

## Trigonomatic Equation:

e(1) atiuns, containing at least one trigonometric function, are called Trigonometric Equations e.g. each of the following is a trigonometric equation:

$$
\sin x=\frac{2}{5}, \sec x=\tan x \text { and } \sin ^{2} x-\sec x+1=\frac{3}{4}
$$

## Note:

Trigonometric equations have infinite number of solutions due to the periodicity of the trigonometric functions.

## For Example:

If $\sin \theta=0$ then $\theta=0, \pm \pi, \pm 2 \pi, \ldots \ldots$
which can be written as $\theta=n \pi$; when $n \in Z$

## Reference Angle:

The reference angle is the smallest angle between the terminal side and $x$-axis

## General Solution:

A general solution to a trigonometric equation is a set of expressions that represents all possible solutions.

## Method of Solving Trigonometric Equations:

In solving trigonometric equations, first we find the solution over the interval whose length is equal to its period and then find the general solution.

## Solution of General Trigonometric Equations:

When a trigonometric equation contais more than trisonmetric thinction, trigonometric identities anüalgebrain fymula are used to transfo m such trigonometric equation tran equivalent equation that col tains cnly yond urgonomerric function.
Note:
(i) In solving the equations of the form $\sin k x=c$, we first find the solution of $\sin u=c$ Nher $\mathrm{r}-\mathrm{x}=\bar{u}$ ) and then required solution is obtained by dividing each term of this solution set by $k$.

## For Example:

$\sin x \cos x=\frac{\sqrt{3}}{4}$
$\because \quad \sin 2 x$ is positive in I and II quadrants with the reference angle $2 x=\frac{\pi}{3}$

$$
\therefore \quad 2 x=\frac{\pi}{3} \text { and } 2 x=\pi-\frac{\pi}{3}=\frac{2 \pi}{3} \text { are two solutions in }[0,2 \pi]
$$

As $2 \pi$ is the period of $\sin 2 x$.
$\therefore \quad$ General values of $2 x$ are $\frac{\pi}{3}+2 n \pi$ and $\frac{2 \pi}{3}+2 n \pi, \quad n \in Z$
$\Rightarrow \quad$ General values of $x$ are $\frac{\pi}{6}+n \pi$ and $\frac{\pi}{3}+n \pi \quad, \quad n \in Z$
Hence solution set $=\left\{\frac{\pi}{6}+n \pi\right\} \cup\left\{\frac{\pi}{3}+n \pi\right\} \quad, \quad n \in Z$
(ii) Sometimes it is necessary to square both sides of a trigonometric equation. In such a case, extraneous roots can occur which are to be discarded. So each value of $x$ must be check by substituting it in the given equation.

## For Example:

$$
\operatorname{cosec} x=\sqrt{3}+\cot x
$$

$$
\frac{1}{\sin x}=\sqrt{3}+\frac{\cos x}{\sin x}
$$

$$
1=\sqrt{3} \sin x+\cos x
$$

$$
\begin{aligned}
& 1=\sqrt{3} \sin x+\cos x \\
& \left.(1-\cos x)^{2}=\frac{1}{3} \sin x\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& 1-2 \cos x+\cos ^{2} x=3 \sin ^{2} x \\
& 1-2 \cos x+\cos ^{2} x=3\left(1-\cos ^{2} x\right)
\end{aligned}
$$

$4 \cos ^{2} x-2 \cos x-2=0$
$2 \cos ^{2} x-\cos x-1=0$
$(2 \cos x+1)(\cos x-1)=0$

$\operatorname{lgcos} x=-\frac{1}{2}$
Since $\cos x$ is negative in II and III quadrant with the reference angle $x=\frac{\pi}{3}$
$x=\pi-\frac{\pi}{3}=\frac{2 \pi}{3}$ and $x=\pi+\frac{\pi}{3}=\frac{4 \pi}{3}$ where $x \in[0,2 \pi]$
Now $x=\frac{4 \pi}{3}$ does not satisfy the given equation (i)
$\therefore \quad x=\frac{4 \pi}{3}$ is not admissible and so $x=\frac{2 \pi}{3}$ is the only solution.
Since $2 \pi$ is the period of $\cos x$
$\therefore$ General value of $x$ is $\frac{2 \pi}{3}+2 n \pi \quad, \quad n \in Z$
If $\cos x=1$
$x=0$ and $x=2 \pi$ where $x \in[0,2 \pi]$
Now both $\operatorname{cosec} x$ and $\cot x$ are not defined for $x=0$ and $x=2 \pi$
$\therefore \quad x=0$ and $x=2 \pi$ are not admissible.

$$
\text { Hence solution set }=\left\{\frac{2 \pi}{3}+2 n \pi\right\} \text {, }
$$

## EXERCISE 14

Q. 1 Find the solutions of the following equations which lies in $[0,2 \pi]$
(i) $\sin x=\frac{-\sqrt{3}}{2}$

## Solution:

## $\sin x=-\frac{5}{6}$

$\sin . c$ is hegaive in III and IV Quadrant with reference angle $x=\frac{\pi}{3}$

$$
\text { In III Quadrant } \quad \text { In IV Quadrant }
$$

$$
\begin{aligned}
x=\pi+\frac{\pi}{3} & =\frac{4 \pi}{3} \\
& \text { Solution Set }=\left\{\frac{4 \pi}{3}, \frac{5 \pi}{3}\right\}
\end{aligned}
$$

(ii) $\operatorname{cosec} \theta=2$

## Solution:

$\operatorname{cosec} \theta=2$
$\Rightarrow \quad \sin \theta=\frac{1}{2}$
$\sin \theta$ is positive in I and II Quadrant with the reference angle $\theta=\frac{\pi}{6}$

In I Quadrant

$$
\theta=\frac{\pi}{6}
$$

In II Quadrant

$$
\theta=\pi-\frac{\pi}{6}=\frac{5 \pi}{6}
$$

$$
\text { Solution Set }=\left\{\frac{\pi}{6}, \frac{5 \pi}{6}\right\}
$$

(iii) $\sec x=-2$

Solution:

$$
\Rightarrow \quad \begin{aligned}
& \sec x=-2 \\
& \Rightarrow \quad \cos x=\frac{-1}{2}
\end{aligned}
$$

