

Introduction:

Francesco Mourslico (1494-1575) devised the method of induction and applied this device first to prove that the sum of the first n odd positive integers equals n^2 .

We are aware of the fact that even one exception or case to a mathematical formula is enough to prove it to be false. Such a case or exception which fails the mathematical formula or statement is called a **counter example.**

For example, we consider the statement $S(n) = n^2 - n + 41$ is a prime number for every natural number n. The values of the expression $n^2 - n + 41$ for some first natural numbers are given in the table as shown below.

	n	1	2	3	4	5	6	7	8	9	10	11
	S(n)	41	43	47	53	61	71	83	97	113	131	151

From the table, it appears that the statement S(n) has enough chance of being true. If we go on trying for the next natural numbers. We find n = 41 as a counter example which fails the claim of the above statement. So we conclude that to derive a general formula without proof from some special cases is not a wise step. This example was discovered by **Euler** (1707-1783)

Principle of Mathematical Induction

The principle of mathematical induction is stated as follows:

If a proposition or statement S(n) for each positive integer n is such that

- 1. S(1) is true i.e., S(n) is true for n = 1.
- 2. S(k+1) is true whenever S(k) is true for any positive integer k,

Then S(n) is true for all positive integers.

Procedure:

- **1.** Substituting n = 1, show that the statement is rue for n = 1.
- 2. Assuming that the statement is true for any integer k, then show that it is true for the next higher integer.

M1: Starting with one side of S(k+1), its other side is derived by using S(k).

M2: S(k-1) is established by performing algebraic operations on S(k).

Principle of Extended Mathematical Induction:

Let *i* be an integer. If a formula or statement for $n \ge i$ is such that

- \bigvee S(i) is true and
- 2. S(k+1) is true whenever S(k) is true for integral values of $n \ge i$.

EXERCISE 65.
Use the mathematical induction to prove the following formulae for every positive integer n.
().1
$$1+5+9+....+(4n-3) = n(2n-1)$$

Solution:
Let S(n) be the give statement, i.e.,
 $S(n): (1, 5+9+...+(4n-3) = n(2n-1) = 0$
(i) when $n+1$, Equation (i) becomes;
 $1: (241) - 5 = (2(2x1-1))$
 $S(1): 1 = 1$
Thus S(1) is true i.e., condition (1) is satisfied.
(ii) Let us assume that S(n) is true for any $n = k \in N$ i.e.,
 $1+5+9+....+(4k-3) = k(2k-1)$ (A)
The statement for $n = k + 1$ becomes;
 $1+5+9+....+(4k-3) + (4k+1) = (k+1)(2k+1)$ (B)
Adding $(4k+1)$ on both sides of (A) we get;
 $1+5+9+....+(4k-3) + (4k+1) = k(2k-1) + (4k+1)$
 $= 2k^2 + 2k + k+1$
 $= 2k(k+1) + 1(k+1)$
Thus $S(k+1)$ is true if $S(k)$ is true, so condition (1) is satisfied. Since both the condition are satisfied, therefore, $S(n)$ is true for all $n \in N$.
Q.2 $1+3+5+....+(2n-1)=n^2$ (LIR 2022)
Solution:
Let $S(n)$ be the give statement, i.e.,
 $S(n): 1+3+5+....+(2n-1)=n^2$ (LIR 2022)
Solution:
Let $S(n)$ be the give statement, i.e.,
 $S(n): 1+3+5+....+(2n-1)=n^2$ (LIR 2022)
Solution:
Let $S(n)$ be the give statement, i.e.,
 $S(n): 1+3+5+....+(2n-1)=n^2$ (LIR 2022)
Solution:
Let $S(n)$ be the give statement, i.e.,
 $S(n): 2\times1-1=1^2$
 $S(0)$
Thus $S(1)$ is true into $S(n)$ is true for any $n = k \in N$, i.e.,
 $S(k): (1+3+5+....+(2k-1)=k^2 = A)$
The statement for $n = k + 1$ becomes;
 $1+3+5+....+(2k-1)+(2k+1)^2$ (B)

Adding
$$(2k + 1)$$
 on both sides of (A) we get;
 $1 + 3 + 5 + ... + (2k - 1) + (2k + 1) = k^2 + (2k + 1)$
 $= k^2 + 2k + 1$
 $= (k + 1)^2$
Thus $k(k + 1)$ is pracif $(S_k(k)$ is true. So condition (11) is satisfied.
Since to that the conditions are sansfied, therefore, $S(n)$ is true for each positive integer n
 $4 + 4 + 7 + + (3n - 2) = \frac{n(3n - 1)}{2}$ (RWP 2022, MTN 2023)
Solution:
Let $S(n)$ be the given statement, i.e.,
 $S(n): 1 + 4 + 7 + + (3n - 2) = \frac{n(3n - 1)}{2}$ (i)
(i) When $n = 1$, Sequation (i) becomes:
 $S(1): 3(1) - 2 = \frac{1(3(1) - 1)}{2}$
 $S(1): 1 = 1$
Thus $S(1)$ is true, i.e., condition (1) is satisfied
(ii) Let us assume that $S(n)$ is true for any $n = k \in N$, i.e.,
 $S(k): 1 + 4 + 7 + + (3k - 2) = \frac{k(3k - 1)}{2}$ (A)
The statement for $n = k + 1$ becomes;
 $1 + 4 + 7 + + (3k - 2) + (3k + 1) = \frac{(k + 1)(3k + 2)}{2}$ (B)
Adding $(3k + 1)$ on both sides of equation (A) we get
 $S(k): 1 + 4 + 7 + + (3k - 2) + (3k + 1) = \frac{k(3k - 1)}{2}$ (B)
Adding $(3k + 1)$ on both sides of equation (A) we get
 $S(k): 1 + 4 + 7 + + (3k - 2) + (3k + 1) = \frac{k(3k - 1)}{2}$ (B)
 $Adding $(3k + 1)$ on both sides of equation (A) we get
 $S(k): 1 + 4 + 7 + + (3k - 2) + (3k + 1) = \frac{k(3k - 1)}{2} + 3k + 1$
 $= \frac{3k^2 - k + 6k + 2}{2}$
 $= \frac{3k^2 + 5k + 2}{2}$
 $= \frac{3k^2 + 5k + 2}{2}$
 $= \frac{3k^2 + 13k + 22 + 1}{2}$$

Hence S(k+1) is true whenever S(k) is true so condition (II) is satisfied.

Chapter-8

Since both the conditions are satisfied, therefore
$$S(n)$$
 is true for each positive integer n.
(A. $1+2+4+\dots+2^{n-1}=2^n-1$ (FSD 2021, MTN 2023, LHR 2023)
Solution:
Let $S(n)$ be the given statement, i.e.
 $S(n): 1+2+4+\dots+2^{n-1}=2^n+1$ (i)
(i) when $n=$ equation (1) becomes:
 $S(1): 2^{n+1}=2^{1+1}$
Thus S(1) is true that is condition (1) is satisfied.
(ii) Let us assume that $S(n)$ is true for any $n=k \in N$, i.e.,
 $S(k): 1+2+4+\dots+2^{1+1}=2^k-1$ (i)
The statement for $n=k+1$ becomes:
 $1+2+4+\dots+2^{1+1}=2^{k-1}-1$ (i)
Adding $2^{(k+1)-3}$ on both sides of (A) we get:
 $1+2+4+\dots+2^{1+1}=2^{(k-1)}-1$ (B)
Adding $2^{(k+1)-3}$ on both sides of (A) we get:
 $1+2+4+\dots+2^{1+1}+2^{(k+1)-1}=(2^k-1)+2^{(k-1)-1}$
Thus $S(k+1)$ is true if $S(k)$ is true, so the condition (1) is satisfied.
Since both the conditions are satisfied, therefore, $S(n)$ is true for each positive integer n.
 $(2,5-1+\frac{1}{2}+\frac{1}{2}+\dots+\frac{1}{2^{n-1}}=2\left(1-\frac{1}{2}\right)$ (FSD 2022,GRW 2023)
Solution:
Let $S(n)$ be the given statement, i.e.,
 $S(n): 1+\frac{1}{2}+\frac{1}{4}+\dots+\frac{1}{2^{n-1}}=2\left(1-\frac{1}{2}\right)$ (i)
(i) when $n=1$ -equation(i)
becomes;
 $S(n): \frac{1}{1+2}-\frac{1}{2}+\frac{1$

Hence S(k+1) is true whenever S(k) is true.

So condition (II) is satisfied.

Since both conditions are satisfied therefore S(n) is true for each positive integer n.

Q.6
$$2+4+6+\dots+2n = n(n+1)(GRW 2022, MTN 2023)$$

Solution:

Let S(n) be the given statement, i.e.,

$$S(n): 2+4+6+...2n = n(n+1)$$
 (i)

when n = 1, equation (i) becomes;

(i)
$$S(1): 2(1) = 1(1+1)$$

$$S(1): 2 = 2$$

Thus S(1) is true that is condition (I) is satisfied.

(ii) Let us assume that S(n) is true for any $n = k \in N$, i.e.,

$$S(k): 2+4+6+....+2k = k(k+1)$$
 (A)

The given statement for n = k + 1 becomes

$$2+4+6+\ldots+2k+2(k+1)=(k+1)(k+2)$$
 (B)

Adding 2(k+1) on both sides of (A) we get;

$$2+4+6+\dots+2k+2(k+1)=k(k+1)+2(k$$

= (k+1)(k+2)Hence S(k+1) true whenever S(k) is true. So condition (II) is satisfied. Since both conditions are satisfied, therefore S(n) is true $\forall n \in N$.

$$2 + \ell + 18 + \dots + 2 \times 3^{n-1} = 3^n - 1$$

$$2 + 6 + 18 + \dots + 2 \times 3^{n-1} = 3$$

Let S(n) be the given statement, i.e.,

$$S(n) := 2 + 6 + 18 + \dots + 2 \times 3^{n-1} = 3^n - 1$$
 (i)

E].CO

when n = 1, S(1) becomes; E].COM (i) $S(1): 2 \times 3^{1-1} = 3^1 - 1$ 2 = 2S(1): Thus S(1) is true that is condition (i) is satisfied Let us assume that $\mathcal{N}(n)$ is true for any $n = \frac{1}{N} \in N$, i.e., (ii) $-2 \times 3^{k-1} = 3^k - 1$ (A) S(k)2+6+18+The given statement for n = k + 1 becomes; $\mathfrak{D} - 6 + 18 + \dots + 2 \times 3^{k-1} + 2 \times 3^k = 3^{k+1} - 1$ (B) Adding 2×3^k on both sides we have $2+6+18+\dots+2\times 3^{k-1}+2\times 3^{k}=3^{k}-1+2\times 3^{k}$ $=3^{k}+2\times 3^{k}-1$ $=3^{k}(1+2)-1$ $=3.3^{k}-1$ $=3^{k+1}-1$ Hence S(k+1) is true whenever S(k) is true. So condition (II) is satisfied. There fore both condition are satisfied, so S(n) is true $\forall n \in N$ $1 \times 3 + 2 \times 5 + 3 \times 7 + \dots + n \times (2n+1) = \frac{n(n+1)(4n+5)}{6}$ **Q.8** Solution: Let S(n) be the given statement, i.e., $S(n): 1 \times 3 + 2 \times 5 + 3 \times 7 + \dots + n \times (2n+1) = \frac{n(n+1)(4n+5)}{6}$ (i)

(i) When n = 1, equation (i) becomes;

$$S(1)$$
 :1×(2×1+1) = $\frac{1(1+1)(4×1+5)}{6}$

S(1): 3=3. thus S(1) is true that is condition (I) is satisfied.

(ii) Let us assume that
$$S(n)$$
 is true for any $n = k \in \mathbb{N}$, i.e.
 $S(k) := 1 \times 3 + 2 \times 5 + 3 \times 7 + \dots + k \times (2k + i) = \frac{k(i+1)(4k+5)}{6}$ (A)
The given statement for $n = k+1$ becomes:
 $1 \times 3 + 2 \times (i+3 \times 7 + \dots + k \times (2k+1) + (k+1) \times (2k+3) = \frac{(k+1)(k+2)(4k+9)}{6}$ (B)
Adding $(k+1)(2k+3)$ in (A) we get;
 $1 \times 3 + 2 \times 5 + 3 \times 7 + \dots + k \times (2k+1) + (k+1) \times (2k+3) = \frac{k(k+1)(4k+5)}{6} + (k+1)(2k+3)$

$$= (k+1) \left[\frac{k(4k+5)}{6} + (2k+3) \right]$$

$$1 \times 3 + 2 \times 5 + 3 \times 7 + \dots + k(2k+1) + (k+1)(2k-3) = (k+1) \left[\frac{k(4k-5) + 6(2k+3)}{6} \right]$$

$$= (k+1) \left[\frac{4k^{2} + 5k + 12k + 18}{6} \right]$$

$$= (k+1) \left[\frac{4k^{2} + 8k + 9k + 18}{6} \right]$$

$$= (k+1) \left[\frac{4k^{2} + 8k + 9k + 18}{6} \right]$$

$$= (k+1) \left[\frac{4k(k+2) + 9(k+2)}{6} \right]$$

$$= \frac{(k+1)(k+2)(4k+9)}{6}$$
Which is a point of (0)

Which is same as R.H.S of (B)

Hence S(k+1) is true when S(k) is true so condition (II) is satisfied. Therefore both conditions are satisfied, so S(n) is true $\forall n \in \mathbb{N}$.

Q.9
$$1 \times 2 + 2 \times 3 + 3 \times 4 + \dots + n \times (n+1) = \frac{n(n+1)(n+2)}{3}$$

Solution:

Let S(n) be the given statement, i.e.,

$$S(n): 1 \times 2 + 2 \times 3 + 3 \times 4 + \dots + n \times (n+1) = \frac{n(n+1)(n+2)}{3}$$
 (i)

1. When n = 1, equation (i) becomes;

$$S(1):1\times(1+1) = \frac{1(1+1)(1+2)}{3}$$

$$S(1): 2=2$$
So statement is true for $n = 1$, that is condition (1) is satisfied.
2. Let us assume that statement is true for $n = k \in N$, i.e.,

$$S(k).1\times 2+2\times 3+...+k(k+1) = \frac{k(k+1)(k+2)}{3}$$
Give statement ior $n = k+1$ becomes;

$$S(k+1):1\times 2+2\times 3+3\times 4+....+(k+1)\times(k+2) = \frac{(k+1)(k+2)(k+3)}{3}$$
(B)

Adding
$$(k+1)(k+2)$$
 both sides of (A) we get;
 $1 \times 2 + 2 \times 3 + \dots + k(k+1) + (k+1)(k+2) = \frac{k(k+1)(k+2)}{3} + (k+1)(k+2)$
 $= (k+1)(k+2)\left(\frac{k}{3}+1\right)$
 $= \frac{(k+1)(k+2)(k+3)}{3}$
Which is serie at F.H.S of (B)
Hence $S(k+1)$ is true if $S(k)$ is true, so condition (II) is satisfied, so $S(n)$ is true
 $\forall n \in \mathbb{N}$
 $n(n+1)(4n-1)$

Q.10
$$1 \times 2 + 3 \times 4 + 5 \times 6 + ... + (2n-1) \times 2n = \frac{n(n+1)(4n-1)}{3}$$

Solution:

Let S(n) be the given statement, i.e.,

$$S(n): 1 \times 2 + 3 \times 4 + 5 \times 6 + \dots + (2n-1)(2n) = \frac{n(n+1)(4n-1)}{3}$$
(i)

1. when n = 1, equation (i) becomes;

$$S(1):(2\times 1-1)(2\times 1) = \frac{1(1+1)(4\times 1-1)}{3}$$
$$S(1):2=2$$

So statement is true for n = 1 so conduction (I) is satisfied.

2. Suppose that statement is true for n = k, i.e.,

$$S(k):1\times 2+3\times 4+5\times 6+\dots+(2k-1)(2k) = \frac{k(k+1)(4k-1)}{3}$$
(A)

Given statement for n = k + 1 becomes;

$$S(k+1):1\times 2+3\times 4+5\times 6+....+(2k-1)(2k)+(2k+1)(2k+2) = \frac{(k+1)(k+2)(4k+3)}{3} (B)$$
Adding $(2k+1)(2k+2)$ on both sides of (A) we get :
 $1\times 2+3\times 4+5\times 6+....+(2k-1)(2k)+(2k+1)(2k+2)$
 $=\frac{k(k+1)(4k-1)}{3}+(2k+1)(2k+2)$
 $=\frac{k(k+1)(4k-1)}{3}+(2k+1)(2(k+1))$
 $=(k+1)\left[\frac{k((4k-1))}{3}+2(2k+1)\right]$
 $=(k+1)\left[\frac{4k^2-k+12k+6}{3}\right]$

Q11
$$\frac{1}{1\times 2} + \frac{1}{2\times 3} + \frac{1}{3\times 4} + ... + \frac{1}{n(n+1)} = 1 - \frac{1}{n+1}$$

Solution:
Let *S*(*n*) be the given statement, i.e.,
 $S(n) : \frac{1}{2\times 3} + \frac{1}{3\times 4} + ... + \frac{1}{n(n+1)} + 1 + ... + \frac{1}{n(n+1)} + \frac{1}{n(n+1)$

Q.12
$$\frac{1}{1\times 3} + \frac{1}{3\times 5} + \frac{1}{5\times 7} + \dots + \frac{1}{(2n-1)(2n+1)} = \frac{n}{2n+1}$$

Solution:
Let $S(n)$ be the given statement, i.e.,
 $S(n) : \frac{1}{(3n+3)+5} + \frac{1}{2\times 7} + \dots + \frac{1}{(2n-1)(2n+1)} = \frac{n}{2n+1}$ (i)
1. when $n = 1$, excluding (i) be complex,
 $S(1) : \frac{1}{3} = \frac{1}{3}$
Thus statement is true for $n = 1$, so condition (1) is satisfied.
2. Suppose that statement is true for $n = k$, i.e.,
 $\frac{1}{1\times 3} + \frac{1}{3\times 5} + \frac{1}{5\times 7} + \dots + \frac{1}{(2k-1)(2k+1)} = \frac{k}{2k+1}$ (A)
Given statement for $n = k + 1$ becomes
 $\frac{1}{1\times 3} + \frac{1}{3\times 5} + \frac{1}{5\times 7} + \dots + \frac{1}{(2k-1)(2k+1)} + \frac{1}{(2k+1)(2k+3)} = \frac{(k+1)}{(2k+3)}$ (B)
Adding $\frac{1}{(2k+1)(2k+3)}$ on both sides of (A) we get ;
 $\frac{1}{1\times 3} + \frac{1}{3\times 5} + \frac{1}{5\times 7} + \dots + \frac{1}{(2k-1)(2k+1)} + \frac{1}{(2k+1)(2k+3)} = \frac{k}{(2k+1)}$ (B)
Adding $\frac{1}{(2k+1)(2k+3)}$ $= \frac{k}{(2k+1)} \left[\frac{2k^2 + 3k + 1}{2k+3} \right]$
 $= \frac{1}{(2k+1)} \left[\frac{2k^2 + 3k + 1}{2k+3} \right]$
 $= \frac{k}{(2k+1)} \left[\frac{2k(k+1)(k+1)}{2k+3} \right]$
 $= \frac{k+1}{(2k+1)} \left[\frac{(2k+1)(k+1)}{2k+3} \right]$
 $= \frac{k+1}{(2k+1)} \left[\frac{(2k+1)(k+1)}{2k+3} \right]$
Which is same as R.H.S of (B)

