

## CHAPTER

## PERMUTATION, EAIVIFINALIDM

ANW PRateablity

Factorial Notation:
Let $\boldsymbol{n}$ be a nositivente ger then $\frac{1}{}$ e product $\boldsymbol{n}(\boldsymbol{n}-\mathbf{1})(\boldsymbol{n}-\mathbf{2}) . . . . .3 .2 .1$ is denoted by $n!$ and read as infacoricli.e. $n!=\boldsymbol{n}(\boldsymbol{n}-1)(\boldsymbol{n}-2)$...3.2.1
e.g.
$1!=1$
Note:
$2!=2.1=2$
$0!=1$
$\mathrm{n}!=\mathrm{n}(\mathrm{n}-1)$ !
$3!=3.2 .1=6$
$4!=4 \cdot 3 \cdot 2 \cdot 1=24$
$5!=5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=120$
$6!=6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=720$

## EXERCISE 7.1

Q. 1 Evaluate each of the following:
(i) 4!

Solution: $4!=4 \cdot 3 \cdot 2 \cdot 1=24$
(ii) 6!

Solution: $6!=6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=720$
(iii)

$$
\frac{8!}{7!}
$$

Solution: $\frac{8!}{7!}=\frac{8 \cdot 7!}{7!}$

$$
\begin{aligned}
& =8 \cdot 1 \\
& =8
\end{aligned}
$$

(iv) $\frac{10!}{7!}$

Solution: $\frac{10!}{7!}=\frac{10 \cdot 9 \cdot 8 \cdot 7!}{7!}$

$$
=10 \cdot 9 \cdot 8=720
$$

(v) $\frac{11!}{4!7!}$


$$
=11 \cdot 10 \cdot 3=330
$$

(vi) $\frac{6!}{3!3!}$

Solution: $\frac{6!}{3!3!}=\frac{6 \cdot 5 \cdot 4 \cdot 3!}{3!3!}=\frac{6 \cdot 5 \cdot 4}{3!}$

$$
=\frac{6 \cdot 5 \cdot 4}{3 \cdot 2 \cdot 1}=5 \cdot 4=20
$$

(vii) $\frac{8!}{4!2!}$

Solution: $\frac{8!}{4!2!}=\frac{8 \cdot 7 \cdot 6 \cdot 5 \cdot 4!}{4!\cdot 2 \cdot 1}$

$$
=\frac{8 \cdot 7 \cdot 6 \cdot 5}{2 \cdot 1}=8 \cdot 7 \cdot 3 \cdot 5
$$

(viii) $11!{ }^{=340}$

## Solutien.

$11!$. $10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5$
$\frac{-1}{2!4!5!}=\frac{-10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5!}{2!4!5!}$
$=\frac{11 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6}{2!4!}=\frac{11 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6}{2 \cdot 1 \cdot 4!}$
$=\frac{11 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \cdot 3}{4!}=\frac{11 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \cdot 3}{4 \cdot 3 \cdot 2 \cdot 1}$
$=11 \cdot 10 \cdot 9 \cdot 7=6930$
(ix) $\frac{9!}{2!(9-2)!}$

Solution: $\frac{9!}{2!(9-2)!}=\frac{9 \cdot 8 \cdot 7!}{2!7!}=\frac{9 \cdot 8}{2!}$

$$
=\frac{9 \cdot 8}{2 \cdot 1}=9 \cdot 4=36
$$

(x)



$$
=\frac{1}{0!}=\frac{1}{1}=1
$$

(xi) $\frac{3!}{0!}$

Solution: $\frac{3!}{0!}=\frac{3 \cdot 2 \cdot 1}{1}=6$
(xii) 4! $0!\cdot 1$ !

## Solution:

$$
4!0!1!=4!1 \cdot 1=4!=4 \cdot 3 \cdot 2 \cdot 1=24
$$

Q. 2 Write each of the following in the factorial form:
(i) $\quad 6.5 \cdot 4$

Solution: $6 \cdot 5 \cdot 4=\frac{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{3 \cdot 2 \cdot 1}=\frac{6 \text { ! }}{3!}$

## (ii) $\mathbf{1 2 \cdot 1 1 \cdot 1 0}$

## Solution:

$$
12 \cdot 11 \cdot 10=\frac{12 \cdot 11 \cdot 10 \cdot 9!}{9!}=\frac{12!}{9!}
$$

(iii)

20•19•18•17
Solution: 20-19-18-17

$$
=\frac{20 \cdot 19 \cdot 18 \cdot 17 \cdot 16!}{16!}=\frac{20!}{16!}
$$

(iv) $\frac{10.9}{2 \cdot 1}$

## Solution:

$$
20 \cdot-\frac{10 \cdot \rho}{2!}-\frac{10 \cdot 0 \cdot 8!}{2!\cdot 8!}=\frac{10!}{2!8!}
$$

(v) $\frac{8 \cdot 7 \cdot 6}{3 \cdot 2 \cdot 1}$

Solution: $\frac{8 \cdot 7 \cdot 6}{3 \cdot 2 \cdot}=\frac{8 \cdot 7 \cdot 6}{3!}$
$=-\frac{8 \cdot 7 \cdot 6}{3 \cdot 5} \cdot=-\left(\frac{51}{35}!\right.$
(vi)

$$
5 \cdot .51 \cdot 50 \cdot 49
$$

Solution:

$$
\begin{aligned}
& \frac{52 \cdot 51 \cdot 50 \cdot 49}{4 \cdot 3 \cdot 2 \cdot 1}=\frac{52 \cdot 51 \cdot 50 \cdot 49}{4!} \\
& =\frac{52 \cdot 51 \cdot 50 \cdot 49 \cdot 48!}{4!\cdot 48!}=\frac{52!}{4!\cdot 48!} \\
\text { (vii) } \quad & \mathbf{n}(\mathbf{n - 1})(\mathbf{n - 2}) \quad(\text { MTN } 2022)
\end{aligned}
$$

Solution: $n(n-1)(n-2)$

$$
\begin{aligned}
& =\frac{n \cdot(n-1)(\mathrm{n}-2) \cdot(n-3)!}{(n-3)!} \\
& =\frac{n!}{(n-3)!} \\
(\text { viii) } \quad & (\mathbf{n}+\mathbf{2})(\mathbf{n}+\mathbf{1})(\mathbf{n})
\end{aligned}
$$

(GRW 2021, SGD 2022)
Solution: $(n+2)(n+1)(n)$

$$
\begin{aligned}
& =\frac{(n+2)(n+1)(n)(n-1)!}{(n-1)!} \\
& =\frac{(n+2)!}{(n-1)!}
\end{aligned}
$$

(ix) $\quad \frac{(\mathbf{n}+\mathbf{1})(\mathbf{n})(\mathbf{n}-\mathbf{1})}{\mathbf{3 \cdot 2 \cdot 1}}$
Solution: $\frac{(n+1)(n)(\mathrm{n}-1)}{3 \cdot 2 \cdot 1}$
$=\frac{(n+1)(n)(\mathrm{n}-1)}{3 \cdot 2 \cdot 1 \cdot(n-2)!}$
$\left.=-\frac{(n-5)!}{(r)}=\frac{1}{3}\right)!$
( $\left.(2) \int m-1\right)(n-2) \ldots(n-r+1)$
(GRW 2022, SWL 2023)
Solution: $n(n-1)(n-2) . . .(\mathrm{n}-\mathrm{r}+1)$

$$
\begin{aligned}
& =\frac{n(n-1)(n-2)---(\mathrm{n}-\mathrm{r}+1) \cdot(n-r)!}{(n-r)!} \\
& =\frac{n!}{(n-r)!}
\end{aligned}
$$

## Fundamental Principle of Counting:

Suppose $\mathbf{A}$ and $\mathbf{B}$ are two events. The first event $\mathbf{A}$ can occur in $\mathbf{p}$ different ways. After A has occurred, $\mathbf{B}$ can occur in $\mathbf{q}$ different ways. The number of ways that the two events can occur is the product $\mathbf{p q}$.

## Permutation:

An ordering (arrangement) of $\mathbf{n}$ objects is called per netaighor the objerts.
A permutation of $\mathbf{n}$ different objoctstaken $-(\leq \boldsymbol{n}$, at $d$ tme is an arrargement of the $\mathbf{r}$ objects. Generally it is denoted by $\boldsymbol{P}_{r} \boldsymbol{P}_{r} \boldsymbol{P}(\boldsymbol{n}, \boldsymbol{r})$.
${ }^{n} P_{r}=\frac{n!}{(n-r)!} \sqrt{n} \cdot \sqrt{n}=n(n-f) \cdot(n-1+1)$

Corollary: If $r=n$. Then ${ }^{n} P_{n}=\frac{n!}{(n-n)!}=\frac{n!}{0!}=n!$

## EXERCISE 7.2

## Q. 1 Evaluate the following:

(i) $\quad{ }^{20} \mathbf{P}_{3}$ (BWP 2021)

Solution: ${ }^{20} P_{3}=\frac{20!}{(20-3)!}=\frac{20 \cdot 19 \cdot 18 \cdot 17!}{17!}=20 \cdot 19 \cdot 18=6840$
(ii) ${ }^{16} \mathbf{P}_{4}(S G D$ 2021)

Solution: ${ }^{16} P_{4}=\frac{16!}{(16-4)!}=\frac{16!}{12!}=\frac{16 \cdot 15 \cdot 14 \cdot 13 \cdot 12!}{12!}=16 \cdot 15 \cdot 14 \cdot 13=43680$
(iii) ${ }^{12} \mathbf{P}_{5}$

Solution: ${ }^{12} P_{5}=\frac{12!}{(12-5)!}=\frac{12!}{7!}=\frac{12 \cdot 11 \cdot 10 \cdot 9 \cdot 8 \cdot 7!}{7!}=12 \cdot 11 \cdot 10 \cdot 9 \cdot 8=95040$
(iv) ${ }^{10} \mathbf{P}_{7}$

Solution: ${ }^{10} P_{7}=\frac{10!}{(10-7)!}=\frac{10!}{3!}=\frac{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3!}{3!}=10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4=604800$
(v) ${ }^{9} \mathbf{P}_{8}$

Solution: ${ }^{9} P_{8}=\frac{9!}{(9-8)!}=\frac{9!}{1!}=\frac{9!}{1}=9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=362880$

## Q. 2 Find the value of $\mathbf{n}$ when:

Solution:
(i) ${ }^{\mathrm{n}} \mathbf{P}_{2}=\mathbf{3 0}$
(LHR 2021, GRW 2022, D.G.K 2022, RWP
$\frac{n!}{(n-2)!}=30$
$=\frac{n \cdot(n-1) \cdot(n-2)}{(n 02 \cdot}=30$
$=n \cdot(n-1)=30$
$=n^{2}-n=30$

$$
\begin{aligned}
& \left.\left.=\begin{array}{l}
n^{2}-20 \\
=2^{2}-50+(n-30=0 \\
=n(n-6)+5(n-6)=0 \\
0
\end{array}\right] \quad n-6\right)(n+5)=0 \\
& \Rightarrow \quad n-6=0 \text { or } n+5=0 \\
& \Rightarrow \quad n=6 \quad, \quad n=-5
\end{aligned}
$$

