331. $\operatorname{Cos}^{-1}(-x)=$
(a) $-\operatorname{Cos}^{-1} x$
(b) $\operatorname{Cos}^{-1} x$
(c) $\sqrt{ } \pi-\operatorname{Cos}^{-1} x$
(d) $\pi-\operatorname{Cos} x$
332. $\operatorname{Tan}^{-1}(-x)=$
(a) $\quad V-\operatorname{Tan}^{-1} x$
(b) $\operatorname{Tan}^{-1} x$
(c) $\pi-\operatorname{Tan}^{-1} x$
(d) $\pi-\operatorname{Tan} \pi$
333. $\operatorname{Cosec}^{-1}(-x)=$
(a) $\quad V-\operatorname{Cosec}^{-1} x$
(b) $\operatorname{Cosec}^{-1} x$
334. $\operatorname{Cot}^{-1}(-x)=$
(a) $-\operatorname{Cot}^{-1} x$
(b) $\operatorname{Cot}^{-1} x$

ic) $\pi-\operatorname{Cosec}^{-1} \cdot x$
(a) $\pi-\operatorname{cosec} x$
335. If $\tan 2 x=-1$, ther sclition in the in erval $[0, \pi]$ s.
(a) $\quad \vee \frac{\pi}{8}$
(L) $\frac{1}{4}$
(c) $\frac{3 \pi}{8}$
(d) $\pi-\cot x$
336. If $\sin x+c o m: 0$ th en $\cos x \in[0,2 \pi]$
(a)
(1) $\left\{\frac{\pi}{4}, \frac{\pi}{4}\right\}$
(c) $\boldsymbol{\checkmark}\left\{\frac{3 \pi}{4}, \frac{7 \pi}{4}\right\}$
(d) $\left\{\frac{\pi}{4}, \frac{-\pi}{4}\right\}$
337. General solution of $4 \sin x-8=0$ is:
a) $\{\pi+2 n \pi\}$
(b) $\{\pi+n \pi\}$
(c) $\{-\pi+n \pi\}$
(d) $\boldsymbol{\checkmark}$ not possible
338. General solution of $1+\cos x=0$ is:
(a) $\quad \boldsymbol{V}\{\pi+2 n \pi\}$
(b) $\{\pi+n \pi\}$
(c) $\{-\pi+n \pi\}$
(d) not possible
339. For the general solution , we first find the solution in the interval whose length is equal to its:
(a) Range
(b) domain
(c) co-domain
(d) \boldsymbol{V} period
340. General solution of every trigonometric equation consists of :
(a) One solution only
(b) two solutions
(c) \boldsymbol{V} infinitely many solutions
(d) no real solution
341. Solution of the equation $2 \sin x+\sqrt{3}=0$ in the 4 th quadrant is:
(a) $\frac{\pi}{2}$
(b) $\boldsymbol{\wedge} \frac{-\pi}{3}$
(c) $\frac{-\pi}{6}$
(d) $\frac{11 \pi}{6}$
342. If $\sin x=\cos x$, then general solution is:
(a) $\left\{\frac{\pi}{4}+n \pi, n \in Z\right\}$
(b) $\left\{\frac{\pi}{4}+2 n \pi, n \in Z\right\}$
(c) $\boldsymbol{V}\left\{\frac{\pi}{4}+n \pi, \frac{5 \pi}{4}+n \pi\right\}$
(d) $\left\{\frac{\pi}{4}+n \pi, \frac{5 \pi}{4}+n \pi\right\}$
343. In which quadrant is the solution of the equation $\sin x+1=0$
(a) $1^{\text {st }}$ and $2^{\text {nd }}$
(b) $2^{\text {nd }}$ and $3^{\text {rd }}$
(c) $\boldsymbol{\int} 3^{\text {rd }}$ and $4^{\text {th }}$
(d) Only $1^{\text {st }}$
344. If $\sin x=0$ then $x=$
(a) $\quad \checkmark n \pi, n \in Z$
(b) $\frac{n \pi}{2}, n \in Z$
(c) 0
(d) $\frac{\pi}{2}$

SHORT QUESTIONS SEC (A)

