

Introduction:

Frances o Lourolico (1494-1575) devised the method of induction and applied this d.vele first to prove that the sum of the first n odd positive integers equals n^{2}.

We are aware of the fact that even one exception or case to a mathematical formula is enough to prove it to be false. Such a case or exception which fails the mathematical formula or statement is called a counter example.
For example, we consider the statement $S(n)=n^{2}-n+41$ is a prime number for every natural number n. The values of the expression $n^{2}-n+41$ for some first natural numbers are given in the table as shown below.

n	1	2	3	4	5	6	7	8	9	10	11
$S(n)$	41	43	47	53	61	71	83	97	113	131	151

From the table, it appears that the statement $S(n)$ has enough chance of being true. If we go on trying for the next natural numbers. We find $n=41$ as a counter example which fails the claim of the above statement. So we conclude that to derive a general formula without proof from some special cases is not a wise step. This example was discovered by Euler (1707-1783)

Principle of Mathematical Induction

The principle of mathematical induction is stated as follows:
If a proposition or statement $S(n)$ for each positive integer n is such that

1. $\quad S(1)$ is true i.e., $S(n)$ is true for $n=1$.
2. $\quad S(k+1)$ is true whenever $S(k)$ is true for any positive integer k,

Then $S(n)$ is true for all positive integers.

Procedure:

1. Substituting $n=1$, show that the statement isue for $i=T$.
2. Assuming that the statement is true for an\% intege k, then show that it is tue for the next higher integer.
M1: Stantigg with one side of $\mathcal{V}(k+t)$, its vinersiue is derived by using $S(k)$.
M2: $S(k+f)$ s establi hed by velfurming algebraic operations on $S(k)$.

Princip'e of Ex el Mathematical Induction:

1. $S(i)$ is true and
2. $\quad S(k+1)$ is true whenever $S(k)$ is true for integral values of $n \geq i$.

EXERCISE 8.1

Use the mathematical induction to prove the following formulae fore ry pastie integer n .
Q. $1 \quad 1+5+9+\ldots \ldots+(4 n-3)=n(2 n-1)$

Solution:
Let $S(n)$ be the give statement, i.e.,
$S(n): 1+5+4+(1-n-3)=n(2 n-1)$ (i)
(i) when $=1$, Equaticn(i) becomes;
$S(1): O^{-1}(1)-3=1(2 \times 1-1)$
$S^{\prime}(1): \quad 1=1$
Thus $S(1)$ is true ie., condition (I) is satisfied.
(ii) Let us assume that $\mathrm{S}(n)$ is true for any $n=k \in N$ i.e.,
$1+5+9+\ldots . .+(4 k-3)=k(2 k-1)$
The statement for $n=k+1$ becomes;
$1+5+9+\ldots .+(4 k-3)+(4 k+1)=(k+1)(2 k+1)$
Adding $(4 k+1)$ on both sides of (A) we get;
$1+5+9+\ldots . .+(4 k-3)+(4 k+1)=k(2 k-1)+(4 k+1)$
$=2 k^{2}-k+4 k+1$
$=2 k^{2}+3 k+1$
$=2 k^{2}+2 k+k+1$
$=2 k(k+1)+1(k+1)$
$=(2 k+1)(k+1)$
$=(2 k+2-1)(k+1)$
$=[2(k+1)-1](k+1)$
Thus $\mathrm{S}(k+1)$ is true if $S(k)$ is true, so condition (II) is satisfied. Since both the condition are satisfied, therefore, $S(n)$ is true for all $n \in N$.
Q. $21+3+5+\ldots . .+(2 n-1)=n^{2}$
(LHR 2022)

Solution:

Let $S(n)$ be the given statement, ie.,
$\mathrm{S}(n): \quad 1+3+5+\ldots . .+(2 n-1)=n^{2}$ (i)
(i) when $n=1$, equation (i) be ones;
$S(1): 2 \times 1-1=1^{2}$
S (11).
Thus S 1) is the hat is condition (I) satisfied.
(ii Net assume that $S(n)$ is true for any $n=k \in N$, ie.,

$$
\begin{equation*}
S(k): 1+3+5+\ldots .+(2 k-1)=k^{2} \tag{A}
\end{equation*}
$$

The statement for $n=k+1$ becomes;

$$
\begin{equation*}
1+3+5+\ldots . .+(2 k-1)+(2 k+1)=(k+1)^{2} \tag{B}
\end{equation*}
$$

Adding $(2 k+1)$ on both sides of (A) we get;
$1+3+5+\ldots+(2 k-1)+(2 k+1)=k^{2}+(2 k+1)$
$=k^{2}+2 k+1$
$=(k+1)^{2}$
Thys, T (+1) is trac if $S(k)$ is trec. Socol dition (II) is satisfied.
Sinet oth the condit ons are sausfied, therefore, $S(n)$ is true for each positive integer r .
$2 \cdot \sqrt{1+1+9+\ldots . .+(3 n-2)}=\frac{n(3 n-1)}{2}$
(RWP 2022, MTN 2023)

Solution:

Let $S(n)$ be the given statement, i.e.,
$S(n): 1+4+7+\ldots .+(3 n-2)=\frac{n(3 n-1)}{2}$ (i)
(i) When $n=1, S$ equation(i) becomes;

$$
\begin{aligned}
& S(1): 3(1)-2=\frac{1(3(1)-1)}{2} \\
& S(1): \quad 1=1
\end{aligned}
$$

Thus $S(1)$ is true, i.e., condition (I) is satisfied
(ii) Let us assume that $S(n)$ is true for any $n=k \in N$, i.e.,
$S(k): 1+4+7+\ldots .+(3 k-2)=\frac{k(3 k-1)}{2}$
The statement for $n=k+1$ becomes;
$1+4+7+\ldots .+(3 k-2)+(3 k+1)=\frac{(k+1)(3 k+2)}{2}$
Adding $(3 k+1)$ on both sides of equation (A) we get
$S(k): 1+4+7+\ldots+(3 k-2)+(3 k+1)=\frac{k(3 k-1)}{2}+3 k+1$
$=\frac{3 k^{2}-k+6 k+2}{2}$
$=\frac{3 k^{2}+5 k}{2}-2$
$=3 k^{2}+3 k+25+2$
$=\frac{3 k}{2}(k+1)+2(k+1)$
2

\qquad

Since both the conditions are satisfied, therefore $S(n)$ is true for each positive integer n.
Q. $41+2+4+\ldots . .+2^{n-1}=2^{n}-1$ (FSD 2021, MTN 2023, LHR 2023)

Solution:
Let $S(n)$ be the given statement, e.
$S(n): 1+2+4+$
(i) whir $n=1$ equation (i) become

$S(1): \quad 1=1$
Thus $S(1)$ is true that is condition (I) is satisfied.
(ii) Let us assume that $S(n)$ is true for any $n=k \in N$, ie.,

$$
\begin{equation*}
S(k): 1+2+4+\ldots . .+2^{k-1}=2^{k}-1 \tag{A}
\end{equation*}
$$

The statement for $n=k+1$ becomes;

$$
\begin{equation*}
1+2+4+\ldots .+2^{(k+1)-1}=2^{k+1}-1 \tag{B}
\end{equation*}
$$

Adding $2^{(k+1)-1}$ on both sides of (A) we get;
$1+2+4+\ldots . .+2^{k-1}+2^{(k+1)-1}=\left(2^{k}-1\right)+2^{(k+1)-1}$

$=2^{k}-1+2^{k}$	
$=2.2^{k}-1$	
$=2^{k+1}-1$	
	$=2^{(k+1)}-1$

Thus $S(k+1)$ is true if $S(k)$ is true, so the condition (II) is satisfied.
Since both the conditions are satisfied, therefore, $S(n)$ is true for each positive integer n .
Q. $51+\frac{1}{2}+\frac{1}{4}+\ldots .+\frac{1}{2^{n-1}}=2\left(1-\frac{1}{2^{n}}\right)$ (FSD 2022,GRW 2023)

Solution:

Let $S(n)$ be the given statement, ie.,
$S(n): 1+\frac{1}{2}+\frac{1}{4}+\ldots+\frac{1}{2^{n-1}}=2\left(1-\frac{1}{2^{n}}\right)$
(i)
(i) when $n=1$, equation (i)
becomes;

$$
S\left(\frac{11}{12} \cdot \sqrt{\frac{1}{1-1}}=2\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}\right)\right.
$$

Thus $S(1)$ i: tie that is condition (I) is satisfied.
(ii) Let us assume that $S(k)$ is true for any $n=k \in N$ that is

$$
\begin{equation*}
S(k): 1+\frac{1}{2}+\frac{1}{4}+\ldots .+\frac{1}{2^{k-1}}=\left(1-\frac{1}{2^{k}}\right) \tag{A}
\end{equation*}
$$

The given statement for $n=k+1$ becomes;

$$
\begin{equation*}
1+\frac{1}{2}+\frac{1}{4}+\ldots .+\frac{1}{2^{k-1}}+\frac{1}{2^{k}}=2\left(1-\frac{1}{2^{k+1}}\right) \tag{B}
\end{equation*}
$$

Adding $\frac{1}{2^{k}}$ on both sides of (A) we get; \qquad

$$
=2\left(1-\frac{1}{2.2^{k}}\right)
$$

$$
=2\left(1-\frac{1}{2^{k+1}}\right)
$$

Hence $S(k+1)$ is true whenever $S(k)$ is true.
So condition (II) is satisfied.
Since both conditions are satisfied therefore $S(n)$ is true for each positive integer n.

Q. $62+4+6+\ldots . .+2 n=n(n+1)(G R W 2022$, MTN 2023)

Solution:

Let $S(n)$ be the given statement, ie.,
$S(n): 2+4+6+\ldots 2 n=n(n+1)$
when $n=1$, equation (i) becomes;
(i)

$$
S(1): 2(1)=1(1+1)
$$

$S(1): \quad 2=2$
Thus $S(1)$ is true that is condition (I) is satisfied.
(ii) Let us assume that $S(n)$ is true for any $n=k \in N$, ie.,

$$
\begin{equation*}
S(k): 2+4+6+\ldots . .+2 k=k(k+1) \tag{A}
\end{equation*}
$$

The given statement for $n=k+1$ becomes

$$
2+4+6+\ldots . .+2 k+2(k+1)=(k+1)(k+2)(\mathrm{B})
$$

Adding $2(k+1)$ on both sides of (A) we gat.

$$
2+4+6+\ldots .+2 k+2(v+1)=k(v+1) \cdot 2
$$

Since be th conf ion a el satisfied, therefore $S(n)$ is true $\forall n \in N$.
$2 \cdot \sqrt[7]{2+4}+18+\ldots \ldots+2 \times 3^{n-1}=3^{n}-1$

Solution:

Let $S(n)$ be the given statement, ie.,

$$
S(n):=2+6+18+\ldots . .+2 \times 3^{n-1}=3^{n}-1 \text { (i) }
$$

(i) when $n=1, S(1)$ becomes;
$S(1): \quad 2 \times 3^{1-1}=3^{1}-1$
$S(1): \quad 2=2$
Thus $S(1)$ is true that is conctition atis atis fied
(ii)

$$
S(k) \cdot q+0+18+\ldots+2 \times 9^{k-s}=3^{k}-1 \text { (A) }
$$

The? iven tatement 合 $n=k+1$ becomes;

$$
0-5+18+\ldots .+2 \times 3^{k-1}+2 \times 3^{k}=3^{k+1}-1 \text { (B) }
$$

Adding 2×3^{k} on both sides we have

$$
\begin{aligned}
& 2+6+18+\ldots . .+2 \times 3^{k-1}+2 \times 3^{k}=3^{k}-1+2 \times 3^{k} \\
& =3^{k}+2 \times 3^{k}-1 \\
& =3^{k}(1+2)-1 \\
& =3.3^{k}-1 \\
& =3^{k+1}-1
\end{aligned}
$$

Hence $S(k+1)$ is true whenever $S(k)$ is true. So condition (II) is satisfied.
There fore both condition are satisfied, so $S(n)$ is true $\forall n \in N$
Q. $8 \quad 1 \times 3+2 \times 5+3 \times 7+\ldots \ldots+n \times(2 n+1)=\frac{n(n+1)(4 n+5)}{6}$

Solution:

Let $S(n)$ be the given statement, i.e.,
$S(n): 1 \times 3+2 \times 5+3 \times 7+\ldots . .+n \times(2 n+1)=\frac{n(n+1)(4 n+5)}{6}$ (i)
(i) When $n=1$, equation(i) becomes;
$S(1): 1 \times(2 \times 1+1)=\frac{1(1+1)(4 \times 1+5)}{6}$
$S(1): 3=3$, thus $S(1)$ is true that is condition (I) is satisfied.
(ii) Let us assume that $S(n)$ is true for any $n=k \in \mathrm{~N}$, i.e,
$S(k):=1 \times 3+2 \times 5+3 \times 7 \ldots \ldots+k \times 2 k+\frac{1}{11}=\left(\frac{1}{1}+1\right)(1 k+5)$
The givenstitement f gin $=k \leftrightarrow 1 \angle$ becones
$1 \times 3+2 \times \cdot+3 \times 7 \cdots \cdots+k \times\left(2 k+\frac{1}{1}+(k+1) \times(2 k+3)=\frac{(k+1)(k+2)(4 k+9)}{6}\right.$
Arding (k-1) $2 k+3$) in (A) we get;
$1 \times 3+2 \times 5+3 \times 7+\ldots .+k \times(2 k+1)+(k+1) \times(2 k+3)=\frac{k(k+1)(4 k+5)}{6}+(k+1)(2 k+3)$

Which is same as R.H.S of (B)
Hence $S(k+1)$ is true when $S(k)$ is true so condition (II) is satisfied.
Therefore both conditions are satisfied, so $S(n)$ is true $\forall n \in \mathrm{~N}$.
Q. $91 \times 2+2 \times 3+3 \times 4+\ldots .+n \times(n+1)=\frac{n(n+1)(n+2)}{3}$

Solution:
Let $S(n)$ be the given statement, i.e.,

$$
S(n): 1 \times 2+2 \times 3+3 \times 4+\ldots . .+n \times(n+1)=\frac{n(n+1)(n+2)}{3}
$$

1. When $n=1$, equation(i) becomes;

$$
\begin{aligned}
& S(1): 1 \times(1+1)=\frac{1(1+1)(1+2)}{3} \\
& S(1): \quad 2=2
\end{aligned}
$$

So statement is true for $n=1$, that (1s) onditlor (I) is sati. fied.
2. Let us assume that statement is ta. for $n=r \in N$, i.e.,

(A)

Give staternen or $n=k \div \frac{1}{1}$ becomes;
$5(k+1): 1 \times 2+2 \times 3+3 \times 4+\ldots . .+(k+1) \times(k+2)=\frac{(k+1)(k+2)(k+3)}{3}$

Adding $(k+1)(k+2)$ both sides of (A) we get;
$1 \times 2+2 \times 3+\ldots . .+k(k+1)+(k+1)(k+2)=\frac{k(k+1)(k+2)}{2}(k+1)(k+2)$
$=(k+1)(k+2)\left(\frac{k}{3}+1\right)$
$=\frac{(k+(1)) k+2)(k+3)}{3}-2$
Whin is sarne al. His of (B)
H) eve $S(k+1)$ is true if $S(k)$ is true, so condition (II) is satisfied, so $S(n)$ is true $\forall n \in \mathrm{~N}$
Q. $101 \times 2+3 \times 4+5 \times 6+\ldots+(2 n-1) \times 2 n=\frac{n(n+1)(4 n-1)}{3}$

Solution:

Let $S(n)$ be the given statement, i.e.,
$S(n): 1 \times 2+3 \times 4+5 \times 6+\ldots . .+(2 n-1)(2 n)=\frac{n(n+1)(4 n-1)}{3}(\mathrm{i})$

1. when $\mathrm{n}=1$, equation (i) becomes;
$S(1):(2 \times 1-1)(2 \times 1)=\frac{1(1+1)(4 \times 1-1)}{3}$
$S(1): 2=2$
So statement is true for $n=1$ so conduction (I) is satisfied.
2. Suppose that statement is true for $n=k$, i.e.,
$S(k): 1 \times 2+3 \times 4+5 \times 6+\ldots .+(2 k-1)(2 k)=\frac{k(k+1)(4 k-1)}{3}(\mathrm{~A})$
Given statement for $n=k+1$ becomes;
$S(k+1): 1 \times 2+3 \times 4+5 \times 6+\ldots+(2 k-1)(2 k)+(2 k+1)(2 k+2)=\frac{(k+1)(k+2)(4 k+3)}{3}(\mathrm{~B}$
Adding $(2 k+1)(2 k+2)$ on both sides of (A) we get:
$1 \times 2+3 \times 4+5 \times 6+\ldots .+(2 k-1)(2 k)+(2 k+1)(2 k+2)$
$=\frac{k(k+1)(4 k-1)}{3}+(2 k+)(2 k+2$
$\left.=\frac{k(k+1)}{1}(4)-1\right)-2(2 k+1) 2(k+1)$
$\sqrt{ }=(k+1)\left[\frac{k}{-(4 k-1)} \frac{3}{3}+2(2 k+1)\right]$
$=(k+1)\left[\frac{4 k^{2}-k+12 k+6}{3}\right]$

Q. $11 \frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+\ldots+\frac{1}{n(n+1)}=1-\frac{1}{n+1}$

Solution:

Let $S(n)$ be the given statement, ie..
$S(n): \frac{1}{1 \times 2}+\frac{1}{2 \times 2}+\frac{1}{3 \times 4}+\cdots \cdot+\cdots(1+1+1-1+(i)$

1. when $n=1$, eq a, icn (i) becones;
$\left.S(N): \frac{1}{01}-1+1\right)=1-\frac{L}{1+1}$
$S(1): \frac{1}{2}=\frac{1}{2}$
So statement is true for $n=1$ so condition (I) is satisfied
2. Suppose that statement is true for $n=k$
$S(k): \frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+\ldots \ldots+\frac{1}{k(k+1)}=1-\frac{1}{k+1}$ (A)
Given statement for $n=k+1$ becomes
$S(k+1): \frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+\ldots . .+\frac{1}{k(k+1)}+\frac{1}{(k+1)(k+2)}=1-\frac{1}{k+2}$
Adding $\frac{1}{(k+1)(k+2)}$ on both sides of (A) we get ;
$\frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+\ldots . .+\frac{1}{k(k+1)}+\frac{1}{(k+1)(k+2)}=1-\frac{1}{(k+1)}+\frac{1}{(k+1)(k+2)}$
$=1-\left[\frac{(k+2)-1}{(k+1)(k+2)}\right]$
$=1-\left[\frac{k+1}{(k+1)(k+2)}\right]$
$=1-\frac{1}{k+2}$
Which is same as R.H.S of (B)
Hence $S(k+1)$ is true if $S(k)$ i, tra, so condition (LD) is atisfiea, so $S(n)$ is true $\forall n \in \mathrm{~N}$
Q. $12 \frac{1}{1 \times 3}+\frac{1}{3 \times 5}+\frac{1}{5 \times 7}+\ldots . .+\frac{1}{(2 n-1)(2 n+1)}=\frac{n}{2 n+1}$

Solution:

Let $S(n)$ be the given statement, ie.
$S(n): \frac{1}{(1 x)}=+\frac{1}{3 \times 5}+\frac{1}{5 \times 7}+\cdots \cdot \cdots-(2 n-1)=-\frac{1}{(2 n+1)}-\frac{n}{2 n+1}$
(i)

1. when $n=1$, eciuat on (1) betimes,
$S\left(\sqrt{(1)}: \frac{1}{(2(1)-1)(2(1)+1)}=\frac{1}{2(1)+1}\right.$
$S(1): \frac{1}{3}=\frac{1}{3}$
Thus statement is true for $n=1$, so condition (I) is satisfied.
2. Suppose that statement is true for $n=k$, i.e.,
$\frac{1}{1 \times 3}+\frac{1}{3 \times 5}+\frac{1}{5 \times 7}+\ldots \ldots+\frac{1}{(2 k-1)(2 k+1)}=\frac{k}{2 k+1}$
Given statement for $n=k+1$ becomes

$$
\begin{equation*}
\frac{1}{1 \times 3}+\frac{1}{3 \times 5}+\frac{1}{5 \times 7}+\ldots \ldots .+\frac{1}{(2 k-1)(2 k+1)}+\frac{1}{(2 k+1)(2 k+3)}=\frac{(k+1)}{(2 k+3)} \tag{B}
\end{equation*}
$$

Adding $\frac{1}{(2 k+1)(2 k+3)}$ on both sides of (A) we get ;

$$
\begin{gathered}
\frac{1}{1 \times 3}+\frac{1}{3 \times 5}+\frac{1}{5 \times 7}+\ldots \ldots .+\frac{1}{(2 k-1)(2 k+1)}+\frac{1}{(2 k+1)(2 k+3)} \\
=\frac{k}{(2 k+1)}+\frac{1}{(2 k+1)(2 k+3)} \\
=\frac{1}{(2 k+1)}\left[k+\frac{1}{2 k+3}\right]
\end{gathered}
$$

$$
=\frac{1}{(2 k+1)}\left[\frac{2 k^{2}+3 k+1}{2 k+3}\right]
$$

$$
2 k^{2}+2 k+k+1
$$

$$
=\frac{k+1}{2 k+3}
$$

Which is same as R.H.S of (B)

Hence $S(k+1)$ is true if $S(k)$ is true, so condition (II) is satisfied, so $S(n)$ is true $\forall n \in \mathrm{~N}$
Q. $13 \frac{1}{2 \times 5}+\frac{1}{5 \times 8}+\frac{1}{8 \times 11}+\ldots . .+\frac{1}{(3 n-(1) 63 n+\sqrt{3})}=\frac{n}{2(3}+\sqrt{2)}$

Solution:
Let S (n) te he givar staterent, ze.
$S(n): \frac{1}{2 \times 5}+\frac{-1}{5 \times 8}-\frac{1}{8 \times 1}+\ldots \ldots+\frac{1}{(3 n-1)(3 n+2)}=\frac{n}{2(3 n+2)}$
Whel $\rho=1$, equation (i) becomes;

$$
S(1): \frac{1}{(2)(5)}=\frac{1}{(2)(5)}
$$

So $S(1)$ is true, so condition (I) is satisfied
2. Suppose that given statement is true for $n=k$, i.e.,
$S(k): \frac{1}{2 \times 5}+\frac{1}{5 \times 8}+\frac{1}{8 \times 11}+\ldots \ldots+\frac{1}{(3 k-1)(3 k+2)}=\frac{k}{2(3 k+2)}$
Given statement for $n=k+1$ becomes

$$
\begin{equation*}
S(k+1): \frac{1}{2 \times 5}+\frac{1}{5 \times 8}+\frac{1}{8 \times 11}+\ldots \ldots .+\frac{1}{(3 k-1)(3 k+2)}+\frac{1}{(3 k+2)(3 k+5)}=\frac{k+1}{2(3 k+5)} \tag{B}
\end{equation*}
$$