Ignoring $n=-5$, because n cannot be negative.
So, $\quad n=6$
(ii) ${ }^{11} P_{n}=11 \cdot 10 \cdot 9$
$\frac{11!}{(11-n)!}=11 \cdot 10 \cdot 9$
$\frac{11 \cdot 10 \cdot 9 \cdot 8!}{(11-\mathrm{n})!}=11 \cdot 10 \cdot 9$
$\frac{8!}{(11-n)!}=1$
or $8!=(11-n)$ !
$8=11-n$
$\underset{m}{\Rightarrow} \quad n_{n}=3 \cdot 8$
(iii) ${ }^{n} \mathbf{P}_{4}:{ }^{n-1} \mathbf{P}_{3}=9: 1$
$\frac{{ }^{n} P_{4}}{{ }^{n-1} P_{3}}=\frac{9}{1}$
${ }^{n} P_{4}=9{ }^{n-1} P_{3}$

$\left[\frac{n!}{(n-7 \cdot)!}=?\left(-\left(\frac{n}{(n-1)-1-3)!}\right]\right]\right.$

## Q. 3 Prove from the first principle that:

(i) ${ }^{\mathrm{n}} \mathbf{P}_{\mathrm{r}}=\mathbf{n} \cdot{ }^{\mathrm{n}-1} \mathbf{P}_{\mathrm{r}-1}$

## Solution:

(i) Let there be $r$ places to be filled by $n$ objects. First place can be filled in $n$ different ways. When first place has been filled, $n-1$ objects are left to fill the second place, so the second place can be filled in $n-1$ different ways. Thus, the first two places can be filled in $n(n-1)$ ways. After filling the second place, there are $n-2$ objects to fill the third place, so the third place can be filled in $n-2$ different ways. Thus, the first three places can be filled in $n(n-1)(n-2)$ ways. Continuing in this way the first $r$ places can be filled in $n(n-1)(n-2)---[n-(r-1)]$ different ways. If ${ }^{n} \mathrm{P}_{\mathrm{r}}$ denotes the number of ways in which n different objects can be arranged taken r at a time, then
${ }^{n} \mathrm{P}_{\mathrm{r}}=n(n-1)(n-2) \ldots[n-(\mathrm{r}-1)]$
If $r-1$ places have to be filled by $n-1$ objects then the first place can be filled in $n-1$ different ways. When first place has been filled, $n-2$ objects are left to fill the second place, so the second place can be filled in $(n-2)$ ways. After filling the second place, there are $n-3$ objects to fill the third place, so the third place can be filled in $n-3$ different ways. Thus, the first three praces can be nited in $(n-1)(n-2)(n-3)$ ways. Continuing in this way, the first $r-1$ places chn be filled in $(n-1)(n-2)--[n-(r-1)]$ differ $n r a y y$. I $]^{n-1} x_{-1}=$ denoles the number of ways in which $n$ - iniferentobjecte can he arranstu taken $r-1$ at a time, then
${ }^{n-1} \mathrm{P}_{\mathrm{r}-1}=(n-1)(n-2) \cdot[n-(\cdot \cdot-1]]$
$\Rightarrow \quad n^{n-1} \cdot P_{1}-A=R(n-1, n-29 \ldots[n-(r-1)]$
Fron equation (i) and equation (ii), we have
${ }^{n} \mathrm{P}_{\mathrm{r}}=n \cdot{ }^{n-1} \mathrm{P}_{\mathrm{r}-1}$
Which is required result.

$$
{ }^{n} \mathrm{P}_{\mathrm{r}}={ }^{n-1} \mathrm{P}_{\mathrm{r}}+r \cdot{ }^{n-1} \mathrm{P}_{\mathrm{r}-1}
$$

Let there be r places to be filled by $n$ objects. First place can be filled in different ways. When first place has been filled, $n-1$ objects are left to fill the seseric place, so the second place can be filled in $n-1$ different ways. Thus, whe firgtwo places can be filled in $n(n-1)$ ways. After fillins the second place, thele are $n-2$ objects to fill the third place, so the third place can he illed in .2 - tifferent ways. Thus, the first three, aces cande fille in $n \cdot n-1)(n-2)$, ays. Continuing in this way, the first $r$ pleces cal be filld in $2(n-1 r n-2) \ldots[n-(r-1)]$ different ways. If ${ }^{n} \mathrm{P}_{\mathrm{r}}$ denoter the nyrber of ways in which n different objects can be arrangentikepral tiine then
${ }^{n} n \cdot p=n(n-1)(2-2) \ldots[n-(r-1)]$
If,-1 places have to fill by $n-1$ objects, then the first place can be filled in $n-1$ different ways. When first place has been filled, $n-2$ objects are left to fill the second place, so the second place can be filled in $n-2$ different ways. Thus, the first two places can be filled in $n-2$ different ways. Thus, the first two places can be filled in $(n-1)(n-2)$ ways. After filling the second place, there are $n-3$ objects to fill the third place, so the third place can be filled in $n-3$ different ways. Thus the first three places can be filled in $(n-1)(n-2)(n-3)$ ways. Continuing in this way, the first $r-1$ places can be filled in $(n-1)(n-2) \ldots[n-(r-1)]$ different ways. If ${ }^{n-1} \mathrm{P}_{\mathrm{r}-1}$ denotes the number of ways in which $n-1$ different objects can be arranged taken $r-1$ at a time, then

$$
\begin{align*}
& { }^{n-1} \mathrm{P}_{\mathrm{r}-1}=(n-1)(n-2) \ldots[n-(\mathrm{r}-1)] \\
\Rightarrow \quad & r \cdot{ }^{n-1} \mathrm{P}_{\mathrm{r}-1}=r(n-1)(n-2) \ldots[n-(r-1)] \tag{ii}
\end{align*}
$$

If $r$ places have to fill by $n-1$ objects, then the first place can be filled in $n-1$ different ways. When first place has been filled, $n-2$ objects are left to fill the second place, So the second place can be filled in $n-2$ different ways. Thus, the first two places can be filled in $(n-1)(n-2)$ ways. After filling the second place, there are $n-3$ objects to fill the third place, so the third place can be filled in $n-3$ different ways. Thus, the first three places can be filled in $(n-1)(n-2)(n-3)$ ways. Continuing in this way, the first r places can be filled in $(n-1)(n-2) \ldots(n-r)$ different ways. If ${ }^{n-1} \mathrm{P}_{\mathrm{r}}$ denotes the number of ways in which $n-1$ different objects can be arranged taken r at a time, then
${ }^{n-1} P_{r}=(n-1)(n-2) \ldots(n-r)$
Adding equation (ii) and (iii), we have

Frishlequat on (i) and (iv), we have
${ }^{n} \mathrm{P}_{\mathrm{r}}={ }^{n-1} \mathrm{P}_{\mathrm{r}}+r \cdot{ }^{n-1} \mathrm{P}_{\mathrm{r}-1}$
Which is required result.
Q. 4 How many signals can be given by 5 flags of different colours, using 3 flags at a time?
(GRW 2021)

## Solution:

The total number of flags $=n=5$
Using flags at a time $=r=3$
Required number of signals
$={ }^{5} P_{3}$

Q. 5 How many signals can be siven b. 6 dags or different colours when any number of flags can be wed ot a tive?

## Solution:

The total number of flags $=n=6$
Number of signals using 1 flag $={ }^{6} P_{1}=6$
Number of signals using 2 flags $={ }^{6} P_{2}=6 \cdot 5=30$
Number of signals using 3 flags $={ }^{6} P_{3}=6 \cdot 5 \cdot 4=120$
Number of signals using 4 flags $={ }^{6} P_{4}=6 \cdot 5 \cdot 4 \cdot 3=360$
Number of signals using 5 flags $={ }^{6} P_{5}=6 \cdot 5 \cdot 4 \cdot 3 \cdot 2=720$
Number of signals using 6 flags $={ }^{6} P_{6}=6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=720$
Total number of signals $=6+30+120+360+720+720=1956$
Q. 6 How many words can be formed from the letters of the following words using all letters when no letter is to be repeated:
Solution:
(i) PLANE
(MTN 2022, RWP 2023)
Total number of letters $=n=5$
Using at a time $=r=5$
Required number of words
$={ }^{5} P_{5}=5!=5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=120$
(ii) OBJECT

Total number of letters $=n=6$

Using at a time $=r=6$
Required number of words
$={ }^{6} P_{6}=6!=6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=720$
(iii) FASTING

Total number of letters $=n=7$
Using at a time $=r=7$
Required number of words
$={ }^{7} P_{7}=7!=7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=5040$
Q. 7 How many 3-digit numbers can be formed by using each one of the digits $2,3,5,7,9$ only once?

## Solution:

Given digits are: 2,3,5,7,9
Number of digits $=n=5$
Using at a time $=r=3$
Required number of s-aisi nu mdere $={ }^{5} P_{3}$

Q. 8 Find the numbers greater than 23000 that can be formed from the digits $1,2,3,5,6$, without repeating any digit.
Solution: Given digits are 1,2,3,5,6.
Numbers greater than 23000 are of the form:
Numbers with 23 on the extreme left $23 \otimes \otimes \otimes={ }^{3} F_{3}=3!=6$
Numbers with 25 on the extreme'rit $15 \otimes \otimes \otimes=3 P=3!=6$
Numbers with 26 on the extremereft $25 \otimes \otimes(\otimes)=P_{3}=3 .=6$

Numbers vith $\bar{x}$ ep Nic extene ieft $5 \otimes \otimes \otimes \otimes={ }^{4} P_{4}=4!=24$
Numbers with 6 on the extreme left $6 \otimes \otimes \otimes \otimes={ }^{4} P_{4}=4!=24$
Total Numbers $=6+6+6+24+24+24=90$
Q. 9 Find the number of 5 -digit numbers that can be formed from the digits $\mathbf{1 , 2 , 4 , 6 , 8}$ (when no digit is repeated), but
(i) The digits 2 and 8 are next to each other.
(ii) The digits 2 and 8 are not next to each other.

Solution: Given digits are $1,2,4,6,8$
Number of digits $=5$
(i) When 2 and 8 are next to each other in the form of 28 and 82 , we consider them as one digit and their two places as one place.
Required number of permutations $\quad={ }^{4} P_{4}+{ }^{4} P_{4}$
$=4!+4$ !
$=24+24=48$
(ii) Number of total permutations $\quad={ }^{5} P_{5}=5!=120$

Number of permutations when 2 and 8 are not next to each other $=120-48=72$
Q. 10 How many 6-digit numbers can be formed without repeating any digit from the digits $\mathbf{0 , 1 , 2 , 3 , 4 , 5}$ ? In how many of them will 0 be at the tens place?
Solution: $\quad$ Given digits are: $0,1,2,3,4,5$
To form 6-digit numbers, we consider 6 places.
$\square$
Since 0 cannot be placed on the extreme left because in this case the number will be of five digits. So the first place on L.H.S can be fined by five mivits (er cluding 0 ) in ${ }^{5} P_{1}=5$ ways.
After filling the first place, remar in five places darbe filled by the remaining five digits (including 0 ) in ${ }^{5} P_{5}=5!=120$ ways.
Total numbers are $5 \times \frac{1}{1} \times 20=500$
Now fixing 0 datas ace tiec required numbers are of the form.