1) Which of the following have closure property w.r.t addition and multiplication $\{0,-1\}$
2) Prove that $-\frac{7}{12}-\frac{5}{18}=\frac{-21-10}{36}$
3) Write reflexive property of equality of real number.
4) Simplify by justifying each step.
5) Prove the rules of addition. $\frac{a}{c}+\frac{\bar{b}}{c}=\frac{a+b}{c}$
6) Prove the rules of add tion. $\frac{a}{b}+\frac{c}{a}=\frac{a d+b c}{b d}$
7) Prove that $-\frac{7}{12}-\frac{5}{8}=\frac{21}{36}-1$
8) Find the sum, differ en e arid prodict ot the complex numbers $(8,9)$ and $(5,-6)$
9) Simpin 10 (2)

Simplify $(2,6) \div(3,7)$ Hint: $\frac{(2,6)}{(3,7)}=\frac{2+6 i}{3+7 i} \times \frac{3-7 i}{3-7 i}$ etc.
12) Simplify $(5,-4) \div(-3,-8)$
13) Find the multiplicative inverse of the numbers: $(-4,7)$
14) Find the multiplicative inverse of the numbers: $(\sqrt{2},-\sqrt{5})$
15) Factorize: $9 a^{2}+16 b^{2}$
16) Factorize: $3 x^{2}+3 y^{2}$
17) Separate into real and imaginary parts (write as a simple complex number) $\frac{2-7 i}{4+5 i}$
18) Find the multiplicative Inverse of each of the numbers. $(1,2)$
19) Prove that $\bar{z}=z$ if z is real.
20) Simplify by expressing in the from a $+\mathrm{bi}(2+\sqrt{-3})(3+\sqrt{-5})$
21) Show that $\forall z \in C . z^{2}+\bar{z}^{2}$ is a real numben
22) Show that $\forall z \in C .(z-\bar{z})^{2}$ is a real number
23) Simplify: $\left(-\frac{1}{2}+\frac{\sqrt{2}}{2}-i\right)^{3}$
24) Find moduli of the or mele ur bre $1-\sqrt{3}$
25) Write two propr subst o o ihe set. $\{a, b, c\}$
26) Write (owntre pever eiof the each of the sets: $\{+,-, \div, x\}$
27) Winte he cuverse, inverse and contrapositive of the conditionals: $\sim p \rightarrow q$
28.
29) Find x and y if $\left[\begin{array}{lll}2 & 0 & x \\ 1 & y & 3\end{array}\right]+2\left[\begin{array}{ccc}1 & x & y \\ 0 & 2 & -1\end{array}\right]=\left[\begin{array}{ccc}4 & -2 & 3 \\ 1 & 6 & 1\end{array}\right]$
30) |xiv) |f $A=\left[\begin{array}{ll}1 & 2 \\ a & b\end{array}\right]$ and $A^{2}=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$, find the values of a and b.
31) if A and B are square matrices of the same order, then explain why in general: $(A+B)(A-B) \neq A^{2} B^{2}$
32) solve the equation $\left|\begin{array}{ccc}5 & -2 & -4 \\ 3 & -1 & -3 \\ -2 & 1 & 2\end{array}\right|$
33) without expansion show that $\left[\begin{array}{lll}6 & 7 & 8 \\ 3 & 4 & 5 \\ 2 & 3 & 4\end{array}\right]=0$
34) Without expansion show that $\left|\begin{array}{ccc}1 & 1 & 1 \\ x & y & z \\ y z & z x & x y\end{array}\right|=\left|\begin{array}{ccc}1 & 1 & 1 \\ x & y & z \\ x^{2} & y^{2} & z^{2}\end{array}\right|$
35) Show that $\left|\begin{array}{llc}1 & a^{2} & \frac{a}{b c} \\ 1 & b^{2} & \frac{b}{c a} \\ 1 & c^{2} & \frac{c}{a b}\end{array}\right|=0$
36) Without expansion verify that $\left|\begin{array}{ccc}1 & a^{2} & \frac{a}{b c} \\ 1 & b^{2} & \frac{b}{c a} \\ & , & c\end{array}\right|$
37) Show that $\left|\begin{array}{llll}x & 1 & 1 & 1 \\ 1 & x & 1 & 1 \\ 1 & 1 & x & 1 \\ 1 & 1 & 1 & x\end{array}\right|=(x+3)(x-1)^{3}$
38) Salve the equation by factorization: $\frac{a}{a x-1}+\frac{b}{b x-1}=a+b ; x-\frac{1}{a}, \frac{a}{b}$
39) Without expansion verify that $\left\lvert\, \begin{array}{r}r \cos \varnothing \\ 0\end{array}\right.$
$-\quad r \sin \phi$
40) if $A=\left[\begin{array}{cc}2 & -1 \\ 3 & 1\end{array}\right]$ eerify that $\left.A^{-1}\right)^{t} \cdots$ (A

