

NLONG QUESTIONS

Chapter 2:

Q. 1 Prove that $\mathrm{p} \vee(\sim p \wedge \sim q) \vee(p \wedge q)=p \vee(\sim p \wedge \sim q)$
Q. 2 Convert $(A \cup B) \cup C=A \cup(B \cup C)$ into logical form and prove it by constructing the truth table.
Q. 3 Give the logical proof of De Morgan's Law.
Q. 4 Convert the theorem $(A \cup B)^{\prime}=A^{\prime} \cup B^{\prime}$ to logical statement and prove them by constructing truth tables.
Q. 5 Show that the set $\left\{1, \omega, \omega^{2}\right\}, \omega^{3}=1$, is an Abelian group w.r.t ordinary multiplication.
Q. 6 Prove that $2 x 2$ non singular matrices over the real field form a non-abelian group under multiplication
Q. 7 Consider the set $S=\{1,-1, \mathrm{i}-\mathrm{i}\}$. Set up its multiplication table and show that the set S is an alellinsoup unde m in icalion Q. 8 Give logical proofs of the following theorems
i) $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$
ii) $(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$
Q. 9 If a, b are elements of a group G, solve the following eq $A=$ tion :
ii) $x a=b$
i) $a x=b$

Chapter 3 :

s. 8 aclve ti e cullowing system of linear equations: $3 x-5 y=1 ;-2 x+y=-3$
Q. 3 Solve the following matrix equation for $A:\left[\begin{array}{ll}4 & 3 \\ 2 & 2\end{array}\right] A-\left[\begin{array}{cc}2 & 3 \\ -1 & -2\end{array}\right]=\left[\begin{array}{cc}-1 & -4 \\ 3 & 6\end{array}\right]$ Q. 4 Show that $\left|\begin{array}{ccc}-\mathrm{a} & 0 & c \\ 0 & a & -b \\ b & -c & 0\end{array}\right|=0$ Q. 5 Show that $\left|\begin{array}{ccc}a+\lambda & b & c \\ a & b+\lambda & c \\ a & b & c+\lambda\end{array}\right|=\lambda^{2}(a+b+c+\lambda)$
Q. 6 If $\mathrm{A}=\left[\begin{array}{ccc}1 & 0 & 2 \\ 0 & 2 & 1 \\ 1 & -1 & 1\end{array}\right]$ then find A^{-1} by using adjoint of the matrix.
Q. 7 Show that $\left|\begin{array}{llll}x & 1 & 1 & 1 \\ 1 & x & 1 & 1 \\ 1 & 1 & x & 1 \\ 1 & 1 & 1 & x\end{array}\right|=(x+3)(x-1)^{3}$
Q. 8 Show that $\left|\begin{array}{lll}b+c & a & a^{2} \\ c+a & b & b^{2} \\ a+b & c & c^{2}\end{array}\right|=(a+b+c)(a-b)(b-c)(c-a)$
Q. 9 Without expansion , verify that $\left|\begin{array}{lll}1 & a^{2} & \frac{a}{b c} \\ 1 & b^{2} & \frac{b}{c a} \\ 1 & c^{2} & \frac{c}{a b}\end{array}\right|=0$
Q. 10 Solve the following systems of linear equations by Cramer's rule.

$$
\begin{aligned}
& 2 x+2 y+z=3 \\
& 3 x-2 y-2 z=1 \\
& 5 x+y-3 z=2
\end{aligned}
$$

Q. 11 Use matrices to solve the following systems:

$$
\begin{aligned}
& x-2 y+z=-1 \\
& 3 x+y-2 y=4
\end{aligned}
$$

Q. 12 Solve the system of linear equations by Cramer's rule.
Q. 13 Use matrices to solve systern

$$
\begin{aligned}
& x_{1}-2 x_{2}+x_{3}=-4 \\
& 2 x_{1}-3 x_{2}+2 x_{3}=-6 \\
& 2 x_{1}+2 x_{2}+x_{3}=5
\end{aligned}
$$

- Niater 4:

Q. 1 Solve by factorization $\frac{a}{a x-1}+\frac{b}{b x-1}=a+b ; x \neq \frac{1}{a}, \frac{1}{b}$
Q. 2 Solve by quadratic formula $(\mathrm{a}+\mathrm{b}) x^{2}+(a+2 b+c) x+b+c=0$
Q. 3 Solve by quadratic formula $(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=0$
Q. 4 Solve $x^{2}+x-4+\frac{1}{x}+\frac{1}{x^{2}}=0$
Q. 5 Solve $4.2^{2 x+1}-9.2^{x}+1=0$
Q. 6 Solve $3^{2 x-1}-12.3^{x}+81=0$
Q. 7 Show that $(1+\omega)\left(1+\omega^{2}\right)\left(1+\omega^{4}\right)\left(1+\omega^{8}\right) \ldots .2 n$ factors $=1$
Q. 8 Find the condition that one root of $\mathrm{a} x^{2}+b x+c=0, \mathrm{a} \neq 0$ is square of the other.
Q. $9 x^{3}+y^{3}+z^{3}-3 x y z=(x+y+z)\left(x+\omega y+\omega^{2} z\right)\left(x+\omega^{2} y+\omega^{2}\right)$
Q. 10 If the roots of $p x^{2}+q x+q=0$ are α and ρ, P ove that $\sqrt{\frac{\alpha}{\beta}}+\frac{\frac{1}{\gamma}}{\sqrt{q}}+\sqrt{\sqrt{\frac{q}{p}}}=b$
Q. 11 If α, β are the roots of $5 x^{2}-x-2=0$ vim her quation who eo sare $\frac{3}{\alpha}$ and $\frac{3}{\beta}$.
Q. 12 Show that the roots of ${ }^{2}+(r x+c)^{2}=a^{2}$ will Re equel it $c^{2}=a^{2}\left(1+m^{2}\right)$.
Q. 13 Show that the roots of $(m x+=)^{2}=$ ax will belequal if $\mathrm{c}=\frac{a}{m} ; m \neq 0$

$9.15 \leq 0 \mathrm{Na} \cdot \mathrm{sx}+4 y=25 ; \frac{-4}{x}+\frac{4}{y}=2$
Q. 1tsolve the system of equation : $x+y=a+b$ and $\frac{a}{x}+\frac{b}{y}=2$
Q. 17 Prove that sum of three cube roots of unity is zero.
Q. 18 Prove that $(-1+\sqrt{-3})^{4}+(-1-\sqrt{-3})^{4}=-16$
Q. 19 If α, β are the roots of $5 x^{2}-x-2=0$, form the equation whose roots are $\frac{3}{\alpha}$ and $\frac{3}{\beta}$
Q. 20 Solve $x^{2}+(y+1)^{2}=18 ;(x+2)^{2}+y^{2}=21$

Chapter 6:

Q. 1 Find n so that $\frac{a^{n}+b^{n}}{a^{n+1}+b^{n+1}}$ may be the A.M. between a and b.
Q. 2 The sum of 9 terms of an A.P. is 171 and its eight term is 31 . Find the series.
Q. 3 The sum of three numbers in an A.P. is 24 and their product is 440 . Find the numbers.
Q. 4 Find the four numbers in A.P. whose sum is 32 and the sum of whose squares is 276.
Q. 5 Find three consecutive numbers in G.P. whose sum is 26 and their product is 216.
Q. 6 Show that the reciprocals of the terms of the terms of the geometric sequence $\mathrm{a}_{1}, \mathrm{a}_{1} r^{2}, \mathrm{a}_{1} r^{4}, \ldots$. from another geometric sequence.
Q. 7 If the sum of the four consecutive terms in G.P. is 80 and A.M. of the second and the fourth of them is 30 .Find the terms.
Q. 8 If $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are in G.P. prove that $a^{2}-b^{2}, b^{2}-c^{2}, c^{2}-a^{2}$ are in G.P. Q. 9 For what value of n, is $\frac{a^{n}+b^{n}}{a^{n-1}+b^{n-1}}$ the positive geometric mean between two distinct numbers a and b ?
Q. 10 If $y=\frac{x}{2}+\frac{1}{4} x^{2}+\frac{1}{8} x^{3}+\cdots$ and if $0<x<2$, then prove that $x=\frac{2 y}{1+y}$
Q. 11 If $\mathrm{y}=\frac{2}{3} x+\frac{4}{9} x^{2}+\frac{8}{27} x^{3}+\cdots$ and if $0<x<\frac{3}{2}$, then prove that $x=\frac{3 y}{2(1+y)}$
Q. 12 Find the five numbers in A.P. whose sum is 25 and sum of whose