Remaining five places can be filled by remaining five digits in ${ }^{5} P_{5}=5!=120$ ways.
Q. 11 How many 5 -digit multiples of 5 can be formed from the digits 2,3,5,7,9 when no digit is repeated.
Solution: Given digits are: 2,3,5,7,9
To form 5-digit numbers multiples of 5, we fix digit 5 at unit place. Then remaining to. 1 places can be filled by remaining four digits in ${ }^{4} P_{4}=4!=2$-ways.
Q. 12 In how many ways can 8 books including 2 on Englimid arcanged on a shelf in such a way that the English book are never together.
Solution:
Total number of books $=8$
Number of English books =2
We denote two Englis 0 prs by $E_{1}$ and $E_{2}$. When $E_{1}$ and $E_{2}$ are together in the form of $\mathrm{E}_{1} \mathrm{E}_{2}$ and $\mathrm{F}_{2} \mathrm{E}$. We conside: them as one book and their two places as one place.
Number of fuch peimutations $={ }^{7} P_{7}+{ }^{7} P_{7}=7!+7!=5040+5040=10080$
Total number of permutations of 8 books $={ }^{8} P_{8}=8!=40320$
Number of permutations, when English books are not together. $=40320-10080=30240$
Q. 13 Find the number of arrangements of 3 books on English and 5 books on Urdu for placing them on a shelf such that the books on the same subject are together?

## Solution:

Number of English books $=3$
Number of Urdu books $=5$
When English books are placed first and then Urdu books, then
Number of arrangements $={ }^{3} P_{3} \times{ }^{5} P_{5}=3!\times 5!6 \times 120=720$
When Urdu books are placed first and then English books, then
Number of arrangements $\quad={ }^{5} P_{5} \times{ }^{3} P_{3}=5!\times 3!=120 \times 6=720$
Total number of arrangements $=720+720=1440$
Q. 14 In how many ways can 5 boys and 4 girls be seated on a bench so that the girls and the boys occupy alternate seats?

## Solution:

Number of boys $=5$
Number of girls $=4$
Places on the bench for boys and girls be of the form.

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline B_{1} & G_{1} & B_{2} & G_{2} & B_{3} & G_{3} & B_{4} & G_{4} & B_{5} \\
\hline
\end{array}
$$

Now, 5 boys can be seated on a bench to occupy 5 seats in ${ }^{5} P_{5}=5!=120$ ways
4 girls can be seated on a bench to occupy 4 seats in ${ }^{4} P_{4}=4!=24$ ways
Total number of ways $=120 \times 24=2880$

## Permutation of things not all different:

Suppose that out of $\mathbf{n}$ things, $\mathbf{n}_{1}$ are alike (same) of ynt king and $n_{2}$ are all keo s.ecord kind and the rest of them are all \#ifierent.
Then total arrangements are

## Circular permutation:

The permutation of ings iticecan be represented by the points on a circle are called circular pernatation.
For $\mathbf{n}$ circula-objects. (Non-flipable) Number of arrangements $=(\mathbf{n}-\mathbf{1})$ !
For $\mathbf{n}$ circular objects (flipable) Number of arrangements $=\frac{(\mathbf{n}-\mathbf{1})!}{\mathbf{2}}$

## EXERCISE 7.3

Q. 1 How many arrangements of the letters of the following words, taken all together can be made:
(i) PAKPATTAN (GRW 2023)

## Solution:

Number of letters in
"PAKPATTAN" $=9$
In PAKPATTAN,
A is repeated 3 times
$P$ is repeated 20 ings
$T$ is repeate 2 tines
K and N comes only once.
Required number of Permutations
$=\binom{9}{3,2,2,1,1}$
$=\frac{9!}{3!2!2!1!1!}$
$=\frac{9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3!}{3!\cdot 2 \cdot 1 \cdot 2 \cdot 1 \cdot 1 \cdot 1}$
$=9 \cdot 8 \cdot 7 \cdot 6 \cdot 5=15120$
(ii) Number of letters in
"PAKISTAN" $=8$
(MTN 2021)
In PAKISTAN,
A is repeated 2 times
P comes only once
K comes only once
I comes only once
S comes only once
T comes only once
N comes only once
Required number of Permutations
$=\binom{8}{2,1,1,1,1,1,1}=\frac{8!}{2!1!1!1!1!1!1!}$
$=\frac{8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{2!1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1}=8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3$.
$=20160$ ways
(iii) Number of letters in "MATHEMATICS" $]=11$

In MATHEMATAS,
$M$ is repeater 2 times
A is repeated 2 times
T is repeated 2 times

H,E,I,C and S comes only once.
Required number of Permutations

$=\frac{11 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2!}{2!\cdot 2 \cdot 1 \cdot 2 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1}$
$=11 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 3$
$=4989600$ ways
(iv) Number of letters in
"ASSASSINATION" $=13$
In ASSASSINATION,
$S$ is repeated 4 times
A is repeated 3 times
I is repeated 2 times
N is repeated 2 times
T and O comes only once.
Required number of Permutations
$=\binom{13}{4,3,2,2,1,1}$
$=\frac{13!}{4!3!2!2!1!1!}$
$=\frac{13 \cdot 12 \cdot 11 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4!}{4!.3 \cdot 2 \cdot 1 \cdot 2 \cdot 1 \cdot 2 \cdot 1 \cdot 1 \cdot 1}$
$=13 \cdot 12 \cdot 11 \cdot 10 \cdot 9 \cdot 2 \cdot 7 \cdot 5$
$=10810800$ ways
Q. 2 How many Permutation of the letters of the word PANAMA can be made, if $P$ is to be the first letter in each arrangement? (MTN 202.2)
Solution:
If $P$ is the first leter of elach
arangenfert he mumber of rernainiles

## leters=:

A incepeated 5 ümes
Noid M comes only once.
Required number of Permutations
$=\binom{5}{3,1,1}=\frac{5!}{3!1!1!}$
$\frac{5 \cdot 4 \cdot 3!}{3!\cdot 1 \cdot 1}=5 \cdot 4=20$
Q. 3 How many arrangements of the letters of the word ATTACKED can be made, if each arrangement begins with C and ends with K ?
Solution:
If C is the first letter and K is the last letter of each arrangement, then
Number of remaining letters $=6$ A is repeated 2 times T is repeated 2 品 E and IP cones criy once.
Required nunlber of Permutations

$$
\begin{aligned}
& =\binom{6}{2,2,1,1} \\
& =\frac{6!}{2!2!1!1!} \\
& =\frac{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{2!\cdot 2 \cdot 1 \cdot 1 \cdot 1} \\
& =6 \cdot 5 \cdot 2 \cdot 3=180
\end{aligned}
$$

Q. 4 How many numbers greater than 1000,000 can be formed from the digits $0,2,2,2,3,4,4$ ? (RWP 2023)

## Solution:

Given digits are: $0,2,2,2,3,4,4$.
The numbers greater than 1000,000 are of the following forms:
(i)


In this case, we have to fill 6 places by $0,2,2,3,4,4$.
Number of digits $=6$
2 is repeated 2 times
4 is repeated 2 times
Each 0 and 3 comes only once.
Number of Permutations in this case

$$
=\binom{6}{2,2,1,1}=\frac{6!}{2!2!1!1!}=180
$$

(ii)

In this case, we have to fill óplaces by $0,2,2,2,4,4$.
Numbero dig $\mathrm{t}:=0$
2 is reperied 3 times
4 is repeated 2 times
0 comes only once.

Number of Permutations in this case
$=\binom{6}{3,2,1}=\frac{6!}{3!2!1!}$


In this case, we have to fill 6 places
by $0,2,2,2,3,4$
Number of digits $=6$
2 is repeated 3 times
3 comes only once
0 comes only once
4 comes only once.
Number of Permutations in this case
$=\binom{6}{3,1,1,1}$
$=\frac{6!}{3!1!1!1!}$
$=\frac{6 \cdot 5 \cdot 4 \cdot 3!}{3!1 \cdot 1 \cdot 1}=6 \cdot 5 \cdot 4=120$
Hence, the required numbers greater than 1000,000 are
$=180+60+120=360$
Q. 5 How many 6-digit numbers can be formed from the digits $2,2,3,3,4,4$ ? How many of them will lie between 400,000 and 430,000?

## Solution:

Given digits are: $2,2,3,3,4,4$.
Number of digits $=6$
2 is repeated 2 times
3 is repeared 2 times
4 is reneand d 2 tines.
Requiyec nu nber of Fermatations

$=\left(\int_{2,2,2}^{6}\right)$

$$
\begin{aligned}
& =\frac{6!}{2!2!2!} \\
& =\frac{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2!}{2 \cdot 1 \cdot 2 \cdot 1 \cdot 2!} \\
& =6 \cdot 5 \cdot 3=90
\end{aligned}
$$

The numbers lying between 400,000 and 430,000 are of the form


In this case, we have to fill four places by $2,3,3,4$.
Number of digits $=4$
3 is repeated 2 times
Each 2 and 4 comes only once.
Required number of Permetaíons

$=12$
Q. 611 members of a club form 4 committees of $3,4,2,2$ members so that no member is a member of more than one committee. Find the number of committees.

## Solution:

Total members of a club $=11$
First committee has 3 members
Second commitlee bas 4 nethbers
Third comnitee has 2 nembers Fouth comrnitlee has 2 mombers 1.equired nu mber ố committees $\left.\begin{array}{c}11 \\ 3,4,2,2\end{array}\right)$
$=\frac{11!}{3!4!2!2!}$
$=\frac{11 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4!}{3 \cdot 2 \cdot 1 \cdot 4!\cdot 2 \cdot 1 \cdot 2 \cdot 1}$
$=11 \cdot 10 \cdot 9 \cdot 2 \cdot 7 \cdot 5$
$=69300$
Q. 7 The D.C.Os of 11 districts meet to discuss the law and order situation in their districts. In how many ways can they be seated at a round table, when two Particular D.C.Os insist on sitting together?
Solution: Since two Particular D.C.Os insist on sitting together, so consider them as one man for seating. The total number of men now are 10 , and they can be seated at a round table in 9! ways. Also, two Particular D.C.Os can occupy their seats in 2 ! ways. Therefore, the total number of ways are $9!\times 2!=725760$
Q. 8 The Governor of the Punjab calls a meeting of 12 officers. In how many ways can they be seated at a round table?
Solution: $\quad$ Number of officers $=12$
Number of ways that they can be seated at a round table, (fixing one seat), are $=11!=11 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=39916800$
Q. 9 Fatima invites 14 people to a dinner. There are 9 males and 5 females who are seated at two different tables so that guests of one sex sit at one round table and the guests of the other sex at the second round table. Find the number of ways in whichi all guests are seated.
Solution: $\quad$ Number of ways that 9 males can be seated $\pi, ~ r o u n d ~ a b l z=8!=40320$ vals. 5 females can be seated at a round table in $4!=24$ way). Both males and females can be eated at arourd tat $=40320 \times 24=06.680$ ways.
Q. 10 Find the number of ways in vich 5 mer and 5 woner can be seated at a round table in such a way that no persons of the some sex sit together.

## Solution: $\quad$ Number of mer $=5$ <br> Numberd homer $=5$

Number of ways the 5 men be seated a round table (fixing one seat) $=4!=24$ ways. Number of ways the 5 women be seated, each between two men $=5!=120$ ways. Required number of ways $=24 \times 120=2880$ ways.

