c) 5

(d) 9

Nickel has isotopes:
(b) 5
(c) 7
(d) 2
T. The total number of fundamental particles in an atom of Carbon - 14 is:
(a) 6
(b) 8
(c) 14
(d) 20
5. Hemoglobin is a Macro Molecule and consists of approximately atoms:
(a) 5,000
(b) 10,000
(c) 68,000
(d) 15,000
6. The number of atoms in 1.79 g of gold and \qquad g of sodium are equal:
(a) 0.23
(b) 23
(c) 230
(d) 2300
7. The largest number of molecules are present:
(a) 3.6 g of $\mathrm{H}_{2} \mathrm{O}$
(b) 4.8 g of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
(c) 2.8 g of CO
(d) 5.4 g of $\mathrm{N}_{2} \mathrm{O}_{5}$
8. In Al2O3, the ratio between the ions is:
(a) $1: 2$
(b) $2: 1$
(c) $2: 3$
(d) $3: 2$
9. Which is not a molecular Ion?
(a) He^{+}
(b) CH_{4}^{+}
(c) NH_{4}^{+}
(d) CO^{+}
10. Tin has isotopes:
(a) 9
(b) 10
(c) 11
(d) 12
(a) One
(b) Eleven
(c) Fifteen
(d) Eighteen
11. A pair of elements having single isotope are:
(a) ${ }_{9} \mathrm{~F}^{19},{ }_{79} \mathrm{Au}^{197}$
(b) ${ }_{53} \mathrm{I}^{127},{ }_{35} \mathrm{Br}^{81}$
(c) ${ }_{8} \mathrm{O}^{16},{ }_{7} \mathrm{~N}^{14}$
(d) ${ }_{33} \mathrm{As}^{75},{ }_{7} \mathrm{~N}^{14}$
12. Average Atomic Mass of Neon is:
(a) 20.00
(b) 20.18
(c) 20.20
(d) 20.0
13. Number of isotopes of oxygen is:
(a) Two
(b) Three
(c) Four
14. Isotopes differ in:
(a) Properties which depend upon mas.
(b) Arrangement of eleztons in orhitals
(c) Chemical properties
(d) The extent to wlich they n a, be afteded in electromagnetic field
15. One moleof is $O_{\text {, contains. }}$
(a) 6.22×19^{23} atomas of cygen
(b) 18.1×10^{23} molecules of SO_{2}
$46,02 \times 10^{23}$ atoms of sulphur
(d) 4 g of atoms of SO_{2}
16. During combustion analysis, CO_{2} Produced is absorbed in:
(a) $\mathrm{Mg}\left(\mathrm{ClO}_{4}\right)_{2}$
(b) $50 \% \mathrm{KOH}$
(c) CaCl_{2}
(d) $\mathrm{P}_{2} \mathrm{O}_{5}$
17. Ascorbic acid is vitamin:
(a) A
(b) B
(c) C
(d) D
18. 1 model of $\mathrm{CH}_{3} \mathrm{OH}$ and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ have:
(a) Equal number of molecules
(b) Equal number of atoms
(c) Equal number of ions
(d) Equal number of protons
19. I gram formula of NaCl is equal to:
(a) 58.5 g
(b) 23.5
(c) 35.5 g
(d) 12 g
20. The mass of one mole of electrons is:
(a) 1.008 mg
(b) 0.55 mg
(c) 0.184 mo
(d) 1.013 mg
21. 27 g of Al will react completely with bow mucl mass of C_{2} tppredice