Adding $\frac{1}{(3 k+2)(3 k+5)}$ on both sides of (A) we get ;

$$
\begin{gathered}
\frac{1}{2 \times 5}+\frac{1}{5 \times 8}+\frac{1}{8 \times 11}+\ldots . .+\frac{1}{(3 k-1)(3 k+2)}+\frac{1}{(3 k+2)(3 k+5)} \\
\quad=\frac{k}{2(3 k+2)}+\frac{1}{(3 k+2)(3 k+5)} \\
\frac{1}{2 \times 5}+\frac{1}{5 \times 8}+\frac{1}{8 \times 11}+\ldots . .+\frac{1}{(3 k-1)(3 k+2)}+\frac{1}{(3 k+2)(3 k+5)}=\frac{1}{(3 k+2)}\left[\frac{k}{2}+\frac{1}{3 k+5}\right]
\end{gathered}
$$

$$
=\frac{1}{(3 k+2)}\left[\frac{k(3 k+5)+2}{2(3 k+5)}\right]
$$

$$
=\frac{1}{(3 k(2))}\left[3 k^{2}+5 k+2\right]
$$

$$
=\sqrt{3}\left(\frac{1}{3}=+2 \cdot\right) \cdot 3
$$

$$
=\frac{1}{(3 k+2)}\left[\frac{3 k(k+1)+2(k+1)}{2(3 k+5)}\right]
$$

$=\frac{1}{(3 k+2)}\left[\frac{(3 k+2)(k+1)}{2(3 k+5)}\right]$
$=\frac{(k+1)}{2(3 k+5)}$
Which is same as R.H S of (B)
Hence $(k+i)$ is true if $S\left(r^{k}\right)$ is rue, so condition (II) is satisfied, so $S(n)$ is true $\forall n$ 三NT
$P \cdot 14 \sqrt{-r^{2}}+\mathbf{r}^{3}+\cdots \ldots+r^{n}=\frac{r\left(1-r^{n}\right)}{(1-r)},(r \neq 1)$
Solution:
Let $S(n)$ be the given statement, i.e.,

$$
\begin{equation*}
S(n): r+r^{2}+r^{3}+\ldots \ldots+r^{n}=\frac{r\left(1-r^{n}\right)}{(1-r)} \tag{i}
\end{equation*}
$$

1. when $n=1$, equation (i) becomes;
$S(1): r^{1}=\frac{r\left(1-r^{1}\right)}{(1-r)}$
$S(1): r=r$
Thus $\mathrm{S}(1)$ is true, so condition (I) is satisfied.
2. Suppose that given statement is true for $n=k$, i.e.,
$S(k): r+r^{2}+r^{3}+\ldots . .+r^{k}=\frac{r\left(1-r^{k}\right)}{(1-r)}$
For $n=k+1$ given statement becomes;
$S(k+1): r+r^{2}+r^{3}+\ldots . .+r^{k}+r^{k+1}=\frac{r\left(1-r^{k+1}\right)}{(1-r)}$
Adding r^{k+1} on both sides of (A) we get ;
$r+r^{2}+r^{3}+\ldots+r^{k}+r^{k+1}=\frac{r\left(1-r^{k}\right)}{(1-r)}+r^{k+1}=r\left(\frac{\left(1-r^{k}\right)}{1-r}+r^{k}\right)$
$=r\left(\frac{1-r^{k}+r^{k}(1-r)}{(1-r)}\right)$
$=r\left(\frac{1-r^{k}+r^{k}-r^{k+1}}{(1-r)}\right)$
$=\frac{r\left(1-k^{k+1}\right)}{(1-r)}$
Which is same as.H.S of (B)
He ense $S(k+1)$ is true if $S(k)$ is true, so condition (II) is satisfied, so $S(n)$ is true $\forall n \in \mathrm{~N}$
Q. $15 \mathrm{a}+(\mathrm{a}+\mathrm{d})+(\mathrm{a}+2 \mathrm{~d})+\ldots+(\mathrm{a}+(\mathrm{n}-1) \mathrm{d})=\frac{\mathbf{n}}{2}[2 a+(\mathrm{n}-1) \mathrm{d}]$

Solution:

Let $S(n)$ be the given statement, i.e.,
$S(n): a+(a+b)+(a+2 d)+\ldots+\left(a+\left(n-\frac{1}{1}, d\right)\right.$
$=\frac{n}{2}[2 a+(n-1) d]$

1. when (2) Equation (i, bacomes,
$\left.S(1):[a+(1-1) d]=\frac{1}{2} \frac{\Gamma}{2} a+(1-1) d\right]$
$s(1): a=\frac{1}{2}(2 a)$
$S(1): a=a$
Thus $\mathrm{S}(1)$ is true, so condition (I) is satisfied.
2. Suppose that given statement is true for $n=k$, i.e.,
$S(k): a+(a+d)+(a+2 d)+\ldots+(a+(k-1) d)$
$=\frac{k}{2}[2 a+(k-1) d]$
For $n=(k+1)$ given statement becomes;
$S(k+1): a+(a+d)+(a+2 d)+\ldots+(a+(k-1) d)+(a+k d)$
$=\frac{(k+1)}{2}[2 a+k d]$
Adding $(a+k d)$ on both sides of (A) we get ;
$a+(a+d)+(a+2 d+\ldots+)(a+(k-1) d)+(a+k d)$
$=\frac{k}{2}[2 a+(k-1) d]+(a+k d)$
$a+(a+d)+(a+2 d)+\ldots+(a+(k-1) d)+(a+k d)$
$=k a+\frac{k}{2}(k-1) d+a+k d$
$=k a+a+\frac{k}{2}(k-1) d+k d$
$=a(k+1)+k d\left(\frac{(k-1)}{2}+1\right)$
$=a\left(k+1,+k v \cdot\left(-\frac{k}{2}-\frac{1}{2}=\Omega\right.\right.$
$=(k+1)-(2 a+k d)$
Hence $S(k+1)$ is true if $S(k)$ is true, so condition (II) is satisfied, so $S(n)$ is true $\forall n \in \mathrm{~N}$
Q. $16 \quad 1 \leq 1+2|2+3| 3+\ldots+n \underline{n}=\mathbf{n}+1-1$

Solution:

Let $S(n)$ be the given statement, i.e.,
$S(n): 1 .|1+2 .|2+3 .|3+\ldots+n| n=4+2-1$

1. when $n=1$, equation (i) beco nes:
$S(1):(1) 2=4-1-1$
$S(1): 1=2=-1$
$\because 2!=2$
$S(1): 1=?, 1$
$3(1): 1=1$
Thus $\mathrm{S}(1)$ is true, so condition (I) is satisfied.
2. Suppose that given statement is true for $n=k \in N$, i.e.,

$$
\begin{equation*}
S(k): 1\lfloor 1+2\lfloor 2+3\lfloor 3+\ldots+k\lfloor k=\lfloor k+1-1 \tag{A}
\end{equation*}
$$

Given statement for $n=k+1$ becomes ;
$S(k+1): 1\lfloor 1+2\lfloor 2+3\lfloor 3+\ldots+k \underline{k}+(k+1) \mid(k+1)=\underline{k+2}-1$
Adding $(k+1) .(k+1)$ on both sides of (A) we get ;
$1\lfloor 1+2\lfloor 2+3\lfloor 3+\ldots+k\lfloor\underline{k}+(k+1)|(k+1)=\underline{k+1}-1+(k+1)|(k+1)$
$=|(k+1)-1+(k+1)|(k+1)$
$=\underline{(k+1)}[1+(k+1)]-1$
$=\underline{(k+1)}(k+2)-1$
$=(k+2) \cdot(k+1)-1$
$=(k+2)-1$
Which is Same as R.H.S of (B)
Hence $S(k+1)$ is true if $S(k)$ is true, so condition (II) is satisfied, so $S(n)$ is true $\forall n \in \mathrm{~N}$
Q. $17 a_{n}=a_{1}+(n-1) d$ when $a_{1}, a_{1}+d, a_{1}+2 d, \ldots$. are in A.P.

Solution:
Let $S(n)$ be the given statement, i...
$S(n): a_{n}=a_{1}+(n-1) d$

1. when $\Rightarrow 1$, eqaation (i) becomes;
$S(1): a_{i}=d+(1-1) d$
$S(\sqrt{1}): a_{0}=c_{i}$
Thus $S(1)$ is true, so condition (I) is satisfied.
Suppose that given statement is true for $n=k \in N$, i.e.,
$S(k): a_{k}=a_{1}+(k-1) d$
So given statement for $\mathrm{n}=\mathrm{k}+1$ becomes
$S(k): a_{k+1}=a+k d$
(B)

Adding d on both sides of (A) we get ;
$a_{k}+d=a_{1}+(k-1) d+d$
$=a_{1}+k d-d+d$
$=a+k d=$ R.H.S $\circ \mathrm{f}(\mathrm{B})$

Hence P r + io tre if (t) tre, condition (II) is satisfied, so $S(n)$ is true $\forall n \in \mathrm{~N}$
0.1- $a_{1}=a_{1} r^{\prime-1}$ then $u_{1}, a_{1} r, a_{1} r^{2}, \ldots$ form a G.P.

Sontion

Let $S(n)$ be the given statement, i.e.,

$$
\begin{equation*}
S(n): a_{n}=a_{1} r^{n-1} \tag{i}
\end{equation*}
$$

1. when $n=1$, equation (i) becomes;
$S(1): a_{1}=a_{1} r^{1-1}$
$S(1): a_{1}=a_{1}$
Thus $S(1)$ is true, so condition (I) is satisfied.
2. Suppose that given statement is true for $n=k$, i.e.,

$$
\begin{equation*}
S(k): a_{k}=a_{1} r^{k-1} \tag{A}
\end{equation*}
$$

So given statement for $n=k+1$ becomes

$$
\begin{equation*}
S(k+1): a_{k+1}=a_{1} r^{k} \tag{B}
\end{equation*}
$$

Multiply r on both sides of (A) we get ;
$r . a_{k}=a_{1} r^{k-1} . r$
$a_{k+1}=a r^{k}$
Which is right hand side of (B)
Hence $S(k+1)$ is true if $S(k)$ is true, so condition (II) is satisfied, so $S(n)$ is true $\forall n \in \mathrm{~N}$
Q. $191^{2}+3^{2}+5^{2}+\ldots+(2 n-1)^{2}=\frac{n\left(4 n^{2}-1\right)}{3}$

Solution:

Let $S(n)$ be the given statement, ie.,
$S(n): 1^{2}+子^{2}+5^{2}+\ldots T(2,-1)^{2}=n\left(4 n^{2}-1\right)$

1. when $n=1$, ert ation (i) becomes,

$$
\begin{aligned}
& \sqrt{2}(1):(0) \times 1-1)^{2}=\frac{1\left(4 \times 1^{2}-1\right)}{3} \\
& S(1): 1=1
\end{aligned}
$$

Thus $S(1)$ is true, so condition (I) is satisfied.
2. Suppose that given statement is true for $n=k$, i.e.,
$S(k): 1^{2}+3^{2}+5^{2}+\ldots+(2 \mathrm{k}-1)^{2}=\frac{k\left(4 k^{2}-1\right)}{3}$
So given statement for $n=k+1$ becomes

$$
S(k+1): 1^{2}+3^{2}+5^{2}+\ldots+(2 k-1)^{2}+7 /(k)+()^{2}=
$$

$$
\begin{equation*}
=\frac{(k+1)\left(4 k^{2}+8 k+3\right)}{3} \tag{B}
\end{equation*}
$$

Adding $(2 k-1)$ on both sides of (A) we get;
$1^{2}+3^{2}+5^{2}+\ldots+(2 k-1)^{2}+(2 k+1)^{2}=\frac{k\left(4 k^{2}-1\right)}{3}+(2 k+1)^{2}$

$$
=\frac{k\left(4 k^{2}-1\right)+3(2 k+1)^{2}}{3}
$$

$$
=\frac{k((2 k-1)(2 k+1))}{3}+(2 k+1)^{2}
$$

$$
=(2 k+1)\left[\frac{k(2 k-1)}{3}+(2 k+1)\right]
$$

$$
=(2 k+1)\left[\frac{(2 k-1)+3(2 k+1)}{3}\right]
$$

$$
=(2 k+1)\left[\frac{2 k^{2}-k+6 k+3}{3}\right]
$$

$$
=(2 k+1)\left[\frac{2 k^{2}+5 k+3}{3}\right]
$$

$$
=(2 k+1) \frac{\left[2 k^{2}+2 k+3 k+3\right]}{3}
$$

$$
=\frac{(2 k+1)(2 k+3)(k+1)}{3}
$$

Which is right hand side of (B)

 $\forall n \in \mathrm{~N}$
$2 \cdot \sqrt[2]{3} \sqrt{3}) \cdot\left(\begin{array}{l}4 \\ 3 \\ 3\end{array}\right)+\binom{5}{3}+\ldots+\binom{n+2}{3}=\binom{n+3}{4}$
Solution:
Let $S(n)$ be the given statement, ie.,

$$
S(n):\binom{3}{3}+\binom{4}{3}+\binom{5}{3}+\ldots+\binom{n+2}{3}=\binom{n+3}{4}
$$

1. when $n=1$, equation (i) becomes;
$S(1):\binom{1+2}{3}=\binom{1+3}{4}$
$S(1):\binom{3}{3}=\binom{4}{4}$
$S(1):=1$
Thus $S(1)$ is trale, o condition-(I) is satisfied.
2. Fuppose that given statement is true for $n=k$, i.e.,
$\sim_{S}(k):\binom{3}{3}+\binom{4}{3}+\binom{5}{3}+\ldots+\binom{k+2}{3}=\binom{k+3}{4}$
So given statement for $\mathrm{n}=\mathrm{k}+1$ becomes
$S(k+1):\binom{3}{3}+\binom{4}{3}+\binom{5}{3}+\ldots+\binom{k+2}{3}+\binom{k+3}{3}=\binom{k+4}{4}$
Adding $\binom{k+3}{3}$ on both sides of (A) we get ;

$$
\begin{aligned}
\binom{3}{3}+\binom{4}{3}+\binom{5}{3}+\ldots+\binom{k+2}{3}+\binom{k+3}{3} & =\binom{k+3}{3}+\binom{k+3}{4} \\
& =\binom{k+4}{4} \quad \because C_{r-1}^{n}+C_{r}^{n}=C_{r}^{n+1}
\end{aligned}
$$

Which is right hand side of (B)
Hence $S(k+1)$ is true if $S(k)$ is true, so condition (II) is satisfied, so $S(n)$ is true $\forall n \in \mathrm{~N}$
Q. 21 Prove by the mathematical induction that for all positive integral value of n.
(i) $\quad n^{2}+n$ is divisble by 2 .

Solution:
Let $S(n)=n^{2}+n$ be the given statement, i.e.,
$S(n): n^{2}+n$
(i)

1. when $n=1$, equation (i) becomes; $S(1)=1^{2}+1=2$ that is divisible by 2.
Thus $S(1)$ is true, so condirion (I) is atisined.
2. Suppose that given statement is tr ae for $n=k$, i.e.
$S(k):+k$ is dimsit pe by 2, Hat $\frac{k^{2}+k}{2}=Q$ where Q is Quotient,
i.e.,$~ T^{2}+2=2 Q$
iog vein statement for $\mathrm{n}=\mathrm{k}+1$ becomes

$$
\begin{array}{ll}
S(k+1): & (k+1)^{2}+(k+1) \tag{B}\\
& =k^{2}+1+2 k+k+1
\end{array}
$$

$$
\begin{aligned}
& =\left(k^{2}+k\right)+(2 k+2) \\
& =2 Q+2(k+1) \text { by using A } \\
& =2[Q+(k+1)] \\
& =\text { Which is divisible oj } 2
\end{aligned}
$$

Hence $S(k-1)$ is tram if $S(l)$ is trace, condition (II) is satisfied, so $S(n)$ is true $\forall n \in$
(ii) $5^{n}-2^{n}$ is divisible by 3

Solumen
Let: (n) be the given statement, i.e.,
$S(n): 5^{n}-2^{n}$

1. when $n=1$, equation (i) becomes;
$S(1): \quad 5^{1}-2^{1}$
$S(1)$: 3 that is divisible by 3
Thus $S(1)$ is true, so condition (I) is satisfied.
2. Suppose that given statement is true for $n=k$, ie.,
$S(k): 5^{k}-2^{k}$ is divisible by 3 , so
$\frac{5^{k}-2^{k}}{3}=Q$ where Q is Quotient, i.e.,
$5^{k}-2^{k}=3 Q$
Next we have to show that statement is also true for $n=k+1$, that is we have to show that $S(k+1)=5^{k+1}-2^{k+1}$ is also divisible by 3 .
So consider

$$
\begin{aligned}
5^{k+1}-2^{k+1} & =5^{k} .5-2^{k+1} \\
& =5\left(3 Q+2^{k}\right)-2^{k+1} \\
& =15 Q+5.2^{k}-2^{k+1} \\
& =15 Q+5.2^{k}-2^{k} .2 \\
& =15 Q+2^{k}(5-2) \\
& =15 Q+3.2^{k} \\
& =3\left[5 Q+2^{k}\right]
\end{aligned}
$$

Thus statement is the for $n=k+$ when $S(k)$ is true. So condition (II) is satisfied hence rest is true $\forall n \in N$
(iii) $5^{n}-1$ is d visible by 4

Folia ion
Let the given statement is $S(n)$ ie.,

$$
\begin{equation*}
S(n): 5^{n}-1 \tag{i}
\end{equation*}
$$

1. when $\mathrm{n}=1$ then equation (i) becomes
$S(1): 5^{1}-1=4$ which is divisible by 4
So the condition (I) is satisfied
2. Let the statement is true for $n=k$ i.e.,
$S(k): 5^{k}-1^{k}$ is divisible by 4 ie
$\frac{5^{k}-1}{4}=Q$ here Q is the Quotient
$\Rightarrow 5^{k}-1=4 Q$
Nov we have io show that statement is also true for $n=k+1$ ie.,
$\sqrt[\sim]{~} \sqrt{5}$

$$
\begin{array}{rlr}
5^{k+1}-1 & =5.5^{k}-1 & \\
& =5(4 Q+1)-1 & \\
& =20 Q+5-1 & \because \operatorname{from}(\mathrm{~A}) \\
& =20 Q+4 & 5^{k}=4 Q+1 \\
& =4(5 Q+1) \text { which is divisible by } 4
\end{array}
$$

Thus $S(k+1)$ is true whenever $S(k)$ is true.
Hence result is true $\forall n \in N$.
(iv) $8 \times 10^{\mathrm{n}}-2$ is divisible by 6 .

Solution:

Let the given statement is $S(n)$ i.e.,
$S(n): 8 \times 10^{n}-2$

1. For $n=1$, equation (i) becc mes
$S(1): 3 x b^{1}-2-78$ that s divisiole by 6
2. Suppose that si er stalernent is true for $n=k$, i.e.,
$\mathcal{P}\left\{f: 8 \times 10^{k}-2\right.$ is uivisible by 6 , i.e.,

$$
\begin{align*}
& \frac{8 \times 10^{k}-2}{6}=Q \text { where } \mathrm{Q} \text { is Quotient } \\
& 8 \times 10^{k}-2=6 Q \tag{A}
\end{align*}
$$

Now we have to show that statement is also true for $n=k+1$, i.e.,
$S(k+1): \quad 8 \times 10^{k+1}-2$ is also divisible by 6 .
So consider

$$
\begin{array}{rlr}
8 \times 10^{k+1}-2 & =8 \times 10^{k} \times 10-2 & \\
& =10(6 Q+2)-2 & \\
& =60 Q+20-2 & \because \text { from }(\mathrm{A}) \\
& =60 Q+18 & 8 \times 10^{k}=6 Q+2 \\
& =6(10 Q+3) \text { that is divisible by } 6 .
\end{array}
$$

Thus $S(k+1)$ is true whenever $S(k)$ is true. Hence $S(n)$ is true $\forall n \in N$.
(v) $\quad n^{3}-n$ is divisible by 6

Solution:
Let $S(n)$ be the given statement i.e.,
$S(n): n^{3}-n$

1. When $n=1$ then equation (i) will become ;
$S(1): 1^{3}-1=0$ which is divisible by 6 .
2. Suppose that given statement is true for $n=k$ i.e.,
$S(k): k^{3}-k$ is divisible by 6 , so
$\frac{k^{3}-k}{6}=Q$ where Q is muo ie $1 \sqrt{ }$
$k^{3}-k=0$ \& \cap
(A)

Novme have io stove that statement is also true for $n=k+1$ i.e.,
S $\left(k+(1) \cdot\left(\frac{2}{n}+1\right)^{3}-(k+1)\right.$
So consider
$(k+1)^{3}-(k+1)=k^{3}+1+3 k^{2}+3 k-k-1$

$$
\begin{aligned}
& =\left(k^{3}-k\right)+3 k^{2}+3 k \\
& =6 Q+3\left(k^{2}+k\right) \quad \because k^{3}-k=6 Q
\end{aligned}
$$

$$
=6 Q+3 k(k+1)
$$

$$
=69+3(2 \mu)
$$

$$
=Q Q+p] \backsim \int_{k}(k+1)=\text { an even integer }
$$

$=6(Q+P)$ which is divisible by 6

1) aus $S(k+1)$ is true whenever $S(k)$ is true so given statement is true $\forall n \in N$.
Q. $22 \frac{1}{3}+\frac{1}{3^{2}}+\ldots+\frac{1}{3^{\mathrm{n}}}=\frac{1}{2}\left[1-\frac{1}{3^{\mathrm{n}}}\right]$

Solution:

Let $S(n)$ be the given statement ie.,

$$
\begin{equation*}
S(n): \frac{1}{3}+\frac{1}{3^{2}}+\ldots+\frac{1}{3^{n}}=\frac{1}{2}\left[1-\frac{1}{3^{n}}\right] \tag{i}
\end{equation*}
$$

1. when $n=1$, equation (i)becomes ;

$$
\begin{aligned}
S(1): \frac{1}{3^{1}} & =\frac{1}{2}\left[1-\frac{1}{3^{1}}\right] \\
\frac{1}{3} & =\frac{1}{2}\left[\frac{2}{3}\right] \\
\frac{1}{3} & =\frac{1}{3}
\end{aligned}
$$

So $S(1)$ is true so condition (I) is satisfied.
2. Suppose that given statement is true for $n=k$ ie.,

$$
\begin{equation*}
S(k): \frac{1}{3}+\frac{1}{3^{2}}+\ldots+\frac{1}{3^{k}}=\frac{1}{2}\left[1-\frac{1}{3^{k}}\right] \tag{A}
\end{equation*}
$$

Given statement for $n=k+1$ becomes ;
$S(k+1): \frac{1}{3}+\frac{1}{3^{2}}+\ldots+\frac{1}{3^{k}}+\frac{1}{3^{k+1}}=\frac{1}{2}\left[1-\frac{1}{3^{k+1}}\right]$
Adding $\frac{1}{3^{k+1}}$ on both side of (A), (We)get:

$$
=\frac{1}{2}-\frac{1}{2} \cdot \frac{1}{3^{k}}+\frac{1}{3} \cdot \frac{1}{3^{k}}
$$

$$
=\frac{1}{2}-\left(\frac{1}{2}-\frac{1}{3}\right) \cdot \frac{1}{3^{k}}
$$

$$
=\frac{1}{2}-\frac{1}{6} \cdot \frac{1}{3^{k}}
$$

$$
\begin{aligned}
& =\frac{1}{2}-\frac{1}{2} \cdot \frac{1}{3} \cdot \frac{1}{3^{k}} \\
& =\frac{1}{2}\left[1-\frac{1}{\left.3^{i}\right)^{-1}}\right]
\end{aligned}
$$

Which is right hand side of (iß)
Thus $S^{(}(k+1)$ is trie wrienevber of $(k$ is rue. So condition (II) is satisfied, so $\mathrm{S}(\mathrm{n})$ is true $\forall n \in N$.
$0.23 \sqrt{1-2}+2^{2} \cdot 4^{2}-\ldots+(-1)^{n-1} \cdot n^{2}=\frac{(-1)^{n-1} \cdot n(n+1)}{2}$

Solution:

Let the given statement is $S(n)$, i.e.,
$S(n): 1^{2}-2^{2}+3^{2}-4^{2}+\ldots+(-1)^{n-1} \cdot \mathrm{n}^{2}=\frac{(-1)^{n-1} \cdot n(n+1)}{2}$

