SOLUTIONS OF TRIGUNZMETRIC EQUATIONS

Trigonometric Equation: :

Algebra T

The equations, containing at least one trigonometric function, are called Trigonometric Equations e.g. each of the following is a trigonometric equation:

$$\sin x = \frac{2}{5}$$
, $\sec x = \tan x$ and $\sin^2 x - \sec x + 1 = \frac{3}{4}$

Note:

Trigonometric equations have infinite number of solutions due to the periodicity of the trigonometric functions.

For Example:

If $\sin\theta = 0$ then $\theta = 0, \pm \pi, \pm 2\pi, \dots$.

which can be written as $\theta = n\pi$; when $n \in Z$

Reference Angle:

The reference angle is the smallest angle between the terminal side and x-axis

General Solution:

A general solution to a trigonometric equation is a set of expressions that represents all possible solutions.

Method of Solving Trigonometric Equations:

In solving trigonometric equations, first we find the solution over the interval whose length is equal to its period and then find the general solution.

Solution of General Trigonometric Equations:

When a trigonometric equation contains more than one trigonometric function, trigonometric identities and algebraic formulae are used to transform such trigonometric equation to an equivalent equation that contains only one irrgonometric function.

Note:

(i) In solving the equations of the form $\sin kx = c$, we first find the solution of $\sin u = c$ (place kx = u) and then required solution is obtained by dividing each term of this solution set by k.

For Example:

$$\sin x \cos x = \frac{\sqrt{3}}{4}$$

$$\Rightarrow \frac{1}{2}(2\sin x \cos x) = \frac{\sqrt{3}}{4}$$

$$\Rightarrow \sin 2x = \frac{\sqrt{3}}{2}$$

$$\therefore \quad \sin 2x \text{ is positive in I and II quadrants with the reference angle $2x = \frac{\pi}{3}$

$$\therefore \quad 2x = \frac{\pi}{3} \text{ and } 2x = \pi - \frac{\pi}{3} = \frac{2\pi}{3} \text{ are two solutions in } [0, 2\pi]$$
As 2π is the period of $\sin 2x$.
$$\therefore \quad \text{General values of } 2x \text{ are } \frac{\pi}{3} + 2n\pi \text{ and } \frac{2\pi}{3} + 2n\pi, \qquad n \in \mathbb{Z}$$

$$\Rightarrow \quad \text{General values of } x \text{ are } \frac{\pi}{6} + n\pi \text{ and } \frac{\pi}{3} + n\pi \quad , \qquad n \in \mathbb{Z}$$
Hence solution set $= \left\{\frac{\pi}{6} + n\pi\right\} \cup \left\{\frac{\pi}{3} + n\pi\right\} \quad , \qquad n \in \mathbb{Z}$$$

(ii) Sometimes it is necessary to square both sides of a trigonometric equation. In such a case, extraneous roots can occur which are to be discarded. So each value of
$$x$$
 must be check by substituting it in the given equation.

For Example:

$$\cos ecx = \sqrt{3} + \cot x$$

$$\frac{1}{\sin x} = \sqrt{3} + \frac{\cos x}{\sin x}$$

$$1 = \sqrt{3} \sin x + \cos x$$

$$1 - \cos (x) = \sqrt{3} \sin x$$

$$(1 - \cos x)^2 = (\sqrt{3} \sin x)^2$$

$$1 - 2\cos x + \cos^2 x = 3\sin^2 x$$

$$1 - 2\cos x + \cos^2 x = 3(1 - \cos^2 x)$$

$$4\cos^{2} x - 2\cos x - 2 = 0$$

$$2\cos^{2} x - \cos x - 1 = 0$$

$$(2\cos x + 1)(\cos x - 1) = 0$$

$$\cos x = -\frac{1}{2}$$
 or $\cos x = 1$
If $\cos x = -\frac{1}{2}$

Since $\cos x$ is negative in II and III quadrant with the reference angle $x = \frac{\pi}{3}$

$$x = \pi - \frac{\pi}{3} = \frac{2\pi}{3}$$
 and $x = \pi + \frac{\pi}{3} = \frac{4\pi}{3}$ where $x \in [0, 2\pi]$

Now $x = \frac{4\pi}{3}$ does not satisfy the given equation (i)

 \therefore $x = \frac{4\pi}{3}$ is not admissible and so $x = \frac{2\pi}{3}$ is the only solution.