Hence
$$S(k+1)$$
 is true if $S(k)$ is true, so condition (II) is satisfied, so $S(n)$ is true $\forall n \in \mathbb{N}$
Q.13 $\frac{1}{2x5} + \frac{1}{5x8} + \frac{1}{8x11} + \dots + \frac{1}{(3n-1)(3n+4)} = \frac{n}{2(3n+2)}$
Solution:
Let $S(n)$ be the gives statement, i.e.
 $S(n): \frac{1}{2x5} + \frac{1}{5x8} + \frac{1}{3x(1-1)(3n+1)} + \dots + \frac{1}{(3n-1)(3n+2)} = \frac{n}{2(3n+2)}$ (i)
When $N = 1$, equation (i) becomes;
 $S(1): \frac{1}{2(5)} = \frac{1}{2(2(5))}$
So $S(1)$ is true, so condition (I) is satisfied
2. Suppose that given statement is true for $n = k$, i.e.,
 $S(k): \frac{1}{2x5} + \frac{1}{5x8} + \frac{1}{8x11} + \dots + \frac{1}{(3k-1)(3k+2)} + \frac{1}{2(3k+2)}$ (A)
Given statement for $n = k + 1$ becomes
 $S(k+1): \frac{1}{2x5} + \frac{1}{5x8} + \frac{1}{8x11} + \dots + \frac{1}{(3k-1)(3k+2)} + \frac{1}{(3k+2)(3k+5)} = \frac{k+1}{2(3k+5)}$ (B)
Adding $\frac{1}{(3k+2)(3k+5)}$ on both sides of (A) we get;
 $\frac{1}{2x5} + \frac{1}{5x8} + \frac{1}{8x11} + \dots + \frac{1}{(3k-1)(3k+2)} + \frac{1}{(3k+2)(3k+5)} = \frac{1}{(3k+2)} \left[\frac{k}{2} + \frac{1}{3k+5} \right]$
 $= \frac{k}{2(3k+2)} + \frac{1}{(3k+2)(3k+5)} = \frac{1}{(3k+2)} \left[\frac{k}{2} + \frac{1}{3k+5} \right]$
 $= \frac{1}{(3k+2)} \left[\frac{3k(k+5)+2}{2(3k+5)} \right]$
 $= \frac{1}{(3k+2)} \left[\frac{3k(k+1)+2(k+2)}{2(3k+5)} \right]$
 $= \frac{1}{(3k+2)} \left[\frac{3k(k+1)+2(k+1)}{2(3k+5)} \right]$

$$= \frac{1}{(3k+2)} \left[\frac{(3k+2)(k+1)}{2(3k+5)} \right]$$

$$= \frac{(k+1)}{2(3k+5)}$$

Which is same as R.H.S. of (B)
Hence $S(k+1)$ is true if $S(k)$ is true, so condition (II) is satisfied, so $S(n)$ is
true $\forall n \in \mathbb{N}$
Volume
Let $S(n)$ be the given statement, i.e.,
 $S(n): r + r^3 + r^3 + \dots + r^n = \frac{r(1-r^n)}{(1-r)}$ (i)
1. when $n = 1$, equation (i) becomes;
 $S(1): r' = \frac{r(1-r')}{(1-r)}$
 $S(1): r = r$
Thus S(1) is true, so condition (I) is satisfied.
2. Suppose that given statement bare for $n = k$, i.e.,
 $S(k): r + r^2 + r^3 + \dots + r^n = \frac{r(1-r^n)}{(1-r)}$ (A)
For $n = k + 1$ given statement becomes;
 $S(k+1): r + r^2 + r^3 + \dots + r^n = \frac{r(1-r^n)}{(1-r)}$ (B)
Adding r^{k-1} on both sides of (A) we get:
 $r + r^2 + r^2 + \dots + r^k + r^{k-1} = \frac{r(1-r^{k-1})}{(1-r)} + r^{k-1} = r\left(\frac{(1-r^k)}{(1-r)}\right)$
 $= r\left(\frac{1-r^k + r^2}{(1-r)}\right)$
 $= r\left(\frac{1-r^$

Solution:

Solution:
Let *S*(*n*) be the given statement, i.e.,
S(*n*):
$$a + (a+b) + (a+2d) + ... + (a + (n-t)d)$$

 $= \frac{n}{2} [2a + (n-1)d]$
1. when *n* = *h* equation (3) becomes.
S(1): $[a + (1-1)d] = \frac{1}{2} [2a + (1-1)d]$
s(*n*): $a = \frac{1}{2} (2a)$
S(1): *a* = *a*
Thus *S*(*t*) is true, so condition (1) is satisfied.
2. Suppose that given statement is true for $n = k$, i.e.,
S(*k*): $a + (a + d) + (a + 2d) + ... + (a + (k-1)d)$
 $= \frac{k}{2} [2a + (k-1)d]$ (A)
For $n = (k+1)$ given statement becomes;
S(*k*+1): $a + (a + d) + (a + 2d) + ... + (a + (k-1)d) + (a + kd)$
 $= \frac{(k+1)}{2} [2a + kd]$ (B)
Adding (*a*+*kd*) on both sides of (A) we get ;
 $a + (a + d) + (a + 2d + ... +)(a + (k-1)d) + (a + kd)$
 $= \frac{k}{2} [2a + (k-1)d] + (a + kd)$
 $a + (a + d) + (a + 2d + ... + (a + (k-1)d) + (a + kd))$
 $= ka + \frac{k}{2} (k - 1)d + a + kd$
 $= ka + \frac{k}{2} (k - 1)d + a + kd$
 $= ka + \frac{k}{2} (k - 1)d + kd$
 $= a(k + 1) + kd (\frac{(k-1)}{2} + 1)$
 $= a(k + 1) + kd (\frac{(k-1)}{2} + 1)$
 $= a(k + 1) + kd (\frac{(k-1)}{2} + 1)$
 $= a(k + 1) + kd (\frac{(k-1)}{2} + 1)$
 $= a(k + 1) + kd (\frac{(k-1)}{2} + 1)$
Hence *S*(*k*+1) is true if *S*(*k*) is true, so condition (11) is satisfied, so *S*(*n*) is

Q.16
$$1 | 1 + 2 | 2 + 3 | 3 + ... + n | n = | n + 1 - 1$$

Solution:
Let $s(n)$ be the given statement, i.e.,
 $s(n): 1 | 1 + 2 | 2 + 3 | 3 + ... + n | n = | n + 1 - 1$ (i)
1. when $n = 1$, equation (i) be oness:
 $s(1): (1) = 1 | 2 + 1$ (i)
 $s(1): (1) = 1 | 2 + 1$ (ii)
Thus $s(1)$ is true, so condition (1) is satisfied.
2. Suppose that given statement is true for $n - k \in N$, i.e.,
 $s(k): 1 | 1 + 2 | 2 + 3 | 3 + ... + k | k = | k + 1 - 1$ (A)
Given statement for $n = k + 1$ becomes :
 $s(k+1): 1 | 1 + 2 | 2 + 3 | 3 + ... + k | k + (k+1) | (k+1) = | k + 2 - 1$ (B)
Adding $(k+1) | (k+1)$ on both sides of (A) we get :
 $1 | 1 + 2 | 2 + 3 | 3 + ... + k | k + (k+1) | (k+1) = | k + 1 - 1 + (k+1) | (k+1) | = | (k+1) - 1 + (k+1) | (k+1) | = | (k+1) - 1 + (k+1) | (k+1) - 1 = | (k+1) - 1 + (k+1) | (k+1) - 1 = | (k+2) - 1 = | (k+2)$

 $S(k): a_{k+1} = a + kd$ **(B)** Adding d on both sides of (A) we get ; $a_k + d = a_1 + (k-1)d + d$ $=a_1+kd-d+d$ $=a_1 + kd = R.H.S cf(B)$ Hence S(k+1) is true if true, so condition (II) is satisfied, so S(n) is true 26 $\forall n \in \mathbb{N}$ $= a_1 r$ when a_1, a_1r, a_1r^2, \dots form a G.P. 0.18 h. Solution Let S(n) be the given statement, i.e., $S(n): a_n = a_1 r^{n-1}$ (i) when n = 1, equation (i) becomes; 1. $S(1): a_1 = a_1 r^{1-1}$ $S(1): a_1 = a_1$ Thus S(1) is true, so condition (I) is satisfied. 2. Suppose that given statement is true for n = k, i.e., $S(k):a_k = a_1 r^{k-1}$ (A) So given statement for n = k + 1 becomes $S(k+1): a_{k+1} = a_1 r^k$ **(B)** Multiply r on both sides of (A) we get ; $r.a_{k} = a_{1}r^{k-1}.r$ $a_{k+1} = ar^k$ Which is right hand side of (B) Hence S(k+1) is true if S(k) is true, so condition (II) is satisfied, so S(n) is true $\forall n \in \mathbb{N}$ $1^{2} + 3^{2} + 5^{2} + \dots + (2n-1)^{2} = \frac{n(4n^{2}-1)}{2}$ Q.19 Solution: Let S(n) be the given statement, i.e., $S(n): 1^2 + 3^2 + 5^2 + ...$ (i) when n = 1, evaluation (i) becomes 1. SAL S(1):1=1Thus S(1) is true, so condition (I) is satisfied. 2. Suppose that given statement is true for n = k, i.e.,

$$S(k): l^{2} + 3^{2} + 5^{2} + ... + (2k-1)^{2} = \frac{k(4k^{2}-1)}{3}$$
So given statement for $n = k + 1$ becomes
$$S(k+1): l^{2} + 3^{2} + 5^{2} + ... + (2k-1)^{2} + (3k+1)^{2} = \frac{(k+1)(4k+1)^{2}}{3}$$
(B)
while $(2k+1)^{2}$ on both sides of (A) we get:
$$l^{2} + 3^{2} + 5^{2} + ... + (2k-1)^{2} + (2k+1)^{2} = \frac{k(4k^{2}-1)}{3} + (2k+1)^{2}$$

$$= \frac{k(4k^{2}-1) + 3(2k+1)^{2}}{3}$$

$$= \frac{k((2k-1)(2k+1))}{3} + (2k+1)^{2}$$

$$= (2k+1) \left[\frac{(2k-1)}{3} + (2k+1) \right]$$

$$= (2k+1) \left[\frac{(2k-1)}{3} + (2k+1) \right]$$

$$= (2k+1) \left[\frac{(2k^{2}-1) + 3(2k+1)}{3} \right]$$
Which is right hand side of (k)
Hence $(3(k+1)$ is true (1) (b) is satisfied, so $S(n)$ is true $\forall n \in \mathbb{N}$
Which is right hand side of (k)
Hence $(3(k+1)$ is true (1) (b) the neuron strement is the solution (II) is satisfied, so $S(n)$ is true $\forall n \in \mathbb{N}$
Using the solution strement is the solution (II) is satisfied. So $S(n)$ is true $\forall n \in \mathbb{N}$

Let S(n) be the given statement, i.e.,

<u>erem</u> Analysis of the second second

1. when
$$n=1$$
. equation (i) becomes;

$$s(1): \begin{pmatrix} 1+2\\ 3 \end{pmatrix} = \begin{pmatrix} 1+3\\ 4 \end{pmatrix}$$

$$s(1): \begin{bmatrix} 1\\ 3 \end{pmatrix} = \begin{pmatrix} 4\\ 4 \end{pmatrix}$$

$$s(1): \begin{bmatrix} 1\\ 1 \end{pmatrix}$$
Thus $S(1)$ is true, so conclusion (1) is satisfied.
2. Suppose that given statement is true for $n=k$, i.e.,

$$b(k): \begin{pmatrix} 3\\ 3 \end{pmatrix} + \begin{pmatrix} 4\\ 3 \end{pmatrix} + \begin{pmatrix} 5\\ 3 \end{pmatrix} + \dots + \begin{pmatrix} k+2\\ 3 \end{pmatrix} = \begin{pmatrix} k+4\\ 3 \end{pmatrix} = \begin{pmatrix} k+4\\ 4 \end{pmatrix}$$
(A)
So given statement for $n=k+1$ becomes

$$s(k+1): \begin{pmatrix} 3\\ 3 \end{pmatrix} + \begin{pmatrix} 4\\ 3 \end{pmatrix} + \begin{pmatrix} 5\\ 3 \end{pmatrix} + \dots + \begin{pmatrix} k+2\\ 3 \end{pmatrix} + \begin{pmatrix} k+3\\ 3 \end{pmatrix} = \begin{pmatrix} k+4\\ 4 \end{pmatrix}$$
(B)
Adding $\begin{pmatrix} k+3\\ 3 \end{pmatrix}$ on both sides of (A) we get ;

$$\begin{pmatrix} 3\\ 3 \end{pmatrix} + \begin{pmatrix} 4\\ 3 \end{pmatrix} + \begin{pmatrix} 5\\ 3 \end{pmatrix} + \dots + \begin{pmatrix} k+2\\ 3 \end{pmatrix} + \begin{pmatrix} k+3\\ 3 \end{pmatrix} = \begin{pmatrix} k+4\\ 4 \end{pmatrix}$$

$$= \begin{pmatrix} k+4\\ 4 \end{pmatrix}$$

$$\vdots \stackrel{n}{r_1 + r} \stackrel{n}{r_2} \stackrel{n}{r_1} \stackrel{n}{r_2} \stackrel{n$$

So given statement for n = k+1 becomes

$$S(k+1): \qquad (k+1)^2 + (k+1) = k^2 + 1 + 2k + k + 1$$
(B)

$$= (k^{2} + k) + (2k + 2)$$

$$= 2Q + 2(k + 1) \text{ by using A}$$

$$= 2[Q + (k + 1)]$$

$$= \text{Which is (Priviable or 2)}$$
Hence S(k + 1) is true if S(k) is true, so condition (11) is satisfied, so S(n) is true
 $\forall n \in \mathbb{N}$
(i) S⁵ - 2ⁿ is driviable by 3.
Solution
(ii) S⁵ - 2ⁿ (i)
1. when $n = 1$, equation (i) becomes;
S(1): 5ⁿ - 2ⁿ (i)
1. when $n = 1$, equation (i) becomes;
S(1): 5ⁿ - 2ⁿ (i)
1. when $n = 1$, equation (i) becomes;
S(1): 5ⁿ - 2ⁿ (i)
1. when $n = 1$, equation (i) becomes;
S(1): 5ⁿ - 2ⁿ (i)
1. when $n = 1$, equation (i) is satisfied.
2. Suppose that given statement is true for $n = k$, i.e.,
S(k): 5ⁿ - 2ⁿ is divisible by 3, so
 $\frac{5^{n} - 2^{n}}{3} = Q$ where Q is Quotient, i.e.,
S¹ - 2ⁿ = 3Q (A)
Next we have to show that statement is also true for $n = k + 1$, that is we have to show
that $s(k + 1) = 5^{k+1} - 2^{k+1}$ is also divisible by 3.
So consider
 $5^{k+1} - 2^{k+1} = 5^{k} \cdot 5 - 2^{k+1}$
 $= 5(3Q + 2^{k}) - 2^{k+1}$ \therefore from(A) $5^{k} = 3Q + 2^{k}$
 $= 15Q + 5 \cdot 2^{k} - 2^{k+2}$
 $= 15Q + 5 \cdot 2^{k} - 2^{k+2}$
 $= 15Q + 2 \cdot 2^{k} - 2^{k+2}$
 $= 15Q + 2 \cdot 2^{k} - 2^{k+2}$
 $= 15Q + 2 \cdot 2^{k} - 2^{k+2}$
Thus scatement is true for $n = k + 1$ where S(k) is true. So condition (11) is satisfied
hence result is true for $n = k + 1$ where S(k) is true. So condition (11) is satisfied
hence result is true for $n = k + 1$ when S(k) is true. So condition (11) is satisfied
hence result is true for $n = k + 1$ when S(k) is true. So condition (11) is satisfied
hence result is true for $n = k + 1$ when S(k) is true. So condition (11) is satisfied
hence result is true for $n = k + 1$ when S(k) is true. So condition (11) is satisfied
hence result is true for $n = k + 1$ when S(k) is true. So condition (11) is satisfied
hence result is true for $n = k + 1$ when S(k) is true. So condition (11) is satisfied
hence result is true for $n = 1$ the equation (i) becomes

$$S(1): 5^{1}-1=4 \text{ which is divisible by 4}$$
So the condition (I) is satisfied
2. Let the statement is true for $n = k$ i.e.,

$$S(k): 5^{k}-1^{k} \text{ is divisible by 4 i.e.}$$

$$\frac{5^{k}-1}{4} = Q \text{ where } Q \text{ is the Quotient}$$

$$\Rightarrow 5^{k}-1=4Q \quad (A)$$
Now we have to show that statement is also true for $n = k + 1$ i.e.,

$$S(k+1): 5^{k+1}-1 \text{ is also divisible by 4}.$$
So consider

$$5^{k+1}-1 = 5.5^{k}-1$$

$$= 5(4Q+1)-1$$

$$= 20Q+5-1 \quad \because from(A)$$

$$= 20Q+4 \qquad 5^{k} = 4Q+1$$

$$= 4(5Q+1) \text{ which is divisible by 4}$$
Thus $S(k+1)$ is true whenever $S(k)$ is true.

Hence result is true $\forall n \in N$.

(v) 8×10° -2 is divisible by 6.
Solution:
Let the given statement is
$$S(n)$$
 i.e.,
 $S(n): 8\times10° -2$ (i)
1. For $n = 1$, equation (i) becomes;
 $S(1): 5\times10° + 2 - 78°$ that is divisible by 6.
2. Suppose that given statements true for $n = k$, i.e.,
 $S(k): 2 - 2 = 6Q$ where Q is Quotient
 $8\times10° - 2 = 6Q$ where Q is Quotient
 $8\times10° - 2 = 6Q$ where Q is also true for $n = k + 1$, i.e.,
 $S(k+1): 8\times10° + 2$. is a divisible by 6.
So consider
 $8\times10° - 2 = 6Q$ where Q is also true for $n = k + 1$, i.e.,
 $S(k+1): 8\times10° + 2$. is $8\times10^{14} - 2$ is also divisible by 6.
So consider
 $8\times10° - 2 = 8\times10^{14} - 2$ is $8\times10^{14} - 2$ is $8\times10^{16} - 6Q + 2$
 $= 60Q + 18$
 $= 6(1QQ + 2) - 2$ (A)
Thus $S(k+1)$ is true whenever $S(k)$ is true. Hence $S(n)$ is true $\forall n \in N$.
(v) $n^3 - n$ is divisible by 6
Solution:
Let then $n = 1$ then equation (i) will become ;
 $S(1): 1^3 - 1 = 0$ which is divisible by 6.
2. Suppose that given statement is the for $n = k$ i.e.,
 $S(k): k^3 - k$ is divisible by 6.
3. Suppose that given statement is use for $n = k$ i.e.,
 $S(k): k^3 - k$ is divisible by 6.
3. Suppose that given statement is use for $n = k$ i.e.,
 $S(k): k^3 - k$ is divisible by 6.
3. Suppose that given statement is use for $n = k$ i.e.,
 $S(k): k^3 - k$ is divisible by 6.
3. Suppose that given statement is use for $n = k$ i.e.,
 $S(k): k^3 - k$ is divisible by 6.
3. Suppose that given statement is also true for $n = k$ i.e.,
 $S(k): k^3 - k$ is divisible by 6.
3. Suppose that given statement is also true for $n = k$ i.e.,
 $S(k): k^3 - k$ is divisible by 6.
3. Suppose that given statement is also true for $n = k + 1$ i.e.,
 $S(k) + k^3 - k$ is divisible by 6.
3. Suppose that be to show that statement is also true for $n = k + 1$ i.e.,
 $S(k + 1) + (k + 1)^3 - (k + 1)$
So consider
 $(k + 1)^3 - (k + 1) = k^3 + 1 + 3k^2 + 3k - k - 1$