1. when $n=1$ then equation (i) becomes ;
$S(1):(-1)^{1-1} \cdot(1)^{2}=\frac{(-1)^{1-1} \cdot(1)(1+1)}{2}$
$S(1): 1=2$
$S(1): 1=1$
So $S(1)$ is true and condition (I) is satisfied
2. Suppose that given statement is true for $\mathrm{n}=\mathrm{k}$ i.e.,
$S(k): 1^{2}-2^{2}+3^{2}-4^{2}+\ldots+(-1)^{k-1} \cdot(k)^{2}=\frac{(-1)^{k-1} \cdot k(k+1)}{2}$
Given statement for $n=k+1$ becomes
$S(k+1): 1^{2}-2^{2}+3^{2}-4^{2}+\ldots+(-1)^{k}(k+1)^{2}=\frac{(-1)^{k} \cdot(k+1)(k+2)}{2}$
By adding
$(-1)^{k}(k+1)^{2}$ on both sides of (A) we get ;

$$
1^{2}-2^{2}+3^{2}-4^{2}+\ldots+(-1)^{k-1} k^{2}+(-1)^{k}(k+1)^{2}=\frac{(-1)^{k-1} \cdot k(k+1)}{2}(-1)^{(1-1)^{k}(k+1)^{2}}{ }^{2}
$$

$$
=(-1)^{k}(k+1)\left[\frac{-k}{2}+k+1\right]
$$

$$
=(-1)^{k}(k+1)\left[\frac{-k+2 k+2}{2}\right]
$$

$$
=(-1)^{k}(k+1)\left[\frac{k+2}{2}\right]
$$

$$
=\frac{(-1)^{k}(k+1)(k+2)}{2}
$$

Which is right hand side of (B)
Thus $S(k+1)$ is true whenever $S(k)$ is true sucanditicn in satis ied, so $S(n)$ is true $\forall n \in N$.
Q. $24 \quad 1^{3}+3^{3}+5^{3}+\ldots(2 n-1)^{3}=n-\left(2 n^{2} \cdot 1\right)$

Solution:

Iet the siver saternent is $S(n)$, i.e.,

$$
\begin{equation*}
(n)=1^{3}+3^{3}+5^{3}+\ldots+(2 n-1)^{3}=n^{2}\left(2 n^{2}-1\right) \tag{i}
\end{equation*}
$$

1. When $\mathrm{n}=1$ then equation (i) becomes
$\begin{array}{rlrl}S(1): & (2(1)-1)^{3} & =1^{2}\left(2(1)^{2}-1\right) \\ S(1): & & 1 & =1\end{array}$
Thus $\mathrm{S}(1)$ is true, so condition (I) is satisfied
2. Suppose that statement is true for $\mathrm{n}=\mathrm{k}$ i.e.,
$S(k): 1^{3}+3^{3}+5^{3}+\ldots+(2 k-1)^{3}=k^{2}\left(2 k^{2}-1\right)$
Given statement for $n=k+1$ becomes ;

$$
\begin{align*}
S(k+1): 1^{3}+3^{5}+5^{3}+\ldots+(2 k-1)^{3}+(2 k+1)^{3} & =(k+1)^{2}\left(2(k+1)^{2}-1\right) \\
& =(k+1)^{2}\left(2 k^{2}+4 k+1\right) \tag{B}
\end{align*}
$$

Adding $(2 k+1)^{3}$ on both sides of (A) we get;

$$
\begin{aligned}
1^{3}+3^{3}+5^{3}+\ldots+(2 k-1)^{3}+(2 k+1)^{3} & =k^{2}\left(2 k^{2}-1\right)+(2 k+1)^{3} \\
& =2 k^{4}-k^{2}+\left(8 k^{3}+1+12 k^{2}+6 k\right) \\
& =2 k^{4}+8 k^{3}+11 k^{2}+6 k+1 \\
& =2 k^{4}+2 k^{3}+6 k^{3}+6 k^{2}+5 k^{2}+5 k+k+1 \\
& =2 k^{3}(k+1)+6 k^{2}(k+1)+5 k(k+1)+(k+1) \\
& =(k+1)\left[2 k^{3}+6 k^{2}+5 k+1\right] \\
& =(k-1)\left[2 k^{3}-2 k+4+2 k^{2}+4 k+\cdots-1\right.
\end{aligned}
$$

Which is 1 eht thand side ef (3)
Thus $S(k-1 \cdot 1)$ stale whenever $S(k)$ is true. So condition (II) is satisfied
Hence $\mathrm{S}(\mathrm{n})$ is true $\forall n \in N$.
Q.25 $(x+1)$ is factor of $x^{2 n}-1 ;(x \neq-1)$

Solution:

Let $S(n)$ be the given statement i.e.,

$$
S(n): x^{2 n}-1
$$

1. When $\mathrm{n}=1$, then equation (i) becomes $S(1): x^{2(1)}-1=x^{2}-1$ whicin is divisible by $x+5$ So (1) is trwe, so condition I) is, satisfied.
2. Suppose hat starementis tre for $\mathrm{n}=\mathrm{k}$ that is $\mathrm{s}(\mathrm{k})$ is divisible by $(x+1)$. So $x^{2 k}-1=Q$ where Q: Quotient $^{-1}$
$y^{2 \lambda}-1=Q(x+1)$
Now we show that statement is also true for $n=k+1$ i.e.,
$S(k+1)$ is also divisible by $(x+1)$.
consider $S(k+1): x^{2(k+1)}-1$
So

$$
\begin{aligned}
x^{2 k+2}-1 & =x^{2 k} \cdot x^{2}-1 \\
& =x^{2}[Q(x+1)+1]-1 \quad \because \operatorname{from}(\mathrm{~A}) \quad x^{2 k}=Q(x+1)+1 \\
& =x^{2} \cdot Q \cdot(x+1)+\left(x^{2}-1\right) \\
& =x^{2} \cdot Q \cdot(x+1)+(x-1)(x+1) \\
& =(x+1)\left[x^{2} \cdot Q+(x-1)\right]
\end{aligned}
$$

Which is divisible by $(x+1)$.
Thus $S(k+1)$ is true whenever $S(k)$ is true, so condition (II) is satisfied. Hence $S(n)$ is true $\forall n \in N$.
Q. $26(x-y)$ is a factor of $x^{n}-y^{n} ;(x \neq y)$

Solution:

Let $S(n)$ be the given statement i.e.,

$$
S(n): x^{n}-y^{n}
$$

1. When $\mathrm{n}=1$ then equation (i) becomes
$S(1): x^{1}-y^{1}$ which is divisible by $(x-y)$.
So $S(1)$ is true and condit or (I) is satisfied
2. Suppose that statemertis ruel $i=k$ i.e,
$S(k)$: y y rivis be by
i.e.,
$y-y_{0}=Q$ where Q is Quotient
$x^{k}-y^{k}=Q(x-y)$
Now we show that statement is also true for $n=k+1$ i.e.,
$S(k+1)$ is also divisible by $(x+1)$
So consider
$S(k+1): x^{k+1}-y^{k+1}=x^{k} \cdot x-y^{k+1}$

$$
=x .2(x-y) \cdot y(x-y)
$$

Whuh is divisible by $(x-y)$. thus $S(k+1)$ is true. Whenever $S(k)$ is true. So condition (II) is satisfied, so the given statement is true $\forall n \in N$.
Q. $27(x+y)$ is a factor of $x^{2 n-1}+y^{2 n-1}(x \neq-y)$

Solution:

Let $S(n)$ be the given statement i.e.,
$S(n):(x+y)$ is a factor of $x^{2 n-1}+y^{2 n-1}$

1. When $n=1$ then $S(n)$ becomes
$S(1): \quad x^{2(1)-1}+y^{2(1)-1}=x+y$ so which is divisible by $x+y$ so $S(1)$ is true and condition (I) is satisfied.
2. Suppose that statement is true for $n=k$ that is
$\frac{x^{2 k-1}+y^{2 k-1}}{x+y}=Q$
$x^{2 k-1}+y^{2 k-1}=Q(x+y)$
Now we show that statement is also true for $n=k+1$ i.e.,
So consider

$$
\begin{aligned}
x^{2 k+1}+y^{2 k+1} & =x^{2 k-1} \cdot x^{2}+y^{2 k-1} \cdot y^{2} \\
& =x^{2}\left[Q(x+y)-y^{2 k-1}\right]+y^{2 k-1} \cdot y^{2} \quad \because \text { from }(\mathrm{A}) \quad x^{2 k-1}=Q(x+y)-y^{2 k-1} \\
& =x^{2} \cdot Q(x+y)-x^{2} \cdot y^{2 k-1}+y^{2 k-1} y^{2} \\
& =x^{2} Q(x+y)-y^{2 k-1}\left[x^{2}-y^{2}\right] \\
& =x^{2} \cdot Q(x+y)-y^{2 k-1}(0 \cdot y)(x]+ \\
& =(x+y)\left[x^{2} \cdot Q-(x-y) \cdot y^{2}\right]
\end{aligned}
$$

Which(is) division by ($\mathrm{C}+1$,) thus $\mathrm{S}(\mathrm{k}-1)$ is tue whenever $\mathrm{S}(\mathrm{k})$ is true so condition (II) is satissied.
Force $S(r)$ is toue $\nabla n \in N$.
A. 18 se nathematical induction to show that
$1+2+2^{2}+\ldots+2^{n}=2^{n+1}-1$ for all non-negative integers n.
Solution:
Let $S(n)$ be the given statement i.e.,
$S(n): 1+2+2^{2}+\ldots+2^{n}=2^{n+1}-1$
(i)

1. When $n=0$ then equation (i)becomes
$S(0): 2^{0}=2^{0+1}-1 \quad$ Here $\because n \in W$
$S(0): 1=2^{1}-1$
$S(0): 1=$
So $S(0)$ is trlf, soconcition () is soticfiea
2. Suprose that s aternent is tude for $\mathrm{n}=\mathrm{k}$ i.e.,
$S(x): 1+3.2^{2}+2^{3}+\ldots+2^{k}=2^{k+1}-1$
Dow we show that statement is also true for $n=k+1$ i.e.,
$S(k+1): 1+2+2^{2}+2^{3}+\ldots+2^{k}+2^{k+1}=2^{k+2}-1$
In order to prove (B) we add 2^{k+1} on both sides of (A) we get
$1+2+2^{2}+2^{3}+\ldots+2^{k}+2^{k+1}=2^{k+1}-1+2^{k+1}$

$$
\begin{aligned}
& =2.2^{k+1}-1 \\
& =2^{k+2}-1
\end{aligned}
$$

Which is right hand side of (B)
Thus $S(k+1)$ is true whenever $S(\mathrm{k})$ is true so condition (II) is satisfied.
Hence $S(n)$ is true $\forall n \in N$.
Q. 29 If A and B are square matrices and $A B=B A$, then show by mathematical Induction that $A B^{n}=B^{n} A$ for any positive integer n.
Solution:
Let $S(n)$ be the given statement i.e.,
$S(n): A B^{n}=B^{n} A$

1. When $n=1$ then $S(n)$ becomes
$S(1): \mathrm{AB}^{1}=\mathrm{B}^{1} A$
$S(1): A B=B A$
So $S(1)$ is true, so condition (I) is satisfied
2. Suppose that statement is true for $n=k$ i.e.,
$S(k): A B^{k}=B^{k} A$
Now we show that statement is als(t)ue for $r=1+1 i \cdot e$,
$S(k+1): A B^{k+1}=B^{k+1} A$
Multip(y) 1 at i i B trom left side with (A) we set

$$
\begin{aligned}
B . & \left.A B^{k}\right) & =B^{2} B^{k} A &
\end{aligned}
$$

So $S(k+1)$ is true whenever $S(k)$ is true, so condition (II) is satisfied, hence $S(n)$ is true $\forall n \in N$.
Q. 30 Prove by the principle of mathematical finduction that $\sqrt[n]{2}$ is divighte ly: when n an odd integer.
Solution:
Let $S(n)$ pe the giver suatement he.
$S(n): r^{-1}$ is di ivisible by of

1. When $n=t$ thel equaton (i) becomes
$S(1)=\left(b^{2}-1\right.$
$S(1)=0$ which is divisible by 8
So $S(1)$ is true, so condition (I) is satisfied
2. Suppose that statement is true for $n=k$ i.e.,

$$
\begin{equation*}
S(k): \frac{k^{2}-1}{8}=Q \Rightarrow k^{2}-1=8 Q \tag{A}
\end{equation*}
$$

Where Q is quotient.
Now we show that statement is also true for $n=k+2$ i.e.,

$$
\begin{equation*}
S(k+2):(k+2)^{2}-1 \tag{B}
\end{equation*}
$$

So consider,

$$
\begin{aligned}
(k+2)^{2}-1 & =k^{2}+4 k+4-1 \\
& =\left(k^{2}-1\right)+(4 k+4) \\
& =8 Q+4(k+1) \\
& =8 Q+4(2 p) \quad \therefore k \in O, p \in N \\
& =8[Q+p]
\end{aligned}
$$

Which is divisible by 8
So $S(k+2)$ is true whenever $S(k)$ is true, so condition (II) is satisfied, hence $S(n)$ is true $\forall n \in N$.
Q. 31 Use the principle of mathematical induction to prove that $\ln _{n}=n \ln x$ positive integer $n \geq 0$ if \mathbf{x} is positive integer.
Solution:
Let $S(n)$ be the given starent i., $S(n):(11) x^{n}=n \ln x$

1. When $1=0$ then equation (i) becomes
$S(0): \ln x=0 . \ln$
$S(0):(0)=0$
$S(0): 0=0$
So $S(0)$ is true, so condition (I) is satisfied
2. \quad Suppose that statement is true for $n=k$ i.e.,
$S(k): \ln x^{k}=k \cdot \ln x$
Now we show that statement is also true for $n=k+1$ i.e., $S(k+1): \ln x^{k+1}=(k+1) \cdot \ln x$
So in order to prove (B) adding $\ln x$ on bath sices of (A) we gel;
(A) $\ln x^{k}+\ln x=k \cdot \ln x+\ln x$ $\ln \left(x^{k} \cdot-x\right)=(k+1) 11$
$\ln x^{k+1}=(k+-1), 1,2$
$\sqrt[S o]{ } S(k \cdot 1)$ is trau whenever $S(k)$ is true, so condition (II) is satisfied, hence $S(n)$ is true $\nabla n \in N$.

Use the Principle of extended mathematical Induction to prove that
Q. $32 n!>2^{n}-1$ for integral values of $n \geq 4$ Solution:

Let $S(n)$ be the given statement i. $\because \cdot$, , $S(n): n!>2^{n}-1$
$S(4): 24>15$
So $S(4)$ is true, so condition (I) is satisfied
2. Suppose that statement is true for $n=k$ i.e.,

$$
\begin{equation*}
S(k): k!>2^{k}-1 \tag{A}
\end{equation*}
$$

Now we show that statement is also true for $n=k+1$ i.e.,
$S(k+1):(k+1)!>2^{k+1}-1$
Multiply $(k+1)$ on both sides of (A) we get ;

$$
\begin{aligned}
(k+1) \cdot k! & >(k+1)\left(2^{k}-1\right) \\
(k+1)! & >2\left(2^{k}-1\right) \quad \therefore k>4 \\
(k+1)! & >2^{k+1}-2 \quad \because k+1>2 \\
(k+1)! & >\left(2^{k+1}-1\right)-1 \\
(k+1)! & >2^{k+1}-1
\end{aligned}
$$

1. When $n=4$ hen \tilde{o} (n beccones

$$
S(4)
$$

(A)
o $S(k+1)$ is true whenever $S(k)$ is true, so condition (II) is satisfied, hence $S(n)$ is true $\forall n \geq 4 . n \in N$.
Q. $33 \quad \mathbf{n}^{2}>\mathbf{n}+\mathbf{3}$ for integral values of $n \geq 3$

Solution:

Let $S(n)$ be the given statement i.e.,

$$
S(n): n^{2}>n+3
$$

(i)

1. When $n=3$ then $S(n)$ becomes
$S(3): 3^{2}>3+3$
$S(3): 9>6$

2. Suppos=that :thtemen is tilue for $n=\frac{2}{\kappa}$ i.e.,
$S(1): k^{2}>k+3$ where $k \geq 3$
Now ve lan that statement is also true for $n=k+1$ i.e.,
$\mathrm{S}(k+1):(k+1)^{2}>k+4$
Adding $2 k+1$ in (A) on both sides

$$
k^{2}+2 k+1>k+3+2 k+1
$$

$$
\begin{aligned}
& (k+1)^{2}>(k+4)+2 k \\
& (k+1)^{2}>(k+4) \quad \therefore k \geq 3
\end{aligned}
$$

So 2 k is positive integer, so by neglecting 2 k HS Decomemplare
So $S(k+1)$ is true whene $S(k)$ vaue, sn cor diticn (L) is at sfi d hence $S(n)$ is true $\forall n \geq 3, n \in T$.
Q. $34 \quad 4^{n}>3-2^{n-1}$ for antersal values of $n \geq 2$.

Solution:

Petri (n) tee the given statement i.e.,
s(n): $4^{n}>3^{n}+2^{n-1}$

1. When $n=2$ then $S(n)$ becomes
$S(2): 4^{2}>3^{2}+2^{2-1}$
$S(2): 16>9+2$
$S(2): 16>11$
So $S(2)$ is true, so condition (I) is satisfied
2. Suppose that statement is true for $n=k$ i.e.,
$S(k): 4^{k}>3^{k}+2^{k-1}$
Now we show that statement is also true for $n=k+1$ i.e.,
$S(k+1): 4^{k+1}>3^{k+1}+2^{k+1-1}$
$S(k+1): 4^{k+1}>3^{k+1}+2^{k}$
In order to prove (2) we multiply (A) by 4 on both sides we get ;
$4.4^{k}>4\left(3^{k}+2^{k-1}\right)$
$4^{k+1}>4.3^{k}+4.2^{k-1}$
$4^{k+1}>(3+1) \cdot 3^{k}+(2+2) 2^{k-1}$
$4^{k+1}>\left(3.3^{k}+2^{k}\right)+\left(3^{k}+2^{k}\right)$
$4^{k+1}>3^{k+1}+2^{k}$
$3^{k}+2^{k}$ is always positive so by neglecting it, L.H.S become more large.
So $S(k+1)$ is true whenever $S(k)$ is true, sptondition (II) is satisfied, hen@ S (al ioc rue $\forall n \geq 2, n \in N$.
Q. $35 \quad 3^{\mathrm{n}}<\mathrm{n}$! forintegral value of 186.

Solution:
Let $S(\sqrt{1})$ be the given staternent i.c.,

Whon $n>6$, suppose then for $n=7$ then $S(n)$ becomes
$S(7): 3^{7}<7$!
$S(7): 2187<5040$

So $S(7)$ is true, so condition (I) is satisfied
2. Suppose that statement is true for $n=k$ i.e., $S(k): 3^{k}<k$!
Now we show that statement is alsot ue for $r=h+1 \mathrm{i} e$,
$S(k+1): 3^{k+1}<(k+1)!\forall k=6$
(B)

$(k+1) \cdots-(k+1) k . \quad \because k+2>0$
P. $\cdot 3^{\prime}<(k+1) 3-(k+1)!\quad \because k+1>3$

$$
<(k+1)!
$$

Which is required as in the equation B
So $S(k+1)$ is true whenever $S(k)$ is true, so condition (II) is satisfied, hence $S(n)$ is true $\forall n>6$. where $n \in N$.
Q. $36 \mathrm{n}!>\mathbf{n}^{2}$ for integral value of $n \geq 4$.

Solution:

Let $S(n)$ be the given statement i.e.,
$S(n): n!>n^{2}$

1. When $n=4$ then $S(n)$ becomes
$S(4): 4!>4^{2} \Rightarrow 24>16$
So $S(4)$ is true, so condition (I) is satisfied
2. Suppose that statement is true for $n=k$ i.e.,
$S(k)$: $k!>k^{2}$
(A)

Now we show that statement is also true for $n=k+1$ i.e.,
$S(k+1):(k+1)!>(k+1)^{2}$
In order to prove (2) we multiple $(k+1)$ on both sides of (A), we get;
$(k+1) k!>(k+1) k^{2} \quad \therefore k^{2}>k+1 \quad \forall k \geq 4$
$(k+1)!>(k+1)(k+1)$
$(k+1)!>(k+1)^{2}$
So $S(k+1)$ is true whenever $S(k)$ (SI)rue, ch chndign II Satissiged hemed $S(n)$ is true $\forall n \geq 4$. where $n \in N$.
Q. $373+5+7$. $-\ldots+(2 n+5)=(n+2)(n+4)$ for integral values of $n \geq-1$.

Solution: Let $\sqrt{ }\left(v_{2}\right)$ be the civer siateshent i.e.,
$S(\sqrt{2}): 3+5)+7+\ldots+(2 n+5)=(n+2)(n+4)$
When $n=-1$ then equation (i) becomes
$S(-1): 2(-1)+5=(-1+2)(-1+4)$
$S(-1): 3=(1)(3)$
$S(-1): 3=3$
So $S(-1)$ is true, so condition (I) is satisfied
2. Suppose that statement is true for $n=k$ i.e.
$S(k): 3+5+7+\ldots+(2 k+5)=(k+2)(k-4)$
Now we show that stateme it s also tric or $n=k+1 \mathrm{i}$.,
$S(k+(1) \cdot 3+5+\sqrt{+} \cdots+(2 k+5)+(2 k+7)=(k+3)(k+5)$
(A)

In order to f rove (B) we add $\left(\frac{1}{2} k+7\right)$ on both sides of (A) we get ;

$$
\begin{aligned}
\sqrt{3}+5+7+2 \cdot(2 k+5)+(2 k+7) & =(k+2)(k+4)+(2 k+7) \\
& =k^{2}+6 k+8+2 k+7 \\
& =k^{2}+8 k+15 \\
& =k^{2}+5 k+3 k+15 \\
& =k(k+5)+3(k+5) \\
& =(k+3)(k+5)
\end{aligned}
$$

So $S(k+1)$ is true whenever $S(k)$ is true, so condition (II) is satisfied, hence $S(n)$ is true $\forall n \geq-1$, where $n \in Z$.
Q. $381+n x \leq(1+x)^{n}$ for $n \geq 2$ and $x>-1$.

Solution: Let $S(n)$ be the given statement i.e.,
$S(n): 1+n x \leq(1+x)^{n}$

1. When $n \geq 2$ then for $n=2, S(n)$ becomes
$S(2): 1+2 x \leq(1+x)^{2}$
$S(2): 1+2 x \leq 1+x^{2}+2 x$
So $S(2)$ is true, so condition (I) is satisfied
2. Suppose that statement is true for $n=k$ i.e.,
$S(k): 1+k x \leq(1+x)^{2}$
(A)

Now we show that statement is also true for $n=k+1$ i.e.,
$S(k+1): 1+(k+1) x \leq(1+x)^{k+1}$
In order to prove (B) we multiply ($x+1$) at bo harices of (A) we get
$(1+k x)(1+-x) \leq(1+x)(1+1 c)$
$1+x+2-1-k x x^{2}=(1-x)^{2}-1$
$\sqrt{-1}+1) x-k \cdot \leq(1 \div x)$
$1+(-+1) x \leq(1+x)^{k+1}$
So $S(k+1)$ is true whenever $S(k)$ is true, so condition (II) is satisfied, hence $S(n)$ is true $\forall n \geq 2$. where $n \in N$.

Binomial Theorem:

An algebraic expression consisting of two terms such as $a+x, x-2 y, a y+D$ etc. iscor a binomial or a binomial expression e.g.
$(a+x)^{2}=a^{2}+2 a x+x^{2}$
$(a+x)^{3}=a^{3}+3 a^{2} x+3 a x^{2}+x^{3}$
(i)

The right sile of (i) and (ii) are called bironial expansions of binomial $a+x$ for the indices 2 and $3 \sqrt{\text { respecivel. }}$.
In genelal,
$\sqrt[a]{a-v n}=\binom{n}{(} a^{n}+\binom{1}{1} a^{n-1} x+\binom{n}{2} a^{n-2} x^{2}+\ldots .\binom{n}{r-1} a^{n-(r-1)} x^{r-1}+\binom{n}{r} a^{n-r} x^{r}+\ldots+\binom{n}{n-1} a x^{n-1}+\binom{n}{n} x^{n}$
Or
$(a+x)^{n}=\sum_{r=0}^{n}\binom{n}{r} a^{n-r} x^{r}$
Where a and x are real numbers
In the expansion of $(a+x)^{n}$ following points can be observed.