(a) 8 g of oxygen
(c) 32 g of oxygen
(h) pa gof cxygen
22. The numbe moles of CO, vich coniail sa of oxygen:
(a) 0.25
(b) 015
(c), 0.35
(d) 1.45
23. The volune decupic by $1 d \mathrm{~g}$ of $\mathbf{N} 2$ at S.T.P is:
(a) $2.24 \mathrm{dm}^{3}$
(b) $22.4 \mathrm{dm}^{3}$
(c) $1.12 \mathrm{dm}^{3}$
(d) $112 \mathrm{~cm}^{3}$
2.4. We cacuation based on balanced chemical equation is called:
(a) Complex calculation
(b) Stoichiometric calculation
(c) Non-stoichiometric calculation
(d) None of these
25. The ratio of actual yield to theoretical multiplied by $\mathbf{1 0 0}$ is called:
(a) Complex yield
(b) Experimental yield
(c) \%age yield
(d) None of these
26. A filtration process could be very time consuming if it were not aided by a gentle suction, whic is developed:
(a) If the paper covers the funnel circumference up to its circumference
(b) If the paper has got small sized pores in it
(c) If the stem of the funnel is large so that it dips into the filtrate
(d) If the paper fits tightly
27. During the process of crystallization, the hot saturated solution:
(a) Is cooled very slowly to get large sized crystals
(b) Is cooled at moderate rate to get medium sized crystals
(c) Is evaporated to get the crystals of the product
(d) Is mixed with an immiscible liquid to get the pure crystals of product
28. The drying agent used in a desiccator.
(a) AgCl
(b) $\mathrm{NH}_{4} \mathrm{Cl}$
(c) $\mathrm{P}_{2} \mathrm{O}_{5}$
(d) AlCl_{3}
29. The substance used for decolourization of crystalline substance is:
(a) $\mathrm{P}_{2} \mathrm{O}_{5}$
(b) Chloroform
(c) Animal Charcol
(d) Soda Ash
30. Direct conversion of solid into its vapour is called:
(a) Crystallization
(b) Sublimation
(c) Vaporization
(d) Distribution
31. Which one of the following compound is purified by sublization
(a) Benzoic acid
(b) SiO_{2}
(c) CS_{2}

(a) Ammonium chlorice
(b) lodive
(d) Carlon tetra chloride
33. Solvent extrect in an cquilibiven process and is controlled by:
(a) Law of mass iction
(b) The amount of solvent used
el Das vilnudino
(d) The amount of Solute
3.4. Sol venc extraction method is particularly useful technique for separation when the product to b. separated is:
(a) Non-volatile or thermally unstable
(b) Volatile or thermally stable
(c) Non-volatile or thermally stable
(d) Volatile or thermally unstable
35. Chromatography in which the stationary phase is a solid is classified as:
(a) Partition chromatography
(b) Gas Chromatography
(c) Adsorption Chromatography
(d) Thin layer Chromatography
36. Borax has the chemical formula:
(a) KNO_{3}
(b) NaNO_{3}
(c) $\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \cdot 10 \mathrm{H}_{2} \mathrm{O}$
(d) $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$
37. The unit millibar is commonly used by:
(a) Meteorologists
(b) Astronaits
(c) Engineers
(d) Dalton
38. Temperature and number of roles are nep constant ir:
(a) Boyle's law
(b) Chule 's lav
(c) Avogadro's law
(d) Dalion's law of partial pressure
39. If absolute t mperature of the gas is toubled and the pressure is reduced to one half the volum of the gas \square ill.