In III Quadrant
$x=\pi+\frac{\pi}{3}=\frac{4 \pi}{3}$

$$
\text { SolutionSet }=\left\{\frac{2 \pi}{3}, \frac{4 \pi}{3}\right\}
$$

(iv) $\boldsymbol{\operatorname { c o t }} \boldsymbol{\theta}=\frac{1}{\sqrt{3}}$

## Solution:

$$
\begin{aligned}
& \cot \theta=\frac{1}{\sqrt{3}} \\
& \Rightarrow \quad \tan \theta \\
& \hline \sqrt{3}
\end{aligned}
$$

$\sqrt{\operatorname{an} t}$ is positive in land III Quadrant with reference angle $\theta=\frac{\pi}{3}$

In I Quadrant

$$
\theta=\frac{\pi}{3}
$$

$$
\text { Solution Set }=\left\{\frac{\pi}{3}, \frac{4 \pi}{3}\right\}
$$

In III Quadrant

$$
\theta=\pi+\frac{\pi}{3}=\frac{4 \pi}{3}
$$

Q. 2 Solve the following trigonometric equations:
(i) $\boldsymbol{\operatorname { t a n }}^{2} \theta=\frac{\mathbf{1}}{\mathbf{3}}$

## Solution:

$$
\tan ^{2} \theta=\frac{1}{3}
$$

Taking square root on both sides

$$
\begin{aligned}
\Rightarrow \quad \tan \theta & = \pm \frac{1}{\sqrt{3}} \\
& \Rightarrow \quad \tan \theta=\frac{1}{\sqrt{3}}
\end{aligned}
$$

$\tan \theta$ is positive in I and III Quadrant with reference angle $\theta=\frac{\pi}{6}$

> In I Quadrant

(ii) $\operatorname{cosec}^{2} \theta=\frac{4}{3}$

## Solution:

$$
\begin{aligned}
& \operatorname{cosec}^{2} \theta=\frac{4}{3} \\
\Rightarrow \quad & \sin ^{2} \theta=
\end{aligned}
$$

Taking quer re roo en noth sidess
$\sqrt[3]{\sqrt{3 n} \theta}=c-2-2$

$$
\Rightarrow \quad \sin \theta=\frac{\sqrt{3}}{2}
$$

$\sin \theta$ is positive in I and II Quadrant with reference angle $\theta=\frac{\pi}{3}$

In I Quadrant

$$
\theta=\frac{\pi}{3}
$$

In II Quadrant
$\theta=\pi-\frac{\pi}{3}=\frac{2 \pi}{3}$
$\Rightarrow \quad \sin \theta=-\frac{\sqrt{3}}{2}$
$\sin \theta$ is negative in III and IV Quadrant with reference angle $\theta=\frac{\pi}{3}$

In III Quadrant
$\theta=\pi+\frac{\pi}{3}=\frac{4 \pi}{3}$
In IV Quadrant
$\theta=2 \pi-\frac{\pi}{3}=\frac{5 \pi}{3}$
Solution Set $=\left\{\frac{\pi}{3}, \frac{2 \pi}{3}, \frac{4 \pi}{3}, \frac{5 \pi}{3}\right\}$
(iii) $\sec ^{2} \theta=\frac{4}{3}$

## Solution:

$$
\begin{aligned}
& \sec ^{2} \theta=\frac{4}{3} \\
\Rightarrow \quad & \cos ^{2} \theta=\frac{3}{4}
\end{aligned}
$$

Taking square root on both sides

$$
\begin{aligned}
\Rightarrow \quad \cos \theta & = \pm \frac{\sqrt{3}}{2} \\
& \Rightarrow \quad \cos \theta=\frac{\sqrt{3}}{2}
\end{aligned}
$$

$\cos \theta$ is positive in I and IV Quatran $n / \mathrm{h}$ reference angle $D_{\theta}=\frac{\pi}{6} \cap$ reference angle $\theta=\frac{\pi}{6}$

In I Quadan
(I) , VQuadrant
$\theta=2 \pi-\frac{\pi}{6}=\frac{11 \pi}{6}$
Solution Set $=\left\{\frac{\pi}{6}, \frac{11 \pi}{6}, \frac{5 \pi}{6}, \frac{7 \pi}{6}\right\}$

In III Quadrant
$\theta=\pi+\frac{\pi}{6}=\frac{7 \pi}{6}$
(iv) $\cot ^{2} \theta=\frac{1}{3}$

Solution:

$$
\begin{aligned}
& \cot ^{2} \theta=\frac{1}{3} \\
\Rightarrow \quad & \tan ^{2} \theta \equiv 3
\end{aligned}
$$

Taking quare roo on both siues

$$
\Rightarrow \quad \tan \theta=\sqrt{3}
$$

$\tan \theta$ is positive in I and III Quadrant with reference angle $\theta=\frac{\pi}{3}$

In I Quadrant

$$
\theta=\frac{\pi}{3}
$$

$$
\begin{aligned}
& \text { In III Quadrant } \\
& \theta=\pi+\frac{\pi}{3}=\frac{4 \pi}{3}
\end{aligned}
$$

$$
\Rightarrow \quad \tan \theta=-\sqrt{3}
$$

$\tan \theta$ is negative in II and IV Quadrant with reference angle $\theta=\frac{\pi}{3}$

In II Quadrant
$\theta=\pi-\frac{\pi}{3}=\frac{2 \pi}{3}$
In IV Quadrant
$\theta=2 \pi-\frac{\pi}{3}=\frac{5 \pi}{3}$

$$
\text { Solution Set }=\left\{\frac{\pi}{3}, \frac{4 \pi}{3}, \frac{2 \pi}{3}, \frac{5 \pi}{3}\right\}
$$

Find the values of $\theta$ satisfying the following equations:

## Q. $3 \quad 3 \tan ^{2} \theta+2 \sqrt{3} \tan \theta+1=0$

## Solution:

$$
\begin{array}{ll} 
& 3 \tan ^{2} \theta+2 \sqrt{3} \tan \theta+1=0 \\
& \text { Using Quadratic Formula } \\
\Rightarrow & \tan \theta=\frac{-2 \sqrt{3} \pm \sqrt{(2 \sqrt{3})^{2}-4(3)(1)}}{2 \times 3} \\
\Rightarrow & \tan \theta=\frac{-2 \sqrt{3} \pm \sqrt{12-12}}{6} \\
\Rightarrow & \tan \theta=-2 \sqrt{3} \pm \sqrt{0} \\
\Rightarrow & \tan \theta=-2] \sqrt{3} \\
\Rightarrow & \tan \theta=\frac{-1}{\sqrt{3}}
\end{array}
$$

$\Rightarrow \tan \theta=-\frac{-2}{3} \pm \sqrt{0}$
$\tan \theta$ is negative in II and IV Quadrant with reference angle $\theta=\frac{\pi}{6}$
In II Quadrant

$$
\theta=\pi-\frac{\pi}{6}=\frac{5 \pi}{6}
$$

$\therefore \quad C=\frac{5 \pi}{6}, \frac{11 \pi}{6}$
As $\pi$ is theepersod of tar $\theta$.
Genelal value of $\theta$ is $\frac{5 \pi}{6}+n \pi, n \in Z$

$$
\tan ^{2} \theta-\sec \theta-1=0
$$

## Solution:

$$
\begin{array}{cc} 
& \tan ^{2} \theta-\sec \theta-1=0 \\
\Rightarrow \quad & \left(\sec ^{2} \theta-1\right)-\sec \theta-1=0 \\
\Rightarrow \quad & \sec ^{2} \theta-\sec \theta-2=0 \\
\Rightarrow \quad & \sec ^{2} \theta-2 \sec \theta+\sec \theta-2=0 \\
\Rightarrow \quad & \sec \theta(\sec \theta-2)+1(\sec \theta-2)=0 \\
\Rightarrow \quad & (\sec \theta-2)(\sec \theta+1)=0 \\
& \text { Either } \\
\Rightarrow \sec \theta-2=0 \\
\Rightarrow \sec \theta=2 \\
\Rightarrow \cos \theta=\frac{1}{2}
\end{array}
$$

$$
\Rightarrow \quad\left(\sec ^{2} \theta-1\right)-\sec \theta-1=0 \quad \because 1+\tan ^{2} \theta=\sec ^{2} \theta
$$

$\cos \theta$ is positive in I and IV Quadrant with

$$
\text { reference angle } \theta=\frac{\pi}{3}
$$

In I Quadrant $\theta=\frac{\pi}{3}$
$\therefore \quad \theta=\frac{\pi}{3}, \frac{\pi}{3}, \pi$
A $=2 \pi$ © 2 the period of $\cos \theta$
$\therefore$ General values of $\theta$ are $\frac{\pi}{3}+2 n \pi$ and $\pi+2 n \pi, n \in Z$
Q. $5 \quad 2 \sin \theta+\cos ^{2} \theta-1=0$

## Solution:

$$
\begin{gathered}
\Rightarrow \quad \sin \theta=0 \\
\theta=0, \pi
\end{gathered}
$$

$$
\therefore \quad \theta=0, \pi
$$

As $2 \pi$ is the period of $\sin \theta$
$\therefore$ General values of $\theta$ are $2 n \pi, \pi+2 n \pi, n \in Z$

## Q. $62 \sin ^{2} \theta-\sin \theta=0$

## Solution:

$$
2 \sin ^{2} \theta-\sin \theta=0
$$

$$
\Rightarrow \quad \sin \theta(2 \sin \theta-1)=0
$$

Either
$\Rightarrow \quad \sin \theta=0$
$\theta=0, \pi$

$$
\begin{array}{ll}
\text { Or } & \\
\Rightarrow & 2 \sin \theta-1=0 \\
\Rightarrow & 2 \sin \theta=1 \\
\Rightarrow & \sin \theta=\frac{1}{2}
\end{array}
$$

$\sin \theta$ is +ve in I and II Quadrant $\cdots$ ith reference


$$
\theta=\pi-\frac{\pi}{6}=\frac{5 \pi}{6}
$$

As $2 \pi$ is the period of $\sin \theta$
$\therefore$ General values of $\theta$ are $2 n \pi, \pi+2 n \pi, \frac{\pi}{6}+2 n \pi, \frac{5 \pi}{6}+2 n \pi$

$$
\begin{aligned}
& 2 \sin \theta+\cos ^{2} \theta-1=0 \\
& \Rightarrow \quad 2 \sin \theta+1-\sin ^{2} \theta-1=0 \\
& \Rightarrow \quad-\sin ^{2} \theta-2 \sin \theta=0 \\
& \Rightarrow \quad-\sin \theta(\sin (a-2)=0 \\
& \Rightarrow \sin \theta(\operatorname{sir} \theta-2)=0 \\
& \text { Either }
\end{aligned}
$$

## Q. $7 \quad 3 \cos ^{2} \theta-2 \sqrt{3} \sin \theta \cos \theta-3 \sin ^{2} \theta=0$

## Solution:

$3 \cos ^{2} \theta-2 \sqrt{3} \sin \theta \cos \theta-3 \sin ^{2} \theta=0$
Divided both sides by $\cos ^{2} \theta$
$\Rightarrow \quad \frac{3 \cos ^{2} \theta}{\cos ^{2} \theta}-2 \sqrt{3} \sin \theta \cdot \cos \theta-\frac{\left.3 \sin ^{2} \frac{1}{\cos ^{2} 2}-\frac{0}{\cos ^{2}} \frac{0}{c^{2}}-\frac{1}{\theta}\right)=0}{}$
$\Rightarrow \quad 3-2 \sqrt{3} \frac{i 1}{\cos \theta}-3-\frac{\mathrm{in}^{2}}{\cos } \frac{\theta}{6}=0$
$\rightarrow \sqrt{3}-2 \sqrt{3} \tan \theta-3 \tan ^{2} \theta=0$
$3 \tan ^{2} \theta-2 \sqrt{3} \tan \theta+3=0$
$\Rightarrow \quad 3 \tan ^{2} \theta+2 \sqrt{3} \tan \theta-3=0$
Using Quadratic Formula,

$$
\begin{aligned}
& \Rightarrow \quad \tan \theta=\frac{-2 \sqrt{3} \pm \sqrt{(2 \sqrt{3})^{2}-4(3)(-3)}}{2 \times 3} \\
& \Rightarrow \quad \tan \theta=\frac{-2 \sqrt{3} \pm \sqrt{12+36}}{6} \\
& \Rightarrow \quad \tan \theta=\frac{-2 \sqrt{3} \pm \sqrt{48}}{6} \\
& \Rightarrow \quad \tan \theta=\frac{-2 \sqrt{3} \pm 4 \sqrt{3}}{6} \\
& \Rightarrow \quad \tan \theta=\frac{2(-\sqrt{3} \pm 2 \sqrt{3})}{6} \\
& \Rightarrow \quad \tan \theta=\frac{-\sqrt{3} \pm 2 \sqrt{3}}{3}
\end{aligned}
$$

