

Domain and Range of Sixe Fuction:

Let $P(x, y)$ be any point on the unit circle with centre at the origin such that $\angle X O P=\theta$ is in standard position, then in right triangle $O M P$,
$\sin \theta=\frac{|\overline{P M}|}{|\overline{O P}|}$
$\sin \theta=\frac{y}{1}$
$\sin \theta=y$
\Rightarrow For $a n y$ ral number θ there is one ad coly one - alue of y i.e. of $\sin \theta$.
Hence 110 is the finction of θ and its domain is \square, a set of real numbers.
Find $P(x, y)$ is anoint on the unit circle with centre at the origin O.
sing

$$
-1 \leq y \leq 1
$$

$\Rightarrow \quad-1 \leq \sin \theta \leq 1$
Thus the range of the sine function is $[-1,1]$.
Domain and Range of Cosine Function:

Let $P(x, y)$ be any point on the unit circle with centre at the origin such that $\angle X O P=\theta$ is in standard position, then in right triangle $O M P$,
$\cos \theta=\frac{|\overline{O M}|}{|\overline{O P}|}$
$\cos \theta=\frac{x}{1}$
$\cos \theta=x$
\Rightarrow For any real number θ there is one and only one value of x i.e. of $\cos \theta$.
Hence $\cos \theta$ is the function of θ and its domain is \square, a set of real numbers.
Since $P(x, y)$ is a point on the unit circle with centre at the origin O.

$$
\begin{array}{ll}
\therefore & -1 \leq x \leq 1 \\
\Rightarrow & -1 \leq \cos \theta \leq 1
\end{array}
$$

Thus the range of the cosine function is $[-[, 1]$.

Domain and Range of Tangent Function:

Let $P(x, y)$ be any point on the unit circle with centre at the origin such that $\angle X O P=\theta$ is in standard position, then in right triangle $O M P$,
$\tan \theta=\frac{|\overline{P M}|}{|\overline{O M}|}$
$\tan \theta=\frac{y}{x}, x \neq 0$
\Rightarrow Terminal side $\overrightarrow{O P}$ should not coincide with $O Y$ or $O Y^{\prime}$ (i.e. Y-axis)
$\Rightarrow \theta \neq \pm \frac{\pi}{2}, \pm \frac{3 \pi}{2}, \pm \frac{5 \pi}{2}, \ldots$
$\Rightarrow \theta \neq(2 n+1) \frac{\pi}{2}$, where $n \in Z$
\therefore Domain of tangent function $=\square=\left\{x \left\lvert\, x=(2 n+1) \frac{\pi}{2}\right., \pi \in 2\right\}$
Range of tangent function $=\square=$ set ,f ea nunbers

Domain and Range of Cotangent Function:

Let $P(x, y)$ be any point on the unit circle with centre at the origin such that $\angle X O P=\theta$ is in standard position, then in right triangle $O M P$,
$\cot \theta=\frac{|\overline{O M}|}{|\overline{P M}|}$
$\cot \theta=\frac{x}{y}, \quad y \neq 0$
\Rightarrow Terminal side $\overrightarrow{O P}$ should not coincide with $O X$ or $O X^{\prime}$ (i.e. X-axis)
$\Rightarrow \theta \neq 0, \pm \pi, \pm 2 \pi, \ldots$
$\Rightarrow \theta \neq n \pi$, Where $n \in Z$
\therefore Domain of cotangent function $=\square-\{x \mid x=n \pi, n \in Z\}$
Range of cotangent function $=\square=$ set of ral numbers

Domain and Range of Secant Function:

Let $P(x, y)$ be any point on the unit circle with centre at the origin such that $\angle X O P=\theta$ is in standard position, then in right triangle $O M P$,
$\sec \theta=\frac{|\overline{O P}|}{|\overline{O M}|}$
$\sec \theta=\frac{1}{x}, \quad x \neq 0$
\Rightarrow Terminal side $\overrightarrow{O P}$ should not coincide with $O Y$ or $O Y^{\prime}$ (i.e. Y-axis)
$\Rightarrow \theta \neq \pm \frac{\pi}{2}, \pm \frac{3 \pi}{2}, \pm \frac{5 \pi}{2}, \ldots$
$\Rightarrow \theta \neq(2 n+1) \frac{\pi}{2}$, Where $n \in Z$
\therefore Domain of secant function $=\square-\left\{x \left\lvert\, x=(2,2+1) \frac{q}{2}\right., r, z\right\}$
As seceratains all reai valuds excep those betweet -1 and 1.
\therefore Rangert sechn finction $\left.=\square-\frac{1-1}{1}-1<x<1\right\}$