(a) Irenpras w(h) red

(b) Increase four times
(c) Reduce to 14
(d) Be doubled
41. Formula used for the conversion of ${ }^{\circ} \mathrm{F}$ into ${ }^{\circ} \mathrm{C}$ is:
(a) ${ }^{\circ} \mathrm{F}=\frac{9}{5}\left({ }^{\circ} \mathrm{C}\right)+32$
(b) ${ }^{\circ} \mathrm{C}=\frac{9}{5}\left({ }^{\circ} \mathrm{F}-32\right)$
(c) ${ }^{\circ} \mathrm{F}=\frac{9}{5}\left({ }^{\circ} \mathrm{C}\right)+32$
(d) ${ }^{\circ} \mathrm{C}=\frac{5}{9}\left({ }^{\circ} \mathrm{F}-32\right)$
41. Density of an ideal gas can be calculated by using equation:
(a) $\mathrm{PV}=\mathrm{dRT}$
(b) $\mathrm{PM}=\mathrm{dPV}$
(c) $\mathrm{d}=\frac{R T}{M P}$
(d) $P M=d R T$
42. The sum of mole fraction of gas in a mixture of gases is:
(a) Always more than one
(b) Always less than one
(c) Always one
(d) May be less ore more than one
43. The molar volume of $\mathbf{C O} 2$ is maximum at:
(a) $\operatorname{STP}\left(0^{\circ} \mathrm{C}\right.$ and 1 atm
(b) $127^{\circ} \mathrm{C}$ and 1 atm
(c) $0^{\circ} \mathrm{C}$ and 2 atm
(d) $273^{\circ} \mathrm{C}$ and 2 atm
44. Mass of $\mathbf{2 2 . 4} \mathbf{~ d m} 3$ of $\mathbf{N}_{\mathbf{2}}$ at STP is:
(a) 28 gm
(b) 14 gm
(c) 1.4 gm
(d) 2.8 gm
45. The number of molecules in one $\mathbf{d m}^{\mathbf{3}}$ of water is close to:
(a) $\frac{6.02}{22.4} \times 10^{23}$
(b) $\frac{12.04}{22.4} \times 10^{23}$
(c) $\frac{18}{22.4} \times 10^{23}$
(d) $55.6 \times 6.02 \times 10^{23}$
46. Partial pressure of oxygen in the air is:
(a) 156 torr
(b) 157 torr
(c) 158 torr
(d) 159 torr
47. The S.I unit of pressure is:
(a) Torr
(b) mmHg
(c) Pounds inch ${ }^{-2}$
48. Dalton's law of partial pressure can be derived fom:
(a) Avogadro's
(b) General sas عyution Ali of the ee
(c) Charles's law
(d) All of inese.
49. Pressure renaining constant temperature the olune of a become twice of what it at $0^{\circ} \mathbf{C}$:
(a) $546^{\circ} \mathrm{C}$
(D) $20 . \mathrm{C}$
(c) 546 K
(d) 273 K
50. Equal masse of manc and axygen are mixed an empty container at $25{ }^{\circ} \mathrm{C}$. The fraction

A.
(b) $\frac{8}{9}$
(c) $\frac{1}{9}$
(d) $\frac{16}{17}$

The partial pressure of oxygen in lungs is:
(a) 760 torr
(b) 320 torr
(c) 159 torr
(d) 116 torr
52. The spreading of fragrance of a rose or scent in air is due to:
(a) Effusion
(b) Diffusion
(c) Osmosis
(d) Evaporation
53. The order of the rate of diffusion of gases $\mathrm{NH}_{\mathbf{3}}, \mathrm{SO}_{\mathbf{2}}, \mathrm{Cl}_{\mathbf{2}}$ and $\mathrm{CO}_{\mathbf{2}}$ is:
(a) $\mathrm{NH}_{3}>\mathrm{SO}_{2}>\mathrm{Cl}_{2}>\mathrm{CO}_{2}$
(b) $\mathrm{NH}_{3}>\mathrm{CO}_{2}>\mathrm{SO}_{2}>\mathrm{Cl}_{2}$
(c) $\mathrm{Cl}_{2}>\mathrm{SO}_{2}>\mathrm{CO}_{2}>\mathrm{NH}_{3}$
(d) $\mathrm{NH}_{3}>\mathrm{CO}_{2}>\mathrm{Cd}_{2}>\mathrm{SO}_{3}$
54. Which of the following will have highest rate of diffusion?
(a) O_{2}
(b) CO_{2}
(c) NH_{3}
(d) SO_{2}
55. Kinetic equation $P V=\frac{1}{3} m \sqrt{C^{2}}$ is derived by:
(a) Maxwell
(b) Boltzmann (c) Clausius
(d) Bernoulli
56. The deviation of gas from ideal behaviour is maximum at:
(a) $-10^{\circ} \mathrm{C}$ and 5.0 atm
(b) $-10^{\circ} \mathrm{C}=$ nd 2.0
(c) $100^{\circ} \mathrm{C}$ and 2 atm
(d) $9^{\circ} \mathrm{C}$ ald 2.0 去估
57. The temperature of a natural p lamar anu:
(a) $20000^{\circ} \mathrm{C}$
(b) 15000°
58. Dipole -dip io forces me present mong:
(c) 5500