Squares is 135.
Q. 13 If S_{2}, S_{3}, S_{5} are the sums of $2 n, 3 n, 5 n$ terms of an A.P.,show that $S_{5}=5\left(S_{3}-S_{2}\right)$
Q. 14 Show that the sum of n A.Ms. between a and b is equal to n times their A.M.
Q. 15 If $y=1+\frac{x}{2}+\frac{x^{2}}{4}+\cdots$ then show that $x=2\left(\frac{y-1}{y}\right)$
Q. 16 The sum of an infinite geometric series is 9 a.d he sum vithe squaris of its ternsi. $\frac{8}{5}$. Find he series.

Chapter 7:

Q.1Find the numbers greate r than 2300, that con be formed tom the digits $1,2,3,5,6$ without repeating any digits.
Q. 2 How many 6-digit numbers can pe formed wthut repeating any digit from the digits 0,1,2,3,4,5 ? In how many of them will 0 be at the tens place

c. ${ }^{-1}$ ow minn 5 -digit numbers can be formed from the digits $2,2,3,3,4,4$? How many

Of them will lie between 400,000 and 430,000?
Q. 5 In how many ways can be letters of the word MISSISSIPPI be arranged when all the letters are to be used?
Q. 6 Prove from the first principle that
ii) ${ }^{n} P_{r}={ }^{n-1} P_{r}+r \cdot{ }^{n-1} P_{r-1}$
i) ${ }^{n} P_{r}=n .{ }^{n-1} P_{r-1}$ Q. 7 Find the value of n when
ii) ${ }^{11} \mathrm{P}_{\mathrm{n}}=11.10 .9$
i) ${ }^{n} \mathrm{P}_{2}=30$
Q. 8 How many numbers greater than 1000,000 can be formed from the digits $0,2,2,2,3,4,4$?
Q. 9 Find the value of n and r, when ${ }^{n} C_{r}=35$ and ${ }^{n} P_{r}=210$

Chapter 8:

Q. 1 Use mathematical induction to prove that
i) $1+3+5+\cdots+(2 n-1)=n^{2}$
ii) $1+4+7+\cdots+\left(3 n-(2)=-\frac{n}{2 n-1)}\right.$
iii) $1+5+9+\cdots+(4 n-3)=n(22-1)$
Q. 2 Find the term independent $o=x$ in the $\in \times p$ nnish
ii) $\left(x-\frac{2}{2}\right)^{10}$

23 find the term involving x^{4} in the expansion of $(3-2 x)^{7}$
Q. 4 Use binomial theorem to show that $1+\frac{1}{4}+\frac{1.3}{4.8}+\frac{1.3 .5}{2.4 .6}+\cdots=\sqrt{2}$
Q. 5 If x is so small that its square and higher powers can be neglected, then show that

$$
\frac{1-x}{\sqrt{1+x}}=1-\frac{3}{2} x
$$

Q. 6 If $y=\frac{1}{3}+\frac{1.3}{2!}\left(\frac{1}{3}\right)^{2}+\cdots$,then prove that $y^{2}+2 y-2=0$
Q. 7 Find the coefficient of x^{5} in the expansion of $\left(x^{2}-\frac{3}{2 x}\right)^{10}$
Q. 8 If x is very nearly equal to 1 , then prove that $p x^{p}-q x^{q}=(p-q) x^{p+q}$
Q. 9 Find the term involving x^{-2} in the expression of $\left(x-\frac{2}{x^{2}}\right)^{13}$
Q. 10 Determine the middle term or terms in the following expansions $\left(\frac{3}{2} x-\frac{1}{3 x}\right)^{11} \mathrm{Q} .11$ If x is so small that its square and higher powers can be neglected, then show that

$$
\frac{1+x}{\sqrt{1-x}}=1+\frac{3}{2} x
$$

Q. 12 If $2 y=\frac{1}{2^{2}}+\frac{1.3}{2!} \frac{1}{2^{4}}+\frac{1.3 .5}{3!} \frac{1}{2^{6}}+\cdots$, then prove that $4 y^{2}+4 y-1=0$