Domain and Range of Cosecant Function:

Let $P(x, y)$ be any point on the unit circle with centre at the origin such that $\angle X O P=\theta$ is in standard position, then in right triangle $O M P$,
$\csc \theta=\frac{|\overline{O P}|}{|\overline{P M}|}$
$\csc \theta=\frac{1}{y}, \quad y \neq 0$
\Rightarrow Terminal side $\overrightarrow{O P}$ should not coincide with $O X$ or $O X^{\prime}$ (i.e. X-axis)
$\Rightarrow \theta \neq 0, \pm \pi, \pm 2 \pi, \ldots$
$\Rightarrow \theta \neq n \pi$, Where $n \in Z$
\therefore Domain of cosecant function $=\square-\{x \mid x=n \pi, n \in Z\}$ As $\csc \theta$ attains all values except those between -1 and 1 .
\therefore Range of cosecant function $=\square-\{x \mid-1<x<1\}$
The following table summarize the domain and ranges of the trigono metre fur ctions.

Trigonometric Function		
$y=\sin x$	- $-\infty<x<$	$-1 \leq y \leq 1$
$y=\cos x$	$\checkmark<-0<5-\infty$	$-1 \leq y \leq 1$
	$-\infty \leqslant x<\infty \text { But } x \neq(2 n+1) \frac{\pi}{2}, n \in Z$	$-\infty<y<\infty$
$\sqrt{y}=c \cdot 5$	$-\infty<x<\infty$ But $x \neq n \pi, n \in Z$	$-\infty<y<\infty$
$y-y=\sec x$	$-\infty<x<\infty$ But $x \neq(2 n+1) \frac{\pi}{2}, n \in Z$	$y \leq-1$ or $y \geq 1$
$y=\csc x$	$-\infty<x<\infty$ But $x \neq n \pi, n \in Z$	$y \leq-1$ or $y \geq 1$

Periodicity:

All the six trigonometric functions repeat their values for each increase or decrease of 2π in θ i.e. the values of trigonometric functions for θ and $\theta \pm 2 n \pi$. wher $\theta \in \square$ and $n \in Z$, are the same.
This behavior of trigonometric furetions iscalld be iodicily.

Period of Trigonometric Functions

Period of a trigonmetric fuction is the smatiest positive number which, when added to
the orig nal circular neasure the angle, gives the same value of the function.

Iberren:
Sine is a periodic function and its period is 2π.

Proof:

Suppose p is the period of sine function such that
$\sin (\theta+p)=\sin \theta \quad \forall \theta \in \square$
Put $\theta=0$, we have
$\sin (0+p)=\sin 0$
$\Rightarrow \sin p=0$
$p=\pi, 2 \pi, 3 \pi, \ldots$
(p cannot take zero and negative values)
Checking $p=\pi$ in equation (i)
L.H.S: $\sin (\theta+\pi)=-\sin \theta \neq$ R.H.S
$\therefore \pi$ is not the period of $\sin \theta$
Checking $p=2 \pi$ in equation (i)
L.H.S: $\sin (\theta+2 \pi)=\sin \theta=$ R.H.S

As 2π is the smallest positive real number for which
$\sin (\theta+2 \pi)=\sin \theta$
$\therefore 2 \pi$ is the period of $\sin \theta$.

Theorem:

Cosine is a periodic funct on \sqrt{n} ts ter oc is 2π
Proof:
Suppose is the peliod ef ecsine function such that
$\theta \operatorname{los}\left(\theta_{()}-2\right)=\cos \theta \quad \forall \theta \in \square$
Put $\theta=0$
$\cos (0+p)=\cos 0$
$\cos p=1$
$p=2 \pi, 4 \pi, 6 \pi, \ldots$
Checking $p=2 \pi$ in equation (i)
L.H.S: $\cos (\theta+2 \pi)=\cos \theta=$ R.H.S

As 2π is the smallest positive realimuleer tor with
$\cos (\theta+2 \sqrt{)})=\cos \hat{V}$
$\therefore 2 \pi$ is the period of cos θ

Theron

Tangent is a periodic function and its period is π.