22 Na rix X if $X\left[\begin{array}{cc}5 & 2 \\ -2 & 1\end{array}\right]=\left[\begin{array}{cc}-1 & 5 \\ 12 & 3\end{array}\right]$
431 Snow that: $x^{3}-y^{3}=(x-y)(x-\omega y)\left(x-\omega^{2} y\right)$
44) Evaluate: $\left(1+\omega-\omega^{2}\right)\left(1-\omega+\omega^{2}\right)$
45) Evaluate: $\left(1+\omega-\omega^{2}\right)^{8}$
46) Evaluate: $(-1+\sqrt{-3})^{5}+(-1-\sqrt{3})^{5}$

ANNUAL EXAM 2024
47) Solve the equations: $2 x^{4}-32=0$
48) Salve the equations: $x^{3}+x^{2}+x+1=0$
49) Use the factars theorem ta determine if the first polynomial is a factar of the second polynomial. $\omega+2,2 \omega^{3}+\omega^{2}-4(1)+7 /$
50) Find four fourth roots of 16
51) If w is a cube root of unity, form an equation whose roots are 2ω and $2 \omega^{2}$
52) Find roots of the equation by using quadratic formula: $15 x^{2}$
53) If α, β are the raots of $3 x^{2}-2 x+4=0$ find the veres $\sigma-+\frac{1}{\alpha}$
54) If α, β are the raots of $2 z^{2}-2 x+4 \equiv 0$, Find he ve lues of $x^{2}-\beta$
55) if a, β are the rocts $)+x^{2}-p \alpha-\rho-c=0$, prove that $\left.(1+d) r_{1}^{1}+\beta\right)=1-c$
56) if a, β are the roo s f he quat on ${ }^{2}+b x+c \Rightarrow v$, from the equation whose raots are. α^{2}, β^{2}
57) If α, β are the $n o t s$ of the duation $x, b x+c=0$, fram the equation whose r0ots are. $\alpha+\frac{1}{\alpha}, \beta+\frac{1}{\beta}$
58) Descis the paturedthe Taots of the equation. $x^{2}-5 x+6=0$
59) Discuss the nature of the roots of the equation. $25 x^{2}-30 x+9=0 x^{2}-2\left(m+\frac{1}{m}\right) x+3 ; m \neq 0$
60) Show that the roots of the equation will be rational: $(p+q) x^{2}-p x-q=0$
61) Find two consecutive numbers, whose productis 132. (Hint: Suppose the numbers are x and $x+1$)
62) Use synthetic division to find the quotient and the remainder when the polynomial $x^{4}-10 x^{2}-2 x+4$ is divided by $x+3$
63) Discuss the nature of the raots of the equations: $2 x^{2}+5 x-1=0$
64) Which of the following sets have closure property w.r.t addition and multiplication ? (i) $\{0,-1\}$ (ii) $\{1,-1\}$
65) Theorems: $\forall z, z_{1}, z_{2} \in C z \bar{z}=|z|^{2}$
66) Theorems $\forall z, z_{1}, z_{2} \in C\left(\frac{z_{1}}{z_{2}}\right)=\frac{\overline{z_{1}}}{\overline{z_{2}}}$
67) Find the power set $\{\{a, b\},\{b, c\},\{d, e\}$.
68) Reversal law of inverse if a, b are elements of group G, then show that $(a b)^{-1} b^{-1} a^{-1}$
69) \quad Find x and y if $\left[\begin{array}{cc}x+3 & 1 \\ -3 & 3 y-4\end{array}\right]=\left[\begin{array}{cc}y & 1 \\ -3 & 2 x\end{array}\right]$
70) Solve the equation $x^{\frac{1}{2}}-x^{\frac{1}{4}}-6=0$
71) Solve the equation $x^{\frac{2}{5}}+8=6 x^{\frac{1}{5}}$
72) Prove Three Cube Roots of Unity .
73) The Sum of all the three cube roots of unity is zero. i.e., $1+\omega+\omega^{2}=0$