$$= (k^{3} - k) + 3k^{2} + 3k$$

$$= 6Q + 3(k^{2} + k) \quad \because k^{3} - k = 6Q$$

$$= 6Q + 3k(\{+1\}) \quad \because k^{2} + k = 6Q$$

$$= 6Q + 3k(\{+1\}) \quad \because k^{2} + k = 6Q$$

$$= 6Q + 3k(\{+1\}) \quad \because k^{2} + k = 6Q$$

$$= 6Q + 3k(\{+1\}) \quad \because k^{2} + k = 6Q$$

$$= 6Q + 3k(\{+1\}) \quad \because k^{2} + k = 6Q$$

$$= 6Q + 3k(\{+1\}) \quad \because k^{2} + k = 6Q$$

$$= 6Q + 3k(\{+1\}) \quad \because k^{2} + k = 6Q$$

$$= 6Q + 3k(\{+1\}) \quad \because k^{2} + k = 6Q$$

$$= 6Q + 3k(\{+1\}) \quad \because k^{2} + k = 6Q$$

$$= 6Q + 3k(\{+1\}) \quad \because k^{2} + k = 6Q$$

$$= 6Q + 3k(\{+1\}) \quad \because k^{2} + k = 6Q$$

$$= 6Q + 3k(\{+1\}) \quad \because k^{2} + k = 6Q$$

$$= 6Q + 3k(\{+1\}) \quad \because k^{2} + k = 6Q$$

$$= 6Q + 3k(\{+1\}) \quad \because k^{2} + k = 6Q$$

$$= 6Q + 3k(\{+1\}) \quad \because k^{2} + k = 6Q$$

$$= 6Q + 3k(\{+1\}) \quad \because k^{2} + k = 6Q$$

$$= 6Q + 3k(\{+1\}) \quad \because k^{2} + k = 6Q$$

$$= 6Q + 3k(\{+1\}) \quad \because k^{2} + k = 6Q$$

$$= 6Q + 3k(\{+1\}) \quad \because k^{2} + k = 6Q$$

$$= 6Q + 3k(\{+1\}) \quad \because k^{2} + k = 6Q$$

$$= 6Q + 3k(\{+1\}) \quad \because k^{2} + k = 6Q$$

$$= 6Q + 3k(\{+1\}) \quad \because k^{2} + k = 6Q$$

$$= 6Q + 3k(\{+1\}) \quad \because k^{2} + k = 6Q$$

$$= 6Q + 3k(\{+1\}) \quad \because k^{2} + k = 6Q$$

$$= 6Q + 3k(\{+1\}) \quad \because k^{2} + k = 6Q$$

$$= 6Q + 3k(\{+1\}) \quad \because k^{2} + k = 6Q$$

$$= 6Q + 3k(\{+1\}) \quad \because k^{2} + k = 6Q$$

$$= 6Q + 3k(\{+1\}) \quad \because k^{2} + k = 6Q$$

$$= 6Q + 3k(\{+1\}) \quad \because k^{2} + k = 6Q$$

$$= 6Q + 3k(\{+1\}) \quad \because k^{2} + k = 6Q$$

$$= 6Q + 3k(\{+1\}) \quad \because k^{2} + k = 6Q$$

$$= 6Q + 3k(\{+1\}) \quad \because k^{2} + k = 6Q$$

$$= 6Q + 3k(\{+1\}) \quad \because k^{2} + k = 6Q$$

$$= 12$$

$$= 6Q + 3k(\{+1\}) \quad (1) \quad ($$

$$= \frac{1}{2} - \frac{1}{2} \cdot \frac{1}{3} \cdot \frac{1}{3^{4}}$$

$$= \frac{1}{2} \left[1 - \frac{1}{2^{5}} \right]$$
Which is right hand side of (4)
Thus $S(4^{2}, 1)$ is true whenever $3(k)$ is true So condition (11) is satisfied, so $S(n)$ is true
 $\forall n \in \mathbb{N}^{-}$
O.22
 $= \sqrt{2}^{2} + 3^{2} + 4^{2} + 2^{2} + a^{-} + (-1)^{n-1} n^{2} = \frac{(-1)^{n-1} n(n+1)}{2}$
Uet the given statement is $S(n)$, i.e.,
 $S(n): 1^{2} - 2^{2} + 3^{2} - 4^{2} + ... + (-1)^{n-1} n^{2} = \frac{(-1)^{n-1} n(n+1)}{2}$ (i)
1. when $n = 1$ then equation (i) becomes ;
 $S(1): (-1)^{1-1} (1)^{2} = \frac{(-1)^{1-1} (1)(1+1)}{2}$
 $S(1): 1 = 1$
So $S(1)$ is true and condition (1) is satisfied
2. Suppose that given statement is true for $n = k$ i.e.,
 $S(k): 1^{2} - 2^{2} + 3^{2} - 4^{2} + ... + (-1)^{k-1} (k)^{2} = \frac{(-1)^{k-1} k(k+1)}{2}$ (A)
Given statement for $n = k + 1$ becomes
 $S(k+1): 1^{2} - 2^{2} + 3^{2} - 4^{2} + ... + (-1)^{k-1} (k+1)^{2} = \frac{(-1)^{k-1} k(k+1)}{2}$ (B)
By adding
 $(-1)^{k} (k+1)^{2}$ on both sides of (A) we get :
 $1^{2} - 2^{2} + 3^{2} - 4^{2} + ... + ((-1)^{k} (k+1)^{2} = \frac{(-1)^{k-1} k(k+1)}{2} \cdot (11 (k+1)) \frac{(k+1)^{2}}{2} + (k+1)}$
 $= (-1)^{k} (k+1) \left[\frac{k+2k+2}{2}\right]$
 $= (-1)^{k} (k+1) \left[\frac{k+2k+2}{2}\right]$

$$= \frac{(-1)^{5} (k+1)(k+2)}{2}$$
Which is right hand side of (B)
Thus $S(k+1)$ is true whenever $S(k)$ is true S_{k} condition (II) is satisfied, so $S(n)$ is true $\forall n \in N$.
Q.24 $\mathbf{1}^{3} + 3^{3} + 3^{3} + ... + (2n+1)^{2} = \mathbf{n}^{2} (2n^{2} + 1)$
Solution:
Let the given statement is $S(n)$, i.e.,
 $(n) = 1^{2} + 3^{2} + 5^{3} + ... + (2n-1)^{3} = n^{2} (2n^{2} - 1)$ (i)
1. When n = 1 then equation (i) becomes
 $S(1): (2(1) - 1)^{5} - 1^{2} (2(1)^{2} - 1)$
 $S(1): 1 = 1$
Thus $S(1)$ is true, so condition (I) is satisfied
2. Suppose that statement is true for $n = k$ i.e.,
 $S(k): 1^{3} + 3^{5} + 5^{5} + ... + (2k-1)^{3} = k^{2} (2k^{2} - 1)$ (A)
Given statement for $n = k + 1$ becomes ;
 $S(k+1): 1^{2} + 3^{3} + 5^{3} + ... + (2k-1)^{3} + (2k^{2} - 1)^{2} (2(k+1)^{2} - 1)$
 $= (k+1)^{2} (2k^{2} + 4k + 1)$ (B)
Adding $(2k+1)^{3}$ on both sides of (A) we get;
 $1^{3} + 3^{3} + 5^{3} + ... + (2k-1)^{3} + (2k^{2} - 1) + (2k+1)^{3}$
 $= 2k^{4} - k^{2} + (8k^{3} + 11 + 12k^{2} + 6k)$
 $= 2k^{4} - k^{2} + (8k^{3} + 11 + 12k^{2} + 6k)$
 $= 2k^{4} - k^{2} + (8k^{3} + 11 + 12k^{2} + 6k)$
 $= 2k^{2} (k+1) + 6k^{2} (k+1) + 6k^{2} (k+1) + (k+1)$
 $= (k+1) [2k^{2} + 6k^{2} + 5k + 1]$
 $= (k+1) [2k^{2} + 6k^{2} + 5k + 1]$
 $= (k+1) [2k^{2} + 6k^{2} + 5k + 1]$
 $= (k+1) [2k^{2} + 6k^{2} + 5k + 1]$
 $= (k+1) [2k^{2} + 6k^{2} + 5k + 1]$
 $= (k+1) [2k^{2} + 6k^{2} + 6k^{2} + 1]$
Which is regularized whenever $S(k)$ is true. So condition (II) is satisfied
Thus $S(k+1)$ is state whenevers $S(k)$ is true. So condition (II) is satisfied
Thus $S(k+1)$ is state whenevers $S(k)$ is true. So condition (II) is satisfied
Solution:

Let S(n) be the given statement i.e., E).COK $S(n): x^{2n}-1$ When n = 1, then equation (i) becomes 1. $S(1): x^{2(1)} - 1 = x^2 - 1$ which is divisible by So (1) is true, so condition (I) is satisfied. Suppose that statement is true for $n = k \tanh 2 i s S(k)$ is divisible by (x+1). So 2. $x^{2k} - 1$ where Q is Quotient -1 = Q(x+1)(A) Now we show that statement is also true for n = k + 1 i.e., S(k+1) is also divisible by (x+1). consider $S(k+1): x^{2(k+1)} - 1$ So $x^{2k+2} - 1 = x^{2k} \cdot x^2 - 1$ $\therefore \text{ from(A)} \qquad x^{2k} = Q(x+1)+1$ $=x^{2}[Q(x+1)+1]-1$ $= x^2 \cdot Q \cdot (x+1) + (x^2 - 1)$ $= x^2 \cdot Q \cdot (x+1) + (x-1)(x+1)$ $=(x+1)[x^2.Q+(x-1)]$ Which is divisible by (x+1). Thus S(k+1) is true whenever S(k) is true, so condition (II) is satisfied. Hence S(n)is true $\forall n \in N$. Q.26 (x - y) is a factor of $x^n - y^n; (x \neq y)$ Solution: Let S(n) be the given statement i.e., 2].COM $S(n): x^n - y^n$ 1. When n = 1 then equation (i) becomes $S(1): x^1 - y^1$ which is divisible by (x - y). So S(1) is true and condit or (I) is satisfied. Suppose that statement is true n = k i.e. 2. $S(k): -y^{k}$ is divisible by xi.e.,

$$x^{k} - y^{k} = Q$$
 where Q is Quotient
 $x - y$
 $x^{k} - y^{k} = Q(x - y)$

(A)

Now we show that statement is also true for n = k + 1 i.e.,

S(k+1) is also divisible by (x+1)So consider $S(k+1): x^{k+1} - y^{k+1}$ $= x^{k} \cdot x - v^{k+1}$ $=Q(x-y)+y^{k}$ $= x^{\dagger} \mathcal{Q}(x-y)$ · iron (A = x Q (x - y) + y' (x - y) $(x-y) \int x \cdot Q + y^k$ Which is divisible by (x - y), thus S(k+1) is true. Whenever S(k) is true. So condition (II) is satisfied, so the given statement is true $\forall n \in N$. $(\mathbf{x} + \mathbf{y})$ is a factor of $\mathbf{x}^{2\mathbf{n}-1} + \mathbf{y}^{2\mathbf{n}-1} (\mathbf{x} \neq -\mathbf{y})$ **O.27** Solution: Let S(n) be the given statement i.e., S(n): (x+y) is a factor of $x^{2n-1} + y^{2n-1}$ When n = 1 then S(n) becomes 1. S(1): $x^{2(1)-1} + y^{2(1)-1} = x + y$ so which is divisible by x + y so S(1) is true and condition (I) is satisfied. 2. Suppose that statement is true for n = k that is $\frac{x^{2k-1} + y^{2k-1}}{x+y} = Q$ $x^{2k-1} + y^{2k-1} = Q(x+y)$ (A) Now we show that statement is also true for n = k + 1 i.e., So consider $x^{2k+1} + y^{2k+1} = x^{2k-1} \cdot x^2 + y^{2k-1} \cdot y^2$ $= x^{2} \left[Q(x+y) - y^{2k-1} \right] + y^{2k-1} \cdot y^{2k}$:: from (A) $x^{2k-1} = Q(x+y) - y^{2k-1}$ $= x^{2} \cdot Q(x+y) - x^{2} \cdot y^{2k-1} + y^{2k-1} y^{2}$ $=x^{2}Q(x+y)-y^{2k-1}[x^{2}-y^{2}]$ $= x^{2} Q(x+y) - y^{2k-1} (x-y)(x+y)$ $=(x+y)[x^2.Q-(x-y).y^{2^{-1}}]$ Which is divisible by (z + y) thus S(k + 1) is true whenever S(k) is true so condition (II) is satisfied. Herce S(n) is true $\forall n \in N$. Use inathematical induction to show that $1+2+2^{2}+...+2^{n}=2^{n+1}-1$ for all non-negative integers n. Solution: Let S(n) be the given statement i.e.,

$$S(n): 1+2+2^{2}+...+2^{n}=2^{n+1}-1$$
(i)
1. When $n = 0$ then equation (i)becomes
 $S(0): 2^{n}=2^{n+1}-1$ Here: $n \in W$
 $S(0): 1=2^{n+1}-1$ Here: $n \in W$
 $S(0): 1=1$
So $S(0)=1$
So $S(0)=1$
No solve struct so condition (1) is satisfied
2. Suppose that subcornent is stars for $n = k + i.e.,$
 (k)
Now we show that statement is also true for $n = k + 1i.e.,$
 $S(k+1): 1+2+2^{2}+2^{3}+...+2^{2}=2^{k+2}-1$
(A)
Now we show that statement is also true for $n = k + 1i.e.,$
 $S(k+1): 1+2+2^{2}+2^{3}+...+2^{2}+2^{k+1}=2^{k+2}-1$
(B)
In order to prove (B) we add 2^{k+1} on both sides of (A) we get
 $1+2+2^{2}+2^{3}+...+2^{2}+2^{k+1}=2^{k+1}-1$
 $=2^{k+2}-1$
Which is right hand side of (B)
Thus $S(k+1)$ is true whenever $S(k)$ is true so condition (II) is satisfied.
Hence $S(n)$ is true $\forall n \in N.$
Q.29 If A and B are square matrices and AB = BA, then show by mathematical
Induction that ABⁿ = Bⁿ A for any positive integer n.
Solution:
Let $S(n)$ be the given statement i.e.,
 $S(n): AB^{n} = B^{n}A$
So $S(1)$ is true, so condition (I) is satisfied
2. Suppose that statement is true for $n = k + i.e.,$
 $S(k): AB^{n} = B^{k}A$
Now we show that statement is true for $n = k + i.e.,$
 $S(k): AB^{n} = B^{k}A$
Now we show that statement is also true for $n = k + i.e.,$
 $S(k): AB^{n} = B^{k}A$
Now we show that statement is also true for $n = k + i.e.,$
 $S(k): AB^{n} = B^{k}A$
Now we show that statement is also true for $n = k + i.e.,$
 $S(k+1): AB^{k-1} = B^{k+1}A$
Nutting native Brows have statement is also true for $n = k + i.e.,$
 $S(k+1): AB^{k-1} = B^{k+1}A$
Nutting $AB^{k-1} = B^{k-1}A$
Nuttin

So S(k+1) is true whenever S(k) is true, so condition (II) is satisfied, hence S(n) is true $\forall n \in N$. Q.30 Prove by the principle of mathematical induction that n^2 -1 is divisible by n an odd integer. Solution: Let S(n) be the given statement i.e --! is divisible by 8 $S(n): \vec{n}$ (i) When n = 1 then equation (i) becomes 1. $S(1) = 0^{2}$ $\overline{S}(1) = 0$ which is divisible by 8 So S(1) is true, so condition (I) is satisfied Suppose that statement is true for n = k i.e., 2. $S(k): \frac{k^2-1}{8} = Q \Longrightarrow k^2 - 1 = 8Q$ (A) Where Q is quotient. Now we show that statement is also true for n = k + 2i.e., $S(k+2):(k+2)^2-1$ **(B)** So consider. $(k+2)^2 - 1 = k^2 + 4k + 4 - 1$ $=(k^2-1)+(4k+4)$ =8Q+4(k+1) $= 8Q + 4(2p) \qquad \therefore k \in O, \ p \in N$ =8[Q+p]Which is divisible by 8 So S(k+2) is true whenever S(k) is true, so condition (II) is satisfied, hence S(n) is true $\forall n \in N$. Use the principle of mathematical induction to prove that $\ln x^n = n \ln x$ for any 0.31 positive integer $n \ge 0$ if x is positive integer. **Solution:** Let S(n) be the given statement i.e. $S(n): \ln x^{*} = n \ln x$ (i) When n = 0 then equation (i) becomes 1. $S(C): \ln x^{\circ} = 0 \ln x$ 5(0) $: \bigcirc \geq 0$

$$S(0):0=0$$

So S(0) is true, so condition (I) is satisfied

2. Suppose that statement is true for n = k i.e.,

 $S(k): \ln x^{k} = k . \ln x$ Now we show that statement is also true for n = k + 1 i.e., $S(k+1): \ln x^{k+1} = (k+1) . \ln x$ So in order to prove (B) adding ln x on both sides of (A) we get; $\ln x^{k} + \ln x = k . \ln x + \ln x$ $\ln (x^{k} . x) = (k+1) \ln x$ $\ln x^{k+1} = (k+1) \ln x$ So S(k+1) is true whenever S(k) is true, so condition (II) is satisfied, hence S(n) is true $\forall n \in N$.

Use the Principle of extended mathematical Induction to prove that
Q.2
$$n!>2^n - 1$$
 for integral values of $n \ge 4$
Solution:
Let $S(n)$ be the given statement i.e.,
 $S(n): n!>2^n - 1$ (i)
1. When $n \ge 4$ then $S(n)$ becomes
 $S(4): 4!>4^{n+1}$
 $S(4): 4!>4^{n+1}$
 $S(4): 4!>4^{n+1}$
 $S(4): 4!>4^{n+1}$
 $S(4): 4!>2^{n+1}$
 $S(5): k!>2^{n+1} - 1$ (A)
Now we show that statement is also true for $n = k$ i.e.,
 $S(k): k!>2^{n+1} - 1$ (B)
Multiply $(k+1)$ on both sides of (A) we get ;
 $(k+1)k!>(k+1)(2^k-1)$ (B)
Multiply $(k+1)$ on both sides of (A) we get ;
 $(k+1)k!>(k+1)(2^k-1) - 1$ (B)
Multiply $(k+1) = 2^{n+1} - 1$ (B)
 $S(k+1): 2(2^{n+1} - 1) - 1$
 $(k+1)!>2^{n+1} - 1$
So $S(k+1)$ is true whenever $S(k)$ is true, so condition (II) is satisfied, hence $S(n)$ is true
 $\forall n \ge 4n \in N$.
Q.33 $n^2 > n+3$ for integral values of $n \ge 3$
Solution:
Let $S(n)$ be the given statement i.e.,
 $S(n): n^2 > n+3$ (i)
1. When $n = 3$ then $S(n)$ becomes
 $S(3): 3^2 > 3 + 3$
 $S(3): 9 > 6$
So $S(2)$ is true, so condition (II) is satisfied.
2. Suppose that statement is also true for $n = k + 1$.e.,
 $S(k): k! > k! > k! + 3$ when $k \ge 3$
 $S(k): k! > k! + 3$ when $k \ge 3$ (A)
 $S(k): k! > k! + 3$ when $k \ge 3$ (A)
 $S(k): k! > k! + 3$ when $k \ge 3$ (A)
 $S(k): k! > k! + 3 + 2k + 1$ (B)
Adding $2k + 1$ in (A) on both sides
 $k^2 + 2k + 1 > k + 3 + 2k + 1$

 $(k+1)^2 > (k+4) + 2k$ $(k+1)^2 > (k+4) \qquad \therefore k \ge 3$ So 2k is positive integer, so by neglecting 2k L.H.S. become more large So S(k+1) is true whene ver $S(k) \rightarrow rue$, so condition (II) is satisfied hence S(n) is true $\forall n \geq 3. n \in \mathbb{N}.$ 0.34 $4^n > 3^n = 2^{n-1}$ for integral values of *n* Solution: Let $\mathfrak{L}'(n)$ be the given statement i.e., $S(n): 4^n > 3^n + 2^{n-1}$ (i) When n = 2 then S(n) becomes $S(2): 4^2 > 3^2 + 2^{2-1}$ S(2):16 > 9 + 2S(2):16>11So S(2) is true, so condition (I) is satisfied 2. Suppose that statement is true for n = k i.e., $S(k): 4^k > 3^k + 2^{k-1}$ (A) Now we show that statement is also true for n = k + 1 i.e., $S(k+1): 4^{k+1} > 3^{k+1} + 2^{k+1-1}$ $S(k+1): 4^{k+1} > 3^{k+1} + 2^k$ **(B)** In order to prove (2) we multiply (A) by 4 on both sides we get ; $4.4^k > 4(3^k + 2^{k-1})$ $4^{k+1} > 4.3^k + 4.2^{k-1}$ $4^{k+1} > (3+1) \cdot 3^k + (2+2) \cdot 2^{k-1}$ $4^{k+1} > (3.3^k + 2^k) + (3^k + 2^k)$ $4^{k+1} > 3^{k+1} + 2^k$ $3^{k} + 2^{k}$ is always positive so by neglecting it, L.H.S become more large. So S(k+1) is true whenever S(k) is true, so condition (1) is satisfied, hence S(n) is true $\forall n \geq 2, n \in N.$ $3^n < n!$ for integral values of n > 6. **Q.35 Solution:** Let S(n) be the given statement i.e., S(n): 3 < n!(i) When n > 6, suppose then for n = 7 then S(n) becomes $S(7): 3^7 < 7!$ S(7): 2187 < 5040

