It is challenge that vov canget $35+$ Marks in Annual 2024

Tick (V) the cerrectanswer.

1. 5.333
(a) $n=$
(b) Irrational
(c) an integer
(d) a prime number
a) Rational
(b) $\boldsymbol{\checkmark}$ Irrational
(c) Natural number
(d) None
\qquad
2. Multiplicative inverse of ' 0^{\prime} is
(a) 0
(b) any real number
(c) $\boldsymbol{\checkmark}$ not defined
(d) 1
3. Golden rule of fraction is that for $k \neq 0, \frac{a}{b}=$
(a) $\boldsymbol{V} \frac{k a}{k b}$
(b) $\frac{a b}{l}$
(c) $\frac{k a}{b}$
(d) $\frac{k b}{b}$
4. The set $\{1,-1\}$ possesses closure property w.r.t
(a) $\quad+$ '
(b)
(c) ${ }^{\prime} \div$ '
(d) ${ }^{\prime}$-'
5. If $\boldsymbol{a}<\boldsymbol{b}$ then
(a) $a<b$
(b) $\frac{1}{a}<\frac{1}{b}$
(c) $\boldsymbol{\swarrow} \frac{1}{a}>\frac{1}{b}$
(d) $a-b>0$
6. The multiplicative identity of complex number is
(a) $(0,0)$
(b) $(0,1)$
(c) $\boldsymbol{\checkmark}(1,0)$
(d) $(1,1)$
7. The multiplicative inverse of $(4,-7)$ is:
(a) $\left(-\frac{4}{65},-\frac{7}{65}\right)$
(b) $\left(-\frac{4}{65}, \frac{7}{65}\right)$
(c) $\left(\frac{4}{65},-\frac{7}{65}\right)$
(d) $\boldsymbol{V}\left(\frac{4}{65}, \frac{7}{65}\right)$
8. $(0,3)(0,5)=$
(a) 15
(b) $\boldsymbol{\checkmark}-15$
(c) $-8 i$
(d) $8 i$
9. $(-1)^{-\frac{21}{2}}=$
(a) i
(b) $\boldsymbol{\nu}-i$
(c) 1
(d) -1
10. Factorization of $3 x^{2}+3 y^{2}$ is:
(a) $(3 x+3 y i)(3 x-3 y i)$
(b) $\boldsymbol{\checkmark} 3(x+i y)(x-i y)$
(c) $(x-i y)(x+i y)$
(d) None of these
11. The product of any two conjugate complex numbers is
(a) $\quad \checkmark$ Real number
(b) complex number
(c) zero
12. Identity element of complex number is
$(0,1)$
(b) $(0,1)$
(c) $(0,0)$,
13. If $z 1$ and $z 2$ are complex numbers then $z 1+z</$ is
(a) $<\left|z_{1}+z_{2}\right|$
(b),
$-\left|z_{2}\right|+\left|z_{2}\right| \quad$ (c) $=\mid z_{1}+z_{21}$
(d) None of these
14. The figure repre ting ($n \in$ o no eomplex numbers on the complex plane is called:
(a) Cartesian nlaie
($=$, Z-Plane
(c) Complex plane
(d) $\boldsymbol{\checkmark}$ Argand diagram
15. y a dispremertes
(a) Realnumbers
(b) $\boldsymbol{\checkmark}$ Imaginary numbers (c) natural numbers
(d) Rational numbers
16. If $z=x+i y$ then $|z|=$
(a) $x^{2}+y^{2}$
(b) $x^{2}-y^{2}$
(c) $\boldsymbol{\checkmark} \sqrt{x^{2}+y^{2}}$
(d) $\sqrt{x^{2}-y^{2}}$
17. $\quad z \overline{\mathbf{z}}=$
(a) z^{2}
(b) z
(c) \bar{z}
(d) $\boldsymbol{V}|z|^{2}$
18. $(z-\bar{z})^{2}$ is
(a) Complex number
(b) $\boldsymbol{\checkmark}$ Real number
(c) both (a) and (b)
(d) None of these
19. $\quad \boldsymbol{i}^{101}=$
(a) 1
(b) -1
(c)

(d) -2
20. The set of odd numbers between 1 and 9 are \qquad
(a) $\{1,3,5,7\}$
(b) $\{3,5,7,9\}$
(c) $1,3,2,7,9\}$

U
(d) $\boldsymbol{V}\{3,5,7\}$
22. The sets N and ares sets
(a) Equal
(ग) b Ecuiv=lent
(c) $N \pm+$ qual
(d) None of these
23. Which of the fillowin is true? \qquad
(b) $R \subset Z \subset Q \subset N$
(c) $Z \subset N \subset Q \subset R$
(d) $\boldsymbol{V} N \subset Z \subset Q \subset R$
(a)
$N C-F=-Z_{0}$

The einply set is a subset of
a) Empty set
(b) $\boldsymbol{\checkmark}$ Every set
(c) Natural set
(d) Whole set
25. Total number of subsets that can be formed from the set $\{x, y, z\}$ is
(a) 1
(b) $\boldsymbol{\checkmark} 8$
(c) 5
(d) 2
26. A set having only one element is called
(a) Empty set
(b) $\boldsymbol{\checkmark}$ singleton set
(c) Power set
(d) Subset
27. The set of odd integers between $\mathbf{2}$ and $\mathbf{4}$ is
(a) Null set
(b) Power set
(c) $\boldsymbol{\checkmark}$ Singleton set
(d) Subset
28. A diagram which represents a set is called \qquad
(c) Plane
(d) None of these
(a) $\quad \boldsymbol{V}$ Venn's
29. $\quad A \cup \varphi=$
(b) Argand
(a) φ
(b) U
(c) $\boldsymbol{\checkmark} A$
(d) $U-A$
30. $\boldsymbol{A}-\boldsymbol{U}=$
(a) $\boldsymbol{V} \varphi$
(b) A
(c) U
(d) $U-A$
31. $n(A U B)=$
(a) $\quad \vee n(A)+n(B)$
(b) $n(A)-n(B)$
(c) $n(B)-n(A)$
(d) $n(A) n(B)$
32. If $\boldsymbol{A} \subseteq \boldsymbol{B}$ then $\boldsymbol{A} \cup \boldsymbol{B}=$
(a) A
(b) $\boldsymbol{\checkmark} B$
(c) A^{c}
(d) B^{c}
33. If \boldsymbol{A} and B are disjoint sets then :
(a) $\quad \boldsymbol{V} A \cap B=\varphi$
(b) $A \cap B \neq \varphi$
(c) $A \subset B$
(d) $A-B=\varphi$
34. If $\boldsymbol{U}=\boldsymbol{N}$ then
(a) $E^{\prime}=E, O^{\prime}=O$ (b) $E^{\prime}=U, O^{\prime}=U$
(c) $\boldsymbol{\checkmark} E^{\prime}=O, O^{\prime}=E$
(d) None of inese
35. If the intersection of two sets is the empty then sets ale aled
(a) \backslash Disjoint sets
(b) Overlapping Sets
(c) Sunsers
(d) Fowersets
36. $(\boldsymbol{A} \cup B)^{\prime}=$

(c) $4 \div 8$ (d) $A \cup B^{\prime}$
(a) $A^{\prime} \cup B^{\prime}$
$\emptyset=$
37. Take any set, say $A=\{f, 2,3,4$, 了 $\}$ the: $A \cup \emptyset=$
(a) $\quad \checkmark A$
(b) ${ }^{(1)}$
(c) U
(d) None of these
$28 \quad \times M=L$ NMAिen L is equal to
(b) L
(c) φ
(d) M^{\prime}
39. If $\boldsymbol{x} \in L \cup M$ then
(a) $\quad x \notin L$ or $x \notin M$
(b) $x \notin L$ or $x \in M$
(c) $x \in L$ or $x \notin M$
(d) $\boldsymbol{\checkmark} x \in L$ or $x \in M$
40. For the propositions \boldsymbol{p} and $\boldsymbol{q}, \boldsymbol{p} \rightarrow(\boldsymbol{p} \vee \boldsymbol{q})$ is:
(a) $\quad \checkmark$ Tautology
(b) Absurdity
(c) Contingency
(d) None of these
41. The symbol which is used to denote negation of a proposition is
(a) $\quad \boldsymbol{\sim} \sim$
(b) \rightarrow
(c) \wedge
(d) V
42. Truth set of a tautology is
(a) $\quad \boldsymbol{\checkmark}$ Universal set (b) φ
(c) True
(d) Fals $/$
43. A statement which is always falls is called
(a) Tautology
(b) $\boldsymbol{\checkmark}$ Absur \$it ,
(C) Fomting ency
(d) Contra bositive
44. $p \rightarrow \sim p$ is
(a) Tautology