Either

$$
\Rightarrow \quad \tan \theta=\frac{(-\sqrt{3}+2 \sqrt{3})}{3}
$$

$$
\Rightarrow \quad \tan \theta=\frac{\sqrt{3}}{3}
$$

$$
\Rightarrow \quad \tan \theta=\frac{1}{\sqrt{3}}
$$

$\tan \theta$ is positive in I and 114 Quadrant with reterence ange

In (padarart
$\theta=\frac{\pi}{6}$


Or

$$
\Rightarrow \quad \tan \theta=\frac{(-\sqrt{3}-2 \sqrt{3})}{3}
$$

$$
\begin{gathered}
\Rightarrow \quad \tan \theta=-3 \sqrt{3} \\
=\underbrace{}_{\text {and }} \quad \text { an } \theta=-\sqrt{3}
\end{gathered}
$$

ar $\theta$ is nagative in II and IV Quadrant with reference Angte $\theta=\frac{\pi}{3}$

In II Quadrant
$\theta=\pi-\frac{\pi}{3}=\frac{2 \pi}{3} \quad \theta=2 \pi-\frac{\pi}{3}=\frac{5 \pi}{3}$
$\therefore \quad \theta=\frac{\pi}{6}, \frac{7 \pi}{6}, \frac{2 \pi}{3}, \frac{5 \pi}{3}$
As $\pi$ is the period of $\tan \theta$

## Q. $8 \quad 4 \sin ^{2} \theta-8 \cos \theta+1=0$

## Solution:

$4 \sin ^{2} \theta-8 \cos \theta+1=0$

$$
\begin{array}{rlr}
\Rightarrow & \because \sin ^{2} \theta+\cos ^{2} \theta=1 \\
& \Rightarrow 4-4 \cos ^{2} \theta-8 \cos \theta+1=0 & \\
\Rightarrow 4 \cos ^{2} \theta-8 \cos \theta+5=0 & \\
\Rightarrow 4 \cos ^{2} \theta+8 \cos \theta-5=0 & \text { By factorization }
\end{array}
$$

$$
\Rightarrow \quad 2 \cos \theta(2 \cos \theta+5)-1(2 \cos \theta+5)=0
$$

$$
\Rightarrow \quad(2 \cos \theta-1)(2 \cos \theta+5)=0
$$

$$
\begin{array}{cc} 
& \text { Either } \\
\Rightarrow & 2 \cos \theta-1=0 \\
\Rightarrow & 2 \cos \theta=1 \\
\Rightarrow & \cos \theta=\frac{1}{2}
\end{array}
$$

$\cos \theta$ is positive in I and IV Quadrant with reference angle $\theta=\frac{\pi}{3}$

In I Quadrant
$\theta=\frac{\pi}{3}$
In IV Quadrant $\theta=2 \pi=\frac{\pi}{3}=\frac{5 \pi}{2}$

$$
\begin{array}{ll} 
& \text { Or } \\
\Rightarrow & 2 \cos \theta+5=0 \\
\Rightarrow \quad & 2 \cos \theta=-5 \\
\Rightarrow \quad & \cos \theta=\frac{-5}{2}
\end{array}
$$

Not Possible

Find the solution sets of the following equations:
Q. $9 \sqrt{3} \tan x-\sec x-1=0$

## Solution:

$$
\because \sqrt{3} \tan ^{2} Q=\sec ^{2} x+1+2 \sec x
$$

$$
\because 1+\tan ^{2} x=\sec ^{2} x
$$

$$
3\left(\sec ^{2} x-1\right)=\sec ^{2} x+2 \sec x+1
$$

$$
\Rightarrow \quad 3 \sec ^{2} x-3=\sec ^{2} x+2 \sec x+1
$$

$$
\Rightarrow \quad 3 \sec ^{2} x-\sec ^{2} x-2 \sec x-3-1=0
$$

$$
\Rightarrow \quad 2 \sec ^{2} x-2 \sec x-4=0
$$

$$
\Rightarrow \quad 2\left(\sec ^{2} x-\sec x-2\right)=0
$$

$$
\Rightarrow \quad \sec ^{2} x-\sec x-2=0
$$

$$
\Rightarrow \quad \sec ^{2} x-2 \sec x+\sec x-2=0 \quad \text { By Factorization }
$$

$$
\Rightarrow \quad \sec x(\sec x-2)+1(\sec x-2)=0
$$

$$
\Rightarrow \quad(\sec x+1)(\sec x-2)=0
$$

$$
\begin{array}{ll} 
& \text { Either } \\
\Rightarrow & \sec x-2=0 \\
\Rightarrow & \sec x=2 \\
\Rightarrow & \cos x=\frac{1}{2}
\end{array}
$$

Or
$\cos x$ is positive in I and IV Quadrant with reference

$$
\text { angle } x=\frac{\pi}{3}
$$

In I Quadrant

$$
x=\frac{\pi}{3}
$$

As $2 \pi$ is the pericup co ine


As $\cos x=-1$ so there is only one solution i.e.

$$
x=\pi
$$

As $2 \pi$ is the Periguof $\cos$

$$
\begin{array}{ll}
\Rightarrow & \sec x+1=0 \\
\Rightarrow & \sec x=-1 \\
\Rightarrow & \cos x=-1
\end{array}
$$