So
$$S(7)$$
 is true, so condition (1) is satisfied
2. Suppose that statement is true for $n = k$ i.e.,
 $S(k): 3^k < k!$
Now we show that statement is also frue for $n = k$ i.e.,
 $S(k+1): 3^{k+1} < (k+1)! \forall k \ge 6$ (B)
In order to prove (3) we multiply (k+1) on tools states of (A) we get:
 $(k+1)! \le (k+1)!$
 $(k+1)! \le (k+1)! = (k+1) \le (k+1)! = (k+1) \le 3$
 $(k+1)! \le (k+1)! = (k+1) \le 3$
 $(k+1)! \le (k+1)! = (k+1) \le 3$
 $(k+1)! \le true whenever $S(k)$ is true, so condition (II) is satisfied, hence $S(n)$ is true
 $\forall n > 6$, where $n \in N$.
Q.36 $n! > n^2$ for integral value of $n \ge 4$.
Solution:
Let $S(n)$ be the given statement i.e.,
 $S(n): n! > n^2$ (i)
1. When $n = 4$ then $S(n)$ becomes
 $S(4): 4! > 4^2 = 24 > 16$
So $S(4)$ is true, so condition (1) is satisfied
2. Suppose that statement is true for $n = k$ i.e.,
 $S(k): k! > k^2$ (A)
Now we show that statement is also true for $n = k + 1$ i.e.,
 $S(k): k! > k^2$ (B)
In order to prove (2) we multiple $(k+1)$ on both sides of (A), we get:
 $(k+1)! > (k+1)! > (k+1)^2$ (B)
In order to prove (2) we multiple $(k+1)$ on both sides of (A), we get:
 $(k+1)k! > (k+1)k^2 : ...k^2 > k+1$ $\forall k \ge 4$
 $(k+1)! > (k+1)! > (k+1)^2$
So $S(k+1)$ is true whenever $S(k)$ is true, so condition (I) is satisfied hence $S(n)$ is true
 $\forall n \ge 4$, where $n \in N$.
Q.37 $3+5+(7)-(1+2n \neq 5) = (n+2)(n+4)$ for jutegral values of $n \ge -1$.
Solution: Let (h) be the first substatement i.e.,
 $S(k): k! + 1$, is true whenever $S(k)$ is true, substatement $n \ge -1$.
Solution: Let (h) be the first substatement $k = 0$.
 $S(-1): 2(-1) + 5 = (-1+2)(-1+4)$
 $S(-1): 3= (1)(3)$$

$$S(-1): 3 = 3$$
So $S(-1)$ is true, so condition (1) is satisfied
2. Suppose that statement is true for $n = k$ i.e.
 $S(k): 3+5+7+...+(2k+5) = (k+2)(k+4)$
Now we show that statement is satisfied for $n = k+1$.
 $S(k+1): 3+5+7+...+(2k+5) = (k+2)(k+4)$
(A)
Now we show that statement is satisfied for $n = k+1$.
 $S(k+1): 3+5+7+...+(2k+5) = (k+2)(k+4) + (2k+7)$
 $= k^2 + 6k + 8 + 2k + 7$
 $= k^2 + 5k + 15$
 $= k^2 + 5k + 3k + 15$
 $= k^2 + 5k + 3k + 15$
 $= k(k+5) + 3(k+5)$
So $S(k+1)$ is true whenever $S(k)$ is true, so condition (11) is satisfied, hence $S(n)$ is true
 $\forall n \ge -1$, where $n \in \mathbb{Z}$.
Q.38 $1+nx \le (1+x)^n$ for $n \ge 2$ and $x > -1$.
Solution: Let $S(n)$ be the given statement i.e.,
 $S(n): 1+nx \le (1+x)^n$ for $n \ge 2$, $S(n)$ becomes
 $S(2): 1+2x \le (1+x)^2$
 $S(2): 1+2x \le (1+x)^2$
 $S(2): 1+2x \le (1+x)^2$
 $S(k: 1): 1+kx \le (1+x)^{n-1}$
In order to prove (B) we multiply $(x, 1)$ os both uses of (A) we get
 $(1+kx)(1+x) \le (1+x)^{n-1}$
In order to prove (B) we multiply $(x, 1)$ os both uses of (A) we get
 $(1+kx)(1+x) \le (1+x)^{n-1}$
In order to prove (B) we multiply $(x, 1)$ os both uses of (A) we get
 $(1+kx)(1+x) \le (1+x)^{n-1}$
In order to prove $S(x)$ is true, so condition (II) is satisfied, hence $S(n)$ is true
 $Y(k-1): 1+(k+1)x \le (1+x)^{n-1}$
 $S(k): 1: 1+x \le (1+x)^{n-1}$
 $S(k): 1: 1+x) \le (1+x)^{n-1}$
 $S(k): 1: 1+x \le (1+x)^{n-1}$
 $S(k): 1: 1+x) \le (1+x)^{n-1}$
 $S(k): 1: 1+x \le (1+x)^{n-1}$
 $S(k): 1: 1+x) \le (1+x)^{n-1}$
 $S(k): 1: 1+x) \le (1+x)^{n-1}$
 $S(k): 1: 1: 1+x \le (1+x)^{n-1}$
 $S(k): 1: 1: 1+x) \le (1+x)^{n-1}$
 $S(k): 1: 1: 1+x \le (1+x)^{n-1}$
 $S(k): 1: 1: 1: 1+x \le (1+x)^{n-1}$
 $S(k):$

Binomial Theorem:

An algebraic expression consisting of two terms such as a + x, x - 2y, ar + b etc. is called a binomial or a binomial expression e.g. $(a + x)^2 = a^2 + 2ax + x^2$ (i) $(a + x)^3 = a^3 + 3a^2x + 3ax^2 + x^3$ (ii) The right side of (i) and (ii) are called binomial expansions of binomial a + x for the indices 2 and 3 respectively. In general, $y' = \binom{n}{c} x^n + \binom{n}{1} a^{n-1}x + \binom{n}{2} a^{n-2}x^2 + \dots \binom{n}{r-1} a^{n-(r-1)}x^{r-1} + \binom{n}{r} a^{n-r}x^r + \dots + \binom{n}{n-1}ax^{n-1} + \binom{n}{n}x^n$ Or

 $(a+x)^n = \sum_{r=0}^n \binom{n}{r} a^{n-r} x^r$

Where a and x are real numbers

In the expansion of $(a + x)^n$ following points can be observed.

- 1. The number of terms in the expansion is one greater than its index.
- 2. The sum of exponents of a and x in each term of the expansion is equal to its index.
- 3. The exponent of a decreases from index to zero.
- 4. The exponent of *x* increases from zero to index.
- 5. The coefficients of the terms equidistant from beginning and end of the expansion are equal as $\binom{n}{n} = \binom{n}{n}$

qual as
$$\binom{n}{r} = \binom{n}{n-r}$$

6. The $(r+1)^{th}$ term in the expansion is $\binom{n}{r}a^{n-r}x^r$ and we denote it as T_{r+1}

i.e.,

$$T_{r+1} = \binom{n}{r} a^{n-r} x^{r}$$

(n is even)

(2)

Middle term in the expansion of $(a+x)^n$

In the expansion of $(a+x)^n$, the total number of terms are n+1.

Case-I

If n is even then
$$n + 1$$
 is odd,
So $\left(\frac{n}{2}\right)^{\frac{m}{2}}$ term will be the only middle term in the expansion.

Case-II

(1.) so d(1)If n is odd then n+1 is even,

So
$$\left(\frac{n+1}{2}\right)^{th}$$
 and $\left(\frac{n+3}{2}\right)^{th}$ terms of the expansion will be the two middle terms.

E].CO[

Note:

The sum of coefficients in the expansion of $(1 + x)^n$ is 2^n . The sum of odd coefficients of binomial expansion = The sum of its even coefficients or binomial expansion = 2^{n-1} .

$$= \frac{x^{8}}{256y^{8}} + 8\left(\frac{x^{7}}{128y^{7}}\right)\left(\frac{-2y}{x}\right) + 28\left(\frac{x^{6}}{64y^{6}}\right)\left(\frac{4y^{2}}{x^{2}}\right) + 56\left(\frac{x^{5}}{32y^{5}}\right)\left(\frac{-8y^{3}}{x^{3}}\right) + 28\left(\frac{x^{2}}{4y^{2}}\right)\left(\frac{64y^{6}}{x^{9}}\right) + 8\left(\frac{x}{2y}\right)\left(\frac{-128y^{7}}{x^{7}}\right) + \left(\frac{256y^{8}}{x^{8}}\right) = \frac{x^{8}}{256y^{8}} - \frac{x^{6}}{8y^{6}} + \frac{7x^{4}}{4y^{4}} - \frac{14x^{2}}{y^{2}} + 70 - 224\frac{y^{2}}{x^{2}} + 448\frac{y^{4}}{x4} - 512\frac{y^{6}}{x^{6}} + \frac{256y^{8}}{x^{8}} = \frac{x^{8}}{256y^{8}} - \frac{x^{6}}{x^{9}y^{6}} + \frac{7x^{4}}{4y^{4}} - \frac{14x^{2}}{y^{2}} + 70 - 224\frac{y^{2}}{x^{2}} + 448\frac{y^{4}}{x^{4}} - 512\frac{y^{6}}{x^{6}} + \frac{256y^{8}}{x^{8}} = \frac{x^{8}}{256y^{8}} - \frac{x^{6}}{x^{9}y^{6}} + \frac{7x^{4}}{4y^{4}} - \frac{14x^{2}}{y^{2}} + 70 - 224\frac{y^{2}}{x^{2}} + 448\frac{y^{4}}{x^{4}} - 512\frac{y^{6}}{x^{6}} + \frac{256y^{8}}{x^{8}} = \frac{x^{8}}{256y^{8}} - \frac{x^{6}}{x^{9}y^{6}} + \frac{7x}{4y^{4}} - \frac{14x^{2}}{y^{2}} + 70 - 224\frac{y^{2}}{x^{2}} + 448\frac{y^{4}}{x^{4}} - 512\frac{y^{6}}{x^{6}} + \frac{256y^{8}}{x^{8}} = \frac{x^{8}}{256y^{8}} - \frac{x^{6}}{x^{9}y^{6}} + \frac{7x}{4y^{4}} - \frac{14x^{2}}{y^{2}} + 70 - 224\frac{y^{2}}{x^{2}} + 248\frac{y^{4}}{x^{4}} - 512\frac{y^{6}}{x^{6}} + \frac{256y^{8}}{x^{8}} = \frac{x^{8}}{256y^{8}} - \frac{x^{6}}{x^{9}y^{6}} + \frac{7x}{4y^{6}} - \frac{14x^{2}}{y^{2}} + 70 - 224\frac{y^{2}}{x^{2}} + 248\frac{y^{4}}{x^{4}} - 512\frac{y^{6}}{x^{6}} + \frac{256y^{8}}{x^{8}} = \frac{x^{8}}{256y^{8}} - \frac{x^{6}}{x^{8}} - \frac{x^{6}}{y^{6}} - \frac$$

Solution:

$$= {}^{6}C_{0}\left(\sqrt{\frac{a}{x}}\right)^{6}\left(-\sqrt{\frac{x}{a}}\right)^{0} + {}^{6}C_{1}\left(\sqrt{\frac{a}{x}}\right)^{5}\left(-\sqrt{\frac{x}{a}}\right)^{1} + {}^{6}C_{2}\left(\sqrt{\frac{a}{x}}\right)^{4}\left(-\sqrt{\frac{x}{a}}\right)^{2} + {}^{6}C_{3}\left(\sqrt{\frac{a}{x}}\right)^{3}\left(\sqrt{\frac{x}{a}}\right)^{3} + {}^{6}C_{4}\left(\sqrt{\frac{a}{x}}\right)^{2}\left(-\sqrt{\frac{x}{a}}\right)^{4} + {}^{6}C_{5}\left(\sqrt{\frac{a}{x}}\right)^{1}\left(-\sqrt{\frac{x}{a}}\right)^{5} + {}^{6}C_{6}\left(\sqrt{\frac{a}{x}}\right)^{0}\left(-\sqrt{\frac{x}{a}}\right)^{6} + {}^{6}C_{4}\left(\sqrt{\frac{a}{x}}\right)^{2}\left(-\sqrt{\frac{x}{a}}\right)^{6} + {}^{6}C_{5}\left(\sqrt{\frac{a}{x}}\right)^{1}\left(-\sqrt{\frac{x}{a}}\right)^{5} + {}^{6}C_{6}\left(\sqrt{\frac{a}{x}}\right)^{0}\left(-\sqrt{\frac{x}{a}}\right)^{6} + {}^{6}C_{5}\left(\sqrt{\frac{a}{x}}\right)^{1}\left(-\sqrt{\frac{x}{a}}\right)^{2} + {}^{6}C_{6}\left(\sqrt{\frac{a}{x}}\right)^{0}\left(-\sqrt{\frac{x}{a}}\right)^{6} + {}^{6}C_{5}\left(\sqrt{\frac{a}{x}}\right)^{1}\left(-\sqrt{\frac{x}{a}}\right)^{1} + {}^{2}O\left(\frac{a}{x}\right)^{2}\left(-\sqrt{\frac{x}{a}}\right)^{2} + {}^{6}C_{3}\left(\sqrt{\frac{a}{x}}\right)^{2}\left(-\frac{x}{a}\right)^{\frac{5}{2}} + {}^{6}C_{5}\left(\sqrt{\frac{a}{x}}\right)^{1}\left(-\sqrt{\frac{x}{a}}\right)^{2} + {}^{6}C_{6}\left(\sqrt{\frac{a}{x}}\right)^{0}\left(-\sqrt{\frac{x}{a}}\right)^{6} + {}^{6}C_{5}\left(\sqrt{\frac{a}{x}}\right)^{1}\left(-\sqrt{\frac{x}{a}}\right)^{1} + {}^{2}O\left(\frac{a}{x}\right)^{\frac{3}{2}}\left(-\sqrt{\frac{x}{a}}\right)^{2} + {}^{6}C_{3}\left(\sqrt{\frac{a}{x}}\right)^{\frac{1}{2}}\left(-\frac{x}{x}\right)^{\frac{5}{2}} + {}^{6}C_{5}\left(\sqrt{\frac{a}{x}}\right)^{1}\left(-\sqrt{\frac{x}{a}}\right)^{1} + {}^{2}O\left(\frac{a}{x}\right)^{\frac{3}{2}}\left(-\sqrt{\frac{x}{a}}\right)^{1} + {}^{6}C_{6}\left(\sqrt{\frac{a}{x}}\right)^{1} + {}^{6}C_{6}\left(\sqrt{\frac{a}{x}}\right)^{1}\left(-\sqrt{\frac{x}{a}}\right)^{1} + {}^{6}C_{6}\left(\sqrt{\frac{a}{x}}\right)^{1}\left(-\sqrt{\frac{x}{a}}\right)^{1} + {}^{6}C_{6}\left(\sqrt{\frac{a}{x}}\right)^{1} + {}^{6}C_{6}\left(\sqrt{\frac$$

Q.2 Calculate the following by means of binomial theorem (i)
$$(0.97)^3$$

Solution:

$$(0.97)^{3}$$

$$= (1-0.03)^{1}$$

$$= {}^{3}C_{0}(1)^{3}(-0.03)^{0} + {}^{3}C_{1}(1)^{2}(-0.03)^{1} + {}^{3}C_{2}(1)(-0.03)^{2} + {}^{3}C_{3}(1)^{0}(-0.)3)^{3}$$

$$= 1-.09 + .0027 + .000027$$

$$= 1.0027$$
(ii) (2.02)⁴
Solution:
(2,6.)⁴

$$= (2+0.02)^{4}$$

$$= C_{0}^{2}(2)^{2}(0.02)^{4} + C_{1}^{2}(2)^{3}(0.02)^{4} + C_{2}^{2}(2)^{2}(0.02)^{2} + C_{2}^{2}(2)^{2}(0.02)^{3} + C_{1}^{2}(2)^{9}(0.02)^{4}$$

$$= 1\times 16 + 4(8)(0.02) + 6(4)(0.00004) + 4(2)(0.000008) + 1(0.0000016)$$

$$= 16.64966416$$
(iii) (9.88)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98)
(0.98

Solution:

$$(2+\sqrt{3})^{2} = {}^{*}C_{0}(2)^{2}(\sqrt{3})^{6} + {}^{*}C_{1}(2)^{1}(\sqrt{3})^{1} + {}^{*}C_{2}(2)^{2}(\sqrt{3})^{2} + {}^{*}C_{1}(2)^{1}(\sqrt{3})^{4} + {}^{*}C_{2}(2)^{2}(\sqrt{3})^{2} + {}^{*}C_{1}(2)^{1}(\sqrt{3})^{4} + {}^{*}C_{2}(2)^{2}(\sqrt{3})^{2} + {}^{*}C_{1}(2)^{1}(\sqrt{3})^{4} + {}^{*}C_{2}(2)^{1}(\sqrt{3})^{2} + {}^{*}C_{2}(2)^{1}(\sqrt{3})^{2} + {}^{*}C_{2}(2)^{1}(\sqrt{3})^{2} + {}^{*}C_{2}(2)^{1}(\sqrt{3})^{4} + {}^{*}C_{2}(2)^{1}(\sqrt{3})^{5} + {}^$$

$$= {}^{5}C_{x}x^{2} \left(\sqrt{x^{2}-1}\right)^{6} + C_{1}(x)^{2} \left(\sqrt{x^{2}-1}\right)^{4} + C_{2}(x)^{2} \left(\sqrt{x^{2}-1}\right)^{2} - C_{3}(x)^{6} \left(\sqrt{x^{2}-1}\right)^{3}$$
(ii)
Adding (i) and (ii) we get:

$$\left(x + \sqrt{x^{2}-1}\right)^{3} + \left(x - \sqrt{x^{2}-1}\right)^{5} = 2\left(\frac{1}{(2)}, x^{2} (xx^{2}-1)^{2} + \frac{1}{(2)} (x^{2}+1)^{2}\right)^{2} \left(\frac{1}{(2)} (x^{2}+1)^{2}\right)^{2} + \frac{1}{(2)} (x^{2}+1)^{2}\right)^{2} = 2\left(x^{2}+3x^{2}-3x\right)$$

$$= 2\left(4x^{2}-3x\right)$$

$$= 2\left(4x^{2}-3x\right)$$

$$= 2\left(4x^{2}-3x\right)$$

$$= 2\left(4x^{2}-3x\right)$$

$$= 2\left(4x^{2}-3x\right)$$

$$= 2\left(4x^{2}-3x\right)$$
Put $2 + x = a$
then

$$\left(a - x^{2}\right)^{4} + C_{0}\left(ay^{3}\left(-x^{2}\right)^{6} + C_{1}\left(ay^{3}\left(-x^{2}\right)^{1} + C_{2}\left(ay^{2}\left(-x^{2}\right)^{2} + C_{3}\left(ay^{2}\left(-x^{2}\right)^{2} + C_{4}\left(ay^{6}\left(-x^{2}\right)^{4}\right)^{4}\right)^{2} + \frac{1}{(2)} \left(x^{2}-1x^{2}\right)^{4}$$
Put $a = 2 + x$ back we get:

$$\left(2 + x - x^{2}\right)^{4}$$
Put $a = 2 + x$ back we get:

$$\left(2 + x - x^{2}\right)^{4} = \left(2 - x\right)^{2} + 4x^{2}\left(2 + x\right)^{2} + 6x^{4}\left(2 + x\right)^{2} - 4x^{6}\left(2 + x\right) + x^{8}$$

$$= \left[^{4}C_{0}2^{4} + C_{1}\left(2^{2}\right)(x) + ^{4}C_{2}\left(2^{2}\right)(x^{2} + ^{4}C_{0}x^{2}\right)\right]$$

$$- 4x^{2}\left[^{7}C_{0}2^{4} + C_{1}\left(2^{2}\right)(x) + ^{5}C_{2}\left(2^{2}\right)(x^{2} + ^{5}C_{3}x^{2}\right)\right] + 6x^{4}\left(4 + 4x + x^{2}\right) - 4x^{6}\left(2 + x\right) + x^{8}$$

$$= \left(16 + 32x + 24x^{2} + 8x^{3} + x^{4}\right) - 4x^{7}(8 + 12x + 6x^{2} + x^{2})$$

$$+ 6x^{4}\left(4 + 4x + x^{2}\right) - 4x^{6}\left(2 + x\right) + x^{8}$$

$$= \left(16 + 32x + 24x^{2} + 8x^{3} + x^{4}\right) - 4x^{7}\left(8 + 12x + 6x^{2} + x^{2}\right)$$

$$+ 6x^{4}\left(4 + 4x + x^{2}\right) - 4x^{6}\left(2 + x\right) + x^{8}$$

$$= 16 + 32x - 8x^{2} - 40x^{3} + x^{4} + 20x^{3} - 2x^{6} - 4x^{2} + x^{8}$$
(ii)
$$\left(1 - x + x^{2}\right)^{4}$$
Solution:
Let $(1 - x) = a$ then

$$\left(1 - x + e^{2}\right)^{3} + \left(x + e^{2}\right)^{4}\left(x^{2}\right)^{2} + \left(x^{2}\left(ay^{2}\right)(x^{2}\right)^{2} + \left(x^{2}\left(ay^{2}\left(x^{2}\right)^{2} + (x^{2}\left(ay^{2}\left(x^{2}\right)^{2}\right)^{4} + (x^{2}\left(ay^{2}\left(x^{2}\right)^{2} + (x^{2}\left(ay^{2}\left(x^{2}\right)^{2}\right)^{2} + (x^{2}\left(ay^{2}\left(x^{2}\right)^{2} + (x^{2}\left(ay^{2}\left(x^{2}\right)^{2}\right)^{4} + (x^{2}\left(ay^{2}\left(x^{2}\right)^{4}\right)^{4}$$