(T) CTAbSu di :
(c) Contingency
(d) Contra positive
45. In a proposition if $p \rightarrow q$ the $n q \rightarrow$ \boldsymbol{n} s called
(a) Invers of $p \rightarrow q$ ($\boldsymbol{\text { a }}$) \downarrow converse of $p \rightarrow q$ (c) contrapositive of $p \rightarrow q$ (d) None
$\therefore 6$ Ccura no itive of $\sim p \rightarrow \sim q$ is
a) $p \rightarrow q$
(b) $\boldsymbol{\checkmark} q \rightarrow p$
(c) $\sim p \rightarrow q$
(d) $\sim q \rightarrow p$
47. The symbol " \exists " is called
(a) Universal quantifier
(b) $\boldsymbol{\checkmark}$ Existential quantifier
(c) Converse
(d) Inverse
48. The symbol " \forall " is called
(a) \checkmark Universal quantifier
(b) Existential quantifier
(c) Converse
(d) Inverse
49. Truth set of $\boldsymbol{p} \wedge \boldsymbol{q}$ is
(a) $\quad \checkmark P \cap Q$
(b) $P \cup Q$
(c) $P-Q$
(d) $P+Q$
50. $P=Q$ is the truth set of
(a) $p=q$
(b) $p \rightarrow q$
(c) $\boldsymbol{\nu} p \leftrightarrow q$
(d) $p \Rightarrow q$
51. Truth set of a tautology is the
52. Power set
(b) Subset
(c) $\boldsymbol{\checkmark}$ Universal set
(d) Super set If $\boldsymbol{y}=\sqrt{\boldsymbol{x}}, \boldsymbol{x} \geq \mathbf{0}$ is a function, then its inverse is:
(a) A line
(b) a parabola
(c) a point
(d) \boldsymbol{V} not a function
53. A $(1-1)$ function is also called:
(a) \boldsymbol{V} Injective
(b) Surjective
(c) Bijective
(d) Inverse
54. If set \boldsymbol{A} has $\mathbf{2}$ elements and B has $\mathbf{4}$ elements, then number of elements in $\boldsymbol{A} \times \boldsymbol{B}$ is :
(a) 6
(b) $\boldsymbol{\checkmark} 8$
(c) 16
(d) None of these
55. Inverse of a line is :
(a) \boldsymbol{V} A line
(b) a parabola
(c) a point
(d) not defined
56. The function $f=\{(x, y), y=x\}$ is :
(a) \boldsymbol{V} Identity function
(b) Null function
(c) not a function
(d) similar function
57. The range of $\{(2,1),(3,2),(4,3),(5,4),(6,5)\}$
(a) $\{2,3,4,5,6\}$
(b) $\boldsymbol{\checkmark}\{1,2,3,4,5\}$
58. $\quad \boldsymbol{O}+\boldsymbol{E}=$
(a) $\quad \boldsymbol{V} 0$
(b) E
if) $\{2,13, \cdots, \dot{T}\}$
(d) $\{2,2,3,5$
(d) C
59. The set $\{1,-1, i$, i\} whre $i=A-1$ is clised $M \cdot x$. t
(a) +
(b) $1 x$
(c) *
(d) \div
60. The sex $\left\{1, d_{1, ~}^{2}, \boldsymbol{w}^{2}\right\}$ where $t=\sqrt{-1}$ is closed w.r.t
(b) $\boldsymbol{V} \times$
(c) *
(d) \div
(a) +
(b) \times
(c) $\boldsymbol{\checkmark}$ both (a) and (b)
(d) \div
62. Inverse and identity of a set S under binary operation $*$ is
63. \checkmark Unique (b) Two
(c) Three
(d) Four

The set of natural
number is not closed under binary operation
(a) +
(b) \times
(c) both (a) and (b)
(d) $\boldsymbol{\sim}$ -
64. The set $\{1,-1, i,-i\}$ is not closed $w . r$.t
(a) $\boldsymbol{V}+$
(b) \times
(c) botr, and and
(d) vane of hese
65. $(Z,$.$) is$
(a) Group
(b) $\boldsymbol{\checkmark}$ Semi-gioup
(c) losed
66. Subtraction is noin con muta+ive and or associat vec..
(a) $\quad \boldsymbol{\wedge} N$
(b) P
(-1) Z
(d) Q
67. A semi-group hav ing an den it is colled
68. Group
(a) \boldsymbol{V} monoid
(c) Closed
(d) Not closed For every $\boldsymbol{a}, \boldsymbol{b} \in \boldsymbol{G}$
,$a * b=b * a$ tre G is called
cioup
(b) Monoid
(c) Closed
(d) $\sqrt{ }$ Abelian group
69. In group $(Z,+)$ inverse of 1 is
(a) 1
(b) $\boldsymbol{\checkmark}-1$
(c) 0
(d) 2
70. In group $(R-\{0\}, \times)$ inverse of $\mathbf{3}$ is
(a) $\quad \boldsymbol{V} \frac{1}{3}$
(b) -3
(d) 0
(d) 2
71. In a group the inverse is
(a) $\boldsymbol{\checkmark}$ Unique
(b) two
(d) three
(d) four
72. A rectangular array of numbers enclosed by a square brackets is called:
(a) $\quad \boldsymbol{\checkmark}$ Matrix
(b) Row
(c) Column
(d) Determinant
73. The horizontal lines of numbers in a matrix are called:
(a) Columns
(b) $\boldsymbol{\checkmark}$ Rows
(c) Column matrix
(d) Row matrix
74. The vertical lines of numbers in a matrix are called:
(a) \boldsymbol{V} Columns
(b) Rows
(c) Column matrix
(d) Row matrix
75. If a matrix \mathbf{A} has \boldsymbol{m} rows and \boldsymbol{n} columns, then order of \mathbf{A} is :
(a) $\quad \boldsymbol{V} m \times n$
(b) $n \times m$
(c) $m+n$
(d) m^{n}
76. $\quad\left[\begin{array}{cccc}1 & -1 & 3 & 4\end{array}\right]$ is an example of
(a) $\boldsymbol{\checkmark}$ Row vector
(b) column vector
(c) Rectangular matrix
(d) Square matrix
77. The matrix \boldsymbol{A} is said to be real if its all entries are
(a) Rational
(b) $\boldsymbol{\checkmark}$ real
(c) natural
(d) complex
78. If a matrix \mathbf{A} has different number of rows and columns then \mathbf{A} is called:
(a) Row vector
(b) $\boldsymbol{\checkmark}$ Column vector
(c) square matrix
(d) Rectangular r atrin
79. For the square matrix $A=\left[a_{i j}\right]_{n \times n}$ then $a_{11}, a_{22}, a_{33} a_{i n}$ are:
(a) \quad Main diagonal
(b) primary diagonal
(1):) prarled rig cia, onal
(d) seconda y úiagonal

(a) Diagonal matrix
(b) N Scalar Matix
(c) Unis:nat -ix
(d) Null matrix
81. A square matrix है sisig ila if
(a) $\quad \checkmark|A|=0$
(b) $|A|=0$
(c) $A=0$
(d) $A \neq 0$
82. If ord 0 mat rix. 1 i. $n \times n$ and order of matrix B is $n \times p$ then order of matrix $A B$ is
(a)
(b) $n \times m$
(c) $n \times p$
(d) $\boldsymbol{V} m \times p$
63. lageneral matrix multiplication is not
(a) \quad Commutative
(b) Associative
(c) Closure
(d) Distributive
84. $\left(A^{t}\right)^{t}=$
(a) A^{t}
(b) $\boldsymbol{\checkmark} A$
(c) $-A$
(d) $\left(A^{t}\right)^{t}$
85. For any matrix A , it is always true that
(a) $A=A^{t}$
(b) $-A=\bar{A}$
(c) $\boldsymbol{\checkmark}|A|=\left|A^{t}\right|$
(d) $A^{-1}=\frac{1}{A}$
86. If all entries of a square matrix of order 3 is multiplied by k, then value of $|k A|$ is equal to:
(a) $k|A|$
(b) $k^{2}|A|$
(c) $\boldsymbol{\checkmark} k^{3}|A|$
(d) $|A|$
87. For a non-singular matrix it is true that :
(a) $\quad\left(A^{-1}\right)^{-1}=A$
(b) $\left(A^{t}\right)^{t}=A$
(1)) $\overline{\bar{A}}=A$
(d) allo thece
88. For any non-singular matrices \mathbf{A} and 3 it is try. Tha::
(a) $(A B)^{-1}=B^{-1} A^{-1}$
(b) $(A B)^{t}=B^{t} A$
(c, $A B \neq B$
(d) $\boldsymbol{\checkmark}$ all of these
89. If a square matrix. A bas wo:delitical lous or to o dentical columns then
(a) $A=0$
(b) $\quad||A|=0$
(c) $A^{t}=0$
(d) $A=1$
90. If a matrisis ir triangulay form, then its determinant is product of the entries of its
(a) NowertriarsulaiMatrix
(b) Upper triangular matrix
(c) $\boldsymbol{\checkmark}$ main diagonal
(d) none of these
(1. I 1 s non-singular matrix then $A^{-1}=$
(a) $\vee \frac{1}{|A|}$ adj A
(b) $-\frac{1}{|A|} \operatorname{adj} A$
(c) $\frac{|A|}{\operatorname{adj} A}$
(d) $\frac{1}{|A| \text { adj } A}$
92. $\left|\begin{array}{ccc}r \cos \varphi & 1 & -\sin \varphi \\ 0 & 1 & 0 \\ r \sin \varphi & 1 & \cos \varphi\end{array}\right|=$
(a) 1
(b) 2
(c) $\boldsymbol{\sim} r$
(d) r^{2}
93. $\left|\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right|=$
(a) 1
(b) 2
(c) $\boldsymbol{\sim} 0$
(d) -1
94. $\left(A^{-1}\right)^{t}=$
95. A^{-1}
(b) $\left(A^{-1}\right)^{t}$
(c) $\boldsymbol{V}\left(A^{t}\right)^{-1}$
(d) A^{t}
96. A square matrix \mathbf{A} is skew symmetric if:
(a) $A^{t}=A$
(b) $\boldsymbol{V} A^{t}=-A$
(c) $(\bar{A})^{t}=A$
(d) $(\bar{A})^{t}=-A$
97. A square matrix A is Hermitian if:
(a) $A^{t}=A$
(b) $A^{t}=-A$
(c) $\boldsymbol{\sim}(\bar{A})^{t}=A$
(d) $(\bar{A})^{t}=-A$
98. A square matrix \mathbf{A} is skew- Hermitian if:
(a) $A^{t}=A$
(b) $A^{t}=-A$
(c) $(\bar{A})^{t}=A$
(d) $\boldsymbol{\sim}(\bar{A})^{t}=-A$
99. The main diagonal elements of a skew symmetric matrix must be:
(a) 1
(b) 0
(c) any non-zero number
(d) any complex number
100. The main diagonal elements of a skew hermitian matrix must be:
(a) 1
(b) $\boldsymbol{V} 0$
(c) any non-zero number
(d) any complex nambe:
101. In echelon form of matrix, the first non zero entry is ca!ed:
(a) $\boldsymbol{\checkmark}$ Leading entry
(b) first entry
(1):) prend rig ent y
102. A square matrix $A=\left[a_{i j}\right]$ for which $y_{i j}=0,7$ then A al ec:
(d) Dagona eritay
(a) \checkmark Upper triangular
(b) Lnewer Triar gular
(c) Synmetric
(d) Hermitian
103. A square matrix $\frac{1}{2}=\left[a_{j}\right]^{\prime}$ for which $\left.c_{i}\right]=0, i$, hen A is called:
(a) Upper triangular
(b) LLo ver riangular
(c) Symmetric
(d) Hermitian
104. If A is primist ic (ike vesymetric), then A^{2} must be
(1) - ropilar
(b) non singular
(c) $\boldsymbol{\checkmark}$ symmetric
(d) non trivial solution
105. In a homogeneous system of linear equations, the solution $(0,0,0)$ is:
(a) $\quad \checkmark$ Trivial solution
(b) non trivial solution
(c) exact solution
(d) anti symmetric
106. If $A X=O$ then $X=$
(a) I
(b) $\boldsymbol{V} 0$
(c) A^{-1}
(d) Not possible
107. If the system of linear equations have no solution at all, then it is called a/an
(a) Consistent system
(b) \boldsymbol{V} Inconsistent system(c) Trivial System
(d) Non Trivial System
108. $b \boldsymbol{x}+\boldsymbol{c}=\mathbf{0}$ will be quadratic if:
(a) $\quad a=0, b \neq 0$
(b) $\boldsymbol{\checkmark} \quad a \neq 0$
(c) $a=h=0$
(d) $b=$ any -eal hunber
109. Solution set of the equation $x^{2}-4 x+4=0$ (15.
(a) $\{2,-2\}$
(b) $\boldsymbol{\checkmark}$
\{2\}
(i) $:-2 j$
(d) $\{4-4\}$
110. The quadratic formoria for solving the eq ation $a x+b x+c=0, a \neq 0$ is
(a) $\quad \boldsymbol{\gamma} x=\frac{-b \pm \sqrt{b^{2}-4}(a c)}{2 a}$
(b) $x=-\frac{2 \sqrt{a}-4 a c}{2 b} \quad$ c1 $x=\frac{-a \pm \sqrt{b^{2}-4 a c}}{2}$
(d) None of these
111. How many technique: to ool e qLadratic equations.
(a)
(2) 2
(c) $\boldsymbol{\checkmark} 3$
(d) 4
112. The colutico of a quadratic equation are called
113 Roots
(b) identity
(c) quadratic equation
(d) solutionTo convert
$a x^{2 n}+b x^{n}+c=0(a \neq 0)$ into quadratic form , the correct substitution is:
(a) $\quad \backslash y=x^{n}$
(b) $x=y^{n}$
(c) $y=x^{-n}$
(d) $y=\frac{1}{x}$
114. The equation in which variable occurs in exponent , called:
(a) $\boldsymbol{\checkmark}$ Exponential function
(b) Quadratic equation
(c) Reciprocal equation
(d) Exponential equation
115. To convert $4^{1+x}+4^{1-x}=10$ into quadratic , the substitution is:
(a) $y=x^{1-x}$
(b) $y=4^{1+x}$
(c) $\boldsymbol{\checkmark} y=4^{x}$
(d) $y=4^{-x}$
116. The equation $x^{4}-3 x^{3}+4 x^{2}-3 x+1=0$ is example of
(a) Exponential equation
(b) Quadratic equation
(c) Radical equation (d)
(d) $\boldsymbol{\checkmark}$ Reciprocal equation
117. The cube roots of unity are :
(a)
人 $1, \frac{-1+\sqrt{3} i}{2}, \frac{-1-\sqrt{3} i}{2}$
(b) $1, \frac{1+\sqrt{3} i}{2}, \frac{1+\sqrt{3} i}{2}$
(c) $-1, \frac{-1+\sqrt{3} i}{2}, \frac{-1+\sqrt{3} i}{2}$
(d) $-1, \frac{1+\sqrt{3} i}{2}, \frac{1+\sqrt{3} i}{2}$
118. Sum of all cube roots of 64 is:
(a) $\quad \boldsymbol{\checkmark} 0$
(b) 1
(c) 64
(d) -64
119. Product of cube roots of -1 is:
(a) 0
(b) -1
(c) $\boldsymbol{\checkmark} 1$
(d) None
120. $16 \omega^{8}+16 w^{4}=$
(a) 0
(b) $\boldsymbol{\checkmark}-16$
(c) 16
(d) -1
121. The sum of all four fourth roots of unity is:
(a) Unity
(b) $\boldsymbol{\checkmark} 0$
(c) -1
(d) None
122. The product of all four fourth roots of unity is:
(a) Unity
(b) 0
(c) $\boldsymbol{\checkmark}$-1
(d) None
123. The sum of all four fourth roots of 16 is:
(a) 16
(b) -16
(i) $\sqrt{\wedge} \sqrt{0}$
124. The complex cube roots of unity are.