Since 2π is the period of $\cos x$

 \therefore General value of x is $\frac{2\pi}{3} + 2n\pi$, $n \in \mathbb{Z}$

If $\cos x = 1$

Ū. MANNA

x = 0 and $x = 2\pi$ where $x \in [0, 2\pi]$

Now both $\cos ec x$ and $\cot x$ are not defined for x = 0 and $x = 2\pi$

 \therefore x = 0 and $x = 2\pi$ are not admissible.

Hence solution set = $\left\{\frac{2\pi}{3} + 2n\pi\right\}$,

νZ

E].COM

909

$$\tan^2 \theta = \frac{1}{3}$$

Taking square root on both sides

$$\Rightarrow \tan \theta = \pm \frac{1}{\sqrt{3}}$$

$$\Rightarrow \tan \theta = \frac{1}{\sqrt{3}}$$

$$\tan \theta \text{ is positive in I and III Quadrant with reference angle } \theta = \frac{\pi}{6}$$
In I Quadrant
$$\theta = \frac{\pi}{6}$$
In I Quadrant
$$\theta = \frac{\pi}{6}$$

$$\cos \theta = \frac{\pi}{6}$$
In III Quadrant
$$\theta = \frac{\pi}{6}$$

$$\cos \theta = \frac{\pi}{6}$$

$$\cos \theta = \frac{\pi}{6}$$
In III Quadrant
$$\theta = \frac{\pi}{6}$$

$$\cos \theta = \frac{\pi}{6}$$

$$\sin \theta \text{ is negative in II and IV Quadrant with reference angle } \theta = \frac{\pi}{6}$$

$$\sin \theta = \frac{\pi}{6}$$
In I Quadrant
$$\theta = \frac{\pi}{6}$$

$$\cos \theta = \frac{\pi}{6}$$

$$\sin \theta = \frac{\pi}{6}$$

$$\sin \theta = \frac{\pi}{6}$$
In I Quadrant
$$\theta = \frac{\pi}{6}$$

$$\cos \theta = \frac{\pi}{6}$$

$$\sin \theta = \frac{$$

(ii)
$$\csc^2\theta = \frac{4}{3}$$

Solution:
 $\csc^2\theta = \frac{4}{3}$
 $\Rightarrow \sin^2\theta = \frac{2}{2}$
Taking lateretric on both sides
 $\sin\theta = \sin\theta = \frac{\sqrt{3}}{2}$
 $\sin\theta = \sin\theta = \frac{\sqrt{3}}{2}$
 $\sin\theta = \sin\theta = \frac{\sqrt{3}}{2}$
 $\sin\theta = \sin\theta = \frac{\pi}{3}$
 $\ln 1 \operatorname{Quadrant} = \frac{\pi}{3} = \frac{2\pi}{3}$
 $\ln 10 \operatorname{Quadrant} = \frac{\pi}{3} = \frac{2\pi}{3}$
 $\sin\theta = \pi - \frac{\pi}{3} = \frac{\pi}{3}$
 $\sin\theta = \pi - \frac{\pi}{3} = \frac{\pi}{3}$
(iii) $\sec^2\theta = \frac{4}{3}$
 $\sin\theta = \pi - \frac{\pi}{3} = \frac{\pi}{3}$
 $\sin\theta = \pi - \frac{\pi}{3} = \frac{\pi}$

Find the values of θ satisfying the following equations:

$$Q.3 \qquad 3\tan^2\theta + 2\sqrt{3}\tan\theta + 1 = 0$$

Solution:

$$3\tan^2\theta + 2\sqrt{3}\tan\theta + 1 = 0$$

Using Quadratic Formula

$$\Rightarrow \tan \theta = \frac{-2\sqrt{3} \pm \sqrt{(2\sqrt{3})^2 - 4(3)(1)}}{2 \times 3}$$