Proof:

Suppose p is the period of tangent function such that

$$
\begin{equation*}
\tan (\theta+p)=\tan \theta \quad \forall \theta \in \square \tag{i}
\end{equation*}
$$

Put $\theta=0$
$\tan (0+p)=\tan 0$
$\tan p=0$
$p=\pi, 2 \pi, 3 \pi, \ldots$
(p cannot take zero and negative values)
Checking $p=\pi$ in equation (i)
L.H.S: $\tan (\theta+\pi)=\tan \theta=$ R.H.S

As π is the smallest positive real number for which
$\tan (\theta+\pi)=\tan \theta$
$\therefore \pi$ is the period of $\tan \theta$.

Theorem:

Cotangent is a periodic function and its period is π.

Proof:

Suppose p is the period of cotangent function such that $\cot (\theta+p)=\cot \theta$

Put $\theta=0$
$\cot (0-Q)=$ dot
$\cot _{\bar{A}}=$ undefined
$y=\pi, 0 \pi, 3 \pi \ldots .$.
(p cannot take zero and negative values)
Checking $p=\pi$ in equation (i)
L.H.S: $\cot (\theta+\pi)=\cot \theta=$ R.H.S

As π is the smallest positive real number for which
$\cot (\theta+\pi)=\cot \theta$
$\therefore \pi$ is the period of $\cot \theta$.

Theorem:

Secant is a periodic function and itropriod is

Proof:

Suppose s the period of ecapifuntion such that
$\sec \left(\theta^{\prime}+p\right)=\sec \theta \quad \forall \forall \in \square$
(1) $\mathrm{O}_{2}=0$
$\sec (0+p)=\sec 0$
$\sec p=1$
$p=2 \pi, 4 \pi, 6 \pi \ldots .$.
(p cannot take zero and negative values)
Checking $p=2 \pi$ in equation (i)
L.H.S: $\sec (\theta+2 \pi)=\sec \theta=$ R.H.S

As 2π is the smallest positive real number for which
$\sec (\theta+2 \pi)=\sec \theta$
$\therefore 2 \pi$ is the period of $\sec \theta$

Theorem:

Cosecant is a periodic function and its period is 2π.

Proof:

Suppose p is the period of cosecant function such that
$\operatorname{cosec}(\theta+p)=\operatorname{cosec} \theta \quad \forall \theta \in \square$
Put $\theta=0$
$\operatorname{cosec}(0+p)=\operatorname{cosec} 0$
$\operatorname{cosec} p=$ undefined
$p=\pi, 2 \pi, 3 \pi, \ldots .$.
Checking $n=\pi$ in equation (d)

L.H.S $\sec (\theta+\pi)=\operatorname{cosec} \theta \neq B L S$
$V \cdot \operatorname{lin}(\pi)$ tine period of $\operatorname{cosec} \theta$
Checking $p=2 \pi$ in equation (i)
L.H.S: $\operatorname{cosec}(\theta+2 \pi)=\operatorname{cosec} \theta=$ R.H.S

As 2π is the smallest positive real number for which

$$
\operatorname{cosec}(\theta+2 \pi)=\operatorname{cosec} \theta
$$

$\therefore 2 \pi$ is the period of $\operatorname{cosec} \theta$.
The following table shows the perious of trganmeric furct ors.