(d) None of these
(a) \checkmark Additive inverse (b) Equal $\pm=$
(c) Fonjugate
125. The complex fourth rons of uni are or rad oh oiber.
(a) \checkmark Additive inverse
(t) earal to
(c) square of
(d) None of these
126. The cube not of -1 ale

$$
\begin{array}{ll}
\text { (b) }\left\{1,-\omega, \omega^{2}\right\} & \text { (c) } \boldsymbol{V}\left\{-1,-\omega,-\omega^{2}\right\}
\end{array}
$$

(d) $\left\{-1, \omega, \omega^{2}\right\}$
127

The expression $x^{2}+\frac{1}{x}-3$ is polynomial of degree:
(a) 2
(b) 3
(c) 1
(d) \boldsymbol{V} not a polynomial
128. If $\boldsymbol{f}(\boldsymbol{x})$ is divided by $-\boldsymbol{a}$, then dividend = (Divisor)(.......)+ Remainder.
(a) Divisor
(b) Dividend
(c) $\boldsymbol{\checkmark}$ Quotient
(d) $f(a)$
129. If $f(x)$ is divided by $\boldsymbol{x}-\boldsymbol{a}$ by remainder theorem then remainder is:
(a) $\quad \vee f(a)$
(b) $f(-a)$
(c) $f(a)+R$
(d) $x-a=R$
130. The polynomial $(\boldsymbol{x}-\boldsymbol{a})$ is a factor of $\boldsymbol{f}(\boldsymbol{x})$ if and only if
(a) $\quad \checkmark f(a)=0$
(b) $f(a)=R$
(c) Quotient $=R$
(d) $x=-r$
131. $x-2$ is a factor of $x^{2}-k x+4$, if k is:
(a) 2
(b) $\boldsymbol{\checkmark} 4$
ic) 8
(a) -4
132. If $x=-2$ is the root of $k x^{4}-13 x^{2}+36=n$, whe $k-$
(a) 2
(b) -2
133. $x+a$ is a factor of $x^{n}+a^{2}$ wher n is
(a) Any integer
(k) any positiva integer
(c) $\boldsymbol{\checkmark}$ any odd integer
(d)
\square
134. $x-a$ is a fact or of $x^{n}-a^{n} v$ hen n is
\checkmark five $n \in \in \varepsilon=$
(b) any positive integer
(c) any odd integer
(d) any real number

Suncf roots of $a x^{2}-b x-c=0$ is $(a \neq 0)$
a) $\frac{6}{a}$
(b) $-\frac{b}{a}$
(c) $\frac{c}{a}$
(d) $\boldsymbol{\checkmark}-\frac{c}{a}$
135. Product of roots of $a x^{2}-b x-c=0$ is $(a \neq 0)$
(a) $\boldsymbol{V} \frac{b}{a}$
(b) $-\frac{b}{a}$
(c) $\frac{c}{a}$
(d) $-\frac{c}{a}$
136. If $\mathbf{2}$ and $\mathbf{- 5}$ are roots of a quadraticequation, then equation is:
(a) $x^{2}-3 x-10=0$
(b) $x^{2}-3 x+10=0$
(c) $\boldsymbol{\checkmark} \quad x^{2}+3 x-10=0$
(d) $x^{2}+3 x+10=0$
137. If α and β are the roots of $3 x^{2}-2 x+4=0$, then the value of $\alpha+\beta$ is:
(a) $\boldsymbol{V} \frac{2}{3}$
(b) $-\frac{2}{3}$
(c) $\frac{4}{3}$
(d) $-\frac{4}{3}$
138. The equation whose roots are given is
139. $x^{2}+S x+P=0$
(b) $x^{2}-S x-P=0$
(c) $x^{2}+S x-P=0$
(d) $\boldsymbol{V} x^{2}-S x+P=0$

If roots of $\boldsymbol{a} \boldsymbol{x}^{2}+\boldsymbol{b x}+\boldsymbol{c}=\mathbf{0},(\boldsymbol{a} \neq \mathbf{0})$ are real , then
(a) $\quad \boldsymbol{V}$ Disc ≥ 0
(b) Disc<0
(c) Disc $\neq 0$
(d) $\operatorname{Disc} \leq 0$
140. If roots of $a x^{2}+b x+c=0,(a \neq 0)$ are complex, then
(a) Disc ≥ 0
(b) $\boldsymbol{\checkmark}$ Disc <0
(c) $\mathrm{Dis} \mathrm{c}=0$
(d) Disc ≤ 0
141. If roots of $a x^{2}+b x+c=0,(a \neq 0)$ are equal , then
(a) $\quad \checkmark$ Disc $=0$
(b) Disc <0
(c) $\operatorname{Disc} \neq 0$
(d) None of these
142. The expression $b^{2}-4 a c$ is called:
(a) \checkmark Discriminant
(b) Quadratic equation
(c) Linear equation
(d) roots
143. Disc of $x^{2}+2 x+3=0$ is
(a) 16
(b) -16
(c) $\boldsymbol{\checkmark}-8$
(d) -16
144. An open sentence formed by using sign of " $=$ " is called a/an
(a) $\boldsymbol{\checkmark}$ Equation
(b) Formula
(c) Rational fraction
(i) Thestem
145. If an equation is true for all values of the variable, the it is $s=11 t \mathrm{~d}:$

(a) a conditional equation
(b) \boldsymbol{V} an icentity
L) proner =aticnal fraftion \llcorner
(d) All of these
146. $(x+3)(x+4)=x^{2}+$
$7 x+12$ is a/an. 7
(a) Conditional equation
(b) anidentily y
(c) pioperrational fraction
(d) a formula
147. The quotient of $\mathrm{t} N \mathrm{Nol}, \mathrm{oraids} \frac{P}{\rho}(\mathrm{x}), \mathrm{C}(\sqrt{2}) \neq 0$ is called:
(a) \checkmark RationaTira:tion
(b) ! ! ational fraction
(c) Partial fraction
(d) Proper fraction