$$\Rightarrow \tan \theta = \frac{-2\sqrt{3} \pm \sqrt{12 - 12}}{6}$$

$$\Rightarrow \tan \theta = -\frac{2\sqrt{3} \pm \sqrt{0}}{6}$$

$$\Rightarrow \tan \theta = -\frac{2\sqrt{3} \pm \sqrt{0}}{6}$$

$$\Rightarrow \tan \theta = -\frac{2\sqrt{3}}{6}$$

$$\Rightarrow \tan \theta = \frac{-\sqrt{3}}{3}$$

$$\Rightarrow \tan \theta = \frac{-\sqrt{3}}{3}$$

tan
$$\theta$$
 is negative in II and IV Quadrant with reference angle $\theta = \frac{\pi}{6}$
In II Quadrant
 $\theta = \pi - \frac{\pi}{6} = \frac{5\pi}{6}$
 $\beta = \frac{5\pi}{6}$
 $\theta = 2\pi - \frac{\pi}{6} = \frac{11\pi}{6}$
As π is the period of θ is $\frac{5\pi}{6} + n\pi$, $n \in \mathbb{Z}$
 $\theta = 2\pi - \frac{\pi}{6} = \frac{11\pi}{6}$
As π is the period of π θ
 $\theta = 2\pi - \frac{\pi}{6} = \frac{11\pi}{6}$
 $\theta = 2\pi - \frac{\pi}{6} = \frac{11\pi}{6}$
 $\theta = 2\pi - \frac{\pi}{6} = \frac{11\pi}{6}$
 $\theta = 2\pi - \frac{\pi}{6} = \frac{\pi}{6}$
 $\theta = 2\pi - \frac{\pi}{6} = \frac{5\pi}{6}$
 $\theta = 2\pi - \frac{\pi}{3} = \frac{5\pi}{6}$
 $\theta = 2\pi - \pi + 2\pi\pi$ and $\pi + 2n\pi$, $n \in \mathbb{Z}$

Q.7
$$3\cos^2\theta - 2\sqrt{3} \sin\theta\cos\theta - 3\sin^2\theta = 0$$

Solution:
 $3\cos^2\theta - 2\sqrt{3} \sin\theta\cos\theta - 3\sin^2\theta = 0$
Divided both sides by $\cos^2\theta$
 $\Rightarrow \frac{3\cos^2\theta}{\cos^2\theta} - \frac{2\sqrt{3}\sin\theta\cos\theta}{\cos^2\theta} + \frac{3\sin^2\theta}{\cos^2\theta} = 0$
 $\Rightarrow \frac{3\cos^2\theta}{\cos^2\theta} - \frac{2\sqrt{3}\sin^2\theta}{\cos^2\theta} + \frac{3\sin^2\theta}{\cos^2\theta} = 0$
 $\Rightarrow 3-2\sqrt{3}\sin^2\theta - 2\sqrt{3}\sin\theta + 3 = 0$
 $\Rightarrow 3\tan^2\theta - 2\sqrt{3}\tan\theta + 3 = 0$
 $\Rightarrow 1 \tan^2\theta - 2\sqrt{3}\tan\theta + 3 = 0$
 $\Rightarrow 1 \tan^2\theta - 2\sqrt{3}\tan\theta + 3 = 0$
 $\Rightarrow 1 \tan^2\theta - 2\sqrt{3}\tan\theta + 3 = 0$
 $\Rightarrow 1 \tan^2\theta - 2\sqrt{3}\tan\theta + 3 = 0$
 $\Rightarrow 1 \tan^2\theta - 2\sqrt{3}\tan\theta + 3 = 0$
 $\Rightarrow 1 \tan^2\theta - 2\sqrt{3}\tan\theta + 3 = 0$
 $\Rightarrow 1 \tan^2\theta - 2\sqrt{3}\pm\sqrt{48}$
 $\Rightarrow 1 \tan^2\theta - \frac{2\sqrt{3}\pm\sqrt{48}}{6}$
 $\Rightarrow 1 \tan^2\theta - \frac{\sqrt{3}\pm2\sqrt{3}}{3}$
 $\Rightarrow 1 \tan^2\theta - \frac{\sqrt{3}}{3}$
 $\Rightarrow 1 \tan^2\theta -$