$$= \left(1 - x + e^{2}\right)^{4}$$

$$= 1 - x - Back, we get:$$

$$= \left(1 - x\right)^{4} + 4x^{2}\left(1 - x\right)^{2} + 6x^{4}\left(1 - x\right)^{2} + 4x^{4}\left(1 - x\right)^{2} + 6x^{4}\left(1$$

$$= 1 - 4x + 6x^{2} - 4x^{3} + x^{4} + 4x^{2} - 12x^{3} + 12x^{3} - 4x^{3} + 6x^{4} - 12x^{3} + 6x^{6} + 4x^{6} - 4x^{3} + x^{8} - 16x^{3} = \frac{1}{4}(1 - 4x + 6x^{2} - 4x^{2} + x^{3})^{4} + 4x^{2} \left[1 - 3x + 3x^{2} - x^{2}\right] + 6x^{4} (1 - 2x + x^{2}) + 4x^{4} (1 - x) + 4x^{3} = \frac{1}{4}(1 - x) + 4x^{3} - 4x^{2} + 12x^{3} + 12x^{4} + 12x$$

$$= {}^{3}C_{6}(a)^{3} \left(\frac{-1}{x}\right)^{6} + C_{1}(a)^{2} \left(\frac{-1}{x}\right)^{2} + C_{2}(a)^{6} \left(\frac{-1}{x}\right)^{3} + C_{3}(a)^{6} \left(\frac{-1}{x}\right)^{3}$$

$$= a^{3} - 3a^{2} \left(\frac{1}{x}\right) + 3a \left(\frac{1}{x^{2}}\right) - \frac{1}{x^{3}}$$
Put a $a = x - 1$ back we get

$$= (x - t)^{2} - 3\left(\frac{1}{x}\right)(x - t)^{3} + 3\left(\frac{1}{x^{2}}\right)(x + t) - \frac{1}{x^{3}}$$

$$= (x - t)^{2} - 3\left(\frac{1}{x^{2}}\right)(x - t)^{2} + \frac{1}{x^{2}}(x^{2} - 2x + 1) + \frac{2}{x^{2}}(x - 1) - \frac{1}{x^{3}}$$

$$= x^{3} - 3x^{2} + 3x^{2} - 1 - 3x + \frac{7}{x^{2}} + \frac{2}{x^{3}}(\frac{3}{x^{2}} - \frac{1}{x^{3}})$$

$$= x^{3} - 3x^{2} + 3x^{2} - 1 - 3x + \frac{7}{x^{2}} + \frac{2}{x^{3}}(\frac{3}{x^{2}} - \frac{1}{x^{3}})$$

$$= x^{3} - 3x^{2} + 3x^{2} - 1 - 3x + \frac{7}{x^{2}} + \frac{2}{x^{3}}(\frac{3}{x^{2}} - \frac{1}{x^{3}})$$

$$= x^{3} - 3x^{2} + 3x^{2} - 1 - 3x + \frac{7}{x^{3}} + \frac{2}{x^{3}}(\frac{3}{x^{2}} - \frac{1}{x^{3}})$$

$$= x^{3} - 3x^{2} + 3x^{2} - 1 - 3x + \frac{7}{x^{3}} + \frac{2}{x^{3}}(\frac{3}{x^{2}} - \frac{1}{x^{3}})$$
Q.6 Find the term involving:
(i) x^{4} in the expansion of $(3 - 2x)^{7}$
Solution:
As we know that $(r + 1)^{4}$ term in the expansion of $(a + b)^{5}$ is
 $T_{r,i} = ^{7}C_{i}(3)^{7r}(-2x)^{7}$
For the term involving x^{4} , put exponent of x equal to 4 we get $r = 4$
So
 $T_{4,4} = ^{7}C_{i}(3)^{7r}(-2x)^{6}$
 $T_{5} = 35(27)(16)x^{4}$
 $T_{2} = 15120x^{4}$
(ii) x^{-2} in the expansion of $\left(x - \frac{2}{x^{2}}\right)^{15}$
Solution:
As we know that $(r + 1)^{4}$ term in the expansion ($(r + a)^{7}$ it
 $T_{r,4} = ^{7}C_{i}a^{-6}b^{7}$
Here $n = 1, a + x\beta n - \frac{2}{x^{2}}$ we get;
 $T_{r,4} = ^{1}C_{i}x^{1^{16}}(-2)^{7}x^{-3r}$
 $= {}^{15}C_{i}(-2)^{7}x^{-3r}$
 $= {}^{15}C_{i}(-2)^{7}x^{-3r}$

For the term involving
$$x^{-2}$$
 put the exponent of x equal to -2 we get;
 $13-3r = -2 \Rightarrow 15 = 3r$
 $r = 5$ we get;
 $T_{5+1} = {}^{13}C_5(-2)^5(x)^{-2}$
 $= (1287)(-32)x^{-2}$
 $T_6 = \frac{-41184}{3x^2}$
(iii) a^4 in the expansion of $\left(\frac{2}{x} - a\right)^9$

Solution:

As we know that $(r+1)^{th}$ term in the expansion of $(a+b)^n$ is

$$T_{r+1} = {}^{n}C_{r}a^{n-r}b^{r}$$

Here $a = \frac{2}{x}, b = -a, n = 9$ we get;
$$T_{r+1} = {}^{9}C_{r}\left(\frac{2}{x}\right)^{9-r}(-a)^{r}$$

For the term involving a^4 put exponent of a equal to 4 i.e., r = 4 So

$$T_{4+1} = {}^{9}C_{4} \left(\frac{2}{x}\right)^{5} \left(-a\right)^{4}$$
$$T_{5} = \frac{4032a^{4}}{x^{5}}$$

(iv)
$$y^3$$
 in the expansion of $\left(x - \sqrt{y}\right)^{11}$

Solution:

As we know that $(r+1)^{th}$ term in the expansion of $(a+b)^n$ is

$$T_{r+1} = {}^{n}C_{r}a^{n-r}b^{r}$$
Here $n = 11, a = x, b = -\sqrt{y}$
So
$$T_{r+1} = {}^{1}C_{r}(x)^{11-r}(-\sqrt{y})^{r}, \text{ Suppose } p \text{ occures in } T_{p+1} \text{ i.e.},$$

$$y^{3} = y^{2}p_{2}x\frac{r}{2} = 3$$

$$r = 6$$
Note:

$$T_{avi} = {}^{11}C_a(x)^{1+\alpha}(-y^{e^2})^6$$

$$T_{bvi} = \begin{pmatrix} 11\\ 6 \end{pmatrix} x^5 y^3$$
Q.7 Find the coefficient of:
(i) x⁴ in the expansion of $(x - \frac{2}{2x})^{1/3}$
As we know that $(r+1)^6$ term in the expansion of $(a+b)^6$ is
 $T_{rei} = {}^{12}C_r (a^a b^c)$
Here $a = x, b = -\frac{3}{2x}, n = 10$
So
 $T_{rei} = {}^{12}C_r (x^2)^{10-r} \left(-\frac{3}{2x}\right)^r$

$$= {}^{12}C_r (x^2)^{10-r} \left(-\frac{3}{2x}\right)^r x^{r^2}$$

$$= {}^{12}C_r \left(-\frac{3}{2}\right)^r x^{2n-2r}$$

$$= {}^{12}C_i \left(-\frac{3}{2}\right)^r x^{2n-2r}$$

$$= {}^{12}C_i \left(-\frac{3}{2}\right)^r x^{2n-2r}$$

$$= {}^{12}C_i \left(-\frac{3}{2}\right)^r x^{2n-2r}$$

$$= {}^{12}C_i \left(-\frac{3}{2}\right)^r x^{2n-2r}$$

$$T_{sin} = {}^{12}C_s \left(-\frac{3}{2}\right)^r x^s$$
Thus coefficient of x^2 is x^{-1330}

$$= -1913625$$
(ii) a^{r^2} in the expansion of $\left(x^2 - \frac{1}{x}\right)^{2n}$
Subtion:
As we know that $(r+1)^8$ term in the expansion of $(a+b)^6$ is
 $T_{rii} = {}^{12}C_i (-\frac{3}{2})^r x^{2n}$

Here
$$n = 2n$$
, $a = x^{2}$, $b = -\frac{1}{x}$ we get;
 $T_{r+1} = {}^{2c}C_{r}\left(x^{2}\right)^{2n-r}\left(-\frac{1}{x}\right)^{r}$
 $= {}^{2a}C_{r}\left(x^{2}\right)^{n-2r}\left(-1\right)^{r}x^{r}$
 $= {}^{2a}C_{r}\left(x^{2}\right)^{n-2r}\left(-1\right)^{r}x^{r}$
 $= {}^{2a}C_{r}\left(x^{2}\right)^{n-2}\left(-1\right)^{r}x^{r}$
For the term havolving x put the exponent of x equal to n , so
 ${}^{4f}\left(\frac{3n}{n+3} - 3\right)^{r}$
 $T_{n+1} = {}^{2a}C_{r}x^{n}\left(-1\right)^{n}$
 $T_{n+1} = {}^{2a}C_{r}x^{n}\left(-1\right)^{n}x^{n}$
So the coefficient of x^{n} is $\left(\frac{-1}{n}\right)^{n}\left(\frac{2n}{n!}\right)^{1}$
Q.8 Find the 6th term in the expansion of $\left(x^{2} - \frac{3}{2x}\right)^{10}$
Solution:
As we know that $(r+1)^{th}$ term in the expansion of $(a+b)^{n}$ is
 $T_{r+1} = {}^{tn}C_{r}a^{n-tb^{r}}$
Here $a = x^{2}$, $b = \frac{-3}{2x}$, $n = 10$
So, we get
 $T_{r+1} = {}^{tn}C_{r}\left(x^{2}\right)^{1-n}\left(\frac{-3}{2x}\right)^{r}$
for the 6th term put $r = 5$ we get;
 $T_{5^{t+1}} = {}^{tn}C_{5}\left(x^{2}\right)^{1-n}\left(\frac{-3}{2x}\right)^{2}$
 $= 252 + {}^{th} x \left(\frac{-243}{2x}\right) + \frac{1}{2}$
 $T_{n} = {}^{-\frac{453}{2}}\left(\frac{9}{2x}\right) + \frac{1}{2}$

Find the term independent of x in the following expansions. $(2)^{10}$

(i)
$$\left(x-\frac{2}{x}\right)$$

Solution:

N,

As we know that
$$(r+1)^{th}$$
 term in the expansion of $(a+b)^n$ is
 $T_{r+1} = {}^nC_r a^{n-r}b^r$
Here $n = 10, a = x, b = \frac{-2}{x}$
 $T_{r+1} = {}^{10}C_r(x)^{10-r} \begin{pmatrix} -2 \\ x \end{pmatrix}^r$
 $= {}^{1)}C_r(x^{10-1})(x^{(r)})(-2)^r$
 $= {}^{t)}C_r x^{10-2r}(-2)^r$

For the term involving x^0 (term independent from x) put exponent of x equal to zero i.e., 10-2r=0

$$r = 5$$

Thus

$$T_{5+1} = {}^{10}C_5 x^0 (-2)^3$$

= $\frac{10 \times 9 \times 8 \times 7 \times 6}{5 \times 4 \times 3 \times 2 \times 1} (-32)$
$$T_6 = -8064$$

(ii) $\left(\sqrt{x} + \frac{1}{2x^2}\right)^{10}$

r = 2

Solution:

As we know that $(r+1)^{th}$ term in the expansion of $(a+b)^n$ is

$$T_{r+1} = {}^{n}C_{r}a^{n-r}b^{r}$$
Here $n = 10, a = \sqrt{x, b} = \frac{1}{2x^{2}}$

$$T_{r+1} = {}^{10}C_{r}\left(\sqrt{x}\right)^{10-r}\left(\frac{1}{2x^{2}}\right)^{r}$$

$$= {}^{10}C_{r}\left(x\right)^{5-\frac{r}{2}}\left(\frac{1}{2}\right)^{r}x^{-2r}$$

$$= {}^{10}C_{r}\left(\frac{1}{2}\right)^{r}x^{5-\frac{r}{2}-2r}$$

$$T_{r+1} = {}^{0}C_{r}\left(\frac{1}{2}\right)^{r}x^{\frac{5-5r}{2}-2r}$$
For the term involving x^{1} (term independent from x) put exponent of x equal to zero i.e.,
$$P_{10}S_{r} - \frac{5r}{2} = 0$$

$$\frac{5r}{2} = 5$$

Put
$$r = 2$$
 in the last expansion we get;
 $T_3 = {}^{6}C_{7}\left(\frac{1}{2}\right)^{2}x^{0}$
 $= \frac{10 \times 9}{2} \times \frac{1}{4}$
 $r_3 = \frac{4^{2}}{4}$
solution:
 $(1 + x^{2})^{2}\left(\frac{1 + x^{2}}{x^{2}}\right)^{4}$
 $= (1 + x^{2})^{2}\left(\frac{1 + x^{2}}{x^{2}}\right)^{2}$
 $= x^{8}(1 + x^{2})^{2}$
 $(r + 1)^{6}$ term in the expansion of $(1 + x^{2})^{7}$ is
 $T_{rel} = C_{1}(1)^{2r}(x^{2})^{r}$
 $= C_{2}x^{2r}$.
Thus
 $= x^{-8} \times C_{r}x^{3r}$
For the term involving x^{0} (term independent from x) put exponent of x equal to zero i.e.,
Put $2r - 8 = 0 \Rightarrow r = 4$
So required term independent from x is
 $T_{rel} = C_{1}x^{0}$
 $= -35$
Q.10 Determine the middle term in the following expansions:
(i) $\left(\frac{1}{x} - \frac{x^{2}}{x^{2}}\right)^{1/2}$
Solution:
Here $n = 12(4 \times 10^{10})$ so that middle term is $\left(\frac{\pi}{2} + 1\right)^{6}$ term i.e.,
 $\left(\frac{3}{2} \times 1\right)^{6} = \left(\frac{r^{2}}{2} + 1\right)^{n} = 7^{n}$ term
Here $a = \frac{1}{x}, b = -\frac{x^{2}}{2}, n = 12, r = 6$

So

$$T_{r,1} = {}^{n}C_{r}a^{n}b^{r}$$

 $T_{s-1} = {}^{1}C_{s}\left(\frac{1}{x}\right)^{s}\left(-\frac{x^{2}}{2}\right)^{s}$
 $= 924\left(\frac{1}{x}\right)\left(\frac{x^{2}}{64}\right)$
 $T_{s} = \frac{23}{16}\left(\frac{1}{x}\right)^{s}\left(\frac{x^{2}}{64}\right)$
Tr $= \frac{23}{16}\left(\frac{1}{x}\right)^{s}$
Solution:
Here $n = 11(odd)$, so the middle terms are $\left(\frac{n+1}{2}\right)^{s}$ and $\left(\frac{n+3}{2}\right)^{s}$
So
 $\left(\frac{n+1}{2}\right)^{s} = \left(\frac{11+3}{2}\right)^{s} = 6^{s}$ term
 $\left(\frac{n+3}{2}\right)^{s} = \left(\frac{11+3}{2}\right)^{s} = 7^{s}$ term
Here $a = \frac{3}{2}, b = -\frac{1}{3x}, n = 11$
For 6th term:
 $r = 5$
 $T_{r,1} = {}^{t}C_{r}a^{n}b^{r}$
 $T_{s} = {}^{t}C_{s}\left(\frac{3}{2}x\right)^{s}\left(-\frac{1}{3x}\right)^{s}$
 $T_{s} = {}^{t}C_{s}\left(\frac{3}{2}x\right)^{s}\left(-\frac{1}{3x}\right)^{s}$

(iii)
$$\left(2x - \frac{1}{2x}\right)^{2m+1}$$

Solution:
Here $2m + 1 = \text{odd}$ so the middle terms are
 $\left(\frac{n+1}{2}\right)^{4n} a^{n} a^{n} \left(\frac{n+3}{2-2}\right)^{4n} \cdot \operatorname{serms}^{3n}$
So
 $\left(\frac{n+1}{2}\right)^{4n} = \left(\frac{2m+1+3}{2}\right)^{4n} = (m+1)^{4n}$ term
 $\left(\frac{n+3}{2}\right)^{4n} = \left(\frac{2m+1+3}{2}\right)^{4n} = (m+2)^{4n}$ term
Here $a = 2x, b = -\frac{1}{2x}, n = 2m+1, r = m$
For $(m+1)^{4n}$ term:
 $r = m$
 $T_{rel} = {}^{4n} C_n (2x)^{n+n} \left(\frac{-1}{2x}\right)^{m}$
 $= \frac{(2m+1)!}{(m!+1)!} (2x)^{m+1} (-1)^m \times \frac{1}{(2x)^m}$
 $= \frac{(2m+1)!}{m!(m+1)!} (2x)^{m+1} (-1)^m 2x$
For $(m+2)^{4n}$ term:
 $r = m+1$
 $T_{rel} = {}^{4n} C_n (2x)^{2m+1} (-1)^m 2x$
For $(m+2)^{4n}$ term:
 $r = m+1$
 $T_{rel} = {}^{4n} C_n (2x)^{2m+1} (-1)^{2m+1} (-$

$$= \frac{(2n+1)!}{n!(m+1)!} (-1)^{m+1} \frac{1}{2x}$$
Q.11 Find $(2n+1)^{a}$ term from the end in the expansion of $\left(\frac{1}{2x}\right)^{a}$
Solution:
 $(2n+1)^{a}$ term from the end in the expansion of $\left(x-\frac{1}{2x}\right)$ is $(2n+1)^{a}$ term from the expansion of $\left(\frac{-1}{2x}+x\right)^{a}$
As $(r+1)^{a}$ term of $(a+b)^{n}$ is
 $T_{r+1} = C_{r}a^{a-r}b^{r}$
Put $r = 2n, a = \frac{-1}{2x}, b = x, n = 3n$ we get:
 $T_{2n+1} = \frac{a^{3}C_{2n}\left(\frac{-1}{2x}\right)^{3n-2n}}{(3n-2n)\times(2n)!} \times \left(\frac{-1}{2}\right)^{n} \times \frac{1}{x} \times x^{2n}$
 $T_{2n+1} = \frac{a^{3}(2n)!}{2^{a}} \times \frac{(3n)!}{(2n)\times n!} \times^{a}$
Q.12 Show that middle term of $(1+x)^{3n}$ is $\frac{1.35...(2n-1)}{n!} 2^{n}x^{n}$
Prof:
Here $2n$ = even so the middle term is $\left(\frac{n}{2}+1\right)^{b} = \left(\frac{2n}{2}+1\right)^{b} = (n+1)^{b}$ term.
Thus
 $T_{r+1} = C_{r}a^{n-r}b^{r}$
Here $n = n, a = 1, b = x, n = 2n$
So
 $T_{n+1} = \frac{a^{2n}C_{n}(1)^{2m-1}}{(2n)\times n!} \times^{a}$
 $\left(\frac{(2n)!}{(2n)!} + \frac{(2n)!}{(2n)!} + \frac{(2n)!}{(2n)!} + \frac{(2n)!}{(2n-1)!} + \frac{(2n-1)!}{(2n-1)!} + \frac{x}{x^{a}}$

$$= \frac{\left[(2n)(2n-2)(2n-4)\dots.4.2\right]\left[(2n-1)(2n-3)(2n-5)\dots.3.1\right]}{n \times n!} \times x^{n}$$

$$= \frac{2^{n} \{n(n-1)(n-2)\dots.2.1\}\{(2n-1)(2n-3)(2n-5)\dots.3.1\}}{n \times n!} \times x^{n}$$

$$= \frac{2^{n} \times n! \times \{(2n-1)(2n-3)(2n-5)\dots.5.3.1\}}{n!} \times x^{n}$$

$$= \frac{2^{n} \times ((2n-1))(2n-3)(2n-5)\dots.5.3.1\}}{n!} \times x^{n}$$

$$= \frac{\{1.3.5\dots.(2n-1)\}}{n!} 2^{n} x^{n}}$$
Hence the proof.
Q.13 Show that
 $\binom{n}{1} + \binom{n}{3} + \binom{n}{5} + \dots \binom{n}{n-1} = 2^{n-1}$

Proof:

We know that

$$(1+x)^{n} = \binom{n}{0} + \binom{n}{1}x + \binom{n}{2}x^{2} + \dots + \binom{n}{n}x^{n}$$
(i)
Put $x = 1$ in (i) we get;

$$(1+1)^{n} = {\binom{n}{0}} + {\binom{n}{1}} + {\binom{n}{2}} + \dots + {\binom{n}{n}}$$

$$2^{n} = {\binom{n}{0}} + {\binom{n}{1}} + {\binom{n}{2}} + \dots + {\binom{n}{n}}$$

Put $x = -1$ in (i) we get: (ii)

$$\begin{aligned} 1 \text{ dt } x &= -1 \text{ in (1) we get;} \\ & (1+(-1))^n = \binom{n}{0} - \binom{n}{1} + \binom{n}{2} - \binom{n}{3} + \dots + (-1)^{n-1} \binom{n}{n-1} + (-1)^n \binom{n}{n} \\ & 0 = \binom{n}{0} - \binom{n}{1} + \binom{n}{2} - \binom{n}{3} + \dots + (-1)^{n-1} \binom{n}{n-1} + (-1)^n \binom{n}{n} \\ & \text{Assume that here n is even} \\ & \binom{n}{0} + \binom{n}{2} + \binom{n}{4} + \dots + \binom{n}{n} + \binom{n}{1} + \binom{n}{3} + \binom{n}{5} + \dots + \binom{n}{n-1} \\ & \text{(iii)} \\ & 2^n \in \left\{\binom{n}{0} + \binom{n}{2} + \binom{n}{4} + \dots + \binom{n}{n}\right\} + \left\{\binom{n}{1} + \binom{n}{3} + \binom{n}{5} + \dots + \binom{n}{n-1}\right\} \\ & \text{Using (iii) we get;} \\ & 2^n = \left\{\binom{n}{1} + \binom{n}{3} + \binom{n}{5} + \dots + \binom{n}{n-1}\right\} + \left\{\binom{n}{1} + \binom{n}{3} + \binom{n}{5} + \dots + \binom{n}{n-1}\right\} \end{aligned}$$

Mathematical Induction and Binomial Theorem

 $\binom{n}{1} + \binom{n}{3} + \binom{n}{5} + \dots + \binom{n}{n-1} = 2^{n-1}$ Hence the proof $2^{n} = 2\left\{ \binom{n}{1} + \binom{n}{3} + \binom{n}{5} + \dots + \binom{n}{n-1} \right\}$ MMM

Q.14 Show that

$$\binom{0}{n} + \frac{1}{2}\binom{n}{1} + \frac{1}{3}\binom{n}{2} + \frac{1}{4}\binom{n}{3} + \dots + \frac{1}{n+1}\binom{n}{n} = \frac{2^{n-1}-1}{n+1}$$
Proof:
L.H.S = $\binom{0}{n} + \frac{1}{2}\binom{n}{1} + \frac{1}{3}\binom{n}{2} + \frac{1}{4}\binom{n}{3} + \dots + \frac{1}{n+1}\binom{n}{n}$
 $= \frac{n}{0(n-0)} + \frac{1}{2}\binom{n}{1} + \frac{1}{3}\binom{n}{2} + \frac{1}{4}\binom{n}{3} + \dots + \frac{1}{n+1}\binom{n}{n}$
 $= \frac{n}{0(n-0)} + \frac{1}{2}\binom{n}{1} + \frac{n(n-1)(n-2)}{4!} + \dots + \frac{1}{(n+1)}$
Taking common $\frac{1}{n+1}$ we get:
 $= \frac{1}{n+1}\left[(n+1) + \frac{(n+1)n}{2!} + \frac{(n+1)n(n-1)}{3!} + \frac{(n+1)n(n-1)(n-2)}{4!} + \dots + 1 \right]$
Above expression can be written as:
 $= \frac{1}{n+1}\left[\binom{n+1}{1} + \binom{n+1}{2} + \binom{n+1}{3} + \dots + \binom{n+1}{n+1} \right]$
 $= \frac{1}{n+1}\left[\binom{n+1}{1} + \binom{n+1}{1} + \binom{n+1}{2} + \binom{n+1}{n+1} - \binom{n+1}{0} \right]$
 $= \frac{1}{n+1}\left[\binom{n+1}{2^{n'}-1} + \frac{n}{2^{n'}-1} \right]$
R.H.S

The Binomial Theorem when the index n is a negative integer or a fraction.
When n is negative integer or a fraction, then

$$(1+x)^n = 1+nx + \frac{n(n-1)}{2!}x^2 + \frac{n(n-1)(n-2)}{3!}x^2 + \dots (n(n-1)(n-2))\dots(n-n+1) + \dots \dots (n(n-1)(n-2))\dots(n-n+1) + \dots (n(n-1)($$

EXERCISE 8.3

Q.1 Expand the following upto 4 terms, taking the value of x such that the expansion is each case is valid.

(i) $(1-x)^{\frac{1}{2}}$ Solution: $(1-x)^{2} = 1 + \binom{1}{2}(-x) + \frac{\binom{1}{2}\binom{1}{2}-1}{2!}(-x)^{2} + \frac{\binom{1}{2}\binom{1}{2}-1\binom{1}{2}-2}{3!}(-x)^{3} + \dots$ $= 1 - \frac{1}{2}x + \binom{1}{2}\binom{-1}{2}\frac{1}{2}x^{2} + \frac{1}{2}\times\binom{-1}{2}\binom{-3}{2}\frac{1}{6}(-x^{3})\dots$ $= 1 - \frac{1}{2}x - \frac{1}{8}x^{2} - \frac{1}{16}x^{3}\dots$

The expansion of $(1-x)^{\frac{1}{2}}$ is valid if |x| < 1

(ii) $(1+2x)^{-1}$

Solution:

$$(1+2x)^{-1} = 1 + (-1)(2x) + \frac{(-1)(-1-1)}{2!}(2x)^2 + \frac{(-1)(-1-1)(-1-2)}{3!}(2x)^3 + \dots$$
$$= 1 - 2x + 4x^2 - 8x^3 + \dots$$

The expansion of $(1+2x)^{-1}$ is valid if $|2x| < 1 \implies |x| < \frac{1}{2}$

(iii) $(1+x)^{\frac{1}{3}}$

Solution:

$$(1+x)^{\frac{-1}{3}} = 1 + \left(\frac{-1}{3}\right)x + \frac{\left(-\frac{1}{3}\right)\left(-\frac{1}{3}-1\right)}{2!}x^{2} + \frac{\left(-\frac{1}{3}\right)\left(-\frac{1}{3}-7\right)\left(-\frac{1}{3}-2\right)}{3!}x^{3} + \dots$$

$$= 1 - \frac{1}{3}x + \frac{\left(-\frac{1}{3}\right)\left(-\frac{4}{3}\right)}{2}x^{2} + \frac{\left(-\frac{1}{3}\right)\left(-\frac{4}{3}\right)\left(-\frac{7}{3}\right)}{6}x^{3} + \dots$$

$$= 1 - \frac{1}{3}x + \frac{2}{9}x^{2}\frac{4\times7}{27\times3\times2}x^{3} + \dots$$

$$= 1 - \frac{1}{3}x + \frac{2}{9}x^{2} - \frac{14}{81}x + \dots$$
The expansion of $(1+x)^{\frac{1}{3}}$ is valid if $|x| < 1$
(iv)
$$(4 - 3x)^{\frac{1}{2}} = \left[4\left(1 - \frac{3}{4}x\right)\right]^{\frac{1}{2}}$$

$$=4^{\frac{1}{2}}\left[1-\frac{3}{4}x\right]^{\frac{1}{2}}$$

$$=2\left[1+\frac{1}{2}\left(-\frac{3}{4}x\right)+\frac{1}{2}\left(\frac{1}{2}-1\right)-3}{2}x^{\frac{1}{2}}+\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2}\right)-3}{6}\left(-\frac{27}{6}x^{\frac{1}{2}}\right)+\frac{1}{4}x^{\frac{1}{2}}+\dots\right]$$

$$=2\left[1-\frac{3}{8}x-\frac{1}{2}\times\frac{9}{16}x^{\frac{1}{2}}-\frac{1}{16}\times\frac{27}{64}x^{\frac{1}{2}}+\dots\right]$$

$$=2\left[1-\frac{3}{8}x-\frac{1}{8}\times\frac{9}{16}x^{\frac{1}{2}}-\frac{1}{16}\times\frac{27}{64}x^{\frac{1}{2}}+\dots\right]$$

$$=2\left[1-\frac{3}{8}x-\frac{1}{8}\times\frac{9}{16}x^{\frac{1}{2}}-\frac{1}{16}\times\frac{27}{64}x^{\frac{1}{2}}+\dots\right]$$

$$=2\left[1-\frac{3}{8}x-\frac{1}{8}\times\frac{9}{16}x^{\frac{1}{2}}-\frac{1}{16}\times\frac{27}{64}x^{\frac{1}{2}}+\dots\right]$$

$$=2\left[1-\frac{3}{8}x-\frac{1}{8}\times\frac{9}{16}x^{\frac{1}{2}}-\frac{1}{16}\times\frac{27}{64}x^{\frac{1}{2}}+\dots\right]$$

$$=2\left[1-\frac{3}{8}x-\frac{1}{8}\times\frac{9}{16}x^{\frac{1}{2}}-\frac{1}{16}\times\frac{27}{64}x^{\frac{1}{2}}+\dots\right]$$

$$=2\left[1-\frac{3}{8}x-\frac{1}{8}\times\frac{9}{16}x^{\frac{1}{2}}-\frac{1}{16}\times\frac{27}{64}x^{\frac{1}{2}}+\dots\right]$$

$$=2\left[1-\frac{3}{8}x-\frac{1}{8}\times\frac{9}{16}x^{\frac{1}{2}}-\frac{27}{512}x^{\frac{1}{2}}+\dots\right]$$

$$=2\left[\frac{1}{8}\left[1+\frac{1}{4}+\frac{1}{2}\times\frac{1}{16}\left(\frac{1}{2}\times\frac{1}{16}\right)-\frac{1}{2}\times\frac{3}{6}\left(-\frac{1}{4}\times\frac{1}{3}\right)-\frac{1}{8}\left(-\frac{1}{4}\times\frac{1}{3}+\frac{1}{12}\times\frac{1}{16}+\frac{1}{2}\times\frac{1}{16}-\frac{1}{16}\times\frac{1}{16}+\frac{1}{1$$

$$\begin{aligned} &= \frac{1}{4} \left[1 + 3x + \frac{(-2)(-3)}{2} \left(\frac{9}{4} x^{2} \right) + \frac{(-2)(-3)(-4)}{6} \left(\frac{-27}{8} x^{3} \right) + \dots \right] \\ &= \frac{1}{4} \left[1 + 3x + \frac{27}{6} x^{2} + \frac{27}{27} x^{3} + \frac{$$

$$\begin{aligned} &= \left[1 + x + \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2} 4x^{2} + \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{6} 8x^{3} + \dots \right] \times \left[4 + x + 4^{2} + x^{2} + \dots\right] \\ &= \left[4 + x - \frac{1}{2}x^{2} + \frac{1}{2}x^{1} + \dots^{-1}(1 + x + x^{2} + x^{3} + \dots) + \frac{1}{2}x^{2} + \frac{1}{2}x^{2} + \dots\right] \\ &= (1 + x + \frac{1}{2}x^{2} + \frac{1}{2}x^{1} + x + x^{2} + x^{2} - \frac{1}{2}x^{2} - \frac{1}{2}x^{2} + \frac{1}{2}x^{2} + \dots \\ &= (1 + 2x + \frac{3}{2}x^{2} + 2x^{3} + \dots) \\ &= (1 + 2x + \frac{3}{2}x^{2} + 2x^{3} + \dots) \end{aligned}$$
The expansion of $(1 - 2x)^{\frac{1}{2}}$ is valid if $|x| < 1$
So, the expansion of $(1 - x)^{\frac{1}{2}}$ is valid if $|x| < 1$
So the expansion of $\frac{\sqrt{1 + 2x}}{1 - x}$ is valid if $|x| < \frac{1}{2}$
(ix) $\frac{(4 + 2x)^{\frac{1}{2}}}{2 - x} = \frac{\left(4\left(1 + \frac{2}{4}x\right)\right)^{\frac{1}{2}}}{2\left(1 - \frac{x}{2}\right)^{-1}} = \frac{4^{\frac{1}{2}}}{2}\left(1 + \frac{x}{2}\right)^{\frac{1}{2}}\left(1 - \frac{x}{2}\right)^{-1} \\ &= \left(1 + \frac{x}{2}\right)^{\frac{1}{2}}\left(1 - \frac{x}{2}\right)^{-1} \\ &= \left(1 + \frac{1}{2}\left(\frac{x}{2}\right) + \frac{\left(\frac{1}{2}\right)\left(\frac{1}{2} - 1\right)}{2!}\left(\frac{x}{2}\right)^{2} + \frac{\left(\frac{1}{2}\right)\left(\frac{1}{2} - 1\right)\left(\frac{1}{2} - 2\right)}{3!}\left(\frac{x}{2}\right)^{4} + \dots \\ &\times \left[1 + (-1)\left(-\frac{x}{2}\right) + \frac{(-1)(-1 - 1)(-1 - 1)(-1 - 2)}{4!} + \frac{(-1)(-1 - 1)(-1 - 2)(-\frac{x}{2})}{4!} + \dots \right] \\ &= \left[1 + \frac{x}{4} - \frac{1}{32}x^{2} + \frac{1}{12}x^{2}\right]\left[1 + \frac{x}{2} + \frac{x^{2}}{4} + \frac{x^{4}}{8} + \dots\right] \\ &= \left[1 + \frac{x}{4} - \frac{1}{32}x^{2} + \frac{1}{12}x^{2}\right]\left[1 + \frac{x}{2} + \frac{x^{2}}{4} + \frac{x^{4}}{8} + \dots\right]$

$$= \left(1 + \frac{x}{4} - \frac{1}{32}x^{2} + \frac{1}{128}x^{3} + \dots\right)\left(1 + \frac{x}{2} + \frac{x^{2}}{4} + \frac{x}{8} + \dots\right)$$

$$= 1 + \frac{x}{2} + \frac{x^{2}}{4} + \frac{x}{8} + \frac{x}{4} + \frac{x^{2}}{8} + \frac{x^{2}}{10} + \frac{x^{2}}{122} + \frac{x^{2}}{64} + \frac{x^{2}}{128} + \dots\right)$$

$$= 1 + \frac{x}{2} + \frac{x^{2}}{122} + \frac{x^{2}}{122} + \frac{x^{2}}{122} + \frac{x^{2}}{64} + \frac{x^{2}}{122} + \frac{x^{2}}{122} + \frac{x^{2}}{64} + \frac{x^{2}}{122} + \frac{x^{2}}{12} + \frac{x^{2}}{122} + \frac{x^$$

Thus the expansion of
$$(1 + x - 2x^2)^{\frac{1}{2}}$$
 is valid if $x \in \left(\frac{-1}{2}, 1\right)$ or $\frac{-1}{2} < x < 1$
(xi) $(1 - 2x + 3x^2)^{\frac{1}{2}}$
Solution:
 $(1 - 2x + 3x^2)^{\frac{1}{2}}$
 $= (1 - (2x + 1x))^{\frac{1}{2}}$
 $= (1 - (2x + 1x))^{\frac{1}{2}}$
 $= (1 - (2x - 3x^2)) + \left(\frac{-1}{3}\right)\left(\frac{-1}{3} - 1\right)(-(2x - 3x^2))^2 + \left(\frac{-1}{3}\right)\left(\frac{-1}{3} - 1\right)\left(\frac{-1}{3} - 2\right)}{3!}\left(-(2x - 3x^2))^2 + \dots \right)$
 $= 1 + \frac{1}{3}(2x - 3x^2) + \frac{6}{9}x^2 + \left(\frac{2x}{3} - 3x^2\right)^2 - \frac{-28}{27} \times \frac{1}{6}(-(2x - 3x^2))^2 \dots$
 $= 1 + \frac{1}{3}(2x - 3x^2) + \frac{6}{9}(4x^2 - 12x^3 + 9x^4) + \frac{184}{18}[8x^4 - 36x^4 + 54x^3 - 27x^4) + \dots$
 $= 1 + \frac{2}{3}x - \frac{1}{9}x^2 - \frac{164}{81}x^4 + \dots$
The expansion is valid if $|2x - 3x^2| < 1$
 $+ \left(2x - 3x^2\right) < 1$
 $2x - 3x^2 < 1$
 $3x^2 - 2x + 1 > 0$ (i)
The inequality i) is case 1
 $x - 1 > 0, 3x + 1 < 0$
 $x - 1 > 0, 3x + 1 < 0$
 $x - 1 < 0, 3x + 1 < 0$
 $x - 1 < 0, 3x + 1 < 0$
 $x - 1 < 0, 3x + 1 > 0$
Thus the expansion of $(1 - 2x + 5x^2)^{\frac{1}{2}}$ is with if $x + \frac{1}{3} = \frac{1}{3}$ or $1 - \frac{1}{3} - x < 1$
Q.2 Using for example of x
 $x - 1 > 0, 3x + 1 < 0$
 $x - 1 < 0, 1 = \frac{1}{3} - \frac{1}{3}$
 $y = (100 - 1)^{\frac{1}{2}}$

$$= (100)^{\frac{1}{2}} \left(1 - \frac{1}{100}\right)^{\frac{1}{2}}$$

$$= 10 \left[1 + \frac{1}{2} \left(\frac{-1}{100}\right) + \left(\frac{1}{2} \left(\frac{1}{2} - \frac{1}{10}\right) - \frac{1}{2}\right)^{\frac{1}{2}} + \frac{1}{100} \left(\frac{1}{2} + \frac{1}{2} - \frac{1}{100}\right)^{\frac{1}{2}} + \frac{1}{100} \left(\frac{1}{2} - \frac{1}{100}\right)^{\frac{1}{2}} + \frac{1}{100} \left(\frac{1}{100} - \frac{1}{100}\right)^{\frac{1}{2}}$$