143 Araction $\frac{(x)}{Q(x)}, Q(x) \neq \mathbf{0}$ is called properfraction if:
a) \checkmark Degree of $P(x)<$ Degree of $Q(x)$
(b) Degree of $P(x)=$ Degree of $Q(x)$
(c) Degree of
$P(x)>$ Degree of $Q(x)$
(d) Degree of $P(x) \geq$ Degree of $Q(x)$
149. A fraction $\frac{P(x)}{Q(x)}, Q(x) \neq 0$ is called properfraction if :
(a) Degree of $P(x)<$ Degree of $Q(x)$
(b) Degree of $P(x)=$ Degree of $Q(x)$
(c) Degree of $P(x)>$ Degree of $Q(x)$
(d) \boldsymbol{V} Degree of $P(x) \geq$ Degree of $Q(x)$
150. The number of Partial fraction of $\frac{x^{3}}{x(x+1)\left(x^{2}-1\right)}$ are:
(a) 2
(b) 3
(c)
$\sqrt{ } 4$
(d) None of these
151. The number of Partial fraction of $\frac{x^{5}}{x(x+1)\left(x^{2}-4\right)}$ ara:
(a) 2
(b) 3
(c) 4 $\pi \square \square \square \square$
152. $\frac{9 x^{2}}{x^{3}-1}$ is an
(a) Improper fractior
(k) Pioper fraction (C) Polynomial
(d) equation
153. An arrangem ant of rumbers acen aing to some definite rule is called:
(a)
157
a_{1}
\checkmark sequercle
(i) Combination
(c) Series
(d) Permutation
154. A. Beq lence is also known as:
keal sequence
(b) $\boldsymbol{\checkmark}$ Progression
(c) Arrangement
(d) Complex sequence
155. A sequence is function whose domain is
(a) Z
(b) $\boldsymbol{\nu} N$
(c) Q
(d) R
156. As sequence whose range is R i.e., set of real numbers is called:
(a) $\quad \checkmark$ Real sequence
(b) Imaginary sequence
(c) Natural sequence
(d) Complex sequence

1. If $\boldsymbol{a}_{\boldsymbol{n}}=\left\{\boldsymbol{n}+(-1)^{\boldsymbol{n}}\right\}$, then $\boldsymbol{a}_{\mathbf{1 0}}=$
(a) 10
(b) 11
(c) 12
(d) 13
2. The last term of an infinite sequence is called :
(a) $n t h$ term
(b) a_{n}
(c) last term
(d) does not exist
3. The next term of the sequence $-1,2,12,40, \ldots$ is
(a) $\sqrt{ } 112$
(b) 120
(c) 124
(d) None of these
4. For $a_{n}=(-1)^{n+1}, a_{26}=$
(a) 1
(b) $\boldsymbol{\wedge}-1$
(c) 0
(d) 2
5. The next two terms of the sequence $1,-3,5,-7,9,-11, \ldots$ are
(a) 13,15
(b) $-13,-15$
(c) $\checkmark 13,-15$
(d) $-13,15$
6. For $a_{n}=\frac{1}{2^{n}}, a_{1}=$
(a) 2
(b) $\boldsymbol{\wedge} \frac{1}{2}$
(c) 4
(d) 8
7. A sequence $\left\{a_{n}\right\}$ in which $a_{n}-a_{n-1}$ is the same number for all $n \in N, n>1$ is called:
(a) \quad A.P
(b) G.P
(c) H.P
(d) None of these
8. nth term of an A.P is $\mathbf{3 n}-1$ then $10^{\text {th }}$ term is :
(a) 9
(b) $\boldsymbol{\checkmark} 29$
(c) 12
9. For $\boldsymbol{a}_{\boldsymbol{n}}-\boldsymbol{a}_{\boldsymbol{n}-1}=\boldsymbol{d}$
(a) $n=0$
(b) $n=1$

10. If a_{n-1}, a_{n}, a_{n+} a E in A then a_{n} is
(a) $\quad \sim$ A.M
(b) $P \cdot P$
(C) H.M
(d) Mid point
11. Arithmetic mean beitreer c and i.
(a)
(b) $\frac{c+d}{2 c d}$
(c) $\frac{2 c d}{c+d}$
(d) $\frac{2}{c+d}$
$7 \sqrt{3} 5$ The arithmetic mean between $\sqrt{2}$ and $3 \sqrt{2}$ is:
a) $4 \sqrt{2}$
(b) $\frac{4}{\sqrt{2}}$
(c) $\boldsymbol{\checkmark} 2 \sqrt{2}$
(d) none of these
12. $\frac{a^{n}+b^{n}}{a^{n-1}+b^{n-1}}$ may be the A.M between a and b if
(a) $\quad \boldsymbol{V} n=1$
(b) $n=0$
(c) $n>1$
(d) $n<1$
13. The sum of terms of a sequence is called:
(a) Partial sum
(b) $\boldsymbol{\checkmark}$ Series
(c) Finite sum
(d) none of these
14. Forth partial sum of the sequence $\left\{\boldsymbol{n}^{2}\right\}$ is called:
(a) 16
(b) $\boldsymbol{\checkmark} 1+4+9+16$
(c) 8
(d) $1+2+3+4$
15. Sum of \boldsymbol{n}-term of an Arithmeticseries $S_{\boldsymbol{n}}$ is equal to:
(a) $\quad \boldsymbol{V} \frac{n}{2}[2 a+(n-1) d]$
(b) $\frac{n}{2}[a+(n-1) d]$
(i) $\frac{n}{2}[21]$
$(\pi+1) d d$
(a) $\frac{n}{2}[2 x+]$
16. For any G.P., the common ratio r is $\in q u a l t o$:
(c) $\frac{(n}{a_{n-1}}$
(d) $a_{n+1}-a_{n}, n \in N, n>1$
(a) $\boldsymbol{V} \frac{a_{n}}{a_{n+1}}$
(b) $\frac{a_{n-1}}{u_{n}}$
17. No term of a G. P., is.
(c) negative
(d) imaginary number
(a) $\quad \boldsymbol{\wedge} 0$
(b) 1
(d) imaginary number
18. The sereraterm of a C. ? is:
(1) $) ~ v\left(x_{1}\right)=(2)^{n-3}$
(b) $a_{n}=a r^{n}$
(c) $a_{n}=a r^{n+1}$
(d) None of these
1.4 Cometric mean between 4 and 16 is
(a) ± 2
(b) ± 4
(c) ± 6
(d) $\boldsymbol{V} \pm 8$
19. For what value of $n, \frac{a^{n}+b^{n}}{a^{n-1}+b^{n-1}}$ is the positive geometric mean between a and b ?
(a) 1
(b) 2
(c) $\boldsymbol{\checkmark} \frac{1}{2}$
(d) $\frac{3}{2}$
20. The sum of infinite geometric series is valid if
(a) $|r|>1$
(b) $|r|=1$
(c) $|r| \geq 1$
(d) $\boldsymbol{V}|r|<1$

(a) -4
(b) 4
(c) $\frac{1-5^{n}}{-4}$
(d) \boldsymbol{V} not defined
21. An infinitegeometric series is convergent if
(a) $|r|>1$
(b) $|r|=1$
(c) $|r| \geq 1$
(d) $\boldsymbol{V}|r|<1$
22. An infinite geometric series is divergent if
(a) $|r|<1$
(b) $|r| \neq 1$
(c) $r=0$
(d) $\boldsymbol{\checkmark}|r|>1$
23. If sum of series is defined then it is called:
(a) $\quad \checkmark$ Convergent series
(b) Divergent series
(c) finite series
(d) Geometric series
24. If sum of series is not defined then it is called:
(a) Convergent series
(b) \boldsymbol{V} Divergent series
(c) finite series
(d) Geometric series
25. The interval in which series $1+2 x+4 x^{2}+8 x^{3}+\cdots$ is convergent if:
(a) $-2<x<2$
(b) $\boldsymbol{\wedge}-\frac{1}{2}<x<\frac{1}{2}$
(c) $|2 x|>1$
(d) $|x|<1$
26. If the reciprocal of the terms a sequence form an A. P., then it is called:
(a) $\boldsymbol{\checkmark}$ H.P
(b) G.P
(c) A. P
(d) sequerice
27. The nth term of $\frac{1}{2}, \frac{1}{5}, \frac{1}{8}, \ldots$ is
(a) $\quad \boldsymbol{V} \frac{1}{3 n-1}$
(b) $3 n-1$
28. Harmonic mean betwen 2 and 8 is:
$?$ c) $2 n+1$
d) $\frac{1}{3 n+1}$
(a) $\quad \boldsymbol{V}_{5}$
(1) $\frac{15}{6}$
(c) ± 4
(d) $\frac{5}{16}$
29. If A, G and H are Aritime ic (ecmetriczand Harmonic means between two positive numbers then
(a) $\quad G^{2}=14$
(b) A, G, H are in $G . P$
(c) $A>G>H$
(d) all of these