Not Satistica:
yunganex
$O_{n} \in Z$
Hence solution set $=\{\pi+2 n \pi\} \cup\left\{\frac{\pi}{3}+2 n \pi\right\} \quad n \in Z$

$$
\begin{aligned}
& \sqrt{3} \tan x-\sec x-1=0 \\
& \Rightarrow \quad \sqrt{3} \tan x=\sec x+1 \\
& \text { Taking supare on foth side } \\
& \Rightarrow \quad(\sqrt{3} \text { an } x)=(: C(x+1)
\end{aligned}
$$

Q. $10 \cos 2 x=\sin 3 x$

## Solution:

$$
\begin{aligned}
& \Rightarrow \quad 1-2 \sin ^{2} x=3 \sin x-4 \sin ^{3} 0 \quad \square\left(: \cos 2 x=-5 \sin ^{2} x \text { and } \sin 3 x=3 \sin x-4 \sin ^{3} x\right) . \\
& \Rightarrow \quad 4 \sin ^{3} x-2 \sin ^{2} x-3 \sin x-1 .-1
\end{aligned}
$$

# $14 \int-2$-3 

$\begin{array}{ll}-3 & 1\end{array}$


Using Quadratic Formula

$$
\begin{array}{r}
\Rightarrow \quad \sin x=\frac{-2 \pm \sqrt{(2)^{2}-4(4)(-1)}}{2 \times 4} \\
\Rightarrow \quad \sin x=\frac{-2 \pm \sqrt{4+16}}{8} \\
\Rightarrow \quad \sin x=\frac{-2 \pm \sqrt{20}}{8}
\end{array}
$$

Either

$$
\Rightarrow \quad \sin x=\frac{-2+\sqrt{20}}{8}
$$

$$
\Rightarrow \quad \sin x=0.3090
$$

$\sin x$ is positive in I and II quadrant with reference angle $x=18^{\circ}=\frac{\pi}{10}$

In I Quadrant

$$
x=\frac{\pi}{10}
$$

As $2 \pi$ is the period
of $\sin x$
General values of $x$
is

In II Quadrant

$$
x=\pi-\frac{\pi}{10}=\frac{9 \pi}{10}
$$

As $2 \pi$ is theperioc
General values $\sin _{\mathrm{f}}<x$ s
$\sin x$ is negative in III and IV quadrant with reference angle $x=54^{\circ}=\frac{3 \pi}{10}$

In III Quadrant In IV Quadrant

$$
x=\pi+\frac{3 \pi}{10}=\frac{13 \pi}{10}
$$

$A_{50} 2 \pi$ is the period of


Ganeral values of $x$ is
$\frac{13 \pi}{10}+2 n \pi \quad n \in Z$


As $2 \pi$ is the period of $\sin x$
General values of $x$ is

$$
\frac{17 \pi}{10}+2 \mathrm{n} \pi \quad \mathrm{n} \in \mathrm{Z}
$$

Hence Solution Set $=\left\{\frac{\pi}{2}+2 n \pi\right\} \cup\left\{\frac{\pi}{10}+2 n \pi\right\} \cup\left\{\frac{9 \pi}{10}+2 n \pi\right\} \cup\left\{\frac{13 \pi}{10}+2 n \pi\right\} \cup\left\{\frac{17 \pi}{10}+2 n \pi\right\} n \in Z$

$$
\begin{aligned}
& \cos 2 x=\sin 3 x \\
& \Rightarrow \quad 4 \sin ^{3} x-2 \sin ^{2} x-3 \sin x-1-c \\
& \text { (U). Ing Syminu io Division }
\end{aligned}
$$

Q. $11 \sec 3 \theta=\sec \theta$

## Solution:

$$
\begin{array}{ll} 
& \sec 3 \theta=\sec \theta \\
\Rightarrow & \frac{1}{\cos 3 \theta}=\frac{1}{\cos \theta} \\
\Rightarrow & \cos \theta=\cos 3 \theta \\
\Rightarrow & 4 \cos ^{3} \theta-3 \cos \theta-\cos \theta=0 \\
\Rightarrow & 4 \cos ^{3} \theta-4 \cos \theta=0 \\
\Rightarrow & 4 \cos \theta\left(\cos ^{2} \theta-1\right)=0 \\
\Rightarrow & \cos \theta\left(\cos ^{2} \theta-1\right)=0
\end{array}
$$



$$
\Rightarrow \cos _{\theta}^{\cos 3 \theta} \theta=\cos 3 \theta
$$

\[

\]

As at $\theta=\frac{\pi}{2}$ and $\theta=\frac{3 \pi}{2}$ given equation is not defined so these values of $\theta$ will not include in solution set.
Q. $12 \tan 2 \theta+\operatorname{cct} \theta=0$

Solution:

$$
\Rightarrow \quad \frac{\sin 2 \theta}{\cos 2 \theta}+\frac{\cos \theta}{\sin \theta}=0
$$

$$
\begin{aligned}
& \Rightarrow \quad \frac{\sin 2 \theta \sin \theta+\cos \theta \cos 2 \theta}{\cos 2 \theta \sin \theta}=0 \\
& \Rightarrow \quad \cos 2 \theta \cos \theta+\sin 2 \theta \sin \theta=0(\cos 2 \theta \sin \theta) \\
& \Rightarrow \quad \cos 2 \theta \cos \theta+\sin 2 \theta \sin \theta=0 \\
& \Rightarrow \quad \cos (2 \theta-\theta)=0 \\
& \Rightarrow \quad \cos \theta=
\end{aligned}
$$

$a=-\frac{\tau}{2},-\frac{-\pi}{2}$
A $52 \pi$ is the period of $\cos \theta$
General value of $\theta$ is $\frac{\pi}{2}+2 n \pi, \frac{3 \pi}{2}+2 n \pi$
Hence the solution Set $=\left\{\frac{\pi}{2}+2 n \pi\right\} \cup\left\{\frac{3 \pi}{2}+2 n \pi\right\} \quad n \in Z$