SHORT QUESTIONS SEC (B)

74) Resolve the following into Partial Fraction: $\frac{6 x^{3}+5 x^{2}-7}{2 x^{2}-x-1}$
75) Resolve the Partial Fraction:
$\frac{9}{(x+2)^{2}(x-1)}$
76) Resolve, $\frac{7 x+25}{(x+3)(x+4)}$ into Partial Fractions.
77) Write the first four terms of the senences, it $a_{n}=(-1)^{n}(2 n-3)$
78) Write the first four terms of the sequence, if $a_{2}:=, ~ a_{1}$,
79) Find the indica ec erm of ine seq nce: $1-3, i,-1, a-11, \ldots . a_{8}$
80) Find the 13 th term of the seque ice $x, 1,2 \rightarrow x, 3-2 x, \ldots$.
81) Which term f the A P. $-2,4,11, \ldots$ is 148 ?

82! Reod Therfactialiraction: $\frac{x^{2}}{(x-2)(x-1)^{2}}$
83! Resolve, $\frac{x^{2}+x-1}{(x+2)^{3}}$ into Partial Fractions.
84) Write the first four terms of the sequences, if $a_{n}=(-1)^{n} n^{2}$
85) Write the first four terms of the sequences, if $a_{n}=\frac{n}{2 n+1}$
86) Write the first four terms of the sequences, if $a_{n}-a_{n-1}=n+2, a_{1}=2$
87) If $a_{n-3}=3 n-5$, find the nth term of the sequence.
88) Which term of the A.P. $5,2,-1, \ldots$. is -85 ?
89) How many terms are there in the A.P. in which $a_{1}=11, a_{n}=68, d=3$?
90) If the nth term of the A.P. is $3 n-1$, find the A.P
91) xxvii) If $\frac{1}{a}, \frac{1}{b}$ and $\frac{1}{c}$ are in A.P., show that $b=-\frac{a c}{c}$
92) Sum the series $\frac{3}{\sqrt{2}}+3 \sqrt{2}+\frac{5}{\sqrt{2}}+\cdots+\sqrt{13}$
93) Sum the series $1+4-7 \frac{10}{}-10-16+1022-25+\cdots \ldots$ to 3 n terms.
94) Find the 11 th term of the sequerce, $1+i, 2, \frac{4}{1+i}$
95) Find M Wo wh 8
9.6) For what value of $n, \frac{a^{n}+b^{n}}{a^{n-1}+b^{n-1}}$ is the positive geometric mean between a and b
97) Find the 9th term of the harmonic sequence $\frac{-1}{5}, \frac{-1}{3},-1, \ldots$
98) Iv) If 5 is the harmonic mean between 2 and b, findxxvi) Find the nth term of the sequence, $\left(\frac{4}{3}\right)^{2},\left(\frac{7}{3}\right)^{2}$ $\left(\frac{10}{3}\right)^{2}$,
99) Find $A \cdot M$. between $x-3$ and $x+5$
100) Find three A. Ms between 3 and 11 .
101) Sum the series $1.11+1.41+1.71+\cdots .+a_{10}$
102) How many terms of the series $-7+(-5)+(-3)+\cdots$ amount to 65 ?
103) Find the 12 th term of $1+I, 2 i,-2+2 i, \ldots \ldots$
104) Find G.M. between -2 i and 8 i
105) Insert two G.Ms. between 1 and 16
106) Find the 9th term of the harmonic sequence $\frac{1}{3}, \frac{1}{5}, \frac{1}{7}, \ldots$
107) The first term of an H.P. is $-\frac{1}{3}$ and the fifth term is $\frac{1}{5}$. Find its 9th term.
108) If A, G and h are the arithmetic, geometric and harmonic means between a and b respectively, show that $\mathrm{G}^{2}=\mathrm{AH}$
109) Find A, G, H and show that $G^{2}=A \cdot H$. if (i) $a=-2,=b=8$ (ii) $a=2 i, b=4 i$ (iii) $a=9, b=4$
110) Find the sequence if $a_{n}-a_{n-1}=n+1$ and $a_{4}=14$