Solution:

$$\sqrt[3]{65} = (64+1)^{\frac{1}{2}}$$

 $= \left[64\left(1+\frac{1}{64}\right)^{\frac{1}{2}}$
 $= \left[64\left(1+\frac{1}{64}\right)^{\frac{1}{2}}$
 $= 4\left[1+\frac{1}{3}\left(\frac{1}{64}\right)+\frac{\left(\frac{1}{3}\right)\left(\frac{1}{3}-1\right)}{2!}\left(\frac{1}{64}\right)^{2}+...\right]$
 $= 4\left[1+\frac{1}{3}(0.015625)-\frac{1}{9}(0.015625)^{2}+...\right]$
 $= 4\left[1+\frac{1}{3}(1005208-0.000027]$
 $= 4\left(1.005181\right)$
 $= 4\left(1.005181\right)$
 $= 4\left(1.005181\right)$
 $= 4\left(1.005181\right)$
 $= 4\left(1.005181\right)$
 $= 4\left(1.005181\right)$
 $= \left(16\left(1+\frac{1}{16}\right)^{\frac{1}{2}}$
 $= \left(16\left(1+\frac{1}{16}\right)^{\frac{1}{2}}$
 $= \left(16\left(1+\frac{1}{16}\right)^{\frac{1}{2}}$
 $= \left(16\right)^{\frac{1}{2}}\left(1+\frac{1}{16}\right)^{\frac{1}{2}}$
 $= \left(16\right)^{\frac{1}{2}}\left(1+\frac{1}{16}\right)^{$

$$= 2 \left[1 + \frac{1}{64} + \left(\frac{1}{4}\right) \left(\frac{-3}{4}\right) \frac{1}{2} \left(\frac{1}{16}\right)^2 + \dots \right]$$

$$= 2 \left[1 + \frac{1}{64} - \frac{3}{2} \times \left(\frac{1}{64}\right)^2 \dots \right] 0$$

$$= 2 \left[1 + \frac{1}{64} - \frac{3}{2} \times \left(\frac{1}{64}\right)^2 \dots \right] 0$$

$$= 2 \left[1 + \frac{1}{64} - \frac{3}{2} \times \left(\frac{1}{64}\right)^2 \dots \right] 0$$

$$= 2 \left[1 + \frac{1}{64} - \frac{3}{2} \times \left(\frac{1}{64}\right)^2 \dots \right] 0$$

$$= 2 \left[1 + \frac{1}{64} - \frac{3}{2} \times \left(\frac{1}{64}\right)^2 \dots \right] 0$$

$$= 3 2 - 10^{\frac{1}{5}}$$

$$= \left[3 2 \left(1 - \frac{1}{32} \right)^{\frac{1}{5}}$$

$$= \left[3 2 \left(1 - \frac{1}{32} \right)^{\frac{1}{5}}$$

$$= 2 \left[1 - \frac{1}{32} \right]^{\frac{1}{5}}$$

$$= 2 \left[1 - \frac{1}{5 + 32} + \frac{1}{5} \times \frac{1}{2} \times \left(\frac{1}{32}\right)^2 + \dots \right]$$

$$= 2 \left[1 - \frac{1}{5 + 32} + \frac{1}{5} \times \frac{-4}{5} \times \frac{1}{2} \times \left(\frac{1}{32}\right)^2 + \dots \right]$$

$$= 2 \left[1 - \frac{1}{10} \times \frac{1}{16} - 2 \left(\frac{1}{10} \times \frac{1}{16}\right)^2 + \dots \right]$$

$$= 2 \left[1 - \frac{1}{10} \times \frac{1}{16} - 2 \left(\frac{1}{10} \times \frac{1}{16}\right)^2 + \dots \right]$$

$$= 2 \left[1 - \frac{1}{1000625} - 2 \left(0000050(0221) + \dots \right]$$

$$= 2 \left(1 - 000625 - 2 \left(0000050(0221) + \dots \right) \right]$$

$$= 2 \left(1 - \frac{1}{9938} \times \frac{1}{1087} + \frac{1}{9998} \right)$$

Solution:

$$\frac{1}{\sqrt{998}} = (998)^{\frac{1}{3}}$$

$$= (1000-2)^{\frac{1}{3}}$$

$$= \left[(4000)^{\frac{1}{2}} \left[1 + \frac{2}{1000} \right]^{\frac{1}{3}}$$

$$= \left[(100^{\frac{1}{3}} \left[1 + \frac{1}{3} \right] \left(\frac{-1}{500} \right)^{\frac{1}{3}} \left(\frac{-1}{300} \right)^{\frac{1}{3}} \left(\frac{-1}{500} \right)^{\frac{1}{3}} + \dots \right]$$

$$= (10)^{\frac{1}{3}} \left[1 + \left(\frac{-1}{3} \right) \left(\frac{-1}{500} \right)^{\frac{1}{3}} \left(\frac{-1}{500} \right)^{\frac{1}{3}} + \dots \right]$$

$$\approx \frac{1}{10} \left[1 + 0.00066677 + 0.00000080 \right]$$

$$\approx \frac{1}{10} \left[1.0006675 \right]$$

$$\approx 0.10006675$$

$$\approx 0.10006675$$

$$\approx 0.000$$
(viii) $\frac{1}{\sqrt{252}}$
Solution:

$$\frac{1}{\sqrt{252}} = (252)^{\frac{1}{5}}$$

$$= \left[243 \left[1 + \frac{9}{243} \right] \right]^{\frac{1}{3}}$$

$$= (243)^{\frac{1}{3}} \left[1 + \frac{1}{27} \right]^{\frac{1}{3}}$$

$$= (243)^{\frac{1}{3}} \left[1 + \frac{1}{27} \right]^{\frac{1}{3}}$$

$$= \left[243 \left[1 + \frac{9}{243} \right] \right]^{\frac{1}{3}}$$

$$= \left[1 + \left(-\frac{1}{3} \right) \left(\frac{1}{27} \right)^{\frac{1}{3}} \left(\frac{1}{27} \right)^{\frac{1}{3}} + \dots \right]$$

$$= \frac{1}{3} \left[1 - \frac{1}{5 \times 27} + \left(\frac{-1}{5} \right) \left(\frac{1}{5} \right)^{\frac{1}{2}} \left(\frac{1}{27} \right)^{\frac{1}{3}} + \dots \right]$$

$$\begin{aligned} &\approx \frac{1}{3} \left[1 - 0.0074074 + 3 (0.00005487) \right] \\ &\approx \frac{1}{3} \left(0.992757 \right) \\ &\approx 0.330919 \\ &\approx 0.3319 \\ &\approx 0.3319 \\ &\approx 0.335 \\ &\qquad = 1 + \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} - 1 \right) \left(\frac{1}{2} \right)^{2} + \dots \\ &= 1 + \frac{1}{16} + \frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) + \frac{1}{2} \times \frac{1}{64} + \dots \\ &= 1 - \frac{1}{16} - \frac{1}{8} \times \frac{64}{64} + \dots \\ &\approx 1 - 0.0025 - 0.0193 \\ &\approx 0.0355 \\ &\qquad (x) \quad (0.998)^{\frac{1}{3}} \\ &\qquad 50 \text{ Jution:} \\ &\qquad (0.998)^{\frac{1}{3}} = (1 - 0.002)^{\frac{1}{3}} \\ &= 1 + \left(-\frac{1}{3} \right) (-0.002) + \frac{\left(-\frac{1}{3} \right) \left(-\frac{1}{3} - 1 \right)}{2!} (-0.002)^{2} + \dots \\ &= 1 + \frac{1}{3} (0.002) + \frac{2}{9} (0.000004) + \dots \\ &\approx 1 + 0.000666 \\ &\approx 1.001 \\ &\qquad (xi) \quad \frac{1}{\sqrt{496}} \\ \\ &\qquad Solution: \\ &\qquad (496)^{\frac{1}{3}} = (729 - 243)^{\frac{1}{3}} \\ &\qquad = \left[729 \left(1 - \frac{243}{729} \right) \right]^{\frac{1}{6}} \end{aligned}$$

$$= (3^{\circ})^{\frac{1}{2}} \begin{bmatrix} 1 + \left(\frac{-1}{6}\right) \left(-\frac{1}{3}\right) + \left(\frac{-1}{6}\right) \left(\frac{-7}{6}\right)}{2!} \left(\frac{1}{3}\right)^{2} + \dots \end{bmatrix}$$

$$= 2^{-1} \begin{bmatrix} 1 + \frac{1}{18} + \frac{7}{26} + \frac{1}{21} \frac{1}{9} + \dots \\ \frac{1}{3} \begin{bmatrix} 1 + 0.05556 + \frac{1}{2} (0.003086) + \dots \end{bmatrix}$$

$$= \frac{1}{3} \begin{bmatrix} 1 + 0.05556 + 0.0108 \end{bmatrix}$$

$$= \frac{1}{3} \begin{bmatrix} 1.06896 \end{bmatrix}$$

$$\approx 0.35632$$

$$\approx 0.35633$$
(xii) (1280)^{\frac{1}{4}}
Solution:
$$(1280)^{\frac{1}{2}} = (1296 - 16)^{\frac{1}{4}}$$

$$= \begin{bmatrix} 1296 \left(1 - \frac{16}{1296}\right) \end{bmatrix}^{\frac{1}{2}}$$

$$= (1296)^{\frac{1}{4}} \left[1 - \frac{1}{81}\right]^{\frac{1}{2}}$$

$$= 6 \begin{bmatrix} 1 + \frac{1}{4} \left(\frac{-1}{81}\right) + \left(\frac{\frac{1}{4} \left(\frac{1}{4} - 1\right)}{2!} \left(-\frac{1}{81}\right)^{2} + \dots \right]$$

$$\approx 6 \begin{bmatrix} 1 - 0.003086 - \frac{3}{2} (0.000095) \end{bmatrix}$$

$$\approx 6 \begin{bmatrix} 1 - 0.00308 - \frac{3}{2} (0.000095) \end{bmatrix}$$

$$\approx 6 \begin{bmatrix} 1 - 0.00318 - \frac{3}{2} (0.000095) \end{bmatrix}$$

$$\approx 6 \begin{bmatrix} 1 - 0.00318 - \frac{3}{2} (0.000095) \end{bmatrix}$$

$$\approx 6 \begin{bmatrix} 1 - 0.00318 - \frac{3}{2} (0.000095) \end{bmatrix}$$

$$\approx 6 \begin{bmatrix} 1 - 0.00318 - \frac{3}{2} (0.000095) \end{bmatrix}$$

$$\approx 6 \begin{bmatrix} 1 - 0.00318 - \frac{3}{2} (0.000095) \end{bmatrix}$$

$$\approx 6 \begin{bmatrix} 1 - 0.00318 - \frac{3}{2} (0.000095) \end{bmatrix}$$

$$\approx 6 \begin{bmatrix} 1 - 0.00318 - \frac{3}{2} (0.000095) \end{bmatrix}$$

$$\approx 6 \begin{bmatrix} 1 - 0.00318 - \frac{3}{2} (0.000095) \end{bmatrix}$$

$$\approx 6 \begin{bmatrix} 1 - 0.00318 - \frac{3}{2} (0.000095) \end{bmatrix}$$

$$\approx 6 \begin{bmatrix} 1 - 0.00318 - \frac{3}{2} (0.000095) \end{bmatrix}$$

$$\approx 6 \begin{bmatrix} 1 - 0.00318 - \frac{3}{2} (0.000095) \end{bmatrix}$$

$$\approx 6 \begin{bmatrix} 1 - 0.00318 - \frac{3}{2} (0.000095) \end{bmatrix}$$

$$\approx 6 \begin{bmatrix} 1 - 0.00318 - \frac{3}{2} (0.000095) \end{bmatrix}$$

$$\approx 6 \begin{bmatrix} 1 - 0.00318 - \frac{3}{2} (0.000095) \end{bmatrix}$$

$$\approx 6 \begin{bmatrix} 1 - 0.00318 - \frac{3}{2} (0.000095) \end{bmatrix}$$

$$\approx 6 \begin{bmatrix} 1 - 0.00318 - \frac{3}{2} (0.000095) \end{bmatrix}$$

$$\approx 6 \begin{bmatrix} 1 - 0.00318 - \frac{3}{2} (0.000095) \end{bmatrix}$$

$$\approx 6 \begin{bmatrix} 1 - 0.00318 - \frac{3}{2} (0.000095) \end{bmatrix}$$

$$\approx 6 \begin{bmatrix} 1 - 0.00318 - \frac{3}{2} (0.000095) \end{bmatrix}$$

$$\approx 6 \begin{bmatrix} 1 - 0.00318 - \frac{3}{2} (0.000095) \end{bmatrix}$$

$$\approx 6 \begin{bmatrix} 1 - 0.00318 - \frac{3}{2} (0.000095) \end{bmatrix}$$

$$\approx 6 \begin{bmatrix} 1 - 0.00318 - \frac{3}{2} (0.000095) \end{bmatrix}$$

$$\approx 6 \begin{bmatrix} 1 - 0.00318 - \frac{3}{2} (0.000095) \end{bmatrix}$$

$$\approx 6 \begin{bmatrix} 1 - 0.00318 - \frac{3}{2} (0.000095) \end{bmatrix}$$

$$\approx 6 \begin{bmatrix} 1 - 0.00318 - \frac{3}{2} (0.000095) \end{bmatrix}$$

$$\approx 6 \begin{bmatrix} 1 - 0.00318 - \frac{3}{2} (0.000095) \end{bmatrix}$$

$$\approx 6 \begin{bmatrix} 1 - 0.00318 - \frac{3}{2} (0.000095) \end{bmatrix}$$

$$\approx 6 \begin{bmatrix} 1 - 0.00318 - \frac{3}{2} (0.000095) + \frac{1}{2} \begin{bmatrix} 1 - 0.00318 - \frac{1}{2} \begin{bmatrix} 1 - 0.0031$$

$$\frac{1+x^{2}}{(1+x)^{2}} = (1+x^{2})(1+x)^{-2}$$
From $(1+x)^{2}$ firstly we find the coefficient of x^{x-2} and x^{x} .
As we know that $(r+1)^{n}$ ferm of $(1+x)^{n}$ (s)
 $T_{-n} = \frac{(1/p^{-1})(n-2)(n-3)...(n^{-}(1-1))x^{n}}{n!}$
For r^{n} but $n = 2, r-n$ we get
 $r_{n+1} = \frac{2(-2-1)(-2-2)(-2-3)...(-2-(n-1))x^{n}}{n!}$
 $= \frac{(-2)^{n}(2)(3)(4)...(n+1)x^{n}}{n!}$
 $= \frac{(-1)^{n}(2)(3)(4)...(n+1)x^{n}}{n!}$
 $= (-1)^{n} \frac{(n+1)!}{n!}x^{n}$
So in $(1+x)^{-2}$ coefficient of x^{n} is $(-1)^{n} (n+1)$
So coefficient of x^{n-2} is $(-1)^{n-2} (n-1)x^{n-2}$
 $= (-1)^{n} (n+1)x^{n} + (-1)^{n-2} (n-1)x^{n-2}$
 $= (-1)^{n} (n+1)x^{n} + (-1)^{n-2} (n-1)x^{n}$
Hence coefficient of x^{n} is $(-1)^{n} (2n)$
(ij) $\frac{(1+x)^{2}}{(1-x)^{2}}$
Solution:
 $\frac{(1+x)^{2}}{(1-x)^{2}} = (1+x)^{2} (1-x)^{-2}$
 $= (1+x)^{2} (1-x)^{-2}$
From $(1^{n} x)^{n}$ there of $(1+x)^{n}$ is $T_{n-1} = \frac{n(n-1)(n-2)(n-3)...(n-(r-1))x^{n}}{r!}$

$$T_{n-1} = \frac{(-2)(-3)(-4)(-5)....(-1-n)x^n \times (-1)^n}{n!}$$

$$= \frac{(-1)^n (2 \times 3 \times 4 \times(n+1))x^n ((1-1)^n)}{n!}$$

$$= \frac{(-1)^n (2 \times 3 \times 4 \times(n+1))x^n ((1-1)^n)}{n!}$$

$$T_n = \frac{(-2)(n+1)x^n}{n!}$$

$$T_n = \frac{(-2)(n+1)x^{n-1}}{n!}$$

$$T_{n-1} = \frac{(-2)(-3-2)(-3-3)...(-3-(n+1))(-x)^n}{n!}$$

$$T_{n-1} = \frac{(-3)(-4)(-5)...(-3-n+1)(-x)^n}{n!}$$

$$T_{n+1} = \frac{(-1)^n (2)(3)(4)(5)...(n+2)x^n (-1)^n}{2n!}$$

$$T_{n+1} = \frac{(-1)^{2^n} (n+2)!x^n}{2n!}$$

$$T_{n+1} = \frac{(n+2)(n+1)n!}{2n!}$$

$$T_{n+1} = \frac{(n+2)(n+1)n!}{2n!}$$

$$T_{n+1} = \frac{(n+2)(n+1)n!}{2n!}$$
Coefficient of x^{n-1} is $\frac{(n+2)(n+1)}{2}$
Coefficient of x^{n-1} is $\frac{(n+2)(n+1)}{2}$
Now the term Involving x^n in $(1+2x+x^2)(1-x)^{-3}$ is
$$= \frac{(n+2)(n+1)}{2}x^n + \frac{2(n+1)n}{2}xx^{n-1} + \frac{n(n-1)}{2}x^3x^{n-2}$$

$$= \left\{\frac{(n+2)(n+1)}{2}x^n + \frac{2(n+1)n}{2}x^n x^{n-1} + \frac{n(n-1)}{2}x^n$$

$$= \frac{1}{2}\{n^2 + 3n + 2 + 2n^2 + 2n + n^2 - n\}x^n$$

$$= \frac{1}{2}\{n^2 + 4n + 2\}x^n$$

$$= (2n^2 + 2n + 1)x^n$$
Thus coefficient of x^n is $2n^2 + 2n + 1$
(v) $(1 + x + x^2 - x^3 + ...)^2$
Solution:
As we know that
$$1 - x + x^2 - x^3 + ... = (1 + x)^{-1}$$

$$\Rightarrow (1 - x + x^2 - x^3 +)^2 = ((1 + x)^{-1})^2 = (1 + x)^{-2}$$
Now we find the coefficient of x^n (n) $(1 + 2k^2 + x^2)$ to using formula
$$T_{n+1} = \frac{n(n-1)(n-2)(n+3k_n!...(n-1)(n-1)x^n}{n!}$$
Put $n = (2n-2)(-2-3)...(-2-(n-1))x^n$

$$= (-2)(-3)(-4)(-5)...(-1-n)x^n$$

$$= \frac{(-1)^{2} \left[2 \times 3 \times 4 \times 5 \times \dots \times (n+1)\right] x^{n}}{n!}$$

$$= \frac{(-1)^{2} (n+1) x^{n}}{n!}$$
Thus contracted or $x^{n} [s+1] (n+1)$

$$= \frac{(-1)^{2} (n+1) x^{n}}{n!}$$
Thus contracted or $x^{n} [s+1] (n+1)$

$$Q.4 \quad \text{If } x_{3} \text{ so such that its square and higher powers can be neglected then show that
$$I_{1} = \frac{1-x}{\sqrt{1+x}} \approx 1 - \frac{3}{2} x$$
Solution:
$$I_{n} H_{n} = \frac{(1-x)}{\sqrt{1+x}} = (1-x)(1+x)^{\frac{1}{2}}$$

$$= (1-x)\left\{1 + \left(\frac{-1}{2}\right)x\right\} \text{ by neglecting } x^{2} \text{ and highest power of } x.$$

$$\approx 1 - \frac{1}{2}x - x \text{ by neglecting } x^{2}$$

$$\approx RH_{n}S$$

$$I_{n} = \frac{\sqrt{1+2x}}{1-x}$$

$$= (1+2x)^{\frac{1}{2}}(1-x)^{\frac{-1}{2}}$$

$$= (1+2x)^{\frac{1}{2}}(1-x)^{\frac{-1}{2}} x^{2}$$

$$= (1+2x)^{\frac{1}{2}}(1-x)^{\frac{1}{2}} x^{2}$$

$$= (1+2$$$$

$$L.H.S = \frac{(9+7x)^{\frac{1}{2}} - (16+3x)^{\frac{1}{4}}}{(4+5x)}$$

$$= \begin{cases} 9^{\frac{1}{2}} \left(1 + \frac{7}{9}x\right)^{\frac{1}{2}} - (16)^{\frac{1}{4}} \left(1 + \frac{3y}{16}\right)^{\frac{1}{4}} \right)^{\frac{1}{4}} \left(4 + 5x\right)^{\frac{1}{4}}$$

$$= \left\{ 3\left(1 + \frac{7}{9}x\right)^{\frac{1}{2}} - 2\left(1 + \frac{3x}{16}\right)^{\frac{1}{2}} + 4^{-1} \left\{1 + \frac{5}{4}x\right\}^{-1} \right\}$$

$$= \left\{ 3\left(1 + \frac{7}{9}x, \frac{1}{2}\right) - 2\left(1 + \frac{1}{4}\left(\frac{3x}{16}\right)\right) \right\} \frac{\left(1 - \frac{5}{4}x\right)}{4}$$
By neglecting x^2 and higher powers of x .

$$\approx \left\{ 3 + \frac{7x}{6} - 2 - \frac{3x}{32} \right\} \frac{\left(1 - \frac{5}{4}x\right)}{4}$$
$$\approx \frac{\left\{ 1 + \frac{103}{96}x \right\} \left\{ 1 - \frac{5}{4}x \right\}}{4}$$
$$\approx \frac{1 - \frac{5}{4}x + \frac{103}{96}x}{4} \qquad \text{by neglecting } x^2$$
$$\approx \frac{1 - \frac{17}{26}x}{4}$$
$$\approx \frac{1}{4} - \frac{17}{384}x$$
$$\approx \text{R.H.S}$$