## Q. 11 In how many ways can 4 keys be arranged on a circular key ring?

(GRW 2021,LHR 2022, D.G.K 2023)
Solution: $\quad$ Number of keys $=4$
By fixing one of the keys, the number of arrangements of the remaining 3 keys $=3 \cdot=6$
Among these arrangements, half are the same.
Required number of arrangements $=\frac{6}{2}=3$ ways

Q. 12 How many necklaces can be mate from The dis of different colours?

## Solution:

Number of beads $=6$
By fixing one of thomas, the number of arrangements of the remaining beads $=5!=120$ 坟 5
Among thepelarrangenents, half are the same.
Required number of necklaces $=\frac{120}{2}=60$

## Note:

See Example \# 3 Page \# 238,
(BWP 2022)

## Combinations:

The number of $\mathbf{n}$ different objects taken $\mathbf{r}$ at a time is denoted by ${ }^{\mathbf{n}} \mathbf{C}_{\mathbf{r}}$ or $\binom{\mathbf{n}}{\mathbf{r}}$ or $\mathbf{C}(\mathbf{n}, \mathbf{r})$ and is given by ${ }^{\mathbf{n}} \mathbf{C}_{\mathbf{r}}=\frac{\mathbf{n !}}{\mathbf{r !}(\mathbf{n}-\mathbf{r})!}$ a

## Complementary Combination:

(GRW 2023, SWL 23 BWP 2022, D.G.K 2022)
Prove that ${ }^{n} \mathrm{C}_{\mathrm{r}}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}-\mathrm{r}}$
Proof:

$$
\begin{aligned}
{ }^{n} C_{n-r} & =\frac{n!}{(n-r)!(n-n+r)!} \\
& =\frac{n!}{(n-r)!r!} \\
& { }^{n} C_{n-r}={ }^{n} C_{r}
\end{aligned}
$$

Q. 1 Evaluate the following:
(i) ${ }^{12} \mathrm{C}_{3}$
(ii) ${ }^{20} \mathrm{C}_{17}$
(iii) ${ }^{n} \mathrm{C}_{4}$

## Solution:

(i) ${ }^{12} C_{3}=\frac{12!}{(12-3)!.3!} \because{ }^{n} C_{r}=\frac{n!}{(n-r)!r}$
(iii) ${ }^{n} \mathrm{C}_{4}$


## Corollary:

(i) If $r=n$ then

$$
{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}}=\frac{\mathrm{n}!}{\mathrm{n}!(\mathrm{n}-\mathrm{n})!}=\frac{\mathrm{n}!}{\mathrm{n}!0!}=1
$$

(ii) If $\mathrm{r}=0$ then

$$
{ }^{\mathrm{n}} \mathrm{C}_{0}=\frac{\mathrm{n}!}{0!(\mathrm{n}-0)!}=\frac{\mathrm{n}!}{0!\mathrm{n}!}=1
$$

## EXERCISE 7.4

Hence ${ }^{12} \mathrm{C}_{3}=220$
(ii)


(iii) ${ }^{n} C_{4}=\frac{n!}{(n-4)!4!}$
$=\frac{n \cdot(n-1) \cdot(n-2) \cdot(n-3) \cdot(n-4)!}{(n-4)!4!}$
$=\frac{n \cdot(n-1) \cdot(n-2) \cdot(n-3)}{4!}$
Hence ${ }^{\mathrm{n}} \mathrm{C}_{4}=\frac{\mathrm{n} \cdot(\mathrm{n}-1) \cdot(\mathrm{n}-2) \cdot(\mathrm{n}-\mathrm{p})}{4!}$

(i) ${ }^{n} C_{5}=\sqrt[n]{x}$
(ii) ${ }^{n} C_{10}=\frac{12 \times 11}{2!}$
(iii) ${ }^{n} C_{12}={ }^{n} C_{6}$

## Solution:

(i) $\quad{ }^{n} C_{5}={ }^{n} C_{4}$
(GRW 2022 MTN 2023)
$\Rightarrow \quad{ }^{n} C_{n-5}={ }^{n} C_{4} \quad \because{ }^{n} C_{r}={ }^{n} C_{n-r}$
$\Rightarrow \quad n-5=4$
$n=9$
(ii) ${ }^{n} C_{10}=\frac{12 \times 11}{2!}$
(GRW 2021 RWP 2023, FSD 2023)
$=\frac{12 \times 11 \times 10!}{2!\times 10!}$
$=\frac{12!}{2!\times 10!}$
$=\frac{12!}{(12-10)!10!}$
$\Rightarrow{ }^{n} C_{10}={ }^{12} C_{10}$
$\Rightarrow n=12$
(iii) ${ }^{n} C_{12}={ }^{n} C_{6}$

Note: See Example \# 1 Page \# 241,
(BWD 2.22: ATTM 26 2.3)
${ }^{n} C_{n-12}=\sqrt{n} \cdot A_{n}=c_{n-r}$
$\Rightarrow \quad n-12=6$
$\Rightarrow \quad n=18$
Q. 3 Find the values of $n$ and $r$, when
(i) ${ }^{n} C_{r}=35$ and ${ }^{n} P_{r}=210$
(GRW 2023)
(ii)
${ }^{n-1} C_{r-1}: Y_{r}:{ }^{n+1} C_{r-1}=3: 6 \cdot 1$
Solution:
i)
$=35,{ }^{n} 1+=210$

$$
\begin{equation*}
\frac{r v}{r-r)!r!}=35 \tag{i}
\end{equation*}
$$

$\frac{n!}{(n-r)!}=210$
Dividing equation (i) by equation (ii), we have

$$
\begin{aligned}
& \frac{n!}{\frac{n-r)!r!}{n!}}=\frac{35}{210} \\
& \frac{n!}{(n-r)!} \\
& \frac{1}{(n-r)!r!} \times \frac{(n-r)!}{n!}=\frac{35}{210} \\
& r! \\
& 6=r! \\
& 3!=r! \\
& \Rightarrow r=3
\end{aligned}
$$

Putting $r=3$ in eq (2), we have
$\frac{n!}{(n-3)!}=210$
$\frac{n \cdot(n-1) \cdot(n-2) \cdot(n-3)!}{(n-3)!}=210$
$\Rightarrow n \cdot(n-1) \cdot(n-2)=7 \cdot 6 \cdot 5$
$\Rightarrow n=7$
Hence $r=3$ and $n=7$
(ii)


$$
\begin{align*}
& { }^{n-1} d_{r-1}:{ }^{n} C_{r}=3: 6  \tag{i}\\
& { }^{n} C_{r}:{ }^{n+1} C_{r+1}=6: 11 \tag{ii}
\end{align*}
$$

From equation (i), we have
$\frac{(n-1)!}{(n-1-r+1)!(r-1)!} \div \frac{n!}{(n-r)!r!}=3 \div 6$

$$
\begin{aligned}
& \frac{(n-1)!}{(n-r)!(r-1)!} \times \frac{(n-r)!r!}{n!}=\frac{3}{6} \\
& \frac{(n-1)!}{(n-r)!\cdot(r-1)!} \times \frac{(n-r)!\cdot r \cdot(r-1)!}{n \cdot(n-1)!}=\frac{1}{2} \\
& \Rightarrow \frac{r}{n}=\frac{1}{2}
\end{aligned}
$$

or $2 r=n$
or $n=2 r$
(iii)

From equation (ii) we
$\frac{n!}{(n-r)!} \cdot \sqrt[r]{n+1-n)!(r+1)!}=6 \div 11$
$\frac{n!}{(n-r)!r!} \times \frac{(n-r)!(r+1)!}{(n+1)!}=\frac{6}{11}$
$\frac{n!}{(n-r)!r!} \times \frac{(n-r)!\cdot(r+1) \cdot(r!)}{(n+1) \cdot n!}=\frac{6}{11}$
$\frac{r+1}{n+1}=\frac{6}{11}$
$11 \cdot(r+1)=6 \cdot(n+1)$
$11 r+11=6 n+6$
$11 r-6 n=-5$
Putting $n=2 r$ in equation (iv)
$11 r-6(2 r)=-5$
$11 r-12 r=-5$
$-r=-5$
$\Rightarrow r=5$
Putting $r=5$ in equation (iii)
$n=2 r=2(5)=10$
$\Rightarrow n=10$
Q. 4 How many (a) diagonals and (b) triangles can be formed by joining the vertices of the polygon having:
(i) 5 sides
(SWL 2023)
(ii) 8 sides
(SWL 2022, SGD 2022, RWP 2022)
(iii) 12 sides (GRW 2022, RWP 202)

## Solution:

(i) 5 sides
(a) Number of vertices off 5 sided polys.n 15
boining ary no verices, we haye a ine segment.
Number of line segments

(b) Number of vertices of a 8 sided polygon $=8$
Joining any three vertices, we have a triangle.
Number of triangles

$$
\begin{aligned}
& ={ }^{8} C_{3}=\frac{8!}{(8-3)!3!} \\
& =\frac{8!}{5!3!} \\
& =\frac{7}{5!\cdot 3 \cdot 2 \cdot 1} \\
& =8 \cdot 7=56
\end{aligned}
$$

(iii) 12 sides
(a) Number of vertices of a 12 sided polygon $=12$
Joining any two vertices, we have a line segment.
Number of line segments

$$
\begin{aligned}
& ={ }^{12} C_{2}=\frac{12!}{(12-2)!2!} \\
& =\frac{12!}{10!2!} \\
& =\frac{12 \cdot 11 \cdot 10!}{10!\cdot 2 \cdot 1} \\
& =6 \cdot 11=66
\end{aligned}
$$

But these line segments include 12 sides of the figure, which are not the diagonals.
Number of diagonals $=66-12=54$.
(b) Number of vertices of a 12 sided polygon $=12$
Joining any three vertices, have a triangle
Number of triangles

Q. 5 The members of a club are 12 boys and 8 girls. In how many ways can a committee of? boys and 2 ghis he forned?
Solution:
Committces of 3 bors out of 12 boys and 2 gitis out of 8 girls are to be formed.

Number of such committees are
$={ }^{12} C_{3} \times{ }^{8} C_{2}$
$=\frac{12!}{(12-3)!3!} \times \frac{8!}{(8-2)!2!}$
$=\frac{12!}{9!\cdot 3!} \times \frac{8!}{6!2!}$
$=\frac{12 \cdot 11 \cdot 10 \cdot 9!}{9!\cdot 3 \cdot 2 \cdot 1} \times \frac{8 \cdot 7 \cdot 6!}{6!2 \cdot 1}$
$=2 \cdot 11 \cdot 10 \times 4 \cdot 7=220 \times 28=6160$
Q. 6 How many committees of 5 members can be chosen from a group of 8 persons when each committee must include 2 particular persons?

## Solution:

Since each committee must include 2 particular persons, so remaining 3 members are to be chosen out of

Q. 7 In how many ways can a hockey team of 11 players be selected out of 15 players? How many of them will include a particular player?