187 ff \sqrt{r} and A_{i} reArinmetic , Geometric and Harmonic means between two negative numbers then
(b) A, G, H are in $G . P$
(c) $A<G<H$
(d) $\boldsymbol{\checkmark}$ all of these
180. , then $S_{2 n}$ is equal to:
(a) $2 n+1$
(b) $\boldsymbol{V} 4 n^{2}+4 n+1$
(c) $(2 n-1)^{2}$
(d) cannot be determined
189. $\sum_{k=1}^{n} k^{3}=$
(a) $\frac{n(n+1)}{2}$
(b) $\frac{n(n+1)(n+2)}{6}$
(c) $\boldsymbol{\nearrow} \frac{n^{2}(n+1)^{2}}{4}$
(d) $\frac{n(n+1)^{2}}{2}$
190. $\sum_{k=1}^{n} 1=$
(a) 1
(b) 0
(c) k
(d) $\boldsymbol{\wedge}$
191. $\frac{8!}{7!}=$
(a) $\quad / 8$
(b) 7
192. 0 ! $=$
(a) 0
193. $n!=$
(a) $n(n-1)$
(b) \qquad
(c) 56
(a) $\frac{8}{7}$
194. $\frac{9!}{6!3!}=$
(7) 80
(b) $\sqrt{ } 84$
(c) 90
(d) 94 (a) $\frac{8.6}{3.2 .1}$ is
(a) $\frac{8!}{3!4!}$
(b) $\frac{8!}{3!3!}$
(c) $\boldsymbol{\sim} \frac{8!}{3!5!}$
(d) $\frac{8!}{3!6!}$
196. $20_{P_{3}}=$
(a) 6890
(b) 6810
(c) $\sqrt{ } 6840$
(d) 6880
197. If $\quad n_{\boldsymbol{P}_{2}}=\mathbf{3 0}$ then $\boldsymbol{n}=$
(a) 4
(b) 5
(c) 6
(d) 10
198. $\boldsymbol{n}_{\boldsymbol{P}_{\boldsymbol{n}}}=$
(a) n
(b) p !
(c) $\checkmark n$!
(d) $(n-1)$!
199. $\boldsymbol{n}_{\boldsymbol{P}_{\boldsymbol{r}}}=$
(a) n !
(b) $\frac{n!}{r!}$
(c) $\boldsymbol{\nu} \frac{n!}{(n-r)!}$
(d) r !
200. \qquad of \boldsymbol{n} different objects is called permutation.
(a) Combination
(b) $\boldsymbol{\checkmark}$ Permutation
(c) Probability
(d) Arrangements
201. In haw many ways the letters of the "WORD" can be write?
(a) 2! ways
(b) 3! ways
(c) $\boldsymbol{\checkmark}$! ways
(d) 5! ways
202. How many signals can be given by 5 flags of different colors, using $\mathbf{3}$ at a time
(a) 120
(b) 60
(c) 24
(d) 15
203. $\boldsymbol{n}_{\boldsymbol{C}_{\boldsymbol{n}}}=$
(a) n !
(b) 0 !
(c) $\boldsymbol{\checkmark} 1$
(d) 0
204. $\boldsymbol{n}_{\boldsymbol{C}_{\boldsymbol{r}}} \times r!=$
(a) $n_{C_{r}}$
(b) $\boldsymbol{\imath} n_{P_{r}}$
(c) $n_{C_{n}}$
(d) r !
205. $\boldsymbol{n}_{C_{0}}=$
(a) 0
(b) $\boldsymbol{\sim} 1$
(c) 2
(d)
206. For complementary combination $\boldsymbol{n}_{\boldsymbol{C}_{\boldsymbol{r}}}=$
(a) $n_{C_{n}}$
(b)
b) $\boldsymbol{n} n_{C_{n-r}}$
207. If $\boldsymbol{n}_{\boldsymbol{C}_{\mathbf{8}}}=\boldsymbol{n}_{\boldsymbol{C}_{12}}$ then $\boldsymbol{T}^{2}=$
(5) <20
(c) 30
(d) 40
(a) 10
208. In a permutation n_{P} or $P(n, i)$, it is alvays true that
(a)
へ
(b) $r<r$
(c) $n \leq r$
(d) $n<0, r<0$

209 PRapilit) ctnon-occurrence of an event E is equal to :
a) $1-P(E)$
(b) $P(E)+\frac{n(S)}{n(E)}$
(c) $\frac{n(S)}{n(E)}$
(d) $1+P(E)$
210. Non occurrence of an event E is denoted by:
(a) $\sim E$
(b) $\boldsymbol{V} \bar{E}$
(c) E^{c}
(d) All of these
211. A card is drawn from a deck of 52 playing cards. The probability of card that it is an ace card is:
(a) $\frac{2}{13}$
(b) $\frac{4}{13}$
(c) $\boldsymbol{V} \frac{1}{13}$
(d) $\frac{17}{13}$
212. Four persons wants to sit in a circular sofa, the total ways are:
(a) $\boldsymbol{\checkmark} 24$
(b) 6
(c) 4
(d) None of these
213. Let $S=\{1,2,3, \ldots, 10\}$ the probability that a number is divided by $\mathbf{4}$ is :
(a) $\frac{2}{5}$
(b) $\boldsymbol{\checkmark} \frac{1}{5}$
(c) $\frac{1}{10}$
Γ 214. A die is rolled , the probability of getting 3 or 5 is:
(a) $\frac{2}{3}$
(b)
(c) $\frac{5}{36}$
(d) $\frac{1}{36}$
215. If \boldsymbol{E} is a certain vent,
(a) $P(E)=0$
(1) $\searrow(P(E)==1$
1 ic) $0<P(E)<1$
(d) $P(E)>1$
216. If \boldsymbol{E} is an impessille e eint, then
(a)
(D) $P(E)=1$
(c) $P(E) \neq 0$
(d) $0<P(E)<1$
217. Sa naple space for tossing a coin is:
\{in\}
(b) $\{T\}$
(c) $\{H, H\}$
(d) $\boldsymbol{\checkmark}\{H, T\}$
218. For independent events $\boldsymbol{P}(\boldsymbol{A} \cup \boldsymbol{B})=$
(a) $\quad P(A)+P(B)$
(b) $\checkmark P(A)+P(B)-P(A \cap B)$
(c) $P(A) \cdot P(B)$
(d) $\frac{P(A)}{P(B)}$
219. If $P(A)=\frac{1}{2}, P(B)=\frac{1}{2}$ and $P(A \cap B)=\frac{1}{3}$ then $=P(A \cup B)=$
(a) $\frac{1}{2}$
(b) $\boldsymbol{\wedge} \frac{2}{3}$
(c) $\frac{1}{3}$
(d) $\frac{1}{4}$
220. If an event \boldsymbol{A} can occur in \boldsymbol{p} ways and \boldsymbol{B} can occur \boldsymbol{q} ways, then number of ways that both events occur is:
(a) $p+q$
(b) $\boldsymbol{\checkmark} \quad p . q$
(c) $(p q)$!
(d) $(p+q)$!
221. If $\boldsymbol{P}(\boldsymbol{A})=\mathbf{0 . 8}$ and $\boldsymbol{P}(\boldsymbol{B})=\mathbf{0 . 7 5}$ then $\boldsymbol{P}(\boldsymbol{A} \cap \boldsymbol{B})=$
(a) 0.5
(b) $\boldsymbol{V} 0.6$
(c) 0.7
(d) 0.9

1. The statement $4^{n}+3^{n}+4$ is true when :
2. $n=0$
(b) $n=1$
(c) $\boldsymbol{\checkmark} n \geq 2$
(d) n is any +iv integer
3. The method of induction was given by Francesco who lived from:
(a) \quad 1494-1575
(b) 1500-1575
(c) 1498-1575
(d) 1494-1570
4. The statement $3^{n}<n$! is true, when
(a) $n=2$
(b) $n=4$
(c) $n=6$
(d) $\boldsymbol{\checkmark} n>6$
5. General term in the expansion of $(a+b)^{n}$ is:
(a) $\quad\binom{n+1}{r} a^{n-r} x^{\wedge} r$
(b) $\boldsymbol{V}\binom{n}{r-1} a^{n-r} x^{r}$
(c) $\binom{n}{r+1} a^{n-r} x^{r}$
(d) $\binom{n}{r} a^{n-r} x^{r}$
6. The number of terms in the expansion of $(a+b)^{n}$ are:
(a) n
(b) $\boldsymbol{V} n+1$
(c) 2^{n}
(d) 2^{n}
7. Middle term/s in the expansion of $(a-3 x)^{14}$ is/are :
(a) T_{7}
(b) $\boldsymbol{V} T_{8}$
(c) $T \&$

(c) ${ }_{2} \& 7^{\circ}$
8. The coefficient of the last term in the exparsion of $(2-x)$ is
(a) 1
(b) ~-1
(c) 7
(d) -7
9. $\binom{2 n}{0}+\binom{2 n}{1}+\binom{2 n}{2 \pi}+$

- $\left(\begin{array}{l}2 n \\ \left.q_{n}\right) \\ \text { is equatiof }\end{array}\right.$ \qquad 5
(a) 2^{n}
(p) $\cdot 2^{2 n}$
(c) $2^{2 n-1}$
(d) $2^{2 n+1}$