(a) Molecules of rodin?
(b) Atoms of neon in gaseous state
(c) Chloroform molecules
(d) CCl_{4} molecules
5.0 bed tore are also called:
(a) Diidod-dipole forces
(b) Dipole-Induced dipole forces
(c) London forces
(d) Ion-dipole forces
60. Which of the given has Hydrogen Bonding?
(a) CH_{4}
(b) CCl_{4}
(c) NH_{3}
(d) NaCl
61. In chloroform and acetone, how many chlorine atoms are responsible for hydrogen bonding?
(a) 1
(b) 2
(c) 3
(d) 4
62. Acetone and chloroform are soluble in each other due to:
(a) Intermolecular hydrogen bonding
(b) Dipole-dipole interaction
(c) Instantaneous dipoles
(d) all of the above
63. When water freezes, its volume increases:
(a) 10%
(b) 9%
(c) 15%
(d) 18%
64. Among the given \mathbf{H}-Bonding is maximum in:
(a) Alcohol
(b) Benzene
(c) Water
(d) Diethyl ether
65. When water freezes at $0^{\circ} \mathrm{C}$, its density decreases due to:
(a) Cubic structure of ice
(b) Empty spaces present in the structure of ice
(c) Change of bond lengths
(d) Change of bond angles
66. In order to mention the B.P. of water at $110^{\circ} \mathrm{C}$, the external pressure should be:
(a) Between 760 torr and 1200 torr
(b) between 200 torr and 760 torr
(c) 765 torr
(d) Any value of pressure
67. The boiling point of glycerine at one atm is:
(a) $280^{\circ} \mathrm{C}$
(b) $290^{\circ} \mathrm{C}$
(c) $100^{\circ} \mathrm{C}$
(d) $110^{\circ} \mathrm{C}$
68. The boiling point of water at the top of Mount Everest is:
(a) $59^{\circ} \mathrm{C}$
(b) $69^{\circ} \mathrm{C}$
(c) $83^{\circ} \mathrm{C}$
d) 75 C