1. The number of terms in the expansion is one greater than its index.
2. The sum of exponents of a and x in each term of the expansion is equal to its index.
3. The exponent of a decreases from index to zero.
4. The exponent of x increases from zero to index.
5. The coefficients of the terms equidistant from beginning and end of the expansion are equal as $\binom{n}{r}=\binom{n}{n-r}$
6. The $(r+1)^{t h}$ term in the expansion is $\binom{n}{r} a^{n-r} x^{r}$ and we denote it as T_{r+1}
i.e.,
$T_{r+1}=\binom{n}{r} a^{n-r} x^{r}$

Middle term in the expansion of $(a+x)^{n}$

In the expansion of $(a+x)^{n}$, the total number of terms are $n+1$

Case-I

(n is even)
If n is even then $n+1$ is od d,
So $\left(\frac{n}{2}\right.$

Case-II

in n is odd then $n+1$ is even,
So $\left(\frac{n+1}{2}\right)^{t h}$ and $\left(\frac{n+3}{2}\right)^{t h}$ terms of the expansion will be the two middle terms.

Note:

The sum of coefficients in the expansion of $(1+x)^{n}$ is 2^{n}.
The sum of odd coefficients of binomial exnansion $=$ The suntot its even cotfficientan et binomial expansion $=2^{n-1}$.

EXERCISE 8.2

Q. 1 Using binomial theorem to expand the following

(i) $(a+2 b)^{5}$

Solution:

$\left.={ }^{5} C_{0}(a)^{5}(2 b)^{0}+{ }^{5} C_{1}(a)^{4}(2 b)+{ }^{5} C^{7}()^{3}(2 b)^{2}\right)^{5} C_{3}(a)^{2}(b b)^{3}+{ }^{5} C_{4}(a)^{1}(2 b)^{4}+{ }^{5} C_{5}(a)^{0}(2 b)^{5}$
$=a^{5}+5.0^{4} 2 b+20 . a^{6} \cdot+b^{2}+10 a^{2} .8 b+5 . a^{1} 10 b+32 b^{5}$
$=a^{5}+1 a a^{\prime} b+40 a^{3} b^{2}+8 a^{3} b^{3}+80 a b^{4}+32 b^{5}$
(ii) $\left(\frac{x}{2}-\frac{2}{x^{2}}\right)^{0}$

Solution:

$={ }^{6} C_{0}\left(\frac{x}{2}\right)^{6}\left(-\frac{2}{x^{2}}\right)^{0}+{ }^{6} C_{1}\left(\frac{x}{2}\right)^{5}\left(-\frac{2}{x^{2}}\right)^{1}+{ }^{6} C_{2}\left(\frac{x}{2}\right)^{4}\left(-\frac{2}{x^{2}}\right)^{2}+{ }^{6} C_{3}\left(\frac{x}{2}\right)^{3}\left(-\frac{2}{x^{2}}\right)^{3}$
$+{ }^{6} C_{4}\left(\frac{x}{2}\right)^{2}\left(-\frac{2}{x^{2}}\right)^{4}+{ }^{6} C_{5}\left(\frac{x}{2}\right)^{1}\left(-\frac{2}{x^{2}}\right)^{5}+{ }^{6} C_{6}\left(\frac{x}{2}\right)^{0}\left(-\frac{2}{x^{2}}\right)^{6}$
$=\frac{x^{6}}{64}+6\left(\frac{x^{5}}{32}\right)\left(-\frac{2}{x^{2}}\right)+15\left(\frac{x^{4}}{16}\right)\left(\frac{4}{x^{4}}\right)+6\left(\frac{x}{2}\right)\left(\frac{-32}{x^{10}}\right)+\left(\frac{64}{x^{2}}\right)+20\left(\frac{x^{3}}{8}\right)\left(-\frac{8}{x^{6}}\right)+15\left(\frac{x^{2}}{4}\right)\left(\frac{16}{x^{8}}\right)$
$=\frac{x^{6}}{64}-\frac{3}{8} x^{3}+\frac{15}{4}-\frac{20}{x^{3}}+\frac{60}{x^{6}}-\frac{96}{x^{9}}+\frac{64}{x^{12}}$
(iii)

$$
\left(\mathbf{3 a}-\frac{\mathbf{x}}{\mathbf{3 a}}\right)^{4}
$$

Solution:

$$
\begin{align*}
& ={ }^{6} C_{0}(3 a)^{4}\left(\frac{-x}{3 a}\right)^{0}+{ }^{4} C_{1}(3 a)^{3}\left(\frac{-x}{3 a}\right)^{1}+{ }^{4} C_{2}(3 a)^{2}\left(\frac{-x}{3 a}\right)^{2}+{ }^{4} C_{3}(3 a)^{1}\left(\frac{-x}{3 a}\right)^{3}+{ }^{4} C_{3}(3 a)^{0}\left(\frac{-x}{3 a}\right)^{4} \\
& =\left(81 a^{4}\right)+4\left(27 a^{3}\right)\left(\frac{-x}{3 a}\right)+6\left(9 a^{2}\right)\left(\frac{x^{2}}{9 a^{2}}\right)+4(3 a)\left(\frac{-x^{3}}{27 a^{3}}\right)+\frac{x^{4}}{81 a^{4}} \\
& =81 a^{4}-36 a^{2} x+6 x^{2}-\frac{4 x^{3}}{9 a^{2}}+\frac{x^{4}}{81 a^{4}} \\
& \text { (iv) } \quad\left(\frac{\mathbf{x}}{\mathbf{2 y}}-\frac{\mathbf{2} \mathbf{y}}{\mathbf{x}}\right)^{8} \tag{iv}
\end{align*}
$$

Solutions
$\left.\left.={ }^{8} C_{0}\left(\frac{x}{2 y}\right) \sqrt{8}\left(\frac{-2}{x}\right]+{ }^{8} C \cdot \frac{x}{2 y}\right)^{\frac{2 y}{x}}\right)^{1}+{ }^{8} C_{2}\left(\frac{x}{2 y}\right)^{6}\left(\frac{-2 y}{x}\right)^{2}+{ }^{8} C_{3}\left(\frac{x}{2 y}\right)^{5}\left(\frac{-2 y}{x}\right)^{3}$

$$
{ }_{+}^{8} C_{4}\left(\frac{x}{2 y}\right)^{2}\left(\frac{-2 y}{x}\right)^{4}+{ }^{8} C_{5}\left(\frac{x}{2 y}\right)^{3}\left(\frac{-2 y}{x}\right)^{5}+{ }^{8} C_{6}\left(\frac{x}{2 y}\right)^{2}\left(\frac{-2 y}{x}\right)^{6}+{ }^{8} C_{7}\left(\frac{x}{2 y}\right)^{1}\left(\frac{-2 y}{x}\right)^{7}+{ }^{8} C_{8}\left(\frac{x}{2 y}\right)^{0}\left(\frac{-2 y}{x}\right)^{8}
$$

Solution:

$$
\begin{aligned}
& ={ }^{6} C_{0}\left(\sqrt{\frac{a}{x}}\right)^{6}\left(-\sqrt{\frac{x}{a}}\right)^{0}+{ }^{6} C_{1}\left(\sqrt{\frac{a}{x}}\right)^{5}\left(-\sqrt{\frac{x}{a}}\right)^{1}+{ }^{6} C_{2}\left(\sqrt{\frac{a}{x}}\right)^{4}\left(-\sqrt{\frac{x}{a}}\right)^{2}+{ }^{6} C_{3}\left(\sqrt{\frac{a}{x}}\right)^{3}\left(\sqrt{\frac{x}{a}}\right)^{3} \\
& +{ }^{6} C_{4}\left(\sqrt{\frac{a}{x}}\right)^{2}\left(-\sqrt{\frac{x}{a}}\right)^{4}+{ }^{6} C_{5}\left(\sqrt{\frac{a}{x}}\right)^{1}\left(-\sqrt{\frac{x}{a}}\right)^{5}+{ }^{6} C_{6}\left(\sqrt{\frac{a}{x}}\right)^{0}\left(-\sqrt{\frac{x}{a}}\right)^{6} \\
& =\frac{a^{3}}{x^{3}}+6\left(\frac{a^{\frac{5}{2}}}{x^{\frac{5}{2}}}\right)^{2}-\left(\frac{x^{2}}{a^{\frac{5}{2}}}\right)+15\left(\frac{a}{x}\right)^{2}\left(\frac{x}{a}\right)^{1}+20\left(\frac{a}{x}\right)^{\frac{3}{2}}\left(\frac{-x}{3}\right)^{\frac{3}{2}}+15\left(\frac{a}{x}\right)\left(\frac{x}{a}\right)^{2}+6\left(\frac{a}{x}\right)^{\frac{1}{2}}\left(\frac{-x}{a}\right)^{\frac{5}{2}}+\left(\frac{x}{a}\right)^{3} \\
& =\frac{a^{3}}{x^{3}}-\frac{6 a^{2}}{x^{2}}+15 \frac{a}{x}-20+15 \frac{x}{a}-6 \frac{x^{2}}{a^{2}}+\frac{x^{3}}{a^{3}}
\end{aligned}
$$

Q. 2 Calculate the following by means of binomial theorem:
(i) $\quad(0.97)^{3}$

Solution:

$$
\begin{aligned}
& (0.97)^{3} \\
= & (1-0.03)^{1} \\
= & \left.{ }^{3} C_{0}(1)^{3}(-0.03)^{0}+{ }^{3} C_{1}(1)^{2}(-0.03)^{1}+{ }^{3} C_{2}(1)(-0.03)^{2}+{ }^{3} C_{3}(1)\right)^{0}(-0.033) \\
= & 1-.09+.0027+.000027
\end{aligned}
$$

$$
=1.0027
$$

(ii) (12. 02$)^{4}$

Solution:

$(2.0 \text {. })^{4}$

$$
\begin{aligned}
& =\frac{x^{8}}{256 y^{8}}+8\left(\frac{x^{7}}{128 y^{7}}\right)\left(\frac{-2 y}{x}\right)+28\left(\frac{x^{6}}{64 y^{6}}\right)\left(\frac{4 y^{2}}{x^{2}}\right)+56\left(\frac{x^{5}}{32 y^{5}}\right)\left(\frac{-8 y^{3}}{x^{3}}\right)+28\left(\frac{x^{2}}{y+y}\right)\left(\frac{64 y^{6}}{x^{6}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =-\frac{x^{8}}{256}-\frac{x^{6}}{6}-\frac{7}{y^{8}}+\frac{x}{4} \frac{112 x^{4}}{y^{2}}+70-224 \frac{y^{2}}{x^{2}}+448 \frac{y^{4}}{x^{4}}-512 \frac{y^{6}}{x^{6}}+\frac{256 y^{8}}{x^{8}} \\
& \text { (v) }\left(\sqrt{\frac{\mathbf{a}}{\mathrm{x}}}-\sqrt{\frac{\mathrm{x}}{\mathrm{a}}}\right)^{6}
\end{aligned}
$$

$={ }^{4} C_{0}(2)^{4}(0.02)^{0}+{ }^{4} C_{1}(2)^{3}(0.02)^{1}+{ }^{4} C_{2}(2)^{2}(0.02)^{2}+{ }^{4} C_{3}(2)^{1}(0.02)^{3}+{ }^{4} C_{4}(2)^{0}(0.02)^{4}$
$=1 \times 16+4(8)(0.02)+6(4)(0.0004)+4(2)(0.000008)+1(0.00 n 00016 ;$
$=16+0.64+0.0096+0.000064+0.00000016$
$=16.64966416$
(iii) $(9 \hat{0})^{4}$

Solutio:

$=(10)-(1) .02)$

$$
\begin{align*}
& ={ }^{4} C_{0}(10)^{4}(-0.02)^{0}+{ }^{4} C_{1}(10)^{3}(-0.02)^{1}+{ }^{4} C_{2}(10)^{2}(-0.02)^{2}+{ }^{4} C_{3}(10)^{1}(-0.02)^{3}+{ }^{4} C_{4}(10)^{0}(-0.02)^{4} \\
& =1 \times 10000+4(1000)(-0.02)+6(100)(0.0004)-4(10)(0.000008)+1 \times(0.00000016) \\
& =10000-80+0.24+0.00032+0.00000016 \\
& =9920.228968 \tag{21}
\end{align*}
$$

(iv)

Solution:

$(21)^{5}$

$$
\begin{aligned}
& =(20+1)^{5} \\
& ={ }^{5} C_{0}(20)^{5}(1)+{ }^{5} C_{1}(20)^{4}(1)^{1}+{ }^{5} C_{2}(20)^{3}(1)^{2}+{ }^{5} C_{3}(20)^{2}(1)^{3}+{ }^{5} C_{4}(20)^{1}(1)^{4}+{ }^{5} C_{5}(20)^{0}(1)^{5} \\
& =(3200000)+5(160000)+10(8000)+10(400)+5(20)+1 \times 1 \\
& =3200000+800000+80000+4000+100+1 \\
& =4084101
\end{aligned}
$$

Q. 3 Expand and simply the followings.

(i) $\quad(a+\sqrt{2} x)^{4}+(a-\sqrt{2} x)^{4}$

Solution:

$(a+\sqrt{2} x)^{4}={ }^{4} C_{0} a^{4}(\sqrt{2} x)^{0}+{ }^{4} C_{1}\left(a^{3}\right)(\sqrt{2 x})^{1}+{ }^{4} C_{2}\left(a^{2}\right)(\sqrt{2} x)^{2}+{ }^{4} C_{3}(a)(\sqrt{2} x)^{3}$ $+{ }^{4} C_{4}(a)^{0}(\sqrt{2} x)^{4}$
Similarly,

$$
\begin{align*}
& \left.(a-\sqrt{2 x})^{4}={ }^{4} C_{0} a^{4}(\sqrt{2 x})-{ }^{4} C^{11} a^{0}\right)\left(\sqrt{2(i)}+\left(-2\left(a^{2}\right)-\sqrt{2} x\right)^{2}\right. \\
& -{ }^{4} C_{3}(a)(\sqrt{2 x})^{3}+{ }^{4} C_{4}(a)^{0}(\sqrt{2 x})^{4} \tag{ii}
\end{align*}
$$

Adding i) dF (i) ue get
$\sqrt{a}-\sqrt{2(2 x})+(a-\sqrt{2} x)^{4}=2\left({ }^{4} C_{0} a^{4}(\sqrt{2} x)^{0}+{ }^{4} C_{2}\left(a^{2}\right)(\sqrt{2} x)^{2}+{ }^{4} C_{4}(a)^{0}\left(\sqrt{2} x^{4}\right)\right.$

$$
=2 a^{4}+24 a^{2} x^{2}+8 x^{4}
$$

(ii) $(2+\sqrt{3})^{5}+(2-\sqrt{3})^{5}$

Solution:

$$
\begin{aligned}
(2+\sqrt{3})^{5}={ }^{5} C_{0}(2)^{5} & (\sqrt{3})^{0}+{ }^{5} C_{1}(2)^{4}(\sqrt{3})^{1}+{ }^{5} C_{2}(2)^{3}(\sqrt{3})^{2} \\
& +{ }^{5} C_{3}(2)^{2}(\sqrt{3})^{3}{ }^{5} C_{4}(\sqrt{2})(\sqrt{-7})^{4}+{ }^{5}{ }^{5}(2)^{0}(\sqrt{3})^{5}
\end{aligned}
$$

Similarly,
$(2-\sqrt{3})^{5}=C(2)^{1}(\sqrt{3})^{3}-{ }^{5} C_{N}(2)^{4}(\sqrt{3})^{1}+E_{2}(2)^{3}(\sqrt{3})^{2}$

$$
\begin{equation*}
E_{3}(2)^{2}(\sqrt{3})^{3}+{ }^{5} C_{4}(2)^{1}(\sqrt{3})^{4}-{ }^{5} C_{5}(2)^{0}(\sqrt{3})^{5} \tag{ii}
\end{equation*}
$$

Addinesi) and (ii) we get;

$$
\begin{aligned}
(2+\sqrt{3})^{5}+(2-\sqrt{3})^{5} & =2\left({ }^{5} C_{0}(2)^{5}(3)^{0}+{ }^{5} C_{2}(2)^{3}(\sqrt{3})^{2}+{ }^{5} C_{4}(2)^{1}(\sqrt{3})^{4}\right. \\
& =2(32+10 \times 8 \times 3+5 \times 2 \times 9) \\
& =64+480+180 \\
& =724
\end{aligned}
$$

(iii) $(2+i)^{5}-(2-i)^{5}$

Solution:

$$
\begin{align*}
&(2+i)^{5}={ }^{5} C_{0}\left(2^{5}\right)(i)^{0}+{ }^{5} C_{1}\left(2^{4}\right)(i)+{ }^{5} C_{2}(2)(i)^{2} \\
&+{ }^{5} C_{3}(2)^{2}(i)^{3}+{ }^{5} C_{4}(2)^{1}(i)^{4}+{ }^{5} C_{5}(2)^{0}(i)^{5} \tag{i}
\end{align*}
$$

Similarly;

$$
\begin{aligned}
(2-i)^{5}={ }^{5} C_{0}(2)^{5}(i)^{0}-{ }^{5} C_{1}(2)^{4} & (i)+{ }^{5} C_{2}(2)^{3}(i)^{2} \\
& \quad-{ }^{5} C_{3}(4)(i)^{3}+{ }^{5} C_{4}(2)(i)^{4}+{ }^{5} C_{5}(2)^{0}(i)^{5}
\end{aligned}
$$

Subtracting (ii) from (i)

$$
\begin{aligned}
(2+i)^{5}-(2-i)^{5} & =2\left({ }^{5} C_{1}(2)^{4}(i)+{ }^{5} C_{3}(2)^{2}(i)^{3}+{ }^{5} C_{5}(2)^{0}(i)^{5}\right) \\
& =2(5 \times 16 i+10 \times 4(-i)+(+i)) \\
& =2(80 i-40 i+i) \\
& =2(41 i) \\
& =82 i
\end{aligned}
$$

(iv) $\quad\left(x+\sqrt{x^{2}-1}\right)^{3}+\left(x-\sqrt{x^{2}-3}\right)^{3}$

Solution:

$$
=\sqrt{3}^{3} \cdot x^{3}\left(\sqrt{x} \cdot \sqrt{x^{2}}-1\right)^{3}+{ }^{3} r_{1}(x)(\sqrt{x-1})^{1}+{ }^{3} C_{2}(x)^{1}\left(\sqrt{x^{2}-1}\right)^{2}+{ }^{3} c_{3}(x)^{0}\left(\sqrt{x^{2}-1}\right)^{3}
$$

3 ni any,
$\left(x-\sqrt{x^{2}}-1\right)^{3}$

$$
\begin{equation*}
={ }^{3} C_{0} x^{3}\left(\sqrt{x^{2}-1}\right)^{0}+{ }^{3} C_{1}(x)^{2}\left(\sqrt{x^{2}-1}\right)^{1}+{ }^{3} C_{2}(x)^{1}\left(\sqrt{x^{2}-1}\right)^{2}-{ }^{3} C_{3}(x)^{0}\left(\sqrt{x^{2}}-1\right)^{3} \tag{ii}
\end{equation*}
$$

Adding (i) and (ii) we get;

$$
\begin{aligned}
\left(x+\sqrt{x^{2}-1}\right)^{3}+\left(x-\sqrt{x^{2}-1}\right)^{3} & =2\left(x_{0} x^{3}\left(\sqrt{-x^{2}}-\sqrt{1}\right)^{0}\right. \\
& =2\left(x^{3}+\left(x^{2}(x)^{2}-1\right)^{0}\right. \\
& =2\left(4 x^{3}-3 x\right) \\
& =2 x\left(4 x^{2}-3\right)
\end{aligned}
$$

Q. 4 Expand the following in ascending power of x.

(i) $\quad\left(2+x-x^{2}\right)^{4}$

Solution:

$\left(2+x-x^{2}\right)^{4}$
Put $2+x=a$
then

$$
\begin{aligned}
\left(a-x^{2}\right)^{4} & ={ }^{4} C_{0}(a)^{4}\left(-x^{2}\right)^{0}+{ }^{4} C_{1}(a)^{3}\left(-x^{2}\right)^{1}+{ }^{4} C_{2}(a)^{2}\left(-x^{2}\right)^{2}+{ }^{4} C_{3}(a)^{1}\left(-x^{2}\right)^{3}+{ }^{4} C_{4}(a)^{0}\left(-x^{2}\right)^{4} \\
& =a^{4}-4 a^{3} x^{2}+6 a^{2} x^{4}-4 a x^{6}+x^{8}
\end{aligned}
$$

Put $a=2+x$ back we get;

$$
\begin{aligned}
& \left(2+x-x^{2}\right)^{4}=(2-x)^{4}-4 x^{2}(2+x)^{3}+6 x^{4}(2+x)^{2}-4 x^{6}(2+x)+x^{8} \\
& =\left[{ }^{4} C_{0} 2^{4}+{ }^{4} C_{1}(2)^{3} x+{ }^{4} C_{2}(2)^{2} x^{2}+{ }^{4} C_{3}(2)^{1} x^{3}+{ }^{4} C_{4}{ }^{0} x^{4}\right] \\
& -4 x^{2}\left[{ }^{3} C_{0} 2^{3}+{ }^{3} C_{1}\left(2^{2}\right)(x)+{ }^{3} C_{2}\left(2^{1}\right)\left(x^{2}\right)+{ }^{3} C_{3} x^{3}\right]+6 x^{4}\left(4+4 x+x^{2}\right)-4 x^{6}(2+x)+x^{8} \\
& =\left(16+32 x+24 x^{2}+8 x^{3}+x^{4}\right)-4 x^{2}\left(8+12 x+6 x^{2}+x^{3}\right) \\
& \quad+6 x^{4}\left(4+4 x+x^{2}\right)-4 x^{6}(2+x)+x^{8} \\
& =16+32 x-8 x^{2}-40 x^{3}+x^{4}+20 x^{5}-2 x^{6}-4 x^{7}+x^{8}
\end{aligned}
$$

$$
\text { (ii) } \quad\left(1-x+x^{2}\right)^{4}
$$

Solution:

Let $(1-x)=a$ then

$$
\begin{aligned}
& \left(1-x+y^{2}\right)^{4}=\left(a+x^{2}\right)^{4} \\
& \left(1-x+x^{2}\right)^{4}=\left(x+x^{2}\right)^{4}
\end{aligned}
$$

$=\sqrt{4} C_{0}(a)^{4} .{ }_{4}^{4} d_{1}(a)^{3}\left(x^{2}\right)^{1}+{ }^{4} C_{2}(a)^{2}\left(x^{2}\right)^{2}+{ }^{4} C_{3}(a)^{1}\left(x^{2}\right)^{3}+{ }^{4} C_{4}(a)^{0}\left(x^{2}\right)^{4}$
$=a^{4}+4 a^{3} x^{2}+6 a^{2} x^{4}+4 a x^{6}+x^{8}$
Put $a=1-x$ Back, we get;
$=(1-x)^{4}+4 x^{2}(1-x)^{3}+6 x^{4}(1-x)^{2}+4 x^{6}(1-x)+8 x$
$=1-4 x+6 x^{2}-4 x^{3}+x^{4}+4 x^{2}-12 x^{3}+12 x^{4}-4 x^{5}+6 x^{4}-12 x^{5}+6 x^{6}+4 x^{6}-4 x^{5}+x^{8}-16 x^{5}$
$=\left\{1-4 x+6 x^{2}-4 x^{3}+x^{4}\right\}+4 x^{2}\left\{1-3 x+3 x^{2}-x^{3}\right\}+6 x^{4}\left(1-2 x+x^{2}\right)+41-\infty$
$=1-4 x+6 x^{2}+4 x^{2}-4 x^{3}-12 x^{3}+x^{4}+12 x^{4}+5 x^{4}-4 x^{5}-12 x^{5}+6 x^{0}-4 x-(4) x^{7}+$
$=1-4 x+10 x^{2}-16 x^{3}+19 . x^{4}-16 x^{2}+0 x^{6}-4 x^{7}+x^{8}$
(iii) $\left(1, x-x^{2}\right)^{4}$