## Q. $13 \sin 2 x+\sin x=0$

## Solution:

$$
\because \sin 2 \theta=2 \sin \theta \cdot \cos \theta
$$

As $\cos x$ is negative in II and III Quadrant with reference angle

$$
x=\frac{\pi}{3}
$$

$$
\begin{aligned}
& \text { In II Quadrant } \\
& x=\pi-\frac{\pi}{3}=\frac{2 \pi}{3}
\end{aligned}
$$

is $2 \pi$ is the period dfcos $x$ A. $2 \pi$ ss he period of $\cos x$
So General value of $x$ is

$$
\frac{4 \pi}{3}+2 n \pi \quad n \in Z
$$

Hence the solution Set $=\{n \pi\} \cup\left\{\frac{2 \pi}{3}+2 n \pi\right\} \cup\left\{\frac{4 \pi}{3}+2 n \pi\right\} \quad n \in Z$

$$
\begin{aligned}
& \sin 2 x+\sin x=0 \\
& \Rightarrow \quad 2 \sin x \cos x+\sin x=0 \\
& \Rightarrow \quad \sin x(2 \cos x+1)=0 \\
& \Rightarrow \begin{array}{c}
\text { Either } \\
\sin x=0 \\
x=0, \pi
\end{array} \\
& \text { As } 2 \pi \text { is the period of } \sin x \\
& \text { So General value of } x \text { is } \\
& \Rightarrow \quad \begin{array}{l}
\text { Or } \\
2 \cos x+1=0
\end{array} \\
& \Rightarrow \quad 2 \cos x=-1 \\
& \Rightarrow \quad \cos x=\frac{-1}{2}
\end{aligned}
$$

## Q. $14 \sin 4 x-\sin 2 x=\cos 3 x$

## Solution:

$\sin 4 x-\sin 2 x=\cos 3 x$
Using formula to convert difference into product
$\Rightarrow \quad 2 \cos \left(\bigodot^{4 x+2}-\frac{x}{2}\right) \sin (4 x-2 . x): \cos 3 x \cdot \because \sin P-\sin Q=2 \cos \left(\frac{P+Q}{2}\right) \sin \left(\frac{P-Q}{2}\right)$
$\Rightarrow \quad 2 \cos 3 x \sin . c=\cos 3 x$
$\Rightarrow \sqrt{2} \operatorname{cas} 3 x \sin x-\cos 3 x=0$
$\Rightarrow \quad \cos 3 x(2 \sin x-1)=0$
$\Rightarrow \quad \cos 3 x(2 \sin x-1)=0$

$$
\begin{gathered}
\quad \begin{array}{c}
\text { Either } \\
\cos 3 x=0
\end{array} \\
3 x=\frac{\pi}{2}, \frac{3 \pi}{2}
\end{gathered}
$$

As $2 \pi$ is the period of $\cos x$

So General value of $x$ is
$3 x=\frac{\pi}{2}+2 n \pi, 3 x=\frac{3 \pi}{2}+2 n \pi, n \in Z$
$x=\frac{\pi}{6}+\frac{2 n \pi}{3}, x=\frac{\pi}{2}+\frac{2 n \pi}{3}$

$$
\begin{array}{cc} 
& \text { Or } \\
\Rightarrow & 2 \sin x-1=0 \\
\Rightarrow & 2 \sin x=1 \\
\Rightarrow & \sin x=\frac{1}{2}
\end{array}
$$

$\sin x$ is positive in I and II
Quadrant with reference angle $x=\frac{\pi}{6}$

In I Quadrant

$$
x=\frac{\pi}{6}
$$

As $2 \pi$ is the period of $\sin x$
So General value of $x$ is

$$
\frac{\pi}{6}+2 n \pi \quad n \in Z
$$

In II Quadrant

$$
x=\pi-\frac{\pi}{6}=\frac{5 \pi}{6}
$$

As $2 \pi$ is the period of $\sin x$ So General value of $x$ is

$$
\frac{5 \pi}{6}+2 n \pi \quad n \in Z
$$

Q. $15 \sin x+\cos x=\cos$

## Solution:

$\sqrt{\sin } \sqrt{x}+\cos 3 x=\cos x$
$\sin x=\cos 5 x-\cos 3 x$
Using formula to convert difference into product

$$
\begin{aligned}
& \Rightarrow \quad \sin x=-2 \sin \left(\frac{5 x+3 x}{2}\right) \sin \left(\frac{5 x-3 x}{2}\right) \\
& \Rightarrow \quad \sin x=-2 \sin 4 x \sin x \\
& \Rightarrow \quad \sin x+2 \sin 4 x \sin x=0 \\
& \Rightarrow \\
& \begin{array}{l}
\sin x\left(1+2 \cos P-\cos Q=-2 \sin \left(\frac{P+Q}{2}\right)\right.
\end{array} \\
& \begin{array}{l}
\text { As } 2 \pi \text { is the period of } \sin x \\
\text { So General value of } x \text { is }
\end{array} \\
& \Rightarrow
\end{aligned}
$$

$\pi+2 n \pi$ and $2 n \pi \quad n \in Z$
$\sin 4 x$ is negative in III and IV Quadrant with reference

$$
\text { angle } 4 x=\frac{\pi}{6}
$$

In III Quadrant

$$
4 x=\pi+\frac{\pi}{6}=\frac{7 \pi}{6}
$$

As $2 \pi$ is the period of $\sin x$
So General value of $x$ is

$$
\begin{gathered}
4 x=\frac{7 \pi}{6}+2 n \pi \quad n \in Z \\
x=\frac{7 \pi}{24}+\frac{n \pi}{2}
\end{gathered}
$$

So General value of $x$ is

$$
4 x=2 \pi-\frac{\pi}{6}=\frac{11 \pi}{6}
$$

$$
\text { As } 2 \pi \text { is the period of } \sin x
$$

As $2 \pi$ is the period of $\sin x$

$$
\begin{gathered}
4 x=\frac{11 \pi}{6}+2 n \pi \quad n \in Z \\
x=\frac{11 \pi}{24}+\frac{n \pi}{2}
\end{gathered}
$$

$$
\left.+\frac{n \pi}{2}\right\}, n \in Z
$$

Q. $16 \sin 3 x+\sin 2 x+\sin x=0$

## Solution:

$\sin 3 x+\sin 2 x+\sin x=0$
$\Rightarrow \quad \sin 3 x+\operatorname{cor} x+\sin 2 x=0$
Using fo inu'a to conyert sum into product
$\sqrt{-\sqrt{2}}\left(\frac{x+x}{2}\right) \cos \left(\frac{3 x-x}{2}\right)+\sin 2 x=0 \quad \because \sin P+\sin Q=2 \sin \left(\frac{P+Q}{2}\right) \cos \left(\frac{P-Q}{2}\right)$

$$
\begin{array}{ll}
\Rightarrow & 2 \sin 2 x \cos x+\sin 2 x=0 \\
\Rightarrow & \sin 2 x(2 \cos x+1)=0
\end{array}
$$

$$
\Rightarrow \begin{gathered}
\text { Either } \\
\sin 2 x=0 \\
2 x=0, \pi
\end{gathered}
$$