1. NH3 shows a maximum boiling point among the n d ic es of -A
*roup elements due to:
(a) Very small size of nitrogen
(b) Lone pair of elfetidns present on nit open
(c) Enhanced electret at le character pe nitrogen
(d) Pyramidal structure of in H_{3}
2. Tergal System of sugar is:
(2, Manocliiic
(b) Cubic
(c) Hexagonal (d) Triclinic
3. Which one of the following is an example of cubic system?
a) Diamond
(b) Borax
(c) Iodine
(d) Graphite
4. The crystal system of sulphur is:
(a) Cubic
(b) Hexagonal (c) Triclinic
(d) Monoclinic
5. If $a \neq b \neq c$ and $\alpha=\gamma=90^{\circ}, \boldsymbol{\beta} \neq 90^{\circ}$ then crystal system is:
(a) Monoclinic
(b) Diclinic
(c) Triclinic
(d) Polyclinic
6. Which is pseudo solid?
(a) CaF_{2}
(b) Glass
(c) NaCl
(d) CaCl_{2}
7. Transition temperature of KNO is:
(a) $13.2^{\circ} \mathrm{C}$
(b) $95.5^{\circ} \mathrm{C}$
(c) $128^{\circ} \mathrm{C}$
(d) $32.2{ }^{\circ} \mathrm{C}$
8. Crystal of diamond is:
(a) Ionic
(b) Covalent
(c) Molecular
(d) Metallic
9. The Lightest value of Lattice energy is for which one of these ionic
(a) NaI
(b) NaF
(c) NaBr
(d) MaCl
10. Ionic solids are characterized y
(a) Low melting point
(b) Goon a conductivity in solid state
(c) High vapours pressure
 Solubility it pol ac solvent
11. Diamond is had conduct or because:
(a) It has a tight oructure
(b) It has a high density
(c) It is irmapireltaplish
(C) There are or tire electrons present in the crystal of diamond to conduct electricity
12. Cathode rays strike alumina and produce a \qquad colour:
(a) Red
(b) Blue
(c) Yellow
(d) Green
13. Positive rays were discovered by:
(a) J.J Thomson
(b) Goldstein
(c) William Crookes
(d) Ruther ford
14. The nature of positive rays depends on:
(a) The nature of electrode
(b) The nature of discharge tube
(c) The nature of residual gas
(d) All of the above
15. The e / m value for the positive rays in maximum for the gas.
(a) Hydrogen (b) Helium
(c) Oxygen
(d) Nitrogen
16. When fast neutron carries nuclear reaction with nitrogen it ejects particles:
(a) α
(b) β
(c) γ
(d) δ
17. Mass of an electron is:
(a) $9.1095 \times 10^{-31} \mathrm{~kg}$
(b) 6.022×10^{22}
(c) 6.022×10^{-22}
(d) 10.10×10^{30}
18. Rutherford's model of atom failed because:
(a) The atom did not have a nucleus and electrons
(b) It did not account for the attraction between protons and neutrons
(c) It did not account for stability of the atom
(d) There is actually no space between the nucleus and the electrons
19. Bohr Model of atom is contradiction by:
(a) Plank's quantum theory
(b) Dual nature
(c) Heisen berg's principle
(d) Paul's exclusion principle
20. In the ground state of an atom, the electron is present:
(a) In the nucleus
(c) Nearest to the nucleus
(b) In the salon in shell
21. The velocity of pl ton is:
(a) Independent of ito v a velength \cap b, Depends on its wavelength
(c) Equal to square of it. ariplitude (d) Dies ends on its source
22. Lymanser lies lis in dental region:
(2)Infinad N Ultra violet
(c) Visible
(d) None of these
(1). Sp itting of spectra lines when atoms are subjected to strong electric field is called:
(a) Leman effect
(b) Strak effect
(c) Photoelectric effect
(d) Compton effect
23. De-Broglie equation is represented by:
(a) $\mathrm{h}=\frac{\lambda}{\mathrm{mv}}$
(b) $m=\frac{h}{\lambda v}$
(c) $\mathrm{m}=\frac{\lambda}{\mathrm{hv}}$
(d) $\lambda=\frac{\mathrm{h}}{\mathrm{mv}}$
24. Quantum number values for $2 p$ orbitals / subshell are:
(a) $\mathrm{n}=2, \mathrm{I}=1 \quad$ (b) $\mathrm{n}=1, \mathrm{I}=2$ (c) $\mathrm{n}=1, \mathrm{I}=0$ (d) $\mathrm{n}=2, \mathrm{I}=0$
25. An orbital which is spherical and symmetrical is:
(a) s - orbital (b) p-orbital (c) d-orbital \quad (d) f - orbital
26. Orbitals having same energy are called:
(a) Hybrid orbitals
(b) Valence orbitals
(c) Degenerate orbitals
(d) d - orbitals
27. $n+I$ value of $\mathbf{6 d}$ orbital is:
(a) 08
(b) 09
(c) 10
28. Most stable electronic configu ation ic of a ani
(a) Noble Gas
(b) Fle ronegative Element
(c) Alkali Metal