111) If $a_{n-2}=3 n-11$, find the nth term of the sequence.
112) Find the sum of the infinite G.P. $2, \sqrt{2}, 1, \ldots$
113) Write in the factorial form: $n(n-1)(n-2) \ldots(n-r+1)$
114) Write in the factorial form:
115) Find the value of n when: ${ }^{n} \mathrm{P}_{2}=30$,
116) Find the value of 2 wher. ${ }^{n} P_{4} \cdot r^{-} P_{3}=9.1$
117) How many arrangerne s of the et ers of the words, taken all together, can be made: i) PAKPATTAN ii) PAKISTAN'
118 Irmonany waysan 4 keys be arranged on a circular key ring?
c) $-11 d A, G, H$ and verify that $A>G>H\left(G>0\right.$, if (i) $a=2, b=8$ (ii) $a=\frac{2}{5}, b=\frac{8}{5}$
120) Find the number of terms in the A.P. if: $\mathrm{a}_{1}=3, \mathrm{~d}=47$ and $a_{n}=59$
121) Find three A.Ms between $\sqrt{2}$ and $3 \sqrt{2}$.
122) Find the nth and 8 th terms of H.P $; \frac{1}{2}, \frac{1}{5}, \frac{1}{8}, \ldots$.
123) Evaluate: $\frac{4!2!}{15!(15-15}$
124) Write in the factorial form: $(n+2)(n+1)(n)$
125) Find the value of n when: ${ }^{11} P_{n}=11.10 .9$
126) How many signals can be given by 5 flags of ciffereht ours, in in flags at a time?
127) How many arrangements of the le te of wor tis tal alt her ca ibe made: i) MATHEMATICS ii) ASSASSINATIO:
128) How many nackar as be made from 6 Dead; of ulifferent colours?
129) Evaluate: ${ }^{n} C_{4}$
130) Find $\cos 112$ of n, vher, $\mathrm{C}_{10}=\frac{12 \times 11}{2!}$
131) Fid the alue of n and r, when ${ }^{n} C_{r}=35$ and ${ }^{n} P_{r}=210$
132) Experiment: A die is rolled. The top shows Events Happening: (i) 3 or 4 dots \quad (ii) dots less than 5.
133) Two dice are thrown. What is the probability that the sum of the number of dots appearing on them is 4 or 6 ?
134) If ${ }^{\mathrm{n}} \mathrm{C}_{8}={ }^{\mathrm{n}} \mathrm{C}_{12}$, find n .
135) A die is rolled. What is the probability that the dots on the top greater than 4 ?
136) Using the binomial theorem expand: $(a+2 b)^{5}$
137) Find the value of n, when ${ }^{n} C_{5}={ }^{n} C_{4}$
138) Find the value of n, when ${ }^{\mathrm{n}} \mathrm{C}_{12}={ }^{\mathrm{n}} \mathrm{C}_{6}$
139) What is the probability that a slip of numbers divisible by 4 is picked from the slips bearing number $1,2,3, \ldots, 10$?
140) Using binomial theorem, find the values to three places of decimals $\sqrt{99}$
141) Evaluate $\sqrt[8]{30}$ correct to three places of decimal.
142) If $y=1 .+2 x+4 x^{2}+8 x^{3}+\cdots$ Show that $x=\frac{y-1}{2 y}$
143) Expand up to four terms taking the values of x such that the expansion in each is valid. $(1-x)^{\frac{1}{2}}$
144) Using binomial theorem, find the values to three places of decimals (1.03) ${ }^{\frac{1}{2}}$
145) If a, b, c, d are in G.P, prove that $a^{2}-b^{2}, b^{2}-c^{2}, c^{2}-d^{2}$ are in G.P