1. $\quad 1+x+x^{2}+x^{3}+$
(ia) $(4-1+x)$
(b) $\boldsymbol{V}(1-x)^{-1}$
(c) $(1+x)^{-2}$
(d) $(1-x)^{-2}$
2. 0 tine middle term in the expansion of $(a+b)^{n}$ is $\left(\frac{n}{2}+1\right)$; then n is
(a) Odd
(b) $\boldsymbol{\checkmark}$ even
(c) prime
(d) none of these
3. The common starting point of two rays is called:
(a) Origin
(b) Initial Point
(c) \boldsymbol{V} Vertex
(d)All of these
4. If the rotation of the angle is counter clock wise, then angle is:
(a) Negative
(b) \boldsymbol{V} Positive
(c) Non-Negative
(d) None of these
5. One right angle is equal to
(a) $\quad \vee \frac{\pi}{2}$ radian
(b) 90°
(c) $\frac{1}{4}$ rotation
(व) Wi on these
6. 1° is equal to
(a) 30 minutes
(b)
(c) $\frac{1}{50}$ nivu $\in S$
(d) $\frac{1}{2}$ ininut s
7. 1° is equal to
(a) $\quad \boldsymbol{6 0}{ }^{\prime}$
(1) $3000^{\prime \prime}$
$\Rightarrow=\left(\frac{1}{360}\right)^{\prime}$
(d) $60^{\prime \prime}$
8. $60^{\text {th }}$ part of 1° is $\in q u a$ tc
(a)
237
One sicon
3 radian is
171.888°
(i) \checkmark One minute
(c) 1 Radian
(d) π radian
9. Area of sector of circle of radius r is:
(a) $\frac{1}{2} r^{2} \theta$
(b) $\boldsymbol{\nu} \frac{1}{2} r \theta^{2}$
(c) $\frac{1}{2}(r \theta)^{2}$
(d) $\frac{1}{2 r^{2} \theta}$
10. Circular measure of angle between the hands of a watch at $4^{\prime} O$ clock is
11. $\frac{\pi}{6}$
(b) $\boldsymbol{\checkmark} \frac{2 \pi}{3}$
(c) $\frac{3 \pi}{2}$
(d) $\frac{\pi}{3} \quad$ An angle is in standard
position, if its vertex is
(a) At origin
(b) \boldsymbol{V} at x-axis
(c) aty - axis
(d) in $1^{\text {st }}$ Quad Only
12. If initial and the terminal side of an angle falls on x - axis or y-axis then it is called:
(a) Coterminal angle
(b) \boldsymbol{V} Quadrantal angl
(c) Allied angle
(d) None of these
13. $\mathbf{0}^{\circ}, \mathbf{9 0}^{\circ}, \mathbf{1 8 0}^{\circ}, \mathbf{2 7 0}^{\circ}$ and $\mathbf{3 6 0}^{\circ}$ are called
(a) Coterminal angle
(b) $\boldsymbol{\checkmark}$ Quadrantal angl
(c) Allied angle
(d) None of these
14. $\sin ^{2} \theta+\cos ^{2} \theta$ is equal to:
(a) 0
(b) -1
(c) 2
(d) $\boldsymbol{\sim} 1$
15. $1+\tan ^{2} \theta$ is equal to:
(a) $\csc ^{2} \theta$
(b) $\sin ^{2} \theta$
(c) $\boldsymbol{V} \sec ^{2} \theta$
(d) $\tan ^{2} \theta$
16. $\csc ^{2} \theta-\cot ^{2} \theta$ is equal to:
(a) 0
(b) $\boldsymbol{\checkmark} 1$
(c) -1
(d) 2
(a) 1
(b) II
(c) III
(d) IV
17. Iftan $\theta<0$ and $\operatorname{cosec} \theta>0$ then the terminal arm of angle lies in \qquad Quad.
(a) I
(b) $\boldsymbol{\checkmark}$ II
(c) III
(d) IV
18. Ifsec $\theta<0$ and $\sin \theta<0$ then the terminal arm of angl lies in
(a) ।
(b) II
19. The point $(0,1)$ lies on the terminal ia cratige:
(a) 0°
(b) 90°
(c) 80°
(d) 270°
20. The point ($-1, \mathrm{C}_{1}$ je s an therer minal io Pofaty:
(a) 0°
(b) 90°
(c) $\boldsymbol{V} 180^{\circ}$
(d) 270°
21. The raint (0 -1) lies ont cerminal side of angle:
(a)
(b) 90°
(c) 180°
(d) $\boldsymbol{\checkmark} 270^{\circ}$

- $51 . \sin 45^{\circ}+\frac{1}{2} \operatorname{cosec} 45^{\circ}=$
(a) $\sqrt{\frac{2}{3}}$
(b) $\boldsymbol{\wedge} \frac{3}{\sqrt{2}}$
(c) -1
(d) 1

252. $\operatorname{cosec} \theta \sec \theta \sin \theta \cos \theta=$
(a) $\quad \boldsymbol{\wedge} 1$
(b) 0
(c) $\sin \theta$
(d) $\cos \theta$
253. $(\sec \theta+\tan \theta)(\sec \theta-\tan \theta)=$
(a) $\boldsymbol{V} 1$
(b) 0
$\sec \theta$
(d) $\tan \theta$
254. $\frac{1-\sin \theta}{\cos \theta}=$
(a) $\frac{\cos }{1-\sin \theta}$
(b) $\boldsymbol{\sim} \frac{\cos \theta}{1+\sin \theta}$
(c) $\frac{\sin \theta}{1-c} \sqrt{s \theta}$
(c) $\frac{-\sin \theta}{1 \cdot \cos \theta \theta}$

255. Fundamental law of trigonometry is $\cos (\alpha-c)$
(a) $\quad \boldsymbol{\gamma} \cos \alpha \cos \beta+\sin \alpha \sin \beta$
(i) $\operatorname{cosacos} \beta-$ incsin β
(c) $\sin \alpha \cos \beta+\cos \alpha \sin \beta$
(u) $\sin a \cos \beta-c o s x \sin \beta$
256. $\sin (\alpha+\beta)$ is equal o:
(a) $\cos \alpha \cos \beta+\sin \alpha \sin \mathcal{L}^{\prime}$
(b) $\cos \alpha \cos \beta-\sin \alpha \sin \beta$
(c)
$\sin \alpha \cos \beta$
(d) $\sin \alpha \cos \beta-\cos \alpha \sin \beta$
$257 \mathrm{cos}(\mathrm{T}-\mathrm{o})=$
a) $\cos \beta$
(b) $-\cos \beta$
(c) $\boldsymbol{\gamma} \sin \beta$
(d) $-\sin \beta$
257. $\sin (2 \pi-\theta)=$
(a) $\cos \theta$
(b) $-\cos \theta$
(c) $\boldsymbol{\checkmark} \sin \theta$
(d) $-\sin \theta$
258. $\boldsymbol{\operatorname { t a n }}(\boldsymbol{\alpha}-\boldsymbol{\beta})=$
(a) $\boldsymbol{V} \frac{\tan \alpha-\tan \beta}{1+\tan \alpha \tan \beta}$
(b) $\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta}$
(c) $\frac{\tan \alpha-\tan \beta}{1-\tan \alpha \tan \beta}$
(d) $\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta}$
259. Angles associated with basic angles of measure $\boldsymbol{\theta}$ to a right angle or its multiple are called:
(a) Coterminal angle
(b) angle in standard position (c)
$\boldsymbol{\checkmark}$ Allied angle
(d) obtuse angle
260. $\sin \left(\frac{3 \pi}{2}+\theta\right)=$
(a) $\sin \theta$
(b) $\cos \theta$
(c) $-\sin \theta$
(d) $\boldsymbol{\checkmark}-\cos \theta$
261. $\cos 315^{\circ}$ is equal to:
(a) 1
(b) 0
(c) $\boldsymbol{V} \frac{1}{\sqrt{2}}$
(d) $\frac{\sqrt{3}}{2}$
262. $\sin \left(180^{\circ}+\alpha\right) \sin \left(90^{\circ}-\alpha\right)=$
(a) $\boldsymbol{V} \sin \alpha \cos \alpha$
(b) $-\sin \alpha \cos \alpha$
(c) $\cos \gamma$
(d) $-\cos \gamma$
263. If α, β and γ are the angles of a triangle ABC then $\cos \left(\frac{\alpha+\beta}{2}\right)=$
(a) $\quad \boldsymbol{V} \sin \frac{\gamma}{2}$
(b) $-\sin \frac{\gamma}{2}$
(c) $\cos \frac{\gamma}{2}$
(d) $-\cos \frac{\gamma}{2}$
264. Which is the allied angle
(a) $\boldsymbol{V} 90^{\circ}+\theta$
(b) $60^{\circ}+\theta$
(c) $45^{\circ}+\theta$
(d) $30^{\circ}+\theta$
265. 266. $\frac{\cos 11^{\circ}+\sin 11^{\circ}}{\cos 11^{\circ}-\sin 11^{\circ}}=$
(a) $\boldsymbol{V} \tan 56^{\circ}$
(b) $\tan 34^{\circ}$
(c) $\cot 56^{\circ}$
(d) $\cot 34^{\circ}$
1. 2. If $\operatorname{Sin}(\alpha+\beta)$ is -ive and $\operatorname{Cos}(\alpha+\beta)$ is +ive then terminal arm of $(\sim-\beta)$ Ies in
1. I Quad
(b) II Quad
(c) III Ruad
(d) 4 IV Quad
2. $\sin 2 \alpha$ is equal to:
(a) $\cos ^{2} \alpha-\sin ^{2} \alpha$ (b) $1+\cos 2 \alpha$

(d) $2 \pi \pi \alpha c \cos$
3. $\cos 2 \alpha=$
(a) $\quad \boldsymbol{\sim} \cos ^{2} \alpha-\sin ^{2}$,
(4) i- $-2 \sin ^{2} x$
(c) $2 \cos ^{2} \alpha-1$
(d) All of these
4. $\tan 2 \alpha=$
$\sqrt{\text { (a) }}$

(i) $\frac{2 \tan \alpha}{1-\tan ^{2} \alpha}$
(c) $\frac{2 \tan ^{2} \alpha}{1-\tan ^{2} \alpha}$
(d) $\frac{\tan ^{2} \alpha}{1-\tan ^{2} \alpha}$
a) $3 \sin \alpha-2 \sin ^{3} \alpha$
(b) $3 \sin \alpha+2 \sin ^{3} \alpha$
(c) $\checkmark 3 \sin \alpha-4 \sin ^{3} \alpha$
(d) $3 \cos \alpha-2 \sin ^{3} \alpha$
5. $\sin \alpha+\sin \beta$ is equal to:
(a) $\quad \sim 2 \sin \left(\frac{\alpha+\beta}{2}\right) \cos \left(\frac{\alpha-\beta}{2}\right)$
(b) $2 \cos \left(\frac{\alpha+\beta}{2}\right) \sin \left(\frac{\alpha-\beta}{2}\right)$
(c)
$-2 \sin \left(\frac{\alpha+\beta}{2}\right) \sin \left(\frac{\alpha-\beta}{2}\right)$
(d) $2 \cos \left(\frac{\alpha+\beta}{2}\right) \cos \left(\frac{\alpha-\beta}{2}\right)$
6. $\sin \alpha-\sin \beta$ is equal to:
(b) $2 \sin \left(\frac{\alpha+\beta}{2}\right) \cos \left(\frac{\alpha-\beta}{2}\right)$
(b) $\checkmark 2 \cos \left(\frac{\alpha+\beta}{2}\right)$ sin $\left(\frac{\alpha-}{2}-1\right.$ (c)
$-2 \sin \left(\frac{\alpha+\beta}{2}\right) \sin \left(\frac{\alpha-\beta}{2}\right)$
7. $\cos \alpha+\cos \beta$ is equal to:
(c) $2 \sin \left(\frac{\alpha+\beta}{2}\right) \cos \left(\frac{\alpha-\rho}{2}-1\right)$ $2 \sin \left(\frac{\alpha+\beta}{2}\right) \sin \left(\frac{\alpha-\beta}{2}\right)$
8. $\cos \alpha-\cos \beta$ s equaito
(d) $\sin ^{2} \sin \left(-\frac{2}{2}\right) \operatorname{dos}\left(\frac{\alpha-\beta}{2}\right)$