Solutio: :

Let $(1-x)=a$ then

$\sqrt{N} \cdot\left(-r^{2}\right)=\left(a-x^{2}\right)^{4}$

$=a^{4}-4 a^{3} x^{2}+6 a^{2} x^{4}-4 a^{1} x^{6}+x^{8}$
Put back $a=1-x$ we get;

$$
\begin{aligned}
& =(1-x)^{4}+4 x^{2}(1-x)^{3}+6 x^{4}(1-x)^{2}-4 x^{6}(1-x)+x^{8} \\
& \left(1+\binom{4}{1} 1 \cdot(-x)+\binom{4}{2} 1 \cdot(-x)^{2}+\binom{4}{3} 1 \cdot(-x)^{3}+\binom{4}{4} 1 \cdot(-x)^{4}\right) \\
& +4 x^{2}\left(1+\binom{3}{1} 1 \cdot(-x)^{1}+\binom{3}{2} 1 \cdot(-x)^{2}+\binom{3}{3} 1 \cdot(-x)^{3}\right)+6 x^{4}\left(1-2 x+x^{2}\right)-4 x^{6}+4 x^{7}+x^{8} \\
& =1-4 x+6 x^{2}-4 x^{3}+x^{4}+4 x^{2}-12 x^{3}+12 x^{4}-4 x^{5}+6 x^{4}-2 x^{5}+6 x^{6}+4 x^{6}-4 x^{7}+x^{8} \\
& =1-4 x+10 x^{2}-16 x^{3}+19 x^{4}-16 x^{5}+10 x^{6}-4 x^{7}+x^{8}
\end{aligned}
$$

Q. 5 Expand the following in descending powers of \boldsymbol{x}.

(i) $\quad\left(x^{2}+x-1\right)^{3}$

Solution:

Let $x-1=a$ them
$\left(x^{2}+x-1\right)^{3}=\left(x^{2}+a\right)^{3}$
$={ }^{3} C_{0}\left(x^{2}\right)^{3}(a)^{0}+{ }^{3} C_{1}\left(x^{2}\right)^{2}(a)^{1}+{ }^{3} C_{2}\left(x^{2}\right)^{1}(a)^{2}+{ }^{3} C_{3}\left(x^{2}\right)^{0} a^{3}$
pulling back $x-1=a$ we get;
$=x^{6}+3 x^{4}(x-1)+3 x^{2}(x-1)^{2}+(x-1)^{3}$
$=x^{6}+3 x^{5}-3 x^{4}+3 x^{2}\left(x^{2}-2 x+1\right)+\left(x^{3}-3 x^{2}+3 x-1\right)$
$=x^{6}+3 x^{5}-3 x^{4}+3 x^{4}-6 x^{3}+3 x^{2}-x x^{3}-3 x^{4}+3 x-1$
$=x^{6}+3 x^{5}-5 x^{3}+3 x-1$
(ii)

厅olinion:
Let. $-\mathrm{O}_{2}=a$ then
$\left(x-1-\frac{1}{x}\right)^{3}=\left(a-\frac{1}{x}\right)^{3}$

$$
\begin{aligned}
& ={ }^{3} C_{0}(a)^{3}\left(\frac{-1}{x}\right)^{0}+{ }^{3} C_{1}(a)^{2}\left(\frac{-1}{x}\right)+{ }^{3} C_{2}(a)^{1}\left(\frac{-1}{x}\right)^{2}+{ }^{3} C_{3}(a)^{0}\left(\frac{-1}{x}\right)^{3} \\
& =a^{3}-3 a^{2}\left(\frac{1}{x}\right)+3 a\left(\frac{1}{x^{2}}\right)-\frac{1}{x^{3}}
\end{aligned}
$$

Put a $a=x-1$ back we get:

F. $\left.(x)-3 x^{2}+3 x-1\right)-\frac{3}{x}\left(x^{2}-2 x+1\right)+\frac{3}{x^{2}}(x-1)-\frac{1}{x^{3}}$
$=x^{3}-3 x^{2}+3 x-1-3 x+\frac{-2 x}{x}+\frac{3 /}{x}-\frac{3}{x^{2}}-\frac{1}{x^{3}}$
$=x^{3}-3 x^{2}+5-\frac{3}{x^{2}}-\frac{1}{x^{3}}$

Q. 6 Find the term involving:

(i) $\quad x^{4}$ in the expansion of $(3-2 x)^{7}$

Solution:

As we know that $(r+1)^{t h}$ term in the expansion of $(a+b)^{n}$ is
$\mathrm{T}_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}$
Here $n=7, a=3, b=2 x$ so we get;
$\mathrm{T}_{r+1}={ }^{7} C_{r}(3)^{7-r}(-2 x)^{r}$
For the term involving x^{4}, put exponent of x equal to 4 we get $r=4$
So
$\mathrm{T}_{4+1}={ }^{7} C_{4}(3)^{7-4}(-2 x)^{4}$
$\mathrm{T}_{5}=35(27)(16) x^{4}$
$\mathrm{T}_{5}=15120 x^{4}$
(ii) x^{-2} in the expansion of $\left(x-\frac{2}{x^{2}}\right)^{13}$

Solution:

As we know that $(r+1)^{\text {th }}$ term in the expamsion oi $(a+b)^{\prime}$ is
$\mathrm{T}_{r+1}={ }^{n} C_{r} q^{n-r} b^{r}$
Here $n=-, a, \mathrm{a}=x, b=\frac{-A}{-2}, \mathrm{~g}, \mathrm{~g}$,

$$
\begin{aligned}
\mathrm{T}_{r+1} & ={ }^{13} C_{r} x^{13-r}(-2)^{r} x^{-2 r} \\
& ={ }^{13} C_{r}(-2)^{r} x^{13-3 r}
\end{aligned}
$$

For the term involving x^{-2} put the exponent of x equal to -2 we get;
$13-3 r=-2 \Rightarrow 15=3 r$
$r=5$ we get;
$\mathrm{T}_{5+1}={ }^{13} C_{5}(-2)^{5}(x)^{-2}$
$=(1287)(-32) x^{-2}$
$\mathrm{T}_{6}=\frac{-41}{2} 184$

Solution:

As we know that $(r+1)^{\text {th }}$ term in the expansion of $(a+b)^{n}$ is
$\mathrm{T}_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}$
Here $a=\frac{2}{x}, b=-a, n=9$ we get;
$\mathrm{T}_{r+1}={ }^{9} C_{r}\left(\frac{2}{x}\right)^{9-r}(-a)^{r}$
For the term involving a^{4} put exponent of \boldsymbol{a} equal to 4 i.e., $r=4$ So
$\mathrm{T}_{4+1}={ }^{9} C_{4}\left(\frac{2}{x}\right)^{5}(-a)^{4}$
$\mathrm{T}_{5}=\frac{4032 a^{4}}{x^{5}}$
(iv) y^{3} in the expansion of $(x-\sqrt{y})^{11}$

Solution:

As we know that $(r+1)^{t h}$ term in the expansion of $(a+b)^{n}$ is
$\mathrm{T}_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}$
Here $n=11, a=x, b=-\sqrt{y}$
So
$\mathrm{T}_{r+1}={ }^{11} C_{r}(x)^{11-r}(-\sqrt{y})^{r}$, St pposepocures is T$)_{+1}$ i.e.. $y^{3}=y \Rightarrow \sqrt{\frac{r}{2}}=$

INow

$$
\begin{aligned}
\mathrm{T}_{6+1} & ={ }^{11} C_{6}(x)^{11-6}\left(-y^{r / 2}\right)^{6} \\
T_{6+1} & =\binom{11}{6} x^{5} y^{3} \\
T_{7} & =462 x^{5} y^{3}
\end{aligned}
$$

Q. 7 Find the roefficient of,

(i)

Guntion

As we know that $(r+1)^{\text {th }}$ term in the expansion of $(a+b)^{n}$ is

$$
\mathrm{T}_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}
$$

Here $a=x, b=-\frac{3}{2 x}, n=10$
So

$$
\begin{aligned}
\mathrm{T}_{r+1} & ={ }^{10} C_{r}\left(x^{2}\right)^{10-r}\left(\frac{-3}{2 x}\right)^{r} \\
& ={ }^{10} C_{r} x^{20-2 r}\left(\frac{-3}{2}\right)^{r} x^{-r} \\
& ={ }^{10} C_{r}\left(\frac{-3}{2}\right)^{r} x^{20-2 r-r} \\
& ={ }^{10} C_{2}\left(-\frac{3}{2}\right)^{r}(x)^{20-3 r}
\end{aligned}
$$

For the term involving x^{5}, put $20-3 r=5$ we get; i.e.,

$$
\begin{gathered}
20-3 r=5 \\
15=3 r \\
5=r \\
\mathrm{~T}_{5+1}={ }^{10} C_{5}\left(\frac{-3}{2}\right)^{5} x^{5} \\
\mathrm{~T}_{6}=\frac{-15309}{8} x^{5}
\end{gathered}
$$

Thus coecricient of $v^{5}:-153093=-1913625$
(ii) $\sqrt{1}^{n}$ in ine rxpasion of $\left(x^{2}-\frac{1}{x}\right)^{2 n}$

Salation:

As we know that $(r+1)^{t h}$ term in the expansion of $(a+b)^{n}$ is

$$
\mathrm{T}_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}
$$

Here $n=2 n, a=x^{2}, b=-\frac{1}{x}$ we get;

$$
\begin{aligned}
\mathrm{T}_{r+1} & ={ }^{2 n} C_{r}\left(x^{2}\right)^{2 n-r}\left(\frac{-1}{x}\right)^{r} \\
& ={ }^{2 n} C_{r}(x)^{4 n-2 r}(-1)^{r} x^{-r} \\
& ={ }^{2}{ }^{2}{ }^{n-1}
\end{aligned}
$$

For the term involving x pet the exponent of x equal to n, so
$4 x+-31=2$

$$
\begin{aligned}
3 n & =3 \\
r & =n
\end{aligned}
$$

Thus
$\mathrm{T}_{n+1}={ }^{2 n} C_{n} x^{n}(-1)^{n}$
$\mathrm{T}_{n+1}=\frac{(2 n)!}{n!\times n!}(-1)^{n} x^{n}$
So the coefficient of x^{n} is $\frac{(-1)^{n}(2 n)!}{(n!)^{2}}$
Q. $8 \quad$ Find the $6^{\text {th }}$ term in the expansion of $\left(x^{2}-\frac{3}{2 x}\right)^{10}$

Solution:

As we know that $(r+1)^{t h}$ term in the expansion of $(a+b)^{n}$ is
$\mathrm{T}_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}$
Here $a=x^{2}, b=\frac{-3}{2 x}, n=10$
So, we get

$$
\mathrm{T}_{r+1}={ }^{10} C_{r}\left(x^{2}\right)^{10-r}\left(\frac{-3}{2 x}\right)^{r}
$$

for the $6^{\text {th }}$ term put $r=5$ we get;

$$
\begin{aligned}
& \mathrm{T}_{5+1}={ }^{10} C_{5}\left(x^{2}\right)^{10-5}\left(\frac{-3}{2 x}\right)^{5} \\
& =2525^{10} \times\left(\frac{-243}{32}\right) \frac{1}{)^{x}} \\
& \mathrm{~T}_{6}=-50^{8}-9-x^{5}=-1913.625 x^{5}
\end{aligned}
$$

Wh teterm independent of x in the following expansions.
(i) $\left(x-\frac{2}{x}\right)^{10}$

Solution:

As we know that $(r+1)^{\text {th }}$ term in the expansion of $(a+b)^{n}$ is
$\mathrm{T}_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}$
Here $n=10, a=x, b=\frac{-2}{x}$

For the term involving x^{0} (term independent from x) put exponent of x equal to zero i.e., $10-2 r=0$

$$
r=5
$$

Thus
$\mathrm{T}_{5+1}={ }^{10} C_{5} x^{0}(-2)^{5}$

$$
=\frac{10 \times 9 \times 8 \times 7 \times 6}{5 \times 4 \times 3 \times 2 \times 1}(-32)
$$

$\mathrm{T}_{6}=-8064$
(ii) $\left(\sqrt{x}+\frac{1}{2 x^{2}}\right)^{10}$

Solution:

As we know that $(r+1)^{t h}$ term in the expansion of $(a+b)^{n}$ is
$\mathrm{T}_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}$
Here $n=10, a=\sqrt{x}, b=\frac{1}{2 x^{2}}$

$$
\begin{aligned}
\mathrm{T}_{r+1} & ={ }^{10} C_{r}(\sqrt{x})^{10-r}\left(\frac{1}{2 x^{2}}\right)^{r} \\
& ={ }^{10} C_{r}(x)^{5-\frac{r}{2}}\left(\frac{1}{2}\right)^{r} x^{-2 r} \\
& ={ }^{10} C_{r}\left(\frac{1}{2}\right)^{r} x^{5-\frac{r}{2}-2 r}
\end{aligned}
$$

$$
\left.\mathrm{T}_{r+1}={ }^{(0)}\left(\frac{1}{2}\right)^{r}\right)^{5-5 r} 2 \cdot 0 \cdot \frac{12-r-2}{2}-\frac{10}{2}=5-\frac{5}{2} r
$$

For the term inyplying x (term independent from x) put exponent of x equal to zero i.e.,

Put $r=2$ in the last expansion we get;
$\mathrm{T}_{3}={ }^{10} C_{2}\left(\frac{1}{2}\right)^{2} x^{0}$

$$
=\frac{10 \times 9}{2} \times \frac{1}{4}
$$

$\mathrm{T}_{3}=\frac{45}{4}$
(iii)

Solution:
$\left(1+x^{2}\right)^{3}\left(\frac{x^{2}+1}{x^{2}}\right)^{4}$
$=\left(1+x^{2}\right)^{3} \frac{\left(1+x^{2}\right)^{4}}{x^{8}}$
$=x^{-8}\left(1+x^{2}\right)^{7}$
$(r+1)^{\text {th }}$ term in the expansion of $\left(1+x^{2}\right)^{7}$ is
$\mathrm{T}_{r+1}={ }^{7} C_{r}(1)^{7-r}\left(x^{2}\right)^{r}$
$={ }^{7} C_{r} x^{2 r}$
Thus

$$
\begin{aligned}
& =x^{-8} \times{ }^{7} C_{r} x^{2 r} \\
& ={ }^{7} C_{r} x^{2 r-8}
\end{aligned}
$$

For the term involving x^{0} (term independent from x) put exponent of x equal to zero i.e.,
Put $2 r-8=0 \Rightarrow r=4$
So required term independent from x is

$$
\begin{aligned}
\mathrm{T}_{4+1} & ={ }^{7} C_{4} x^{0} \\
& =35
\end{aligned}
$$

Q. 10 Determine the middle term in the following expansions:
(i)

$$
\left(\frac{1}{x}-\frac{x^{2}}{2}\right)^{12}
$$

Solution:
Here $n=2\left(t, \operatorname{er}\left(\right.\right.$ so that ridfle.term is $\left(\frac{n}{2}+1\right)^{\text {th }}$ term i.e.,

So

$$
\begin{aligned}
& \mathrm{T}_{r+1}={ }^{n} C_{r} a^{-r} b^{r} \\
& \mathrm{~T}_{6+1}={ }^{12} C_{6}\left(\frac{1}{x}\right)^{6}\left(\frac{-x^{2}}{2}\right)^{6}
\end{aligned}
$$

$$
=0(26)\left(\frac{1}{4} \cdot\left(\frac{x^{12}}{x}\right)\right.
$$

$\sqrt{7} \cdot \frac{231}{16} x$
(ii)

$$
\left(\frac{3}{2} x-\frac{1}{3 x}\right)^{11}
$$

Solution:

Here $n=11(o d d)$, so the middle terms are $\left(\frac{n+1}{2}\right)^{\text {th }}$ and $\left(\frac{n+3}{2}\right)^{t h}$
So
$\left(\frac{n+1}{2}\right)^{\text {th }}=\left(\frac{11+3}{2}\right)^{\text {th }}=6^{\text {th }}$ term
$\left(\frac{n+3}{2}\right)^{\text {th }}=\left(\frac{11+3}{2}\right)^{\text {th }}=7^{\text {th }}$ term
Here $a=\frac{3}{2}, b=-\frac{1}{3 x}, n=11$
For $6^{\text {th }}$ term:

$$
r=5
$$

$\mathrm{T}_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}$
$\mathrm{T}_{6}={ }^{11} C_{5}\left(\frac{3}{2} x\right)^{6}\left(\frac{-1}{3 x}\right)^{5}$
$\mathrm{T}_{6}=\frac{-693}{32} x$
For $7^{\text {th }}$ term:
$r=6$
$\mathrm{T}_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}$

$\sqrt{\sqrt{2} \sqrt{2} \sqrt{46}-\frac{1}{25}-\frac{1}{2} \sqrt{2}}=$
(iii) $\left(2 x-\frac{1}{2 x}\right)^{2 m+1}$

Solution:

Here $2 m+1=$ odd so the middle $t \backsim r n s$ are
$\left(\frac{n+1}{2}\right)^{t h} \mathrm{a} \frac{\mathrm{au}}{\left(\frac{n+3}{2}\right)^{\text {th }} \text { torm } \mathrm{s}}$
So
$\left.\sqrt{\left(-\frac{2}{2}\right)^{n}}\right)^{n}=\left(\frac{2 m, 2+1+\frac{1}{2}}{2}\right)^{n}=(m+1)^{\text {th }}$ term
$\left(\frac{n+3}{2}\right)^{t h}=\left(\frac{2 m+1+3}{2}\right)^{t h}=(m+2)^{\text {th }}$ term
Here $a=2 x, b=-\frac{1}{2 x}, n=2 m+1, r=m$
For $(m+1)^{\text {th }}$ term:

$$
\begin{aligned}
r & =m \\
\mathrm{~T}_{r+1} & ={ }^{n} C_{r} a^{n-r} b^{r} \\
\mathrm{~T}_{m+1} & ={ }^{n} C_{m}(2 x)^{n-m}\left(\frac{-1}{2 x}\right)^{m} \\
& ={ }^{2 m+1} C_{m}(2 x)^{2 m+1-m}\left(\frac{-1}{2 x}\right)^{m} \\
& =\frac{(2 m+1)!}{m!(m+1)!}(2 x)^{m+1}(-1)^{m} \times \frac{1}{(2 x)^{m}} \\
& =\frac{(2 m+1)!}{m!(m+1)!}(-1)^{m} 2 x
\end{aligned}
$$

For $(m+2)^{\text {th }}$ term:
$r=m+1$
$\mathrm{T}_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}$
$\mathrm{T}_{m+2}={ }^{n} C_{m+1}(2 x)^{n-(m+1)}\left(\frac{-1}{2 \cdot r}\right)^{m+1}$

$$
=\frac{(2 m+1)!}{(m+1)!(m)!}(-1)^{m+1} \cdot \frac{(2 x)^{m}}{(2 x)^{m+1}}
$$

$$
=\frac{(2 m+1)!}{m!(m+1)!}(-1)^{m+1} \frac{1}{2 x}
$$

Q. 11 Find $(2 n+1)^{\text {th }}$ term from the endian the xp a is on of Solution:
$\left(2 n+1\right.$ the frit frop ent in the levpansion of $\left(x-\frac{1}{2 x}\right)$ is $(2 n+1)^{\text {th }}$ term from the Vegerfier in expansion of $\left(\frac{-1}{2 x}+x\right)^{3 n}$
As $(r+1)^{\text {th }}$ term of $(a+b)^{n}$ is
$\mathrm{T}_{r+1}={ }^{\eta} C_{r} a^{n-r} b^{r}$
Put $r=2 n, a=\frac{-1}{2 x}, b=x, n=3 n$ we get;
$\mathrm{T}_{2 n+1}={ }^{3 n} C_{2 n}\left(\frac{-1}{2 x}\right)^{3 n-2 n}(x)^{2 n}$
$=\frac{(3 n)!}{(3 n-2 n)!\times(2 n)!} \times\left(\frac{-1}{2}\right)^{n} \times \frac{1}{x^{n}} \times x^{2 n}$
$\mathrm{T}_{2 n+1}=\frac{(-1)^{n}}{2^{n}} \times \frac{(3 n)!}{(2 n)!\times \mathrm{n}!} x^{n}$
Q. 12 Show that middle term of $(1+x)^{2 n}$ is $\frac{1.3 .5 \ldots .(2 n-1)}{n!} 2^{n} x^{n}$

Proof:
Here $2 n=$ even so the middle term is $\left(\frac{n}{2}+1\right)^{\text {th }}=\left(\frac{2 n}{2}+1\right)^{\text {th }}=(n+1)^{\text {th }}$ term.
Thus
$\mathrm{T}_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}$
Here $r=n, a=1, b=x, n=2 n$
So
$\mathrm{T}_{n+1}={ }^{2 n} C_{n}(1)^{2 n-n}(x)^{n}$ $=2-(2 n)!-x$ $=\frac{(2 n)!}{2} \frac{1}{n}$!

$$
=\frac{(2 n)(2 n-1)(2 n-2)(2 n-3)(2 n-4) \ldots .4 .3 .2 .1}{n!\times n!} \times x^{n}
$$

Hence the proof.