Chapter 9

Q. 1 If $\cot \theta=\frac{15}{8}$ and the terminal arm of the angle is not in first quadrant, find the value $\cos \theta$ and $\operatorname{cosec} \theta$.
Q. 2 If $\operatorname{cosec} \theta=\frac{m^{2}+1}{2 m}$ and $0<\theta<\frac{\pi}{2}$ find the value of the remaining trigonometric ratio.
Q. 3 Prove the identity $\frac{1}{\operatorname{cosec} \theta-\cot \theta}-\frac{1}{\sin \theta}=\frac{1}{\sin \theta}-\frac{1}{\operatorname{cosec} \theta+\cot \theta}$
Q. 4 Prove that $\frac{\tan \theta+\sec \theta-1}{\tan \theta+\sec \theta+1}=\tan \theta+\sec \theta$
Q. 5 Prove that $\frac{1-\sin \theta}{\cos \theta}=\frac{\cos \theta}{1+\sin \theta}$
Q. $6 \sin ^{6} \theta-\cos ^{6} \theta=\left(\sin ^{2} \theta-\cos ^{2} \theta\right)\left(1-\sin ^{2} \theta \cos ^{2} \theta\right)$
Q. $7 \sin ^{6} \theta+\cos ^{6} \theta=1-3 \sin ^{2} \theta \cos ^{2} \theta$
Q. 8 If $\tan \theta=\frac{1}{\sqrt{7}}$ and the terminal arm of the amse is rid $\mathrm{i} / 1$ the II quadrant, find the value of $\frac{\operatorname{ssc}^{2} \theta-\sec ^{2} \theta}{\csc ^{2} \theta+\sec ^{2} \theta}=\frac{3}{4}$.
Q. 9 Find the value of the other tive tigonometrcturctionsonatic $\cos \theta=\frac{12}{13}$ and the terminal side of the angle is not in the 1 quadrant.
Q. 10 Prove that $(\tan Q+\cot \theta)=s e^{2} b \csc ^{2} \theta$
Q.11 110 at $\theta=\frac{3}{2}$ and ternal arm of the angle is in the first quadrant, find the value of $\frac{3 \sin \theta+4 \cos \theta}{\cos \theta-\sin \theta}$

Chapter 10

Q. 1 Prove the identity $\frac{\sin 3 \theta}{\sin \theta}-\frac{\cos 3 \theta}{\cos \theta}=2$
Q. 2 If $\sin \alpha=\frac{4}{5}$ and $=\frac{40}{41}$, where $0<\alpha<\frac{\pi}{2}$ and $0<\beta<\frac{\pi}{2}$ Show that $\sin (\alpha-\beta)=\frac{113}{205}$
Q. 3 Reduce $\cos ^{4} \theta$ to an expression involving only function of multiple of θ, raised to the first power.
Q. $4 \sqrt{\frac{1+\sin \alpha}{1-\sin \alpha}}=\frac{\sin \frac{\alpha}{2}+\cos \frac{\alpha}{2}}{\sin \frac{\alpha}{2}-\cos \frac{\alpha}{2}}$
Q. 5 Show that $\cot (\alpha+\beta)=\frac{\cot \alpha \cot \beta-1}{\cot \alpha+\cot \beta}$
Q. 6 Reduce $\sin ^{4} \theta$ to an expression involving only function of multiple of θ, raised to the first nover.
Q. 7 Prove that $\frac{\sin \theta+\sin 3 \theta+\sin 5 \theta+\sin 7 \theta}{\cos \theta+\cos 3 \theta+\cos 5 \theta+\cos 7 \theta}=\tan 4 \theta$
Q. 8 Prove that $\cos 20^{\circ} \cos 40^{\circ} \cos 60^{\circ} \cos 80^{\circ}=\frac{1}{16}$
Q. 9 Prove that $\sin \frac{\pi}{9} \sin \frac{2 \pi}{9} \sin \frac{\pi}{3} \sin \frac{4 \pi}{9}=\frac{3}{20}$
Q. 10 Prove that $\sin 10^{\circ} \sin x^{\circ} \sin 50^{\circ} \sin 70^{\circ}=\frac{1}{16}$
Q. 11 Prove that $\frac{\cos 8^{\circ}-\sin 8^{\circ}}{\cos 8^{\circ}+\sin 8^{\circ}}=$ t. n. 37°
Q. 12 If α, ρ, γ a α, teanglesc ft iangle ABC , show that $\cot \frac{\alpha}{2}+\cot \frac{\beta}{2}+\cot \frac{\gamma}{2}=\cot \frac{\alpha}{2} \cot \frac{\beta}{2} \cot \frac{\gamma}{2}$
c. 1.3 Frove that $\frac{\operatorname{in} 1+\sin 2 A}{1+\cos A+\cos 2 A}=\tan A$