(d) $\cos \left(\frac{a}{2}+\beta\right) \operatorname{O}\left(-\frac{\alpha-\beta}{2}\right)$
-2 $\operatorname{sio}\left(\frac{\alpha+\beta}{2}\right) \sin \left(\frac{\alpha-\beta}{2}\right)$
(d) $2 \cos \left(\frac{\alpha+\beta}{2}\right) \cos \left(\frac{\alpha-\beta}{2}\right)$
(b)? $\cos \left(\frac{\alpha-\beta}{2}\right) \sin \left(\frac{\alpha-\beta}{2}\right)$
(d) $2 \cos \left(\frac{\alpha+\beta}{2}\right) \cos \left(\frac{\alpha-\beta}{2}\right)$
(c) -
(b) $2 \cos \left(\frac{\alpha+\beta}{2}\right) \sin \left(\frac{\alpha-\beta}{2}\right)$
(c)
9. $2 \sin 7 \theta \cos 3 \theta=$
(a) $\boldsymbol{\checkmark} \sin 10 \theta+\sin 4 \theta$
(b) $\sin 5 \theta-\sin 2 \theta$
(c) $\cos 10 \theta+\cos 4 \theta$
(d) $\cos 5 \theta-\cos 2 \theta$
10. $2 \cos 5 \theta \sin 3 \theta=$
11. $\checkmark \sin 8 \theta-\sin 2 \theta$
(b) $\sin 8 \theta+\sin 2 \theta$
(c) $\cos 8 \theta+\cos 2 \theta$
(d) $\cos 8 \theta-\cos 2 \theta$ Range of $\boldsymbol{y}=\sec \boldsymbol{x}$ is
(a) R
(b) $\sqrt{ } y \geq 1$ or $y \leq-1$
(c) $-1 \leq y \leq 1$
(d) $R-[-1,1]$
12. Range of $y=\operatorname{cosec} \boldsymbol{x}$ is
(a) R
(b) $\boldsymbol{\vee} y \geq 1$ or $y \leq-1$
(c) $-1 \leq y \leq 1$
(d) $R-[-1,1]$
13. Smallest + ive number which when added to the original circular measure of the angle gives the same value of the function is called:
(a) Domain
(b) Range
(c) Co domain
(d) $\boldsymbol{\checkmark}$ Period
14. Domain of $y=\cos x$ is
(a) $\quad \boldsymbol{V}-\infty<x<\infty$
(b) $-1 \leq x \leq 1$
(c) $-\infty<x<\infty, x \neq n \pi, n \in Z$
(d) $x \geq 1, x \leq-1$
15. Domain of $y=\tan x$ is
(a) $-\infty<x<\infty$
(b) $-1 \leq x \leq 1$
(c) $\boldsymbol{v}-\infty<x<\infty, x \neq \frac{2 n+1}{2} \pi, n \in Z$
(d) $x \geq 1, x \leq-1$
16. Period of $\cos \theta$ is
(a) π
(b) $\boldsymbol{\imath} 2 \pi$
(c) -2π
(d) $\frac{\pi}{2}$
17. Period of $\tan 4 x$ is
(a) π
(b) 2π
(c) -2π
(d) $\boldsymbol{\nu} \frac{\pi}{4}$
18. Period of $\cot 3 x$ is
(a) π
(b) $\boldsymbol{\sim} \frac{\pi}{3}$
19. Period of $3 \cos \frac{x}{5}$ is
(a) 2π
(b) $\frac{\pi}{2}$
(c) -2π
20. The graph of trigor ometris runctions havo:
(a) Break segments (p) in ar co ners (c) Siraigit line segments (d) smooth curves
21. Curves of the frigonorne ricturction repeat after fixed intervals because trigonometric functions are
(a)
Simpif
(b), lir ea.
(c) quadratic
(d) $\boldsymbol{\checkmark}$ periodic
22. T1. atapoiy $=\cos x$ lies between the horizontal line $y=-1$ and
c1
(b) 0
(c) 2
(d) -2
23. A "Triangle" has:
(a) Two elements
(b) 3 elements
(c) 4 elements
(d) $\sqrt{ } 6$ elments
24. $\sin 38^{\circ} 24^{\prime}=$
(a) 0.2611
(b) 0.2622
(c) 0.6211
(d) 0.5211
25. When θ increases from 0° to 90° then $\sin \theta, \sec \theta$ and $\tan \theta$ go on
(a) \boldsymbol{V} Increasing
(b) Decreasing
(c) Constant
(d) None of these
26. When θ increases from 0° to 90° then $\cos \theta, \operatorname{cosec} \theta$ and $\cot \theta$ go on
(a) Increasing
(b) $\boldsymbol{\sim}$ Decreasing
(c) Constant

分 None of these
295. If $\sin x=0.5100$ then $x=$
(a) $\quad \checkmark 30^{\circ} 40^{\prime}$
(b) $3 \sqrt{\circ} .0^{\prime}$
(c) $40^{\circ} 40^{\prime}$
(x$) 44^{\circ} 44^{\prime}$
296. When we look an ohigct above the herizontali ay, he ar gle ormod is called angie of:
(a) \boldsymbol{V} Elevation
(b) aepiessio,
(c) incidence
(d) reflects
297. When we look ar ojecthelsu the horizolta! ay, the angle formed is called angle of:
(a) Elevation
('p. I' depression
(c) incidence
(d) reflects
298. Acrian gis wich is netright is called:
(a) a'cblique triangle
(b) Isosceles triangle
(c) Scalene triangle
(d) Right isosceles triangle .ea. In any triangle $A B C$, law of tangent is :
300. $\frac{a-b}{a+b}=\frac{\tan (\alpha-\beta)}{\tan (\alpha+\beta)}$
(b) $\frac{a+b}{a-b}=\frac{\tan (\alpha+\beta)}{\tan (\alpha-\beta)}$
(c) $\boldsymbol{V} \frac{a-b}{a+b}=\frac{\tan \frac{\alpha-\beta}{2}}{\tan \frac{\alpha+\beta}{2}}$
(d) $\frac{a-b}{a+b}=\frac{\tan \frac{\alpha+\beta}{2}}{\tan \frac{\alpha-\beta}{2}}$
301. In any triangle $A B C, \sqrt{\frac{(S-a)(s-b)}{a b}}=$
(a) $\sin \frac{\alpha}{2}$
(b) $\sin \frac{\beta}{2}$
(c) $\boldsymbol{\sim} \sin \frac{\gamma}{2}$
(d) $\cos \frac{\alpha}{2}$
302. In any triangle $A B C, \sqrt{\frac{(S-b)(s-c)}{b c}}=$
(a) $\quad V \sin \frac{\alpha}{2}$
(b) $\sin \frac{\beta}{2}$
(c) $\sin \frac{\gamma}{2}$
(d) $\cos \frac{\alpha}{2}$
303. In any triangle $A B C, \sqrt{\frac{(S-a)(s-c)}{a c}}=$
(a) $\sin \frac{\alpha}{2}$
(b) $\boldsymbol{\nu} \sin \frac{\beta}{2}$
(c) $\sin \frac{\gamma}{2}$
(d) $\cos \frac{\alpha}{2}$
304. In any triangle $A B C, \cos \frac{\alpha}{2}=$
(a) $\sqrt{\frac{s(s-a)}{a b}}$
(b) $\sqrt{\frac{s(s-b)}{a c}}$
(c) $\boldsymbol{V} \sqrt{\frac{s(s-a)}{b c}}$
(d) $\sqrt{\frac{s(s-c)}{a b}}$
305. In any triangle $A B C, \cos \frac{\beta}{2}=$
(a) $\sqrt{\frac{s(s-a)}{a b}}$
(b) $\boldsymbol{\sim} \sqrt{\frac{s(s-b)}{a c}}$
(c) $\sqrt{\frac{s(s-a)}{b c}}$
(d) $\sqrt{\frac{s(s-c)}{a b}}$
306. In any triangle $A B C, \cos \frac{\gamma}{2}=$
(a) $\sqrt{\frac{s(s-a)}{a b}}$
(b) $\sqrt{\frac{s(s-b)}{a c}}$
(c) $\sqrt{\frac{s(s-a)}{b c}}$
(d)

307. In any triangle $A B C$, with usual notations, s is equal t?
(a) $a+b+c$
(b) $\frac{a+b+c}{3}$

d) $\frac{a l}{2} c^{c}$
308. In any triangle $A B C \sqrt{\frac{s(s-c)}{(s-a)(s-b)}}=$
(a) $\sin \frac{\gamma}{2}$
(b) $(0) \frac{\gamma}{2}$

$-\int \sqrt[d]{ }$
309. In any $\because i=\operatorname{ng} g e A B C, \sqrt{\frac{(s-c)}{s(s-c)}}=$
(b) $\cos \frac{\gamma}{2}$
(c) $\boldsymbol{V} \tan \frac{\gamma}{2}$
(d) $\cot \frac{\gamma}{2}$

3in. To solve an oblique triangles when measure of three sides are given, we can use:
(a) \boldsymbol{V} Hero's formula
(b) Law of cosine
(c) Law of sine
(d) Law of tangents
311. In any triangle $A B C$ Area if triangle is:
(a) $b c \sin \alpha$
(b) $\frac{1}{2} c a \sin \alpha$
(c) $\frac{1}{2} a b \sin \beta$
(d) $\boldsymbol{V} \frac{1}{2} a b \sin \gamma$
312. In any triangle $\boldsymbol{A B C}$, with usual notations, $\frac{a}{2 \sin \alpha}=$
(a) r
(b) r_{1}
(c) $\boldsymbol{V} R$
(d) Δ
313. In any triangle $A B C$, with usual notations, $\frac{a}{\sin \beta}=$
(a) $2 r$
(b) $2 r_{1}$
(c) $\boldsymbol{\sim} \quad 2 R$
(a) 21
314. In any triangle $A B C$, with usual nota ions, sint $=$
(a) R
(b) $\boldsymbol{\checkmark} \frac{c}{2 R}$
c) $\frac{2 R}{2}$
(d) $\frac{\pi}{2}$
315. In any triangle $A C$, with usiral riotations abs
(a) R
(b) $\mathrm{A} S$
(c) $\boldsymbol{\checkmark} 4 R \Delta$
(d) $\frac{\Delta}{s}$
316. In anyeriante $A B C$, Nith usual notations, $\frac{\Delta}{s-a}=$
(T) 1
(b) R
(c) $\boldsymbol{\sim} r_{1}$
(d) r_{2}