As $2 \pi$ is the period of $\sin x$
So General value of $x$ is $2 x=\pi+2 \mathrm{n} \pi, 2 x=2 n \pi \quad n \in Z$

$$
x=\frac{\pi}{2}+\mathrm{n} \pi
$$

$$
\begin{array}{ll} 
& \mathrm{Or} \\
\Rightarrow & 2 \cos x+1=0 \\
\Rightarrow & 2 \cos =-1
\end{array}
$$

$\cos x$ is negative in II and II Q arrant with reference angle $x=\frac{\pi}{3}$
$x-\pi-\frac{\pi}{3}=\frac{2 \pi}{3}$
As $2 \pi$ is the period of $\cos x$
So General value of $x$ is

In III Quadrant

$$
x=\pi+\frac{\pi}{3}=\frac{4 \pi}{3}
$$

As $2 \pi$ is the period of $\cos x$
So General value of $x$ is

$$
\begin{aligned}
& x=\frac{4 \pi}{3}+2 n \pi \\
& \left\{\frac{4 \pi}{3}+2 n \pi\right\} \quad n \in Z
\end{aligned}
$$

## Q. $17 \sin 7 x-\sin x=\sin 3 x$

## Solution:

$\sin 7 x-\sin x=\sin 3 x$
Using formula to convert difference into product

$$
\left.\begin{array}{lll}
\Rightarrow \quad 2 \cos \left(\frac{7 x+x}{2}\right) \sin \left(\frac{7 x-x}{2}\right)=\sin 3 x & \because \sin P-\sin Q=2 \cos \left(\frac{P+Q}{2}\right) \sin \left(\frac{P-Q}{2}\right) \\
\Rightarrow \quad 2 \cos 4 x \sin 3 x=\sin 3 x
\end{array}\right)
$$

$3 x=\pi+2 \mathrm{n} \pi, 3 x=2 n \pi \quad n \in Z$

$$
x=\frac{\pi}{3}+\frac{2 n \pi}{3}, x=\frac{2 n \pi}{3}
$$

$\cos 4 x$ is positive in the I and IV Quadrant with reference angle
$4 x=\frac{\pi}{3}$

In I Quadrant


$4 x=\frac{\pi}{3} \quad 4 x=2 \pi-\frac{\pi}{3}=\frac{\pi}{3}$
As $2 \pi$ is te period of cos $x$ As $2 \pi$ is the period of $\cos x$
So General value of $x$ is
$n \in Z \quad 4 x=\frac{5 \pi}{3}+2 n \pi \quad n \in Z$

$$
\begin{array}{l|l}
x=\frac{\pi}{12}+\frac{n \pi}{2} & x=\frac{5 \pi}{12}+\frac{n \pi}{2} \\
\hline
\end{array}
$$

Hence Solution Set $=\left\{\frac{2 n \pi}{3}\right\} \cup\left\{\frac{\pi}{3}+\frac{2 n \pi}{3}\right\} \cup\left\{\frac{\pi}{12}+\frac{n \pi}{2}\right\} \cup\left\{\frac{5 \pi}{12}+\frac{n \pi}{2}\right\} n \in Z$

## Q. $18 \sin x+\sin 3 x+\sin 5 x=0$

## Solution:

$$
\begin{array}{ll} 
& \sin x+\sin 3 x+\sin 5 x=0 \\
\Rightarrow & (\sin 5 x+\sin x)+\sin 3 x=0 \\
& \text { Using forrm'a to conyent sum }
\end{array}
$$

$12 \sin 3 x \cos 2 x+\sin 3 x=0$

$$
\sin 3 x(2 \cos 2 x+1)=0
$$

$$
\Rightarrow \begin{gathered}
\text { Either } \\
\sin 3 x=0 \\
3 x=0, \pi
\end{gathered}
$$

As $2 \pi$ is the period of $\sin x$
So General value of $x$ is
$3 x=\pi+2 \mathrm{n} \pi, 3 x=2 n \pi \quad n \in \mathbb{Z}$

$$
x=\frac{\pi}{3}+\frac{2 \mathrm{n} \pi}{3}, x=\frac{2 n \pi}{3}
$$

$$
\begin{array}{cc} 
& \text { Or } \\
\Rightarrow & 2 \cos 2 x+1=0 \\
\Rightarrow & 2 \cos 2 x=-1 \\
\Rightarrow & \cos 2 x=\frac{-1}{2}
\end{array}
$$

$\cos 2 x$ is negative in the II and III Quadrant with

$$
\text { reference angle } 2 x=\frac{\pi}{3}
$$

In II Quadrant $\quad$ In III Quadrant

$$
2 x=\pi-\frac{\pi}{3}=\frac{2 \pi}{3}
$$

As $2 \pi$ is the period of $\cos x$
So General value of $x$ is
$2 x=\frac{2 \pi}{3}+2 n \pi \quad n \in Z$
So General value of $x$ is

$$
2 x=\frac{4 \pi}{3}+2 n \pi
$$

$$
2 x=\pi+\frac{\pi}{3}=\frac{4 \pi}{3}
$$

As $2 \pi$ is the period of $\cos x$

$$
x=\frac{\pi}{3}+n \pi
$$

$$
\cup\left\{\frac{2 \pi}{3}+n \pi\right\} n \in Z
$$

Using formula to convert sum into product

$$
\begin{aligned}
& \Rightarrow \quad\left(2 \sin \left(\frac{7 \theta+\theta}{2}\right) \cos \left(\frac{7 \theta-\theta}{2}\right)\right)+\left(2 \sin \left(\frac{5 \theta+3 \theta}{2}\right) \cos \left(\frac{5 \theta-3 \theta}{2}\right)\right)=0 \\
& \Rightarrow \quad 2 \sin 4 \theta \cos 3 \theta+2 \sin 4 \theta \cos \theta=0 \\
& \Rightarrow \quad 2 \sin 4 \theta(\cos 3 \theta+\cos \theta)=0 \\
& \Rightarrow \quad \sin 4 \theta-\cos \theta)=0
\end{aligned}
$$

