

Sequences also called progressions, are used to represent ordered lists of numbers. A sequence is a function whose domain is the subset of natural numbers N or W (in some cases). If a natural number n belongs to the domain of sequence $\{a_n\}$ then the corresponding elements in its range are denoted by a_n . The elements in the range of sequence $\{a_n\}$ are called its terms. A special notation a_n is used for nth term of the sequence.

Finite and Infinite Sequence:

A sequence having finite terms is called finite sequence e.g. 1,3,5,...,11 is a finite sequence. Whereas, a sequence with infinite number of terms is called an infinite sequence. e.g., 3,7,11,... is an infinite sequence. An infinite sequence has no last term.

Real Sequence:

INNN

If all members of a sequence are real numbers, then it is called a real sequence.

l N

EXERCISE 6.1
9.1 Write the first four terms of the following sequences, if
(i)
$$a_n = 2n - 3$$

Solution:
As given $a_n = 2n - 3$
Put $n = 1 = a$ [$2(1) - 3 = 1$
Put $n = 1 = a$ [$2(2) - 3 = 1$
Put $n = 3 \Rightarrow a_n = 2(3) - 3 = 3$
Put $n = 4 \Rightarrow a_n = 2(4) - 3 = 5$
So first four terms are
 $-1, 1, 3, 5$
(ii) $a_n = (-1)^n n^2$
Solution:
As given $a_n = (-1)^n n^2$
Put $n = 1 \Rightarrow a_1 = (-1)^n (1)^2 = -1 \times 1 = -1$
Put $n = 1 \Rightarrow a_1 = (-1)^n (2)^2 = 1 \times 4 = 4$
Put $n = 3 \Rightarrow a_n = (-1)^n (2)^2 = 1 \times 4 = 4$
Put $n = 3 \Rightarrow a_n = (-1)^n (2)^2 = -1 \times 19 = -9$
Put $n = 4 \Rightarrow a_n = (-1)^n (2n - 3)$
Solution:
As given $a_n = (-1)^n (2n - 3)$
Solution:
As given $a_n = (-1)^n (2n - 3)$
Put $n = 1 \Rightarrow a_1 = (-1)^n (2n - 3)$
Put $n = 1 \Rightarrow a_n = (-1)^n (2(1) - 8) = F(-1) + (1)$
Put $n = 1 \Rightarrow a_n = (-1)^n (2(1) - 8) = F(-1) + (1)$
Put $n = 3 \Rightarrow a_n = (-1)^n (2(1) - 3) = (-1)((3) = -3$
Put $n = 3 \Rightarrow a_n = (-1)^n (2(1) - 3) = (-1)((3) = -3$
Put $n = 3 \Rightarrow a_n = (-1)^n (2(1) - 3) = (-1)((3) = -3$
Put $n = 3 \Rightarrow a_n = (-1)^n (2(1) - 3) = (-1)((3) = -3$
Put $n = 3 \Rightarrow a_n = (-1)^n (2(1) - 3) = (-1)((3) = -3$
Put $n = 3 \Rightarrow a_n = (-1)^n (2(1) - 3) = (-1)((3) = -3$
Put $n = 3 \Rightarrow a_n = (-1)^n (2(1) - 3) = (-1)((3) = -3$
Put $n = 3 \Rightarrow a_n = (-1)^n (2(1) - 3) = (-1)((3) = -3$
Put $n = 3 \Rightarrow a_n = (-1)^n (2(1) - 3) = (-1)((3) = -3$
Put $n = 3 \Rightarrow a_n = (-1)^n (2(1) - 3) = (-1)((3) = -3$
Put $n = 3 \Rightarrow a_n = (-1)^n (2(1) - 3) = (-1)((3) = -3$
Put $n = 3 \Rightarrow a_n = (-1)^n (2(1) - 3) = (-1)((3) = -3$
Put $n = 3 \Rightarrow a_n = (-1)^n (2(1) - 3) = (-1)((3) = -3$
Put $n = 3 \Rightarrow a_n = (-1)^n (2(1) - 3) = (-1)((3) = -3$
Put $n = 3 \Rightarrow a_n = (-1)^n (2(1) - 3) = (-1)((3) = -3$
Put $n = 3 \Rightarrow a_n = (-1)^n (2(1) - 3) = (-1)((3) = -3$
Put $n = 3 \Rightarrow a_n = (-1)^n (2(1) - 3) = (-1)((3) = -3$
Put $n = 3 \Rightarrow a_n = (-1)^n (2(1) - 3) = (-1)((3) = -3$
Put $n = 3 \Rightarrow a_n = (-1)^n (2(1) - 3) = (-1)((3) = -3$
Put $n = 3 \Rightarrow a_n = (-1)^n (2(1) - 3) = (-1)((3) = -3$
Put $n = 3 \Rightarrow a_n = (-1)^n (2(1) - 3) = (-1)((3) = -3$
Put $n = 3 \Rightarrow a_n = (-1)^n (2(1) - 3) = (-1)(($