Q. 13 Show that

$\binom{n}{1}+\binom{n}{3}+\binom{n}{5}+\ldots \ldots\binom{n}{n-1}=2^{n-1}$

Proof:

We know that

$$
\begin{equation*}
(1+x)^{n}=\binom{n}{0}+\binom{n}{1} x+\binom{n}{2} x^{2}+\ldots \ldots+\binom{n}{n} x^{n} \tag{i}
\end{equation*}
$$

Put $x=1$ in (i) we get;

$$
\begin{align*}
& (1+1)^{n}=\binom{n}{0}+\binom{n}{1}+\binom{n}{2}+\ldots .+\binom{n}{n} \\
& 2^{n}=\binom{n}{0}+\binom{n}{1}+\binom{n}{2}+\ldots \ldots+\binom{n}{n} \tag{ii}
\end{align*}
$$

Put $x=-1$ in (i) we get;

$$
(1+(-1))^{n}=\binom{n}{0}-\binom{n}{1}+\binom{n}{2}-\binom{n}{3}+\ldots \ldots+(-1)^{n-1}\binom{n}{n-1}+(-1)^{n}\binom{n}{n}
$$

$$
0=\binom{n}{0}-\binom{n}{1}+\binom{n}{2}-\binom{n}{3}+\ldots \ldots+(-1)^{n-1}\binom{m}{n}+(-1)^{n}\binom{n}{n}
$$

Assume that here n is even

$$
\binom{n}{0}+\left(\frac{n}{2}\right)+\left(\left[\begin{array}{l}
n \tag{iii}\\
2
\end{array}\right)+\cdots+\binom{n}{n}=\left[\begin{array}{l}
n \\
1
\end{array}\right)+\left(\frac{n}{3}\right)+\binom{n}{5}+\ldots+\binom{n}{n-1}\right.
$$

$$
2^{n^{n}}=\left\{\binom{n}{0}+\binom{n}{2}+\binom{n}{4}+\ldots \ldots+\binom{n}{n}\right\}+\left\{\binom{n}{1}+\binom{n}{3}+\binom{n}{5}+\ldots \ldots+\binom{n}{n-1}\right\}
$$

Using (iii) we get;

$$
2^{n}=\left\{\binom{n}{1}+\binom{n}{3}+\binom{n}{5}+\ldots+\binom{n}{n-1}\right\}+\left\{\binom{n}{1}+\binom{n}{3}+\binom{n}{5}+\ldots+\binom{n}{n-1}\right\}
$$

$$
\begin{aligned}
& =\frac{[(2 n)(2 n-2)(2 n-4) \ldots . .4 .2][(2 n-1)(2 n-3) 2 n-5 \ldots . .3 .1]}{n!\times n!} \times x^{n} \\
& \left.=\frac{2^{n}\{n(n-1)(n-2) \ldots . .2 .1\}\{(2 n-1)(2 n-3)(2 n}{n \times 2!}=3.1\right)-x^{n} \\
& \begin{array}{l}
=0^{2^{n} \times n \times\{(2 n-1)(2 n-1)(2 / 2-5)(\ldots .3 .)\} x} \\
=-\frac{2^{n} \times(2 n+5)}{n!}
\end{array} \\
& =\frac{\{1.3 .5 \ldots .(2 n-1)\} 2^{n} x^{n}}{n!} \\
& =\frac{1 \cdot 3 \cdot 5 \ldots .(2 n-1)}{n!} 2^{n} x^{n}
\end{aligned}
$$

Hence the nroof

Q. 14 Show that

$$
\binom{n}{0}+\frac{1}{2}\binom{n}{1}+\frac{1}{3}\binom{n}{2}+\frac{1}{4}\binom{n}{3}+\ldots \ldots \ldots+\frac{1}{n+1}\binom{n}{1}=\frac{2^{n+1}-1}{n+1}
$$

Proof:

L.H.S $=\binom{n}{0}+\frac{1}{2}\binom{n}{1}+\frac{1}{3}\binom{n}{2}+\frac{1}{4(}\binom{9}{$\hline}$+\cdots \cdots+-\cdots+\frac{n}{n}(n)$

$$
\left.=\frac{n}{0!n}-\frac{1}{0},!+\frac{1}{2} \times-\frac{n!}{1!} \frac{1}{1}\right)!\frac{1}{32!(n-2)!}+\frac{1}{4} \frac{n!}{3!(n-3)}+\ldots .+\frac{1}{n+1} \frac{n!}{n!(n-n)!}
$$

$$
-1+\frac{n}{2!}+\frac{n(n-1)}{3!}+\frac{n(n-1)(n-2)}{4!}+\ldots \ldots+\frac{1}{(n+1)}
$$

Taking common $\frac{1}{n+1}$ we get;

$$
=\frac{1}{n+1}\left[(n+1)+\frac{(n+1) n}{2!}+\frac{(n+1) n(n-1)}{3!}+\frac{(n+1) n(n-1)(n-2)}{4!}+\ldots \ldots+1\right]
$$

Above expression can be written as;

$$
\begin{aligned}
& =\frac{1}{n+1}\left[\binom{n+1}{1}+\binom{n+1}{2}+\binom{n+1}{3}+\ldots . .+\binom{n+1}{n+1}\right] \\
& =\frac{1}{n+1}\left[\binom{n+1}{0}+\binom{n+1}{1}+\binom{n+1}{2}+\binom{n+1}{3}+\ldots+\binom{n+1}{n+1}-\binom{n+1}{0}\right] \\
& =\frac{1}{n+1}\left[2^{n+1}-1\right] \\
& =\text { R.H.S }
\end{aligned}
$$

The Binomial Theorem when the index n is a negative integer or a fraction.

When n is negative integer or a fraction, then

$$
(1+x)^{n}=1+n x+\frac{n(n-1)}{2!} x^{2}+\frac{n(n-1)(n-2)}{3!} x^{3}+\ldots(n-1)(n-2) \cdots-r+1, \cdots
$$

Provide $|x|<1$
The series नी the type

$$
\left.1+n x+-12-12 x^{2}+12-1\right)(n-2)^{3}+\ldots
$$

Is aled that binoriai series
(1.) The proof of this theorem is beyond the scope of this book.
(2) Symbols $\binom{n}{0}\binom{n}{1}\binom{n}{2}$ etc are meaningless when n is negative integer or a fraction.
(3) The general term in the expansion is $T_{r+1}=\frac{n(n-1)(n-2) \ldots(n-r+1)}{r!} x^{r}$

Some particular cases of the expansion of $(1+x)^{n}, n<0$

(i) $\quad(1+x)^{-1}=1-x+x^{2}-x^{3}+\ldots+(-1)^{r} x^{r}+\ldots$
(ii) $\quad(1+x)^{-2}=1-2 x+3 x^{2}-4 x^{2}+\ldots+(-1)^{r}(r+1) x^{r}+\ldots$
(iii) $(1+x)^{-3}=1-3 x+6 x^{2}-10 x^{3}+\ldots+(-1)^{r} \frac{(r+1)(r+2)}{2} x^{2}+\ldots$
(iv) $\quad(1-x)^{-1}=1+x+x^{2}+x^{3}+\ldots+x^{r}+\ldots$
(v) $(1-x)^{2}=1+2 x=3 x^{2}+4 x^{3}+\ldots+(r=1) x^{r}+\ldots$
(vi) $\quad(1-x)^{-3}=1+3 x+6 x^{2}+10 x^{3}+\ldots+\frac{(r+1)(r+2)}{2} x^{r}+\ldots$

EXERCISE 8.3

Q. 1 Expand the following upto 4 terms, taking the value of x such that theexpansisim each case is valid.
(i) $(1-x)^{\frac{1}{2}}$

Solution:

$$
(1-x)=1+\left(\frac{1}{2}\right)(-x)+\frac{\left(\frac{1}{2}\right)-\frac{(2}{2}-1}{2!}(-x)^{2}+\frac{\left(\frac{1}{2}\right)}{3!} \frac{\left(\frac{1}{2}-1\right)\left(\frac{1}{2}-2\right)}{3!}(-x)^{3}+\ldots
$$

$$
=1-\frac{1}{2} x+\left(\frac{1}{2}\right)\left(\frac{-1}{2}\right) \frac{1}{2} x^{2}+\frac{1}{2} \times\left(\frac{-1}{2}\right)\left(\frac{-3}{2}\right) \frac{1}{6}\left(-x^{3}\right) \ldots \ldots
$$

$$
=1-\frac{1}{2} x-\frac{1}{8} x^{2}-\frac{1}{16} x^{3} \ldots \ldots
$$

The expansion of $(1-x)^{\frac{1}{2}}$ is valid if $|x|<1$
(ii) $(1+2 x)^{-1}$

Solution:

$$
\begin{aligned}
(1+2 x)^{-1} & =1+(-1)(2 x)+\frac{(-1)(-1-1)}{2!}(2 x)^{2}+\frac{(-1)(-1-1)(-1-2)}{3!}(2 x)^{3}+\ldots \ldots . \\
& =1-2 x+4 x^{2}-8 x^{3}+\ldots
\end{aligned}
$$

The expansion of $(1+2 x)^{-1}$ is valid if $|2 x|<1 \quad \Rightarrow|x|<\frac{1}{2}$
(iii) $(1+x)^{\frac{-1}{3}}$

Solution:

$$
\begin{aligned}
(1+x)^{\frac{-1}{3}} & =1+\left(\frac{-1}{3}\right) x+\frac{\left(-\frac{1}{3}\right)\left(-\frac{1}{3}-1\right)}{2!} x^{2}+\frac{\left(\frac{-1}{3}\right)\left(\frac{-1}{3}-7\right)\left(\frac{-1}{3}-2\right)}{3!} x^{3}+\ldots \ldots . \\
& =1-\frac{1}{3} x+\frac{\left(\frac{-1}{3}\right)\left(\frac{-4}{3}\right)}{2} x^{2}+\frac{\left(\frac{-1}{3}\right)\left(\frac{-4}{3}\right)\left(\frac{-7}{3}\right)}{6} x^{3}+\ldots \ldots \ldots \\
& =1-\frac{1}{3} x+\frac{2}{9} x^{2} \frac{4 \times 7}{27 \times 3 \times 2} x^{3}+\ldots \ldots \ldots \\
& =1-\frac{1}{3} x+\frac{2}{9} x^{2}-\frac{14}{81} x+\ldots \ldots .
\end{aligned}
$$

The erpor sion of $(+\infty)$ is valid if $1 \cdot x<1$
(iv)
solvion
$(4-3 x)^{\frac{1}{2}}=\left[4\left(1-\frac{3}{4} x\right)\right]^{\frac{1}{2}}$

The expansion of $(4-3 x)^{\frac{1}{2}}$ is valid if $\left|\frac{3}{4} x\right|<1 \quad \Rightarrow \quad|x|<\frac{4}{3}$
(v) $\quad(8-2 x)^{-1}$

Solution:

$$
\begin{aligned}
(8-2 \mathrm{x})^{-1} & =8^{-1}\left(1-\frac{x}{4}\right)^{-1} \\
& =\frac{1}{8}\left[1+(-1)\left(\frac{-x}{4}\right)+\frac{(-1)(-1-1)}{2!}\left(\frac{-x}{4}\right)^{2}+\frac{(-1)(-1-1)(-1-2)}{3!}\left(\frac{-x}{4}\right)^{3}+\ldots . .\right] \\
& =\frac{1}{8}\left[1+\frac{x}{4}+\frac{1 \times 2}{2 \times 1}\left(\frac{x^{2}}{16}\right)-\frac{2 \times 3}{6}\left(\frac{-x^{3}}{64}\right) \cdots \ldots .\right] \\
& =\frac{1}{8}\left[1+\frac{x}{4}+\frac{x^{2}}{16}+\frac{x^{3}}{64}+\ldots . .\right] \\
& =\frac{1}{8}+\frac{1}{32} x+\frac{1}{128} x^{2}+\frac{1}{512} x^{3}+\ldots \ldots .
\end{aligned}
$$

The expansion of $(8-2 x)^{-1}$ is valid if $\left|\frac{x}{4}\right|<T \Rightarrow|x|<4$
(vi) $(2-3 x)^{-2}$

Solution.
(2-3x)

$$
=(2)^{-2}\left(1-\frac{3}{2} x\right)^{-2}
$$

$$
\left.=\frac{1}{4}\left[1+(-2)\left(\frac{-3}{2} x\right)+\frac{(-2)(-2-1)}{2!}\left(\frac{-3}{2} x\right)^{2}+\frac{(-2)(-2-1)(-2-2)}{3!}\right)\left(\frac{-3}{2} x\right)^{3}+\ldots \ldots .\right]
$$

$$
\begin{aligned}
& =4^{\frac{1}{2}}\left[1-\frac{3}{4} x\right]^{\frac{1}{2}}
\end{aligned}
$$

$$
\begin{aligned}
& =2\left[-\frac{1}{8} x+\frac{\left(\frac{3}{2}\right)\left(\frac{-1}{2}\right)}{2} \frac{9 x^{2}}{16}+\frac{\left(\frac{1}{2}\right)\left(\frac{-1}{2}\right)\left(\frac{-3}{2}\right)}{6}\left(\frac{-27}{64} x^{3}\right)+\ldots \ldots \ldots\right] \\
& =2\left[1-\frac{3}{8} x-\frac{1}{8} \times \frac{9}{16} x^{2}-\frac{1}{16} \times \frac{27}{64} x^{3}+\ldots \ldots . .\right] \\
& =2-\frac{3}{4} x-\frac{9}{64} x^{2}-\frac{27}{512} x^{3}+\ldots \ldots .
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{4}\left[1+3 x+\frac{(-2)(-3)}{2}\left(\frac{9}{4} x^{2}\right)+\frac{(-2)(-3)(-4)}{6}\left(\frac{-27}{8} x^{3}\right)+\ldots \ldots\right] \\
& =\frac{1}{4}\left[1+3 x+\frac{27}{4} x^{2}+\frac{27}{2} x^{3} \cdots \ldots\right] \\
& =1+\frac{3}{4} x+\frac{27}{16} x^{2}+\frac{7}{2}-\ldots .
\end{aligned}
$$

The expansion of $|2-3 x|-?$ is valid if $\left|\frac{3}{2} x\right|<1 \quad \Rightarrow|x|<\frac{2}{3}$

$$
\sqrt{\sqrt{i i})} \frac{(1-\mathbf{x})^{-1}}{(1+\mathbf{x})^{2}}
$$

Solution:

$$
\begin{aligned}
\frac{(1-\mathrm{x})^{-1}}{(1+\mathrm{x})^{2}} & =(1-x)^{-1}(1+x)^{-2} \\
& =\left[(1-x)^{-1}(1+x)^{-2}\right] \\
& =\left[1+(-1)(-x)+\frac{(-1)(-1-1)}{2!}(-x)^{2}+\frac{(-1)(-1-1)(-1-2)}{3!}(-x)^{3}+\ldots . .\right] \\
& \times\left[1+(-2)(x)+\frac{(-2)(-2-1)}{2!} x^{2}+\frac{(-2)(-2-1)(-1-2)}{3!} x^{3}+\ldots \ldots .\right] \\
& =\left[1+x+x^{2}+x^{3}+\ldots . .\right]\left[1-2 x+3 x^{2}-4 x^{3}+\ldots . .\right] \\
& =1-2 x+3 x^{2}-4 x^{2}+x-2 x^{2}+3 x^{3}-4 x^{3}+\ldots . .
\end{aligned}
$$

Neglect x^{4} and higher powers of x

$$
=1-x+2 x^{2}-2 x^{3}+\ldots \ldots .
$$

The expansion of $(1-x)^{-1}$ and $(1+x)^{-2}$ are valid if $|x|<1$ (viii) $\frac{\sqrt{1+2 x}}{1-x}$

Solution:

$$
\frac{\sqrt{1+2 \mathrm{x}}}{1-\mathrm{x}}=(1+2 x)^{\frac{1}{2}}(1-x)^{-1}
$$

$$
\begin{aligned}
& =\left[1+x+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2} 4 x^{2}+\frac{\left(\frac{1}{2}\right)\left(\frac{-1}{2}\right)\left(\frac{-3}{2}\right)}{6} 8 x^{3}+\ldots \ldots\right] \times\left[\frac{1}{1}+x+x^{2}+x^{3}+\ldots\right. \text { (1) } \\
& \left.=\left(1+x-\frac{1}{2} x^{2}+\frac{1}{2} x x^{3}+\cdots \cdots\left(x+x+\left(x^{2}\right)+x\right)^{3}+\ldots\right)\right] \text { UU } \\
& =-1+x+y^{2}+3^{3}++x^{3}+x^{3}-\frac{1}{2} x^{2}-\frac{1}{2} x^{3}+\frac{1}{2} x^{3}+. . \\
& =1+2 x+\frac{3}{2} x^{2}+2 x^{3}+\ldots \ldots .
\end{aligned}
$$

The expansion of $(1+2 x)^{\frac{1}{2}}$ is valid $|2 x|<1 \Rightarrow|x|<\frac{1}{2}$ and the expansion of $(1-x)^{\frac{1}{2}}$ is valid if $|x|<1$
So, the expansion of $\frac{\sqrt{1+2 \boldsymbol{x}}}{1-\boldsymbol{x}}$ is valid if $|x|<\frac{1}{2}$
(ix) $\frac{(4+2 x)^{\frac{1}{2}}}{2-x}$

Solution:

$$
\begin{aligned}
& \frac{(4+2 x)^{\frac{1}{2}}}{2-\mathrm{x}}=\frac{\left(4\left(1+\frac{2}{4} x\right)\right)^{\frac{1}{2}}}{2\left(1-\frac{x}{2}\right)}=\frac{4^{\frac{1}{2}}}{2}\left(1+\frac{x}{2}\right)^{\frac{1}{2}}\left(1-\frac{x}{2}\right)^{-1} \\
& =\left(1+\frac{x}{2}\right)^{\frac{1}{2}}\left(1-\frac{x}{2}\right)^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& =\left[1+\frac{x}{4}+\left(\frac{1}{2}\right)-\frac{1}{6} \frac{1}{2}\left(\frac{-3}{2}\right) \frac{x^{3}}{8}+\ldots .\right] \times\left[1+\frac{x}{2}+\frac{x^{2}}{4}+\frac{x^{3}}{8}+\ldots .\right] \\
& =\left[1+\frac{x}{4}-\frac{1}{32} x^{2}+\frac{1}{128} x^{2}\right]\left[1+\frac{x}{2}+\frac{x^{2}}{4}+\frac{x^{3}}{8}+\ldots . .\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\left(1+\frac{x}{4}-\frac{1}{32} x^{2}+\frac{1}{128} x^{3}+\ldots\right)\left(1+\frac{x}{2}+\frac{x^{2}}{4}+\frac{x^{3}}{8}+\ldots\right) \\
& =1+\frac{x}{2}+\frac{x^{2}}{4}+\frac{x^{3}}{8}+\frac{x}{4}+\frac{x^{2}}{6} \frac{x^{3}}{16}-\frac{1}{32}+x^{2}-\frac{1}{64}++\frac{1}{2} \\
& =1+\frac{3}{4} x+4^{2}-12
\end{aligned}
$$

$\sqrt[T h e r x p a n s i o n ~ o f ~]{\left(1-\frac{x}{2}\right)}$ and $\left(1-\frac{x}{2}\right)^{-1}$ is valid if $\left|\frac{x}{2}\right|<1 \Rightarrow|x|<2$

$$
\text { (x) } \quad\left(1+x-2 x^{2}\right)^{\frac{1}{2}}
$$

Solution:

$$
\begin{aligned}
\left(1+x-2 x^{2}\right)^{\frac{1}{2}} & =\left[1+\left(x-2 x^{2}\right)\right]^{\frac{1}{2}} \\
& =1+\frac{1}{2}\left(x-2 x^{2}\right)+\frac{\left(\frac{1}{2}\right)\left(\frac{1}{2}-1\right)}{2!}\left(x-2 x^{2}\right)^{2}+\frac{\left(\frac{1}{2}\right)\left(\frac{1}{2}-1\right)\left(\frac{1}{2}-2\right)}{3!}\left(x-2 x^{2}\right)^{3}+\ldots \ldots \\
& =1+\frac{1}{2}\left(x-2 x^{2}\right)+\frac{\left(\frac{-1}{4}\right)}{2}\left(x-2 x^{2}\right)+\frac{3}{6}\left(x-2 x^{2}\right)^{3}+\ldots . \\
& =1+\frac{1}{2}\left(x-2 x^{2}\right)-\frac{1}{8}\left(x^{2}-4 x^{3}+4 x^{4}\right)+\frac{1}{16}\left(x^{3}-6 x^{4}+12 x^{5}-8 x^{6}\right)+\ldots . \\
& =1+\frac{1}{2} x+\left(-1-\frac{1}{8}\right) x^{2}+\left(\frac{1}{2}+\frac{1}{16}\right) x^{3}+\ldots . . \\
& =1+\frac{1}{2} x-\frac{9}{8} x^{2}+\frac{9}{16} x^{3}+\ldots . .
\end{aligned}
$$

The expansion is valid if $\left|x-2 x^{2}\right|<1$

$$
\begin{align*}
& +\left(x-2 x^{2}\right)<1 \\
& x-2 x^{2}<1 \\
& x-2 x^{2}-1<0 \\
& 2 x^{2}-x+1>0 \tag{i}
\end{align*}
$$

$$
x-2 x^{2}>-1
$$

$$
x-2 x^{2}+1>0
$$

The inequality i) is not satisfied by any real vareg of $\cap \sim(x-1)(2 x+1)<0$

Case 1

$$
\begin{aligned}
& x-1<0,2 x+1>0 \\
& x<1, x>\frac{-1}{2}
\end{aligned}
$$

$$
-\left(x-2 x^{2}\right)<1
$$

Case 2
$x-1>0,2 x+1<0$
$x>1, x<\frac{-1}{2}$
Which is not possible

Thus the expansion of $\left(1+x-2 x^{2}\right)^{\frac{-1}{2}}$ is valid if $x \in\left(\frac{-1}{2}, 1\right)$ or $\frac{-1}{2}<x<1$
(xi) $\quad\left(1-2 x+3 x^{2}\right)^{\frac{1}{2}}$

Solution:

$$
\begin{aligned}
& -1+\left(\frac{-1}{3}\right)\left(-\left(2 x-3 x^{2}\right)\right)+\frac{\left(\frac{-1}{3}\right)\left(\frac{-1}{3}-1\right)\left(-\left(2 x-3 x^{2}\right)\right)^{2}}{2!}+\frac{\left(\frac{-1}{3}\right)\left(\frac{-1}{3}-1\right)\left(\frac{-1}{3}-2\right)}{3!}\left(-\left(2 x-3 x^{2}\right)\right)^{3}+\ldots . \\
& =1+\frac{1}{3}\left(2 x-3 x^{2}\right)+\frac{4}{9} \times \frac{1}{2}\left(2 x-3 x^{2}\right)^{2}+\frac{-28}{27} \times \frac{1}{6}\left(-\left(2 x-3 x^{2}\right)^{3}\right) \ldots \\
& =1+\frac{1}{3}\left(2 x-3 x^{2}\right)+\frac{2}{9}\left(4 x^{2}-12 x^{3}+9 x^{4}\right)+\frac{14}{81}\left(8 x^{3}-36 x^{4}+54 x^{5}-27 x^{6}\right)+\ldots \ldots . \\
& =1+\frac{2}{3} x+\left(-1+\frac{8}{9}\right) x^{2}+\left(\frac{-8}{3}\right)+\frac{112}{81} x^{3}+\ldots \\
& =1+\frac{2}{3} x-\frac{1}{9} x^{2}-\frac{164}{81} x^{3}+\ldots \ldots
\end{aligned}
$$

The expansion is valid if $\left|2 x-3 x^{2}\right|<1$

$$
\begin{array}{r}
+\left(2 x-3 x^{2}\right)<1 \\
2 x-3 x^{2}<1 \\
3 x^{2}-2 x+1>0 \tag{i}
\end{array}
$$

The inequality i) is not satisfied by any real value of x

Thus the expansion of $\left(1-2 x+3 z^{2}\right)^{\frac{1}{2}} ;$:vaidi if $x \in \frac{-1}{3}$, $\frac{1}{)}$ or if $\frac{-1}{3}, x<1$
Q. 2 Using minalared ind the value of the following to three places of decimals.
(i) Shlition
$\sqrt{99}=(100-1)^{\frac{1}{2}}$

$$
=\left[100\left(1-\frac{1}{100}\right)\right]^{\frac{1}{2}}
$$

$$
\begin{aligned}
& =(100)^{\frac{1}{2}}\left(1-\frac{1}{100}\right)^{\frac{1}{2}} \\
& \left.=10\left[1+\frac{1}{2}\left(\frac{-1}{100}\right)+\left(\frac{1}{2}\right)\left(\frac{1}{2}-1\right)-1\right)^{2}\right] \\
& \approx 10\left[1-\frac{1}{2}(0,0.0)--0.005-0.0000125+\ldots . .\right] \\
& \approx 10[1-0.0050125] \\
& \approx 10[0.9949875] \\
& \approx 9.949875 \\
& \approx 9.950 \text { convert to the three decimal }
\end{aligned}
$$

(ii) $\quad(0.98)^{\frac{1}{2}}$

Solution:

$(0.98)^{\frac{1}{2}}=(1-0.02)^{\frac{1}{2}}$

$$
\begin{aligned}
& =1+\frac{1}{2}(-0.02)+\left(\frac{1}{2}\right)\left(\frac{-1}{2}\right) \frac{1}{2}(-0.02)^{2}+\frac{\left(\frac{1}{2}\right)\left(\frac{-1}{2}\right)\left(\frac{-3}{2}\right)}{3!}(-0.02)^{3}+\ldots . . \\
& =1-0.1-\frac{1}{8}(0.0004)-\frac{1}{16}(0.000008)+\ldots . . \\
& \approx 1-0.1-0.00005-0.0000005 \\
& \approx 1-0.0100505 \\
& \approx 0.9899595 \\
& \approx 0.990
\end{aligned}
$$

$$
\text { (iii) } \quad(1.03)^{\frac{1}{3}}
$$

Solution:

$$
(1.03)^{\frac{1}{3}}=(1+0.03)^{\frac{1}{3}}
$$

$$
=1+0.01+\left(\frac{1}{3}\right)\left(\frac{-2}{3}\right), \frac{1}{2}(0.0009)+\left(\frac{1}{3}\right)\left(\frac{-2}{3}\right)\left(\frac{-5}{3}\right) \frac{1}{6}(0.000027)+\ldots .
$$

$$
\mathrm{O}=1+0.01-\frac{1}{9}(.0009)+\frac{5}{81}(0.00027)+\ldots
$$

$$
\approx 1+0.1-.0001+0.0001
$$

$$
\approx 1.010
$$

(iv) $\sqrt[3]{65}$

Solution:

$\sqrt[3]{65}=(64+1)^{\frac{1}{3}}$

$$
=\left[64\left(1+\frac{1}{64}\right)\right]^{\frac{1}{3}}
$$

$$
=4\left[1+\frac{1}{3}\left(\frac{1}{64}\right)+\frac{\left(\frac{1}{3}\right)\left(\frac{1}{3}-1\right)}{2!}\left(\frac{1}{64}\right)^{2}+\ldots .\right]
$$

$$
=4\left[1+\frac{1}{3}(0.015625)-\frac{1}{9}(0.015625)^{2}+\ldots .\right]
$$

$$
\approx 4[1+0.005208-0.000027]
$$

$$
\approx 4(1.005181)
$$

$$
\approx 4.020724
$$

$$
\approx 4.021
$$

(v) $\sqrt[4]{17}$

Solution:

$$
\begin{aligned}
\sqrt[4]{17} & =(17)^{\frac{1}{4}} \\
& =(16+1)^{\frac{1}{4}} \\
& =\left[16\left(1+\frac{1}{16}\right)\right]^{\frac{1}{4}} \\
& =(16)^{\frac{1}{4}}\left(1+\frac{1}{16}\right)^{\frac{1}{4}}
\end{aligned}
$$

$$
\left.\sqrt[N]{\sqrt{n}}=-\frac{2}{1} 1+\frac{1}{4}\left(\frac{1}{16}\right)+\frac{\left(\frac{1}{4}\right)\left(\frac{1}{4}-1\right)}{2!}\left(\frac{1}{16}\right)^{2}+\ldots .\right]
$$

$$
\begin{aligned}
& =2\left[1+\frac{1}{64}+\left(\frac{1}{4}\right)\left(\frac{-3}{4}\right) \frac{1}{2}\left(\frac{1}{16}\right)^{2}+\ldots . .\right] \\
& =2\left[1+\frac{1}{64}-\frac{3}{2} \times\left(\frac{1}{64}\right)^{2} \ldots\right]
\end{aligned}
$$

$$
021+0.015620-0.005366
$$

$\approx ?: 1.0$:5.59]

- $20230 \leq 18$
$0=2.031$
$\sqrt[5]{31}$
Solution:

Solution:

$$
\begin{aligned}
& \sqrt[5]{31}=(31)^{\frac{1}{5}} \\
& =(32-1)^{\frac{1}{5}} \\
& =\left[32\left(1-\frac{1}{32}\right)\right]^{\frac{1}{5}} \\
& =(32)^{\frac{1}{5}}\left(1-\frac{1}{32}\right)^{\frac{1}{5}} \\
& =2\left(1-\frac{1}{32}\right)^{\frac{1}{5}} \\
& =2\left[1+\frac{1}{5}\left(\frac{-1}{32}\right)+\frac{\left(\frac{1}{5}\right)\left(\frac{1}{5}-1\right)}{2!}\left(\frac{-1}{32}\right)^{2}+\ldots . .\right] \\
& =2\left[1-\frac{1}{5 \times 32}+\frac{1}{5} \times \frac{-4}{5} \times \frac{1}{2} \times\left(\frac{1}{32}\right)^{2}+\ldots .\right] \\
& =2\left[1-\frac{1}{10} \times \frac{1}{16}-2\left(\frac{1}{10} \times \frac{1}{16}\right)^{2}+\ldots .\right] \\
& =2[1-0.00625-2(000006.90) \in(25(1)] \\
& \approx 2(1-0.50625-0.000278) \\
& \text { (vii) } \frac{1}{\sqrt[3]{998}}
\end{aligned}
$$

$$
\begin{aligned}
\frac{1}{\sqrt[3]{998}} & =(998)^{\frac{-1}{3}} \\
& =(1000-2)^{\frac{-1}{3}}
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\left(\frac{1}{1} 000\right)\left(1-\frac{2}{1000}\right)\right] \\
& =(y 00), \frac{-1}{3}\left(1-\frac{1}{500}\right)
\end{aligned}
$$

$$
=(10)^{-1}\left[1+\left(\frac{-1}{3}\right)\left(\frac{-1}{500}\right)+\frac{\left(\frac{1}{3}\right)\left(\frac{-1}{3}-1\right)}{2!}\left(-\frac{1}{500}\right)^{2}+\ldots . .\right]
$$

$$
\approx \frac{1}{10}[1+0.0006667+0.00000080]
$$

$$
\approx \frac{1}{10}(1.0006675)
$$

$$
\approx 0.10006675
$$

$$
\approx 0.100
$$

(viii) $\frac{1}{\sqrt[5]{252}}$

Solution:

$$
\sqrt[N]{\sqrt{N} \sqrt{ }}
$$

$$
\begin{aligned}
& \frac{1}{\sqrt[5]{252}}=(252)^{\frac{-1}{5}} \\
& =(243+9)^{\frac{-1}{5}} \\
& =\left[243\left(1+\frac{9}{243}\right)\right]^{\frac{-1}{5}} \\
& =(243)^{\frac{-1}{5}}\left(1+\frac{1}{27}\right)^{\frac{-1}{5}}
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt{N}=\frac{1}{3}\left[-\frac{1}{5 \times 27}+\left(\frac{-1}{5}\right)\left(\frac{-6}{5}\right) \frac{1}{2}\left(\frac{1}{27}\right)^{2}+\ldots \ldots\right] \\
& =\frac{1}{3}\left[1-\frac{1}{5 \times 27}+3\left(\frac{1}{5 \times 27}\right)^{2}+\ldots . .\right]
\end{aligned}
$$

$$
\approx \frac{1}{3}(0.992757)
$$

(ix)

$$
\approx \frac{1}{3}[1-0.0074074+3(0.00005487)]
$$

$$
\approx 0.330919
$$

$$
\approx 0.231
$$

Snlation-

$$
\begin{aligned}
\sqrt{\frac{7}{8}} & =\left(1-\frac{1}{8}\right)^{\frac{1}{2}} \\
& =1+\frac{1}{2}\left(\frac{-1}{8}\right)+\frac{\frac{1}{2}\left(\frac{1}{2}-1\right)}{2!}\left(\frac{-1}{8}\right)^{2}+\ldots . . \\
& =1-\frac{1}{16}+\left(\frac{1}{2}\right)\left(\frac{-1}{2}\right)+\frac{1}{2} \times \frac{1}{64}+\ldots . \\
& =1-\frac{1}{16}-\frac{1}{8 \times 64}+\ldots . . \\
& \approx 1-0.0625-0.0193 \\
& \approx 0.935448 \\
& \approx 0.935
\end{aligned}
$$

(x) $\quad(0.998)^{\frac{-1}{3}}$

Solution:

$(0.998)^{\frac{-1}{3}}=(1-0.002)^{\frac{-1}{3}}$

$$
=1+\left(-\frac{1}{3}\right)(-0.002)+\frac{\left(\frac{-1}{3}\right)\left(\frac{-1}{3}-1\right)}{2!}(-0.002)^{2}+\ldots
$$

$$
=1+\frac{1}{3}(0.002)+\frac{2}{9}(0.000004)+\ldots
$$

(xi)
$\approx 1+0.000666$

$$
\approx 1.001
$$

Solution:
$\sqrt[N]{ }$
$\sqrt{1+1}=(466)^{\frac{-1}{6}}=(729-243)^{\frac{-1}{6}}$

$$
=\left[729\left(1-\frac{243}{729}\right)\right]^{\frac{-1}{6}}
$$

(xii) $\quad(\mathbf{1 2 8 0})^{\frac{1}{4}}$

Solution:
$(1280)^{\frac{1}{4}}=(1296-16)^{\frac{1}{4}}$

$$
\begin{aligned}
& =\left[1296\left(1-\frac{16}{1296}\right)\right]^{\frac{1}{4}} \\
& =(1296)^{\frac{1}{4}}\left[1-\frac{1}{81}\right]^{\frac{1}{4}} \\
& =6\left[1+\frac{1}{4}\left(\frac{-1}{81}\right)+\frac{\left(\frac{1}{4}\right)\left(\frac{1}{4}-1\right)}{2!}\left(-\frac{1}{81}\right)^{2}+\ldots .\right]
\end{aligned}
$$

$$
\approx \sigma\left[1-0.003086-\frac{3}{2}(0.0000095)\right]
$$

$$
\approx 6[1-0.0031]
$$

$$
\approx 6(0.9969)
$$

$$
\tilde{0} 5.981
$$

Q. 3 Find the coafitient of $x x^{n}$ ie the expansion of

iv $\frac{1+\frac{x^{2}}{2}}{(1+x)^{2}}$

Solution:

$\frac{1+\mathrm{x}^{2}}{(1+\mathrm{x})^{2}}=\left(1+x^{2}\right)(1+x)^{-2}$
From $(1+x)^{2}$ firstly we find the coefficien O°
As we know that $(r+1)^{\text {th }} \sqrt{e r n}$ of $\lambda(1+x)^{n}$ (is
$T_{r+1}=\frac{(21),-1)(n-2)(n-1) \cdots(n-(r-1) x}{n!}$
For F^{n} put $n=-2, r=n$ we get
$\sqrt{ } \sqrt{x_{n+1}}=\frac{O_{2}(-2-1)(-2-2)(-2-3) \ldots .(-2-(n-1)) x^{n}}{n!}$

$$
\begin{aligned}
& =\frac{(-2)(-3)(-4) \ldots(-n-1) x^{n}}{n!} \\
& =\frac{(-1)^{n}(2)(3)(4) \ldots(n+1) x^{n}}{n!} \\
& =(-1)^{n} \frac{(n+1)!}{n!} x^{n}
\end{aligned}
$$

$T_{n+1}=(-1)^{n}(n+1) x^{n}$
So in $(1+x)^{-2}$ coefficient of x^{n} is $(-1)^{n}(n+1)$
So coefficient of x^{n-2} is $(-1)^{n-2}(n-1) x^{n-2}$

$$
\begin{aligned}
& =(-1)^{n}(n+1) x^{n}+(-1)^{n-2}(n-1) x^{2} \times x^{n-2} \\
& =(-1)^{n}\left\{(n+1)+(-1)^{-2}(n-1)\right\} x^{n} \\
& =(-1)^{n}(2 n) x^{n}
\end{aligned}
$$

Hence coefficient of x^{n} is $(-1)^{n}(2 n)$

$$
\text { (ii) } \frac{(1+x)^{2}}{(1-x)^{2}}
$$

Solution:

$\frac{(1+\mathrm{x})^{2}}{(1-\mathrm{x})^{2}}=(1+x)^{2}(1-x)^{-2}$

 $\left(1+2 x+x^{2}\right)(1-x)^{-2}$From $(1-x)$ firstiy we find the coefficient of x^{n-2}, x^{n-1} and x^{n}
Ass we know that $(r+1)^{\text {th }}$ term of $(1+x)^{n}$ is

$$
T_{r+1}=\frac{n(n-1)(n-2)(n-3) \ldots .(n-(r-1)) x^{r}}{r!}
$$

For x^{n} put $n=-2, r=n, x=-x$ we get

$$
\begin{aligned}
& T_{n+1}=\frac{(-2)(-2-1)(-2-2)(-2-3) \ldots .(-2-(n-1))(-x)^{n}}{n!} \\
& T_{n+1}=\frac{(-2)(-3)(-+1)-5) \ldots-1}{n!n!(-n \cdot n}
\end{aligned}
$$

There ane n faciors it the numeiators, so taking -1 from each factors we get;

$$
T_{n+1}=(-1)^{n+n} \frac{(n+1)!}{n!} x^{n}
$$

$$
T_{n+1}=(-1)^{2 n} \times \frac{(n+1) n!}{n!} x^{n}
$$

So in $(1-x)^{-2}$ coefficient of x^{n} is $(n+1)$.
So coefficient of x^{n-1} is n
Coefficient of x^{n-2} is $(n-1)$
Now in $\left(1+2 x+x^{2}\right)(1-x)^{-2}$ term involving x^{n} is
$=(n+1) x^{n}+2 \times n \times x^{n-1} \times x+1 \times(n-1) x^{n-2} \times x^{2}$
$=x^{n}\{n+1+2 n+n-1\}$
$=\{4 n\} x^{n}$ so coefficient of x^{n} is $1+n$
(iii) $\frac{(1+x)^{3}}{(1-x)^{2}}$

Solution:

$$
\begin{align*}
\frac{(1+\mathrm{x})^{3}}{(1-\mathrm{x})^{2}} & =(1+x)^{3}(1-x)^{2} \\
& =\left(1+3 x^{2}+3 x+x^{3}\right)(1-x)^{-2} \tag{i}
\end{align*}
$$

In order to find coefficient of x^{n} in $\frac{(1+x)^{3}}{(1-x)^{2}}$
We have to need co flicieqt of

2. velrom that $(1-1)^{\text {th }}$ tengo $(1+x)^{n}$ is

$$
y=\frac{\left.n(n-1)()_{2}-2\right)(n-3) \ldots .(n-(r-1)) x^{r}}{r!}
$$

So put $n=-2, x=-x, r=n$ we get

$$
T_{n+1}=\frac{(-2)(-2-1)(-2-2)(-2-3) \ldots \ldots(-2-(n-1))(-x)^{n}}{n!}
$$

$$
\begin{aligned}
T_{n+1} & =\frac{(-2)(-3)(-4)(-5) \ldots \ldots(-1-n) x^{n} \times(-1)^{n}}{n!} \\
& =\frac{(-1)^{n}(2 \times 3 \times 4 \times \ldots .(n+1)) x^{n} \times(-1)^{n}}{n!}
\end{aligned}
$$

Coefficient of $\quad x^{x-2}$ is $n-1$
Coefficient of $\quad x^{n-3}$ is $n-2$
Now the term Involving x^{n} in $\frac{(1+x)^{3}}{(1-x)^{2}}$ is

$$
\begin{aligned}
& =1 \times(n+1) x^{n}+3 x^{2} \times(n-1) x^{n-2}+3 x \times(n) x^{n-1}+(n-2) x^{x-3} \times x^{3} \\
& =(n+1) x^{n}+(3 n-3) x^{n}+3 n x^{n}+(n-2) x \\
& =(8 n-4) x^{n} \\
& =4(2 n-1) x^{n}
\end{aligned}
$$

Hence coefficient of x^{n} is $4(2 n-1)$
(iv) $\frac{(1+x)^{2}}{(1-x)^{3}}$

Solution:

$$
\begin{aligned}
\frac{(1+\mathrm{x})^{2}}{(1-\mathrm{x})^{3}} & =(1+x)^{2}(1-x)^{-3} \\
& =\left(1+2 x+x^{2}\right)(1-x)^{-3}
\end{aligned}
$$

From $(1-x)^{-3}$ firstly we find the coefficient of x^{n-2}, x^{n-1} and x^{n}
As we know that $(r+1)^{\text {th }}$ term of $(1+x)^{n}$ is

$$
T_{r+1}=\frac{n(n-1)(n-2)(n-3) \ldots(n-(r-1))}{n!} x^{\prime}
$$

$$
\begin{aligned}
\sqrt{\sqrt{2}} T_{n+1} & =\frac{(-3-1)(-3-2)(-3-3) \ldots .(-3-(n-1))(-x)^{n}}{n!} \\
T_{n+1} & =\frac{(-3)(-4)(-5) \ldots \cdot(-3-n+1)(-x)^{n}}{n!}
\end{aligned}
$$

$$
\begin{aligned}
& T_{n+1}=\frac{(-1)^{n}(2)(3)(4)(5) \ldots .(n+2) x^{n}(-1)^{n}}{2 n!} \\
& T_{n+1}=\frac{(-1)^{2 n}(n+2)!x^{n}}{2 n!} \\
& T_{n}+\frac{(n+2)(n+1)}{2 n!} n!x
\end{aligned}
$$

$$
+=(n+2,(n+1)
$$

Qocoefficient of x^{n} is $\frac{(n+2)(n+1)}{2}$
Coefficient of x^{n-1} is $\frac{(n+1) n}{2}$ and coefficient of x^{n-2} is $\frac{n(n-1)}{2}$
Now the term Involving x^{n} in $\left(1+2 x+x^{2}\right)(1-x)^{-3}$ is

$$
\begin{aligned}
& =\frac{(n+2)(n+1)}{2} x^{n}+\frac{2(n+1) n}{2} x \cdot x^{n-1}+\frac{n(n-1)}{2} x^{2} \cdot x^{n-2} \\
& =\left\{\frac{(n+2)(n+1)}{2}+\frac{2(n+1) n}{2}+\frac{n(n-1)}{2}\right\} x^{n} \\
& =\frac{1}{2}\left\{n^{2}+3 n+2+2 n^{2}+2 n+n^{2}-n\right\} x^{n} \\
& =\frac{1}{2}\left\{4 n^{2}+4 n+2\right\} x^{n} \\
& =\left(2 n^{2}+2 n+1\right) x^{n}
\end{aligned}
$$

Thus coefficient of x^{n} is $2 n^{2}+2 n+1$
(v) $\left(1-x+x^{2}-x^{3}+\ldots . .\right)^{2}$

Solution:

As we know that

$$
\begin{aligned}
1-x+x^{2}-x^{3}+\ldots & =(1+x)^{-1} \\
\Rightarrow\left(1-x+x^{2}-x^{3}+\ldots \ldots .\right)^{2} & =\left((1+x)^{-1}\right)^{2}=(1+x)^{-2}
\end{aligned}
$$

Now we find the coefficient of $x^{n},(1+y)^{-2}$, Using formua

Put $n=-2, r=-2$ ve $g r t$

$$
\Theta \frac{(-2)(-2-1)(-2-2)(-2-3) \ldots \ldots \cdot(-2-(n-1)) x^{n}}{n!}
$$

$$
=\frac{(-2)(-3)(-4)(-5) \ldots \ldots .(-1-n) x^{n}}{n!}
$$

$$
\begin{aligned}
& =\frac{(-1)^{n}[2 \times 3 \times 4 \times 5 \times \ldots \ldots \times(n+1)] x^{n}}{n!} \\
& =(-1)^{n}(n+1)! \\
& n! \\
& =(-1)^{n}(n+1) x \sqrt[n]{n}
\end{aligned}
$$

Thus conficiert of x^{n} is (-1) (nt)
Q. 4 If x is so sill that ts square and higher powers can be neglected then show that
(i) $\frac{1-x}{\sqrt{1+x}} \approx 1-\frac{3}{2} x$

Solution:

L.H.S $=\frac{1-x}{\sqrt{1+x}}=(1-x)(1+x)^{\frac{-1}{2}}$

$$
=(1-x)\left\{1+\left(\frac{-1}{2}\right) x\right\} \text { by neglecting } x^{2} \text { and highest power of } x .
$$

$\approx 1-\frac{1}{2} x-x$ by neglecting x^{2}
$\approx 1-\frac{3}{2} x$
\approx R.H.S
(ii) $\frac{\sqrt{1+2 \mathrm{x}}}{1-\mathrm{x}} \approx 1+\frac{3}{2} \mathrm{x}$

Solution:

L.H.S $=\frac{\sqrt{1+2 x}}{1-x}$

$$
\begin{aligned}
& =(1+2 x)^{\frac{1}{2}}(1-x)^{\frac{-1}{2}} \\
& =\left(1+\frac{1}{2}(2 x)\right)\left(1-\left(\frac{-1}{2}\right) x\right) \text { by neglecting } x^{2} \text { and higher powers of } \mathrm{x} .
\end{aligned}
$$

$$
\approx(1+x)\left(1+\frac{x}{2}\right)
$$

$$
\left.\approx 1+\frac{x}{2}+x \text { by neglect acting } x\right\rangle
$$

(iii)

$$
\frac{(9+7 x)^{\frac{1}{2}}-(16+3 x)^{\frac{1}{2}}}{4+5 x} \approx \frac{1}{4}-\frac{17}{384} x
$$

Solution:

L.H.S $=\frac{(9+7 x)^{\frac{1}{2}}-(16+3 x)^{\frac{1}{4}}}{(4+5 x)}$

$$
=\left\{3\left(1+\frac{7}{9} x \cdot \frac{1}{2}\right)-2\left(1+\frac{1}{4}\left(\frac{3 x}{16}\right)\right)\right\} \frac{\left(1-\frac{5}{4} x\right)}{4}
$$

By neglecting x^{2} and higher powers of x.

$$
\begin{aligned}
& \approx\left\{3+\frac{7 x}{6}-2-\frac{3 x}{32}\right\} \frac{\left(1-\frac{5}{4} x\right)}{4} \\
& \approx \frac{\left\{1+\frac{103}{96} x\right\}\left\{1-\frac{5}{4} x\right\}}{4} \\
& \approx \frac{1-\frac{5}{4} x+\frac{103}{96} x}{4} \\
& \approx \frac{1-\frac{17}{96} x}{4} \\
& \approx \frac{1}{4}-\frac{17}{384} x \\
& \approx \text { R.H.S }
\end{aligned}
$$

(iv) $\frac{\sqrt{4+x}}{(1-x)^{3}} \approx 2+\frac{25}{4} x$

Solution:

L.H.S $=\frac{\sqrt{4+x}}{(1-x)^{3}}$

$$
\begin{aligned}
& \Theta\left(1+\frac{1}{4}\right)^{2}(1-x)^{-3} \\
& =2\left(1+\frac{1}{2}\left(\frac{x}{4}\right)\right)(1+3 x) \text { by neglecting } x^{2} \text { and highest power of } x
\end{aligned}
$$

$$
\approx 2\left(1+\frac{x}{8}\right)(1+3 x)
$$

$$
\approx 2\left(1+3 x+\frac{x}{8}\right) \text { by neglecting } x^{2}
$$

$$
\approx 2+\frac{25}{4} x
$$

$$
\approx \text { R.H.S }
$$

$$
\text { (v) } \quad \frac{(1+x)^{\frac{1}{2}}(4-3 x)^{\frac{3}{2}}}{(8+5 x)^{\frac{1}{3}}} \approx 4\left(1-\frac{5 x}{6}\right)
$$

Solution:

L.H.S $=\frac{(1+x)^{\frac{1}{2}}(4-3 x)^{\frac{3}{2}}}{(8+5 x)^{\frac{1}{3}}}$
$=\left\{(1+x)^{\frac{1}{2}}(4-3 x)^{\frac{3}{2}}\right\}(8+5 x)^{\frac{-1}{3}}$
$=\left\{(1+x)^{\frac{1}{2}} \cdot(4)^{\frac{3}{2}}\left(1-\frac{3}{4} x\right)^{\frac{3}{2}}\right\} \times(8)^{\frac{-1}{3}}\left(1 \frac{5}{3}\right)^{\frac{-1}{3}}$

$\approx 8\left\{\left(1+\frac{1}{2} x\right)\left(1-\frac{9}{8}\right)\right\} \times 2^{-1}\left(1-\frac{5}{24} x\right)$
$\approx \frac{8}{2}\left\{1-\frac{9}{8} x+\frac{1}{2} x\right\}\left(1-\frac{5}{24}\right)$ by neglecting x^{2}
$\approx 4\left\{1-\frac{5}{8} x\right\}\left(1-\frac{5}{24} x\right)$
$\approx 4\left(1-\frac{5}{24} x-\frac{5}{8} x\right)$ by neglecting x^{2}
$\approx 4\left(1-\frac{5}{6} x\right)$
\approx R.H.S
(vi)