(iv)
$$\frac{\sqrt{4+x}}{(1-x)^3} \approx 2 + \frac{25}{4} x$$

Solution:
L.H.S = $\frac{\sqrt{4+x}}{(1-x)^3}$ (1-x)⁻⁵
= $2\left(1 + \frac{1}{2}\left(\frac{x}{4}\right)\right)(1+3x)$ by neglecting x^2 and highest power of x
 $\approx 2\left(1 + \frac{1}{x}\left(\frac{x}{4}\right)\right)(1+3x)$ by neglecting x^2
 $\approx 2\left(1 + \frac{1}{x}\left(\frac{x}{4}\right)\right)(1+3x)$ by neglecting x^2
 $\approx 2\left(1 + \frac{1}{x}\left(\frac{x}{4}\right)\right)(1+3x)$
 $\approx 2\left(1 + \frac{1}{x}\right)\frac{1}{2}(4-3x)^{\frac{3}{2}}$
 $\approx 2\left(1 + \frac{1}{x}\right)\frac{1}{2}(4-3x)^{\frac{3}{2}}$
(1 + $x)^{\frac{1}{2}}\left(4-3x)^{\frac{3}{2}}\right)$
Solution:
L.H.S = $\frac{(1+x)^{\frac{1}{2}}(4-3x)^{\frac{3}{2}}}{(8+5x)^{\frac{3}{4}}} = 4\left(1, \frac{5x}{6}\right)$
Solution:
 $L.H.S = \frac{(1+x)^{\frac{1}{2}}(4-3x)^{\frac{3}{2}}}{(8+5x)^{\frac{3}{4}}} = \frac{1}{2}(1+x)^{\frac{1}{2}}(4-3x)^{\frac{3}{2}}\right) \{8+5x)^{\frac{3}{4}}$
 $= \left\{(1+x)^{\frac{1}{2}}(4)^{\frac{3}{2}}\left(1-\frac{3}{4}x\right)^{\frac{3}{2}}\right\} \times (8)^{\frac{1}{2}}\left(1+\frac{5x}{8}\right)^{\frac{3}{4}}$ by neglecting x^2, x^3, \dots .
 $\approx 8(1+\frac{1}{2}x)(1+\frac{9}{2}x)^{\frac{1}{2}}(1-\frac{5}{24}x)$
 $\approx \frac{8}{2}\left\{1-\frac{9}{8}x+\frac{1}{2}x\right\}\left(1-\frac{5}{24}x\right)$
 $\approx \frac{8}{4}\left\{1-\frac{5}{8}x\right\}\left(1-\frac{5}{24}x\right)$

$$\approx 4\left(1 - \frac{5}{24}x - \frac{5}{8}x\right) \text{ by neglecting } x^{2}$$

$$\approx 4\left(1 - \frac{5}{6}x\right)$$

$$\approx R.H.S$$
(vi)
$$(1 + x)^{\frac{1}{2}(9-4x)^{\frac{1}{2}}} = \frac{1}{2} + \frac{61}{4}x$$
formion
$$L.H.S = \frac{(1 - x)^{\frac{1}{2}}(9 - 4x)^{\frac{1}{2}}}{(8 + 3x)^{\frac{1}{2}}}$$

$$= \left\{(1 - x)^{\frac{1}{2}}.9^{\frac{1}{2}}\left(1 - \frac{4}{9}x\right)^{\frac{1}{2}}\right\}(8 + 3x)^{\frac{1}{3}}$$

$$= 3\left(1 - \frac{1}{2}x + \dots\right)\left(1 - \frac{1}{2}\left(\frac{4}{9}x\right) + \dots\right)\times8^{\frac{3}{2}}\left(1 + \frac{3}{8}x\right)^{\frac{1}{3}}$$
by neglecting x^{2}, x^{3}, \dots

$$\approx 3\left(1 - \frac{1}{2}x\right)\left(1 - \frac{2}{9}x\right)\times2^{-1}\left(1 - \frac{1}{3}\times\frac{3x}{8} + \dots\right)$$

$$\approx \frac{3}{2}\left(1 - \frac{2}{9}x - \frac{1}{2}x\right)\left(1 - \frac{x}{8}\right)$$
by neglecting x^{2} .
$$\approx \frac{3}{2}\left(1 - \frac{3}{18}x\right)\left(1 - \frac{x}{8}\right)$$
by neglecting x^{2} .
$$\approx \frac{3}{2}\left(1 - \frac{x}{8} - \frac{13}{18}x\right)$$
by neglecting x^{2}

$$\approx \frac{3}{2}\left(1 - \frac{x}{8} - \frac{13}{8}x\right)$$

$$\approx R.H.S$$
(vii)
$$\sqrt{4 - x} + (8 - x)^{\frac{1}{3}}$$

$$(xii) + \frac{4 - x}{(8 + x)^{\frac{1}{3}}}$$

$$= \frac{(4-x)^{\frac{1}{2}}}{(8-x)^{\frac{1}{2}}} + \frac{(8-x)^{\frac{1}{2}}}{(8-x)^{\frac{1}{2}}}$$

$$= (4-x)^{\frac{1}{2}}(8-x)^{\frac{1}{2}} + x^{\frac{1}{2}}(x)^{\frac{1}{2}} + x^{\frac{1}{2}} + x^{\frac{1}{2}}(x)^{\frac{1}{2}} + x^{\frac{1}{2}}(x)^{\frac{1}{2}} + x^{\frac{1}{2}} + x^{\frac{1}{2}}$$

If x is so small that its cube and higher power can be neglected, then show that 0.5 $\sqrt{1-x-2x^2} \approx 1-\frac{1}{2}x-\frac{9}{8}x^2$ Z].CO) (i) **Solution:** $\text{L.H.S} = \sqrt{1 - x - 2x^2}$ $= (1 - (x - 2x^{2}))^{\frac{1}{2}}$ $= 1 - \frac{1}{2}(x + 2x^{2}) + \frac{\frac{1}{2}(\frac{1}{2} - 1)(x + 2x^{2})^{2}}{2!}$ by neglecting x^{3}, x^{4}, \dots $=1-\frac{1}{2}x-x^{2}+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)\left(x^{2}\right)}{2}$ by neglecting $x^{3}, x^{4}...$ $\approx 1 - \frac{1}{2}x - x^2 - \frac{1}{8}x^2$ $\approx 1 - \frac{1}{2}x - \frac{9}{8}x^2$ \approx R.H.S $\sqrt{\frac{1+x}{1-r}} \approx 1+x+\frac{1}{2}x^2$ (ii) Solution: L.H.S = $\sqrt{\frac{(1+x)}{(1-x)}} \times \frac{1+x}{1+x}$ $=(1+x)(1-x^2)^{\frac{-1}{2}}$ $=(1+x)(1+\frac{1}{2}x^2)$ by neglecting $x^3, x^4...$ $\approx (1+x)\left(1+\frac{1}{2}x^2\right)$ V/G].CO $\approx 1 + x + \frac{1}{2}x^2$ by neglecting x^3 $\approx 1 + x + \frac{1}{2}x^2$ $\approx R.H.S$

E].COM

Q.6 If x is nearly equal to 1, then prove that $px^{p} - qx^{q} \approx (p - q)x^{p+q}$

Proof: As *x* is nearly equal to 1, so

Let
$$x=1+h$$
 where h is so small such that $\frac{L^2}{R}$, h^3 ,... are neglected.
L.H.S = $px^p - qx^q$
= $p(1+h)^p - q(1+h)^r$
= $p(1+p^h) - q(1+q^h)$ by neglecting h^2 , h^3 ...
 $\approx p + p^2h - q - q^2h$
 $\approx (p-q) + (p^2 - q^2)h$
 $\approx (p-q) + (p-q)(p+q)h$
 $\approx (p-q)[1+(p+q)h]$
 $\approx (p-q)(1+h)^{p+q}$
 $\approx (p-q)(x)^{p+q}$
 $\approx R.H.S$

Q.7 If p-q is small when compared with p or q show that

$$\frac{(2n+1)p+(2n-1)q}{(2n-1)p+(2n+1)q} \approx \left(\frac{p+q}{2q}\right)^{\frac{1}{n}}$$

Proof: Let $p-q=h \Rightarrow p=q+h$ where h is very small such that h^2, h^3, \dots are neglected

L.H.S =
$$\frac{(2n+1)p + (2n-1)q}{(2n-1)p + (2n+1)q}$$

= $\frac{(2n+1)(q+h) + (2n-1)q}{(2n-1)(q+h) + (2n+1)q}$
= $\frac{2nq + 2nh + q + h + 2nq - q}{2nq + 2nh - q - h + 2nq + q}$
= $\frac{4nq + 2nh + h}{4nq + 2nh - h}$
= $\frac{4nq + h(2n+1)}{4nq + h(2n-1)}$
 $int \sqrt{1 + (2n+1) + 4nq - h}$
= $\frac{4nq \sqrt{1 + (2n+1)}}{4nq \sqrt{1 + (2n+1)}}$
= $\left\{1 + (\frac{2n+1}{4nq})h\right\} \left\{1 + (\frac{2n-1}{4nq})h\right\}^{-1}$

$$= \left\{ 1 + \left(\frac{2n+1}{4nq}h\right) \right\} \left\{ 1 - \left(\frac{2n-1}{4nq}h\right) \right\} \text{ by neglecting } h^2, h^3, \dots, \\ \approx 1 - \left(\frac{2n-1}{4nq}h\right) h \left\{ 2n+1 \right\} h \left(\text{ by neglecting } h \right) \\ \approx 1 - \left(\frac{2n-1}{4nq}-\frac{2n+1}{4nq}\right) h \text{ by neglecting } h \\ \approx 1 - \frac{1}{4nq} \left(2n-1 - \frac{2n+1}{4nq}\right) \\ \approx 1 - \frac{1}{4nq} \left(-2\right) \\ \approx 1 + \frac{h}{2nq} \\ \text{R.H.S} = \left(\frac{p+q}{2q}\right)^{\frac{1}{2}} \\ \approx \left(\frac{q+h+q}{2q}\right)^{\frac{1}{2}} \\ \approx \left(\frac{q+h+q}{2q}\right)^{\frac{1}{2}} \\ \approx \left(1 + \frac{h}{2nq}\right)^{\frac{1}{2}} \\ \approx \left(1 + \frac{h}{2n}\right)^{\frac{1}{2}} \\ \approx \frac{h}{2n} - \frac{n+N}{4n} \text{ where n and N are nearly equal.} \\ \text{Proof: Here } N - n = h \Rightarrow N = n+b \text{ where D is so-emath, such that } h^2, h, \dots, are neglected \\ 1.\text{H.S} = \left(\frac{\frac{h}{2(n+n+h)}}\right)^{\frac{1}{2}} \\ \end{array}$$

$$= \left[\frac{n}{2(2n+h)}\right]^{\frac{1}{2}}$$

$$= \left[\frac{n}{1+\frac{h}{2n+h}}\right]^{\frac{1}{2}}$$

$$= \left[\frac{1}{4\left(1+\frac{h}{2n}\right)}\right]^{\frac{1}{2}}$$

$$= \frac{1}{2}\left(1+\frac{h}{2n}\right)^{\frac{1}{2}}$$

$$= \frac{1}{2}\left(1-\frac{1}{2}\left(\frac{h}{2n}\right)\right) \text{by neglecting } h^2, h^3, \dots,$$

$$\approx \frac{1}{2} - \frac{1}{8n}$$
R.H.S
$$= \frac{8n}{9n-n-h} - \frac{n+n+h}{4n}$$
Put $N = n+h$

$$= \frac{8n}{9n-n-h} - \frac{n+n+h}{4n}$$

$$= \frac{8n}{9n-h} - \frac{2n+h}{4n}$$

$$= \left(1-\frac{h}{8n}\right)^{\frac{1}{2}} - \frac{2n}{4n} - \frac{h}{4n}$$

$$= \left(1-\frac{h}{8n}\right)^{\frac{1}{2}} - \frac{2n}{4n} - \frac{h}{4n}$$

$$= 1 + \frac{h}{8n} - \frac{1}{2} - \frac{h}{4n} \text{ by representing } h^2, h^3, \dots$$
Here's 1.H.N is it A.S.

Now, the sum of the given series $= (1+x)^n = (1+\frac{1}{2})^{-\frac{1}{2}} = (\frac{3}{2})^{-\frac{1}{2}} = (\frac{2}{3})^{\frac{1}{2}} = \sqrt{\frac{2}{3}}$

(iii) $1 + \frac{3}{4} + \frac{3.5}{4.8} + \frac{3.5.7}{4.8.12} + \dots$

Solution:

Let
$$(1+x)^n = 1 + \frac{3}{4} + \frac{3.5}{4.8} + \frac{3.5.7}{4.8.12} + \dots$$
 (I)

As we know
$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + ...$$
 (II)

Comparing (I) and (II)

$$nx = \frac{3}{4}$$

$$x = \frac{3}{4n}$$
(i)
$$\frac{n(n-1)x^{2}}{2!} = \frac{3.5}{4.8}$$

$$n(n-1)x^{2} = \frac{3.5}{2.8}$$

$$n(n-1)\left(\frac{3}{4n}\right)^{2} = \frac{15}{16}$$
using (i)
$$n(n-1) \times \frac{9}{16n^{2}} = \frac{15}{16}$$

$$\frac{1}{16} = \frac{15}{16}$$

$$\frac{1}{16} = \frac{15}{16}$$

$$\frac{1}{16} = \frac{3}{2} = 3n - 3 = 5n \Rightarrow 2n = -3$$

$$n = \frac{-3}{2}$$
Put in (i)

Now, the sum of the given series

$$= (1+x)^{n} = \left(1 - \frac{1}{2}\right)^{\frac{1}{2}} = \left(\frac{1}{2}\right)^{\frac{3}{2}} = (2^{2})^{\frac{1}{2}} = \sqrt{8} = 2\sqrt{2}$$
(iv) $1 - \frac{1}{2}\left(\frac{1}{3}\right) + \frac{13}{24}\left(\frac{1}{3}\right)^{\frac{3}{2}} - \frac{13.5}{24.6}\left(\frac{1}{3}\right)^{\frac{3}{4}} + \frac{1}{24}$
Solution
Let $(1+x)^{n} = 1 + \frac{1}{2}\left(\frac{1}{3}\right)^{\frac{1}{2}} - \frac{13.5}{24.6}\left(\frac{1}{3}\right)^{\frac{1}{4}} + \frac{1}{24}$
(I)
As we know $(1+x)^{n} = 1 + nx + \frac{n(n-1)}{21}x^{2} + ...$ (II)
Comparing (I) and (II)
 $nx = -\frac{1}{6}$
 $x = -\frac{1}{6n}$ (i)
 $n(n-1)\left(-\frac{1}{6n}\right)^{\frac{2}{2}} = \frac{3}{3.6}$ using (i)
 $n(n-1)\left(-\frac{1}{6n}\right)^{\frac{2}{2}} = \frac{3}{3.6}$ using (i)
 $n(n-1)\left(-\frac{1}{3}\frac{1}{6}\right)^{\frac{2}{3}} = \frac{3}{3.6}$
(i)
 $x = -\frac{1}{6}$
 $x = -\frac{1}{6n}$ (i)
 $x = -\frac{1}{2}$ Put in (i)
 $x = -\frac{1}{6}$
Q.10 Use binomial theorem to show that $1 + \frac{1}{4} + \frac{13}{48} + \frac{13.5}{48.12} + \dots$ (I)
As we know $(1+x)^{n} = 1 + \frac{1}{6} + \frac{13.5}{4.8} + \frac{13.5}{21.2} + \dots$ (II)
As we know (1+x)^{n} = 1 + nx + \frac{n(n-1)}{21}x^{2} + \dots (II)
 $n(n-1)\left(-\frac{1}{6n}\right)^{\frac{1}{2}} = \left(\frac{3}{4}\right)^{\frac{1}{2}} - \frac{\sqrt{3}}{3}$
Q.10 Use binomial theorem to show that $1 + \frac{1}{4} + \frac{13}{48} + \frac{13.5}{48.42} + \dots$ (I)
As we know $(1+x)^{n} = 1 + \frac{1.3}{4.8} + \frac{13.5}{21.2} + \dots$ (II)
 $nx = \frac{1}{4} \qquad \frac{n(n-1)x^{2}}{2!} = \frac{1.3}{4.8}$

$$x = \frac{1}{4n}$$
 (i) $n(n-1)x^{2} = \frac{1.3}{2.8}$
 $n(n-1)\frac{x^{2}}{4n} = \frac{1.3}{2.8}$ (sing (i))
 $n(n-1)\frac{x}{4n} = \frac{1}{16n^{2}} = \frac{3}{16}$
 $n = \frac{1}{16n^{2}} = 3 \Rightarrow n - 1 = 3n \Rightarrow 2n = -1$
 $n = \frac{1}{2}$ Put in (i)
 $x = \frac{1}{4(-\frac{1}{2})} \Rightarrow x = \frac{-1}{2}$
Now, the sum of the given series $=(1+x)^{n} = (1-\frac{1}{2})^{\frac{1}{2}} = (\frac{1}{2})^{\frac{1}{2}} = (2)^{\frac{1}{2}} = \sqrt{2}$
Hence the proof
 $Q.11$ If $y = \frac{1}{3} + \frac{13.5}{2!}(\frac{1}{3})^{2} + \frac{13.5}{3!}(\frac{1}{3})^{3} + \dots$
Then prove that $y^{2} + 2y - 2 = 0$
Proof: Given that
 $y = \frac{1}{3} + \frac{1.3}{2!}(\frac{1}{3})^{2} + \frac{1.3.5}{3!}(\frac{1}{3})^{3} + \dots$ (I)
As we know $(1 + x)^{n} = 1 + nx + \frac{n(n-1)}{2!}x^{2} + \dots$ (I)
Comparing (I) and (II)
 $nx = \frac{1}{3}$
 $x = \frac{1}{3^{2}}$ (I)
 $n(n-1)(\frac{1}{3n})^{2} = \frac{3}{9}$ using (i)
 $n(n-1)(\frac{1}{3n})^{2} = \frac{3}{9}$ using (i)
 $n(n-1)(\frac{1}{3n})^{2} = \frac{3}{9}$

Q.12 If
$$2y = \frac{1}{2^2} + \frac{1.3}{2^2} \cdot \frac{1}{2^4} + \frac{1.3.5}{3^4} \cdot \frac{1}{2^4} + \dots$$

Then Prove that $4y^2 + 4y - 1 = 0$
Proof: Given that
 $2y = \frac{1}{2^2} + \frac{1.3}{(2^2)} \cdot \frac{1}{2^4} + \frac{1.3.5}{3^4} \cdot \frac{1}{2^4} + \dots$ (1)
Adding $2 + 0$ beth sides to make it biomnal series, we get :
 $1 + 2y = 1 + \frac{1}{2^2} + \frac{1.3}{2^4} \cdot \frac{1}{2^4} + \frac{1.3.5}{3^4} \times \frac{1}{2^6} + \dots$ (1)
As we know $(1 + x)^n = 1 + nx + \frac{(n-1)}{2!}x^2 + \dots$ (1)
Comparing (1) and (II)
 $nx = \frac{1}{2^2}$
 $x = \frac{1}{4n}$ (i)
 $n(n-1)(\frac{1}{4n})^2 = \frac{3}{16}$ using (i)
 $n(n-1) \times \frac{1}{16n^2} = \frac{3}{16}$
 $n(n-1)(\frac{1}{4n})^2 = \frac{3}{16}$ using (i)
 $n(n-1) \times \frac{1}{16n^2} = \frac{3}{16}$
 $n(n-1) \times \frac{1}{16n^2} = \frac{3}{16}$
From (I) and (II)
 $1 + 2y = (1 + x)^n$
 $1 + 2y = (1 - \frac{1}{2})^{\frac{1}{2}}$
 $1 + 2y = (1 - \frac{1}{2})^{\frac{1}{2}}$
Sincering or both sides
 $\frac{1}{1 + 2y - 4y} = 0$
Which is required to prove.

Q.13 If
$$y = \frac{2}{5} + \frac{1.3}{2!} \left(\frac{2}{5}\right)^2 + \frac{1.3.5}{3!} \left(\frac{2}{5}\right)^3 + \dots$$

Then prove that $y^2 + 2y - 4 = 0$
Proof: Give that
 $y = \frac{2}{5} + \frac{1.3}{5!} \left(\frac{2}{5}\right)^2 + \frac{1.3.5}{5!} \left(\frac{2}{5}\right)^3 + \dots$.
Adding To a teth sides of given scries to make it binomial series.
Model = $1 + \frac{2}{5} + \frac{3.2}{2!} \left(\frac{2}{5}\right)^2 + \frac{1.3.5}{3!} \left(\frac{2}{5}\right)^3 + \dots$. (I)
As we know $(1 + x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \dots$. (II)
Comparing (I) and (II)
 $nx = \frac{2}{5}$
 $x = \frac{2}{5n}$ (i)
 $n(n-1)x\frac{2}{2!} = \frac{1.3}{2!} \left(\frac{2}{5}\right)^2$
 $n(n-1)x\frac{2}{2!} = \frac{1.3}{2!} \left(\frac{2}{5}\right)^2$
 $n(n-1)x\frac{2}{2!5} = \frac{1.3}{2!5}$ using (i)
 $n(n-1)x\frac{4}{2!5n^2} = \frac{1.3}{2!5}$ using (i)
 $n(n-1)x\frac{4}{2!5n^2} = \frac{1.3}{2!5}$ using (i)
 $n(n-1)x\frac{4}{2!5n^2} = \frac{1.3}{2!5}$
 $n=1 = 3 \Rightarrow n-1 = 3n \Rightarrow 2n = -1$
 $n = \frac{-1}{2}$ Put in (i)
 $x = \frac{2}{5(-\frac{1}{2})} \Rightarrow x = \frac{-4}{5}$
From (I) and (II)
 $1 + y = (1 + x)^n$
 $1 + y = \left(1 - \frac{4}{5}\right)^{\frac{1}{2!}}$
 $1 + y = \left(\frac{1}{5}\right)^{\frac{1}{2!}}$

<u>n.</u> MOD. SMADDARAM WWW.