(viii)
$$a_n = na_{n-1}, a_1 = 1$$

Solution:
As given $a_n = na_{n-1}$ (i)
and $a_1 = 1$
Put $n=2$ in eq. (i)
 $a_2 = 2a_{1-1} = 2a_1 = 2(1) = 2$
Put $n=3$ in eq. (i)
 $a_3 = 3a_{3-1} = 3a_2 = 3(2) = 6$
Put $n=4$ in eq. (i)
 $a_4 = 4a_{4-1} = 4a_3 = 4(6) = 24$
So first four terms are
1, 2, 6, 24
(ix) $a_n = (n+1)a_{n-1}, a_1 = 1$
Solution:
 $a_n = (n+1)a_{n-1}, a_1 = 1$
Put $n=2$ in eq. (i)
 $a_2 = (2+1)a_{n-1} = 3a_1 = 3(1) = 3$
Put $n=3$ in eq. (i)
 $a_3 = (3+1)a_{3-1} = 4a_2 = 4(3) = 12$
Put $n=4$ in eq. (i)
 $a_4 = (4+1)a_{4-1} = 5a_3 = 5(12) = 60$
So first four terms are
1, 3, 12, 60

$$(\mathbf{x}) \qquad \mathbf{a}_{\mathbf{n}} = \frac{1}{\mathbf{a} + (\mathbf{n} - \mathbf{1})\mathbf{d}}$$

As given
$$a_n = \frac{1}{a + (n-1)d}$$

Put $n = 1 \Rightarrow a_1 = \frac{1}{a + (1-1)d} = \frac{1}{a + 0(d)} = \frac{1}{a + 0} = \frac{1}{a}$
Put $n = 2 \Rightarrow a_2 = \frac{1}{a + (2-1)d} = \frac{1}{a + (1)d} = \frac{1}{a + d}$
Put $n = 3 \Rightarrow a_3 = \frac{1}{a + (3-1)d} = \frac{1}{a + 2d}$
Put $n = 4 \Rightarrow a_4 = \frac{1}{a + (4-1)d} = \frac{1}{a + 5d}$
So first four terms are
 $\frac{1}{a}, \frac{1}{a + d}, \frac{1}{a + 2d}, \frac{1}{a + 5d}$

Arithmetic progression:

A sequence $\{a_n\}$ is an Arithmetic sequence or arithmetic progression (A.P), if $a_n - a_{n-1}$ is the same number $\forall n \in N$ and n > 1. The difference $a_n - a_{n-1}$ (n > 1) i.e., the difference of two consecutive terms of an A.P., is called the **common difference** and is usually denoted by *d*.

Rule for the *n*th term of A.P:

We know that
$$a_n - a_{n-1} = d$$
 $(n > 1)$
Which implies $a_n = a_{n-1} + d$ $(n > 1)$ (i)
Putting $n = 2, 3, 4, ...$ in (i) we get
 $a_2 = a_1 + d = a_1 + (2-1)d$
 $a_3 = a_2 + d = (a_1 + d) + d$
 $a_3 = a_1 + 2d = a_1 + (3-1)d$
 $a_4 = a_3 + d = (a_1 + 2d) + d$
 $a_4 = a_1 + 3d = a_1 + (4-1)d$
Thus we conclude that
 $a_n = a_1 + (n-1)d$
Where $a_n = n^{\text{th}}$ term or general term,
 $a_1 = 1^{\text{st}}$ term , $n =$ Number of terms , $d =$ Common difference

Q.2 If $a_{n-3} = 2n-5$, find the nth term of the sequence.