Gnation
L.H.S $=\frac{(1-x)^{\frac{1}{2}}(9-4 x)^{\frac{1}{2}}}{(8+3 x)^{\frac{1}{3}}}$
$=\left\{(1-x)^{\frac{1}{2}} \cdot 9^{\frac{1}{2}}\left(1-\frac{4}{9} x\right)^{\frac{1}{2}}\right\}(8+3 x)^{\frac{-1}{3}}$
$=3\left(1-\frac{1}{2} x+\ldots ..\right)\left(1-\frac{1}{2}\left(\frac{4}{9} x\right)+\ldots ..\right) \times 8^{\frac{-1}{3}}\left(1+\frac{3 x}{8}\right)^{\frac{-1}{3}}$ by neglecting $x^{2}, x^{3}, \ldots .$.
$\approx 3\left(1-\frac{1}{2} x\right)\left(1-\frac{2}{9} x\right) \times 2^{-1}\left(1-\frac{1}{3} \times \frac{3 x}{8}+\ldots \ldots.\right)$
$\approx \frac{3}{2}\left(1-\frac{2}{9} x-\frac{1}{2} x\right)\left(1-\frac{x}{8}\right)$ by neglecting x^{2}.
$\approx \frac{3}{2}\left(1-\frac{13}{18} x\right)\left(1-\frac{x}{8}\right)$
$\approx \frac{3}{2}\left(1-\frac{x}{8}-\frac{13}{18} x\right)$ by neglecting x^{2}
$\approx \frac{3}{2}\left(1-\frac{61}{72} x\right)$
$\approx \frac{3}{2}-\frac{61}{48} x$
\approx R.H.S
(vii)

Solvtion:
$\sqrt[\sim]{\sqrt{N} \cdot \sqrt{\text { L.B }}=\frac{\left(\frac{4}{}-x\right)^{\frac{1}{2}}+(8-x)^{\frac{1}{3}}}{(8-x)^{\frac{1}{3}}}}$

Chapter-8
$=\frac{(4-x)^{\frac{1}{2}}}{(8-x)^{\frac{1}{3}}}+\frac{(8-x)^{\frac{1}{3}}}{(8-x)^{\frac{1}{3}}}$
$=(4-x)^{\frac{1}{2}}(8-x)^{\frac{-1}{3}}-1$

Q. 5 If x is so small that its cube and higher power can be neglected, then show that
(i) $\sqrt{1-x-2 x^{2}} \approx 1-\frac{1}{2} x-\frac{9}{8} x^{2}$

Solution:

L.H.S $=\sqrt{1-x-2 x^{2}}$
$\left.\sqrt{n}=1 \frac{1}{2}\left(x+2 x^{2}\right)+\frac{1}{2} \frac{1}{2}-1\right)\left(x+2 x^{2}\right)^{2}$
$=1-\frac{1}{2} x-x^{2}+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)\left(x^{2}\right)}{2}$ by neglecting $x^{3}, x^{4} \ldots$
$\approx 1-\frac{1}{2} x-x^{2}-\frac{1}{8} x^{2}$
$\approx 1-\frac{1}{2} x-\frac{9}{8} x^{2}$
\approx R.H.S
(ii) $\sqrt{\frac{1+x}{1-x}} \approx 1+x+\frac{1}{2} x^{2}$

Solution:
L.H.S $=\sqrt{\frac{(1+x)}{(1-x)} \times \frac{1+x}{1+x}}$
$=(1+x)\left(1-x^{2}\right)^{\frac{-1}{2}}$
$=(1+x)\left(1+\frac{1}{2} x^{2}\right)$ by neglecting $x^{3}, x^{4} \ldots$
$\approx(1+x)\left(1+\frac{1}{2} x^{2}\right)$
$\approx 1+x+\frac{1}{2} x^{2}$ by neglecting x^{3}
$\approx 1+x+\frac{1}{2} x^{2}$
Q. 6 If x is nearly equal to 1 , then prove that $p x^{p}-q x^{q} \approx(\mathbf{p}-\mathbf{q}) x^{p+q}$

Proof: As x is nearly equal to 1 , so
Let $x=1+h$ where h is so small such that $\frac{I^{2}}{i}, h^{3}, \ldots$ are noglected.
L.H.S $=p x^{p}-q x^{q}$

$$
=n(1+h)^{p}-q(1+h)
$$

$$
2 t\left(1+p h-q(1+q h) \text { by } \text { acglecting } h^{2}, h^{3} \ldots\right.
$$

$$
\begin{aligned}
& =p+y^{2} h-q-q^{2} \\
& O(p-q)+\left(p^{2}-q^{2}\right) h
\end{aligned}
$$

$$
\approx(p-q)+(p-q)(p+q) h
$$

$$
\approx(p-q)[1+(p+q) h]
$$

$$
\approx(p-q)(1+h)^{p+q}
$$

$$
\approx(p-q)(x)^{p+q}
$$

$$
\approx \text { R.H.S }
$$

Q. 7 If $p-q$ is small when compared with p or q show that

$$
\frac{(2 n+1) p+(2 n-1) q}{(2 n-1) p+(2 n+1) q} \approx\left(\frac{p+q}{2 q}\right)^{\frac{1}{n}}
$$

Proof: Let $p-q=h \Rightarrow p=q+h$ where h is very small such that h^{2}, h^{3}, \ldots are neglected
L.H.S $=\frac{(2 n+1) p+(2 n-1) q}{(2 n-1) p+(2 n+1) q}$
$=\frac{(2 n+1)(q+h)+(2 n-1) q}{(2 n-1)(q+h)+(2 n+1) q}$
$=\frac{2 n q+2 n h+q+h+2 n q-q}{2 n q+2 n h-q-h+2 n q+q}$
$=\frac{4 n q+2 n h+h}{4 n q+2 n h-h}$
$=\frac{4 n q+h(2 n+1)}{4 n q+h(2 n-1)}$

$=\left\{1+\left(\frac{2 n+1}{4 n q}\right) h\right\}\left\{1+\left(\frac{2 n-1}{4 n q}\right) h\right\}^{-1}$

$$
\begin{aligned}
& =\left\{1+\left(\frac{2 n+1}{4 n q}\right) h\right\}\left\{1-\left(\frac{2 n-1}{4 n q}\right) h\right\} \text { by neglecting } h^{2}, h^{3}, \ldots . \\
& \approx 1-\left(\frac{2 n-1}{4 n q}\right) h+\left(\frac{2 n+1}{4 n q}\right) h \text { gy neglecing } h
\end{aligned}
$$

$$
\begin{aligned}
& \approx 1-2\left(\frac{(2 n-1)}{4 n q}\left(\frac{n+1)}{4 n}\right)\right. \\
& \left.\Rightarrow 1-\frac{n}{4}-1-2 n-1\right)
\end{aligned}
$$

$$
\begin{aligned}
& \approx 1-\frac{h}{4 n q}(-2) \\
& \approx 1+\frac{h}{2 n q} \\
\text { R.H.S } & =\left(\frac{p+q}{2 q}\right)^{\frac{1}{n}} \\
& \approx\left(\frac{q+h+q}{2 q}\right)^{\frac{1}{n}} \quad \because p=q+h \\
& \approx\left(\frac{2 q+h}{2 q}\right)^{\frac{1}{n}} \\
& \approx\left(1+\frac{h}{2 q}\right)^{\frac{1}{n}} \\
& \approx 1+\frac{h}{2 n q} \text { by neglecting } h^{2}, h^{3}, \ldots .
\end{aligned}
$$

Hence L.H.S \approx R.H.S

Q. 8 Show that

$$
\left[\frac{\mathbf{n}}{2(\mathbf{n}+\mathbf{N})}\right]^{\frac{1}{2}} \approx \frac{\mathbf{8 n}}{9 \mathbf{n}-\mathbf{N}}-\frac{\mathbf{n}+\mathbf{N}}{\mathbf{4 n}} \text { where } n \text { and } N \text { are nearly equal. }
$$

Proof: Here $N-n=h \Rightarrow N=n+h$ wher $\left(\mathrm{h}\right.$ is so smal , such ihat $2^{2}, h$.... a e muglected

$$
=\left[\frac{n}{2(2 n+h)}\right]^{\frac{1}{2}}
$$

$=\frac{1}{2}\left(1+\frac{h}{2 n}\right)^{\frac{-1}{2}}$
$=\frac{1}{2}\left(1-\frac{1}{2}\left(\frac{h}{2 n}\right)\right)$ by neglecting $h^{2}, h^{3}, \ldots .$.
$\approx \frac{1}{2}-\frac{1}{8} \frac{h}{n}$
R.H.S $=\frac{8 n}{9 n-N}-\frac{n+N}{4 n}$

Put $N=n+h$

$$
\begin{aligned}
& =\frac{8 n}{9 n-n-h}-\frac{n+n+h}{4 n} \\
& =\frac{8 n}{8 n-h}-\frac{2 n+h}{4 n}
\end{aligned}
$$

$$
=\frac{8 \pi}{8 \pi\left(1-\frac{h}{8 n}\right)}-\frac{2 n+h}{4 n}
$$

$$
=\left(1-\frac{h}{8 n}\right)^{-1}-\frac{2 n}{4 n}-\frac{h}{4 n}
$$

Q. 9 Identify the following series as binomial expansion and find the sum in each case.
(i)

$$
1-\frac{1}{2}\left(\frac{1}{4}\right)+\frac{1.3}{2!4}\left(\frac{1}{4}\right)^{2}-\frac{1.3 \cdot 5}{3!8}\left(\frac{1}{4}\right)+\ldots
$$

Solution:

As we know $\left(1-(x) x^{2}=1+n x+\frac{n}{2!} x^{2}+\ldots\right.$
Forngaring (I) (id)

$$
\begin{align*}
& n x=\frac{-1}{2}\left(\frac{1}{4}\right) \\
& n x=-\frac{1}{8} \\
& x=-\frac{1}{8 n} \tag{i}
\end{align*}
$$

$$
\begin{gathered}
\frac{n(n-1) x^{2}}{2!}=\frac{1.3}{2!\times 4}\left(\frac{1}{4}\right)^{2} \\
n(n-1) x^{2}=\frac{3}{4} \times \frac{1}{16} \\
n(n-1)\left(-\frac{1}{8 n}\right)^{2}=\frac{3}{64} \quad \text { usir } \\
n(n-1) \times \frac{1}{64 n^{2}}=\frac{3}{64} \\
\frac{n-1}{n}=3 \Rightarrow n-1=3 n \Rightarrow 2 n=-1 \\
n=\frac{-1}{2} \text { Put in (i) }
\end{gathered}
$$

$$
x=\frac{-1}{8\left(-\frac{1}{2}\right)} \Rightarrow x=\frac{1}{4}
$$

Now, the sum of the given series $=(1+x)^{n}=\left(1+\frac{1}{4}\right)^{-\frac{1}{2}}=\left(\frac{5}{4}\right)^{-\frac{1}{2}}=\left(\frac{4}{5}\right)^{-\frac{1}{2}}=\sqrt{\frac{4}{5}}$
(ii) $\quad 1-\frac{1}{2}\left(\frac{1}{2}\right)+\frac{1.3}{2.4}\left(\frac{1}{2}\right)^{2}-\frac{1.3 .5}{2.4 .6}\left(\frac{1}{2}\right)^{3}+\ldots \ldots$.

Solution:

$$
\begin{equation*}
\text { Let } \left.(1+x)^{n}=1-\frac{1}{2}\left(\frac{1}{2}\right)+\frac{1.51}{2.4}\right)^{2}-\frac{1.3}{24} \cdot \cdot \cdot\left(\frac{1}{2}\right) \tag{I}
\end{equation*}
$$

Let $\left.(1+x)^{n}=1-\frac{1}{2}\left(\frac{1}{2}\right)+\frac{1.60}{2.7} \frac{1}{2}\right)^{2}-\frac{1.3}{2} \cdot 4.5\left(\frac{1}{2}\right)^{3}+\cdots \cdots$
As we pop $(1+x)^{n}=1-\cdot 2 x+\frac{2 n}{2!}-x^{2}+\ldots$
Cortarar ne (I) and (II)

$$
\begin{aligned}
& n x=\frac{-1}{2}\left(\frac{1}{2}\right) \\
& n x=-\frac{1}{4}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{n(n-1) x^{2}}{2!}=\frac{1.3}{2 \times 4}\left(\frac{1}{2}\right)^{2} \\
& n(n-1) x^{2}=\frac{3}{4} \times \frac{1}{4}
\end{aligned}
$$

$$
\begin{equation*}
x=-\frac{1}{4 n} \tag{i}
\end{equation*}
$$

$$
n(n-1)\left(-\frac{1}{4 n}\right)^{2}=\frac{3}{16}
$$

Now, the sum of the given series $=(1+x)^{n}=\left(1+\frac{1}{2}\right)^{-\frac{1}{2}}=\left(\frac{3}{2}\right)^{-\frac{1}{2}}=\left(\frac{2}{3}\right)^{\frac{1}{2}}=\sqrt{\frac{2}{3}}$
(iii) $1+\frac{3}{4}+\frac{3.5}{4.8}+\frac{3.5 .7}{4.8 .12}+\ldots$.

Solution:

$$
\begin{equation*}
\text { Let }(1+x)^{n}=1+\frac{3}{4}+\frac{3.5}{4.8}+\frac{3.5 .7}{4.8 .12}+\ldots \tag{I}
\end{equation*}
$$

As we know $(1+x)^{n}=1+n x+\frac{n(n-1)}{2!} x^{2}+\ldots$
Comparing (I) and (II)

$$
\begin{align*}
& n x=\frac{3}{4} \\
& x=\frac{3}{4 n} \tag{i}
\end{align*}
$$

$$
n=\frac{-1}{2} \text { Put in (i) }
$$

$$
\begin{aligned}
& \frac{n(n-1) x^{2}}{2!}=\frac{3.5}{4.8} \\
& n(n-1) x^{2}=\frac{3.5}{2.8}
\end{aligned}
$$

$$
n(n-1)\left(\frac{3}{4 n}\right)^{2}=\frac{15}{16} \quad \text { using }
$$

Now, the sum of the given series
$=(1+x)^{n}=\left(1-\frac{1}{2}\right)^{-\frac{3}{2}}=\left(\frac{1}{2}\right)^{-\frac{3}{2}}=(2)^{\frac{3}{2}}=\left(2^{3}\right)^{\frac{1}{2}}=\sqrt{8}=2 \sqrt{2}$
(iv) $\left.\quad 1-\frac{1}{2}\left(\frac{1}{3}\right)+\frac{1.3}{2.4}\left(\frac{1}{3}\right)^{2}-\frac{1.3 .5}{2.4 \cdot 6} \cdot \frac{1}{3}\right)^{3}+\because .$.

Solutien
$\operatorname{Let}(1+x)^{2}:=1-\left(\frac{1}{2}\left(\frac{1}{3}\right)-\frac{1.3}{2.4}\left(\frac{1}{2}\right)^{2}-\frac{1.3 .5}{2.4 .6}\left(\frac{1}{3}\right)^{3}+\ldots .\right.$.
As we know $(1+x)^{n}=1+n x+\frac{n(n-1)}{2!} x^{2}+\ldots$
Comparing (I) and (II)

$$
\begin{align*}
& n x=\frac{-1}{2}\left(\frac{1}{3}\right) \\
& n x=-\frac{1}{6} \\
& x=-\frac{1}{6 n} \tag{i}
\end{align*}
$$

$$
n(n-1)\left(-\frac{1}{6 n}\right)^{2}=\frac{3}{36}
$$

$$
n(n-1) \times \frac{1}{36 n^{2}}=\frac{3}{36}
$$

$$
\frac{n-1}{n}=3 \Rightarrow n-1=3 n \Rightarrow 2 n=-1
$$

$$
n=\frac{-1}{2} \text { Put in (i) }
$$

$$
x=\frac{-1}{6\left(-\frac{1}{2}\right)} \Rightarrow x=\frac{1}{3}
$$

Now, the sum of the given series $=(1+x)^{n}=\left(1+\frac{1}{3}\right)^{-\frac{1}{2}}=\left(\frac{4}{3}\right)^{-\frac{1}{2}}=\left(\frac{3}{4}\right)^{\frac{1}{2}}=\sqrt{3}$
Q. 10 Use binomial theorem to show that $1+\frac{1}{4} \cdot \frac{1}{4.8} \cdot \frac{3}{8}+\frac{1}{4} \cdot \frac{3}{3.12}+\ldots=\sqrt{2}$

Proof: Let $(1+x)^{n}-1+\frac{1}{4}+\frac{1.3}{4.8}+1.1 .5 \cdot-12-\ldots$
As we knon $(1+x)^{n}=t+n x+\frac{2(n-1)}{2!} x^{2}+\ldots$
Vanomino (I) and (II)

$$
n x=\frac{1}{4}
$$

$$
\frac{n(n-1) x^{2}}{2!}=\frac{1.3}{4.8}
$$

$$
\begin{equation*}
x=\frac{1}{4 n} \tag{i}
\end{equation*}
$$

$$
n(n-1) x^{2}=\frac{1.3}{2.8}
$$

$$
x=\frac{1}{4\left(-\frac{1}{2}\right)} \Rightarrow x=\frac{-1}{2}
$$

Now, the sum of the given series $=(1+x)^{n}=\left(1-\frac{1}{2}\right)^{-\frac{1}{2}}=\left(\frac{1}{2}\right)^{-\frac{1}{2}}=(2)^{\frac{1}{2}}=\sqrt{2}$
Hence the proof
Q. 11 If $y=\frac{1}{3}+\frac{1.3}{2!}\left(\frac{1}{3}\right)^{2}+\frac{1.3 .5}{3!}\left(\frac{1}{3}\right)^{3}+\ldots . .$.

Then prove that $y^{2}+2 y-2=0$
Proof: Given that

$$
y=\frac{1}{3}+\frac{1.3}{2!}\left(\frac{1}{3}\right)^{2}+\frac{1.3 .5}{3 i}\left(\frac{1}{3}\right)^{3}+\ldots .
$$

Adding 1 on both sides of given series of make it binomial series

$$
\begin{equation*}
1+y=1+\frac{1}{3}+\frac{1.3}{2!}\left(\frac{1}{3}\right)^{2}+\frac{1.3 .5}{3!}\left(\frac{1}{3}\right)^{3}+\ldots . \tag{I}
\end{equation*}
$$

As we know $(1+x)^{n}=1+n x+\frac{n(n-1)}{2!} x^{2}+\ldots .$.
(II)

Comparing (I) and (II)

$$
n x=\frac{1}{3}
$$

$$
n=\frac{-1}{2} \text { Put in (i) }
$$

$$
x=\frac{1}{3\left(-\frac{1}{2}\right)} \Rightarrow x=\frac{-2}{3}
$$

From (IV aId (II)
$\square+y=\left(1+\sqrt{n} N^{n}\right.$
$1+y=\left(1-\frac{2}{3}\right)^{\frac{-1}{2}}$

$$
1+y=\left(\frac{1}{3}\right)^{\frac{-1}{2}}
$$

$$
1+y=\sqrt{3}
$$

Squaring on both sides

$$
\begin{aligned}
& 1+y^{2}+2 y=3 \\
& y^{2}+2 y-2=0
\end{aligned}
$$

Which is required to prove.

Q. 12 If $2 \mathrm{y}=\frac{1}{2^{2}}+\frac{1.3}{2!} \cdot \frac{1}{2^{4}}+\frac{1.3 .5}{3!} \cdot \frac{1}{2^{6}}+\ldots .$. .

Then Prove that $4 y^{2}+4 y-1=0$
Proof: Given that
$2 y=\frac{1}{2^{2}}+\frac{1.3}{2 \cdot} \cdot \frac{1}{2^{4}}+\frac{1.3 \cdot 5}{3!} \cdot \frac{-}{2}+$
Adding 1 an both sidesio inakpit Dinomiai series, we get ;
$1+2 v=1+\frac{-1}{2}+\frac{1 \cdot 3}{2!} \times \frac{1}{2^{4}}+\frac{13.5}{3!} \times \frac{1}{2^{6}}+\ldots .$.
As we know $(1+x)^{n}=1+n x+\frac{n(n-1)}{2!} x^{2}+\ldots \ldots$.
Comparing (I) and (II)

$$
\begin{align*}
& n x=\frac{1}{2^{2}} \\
& x=\frac{1}{4 n} \tag{i}
\end{align*}
$$

$$
\begin{aligned}
& \frac{n(n-1) x^{2}}{2!}=\frac{1.3}{2!} \cdot \frac{1}{2^{4}} \\
& n(n-1) x^{2}=\frac{3}{16} \\
& n(n-1)\left(\frac{1}{4 n}\right)^{2}=\frac{3}{16} \quad \text { using (i) } \\
& n(n-1) \times \frac{1}{16 n^{2}}=\frac{3}{16} \\
& \frac{n-1}{n}=3 \Rightarrow n-1=3 n \Rightarrow 2 n=-1 \\
& n=\frac{-1}{2} \text { Put in (i) }
\end{aligned}
$$

$x=\frac{1}{4\left(-\frac{1}{2}\right)} \Rightarrow x=\frac{-1}{2}$
From (I) and (II)
$1+2 y=(1+x)^{n}$
$1+2 y=\left(1-\frac{1}{2}\right)^{\frac{-1}{2}}$
$1+2 y=\left(\begin{array}{c}1 \\ -2 \\ 2\end{array}\right)^{\frac{-1}{2}}$
$1+2 y=\sqrt{2}$

Which is required to prove.
Q. 13 If $y=\frac{2}{5}+\frac{1.3}{2!}\left(\frac{2}{5}\right)^{2}+\frac{1.3 .5}{3!}\left(\frac{2}{5}\right)^{3}+\ldots \ldots$.

Then prove that $y^{2}+2 y-4=0$
Proof: Give that
$\mathrm{y}=\frac{2}{5}+\frac{1.3(2}{0} \cdot\left(\frac{2}{5}\right)^{2}+\frac{1.3 .5(2}{3}\left(\frac{2}{2}\right)^{3}$
Addins 1 ch both side of siven sories to make it binomial series.
B) $1-0 v=1+\frac{2}{5}+\frac{.3}{2!}\left(\frac{2}{5}\right)^{2}+\frac{1.3 .5}{3!}\left(\frac{2}{5}\right)^{3}+\ldots \ldots$.

As we know $(1+x)^{n}=1+n x+\frac{n(n-1)}{2!} x^{2}+\ldots \ldots$
Comparing (I) and (II)

$$
\begin{align*}
& n x=\frac{2}{5} \\
& x=\frac{2}{5 n} \tag{i}
\end{align*}
$$

$$
\begin{aligned}
& \frac{n(n-1) x^{2}}{2!}=\frac{1.3}{2!} \cdot\left(\frac{2}{5}\right)^{2} \\
& n(n-1) x^{2}=\frac{12}{25} \\
& n(n-1)\left(\frac{2}{5 n}\right)^{2}=\frac{12}{25} \quad \text { using (i) } \\
& n(n-1) \times \frac{4}{25 n^{2}}=\frac{12}{25} \\
& \frac{n-1}{n}=3 \Rightarrow n-1=3 n \Rightarrow 2 n=-1 \\
& n=\frac{-1}{2} \text { Put in (i) }
\end{aligned}
$$

$$
x=\frac{2}{5\left(-\frac{1}{2}\right)} \Rightarrow x=\frac{-4}{5}
$$

From (I) and (II)
$1+y=(1+x)^{n}$
$1+y=\left(1-\frac{4}{5}\right)^{\frac{-1}{2}}$
$1+y=\left(\frac{1}{5}\right)^{2}$

Chapter-8
Which is required to prove.