Trigonometrip Furer	
Sine	
Cosine	2π
Secant	2π
cosecant	2π
tangent	π
cotangent	π

EXERCISE 11.1

Find the periods of the following functions:

Q. $1 \quad \sin 3 x$

Solution:

$\sin 3 x$
We know that the pericd of sine is 2π.
$\sin (3 x+2 \pi)=\sin 3 x$
$\Rightarrow \sin 3\left(x+\frac{2 \pi}{3}\right)=\sin 3 x$
It means that the value of $\sin 3 x$
repeats when x is increased by $\frac{2 \pi}{3}$.
Hence $\frac{2 \pi}{3}$ is the period of $\sin 3 x$.
Q. $2 \cos 2 x$

Solution:

$\cos 2 x$
We know that the period of cosine is
2π.
$\therefore \cos (2 x+2 \pi)=\cos 2 x$
$\Rightarrow \cos 2(x+\pi)=\cos 2 x$
It means that the value of $\cos 2 x$
repeats when x is increased by π.
Hence π is the period of $\cos 2 x$.

Q. $3 \tan 4 x$

Solution:

$\tan 4 x$
We knew hat thepericd of tangen $\sqrt[i s]{\text { is } \pi} \operatorname{mal}_{(4 x+\pi)}$
$\Rightarrow \tan 4\left(x+\frac{\pi}{4}\right)=\tan 4 x$

It means that th value of tan $1+x$
repratphen x s nerased $B_{y} \frac{\pi}{4}$.
Lience $\frac{\pi}{4}$ is the period of $\tan 4 x$.
Q. $4 \cot \frac{x}{2}$

Solution:
$\cot \frac{x}{2}$
We know that the period of cotangent is π.
$\therefore \cot \left(\frac{x}{2}+\pi\right)=\cot \frac{x}{2}$
$\Rightarrow \cot \frac{1}{2}(x+2 \pi)=\cot \frac{x}{2}$
It means that the value of $\cot \frac{x}{2}$ repeats when x is increased by 2π.

Hence 2π is the period of $\cot \frac{x}{2}$.
Q. $5 \quad \sin \frac{x}{3}$

Solution:

$$
\sin \frac{x}{3}
$$

We kngw that the perod of sine is

It means that the value of $\sin \frac{x}{3}$
repeats when x is increased by 6π.
Hence 6π is the period of $\sin \frac{x}{3}$.
Q. $6 \quad \operatorname{cosec} \frac{x}{4}$

Solution:

$\operatorname{cosec} \frac{x}{4}$
We know hat the periad on cosecarit is 2π.

$$
\begin{aligned}
& \left.\sqrt{\operatorname{cosec}\left(\frac{x}{4}+2 \pi\right.}\right)=\operatorname{cosec} \frac{x}{4} \\
& \Rightarrow \operatorname{cosec} \frac{1}{4}(x+8 \pi)=\operatorname{cosec} \frac{x}{4}
\end{aligned}
$$

It mean that the value of $\operatorname{cosec} \frac{x}{4}$ repeats when x is increased by 8π.
Hence 8π is the period of $\operatorname{cosec} \frac{x}{4}$.
Q. $7 \quad \sin \frac{x}{5}$

Solution:

$$
\sin \frac{x}{5}
$$

We know that the period of sine is 2π.

$$
\begin{aligned}
& \therefore \sin \left(\frac{x}{5}+2 \pi\right)=\sin \frac{x}{5} \\
& \Rightarrow \sin \frac{1}{5}(x+10 \pi)=\sin \frac{x}{5}
\end{aligned}
$$

It means that the value of $\sin \frac{x}{5}$ repeats when x is increase b. $1 \frac{1}{5}$. Hence (10, is the period of in $\frac{x}{5}$.
Q. 8 $\sqrt[\cos]{\sqrt{-}}$ Galatio:

$$
\cos \frac{x}{6}
$$

repeats when x is increased by 12π.
Hence 12π is the period of $\cos \frac{x}{6}$.

Q. $9 \quad \tan \frac{x}{7}$

Solution:

$\tan \frac{x}{7}$
We know that the period of tangent is π.
$\therefore \tan \left(\frac{x}{7}+\pi\right)=\tan \frac{x}{7}$
$\Rightarrow \tan \frac{1}{7}(x+7 \pi)=\tan \frac{x}{7}$
It means that the value of $\tan \frac{x}{7}$ repeats when x is increased by 7π.
Hence 7π is the period of $\tan \frac{x}{7}$.
Q. 10 Solation:

Tie know that the period of cotangent is π.

$$
\begin{aligned}
& \therefore \cot (8 x+\pi)=\cot 8 x \\
& \Rightarrow \cot 8\left(x+\frac{\pi}{8}\right)=\cot 8 x
\end{aligned}
$$

It means that the value of $\cot 8 x$ repeats when x is increased by $\frac{\pi}{8}$.
Hence $\frac{\pi}{8}$ is he period vicatsd.