Q14. Show that $\cos (\alpha+\beta) \cos (\alpha-\beta)=\cos ^{2} \alpha-\sin ^{2} \beta=\cos ^{2} \beta-\sin ^{2} \alpha$

Chapter 12

Q. 1 Solve the triangle ABC , in which $a=3, c=6, \beta=36^{\circ} 20^{\prime}$

Q .2 Solve the triangle ABC , in which $a=7, b=3, \gamma=38^{\circ} 13^{\prime}$
Q. 3 Solve the triangle ABC , in which $a=32, b=40, c=66$
Q. 4 The sides of triangle are $x^{2}+x+1,2 x+1$ and $x^{2}-1$. Prove that the greatest angle of the triangle is 120°.
Q. 5 Show that $r=\operatorname{asin} \frac{\beta}{2} \sin \frac{\gamma}{2} \sec \frac{\alpha}{2}$
Q. 6 Show that $r_{1}=4 R \sin \frac{\alpha}{2} \cos \frac{\beta}{2} \cos \frac{\gamma}{2}$
Q. 7 Show that $r_{1}=\operatorname{stan} \frac{\alpha}{2}$
Q. 8 Prove that in equilateral triangle $r: R: r_{1}=1: 2: 3$
Q. 9 Prove that $r=\operatorname{stan} \frac{\alpha}{2} \tan \frac{\beta}{2} \tan \frac{\gamma}{2}$
Q. 10 Prove that $\left(r_{1}+r_{2}\right) \tan \frac{\gamma}{2}=c$
Q. 11 With usual notations, prove that $R=\frac{a b c}{4 \Delta}$
Q. 12 With usual notations, prove that $r=\frac{\Delta}{s}$
Q. 13 Prove that Law of Cosine.
Q. 14 Prove that Law of Sine.
Q. 15 Show that $r=(s-a) \tan \frac{\alpha}{2}=(s-b) \tan \frac{\beta}{2}=(s-c) \tan \frac{\gamma}{2}$
Q. 16 Prove that $a b c(\sin \alpha+\sin \beta+\sin \gamma)=4 \Delta s$.
Q. 17 Prove that $\mathrm{r}_{1} \mathrm{r}_{2}+\mathrm{r}_{2} \mathrm{r}_{3}+\mathrm{r}_{3} \mathrm{r}_{1}=\mathrm{s}^{2}$
Q. 18 Prove that $r_{1}+r_{2}+r_{3}-r=4 R$

Chapter 13

Q. 1 Prove that $\sin ^{-1} \frac{5}{13}+\sin ^{-1} \frac{7}{25}=\cos ^{-1} \frac{253}{325}$
Q. 2 prove that $\sin ^{-1} \frac{3}{5}+\sin ^{-1} \frac{8}{17}=\sin ^{-1} \frac{77}{85}$
Q. 3 Prove that $\sin ^{-1} \frac{1}{\sqrt{5}}+\cot ^{-1} 3=\frac{\pi}{4}$
Q. 4 Prove that $\tan ^{-1} \frac{3}{4}+\tan _{5}^{2}-\tan ^{-1} \frac{8}{18}=\frac{7}{4}$
Q. 5 Prove that $\sin ^{-1} A+\sin ^{-1} B=\sin ^{-1}\left(A \sqrt{ } \cdot-D^{-2}+B \sqrt{1-A^{2}}\right.$
Q. 6 Prove that $: 1 \mathrm{~m}^{-1} \frac{7}{8}-\sin -1==00-\frac{15}{17}$
C. Pro evina an ${ }^{-1} \frac{1}{11}+\tan ^{-1} \frac{5}{6}=\tan ^{-1} \frac{1}{3}+\tan ^{-1} \frac{1}{2}$
Q. 8 Drove that $2 \tan ^{-1} \frac{1}{3}+\tan ^{-1} \frac{1}{7}=\frac{\pi}{4}$