## Solution:

A hockey team of 11 players out of 15 players is to be selected.
Number of teams

$$
\begin{aligned}
&=\frac{14 \cdot 13 \cdot 12 \cdot 11 \cdot 10!}{4 \cdot 3 \cdot 2 \cdot 1 \cdot 10!} \\
&=\frac{7 \cdot 13 \cdot 11}{} \\
& \text { Q.8 } \\
& \text { Sontict }
\end{aligned}
$$

$={ }^{15} C_{11}=\frac{15!}{(15-11)^{!1} 1^{\prime}}$
$=\frac{15!}{4!11!}$
$=\frac{15 \cdot 14 \cdot 13 \cdot 12 \cdot 11!}{4 \cdot 3 \cdot 2 \cdot 1 \cdot 11!}$
$15 \cdot 7 \cdot 13=1365$
Since each team must include a particular player, so remaining 10 players are to be selected out of remaining 14 players.
Number of such teams
$={ }^{14} C_{10}=\frac{14!}{(14-10)!10!}$
$=\frac{14!}{4!10!}$
Q. 9 There are 8 men and 10 women members of a club. How many committees of Seven can be formed, having:
(i) 4 women
(ii) at the most 4 women
(iii) at least 4 women?

Solution: Total number of men $=8$

$$
\text { Total number of women } \quad=10
$$

(i) 4 women:

We have to form combinations of 4 women out of 10 and 3 (men out
Number of such committees are

$$
\begin{aligned}
={ }^{10} C_{4} \times 8 C_{3} & =\frac{10!}{10-4) \cdot 4!}-\frac{10}{10!} \\
& =\frac{-1}{6!4!} \times \frac{18!}{5!3!} \\
& =\frac{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6!}{6!\cdot 4 \cdot 3 \cdot 2 \cdot 1} \times \frac{8 \cdot 7 \cdot 6 \cdot 5!}{5!\cdot 3 \cdot 2 \cdot 1} \\
& =10 \cdot 3 \cdot 7 \times 8 \cdot 7=210 \times 56=11760
\end{aligned}
$$

$$
\sqrt[\sim]{\sqrt{ } \sqrt{ } \begin{aligned}
& =-\frac{1-!}{6!4!} \times \frac{8!}{5!3!} \\
& =\frac{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6!}{6!\cdot 4 \cdot 3 \cdot 2 \cdot 1} \times
\end{aligned}}
$$

(ii) At the most 4 women:

In this case, womens are less than or equal to 4 , which implies the following possibilities. $(0 W, 7 M)(1 W, 6 M),(2 W, 5 M),(3 W, 4 M),(4 W, 3 M)$
Number of such committees are:

$=280+2520+8400-1760+8-22958$
(iii) At 1eas. 4 romen.

In this case, womens are greater than or equal to 4 , which implies the following possibilities.
$(4 W, 3 M),(5 W, 2 M),(6 W, 1 M),(7 W, 0 M)$
Number of such committees are:
$={ }^{10} C_{4} \times{ }^{8} C_{3}+{ }^{10} C_{5} \times{ }^{8} C_{2}+{ }^{10} C_{6} \times{ }^{8} C_{1}+{ }^{10} C_{7} \times{ }^{8} C_{0}$
$={ }^{10} C_{4} \times{ }^{8} C_{3}+{ }^{10} C_{5} \times{ }^{8} C_{2}+{ }^{10} C_{4} \times{ }^{8} C_{1}+{ }^{10} C_{3}$ $\therefore{ }^{n} C_{r}={ }^{n} C_{n-r}$
$=\frac{10 \cdot 9 \cdot 8 \cdot 7}{4 \cdot 3 \cdot 2 \cdot 1} \times \frac{8 \cdot 7 \cdot 6}{3 \cdot 2 \cdot 1}+\frac{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1} \times \frac{8 \cdot 7}{2 \cdot 1}+\frac{10 \cdot 9 \cdot 8 \cdot 7}{4 \cdot 3 \cdot 2 \cdot 1} \times \frac{8}{1}+\frac{10 \cdot 9 \cdot 8}{3 \cdot 2 \cdot 1}$
$=11760+7056+1680+120=20616$
Q. 10 Prove that ${ }^{n} C_{r}+{ }^{n} C_{r-1}={ }^{n+1} C_{r}$
(LHR 2022, MTN 2022)

## Proof:

$$
\begin{aligned}
& \text { L.H.S: } \\
& { }^{n} C_{r}+{ }^{n} C_{r-1} \\
& =\frac{n!}{r!(n-r)!}+\frac{n!}{(r-1)![n-(r-1)]!} \\
& =\frac{n!}{r .(r-1)!(n-r)!}+\frac{n!}{(r-1)!(n-r+1)!} \\
& =\frac{n!}{r \cdot(r-1)!(n-r)!}+\frac{n!}{(r-1)!(n-r+1)(n-r)!} \\
& =\frac{n!}{(r-1)!(n-r)!}\left[\frac{1}{r}+\frac{1}{n-r+1}\right] \\
& =\frac{n!}{(r-1)!(n-r)!}\left[\frac{n-r+1+r}{r(n-r+1)}\right] \\
& =\frac{n!}{(r-1)!(n-r)}\left[\frac{n+1}{r r n}\right]
\end{aligned}
$$



$$
\begin{aligned}
& =\frac{(n+1) n!}{r(r-1)!(n-r+1)!(n-r)!} \\
& =\frac{(n+1) n!}{r!(n-r+1)!} \\
& =\frac{(n+1)!}{r!((n+1)-r)!} \\
& ={ }^{n+1} C_{r}=\text { R.H.S } \\
& \text { Hence L.H.S }=\text { R.H.S }
\end{aligned}
$$

Note: See Exampl $\rightarrow 3$

## Sample Space:

The set consisting of all possible outcomes of a given experiment is called the sample space.
(RWP 2021, LHR 2022)

## Event:

(RWP 2021, LHR 2022)
A particular outcome is called an event and usually denoted by $\mathbf{E}$.
e.g. In tossing a fair coin, the possible outcomes are $\operatorname{Head}(\mathbf{H})$ or a Tail $(\mathbf{T})$ and it is written as $\mathbf{S}=\{\mathbf{H}, \mathbf{T}\}$

## Mutually Exclusive Events:

Two events are mutually exclusivp quents if they caboo dccur together if we toss a balanced coin so occurrence of head ardoccurrence of tail are mutually exclusive events.

## Equally Likely Events:

If two events $\mathbf{A}$ and $\mathbf{B}$ occur if an exper mee t , then $\mathbf{A}$ and $\mathbf{B}$ are said to be equally likely events if each one of tirpinas equal number of chances of occurrence.

## Probability:

Probabilit is the numerical evaluation of a chance that a particular event would occur.
The probability of the occurrence of the event $\mathbf{E}$ is denoted by $\mathbf{P}(\mathbf{E})$
Such that: $\mathbf{P}(E)=\frac{\mathbf{n}(\mathbf{E})}{\mathbf{n}(\mathbf{S})}=\frac{\text { number of ways in which event occurs }}{\text { number of the elements of the sample space }}$

## Note:

(i) $0 \leq P(E) \leq 1$
(ii) If $\mathbf{P}(\mathbf{E})=\mathbf{0}$, event $\mathbf{E}$ cannot occur and $\mathbf{E}$ is called an impossible event.
(iii) If $\mathbf{P}(\mathbf{E})=\mathbf{1}$, event $\mathbf{E}$ is sure to occur and $\mathbf{E}$ is called a certain event.

## Probability That an Event Does Not Occur:

If a sample space $\mathbf{S}$ is such that $\mathbf{n}(\mathbf{S})=\mathbf{N}$ and out of the $\mathbf{N}$ equally likely events an event
$\mathbf{E}$ occurs $\mathbf{R}$ times, then, evidently, $\mathbf{E}$ does not occur $\mathbf{N}-\mathbf{R}$ times.
The non-occurrence of the event $\mathbf{E}$ is denoted as $\overline{\mathbf{E}}$.
Now

$$
\begin{aligned}
& P(E)=\frac{n(E)}{n(S)}=\frac{R}{N} \\
& P(\bar{E})=\frac{n(\bar{E})}{n(S)}=\frac{N-R}{N}=\frac{N}{N}-\frac{R}{N}=1-\frac{R}{N} \\
& \mathbf{P}(\overline{\mathbf{E}})=\mathbf{1}-\mathbf{P}(\mathbf{E}) .
\end{aligned}
$$

and

## EXERCISE 7.5

For the following experiments, find the Probability in each case:
Q. 1 Experiment:

From a box containing orange flavoured sweets, Bilal takes out one sweet without looking.
Events Happening:
(i) The sweet is orangeflavoured.
(ii)


Total possible outcomes $=a S S=1$ Let A be the even that the wee is prenge-t ancured.

- ince the bpx costains just orangeflavpures sweets, so all the possible wutcomes are favourable i.e.

$$
n(A)=1
$$

The required Probability is

## Solution:

Mavared.
(i) The sweet is orangeflavoured:

$$
P(A)=\frac{n(A)}{n(S)}=\frac{1}{1}=1
$$

(ii) The sweet is lemonflavoured:
Total Possible outcomes $=n(S)=1$
Let $B$ the event that the sweet is lemon-flavoured.
Since the box contains just oramgflavoured sweets, so all the pospith, outcomes are not favourab'e, i.e. $n(B)=0$
The requipen Probability is
$P(B)=\frac{n(B)}{n(S)}=\frac{0}{1}=0$

## Q. 2 Experiment:

Pakistan and India Play a cricket match.
The result is:
Events Happening:
(i) Pakistan wins
(ii) India does not lose.

## Solution:

Since there are three Possible results of the match, win, lose or the match is tied. So, the total possible outcomes are $n(S)=3$
(i) Pakistan wins:

Let A be the event that Pakistan wins, then $n(A)=1$
The required Probability that Pakistan wins the match is
$P(A)=\frac{n(A)}{n(S)}=\frac{1}{3}$
(ii) India does not lose:

Let $B$ be the event that India does, act lose the match, then $n(B)=2$
The required Droosbri ity kinat Endia

$P(B)=\frac{n(B)}{n(S)}=\frac{2}{3}$

## Q. 3 Experiment:

There are 5 green and 3 red balls in a box, one ball is taken out.
Events happentis:
(i) The ball is green
(GRW O:21)
(ii) The alli) red.
(FSD 2023)
Tolu ion Number of green balls $=5$
inumber of red balls $=3$
Total number of balls $=n(S)=8$
(i) The ball is green.

Let A be the event that the ball is green, then $n(A)=5$
The required Probability that the ball is green is
$P(A)=\frac{n(A)}{n(S)}=\frac{5}{8}$
(ii) The ball is red.

Let $B$ be the event that the ball is red, then $n(B)=3$
The required Probability that the ball is red, is
$P(B)=\frac{n(B)}{n(S)}=\frac{3}{8}$

## Q. 4 Experiment:

A fair coin is tossed three times. It shows Events Happening:
(i) One tail
(ii) At least one head

Solution: When a fair coin is tossed three times, the set of possible outcomes is
$S=\{H H H, T H H, H T H, H H T, T T H, T H T, H T T, T T T\}$
Total possible
$n(S)=8$
(i) One taii.