$$\therefore \quad \theta = \frac{\pi}{6}, \frac{1\pi}{6}, \frac{2\pi}{3}, \frac{5\pi}{3}, \frac{3}{3}, \\ \text{As } \pi \text{ is the period of tan } \theta \\ \therefore \text{ General values of } \theta \text{ are } \frac{\pi}{7} + n\pi, \frac{2\pi}{7} + n\pi, n \neq 2$$
Q.8 4 sin² θ -Rcos θ + 1 = 0
Solution:
4 sin² θ -Rcos θ + 1 = 0
 $3 \text{ is n}^2 \theta$ -Rcos θ + 1 = 0
 $3 \text{ is n}^2 \theta$ -Rcos θ + 1 = 0
 $3 \text{ is n}^2 \theta$ -Rcos θ + 1 = 0
 $3 \text{ is n}^2 \theta$ -Rcos θ + 1 = 0
 $3 \text{ is n}^2 \theta$ -Rcos θ + 1 = 0
 $3 \text{ is n}^2 \theta$ -Rcos θ + 1 = 0
 $3 \text{ is n}^2 \theta$ -Rcos θ + 1 = 0
 $3 \text{ is n}^2 \theta$ -Rcos θ + 1 = 0
 $3 \text{ is n}^2 \theta$ -Rcos θ + 1 = 0
 $3 \text{ is n}^2 \theta$ -Rcos θ + 1 = 0
 $3 \text{ is n}^2 \theta$ -Rcos θ + 1 = 0
 $3 \text{ is n}^2 \theta$ -Rcos θ + 1 = 0
 $3 \text{ is n}^2 \theta$ -Rcos θ + 1 = 0
 $3 \text{ is n}^2 \theta$ -Rcos θ + 1 = 0
 $3 \text{ is n}^2 \theta$ -Rcos θ + 1 = 0
 $3 \text{ is n}^2 \theta$ -Rcos θ + 1 = 0
 $3 \text{ is n}^2 \theta$ -Rcos θ + 1 = 0
 $3 \text{ is n}^2 \theta$ -Rcos θ + 1 = 0
 $3 \text{ is n}^2 \theta$ -Rcos θ + 1 = 0
 $3 \text{ is n}^2 \theta$ -Rcos θ + 1 = 0
 $3 \text{ is n}^2 \theta$ -Rcos θ + 1 = 0
 $3 \text{ is n}^2 \theta$ -Rcos θ + 1 = 0
 $3 \text{ is n}^2 \theta$ -Rcos θ + 1 = 0
 $3 \text{ is n}^2 \theta$ -Rcos θ + 5 = 0
 $3 \text{ is n}^2 \theta$ -Rcos θ + 5 = 0
 $3 \text{ is n}^2 \theta$ -Rcos θ + 5 = 0
 $3 \text{ is n}^2 \theta$ -Rcos θ + 1 = 0
 $3 \text{ is n}^2 \theta$ -Rcos θ + 5 = 0
 $3 \text{ is n}^2 \theta$ -Rcos θ + 1 = 0
 $3 \text{ is n}^2 \theta$ -Rcos θ + 1 = 0
 $3 \text{ is n}^2 \theta$ -Rcos θ + 5 = 0
 $3 \text{ is n}^2 \theta$ -Rcos θ + 1 = 0
 $3 \text{ is n}^2 \theta$ -Rcos θ + 1 = 0
 $3 \text{ is n}^2 \theta$ -Rcos θ + 1 = 0
 $3 \text{ is n}^2 \theta$ -Rcos θ + 1 = 0
 $3 \text{ is n}^2 \theta$ -Rcos θ -1 = 0
 $3 \text{ is n}^2 \theta$ -Rcos θ -1 = 0
 $3 \text{ is n}^2 \theta$ -Rcos θ -1 = 0
 $3 \text{ is n}^2 \theta$ -Rcos θ -1 = 0
 $3 \text{ is n}^2 \theta$ -Rcos θ -1
 $4 \text{ is n}^2 \theta$ -Rcos θ -1
 $4 \text{ is n}^2 \theta$ -Rcos θ -1
 $4 \text{ is n}^2 \theta$ -Rcos θ -Rc

Chapter-14

$$\Rightarrow \sin x = -2\sin \left(\frac{5x + 3x}{2}\right) \sin \left(\frac{5x - 3x}{2}\right) \qquad \because \cos P - \cos Q = -2\sin \left(\frac{P+Q}{2}\right) \sin \left(\frac{P-Q}{2}\right)$$

$$\Rightarrow \sin x + 2\sin 4x \sin x = 0$$

$$\Rightarrow \sin x + 2\sin 4x \sin x = 0$$

$$\Rightarrow \sin x + 2\sin 4x \sin x = 0$$

$$\Rightarrow \sin x + 2\sin 4x = 0$$

$$\Rightarrow \sin x + 2\sin 4x = 0$$

$$\Rightarrow \sin 4x = -1$$

$$\Rightarrow \sin 4x = -\frac{1}{2}$$

In III Quadrant

$$4x = \pi + \frac{\pi}{6} = \frac{7\pi}{6}$$

In III Quadrant

$$4x = \pi + \frac{\pi}{6} = \frac{7\pi}{6}$$

In III Quadrant

$$4x = 2\pi - \frac{\pi}{6} = \frac{11\pi}{6}$$

As 2π is the period of $\sin x$
So General value of x is

$$4x = \frac{7\pi}{6} + 2n\pi$$

$$x = \frac{7\pi}{24} + \frac{n\pi}{2}$$

$$= \frac{11\pi}{6} + 2n\pi$$

$$x = \frac{11\pi}{24} + \frac{n\pi}{2}$$

$$= \frac{11\pi}{6} + 2n\pi$$

$$= \frac{11\pi}{2} + \frac{11\pi}{$$

MAN SILMAR COUS

V/E].CO