15 If α, β, γ are the angles of $\triangle \mathrm{ABC}$, prove that $\tan \alpha+\tan \beta+\tan \gamma=\tan \alpha \tan \beta \tan \gamma$
16 Express $2 \sin 7 \theta \cos 3 \theta$ as sum \& difference.
17 Show that $\frac{\sin \left(360^{\circ}-\theta\right) \cos \left(180^{\circ}-\theta\right) \tan \left(180^{\circ}+\theta\right)}{\sin \left(90^{\circ}-\theta\right) \cos \left(90^{\circ}-\theta\right) \tan \left(360^{\circ}+\theta\right)}=1$
18 Express $120^{\prime} 40^{\prime \prime}$ in radians
19 Define Radian.
20 Find θ, when $\ell=10 \mathrm{~cm}$ and $r=2 \mathrm{~cm}$
21 State Fundamental Law of Trigonometry
22 What is the period of $3 \cos \frac{x}{5}$?
23 Give the Cosine or kif the Angoin terms of we sides.
24 At the top of the cl 89 n hg, he ar gre of depression of boat is 12°. How far is the boat from the cliff?
25 Find the area of the trip gre $B C$, iv sites $a=18, b=24, c=30$
26 Define Fircun - Rad. us.
27 Shoo hatcos $\frac{12}{13}=\sin ^{-1} \frac{5}{13}$
St hat $\cos ^{-1}(-x)=\pi-\cos ^{-1} x$
29 Give or state hero's formula.
$30 \quad$ Prove that $\sec \theta \operatorname{csec} \theta \sin \theta \cos \theta=1$
31 If α, β, γ are the angles of a triangle ABC then prove that $\sin (\alpha+\beta)=\sin \gamma$
32 Find the value of $\cos 15^{\circ}$
33 State Fundamental Law of Trigonometry.
34 Prove that $R=\frac{a b c}{4 \Delta} 35$. Convert $\frac{25 \pi}{36}$ into the measure of sexagesimal system.
35 Solve $\sin x \cos x=\frac{\sqrt{3}}{4}$
36 Express $\sin 5 x+\sin x$ as a product.
37 Convert $75^{\circ} 6^{\prime} 30$ " to radians
$38 \quad$ Write domain \& range of $\cos \mathrm{x}$
39 Write domain \& range of $\tan x$
40 Solve the equation $\cot ^{2} \theta=\frac{1}{3}$
41 Prove that $\tan \left(45^{\circ}+\mathrm{A}\right) \tan \left(45^{\circ}-\mathrm{A}\right)=1$
42 Show that $(\tan \theta+\cot \theta)^{2}=\sec ^{2} \theta \operatorname{cosec}^{2} \theta$
43 Define In-circle
44 Find the Period of $\sin \frac{x}{5}$
45 Solve $\sin x+\cos x=0$
46 Prove the identity $1+\tan \alpha \tan 2 \alpha=\sec 2 \alpha$
47 Express $\cos 7 \theta-\cos \theta$ as a product
48 Define Circum-circle
49 The area of a triangle is 2437 . If $a=79, c=97$ then find the angle β
50 Prove that $\sin \left(\theta+\frac{\pi}{6}\right)+\cos \left(\theta+\frac{\pi}{3}\right)=\cos \theta$
51 Show that $\cos \left(2 \sin ^{-1} x\right)=1-2 x^{2}$
52 If $\cot \theta=\frac{15}{8}$ \& the terminal arm of the angle is not in I quad, ind the value
53 Convert $54^{\circ} 45^{\prime}$ into radians
54 Prove that $r r_{1} r_{2} r_{3}=\Delta^{2}$

55 Express $2 \sin 7 \theta \mathrm{si} \pi 2-$ as a sum or difference
56 Define the Angle of lo vain
57 Convert $\frac{2 \pi}{3}$ into rad an
58 Find the (1, io of he eludtibntan $\tan ^{2} \theta-\sec \theta-1=0$ which lie in $[0,2 \pi]$
59 hat $\frac{1020}{\cos \theta} \bar{\theta}$
A adder leaning against a vertical wall makes an angle of 24^{0} with the wall. If its foot is 5 m from the wall, find its length.
61 Express $\cos 12^{\circ}+\cos 48^{\circ}$ as a product
62 Find the period of $3 \tan \frac{x}{7}$
63 Prove that $\frac{\cos 11^{\circ}+\sin 11^{\circ}}{\cos 11^{\circ}-\sin 11^{\circ}}=\tan 56^{\circ}$

NLONG QUESTIONS

Chapter 2:

Q. 1 Prove that $\mathrm{p} \vee(\sim p \wedge \sim q) \vee(p \wedge q)=p \vee(\sim p \wedge \sim q)$
Q. 2 Convert $(A \cup B) \cup C=A \cup(B \cup C)$ into logical form and prove it by constructing the truth table.