312 In any triangle $A B C$, with usual notations, $\frac{\Delta}{s-b}=$
(a) r
(b) R
(c) r_{1}
(d) $\boldsymbol{\checkmark} r_{2}$
318. In any triangle $A B C$, with usual notations, $\frac{\Delta}{s-c}=$
(a) $\boldsymbol{V} r_{3}$
(b) R
(c) r_{1}
(d) r_{2}
319. In any triangle $A B C$, with usual notation, $r: R: r_{1}=$
(a) $3: 2: 1$
(b) $1: 2: 2$
(c) 1:2:3
(d) 1:1:1
320. In any triangle $A B C$, with usual notation, $\boldsymbol{r}: \boldsymbol{R}: \boldsymbol{r}_{1}: \boldsymbol{r}_{2}: \boldsymbol{r}_{3}=$
(a) 3:3:3:2:1
(b) 1:2:2:3:3
(c) \boldsymbol{V} 1:2:3:3:3
(d) 1:1:1:1:1
321. In a triangle $A B C$, if $\beta=60^{\circ}, \gamma=15^{\circ}$ then $\alpha=$
(a) 90°
(b) 180°
(c) 150°
(d) $\boldsymbol{\sim} 105^{\circ}$
322. $\operatorname{Cos}^{-1} x=$
(a) $\frac{\pi}{2}-\cos ^{-1} x$
(b) $\boldsymbol{V} \frac{\pi}{2}-\sin ^{-1} x$
(c) $\frac{\pi}{2}+\cos ^{-1} x$
(d) $\frac{\pi}{2}-\operatorname{cosec}^{-1} x$
323. Sec $^{-1} x=$
(a) $\frac{\pi}{2}-\sec ^{-1} x$
(b) $\frac{\pi}{2}-\sin ^{-1} x$
(c) $\frac{\pi}{2}+\sec ^{-1} x$
(d) $\boldsymbol{V} \frac{\pi}{2}-\operatorname{cosec}^{-1} x$
324. Tan $^{-1} x=$
(a) $\frac{\pi}{2}-\sec ^{-1} x$
(b) $\frac{\pi}{2}-\sin ^{-1} x$
(c) $\frac{\pi}{2}-\cot ^{-1} x$
(d) $\frac{\pi}{2}-\operatorname{cosec}^{-1} x$
325. $\operatorname{Cot}^{-1} x=$
(a) $\frac{\pi}{2}-\sec ^{-1} x$
(b) $\boldsymbol{V} \frac{\pi}{2}-\tan ^{-1} x$
(c) $\frac{\pi}{2}+\sec ^{-1} x$
(d) $\frac{\pi}{2}-\operatorname{cosec}^{-1} x$
326. $\operatorname{Sin}\left(\operatorname{Cos}^{-1} \frac{\sqrt{3}}{2}\right)=$
(a) $\frac{\pi}{6}$
(b) $\boldsymbol{V} \frac{1}{2}$
(c) $-\frac{1}{2}$
327. $\operatorname{Tan}^{-1}(\sqrt{3})=$
(a) $\frac{\pi}{6}$
(b) $-\frac{\pi}{6}$
328. $\operatorname{Sin}\left(\operatorname{Sin}^{-1} \frac{1}{2}\right)=$
(a) $\quad \boldsymbol{V} \frac{1}{2}$
329. 1. $\operatorname{Sin}^{-1} A-\operatorname{Sin}{ }^{-1}, \mathrm{P}=$
(a) $\left.\sim S n^{-1} \cdot A \sqrt{A}-\overline{2}+\frac{5}{1-A^{2}}\right)$
(b) $\operatorname{Sin}^{-1}\left(A \sqrt{1-A^{2}}-B \sqrt{1-B^{2}}\right)$
c) $\sin ^{-1}\left(B \sqrt{1-A^{2}}+A \sqrt{1-B^{2}}\right)$
(d) $\left.\operatorname{Sin}^{-1}\left(A B \sqrt{\left(1-A^{2}\right)\left(1-B^{2}\right.}\right)\right)$
330. 4. $\operatorname{Tan}^{-1} A+\operatorname{Tan}^{-1} B=$
(a) $\quad \operatorname{Tan}^{-1}\left(\frac{A-B}{1+A B}\right)$
(b) $\operatorname{Tan}^{-1}\left(\frac{A+B}{1+A B}\right)$
(c) $\operatorname{Tan}^{-1}\left(\frac{A-B}{1-A B}\right)$
(d) $\operatorname{Tan}^{-1}\left(\frac{A+B}{1+A B}\right)$
331. $\operatorname{Cos}^{-1}(-x)=$
(a) $-\operatorname{Cos}^{-1} x$
(b) $\operatorname{Cos}^{-1} x$
(c) $\sqrt{ } \pi-\operatorname{Cos}^{-1} x$
(d) $\pi-\operatorname{Cos} x$
332. $\operatorname{Tan}^{-1}(-x)=$
(a) $\quad V-\operatorname{Tan}^{-1} x$
(b) $\operatorname{Tan}^{-1} x$
(c) $\pi-\operatorname{Tan}^{-1} x$
(d) $\pi-\operatorname{Tan} \pi$
333. $\operatorname{Cosec}^{-1}(-x)=$
(a) $\quad V-\operatorname{Cosec}^{-1} x$
(b) $\operatorname{Cosec}^{-1} x$
334. $\operatorname{Cot}^{-1}(-x)=$
(a) $-\operatorname{Cot}^{-1} x$
(b) $\operatorname{Cot}^{-1} x$

ic) $\pi-\operatorname{Cosec}^{-1} \cdot x$
(a) $\pi-\operatorname{cosec} x$
335. If $\tan 2 x=-1$, ther sclition in the in erval $[0, \pi]$ s.
(a) $\quad \vee \frac{\pi}{8}$
(L) $\frac{1}{4}$
(c) $\frac{3 \pi}{8}$
(d) $\pi-\cot x$
336. If $\sin x+c o m: 0$ th en $\cos x \in[0,2 \pi]$
(a)
(1) $\left\{\frac{\pi}{4}, \frac{\pi}{4}\right\}$
(c) $\boldsymbol{\checkmark}\left\{\frac{3 \pi}{4}, \frac{7 \pi}{4}\right\}$
(d) $\left\{\frac{\pi}{4}, \frac{-\pi}{4}\right\}$
27. General solution of $4 \sin x-8=0$ is:
a) $\{\pi+2 n \pi\}$
(b) $\{\pi+n \pi\}$
(c) $\{-\pi+n \pi\}$
(d) $\boldsymbol{\checkmark}$ not possible
338. General solution of $1+\cos x=0$ is:
(a) $\quad \boldsymbol{V}\{\pi+2 n \pi\}$
(b) $\{\pi+n \pi\}$
(c) $\{-\pi+n \pi\}$
(d) not possible

1. For the general solution , we first find the solution in the interval whose length is equal to its:
(a) Range
(b) domain
(c) co-domain
(d) \boldsymbol{V} period
2. General solution of every trigonometric equation consists of :
(a) One solution only
(b) two solutions
(c) \boldsymbol{V} infinitely many solutions
(d) no real solution
3. Solution of the equation $2 \sin x+\sqrt{3}=0$ in the 4 th quadrant is:
(a) $\frac{\pi}{2}$
(b) $\boldsymbol{\wedge} \frac{-\pi}{3}$
(c) $\frac{-\pi}{6}$
(d) $\frac{11 \pi}{6}$
4. If $\sin x=\cos x$, then general solution is:
(a) $\left\{\frac{\pi}{4}+n \pi, n \in Z\right\}$
(b) $\left\{\frac{\pi}{4}+2 n \pi, n \in Z\right\}$
(c) $\boldsymbol{V}\left\{\frac{\pi}{4}+n \pi, \frac{5 \pi}{4}+n \pi\right\}$
(d) $\left\{\frac{\pi}{4}+n \pi, \frac{5 \pi}{4}+n \pi\right\}$
5. In which quadrant is the solution of the equation $\sin x+1=0$
(a) $1^{\text {st }}$ and $2^{\text {nd }}$
(b) $2^{\text {nd }}$ and $3^{\text {rd }}$
(c) $\boldsymbol{\int} 3^{\text {rd }}$ and $4^{\text {th }}$
(d) Only $1^{\text {st }}$
6. If $\sin x=0$ then $x=$
(a) $\quad \checkmark n \pi, n \in Z$
(b) $\frac{n \pi}{2}, n \in Z$
(c) 0
(d) $\frac{\pi}{2}$

SHORT QUESTIONS SEC (A)

1) Which of the following have closure property w.r.t addition and multiplication $\{0,-1\}$
2) Prove that $-\frac{7}{12}-\frac{5}{18}=\frac{-21-10}{36}$
3) Write reflexive property of equality of real number.
4) Simplify by justifying each step.
5) Prove the rules of addition. $\frac{a}{c}+\frac{\bar{b}}{c}=\frac{a+b}{c}$
6) Prove the rules of add tion. $\frac{a}{b}+\frac{c}{a}=\frac{a d+b c}{b d}$
7) Prove that $-\frac{7}{12}-\frac{5}{8}=\frac{21}{36}-1$
8) Find the sum, differ en e arid prodict ot the complex numbers $(8,9)$ and $(5,-6)$
9) Simpin 10 (2)

Simplify $(2,6) \div(3,7)$ Hint: $\frac{(2,6)}{(3,7)}=\frac{2+6 i}{3+7 i} \times \frac{3-7 i}{3-7 i}$ etc.
12) Simplify $(5,-4) \div(-3,-8)$
13) Find the multiplicative inverse of the numbers: $(-4,7)$
14) Find the multiplicative inverse of the numbers: $(\sqrt{2},-\sqrt{5})$