Q. $11 \sec 9 x$

Solvion:

We know that the period of secant is
2π.
$\therefore \sec (9 x+2 \pi)=\sec 9 x$
$\Rightarrow \sec 9\left(x+\frac{2 \pi}{9}\right)=\sec 9 x$
It means that the value of $\sec 9 x$ repeats when x is increased by $\frac{2 \pi}{9}$.
Hence $\frac{2 \pi}{9}$ is the period of $\sec 9 x$.

Q. $12 \operatorname{cosec} 10 x$

Solution:

$\operatorname{cosec} 10 x$
We know that the period of cosecant is 2π.
$\therefore \operatorname{cosec}(10 x+2 \pi)=\operatorname{cosec} 10 x$
$\Rightarrow \operatorname{cosec} 10\left(x+\frac{\pi}{5}\right)=\operatorname{cosec} 10 x$
It means that the value of cossct (x)
repeats an ris increased $\frac{\pi}{5}$.
Hence $\frac{\pi}{5}$ is the period of $\operatorname{cosec} 10 x$.

Q. $133 \sin x$

Solution:

? krow hat tre period of sine is
 $\therefore 3 \sin (x+2 \pi)=3 \sin x$

It means that the value of $3 \sin x$ repeats when x is increased by 2π.
Hence 2π is the period of $3 \sin x$.

Q. $142 \cos x$

Solution:

$2 \cos x$
We know that the period of cosine is
2π
$\therefore 2 \cos (x+2 \pi)=2 \cos x$
It means that the value of $2 \cos x$ repeats when x is increased by 2π.
Hence 2π is the period of $2 \cos x$.
Q. $153 \cos \frac{x}{5}$

Solution:
$3 \cos \frac{x}{5}$
We know that the period of cosine is 2π.
$\therefore 3 \cos \left(\frac{x}{5}+2 \pi\right)=5 \cos \frac{x}{5}$ $\Rightarrow 3 \cos \frac{1}{5}\left(\frac{1}{1 n}+2 \pi\right)=3 \cos \frac{x}{5}$

It means that the value of $3 \cos \frac{x}{5}$
repeats when x is increased by 10π.
Hence 10π is the period of $3 \cos \frac{x}{3}$.

Graphs of Trigonometric Function:

We shall now learn the methods of drawing the graphs of all the tigor wict functions.
These graphs are used very ofen in calculus ac socita scien es. The following procedure is adopted to draw he $\$ \mathrm{r} 4 \mathrm{p}$: otle regormetrid functions:
(i) Table of order Pairs $P(\lambda, V)$ conttricted, when x is the measure of the angle and y is the value of the rizonometric ratio for the angle of measure x.
(ii) Fred nestures of the angles are taken along the x-axis.
(iii) The values of the trigonometric functions are taken along the y-axis.
(iv) The points corresponding to the ordered pairs are plotted on the graph paper.
(v) These points are joined with the help of smooth curves.

Note:

(i) The graphs of trigonometric functions will be smooth curves.
(ii) none of them graph will be line segments or will have sharp corners or breaks within their domains.
(iii) This behavior of the curves is called continuity.
(iv) The graphs of trigonometric functions are continuous, wherever they are defined.
(v) As trigonometric functions are periodic so their curves repeat after a fixed interval.