Let A be the even thet the coili thows one tail, then the set of faverable outomes is $J_{A}=\{H H T, H T H, T H H\}$ i.e.

$$
n(A)=3
$$

The required Probability that the coin shows one tail is
$P(A)=\frac{n(A)}{n(S)}=\frac{3}{8}$
(ii) At least one head:

Let B be the event that the coin shows at least one head, then the set of favourable outcomes is
$B=\{H H H, T H H, \mathrm{HTH}, \mathrm{HHT}, \mathrm{TTH}, \mathrm{THT}, \mathrm{HTT}\}$ i.e.
$n(B)=7$
The required Probability that the coin shows at leas orit hadedis:
$P(B)=\frac{n(1)}{n(S)}=\frac{\lambda}{8}$

## Q. 5 Experiment:

A die is rolled. The top shows,
Events Happening:
(i) 3 or 4 dots
(ii) dots less than 5

Solution:
The set of Possible outcomes is $S=\{1,2,3,4,5,6\}$, then $n(S)=6$
(i) 3 or 4 dots:

If $A$ is the event that the top shows 3 or 4 dots, then set of favorable out comes is
$A=\{3,4\}$
i.e $n(A)=2$
$P(A)=\frac{n(A)}{n(S)}=\frac{2}{6}=\frac{1}{3}$
(ii) Dots less than 5:

If $B$ is the event that the top shows dots less than 5, then set of faverable out comes is
$B=\{1,2,3,4\}$
i.e $n(\beta)=1$
$P(B)=\frac{n(B)}{n(S)}=\frac{4}{6}=\frac{2}{3}$

## Q. 6 Experiment:

From a box containing slips numbered $1,2,3,4,5$ one slip is picked up. Events Hiappening The rumber on the slin is a
(ii) The number on the slip is a nutiple of 3.
Sol 11 ina:
The set of possible outcomes is $\mathrm{S}=\{1,2,3,4,5\}$, then $\mathrm{n}(\mathrm{S})=5$
(i) The number on the slip is a prime number:
If A is the event that the number on the slip is a prime number i.e. $A=\{2,3,5\}$ then $n(A)=3$
So, the Probability of A is
$P(A)=\frac{n(A)}{n(S)}=\frac{3}{5}$
(ii) The number on the slip is a multiple of 3 :
If $B$ is the event that the number on the slip is a multiple of 3 i.e. $B=\{3\}$ then $n(B)=1$
So, the Probability of B is

$$
P(B)=\frac{n(B)}{n(S)}=\frac{1}{5}
$$

## Q. 7 Experiment:

Two dice, one red and the other blue, are rolled simultaneously. The numbers of dots on the tops are added. The total of the two scores is
Events Happening:
(i) $5 \quad$ (ii) 7

Solution:
When wo dice are folles, the fer of possibie ort Orms i.s. $S=(1,1),(1,2),(2,(2),(1,4),(1,5),(1,6)$,
$(2,1),(2,2),(2,3),(2,4),(2,5),(2,6)$,
(3,1),(3,2), (3,3), (3,4), (3,5), (3,6),
$(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)$,
(5,1),(5,2), (5,3), (5,4), (5,5), (5,6),
(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\}
Then $n(S)=36$
(i) Let A be the event that the total of two scores is 5, then set of favorable out comes is
i.e. $\quad A=\{(1,4),(2,3),(3,2),(4,1)\}$,
then $n(A)=4$
Thus, the required Probability is
$P(A)=\frac{n(A)}{n(S)}=\frac{4}{36}=\frac{1}{9}$
(ii) Let $B$ be the even $t$ at th. total of two proses is $\lambda$ ther ert of favorabieppaconnes io
i.e.
$B=\{(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)\}$
then $n(B)=6$
Thus the required probability is:
$P(B)=\frac{n(B)}{n(S)}=\frac{6}{36}=\frac{1}{6}$
(iii) Let C be the event that the total of two scores is 11 , then set of favorable out comes is
i.e. $C=\{(5,6),(6,5)\}$
then $n(C)=2$
Thus the required Probability is

$$
P(C)=\frac{n(C)}{n(S)}=\frac{2}{36}=\frac{1}{18}
$$

## Q. 8 Experiment:

A bag contains 40 balls out of which 5 are green, 15 are black and the remaining are yellow. A ball is taken out of the bag.
Events Happening:
(i) The ball is black
(ii) The ball is green
(iii) The ball is not green.

Solution: Total number of
$=40 \Rightarrow n(S)=40$
Number of green balls $=5$
Number of black balls $=15$
Number
$=40-15$
(i) The tal is black:

Let A be the event that the ball is black, then $n(A)=15$

The Probability that the black ball comes is
$P(A)=\frac{n(A)}{\left.\frac{n}{n} S\right)}=\frac{15}{10}=\frac{3}{9}$
(ii) Me ball is areen:

Let B/be the event that the ball is \&reen the $\quad j(B)=5$
The Provability that the green ball comes is

$$
P(B)=\frac{n(B)}{n(S)}=\frac{5}{40}=\frac{1}{8}
$$

(iii) The ball is not green:

Let C be the event that the ball is not green, then

$$
P(C)=P(\bar{B})=1-P(B)=1-\frac{1}{8}=\frac{7}{8}
$$

## Q. 9 Experiment:

One chit out of 30 containing the names of 30 students of a class of 18 boys and 12 girls is taken out at random, for nomination as the monitor of the class.
Events Happening.
(i) The monitor is a boy.
(ii) The monitor is a girl.

Solution: $\quad$ Total number of boys $=18$
Total number of girls $=12$
Total number of students $=18+12=30$
Also, total number in sample space $=n(S)=30$
(i) The monitor is a boy:

Let A be the event that the monitor is a boy, then $n(A)=18$
Therefore, the poobability that tige monito (1s) a bov is
$P\left(A /=F \cdot \frac{\pi}{r(S)}=\frac{19}{20}=\frac{3}{5}=\right.$
(i) $\begin{aligned} & \text { nomior is a girl: }\end{aligned}$

1) at $B$ be the event that the monitor is a girl, then $n(B)=12$
Therefore, the Probability that the monitor is a girl, is

$$
P(B)=\frac{n(B)}{n(S)}=\frac{12}{30}=\frac{2}{5}
$$

Q. 10 Experiment:

A coin is tossed four times. The tops show
Event Happening:
(i) All heads
(ii) 2 heads and 2 tails

Solution: When a coin is tossed folr times, then the set of possinle outcomes is

(i) All heads:

Let A be the event that the tops shows all heads, then the set of favorable outcomes, that is $\mathrm{A}=\{\mathrm{HHHH}\}$, so $n(A)=1$

Therefore, the Probability that the tops shows all heads is:

$$
P(A)=\frac{n(A)}{n(S)}=\frac{1}{16}
$$

(ii) 2. ead and ta tils:

Let $B /$ be the even tiat the tops hows 2 heads and 2 tails, then the sit fí possiole favourable outcomes S

Then $n(B)=6$
Therefore, the Probability that the tops shows 2 heads and 2 tails is:

$$
P(B)=\frac{n(B)}{n(S)}=\frac{6}{16}=\frac{3}{8}
$$

## EXERCISE 7.6

Q. 1 A fair coin is tossed 30 times, the result of which is tabulated below. Study the table and answer the questions given below the table.

| Event | Tally Marks | Frequency |
| :---: | :---: | :---: |
| Head | HI III IIII | $\mathbf{1 4}$ |
| Tail | HI IHI WII I | $\mathbf{1 6}$ |

(i) How many times does 'head' appear?
(ii) How many times does 'tail' appear?
(iii) Estimate the Probability of the appearance of head?
(iv) Estimate the Probability of the appearance of tail?

## Solution:

(i) Heads appear in experiment are 14 times.
(ii) Tails appear in experiment are 16 times.
(iii) If A is the event that head appears, then $n(A J)=14$

Thus, the Probability of the event $A \cdot$ is
$P(A)=\frac{n(A)}{n(S)}=\frac{14}{30}=\frac{7}{15}$
(iv) If B is he anfre thithe tail appears, then $n(B)=16$. Thus, the Probability of the

$$
P(B)=\frac{n(B)}{n(S)}=\frac{16}{30}=\frac{8}{15}
$$

Q. 2 A die is tossed 100 times. The result is tabulated below. Study the table and answer the questions given below the table.

(i) How many times do? do tapera
(ii) How many tir lescios dols appear?
(iii) How mavy tres does an even number of dots appear?
(iv) How many times does a prime number of dots appear?
(v) Find the probability of each one of the above cases.

## Solution:

(i) Dots 3 appear 20 times.
(ii) Dots 5 appear 15 times.
(iii) Even dots are 2,4 and 6, appear 17, 18 and 16 times respectively.

So, the total number of even dots are $17+18+16=51$ times.
(iv) Prime numbers are 2,3 and 5 , so the total number of prime dots appearing are $17+20+15=52$ times.
(v) If A is the event that 3 dots appear, then $P(A)=\frac{n(A)}{n(S)}=\frac{20}{100}=\frac{1}{5}$

If $B$ is the event that 5 dots appear, then $P(B)=\frac{n(B)}{n(S)}=\frac{15}{100}=\frac{3}{20}$
If C is the event that the even number of dots appear, then $P(C)=\frac{n(C)}{n(S)}=\frac{51}{100}$
If D is the event that the even number of dots appear, then $P(D)=\frac{n(D)}{n(S)}=\frac{52}{100}=\frac{13}{25}$
Q. 3 The eggs supplied by a poultry farm during a week broke during transit as follows:
$\mathbf{1 \%}, \mathbf{2 \%}, 1 \frac{1}{2} \%, \frac{1}{2} \%, 1 \%, 2 \%, 1 \%$, Find the Probability of the eggs that broke in a day. Calculate the number of eggs that will be broken in transmitting the following number of eggs:
(i) 7,000
(ii) $\mathbf{8 , 4 0 0}$
(iii) $\mathbf{1 0 , 5 0 0}$

Solution: For a week
$1+2+\frac{3}{2}+\frac{1}{2}+1+2+1=3+\frac{4}{2}+4=3+2+4=9$
Number of eggs that are broken Ba dav $=\sigma_{0}$
Number of eggs that are broke out or 70 (en eggs $=7000 \times \frac{9}{7} \times \frac{1}{100}=90$
Number of Res dist .e broken out of 8400 eggs $=8400 \times \frac{9}{7} \times \frac{1}{100}=108$
Number of eggs that are broken out of 10500 eggs $=10500 \times \frac{9}{7} \times \frac{1}{100}=135$

## Addition of Probabilities:

Let $\boldsymbol{A}$ and $\boldsymbol{B}$ are any two events then probability of occurrence of event $\boldsymbol{A}$ or event $\boldsymbol{B}$ is given by

$$
\mathbf{P}(\mathbf{A} \cup \mathbf{B})=\mathbf{P}(\mathbf{A})+\mathbf{P}(\mathbf{B})-\mathbf{P}(\mathbf{A} \cap B)
$$

When $\boldsymbol{A}$ and $\boldsymbol{B}$ are disjoint events then it becomes
$\mathbf{P}(\mathbf{A} \cup \mathbf{B})=\mathbf{P}(\mathbf{A})+\mathbf{P}(\mathbf{B})$

## 

 ExictsxQ. 1 If sample space $=\{1,2,3, \ldots, 9\}$,

Event $A=\{2,4,6,8\}$ and

(ERW 2023, MTN 2023)