29. When $\mathbf{6 d}$ orfita is confle e, the en tering electron goes into:
(a) 7 f
(b̀̀ 7 s
(C) 7 p
(d) 7 d

98 Thementher nas maximum numbers of unpaired electron is:
$6 \mathrm{ClO}_{2}$
(b) Ca_{20}
(c) F_{26}
(d) CH_{29}
99. Octet rule is not followed in the formation of:
(a) NF_{3}
(b) CF_{4}
(c) CCl_{4}
(d) PCl_{3}
100. Which compound does not obey the octet rule?
(a) NH_{3}
(b) BCl_{3}
(c) $\mathrm{H}_{2} \mathrm{O}$
(d) CH_{4}
101. The covalent radius of Cl -atom is:
(a) 99.4 pm
(b) 80 pm
(c) 70 pm
(d) 66.4 pm
102. Which element has highest ionization potential?
(a) Li
(b) Be
(c) B
(d) C
103. The amount of energy released by absorbing electron in the valence shell is:
(a) Ionization energy
(b) Electron affinity
(c) Electronegativity
(d) Atomization energy
104. In methanol, bond between carbon and oxygen:
(a) Ionic
(b) Non-Polar
(c) Polar
(d) Co-ordinate
105. Which of the following has coordinate covalent bond:
(a) $\mathrm{NH}_{4} \mathrm{Cl}$
(b) NaCl
(c) HCl
(d) AlCl_{3}
106. Among the following quantum a pair of molecule having similar geometry:
(a) $\mathrm{BF}_{3}, \mathrm{NH}_{3}$
(b) $\mathrm{BF}, \mathrm{Alf}_{3}$
(c) $\mathrm{BeF}_{2}, \mathrm{H}_{2} \mathrm{O}$
(d) $\mathrm{BCl}_{3}, \mathrm{PCl}_{3}$
107. The geometry of SO 2 molecule is:
(a) Angular
(b) Linear
(c) Tetrahedral
(d) Trigonal pyramid
108. Beryllium dichloride follows hybridization:
(a) sp
(b) sp3
(c) sp 3
(d) $\mathrm{sp}^{3} \mathrm{~d}^{2}$
109. The shape of SnCl 2 molecule is:
(a) Linear
(b) Angular

(c) Tetrah dea
110. The structure of water molecule is:
(a) Angular
(b) Linear
Esitring (c) Tr gendl pyramidal
111. Orbitals havine same enersy are cilled.
(a) Hybrid orbitals
Γ
(c) Degenerate ort itals.

(b) Valence orbitals

112. The bon angle in $\mathrm{N} \cdot \mathrm{H}$ nowecules is:

$$
\begin{array}{lll}
\text { (b) } 107.5^{\circ} & \text { (c) } 104.5^{\circ}
\end{array}
$$

(d) 108°

1,3 The hybridization in ammonia molecule is:
(a) dsp^{2}
(b) sp^{2}
(c) sp^{3}
(d) sp
114. The number of bonds in nitrogen molecule is:
(a) 1
(b) 2
(c) 3
(d) 4
115. Dipole moment of $\mathbf{C O 2}$ is:
(a) 1.25 D
(b) 1.85 D
(c) 3.1 D
(d) Zero
116. Dipole Moments and Molecular Structure 35. Which of the hydrogen halide has the highe percentage of ionic character?
(a) HCl
(b) HBr
(c) HF
(d) HI
117. \qquad molecule has zero dipole moment:
(a) CO
(b) $\mathrm{H}_{2} \mathrm{~S}$
(c) SO_{2}
(d) CH_{4}
118. If an endothermic reaction is allowed to take place very rapidly in the air, the temperatara 0 till surrounding air:
(a) Remains constant
(b) Increases
(c) Decreases
(d) Remairunchangel
119. In endothermic reactions, the reat coniont of the:
(a) Products is mare than that of reactants
(b) Reactants is morethar frat ot prodicts
(c) Both a and b
(d) Reactants anó prodycts a e qual

12n. WTichiof bese not a state function?
(a) Cemperature
(b) Pressure
(c) Volume
(d) Heat
121. The net heat change in a chemical reaction is same whether it is brought about in two or mor different ways in one or several steps.

It is known as:
(a) Henry's Law
(b) Hess's Law
(c) Joule's Principle
(d) Law of conservation of energy
122. The change in heat contents of a chemical reaction at constant temperature and pressure called:
(a) Enthalpy change
(b) Bond Energy
(c) Heat of Sublimation
(d) Internal Energy Change
123. The change in heat energy of a chemical reaction at constant temperature and pressure called:
(a) Enthalpy Change
(b) Bond energy
(c) Heat of sublimation
(d) Internal energy change
124. The pressure of oxygen inside the bomb calorimeter is:
(a) 100 atm
(b) 50 atm
(c) 25 atm
(d) 20 atm
125. One Calorie is equivalent to:

OR One thermal calorie is equivalent to:
(a) 0.4184 J
(b) 41.84 J
(c) 4.184 J
(d) 418.4 J
126. $\Sigma \Delta H$ (cycle) $=0$ The above law is known as:
(a) Henry's Law
(b) Hess's Law
(c) Kohlarus Law
(d) Darwins Law
127. The optimum temperature for the synthesis of NH3 by Haber's process is:
(a) $200^{\circ} \mathrm{C}$
(b) $300^{\circ} \mathrm{C}$
(c) $400^{\circ} \mathrm{C}$
(d) $500^{\circ} \mathrm{C}$
128. \qquad was derived by C.M. guldberg and P. Waage in 1864:
(a) Law of Conservation of Mass
(c) Distribution Law
(b) Law of Mass Action
(c) Distribution Law
(d) Law of Eqnservation or Eneryy

129. The reaction which proceeds in both forvard nd bach wadd di rection is zalled:
(a) Irreversible reaction
(b) Reve sible reaction
(c) Spontaneous reaction
(d) Non Spontameous reaction
130. Optimum peosur in Haben's process for yntiesis of Ammonia is:
(a) $100-150 \cdot \mathrm{tn}$
(b) 200-300 atm
(c) $350-4.0 \mathrm{a} \mathrm{m}$
(d) $500-600 \mathrm{~atm}$
12. The thicf 10.1 noles / dm3 of $\mathrm{Ba}(\mathbf{O H}) 2$ is:
(a) av of Conservation of Mass (b) Law of Mass Action
(c) Distribution Law
(d) Law of Conservation of Energy
132. The $\mathbf{p H}$ of $10-4$ moles $/ \mathrm{dm}^{3}$ of $\mathrm{Ba}(\mathbf{O H}) 2$ is:
(a) 4.5
(b) 6.4
(c) 7.5
(d) 10.3
133. The value of $K w$ at $25^{\circ} \mathrm{C}$ is:

OR The value of ionic product (Kw) of water at $25^{\circ} \mathrm{C}$ is:
(a) 0.11×10^{-14}
(b) 0.30×10^{-14}
(c) 1×10^{14}
(d) 3×10^{-14}
134. The $\mathbf{p H}$ of human blood is maintained at pH .
(a) 7.4
(b) 7.3
(c) 7.00
(d) 8.00
135. Sum of $\mathbf{p K a}$ and $\mathbf{p K b}$ is equal to:
(a) 7
(b) 1
(c) 14
(D) 0
136. By adding NH4CI to NH 4 OH solution. The ionization of NH 4 OH :
(a) Increases
(b) Remain same
(c) Decreases
(d) Ïncreases iç̃ines
137. The pH of buffers can be calculat by
(a) Henderson equation
(b) Nerst equation
(c) Kinetic equation (d) Arrhenjus equation
138. Relative lowerii o a acur presure is equal to:
(a) Mole fraction of solute
(v) Mole fraction of solvent
(c) $\mathrm{Mol} / \mathrm{r}$ (9)
(d) Molality
1.39. A thernometer used in landsberger's method can read upto:
(a) 0.1 K
(b) 0.01 F
(c) 0.01 K
(d) $0.01^{\circ} \mathrm{C}$
140. 18 g glucose is dissolved in 90 g of water. The relative lowering of vapour pressure is equal to:
(a) 5
(b) 5.1
(c) $\frac{1}{51}$
(d) 6
141. A solution of glucose is $10 \% \mathrm{w} / \mathrm{v}$. The volume in which 1 g mole of it is dissolved will be:
(a) $1 \mathrm{dm}^{3}$
(b) $1.8 \mathrm{dm}^{3}$
(c) $200 \mathrm{~cm}^{3}$
(d) $900 \mathrm{~cm}^{3}$
142. An aqueous solution of ethanol in water may have vapour pressure:

OR An aqueous solution of ethanol in water has vapour pressure:
(a) equal to that of water
(b) equal to that of ethanol
(c) more than that of $\mathrm{H}_{2} \mathrm{O}$
(d) less than that of water
143. Which of the following solutions has the highest boiling point?
(A) 5.85% solution of sodium chloride
(B) 18.0% solution of glucose
(C) 6.0% solution of urea
(D) All have the same boiling point
144. The oxidation number of C in C 12 H 22 O 11 is:
(a) Zero
(b) -6
(c) +6
(d) 12
145. The oxidation number of O -atom in OF_{2} is:
(a) -2
(b) +2
(c) -1
(d) +1
146. Which of the following statements is correct about Galvanic cell?
(a) anode is negatively charged
(c) cathode is positively charged
(b) reduction occurs at anode
(d) reduction occurs at cathode
147. The reduction potential of $\mathbf{Z n}$ is:
(a) +0.76 V
(b) -0.34 V
(c) +0.34 V
(d) -0.7 V
148. The standard redox potential of following reacion is $\mathrm{Zn} 2++2 \mathrm{l}-\mathrm{Zn}$:
(a) -0.76 V
(b) 2.87 V
(c) 2026 V
(d) 3.045
149. The cathodic reaction in the electrolysis of (il. H2SO 4 with 1 telectrodes is:
(a) reduction
(c) both oxidation a 10 r d a cti@n
(b) oxidation
reduction.
150. Stronger the oxidiziadagent, greater is the:
(a) Oxidaror potentilu
(b) reduction potential
(d) E.M.F of cell
151. If the salt bridge is not used between two half cells, then the voltage.
(a) decrease rapidly
(b) decrease slowly
(c) does not change
(d) drops to zero.
152. If a strip of Cu metal is placed in a solution of FeSO4:
(a) Cu will be precipitated down
(b) Fe is precipitated out
(c) Cu and Fe both dissolve
(d) No reaction takes place.
153. The unit of rate constant is the same as that of the rate of reaction is:
(a) First order reaction
(b) Second order reaction
(c) Zero-order reaction
(d) Third order reaction
154. The unit of rate constant is the same as that of the rate of reaction in:
(a) First order reaction
(b) Second order reaction
(c) Zero-order reaction
(d) Third order reaction
155. In zero order reaction, the rate is independent of-
(a)Temperature of reaction (b) Concentration ©i) reactent
(c) Concentration of products
(d) None ntine
156. If the rate equation of a reaction,$A+B \rightarrow \mathcal{A C d y c t}$ is, rate $=K[A] 2$ [B], and A is present in lare excess, then order of reaction is:
(a) 1
(b) 2
(c) 3
(d) none of these
157. The rate cí reacion \qquad as the reaction proceeds.
(a) Increase
(c) Rena nsthe same
(d) May decrease
158. With increase in $10 \circ$ C temperature, the rate of reaction doubles. This increase in rate of reactio is due to:
(a) Decrease in activation energy of reaction
(b) Decrease in the number of collisions between reactant molecules.
(c) Increase in activation energy of reactants
(d) increase in number of effective collisions.
159. Unit of rate constant is the same as that of the rate of reaction in:
(a) Zero order reaction
(b) $1^{\text {st }}$ order Reaction
(c) $2^{\text {nd }}$ order Reaction
(d) $3^{\text {rd }}$ order reaction.
160. Glucose can be converted into ethanol by an enzyme:
(a) Lipase
(b) Zymase
(c) Sucrose
(d) Urease

(SUBJECTIVE PART)
 68/68 Marks Challenge

SECTION-I

SHORT QUEGTIONS (SNS

1. Define molecular ion, write its use:
2. Why we use theterm relative at omic mass?
3. Calculate the percentage of Nit:ogen in urea.
4. What are is othpes? W yy th py have sane eैnemical but different physical properties?
5. Define isotope; why th have same chemical properties?
6. Xpain rnathen atiear relationship of m / e of an ion in mass spectrometry.
7. HCW dees no individual neon atom in the sample of the element has mass 20.18amu?
Write functions of $\mathrm{Mg}\left(\mathrm{ClO}_{4}\right)_{2}$ and KOH in combustion analysis.
8. Why oxygen cannot be determined directly in combustion analysis?
9. Differentiate between empirical and molecular formula.
10. A compound may have same molecular and empirical formula, Justify.
11. Define molecular formula. How is it related with empirical formula?
12. Define limiting reactant. Give an example.
13. Many chemical reactions taking place in our surrounding involve limiting reactants. Give reason
14. Define actual yield. Write formula for the calculation of $\%$ age yield.
15. Why actual yield is always less than theoretical yield?