Graph:

Chapter-11
Trigonometric Functions and Their Graphs

Note:

(i) From the graphs of trigonometric function we can check their domains and ranges.
(ii) By making use of the periodic property, each one of these graphs can be extended on the left as well as on the right side of x-axis depending upon the period of the finctions
(iii) The dashes lines are vertical asymptotes in the graphs of tant, cot x

EXERCISE 11.2

Q. 1 Draw the graph of each of the following function for the intervalc nentioned acaint each:
(i) $\quad y=-\sin x, \quad x \in[2 \pi, 2 \pi-7$
(ii)
(iii)

$$
x=\lfloor-\pi \cdot \pi\rfloor
$$

$(\mathrm{i}, \sqrt{2}=\tan x, \quad x \in[-2 \pi, 2 \pi]$
(v) $\quad y=\sin \frac{x}{2}, \quad x \in[0,2 \pi]$
(vi) $\quad y=\cos \frac{x}{2}, \quad x \in[-\pi, \pi]$

Solution:

(i) $\quad y=-\sin x, \quad x \in[-2 \pi, 2 \pi]$

Take the subintervals of the given interval $[-2 \pi, 2 \pi]$, each of length $\frac{\pi}{6}$, we form the following table of values:

x	-2π	$-\frac{11 \pi}{6}$	$-\frac{5 \pi}{3}$	$-\frac{3 \pi}{2}$	$-\frac{4 \pi}{3}$	$-\frac{7 \pi}{6}$	$-\pi$	$-\frac{5 \pi}{6}$	$-\frac{2 \pi}{3}$	$-\frac{\pi}{2}$	$-\frac{\pi}{3}$	$-\frac{\pi}{6}$	0
$y=-\sin x$	0	-0.5	-0.87	-1	-0.87	-0.5	0	0.5	0.87	1	0.87	0.5	0

x	$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2 \pi}{3}$	$\frac{5 \pi}{6}$	π	$\frac{7 \pi}{6}$	$\frac{4 \pi}{3}$	$\frac{3 \pi}{2}$	$\frac{5 \pi}{3}$	$\frac{11 \pi}{6}$	2π
$y=-\sin x$	-0.5	-0.87	-1	-0.87	-0.5	0	0.5	0.87	1	0.87	0.5	5

Taking some suitable scale along x-axis and y-axis ue draw the rollowing rapl COI $y=$ Oina in the interval $[-2 \pi, 2 \pi]$.

(ii) $y=2 \cos x, \quad x \in[0,2 \pi]$

Take the subintervals of the given interval $[0,2 \pi]$, each of leng ha $\frac{\pi}{6}$, we fory the following table of values:

Taking some suitable scale along x-axis and y-axis, we draw the graph of $y=2 \cos x$ in the interval $[0,2 \pi]$.

(iii)

$$
y=\tan 2 x, \quad x \in[-\pi, \pi]
$$

Take the subintervals of the given interval $[-\pi, \pi]$, each of length $\frac{\pi}{6}$, we form the following table of values:

Taking some suitable scale along x-axis and y-axis, we draw the following graph of $y=\tan 2 x$ in the interval $[-\pi, \pi]$.

Take the subintervals of the given interval $[-2 \pi, 2 \pi]$, each of length $\frac{\pi}{3}$, we form the following table of values:

x	-2π	$-\frac{5 \pi}{3}$	$-\frac{4 \pi}{3}$	$-\pi$	$-\frac{2 \pi}{3}$	$-\frac{\pi}{3}$	0	$\frac{\pi}{3}$	$\frac{2 \pi}{3}$	π	$\frac{4 \pi}{3}$	$\frac{5 \pi}{3}$	2π
$y=\tan x$	0	1.7	-1.7	0	1.7	-1.7	0	1.7	-1.7	0	1.7	-1.7	0

Taking some suitable scale along x-axis and y-axis, we draw the following graph of $y=\tan x$ in the interval $[-2 \pi, 2 \pi]$.

(v) $\quad y=\sin \frac{x}{2}, \quad x \in[0,2 \pi]$

Take the subintervals of the given interval $[0,2 \pi]$ e era of engh $\frac{\pi}{6}$, ye form the following table of values:

| | $\frac{\pi}{2}$ | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $y=\sin \frac{x}{2}$ | 0 | 0.26 | 0.5 | 0.71 | 0.8 |

Taking some suitable scale along x-axis and y-axis, we draw the following graph of $y=\sin \frac{x}{2}$ in the interval $[0,2 \pi]$.