## Solution:

Sample Space $=S=\{1,2,3, \ldots, 9\}$
$\Rightarrow n(S)=9$
Event $\mathrm{A}=\{2,4,6,8\} \Rightarrow n(A)=4$
Event $\mathrm{B}=\{1,3,5\} \Rightarrow n(B)=3$
$P(A)=\frac{n(A)}{n(S)}=\frac{4}{9}$ and $P(B)=\frac{n(B)}{n(S)}=\frac{3}{9}=\frac{1}{3}$
$A$ and $B$ are disjoint sets
So $P(A \cup B)=P(A)+P(B)$
$=\frac{4}{9}+\frac{1}{3}=\frac{4+3}{9}=\frac{7}{9}$
Q. 2 A box contains 10 red, 30 white and 20 black marbles. A marble is drawn at random. Find the Probability that it is either red or white.
Solution:
Number of red marbles $=10$
Number of white marbles $=30$
Number of black marbles $=20$
Total number of marbles
$=10+30+20=60$
$\Rightarrow n(S)=60$
Let A be the event that a drawn marble is red, then $n(A)=10$

$$
P(A)=\frac{n(A)}{n(S)}=\frac{10}{60}=\frac{1}{6}
$$

Since $A$ and $B$ are mutually dxclusive events,
So $P(A \cup B)=P(A)+P(B)$

$$
\frac{1}{6}+\frac{1}{2}=\frac{1+3}{6}=\frac{4}{6}=\frac{2}{3}
$$

Q. 3 A natural number is chosen out of the first fifty natural numbers. What is the Probability that the chosen number is a multiple of 3 or of 5 ?
(D.G.K 2023)

## Solution:

Here, the Sample space is

$$
S=\{1,2,3, \ldots, 50\} \Rightarrow n(S)=50
$$

Let A be the event that a chosen number is a multiple of 3 .

$$
A=\left\{\begin{array}{l}
3,6,9,12,15,18,21,24,27, \\
30,33,36,39,42,45,48
\end{array}\right\}
$$

$$
\Rightarrow n(A)=16
$$

$$
P(A)=\frac{n(A)}{n(S)}=\frac{16}{50}=\frac{8}{25}
$$

Let B be the event that a chosen number is a multiple of 5 .

$$
\begin{aligned}
& B=\{5,10,15,20,25,30,35,40,45,50\} \\
& \Rightarrow n(B)=10 \\
& P(B)=\frac{n(B)}{n(S)}=\frac{10}{50}=\frac{1}{5}
\end{aligned}
$$

Now, $A \cap B=\{1530,45\}$

since A and $B$ are overlapping

$$
0
$$

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

$$
=\frac{8}{25}+\frac{1}{5}-\frac{3}{50}
$$

$$
=\frac{16+10-3}{50}=\frac{23}{50}
$$

Q. 4 A card is drawn from a deck of 52 playing cards. What is the Probability that it is a diamond card or an ace?
(D.G.K 2022, RWP 2023)

## Solution:

Total number of cards $=52$
$\Rightarrow n(S)=52$
Let A be the event that a drawn card is diamond card.
$\Rightarrow n(A)=13$
$P(A)=\frac{n-A N}{n(S)} \frac{13}{52}=\frac{1}{4}$
Let B be the event that a drawn card is an ace.
$\Rightarrow n(B)=4$
$P(B)=\frac{n(B)}{n(S)}=\frac{4}{52}=\frac{1}{13}$
Since one diamond card is also an ace card, so $n(A \cap B)=1$

$$
P(A \cap B)=\frac{n(A \cap B)}{n(S)}=\frac{1}{52}
$$

A and B are overlapping events, so

$$
\begin{aligned}
P(A \cup B) & =P(A)+P(B)-P(A \cap B) \\
= & \frac{1}{4}+\frac{1}{13}-\frac{1}{52} \\
= & \frac{13+4-1}{52}=\frac{16}{52}=\frac{4}{13}
\end{aligned}
$$

Q. 5 A die is thrown twice. What is the

Probability that the sum of the number of dots shown is 3 or 11?

## Solution:

A die is thrown twice. Therefore, sample space is
$S=\{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)$,
$(2,1),(2,2),(2,3),(2,4),(2,5),(2,6)$,
$(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)$,
$(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)$,
$(5,1),(5,2),(5,3)(5$, , $(5,5 N(1)$
$(6,1),(6,2) \cdot(5,3),(5,4),(6,5),(6,6)\}$
$\Rightarrow n(S)=36$

Let $A$ be the event that the sum of number of dots shown is 3 .
$A=\{(1,2),(2,1)\} \Rightarrow n(A)=2$
$T(A)=\frac{n}{n(S)} \frac{A)}{S 6}-\frac{2}{36}=-\frac{1}{18}$
Lee $B$ be the event that the sum of nunfer dots shown is 11 .
$L^{\prime}=\{(5,6),(6,5)\} \Rightarrow n(B)=2$

$$
P(B)=\frac{n(B)}{n(S)}=\frac{2}{36}=\frac{1}{18}
$$

Since $A$ and $B$ are disjoint sets.
$P(A \cup B)=P(A)+P(B)$
$=\frac{1}{18}+\frac{1}{18}=\frac{2}{18}=\frac{1}{9}$
Q. 6 Two dice are thrown. What is the Probability that the sum of the number of dots appearing on them is 4 or 6? (RWP 2021, BWP 2023)

## Solution:

When two dots are thrown, the set of possible outcomes is
$S=\{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)$,
(2,1), (2,2), (2,3), (2,4), (2,5), (2,6),
(3,1),(3,2),(3,3), (3,4), (3,5), (3,6),
$(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)$,
$(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)$,
$(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\}$
$\Rightarrow n(S)=36$
Let A be the event that the sum of number of dots shown is 4 .

$$
A=\{(1,3),(2,2),(3,1)\}
$$

$\Rightarrow n\left(A^{\prime}-3\right.$


Let $B$ bey be event that the sum of
number of dots shown is 6 .

$$
\begin{aligned}
& B=\{(1,5),(2,4),(3,3),(4,2),(5,1)\} \\
& \Rightarrow n(B)=5 \\
& P(B)=\frac{n(B)}{n(S)}=\frac{5}{36}
\end{aligned}
$$

Since A and B are disjoint sets
$P(A \cup B)=P(A)+P(B)$
$=\frac{1}{12}+\frac{5}{36}=\frac{8}{36}=\frac{2}{9}$

## Q. 7 Two dice are thrown

simultaneously. If the event $A$ is that the sum of the number of dots shown is an odd number and the event $B$ is that the number of dot shown on at least one die is 2 . Find $\mathbf{P}(\mathbf{A} \cup B)$.

## Solution:

When two dice are thrown the set of possible outcomes is

$$
\begin{aligned}
S= & \{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6), \\
& (2,1),(2,2),(2,3),(2,4),(2,5),(2,6), \\
& (3,1),(3,2),(3,3),(3,4),(3,5),(3,6), \\
& (4,1),(4,2),(4,3),(4,4),(4,5),(4,6), \\
& (5,1),(5,2),(5,3),(5,4),(5,5),(5,6), \\
& (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\} \\
\Rightarrow & n(S)=36
\end{aligned}
$$

Let A be the event that the sum of number of dots shown is odd.
$A=\{(1,2),(1,4),(1,6),(2,1),(2,3),(2,5),(3,2),(3,4)$,
$(3,6),(4,1),(4,3),(4,5),(5,2),(5,4),(5,6),(6,1)$,
$(6,3),(6,5)\}$
$\Rightarrow n(A)=18$
$P(A)=\frac{n(A)}{n(S)}=\frac{18}{36}=\frac{1}{2}$
Let $B$ be the event that the number of dots on at least one die is 3 .

$$
\begin{aligned}
& B=\left\{\begin{array}{l}
(1,3),(2,3),(3,1),(3,2),(3,3), \\
(3,4),(3,5),(3,6),(4,3),(5,3),(6,3)
\end{array}\right\} \\
& \Rightarrow n(B)=11 \\
& P(B)=\frac{n(B)}{n(S)}=\frac{11}{36}
\end{aligned}
$$

Now $A \cap B=\left\{\begin{array}{l}(2,3),(3,2),(3,4), \\ (3,6),(\wedge \cdot \sqrt[3]{2},(\sqrt{2}),\end{array}\right\}$
$\Rightarrow n(A \cap B=\hat{3} \sqrt{2}$,

$$
P(A \cap B)=\frac{n A \cap B)}{n(S)}=\frac{6}{36}=\frac{1}{6}
$$

Since, events A and B are
overlapping, so
$P(A \cup B)=P(A)+P(B)-P(A \cap B)$
$=\frac{1}{2}+\frac{11}{3}-\frac{1}{6}$ $=-\frac{8+11}{36}-5=\frac{23}{35}$
10. 6

There are 10 girls and 20 boys in a class. Half of the boys and half of the girls have blue eyes. Find the Probability that one student chosen as monitor is either a girl or has blue eyes.
(D.G.K 2022)

Solution: $\quad$ Number of girls $=10$
Number of boys $=20$
Total number of students in a class
$=30$
$\Rightarrow n(S)=30$
Number of boys having blue eyes $=10$
Number of girls having blue eyes $=5$
Total number of students having blue eyes $=10+5=15$
One student of the class in chosen as a monitor.
Let A be the event that monitor of class is a girl, so $n(A)=10$

$$
P(A)=\frac{n(A)}{n(S)}=\frac{10}{30}=\frac{1}{3}
$$

Let B be the event that monitor of class has blue eyes, so $n(B)=15$

$$
P(B)=\frac{n(B)}{n(S)}=\frac{15}{30}=\frac{1}{2}
$$

Now, A $B=$ set of gitls with blue
$2 y(2)$
$n(A \subset B)=5$
$A \cap 0 P(A \cap B)=\frac{n(A \cap B)}{n(S)}=\frac{5}{30}=\frac{1}{6}$
Events are overlapping, so
$P(A \cup B)=P(A)+P(B)-P(A \cap B)$
$=\frac{1}{3}+\frac{1}{2}-\frac{1}{6}=\frac{2+3-1}{6}=\frac{2}{3}$

## Independent Events:

Two events $\mathbf{A}$ and $\mathbf{B}$ are said to be independent. If the occurrence of any one of them does not influence the occurrence of the other event.
Theorem:
Let $\mathbf{A}$ and $\mathbf{B}$ the two independent events, then their ropbabilty is cat ulated $b y$ :
$\mathbf{P}(\mathbf{A} \cap \mathbf{B})=\mathbf{P}(\mathbf{A}) . \mathbf{P}(\mathbf{B})$
Note:
The formula $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{D})$ ar he generalized as.
$\left.P\left(A_{1} \cap A_{2} \cap A_{3} \ldots \cap A_{n}\right)=P\left(A_{1}\right) \cdot P(A)\right) \cdot P\left(A_{n} D\right.$
Where $A_{1}, A A_{3} A_{n}$ are hdrendent events.