ITither
(3) $4+0=0$

$$
4 \theta=0, \pi
$$

As $2 \pi$ is the period of $\sin \theta$
So General value of $x$ is
$4 \theta=\pi+2 \mathrm{n} \pi, 4 \theta=2 n \pi \quad n \in Z$

$$
\theta=\frac{\pi}{4}+\frac{\mathrm{n} \pi}{2}, \theta=\frac{n \pi}{2}
$$

$$
\begin{gathered}
\text { Or } \\
\Rightarrow \quad \cos 3 \theta+\cos \theta=0
\end{gathered}
$$

Using formula to convert sum into product

$$
\begin{gathered}
\Rightarrow \quad 2 \cos \left(\frac{3 \theta+\theta}{2}\right) \cos \left(\frac{3 \theta-\theta}{2}\right)=0 \quad \because \cos P+\cos Q=2 \cos \left(\frac{P+Q}{2}\right) \cos \left(\frac{P-Q}{2}\right) \\
\Rightarrow \quad 2 \cos 2 \theta \cos \theta=0 \\
\Rightarrow \quad \cos 2 \theta \cos \theta=0
\end{gathered}
$$

$$
\Rightarrow \begin{gathered}
\text { Either } \\
\cos 2 \theta=0 \\
2 \theta=\frac{\pi}{2}, \frac{3 \pi}{2}
\end{gathered} \quad \Rightarrow \begin{gathered}
\text { Or } \\
\text { co } \\
\theta=\frac{\pi}{2},
\end{gathered}
$$

As $2 \pi$ is the period of $\cos \theta$
So General value of $\theta$ is

$$
\begin{array}{c|c}
2 \theta=\frac{\pi}{2}+2 n \pi, 2 \theta=\frac{3 \pi}{2}+2 n \pi \\
\theta=\frac{\pi}{4}+n \pi, \theta=\frac{3 \pi}{4}+n \pi & \\
\theta=\frac{\pi}{2}+2 n \pi, \theta=\frac{3 \pi}{2}+2 n \pi
\end{array}
$$

The Solution Set $=\left\{\frac{n \pi}{2}\right\} \cup\left\{\frac{\pi}{4}+\frac{n \pi}{2}\right\} \cup\left\{\frac{\pi}{4}+n \pi\right\} \cup\left\{\frac{3 \pi}{4}+n \pi\right\} \cup\left\{\frac{\pi}{2}+2 n \pi\right\} \cup\left\{\frac{3 \pi}{2}+2 n \pi\right\} \quad n \in$
Q. $20 \cos \theta+\cos 3 \theta+\cos 5 \theta+\cos 7 \theta=0$

## Solution:

$\cos \theta+\cos 3 \theta+\cos 5 \theta+\cos 7 c=0$
$\Rightarrow \quad(\cos 7 \theta \cos \beta)+(\cos 5 \theta+\cos (3 \theta)=-b$
Usirip fornula to convert sum into product
$\sqrt{\sqrt{ } \sqrt{2} \sqrt{2}\left(\frac{\theta(+)}{2}\right) \cos \left(\frac{7 \theta-\theta}{2}\right)+2 \cos \theta\left(\frac{5 \theta+3 \theta}{2}\right) \cos \left(\frac{5 \theta-3 \theta}{2}\right)=0 \quad \because \cos P+\cos Q=2 \cos \left(\frac{P+Q}{2}\right) \cos \left(\frac{P-Q}{2}\right)}$
$\Rightarrow \quad 2 \cos 4 \theta \cos 3 \theta+2 \cos 4 \theta \cos \theta=0$
$\Rightarrow \quad 2 \cos 4 \theta(\cos 3 \theta+\cos \theta)=0$
$\Rightarrow \quad \cos 4 \theta(\cos 3 \theta+\cos \theta)=0$

$$
\begin{gathered}
\text { Either } \\
\Rightarrow \quad \cos 4 \theta=0 \\
4 \theta=\frac{\pi}{2}, \frac{3 \pi}{2}
\end{gathered}
$$

As $2 \pi$ is the perratofos $\theta$
So General watue of $\theta$ is
$+2=\sqrt{2}+n \pi \quad 4 \theta=\frac{3 \pi}{2}+2 n \pi \quad n \in Z$

$$
\theta=\frac{\pi}{8}+\frac{n \pi}{2}, \theta=\frac{3 \pi}{8}+\frac{n \pi}{2}
$$



$$
\begin{gathered}
\text { Either } \\
\Rightarrow \quad \cos 2 \theta=0 \\
2 \theta=\frac{\pi}{2}, \frac{3 \pi}{2}
\end{gathered}
$$

As $2 \pi$ is the period of $\cos \theta$
So General value of $\theta$ is

$$
\begin{array}{rl|l}
2 \theta & =\frac{\pi}{2}+2 n \pi, 2 \theta=\frac{3 \pi}{2}+2 n \pi \quad n \in Z & \theta=\frac{\pi}{2}+2 n \pi, \theta=\frac{3 \pi}{2}+2 n \pi \quad n \in Z \\
\theta & =\frac{\pi}{4}+n \pi, \theta=\frac{3 \pi}{4}+n \pi &
\end{array}
$$

$$
\text { Hence the Solution Set }=\left\{\frac{\pi}{8}+\frac{n \pi}{2}\right\} \cup\left\{\frac{3 \pi}{8}+\frac{n \pi}{2}\right\} \cup\left\{\frac{\pi}{4}+n \pi\right\} \cup\left\{\frac{3 \pi}{4}+n \pi\right\} \cup\left\{\frac{\pi}{2}+2 n \pi\right\} \cup\left\{\frac{3 \pi}{2}+2 n \pi\right\} n \in Z
$$