(vi) $\quad y=\cos \frac{x}{2}, \quad x \in[-\pi, \pi]$

Take the subintervals of the given interval $[-\pi, \pi]$, eashor lensth $\frac{\pi}{6}$, fersen ite following table of values:

x	-2	$-\frac{5 \pi}{6}$	-1	$-\sqrt{2}$	$-\frac{\pi}{2}$	6		$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2 \pi}{3}$	$\frac{5 \pi}{6}$	π
$\sqrt{2}_{2}^{x} \sqrt{ }$	π	$=\frac{5 \pi}{12}$	$-\frac{\pi}{3}$	$-\frac{\pi}{4}$	$-\frac{\pi}{6}$	$-\frac{\pi}{12}$	0	$\frac{\pi}{12}$	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{5 \pi}{12}$	$\frac{\pi}{2}$
$y=\cos \frac{x}{2}$	0	0.26	0.5	0.71	0.87	0.97	1	0.97	0.87	0.71	0.5	0.26	0

Taking some suitable scale along x-axis and y-axis, we draw the following graph of $y=\cos \frac{x}{2}$ in the interval $[-\pi, \pi]$.

Solution:

The period of $\cos x$ is 2π and the period of $\cos 2 x$ is π, so considering the subintervasit the interval $[0,2 \pi]$, each of length $\frac{\pi}{6}$ we fo m the fompringab en villes.

x		$\frac{\pi}{2}$	$\frac{\pi}{3}$	$\frac{\pi}{1} \frac{\pi}{2}$	$\frac{2 \sqrt{\pi}}{3}<$	$\left[\begin{array}{c} 5 \\ 5 \end{array}\right.$		$\underbrace{1}_{6}$	$\frac{4 \pi}{3}$		$\frac{5 \pi}{3}$	$\frac{11 \pi}{6}$	2π
$)^{2 x}$	0	$\frac{\pi}{3}$	$-\frac{2}{3}$		$\frac{4}{3}$	$\frac{5 \pi}{3}$	2π						
$\sqrt{y}=6$	1	0.87	0.5	0	-0.5	-0.87	-1	-0.87	-0.5	0	0.5	0.87	1
$y=\cos 2 x$	1	0.5	-0.5	-1	-0.5	0.5	1						

Taking some suitable scale along x-axis and y-axis, we draw the graphs of $\cos x$ and $\cos 2 x$ in the intervals $[0,2 \pi]$ and $[0, \pi]$ respectively.

Q. 3 Solve graphically:

(i) $\quad \sin x=\cos x, \quad x \in[0, \pi]$
(ii) $\sin x=x, \quad x \in[0, \pi]$

Solution:

(i) $\quad \sin x=\cos x, \quad x \in[0, \pi]$

Take subintervals of the interval $\left[9,[\pi]\right.$, eatin of len ath $\frac{d}{6}$, w, form the following table of valuesof nundcos r

Taking some suitable scale along x-axis and y-axis, we draw the graphs of $\sin x$ and $\cos x$ in the interval $[0, \pi]$.

1 ne ebove che the two curves intersect each other at a point where $x=\frac{\pi}{4}$. The point of intersection of these curves is $\frac{1}{\sqrt{2}}$. Thus the solution of the equation $\sin x=\cos x$ in the interval $[0, \pi]$ is $x=\frac{\pi}{4}$.
(ii) $\sin x=x, \quad x \in[0, \pi]$

Take the subintervals of the intervals $[0, \pi]$, each of length $\frac{\pi}{6}$, we form the following table of values of $\sin x$ and x.

x	0	$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2 \pi}{3}$	$\frac{5 \pi}{6}$	π
$y=\sin x$	0	0.5	0.87	1	0.87	0.5	0
$y=x$	0	$\frac{\pi}{6}=0.52$	$\frac{\pi}{3}=1.05$	$\frac{\pi}{2}=1.57$	$\frac{2 \pi}{3}=2.10$	$\frac{5 \pi}{6}=2.62$	$\pi=3.14$

Taking some suitable scale along x-axis and y-axis, we draw the graphs of $\sin x$ and x in the interval $[0, \pi]$.

The graph of $y=x$ s strangit line. The solution of equation $\sin x=x$ is the point of ingtreection of the curve $y=\sin x$ and the line $y=x$. The line and the curve intersect each other at $x=0$. Hence solution is $x=0$.