## EXERCISE 7.8

Q. 1 The Probabinity that a person $A$ will be alive 15 years hence is $\frac{5}{7}$ and the Probability that another person $B$ will be alive 15 years hence is $\frac{7}{9}$. Find the Probability that both will be alive 15 years hence.
Solution:
Let $\mathrm{E}_{1}$ be the event that a person A will alive 15 years hence.

$$
P\left(E_{1}\right)=\frac{5}{7}
$$

Let $E_{2}$ be the event that a person will alive 15 years hence.

$$
P\left(E_{2}\right)=\frac{7}{9}
$$

Events $\mathrm{E}_{1}$ and $\mathrm{E}_{2}$ are independent events
Probability that both will alive 15 years hence is
$P\left(E_{1} \cap E_{2}\right)=P\left(E_{1}\right) \cdot P\left(E_{2}\right)$
$=\frac{5}{7} \cdot \frac{7}{9}=\frac{5}{9}$
Q. 2 A die is rolled twice: Event $\mathrm{F}_{1}$ is the appearance of even number of dots and Event F , i ; h appearance of hive then 4 dots. Prove that
$\mathbf{P}\left(\mathbf{E}_{1} \cap \mathbf{E}_{2}\right)=\mathbf{P}\left(\mathbf{E}_{1}\right) \cdot \mathbf{P}\left(\mathbf{E}_{2}\right)$
(BWP 2022)

Solution:
When a die is rolled twice, the set of possible outcomes is
$S=\{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)$,
$(2,1),(2,2),(2,3),(2,4),(2,5),(2,6)$,
$(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)$,
$(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)$,
$(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)$,
$(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\}$
$\Rightarrow n(S)=36$
$E_{1}$ is the event that even number of dots appear.

$$
\begin{aligned}
& E_{1}=\left\{\begin{array}{l}
(2,2),(2,4),(2,6),(4,2), \\
(4,4),(4,6),(6,2),(6,4),(6,6)
\end{array}\right\} \\
& \Rightarrow n\left(E_{1}\right)=9 \\
& P\left(E_{1}\right)=\frac{n\left(E_{1}\right)}{n(S)}=\frac{9}{36}=\frac{1}{4}
\end{aligned}
$$

$\mathrm{E}_{2}$ is the event that more than 4 dota appear.

$$
\left[\begin{array}{l}
L_{2}=\{(5,5),(5,0),(5,5), \\
\Rightarrow n\left(E_{2}\right)=4 \\
P\left(E_{2}\right)=\frac{2\left(F_{2}\right)}{n(S)}=\frac{4}{36}=\frac{1}{9}
\end{array}\right.
$$

$$
P\left(E_{1}\right) \cdot P\left(E_{2}\right)=\frac{1}{4} \cdot \frac{1}{9}=\frac{1}{36} \text { (i) }
$$

Now,

$$
\begin{aligned}
& E_{1} \cap E_{2}=\{(6,6)\} \\
& \Rightarrow n\left(E_{1} \cap E_{2}\right)=1
\end{aligned}
$$

$$
P\left(E_{1} \cap E_{2}\right)=\frac{n\left(E_{1} \cap E_{2}\right)}{n(S)}=\frac{1}{36} \text { (ii) }
$$

From eq (1) and eq (2), we have

$$
P\left(E_{1} \cap E_{2}\right)=P\left(E_{1}\right) \cdot P\left(E_{2}\right)
$$

Hence proved.
Q. 3 Determine the Probability of getting 2 heads in two successie tosses of a balanced coin.
(RWP 2021)
Solution:
When two coingire thesed the (i) hat set of posibye ouvomes is
$S=\{H H \unlhd T \subset, T H, T T\}$
$\Rightarrow n(S)=4$
Let A be the event of getting two heads, then $n(A)=1$ Thus, the required Probability is
$P(A)=\frac{n(A)}{n(S)}=\frac{1}{4}$
Q. 4 Two coins are tossed twice each. Find the Probability that the head appears on the first toss and the same faces appear in the two tosses.
(SWL 2022)
Solution:
Two coins are tossed twice each.
For first toss, sample space is
$S=\{H H, H T, T H, T T\}$
$\Rightarrow n(S)=4$
Let A be the event that the head appears in first toss.

$$
A=\{H H, H T\} \quad \Rightarrow n(A)=2
$$

and $P(A)=\frac{n(A)}{n(S)}=\frac{2}{4}=\frac{1}{2}$
For second toss, sample space is same.
Let B be the event that the same faces appear in second toss.
$B=\{H H, T T\} \Rightarrow n(B)=2$

$$
P(B)=\frac{n(B)}{n(S)}=\frac{2}{4}=\frac{1}{2}
$$

$A$ and $B$ aroifliependenterenis

$$
P(A \cap B):=\frac{n}{C}(A) \cdot P(B)=\frac{1}{2} \cdot \frac{1}{2}=\frac{1}{4}
$$

Q. 5 Two cards are drawn form a deck of 52 playing cards. If one card is drawn and replaced before drawing the stcond cad tind the Drobalility that both the cards are aces

## Solution:

Since thete are 52 playing cards, so $\rightarrow\left(\frac{5}{0}\right)=52$
Let A be the event that first card is an ace card, then $n(A)=4$

$$
P(A)=\frac{n(A)}{n(S)}=\frac{4}{52}=\frac{1}{13}
$$

Let B the event that the second card is also an ace card so $n(B)=4$

$$
P(B)=\frac{n(B)}{n(S)}=\frac{4}{52}=\frac{1}{13}
$$

Since A and B are independent events.
$P(A \cap B)=P(A) \cdot P(B)$
$=\frac{1}{13} \cdot \frac{1}{13}=\frac{1}{169}$
Q. 6 Two cards from a deck of 52 playing cards are drawn in such a way that the card is replaced after the first draw. Find the Probabilities in the following cases:
(i) First card is king and the second is a queen.
(ii) Both the cards are faced cards i.e. king, queen, jack.

## Solution:

Since there are 52 playing card sp $\bar{n}(S)=52(\therefore$ fur filst arav $)$
(i) $\sqrt{\mathrm{L}} \mathrm{et}$. © (e) the event then the fi-st card is king, then

$$
P(A)=\frac{n(A)}{n(S)}=\frac{4}{52}=\frac{1}{13}
$$

For second draw, $n(S)=52$
Let B be the event that the second card is queen, then $n(B)=4$
$P(B)=\frac{n(B)}{n(S)}=\frac{4}{52}=\frac{1}{13}$
A and B are independent events
$P(A \cap B)=P(A) \cdot P(B)=\frac{1}{13} \cdot \frac{1}{13}=\frac{1}{169}$
(ii) For first draw, $n(S)=52$

Let $A$ be the event that the firs car 1 is faced card, then $n(A)=12$

$$
P(A)=\frac{n(A)}{n(S)}=\frac{12}{2}=-\frac{2}{13}
$$

For seconid daw, $2(5)=52$
Let $B$ be tne event that second card is also faced card, then $n(B)=12$

$$
P(B)=\frac{n(B)}{n(S)}=\frac{12}{52}=\frac{3}{13}
$$

A and B are independent events

$$
P(A \cap B)=P(A) \cdot P(B)
$$

$$
=\frac{3}{13} \cdot \frac{3}{13}=\frac{9}{169}
$$

Q. 7 Two dice are thrown twice. What is the Probability that sum of the dots shown in the first throw is 7 and that of the second throw is 11 ?
(FSD 2022, SWL 2023, GRW 2023)
Solution: Two dice are thrown twice.
For first throw, sample space is
$S=\{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)$,
$(2,1),(2,2),(2,3),(2,4),(2,5),(2,6)$,
$(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)$,
$(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)$,
$(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)$,
$(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\}$
$\Rightarrow n(S)=36$
Let A be the event that sum of dots in first throw is 7 .
$A=\{(1,6),(2,5),(3,4),(4,3),(5,2),(6,7)\}$
$\Rightarrow n(A)=6$
$P(A)=\frac{n(A)}{n}=-\frac{6}{20}+1 / 2$
For seconu throw, sample space is same.

$$
\text { i.e. } n(S)=36
$$

Let $B$ be the event that sum of dots in the second throw is 11 .
$B=\{(56),(6,5)\}$
$\Rightarrow n(B)=2$

$A \approx \mathrm{~d} B$ are independent events

$$
\begin{gathered}
P(A \cap B)=P(A) \cdot P(B) \\
=\frac{1}{6} \cdot \frac{1}{18}=\frac{1}{108}
\end{gathered}
$$

Q. 8 Find the Probability that the sum of dots appearing in two successive throws of two dice is every time 7.
Solution: Two dice are thrown twice.
For first throw, sample space is

$$
\begin{aligned}
S= & \{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6), \\
& (2,1),(2,2),(2,3),(2,4),(2,5),(2,6), \\
& (3,1),(3,2),(3,3),(3,4),(3,5),(3,6), \\
& (4,1),(4,2),(4,3),(4,4),(4,5),(4,6), \\
& (5,1),(5,2),(5,3),(5,4),(5,5),(5,6), \\
& (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\} \\
& \Rightarrow n(S)=36
\end{aligned}
$$

Let A be the event that sum of dots in first throw is 7 .
$A=\{(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)\}$
$\Rightarrow n(A)=6$
$P(A)=\frac{n(A)}{n(S)}=\frac{6}{36}=\frac{1}{6}$
For second throw, sample space is same

$$
\text { i.e. } n(S)=36
$$

Let B be he even that win of cot. in these on trrew ils alse 7
$\beta=\left\{(1,6),(2,5),(3,4),\left(1+, \frac{1}{)},(5,2),(6,1)\right\}\right.$
$\Rightarrow \Rightarrow(R)=6$
$P(B)=\frac{n(B)}{n(S)}=\frac{6}{36}=\frac{1}{6}$
A and B are independent events
$P(A \cap B)=P(A) \cdot P(B)$

$$
=\frac{1}{6} \cdot \frac{1}{6}=\frac{1}{36}
$$

Q. 9 A fair die is thrown twice. Find the Probability that a prime number of dots appear in the first throw and the number of dots in the second throw is less than 5 .
(BWP 2023)
Solution: A die is thrown twice. For first throw, sample space is:
$S=\{1,2,3,4,5,6\} \quad \Rightarrow n(S)=$ б
Let $A$ be the evert that nrims number of doct apolear is the first throw.
$A=\{2,3,5\} \quad \Rightarrow n(A)=3$
$P(A)=\frac{n(A)}{n(S)}=\frac{3}{6}=\frac{1}{2}$
For second throw, sample space is same.
Let $B$ be the event that number of dots in the second throw is less than 5 .
$B=\{1,2,3,4\} \quad \Rightarrow n(B)=4$
$P(B)=\frac{n(B)}{n(S)}=\frac{4}{6}=\frac{2}{3}$
A and B are independent events

$$
\begin{gathered}
P(A \cap B)=P(A) \cdot P(B) \\
=\frac{1}{2} \cdot \frac{2}{3}=\frac{1}{3}
\end{gathered}
$$

Q. 10 A bag contains 8 red, 5 white, and 7 black balls. 3 balls are drawn from the bag. What is the Probability that the first ball is red, the second ball is white and the third ball is black, when every time the ball is replaced?
Solution: Number of red balls $=8$
Number of white balls $=5$
Number of black balls $=7$
Total number of balls

$$
=8+5+7=20
$$

For first draw, $n(S)=20$
Let $A$ be the gen rateltst lai is red, then $(A)=8$
$P(A)=\frac{n(A)}{n(S)}=\frac{8}{20}=\frac{2}{5}$
For second dravr, $q(S)=22$
Let B boque event that second ball is

## white, then $n(B,=5$

$P(B)=\frac{n(B)}{n(S)}=\frac{5}{20}=\frac{1}{4}$
For third draw, $n(S)=20$
Let C be the event that third ball is black, then $n(C)=7$

$$
P(C)=\frac{n(C)}{n(S)}=\frac{7}{20}
$$

Events A, B and C are independent events, so

$$
\begin{gathered}
P(A \cap B \cap C)=P(A) \cdot P(B) \cdot P(C) \\
\frac{2}{5} \cdot \frac{1}{4} \cdot \frac{7}{20}=\frac{7}{200}
\end{gathered}
$$