Solution:

 $a_{n-3} = 2n - 5$ $\operatorname{Put} n = 4 \Longrightarrow a_{4-3} = 2(4)$ Alternative Method: $a_{n-3} = 2n - 5$ Put $n = 3 \Rightarrow$ =2(5) Replace *n* by n+3Put $p = 6 \Rightarrow a_{6,3}$ $a_3 = 7$ =2(6) $a_{n+3-3} = 2(n+3) - 5$ Countron difference $a_n = 2n + 6 - 5$ d = 5 - 3 = 2; d = 7 - 5 = 2 $a_n = 2n + 1$ As difference is same so it is arithmetic sequence. So $a_n = a_1 + (n-1)d$ =3+(n-1)2=3+2n-2 $a_n = 2n + 1$

Q.3 If the 5th term of an A.P is 16 and the 20th term is 46, what is its 12th term? Solution:

$$a_{5} = 16 , \quad a_{20} = 46 , \quad a_{12} = ?$$

$$a_{1} + 4d = 16 \rightarrow (i) ; \quad a_{1} + 19d = 46 \rightarrow (ii) \qquad Qa_{n} = a_{1} + (n-1)d$$

$$Eq \ i) - Eq \ ii)$$

$$a_{1} + 4d = 16$$

$$\frac{\pm a_{1} \pm 19d = \pm 46}{-15d = -30}$$

$$d = 2$$
Put in (i)

$$a_{1} + 4(2) = 16$$

$$a_{1} + 8 = 16$$

$$a_{1} = 8$$
Now $a_{12} = a_{1} + 11d = 8 + 11(2) = 30$

~ 75

(C

Q.4 Find the 13th term of the sequence $x, 1, 2-x, 3-2x, \dots$

Solution:

$$x,1,2-x,3-2x,...,a_{1} = x , n = 13, a_{13} = ?$$

$$d = a_{2} - a_{1} = 1 - x ; \quad d = a_{3} - a_{2} = (2 - x) - i = 2 - x - 1 = 1 - x$$
As $a_{n} = a_{1} + (i) - 1 a$

$$a_{3} = a_{2} + 12 a^{2}$$

$$= x + 12(1 - x)$$

$$= x + 12 - 12x$$

$$a_{13} = 12 - 11x$$

Q.5 Find the 18 term of the A.P. if its 6th term is 19 and the 9th term is 31.

Solution:

$$a_{6} = 19 , \quad a_{18} = ?$$

$$\Rightarrow a_{1} + 5d = 19 \quad (i)$$
and $a_{9} = 31$

$$\Rightarrow a_{1} + 8d = 31 \quad (ii)$$

$$Eq \ i) - Eq \ ii)$$

$$a_{1} + 5d = 19$$

$$\frac{\pm a_{1} \pm 8d = \pm 31}{-3d = -12}$$

$$d = 4$$
Put in (i)

$$a_{1} + 5(4) = 19$$

$$a_{1} = -1$$
Now: $a_{18} = a + 17d$

$$= -1 + 17(4)$$

$$= -1 + 68$$

$$a_{18} = 67$$

Q.6 Which term of the A.P 5,2,-1,..... is -85?

5,2,-1,..... -85
Here
$$a_1 = 5, d = a_2 - a_1 = 2 - 5 = -3$$
,
 $a_n = -85$
As we know
 $a_n = a_1 + (n-1)d$
 $-85 = 5 + (n-1)(-3)$
 $-90 = (n-1)(-3)$
 $30 = n - 1$
 $31 = n$
So, -85 is the 31⁺ term of the given
A.P.
2.4,10,...... is 148?
Solution:
 $-2,4,10,......148$
Here $a_1 = -2, d = a_2 - a_1$
 $= 4 - (-2) = 6, a_n = 148$
As we know
 $a_n = a_1 + (n-1)d$
425

9.10 Determine whether i) -19 ii)2 are
the terms of the (CP 1)7.13.5 m. (.)
or next:
$$3 = n = 1$$

 $26 = n$
So 148 is the 26⁶ term of the given
 $A.P$
9.8 How must terms are there in the
 $A.P$
9.8 How must terms are there in the
 $A.P$
9.8 How must terms are there in the
 $A.P$
9.8 How must terms are there in the
 $A.P$
9.8 How must terms are there in the
 $A.P$
9.8 How must terms are there in the
 $A.P$
9.8 How must terms are there in the
 $A.P$
9.8 How must terms are there in the
 $A.P$
9.8 How must terms are there in the
 $A.P$
9.8 How must terms are there in the
 $A.P$
9.1 $A_{n} = 68$; $d = 3$, $n = 7$
As we know
 $a_{n} = a_{n} + (n-1)d$
 $68 = 11 + (n-1)(3)$
 $68 = 11 = (n-1)3$
 $\frac{57}{3} = n - 1$
 $19 = n = 1$
 $19 = n = 1$
 $19 + 1 = n$
 $10 = n$
50.101001:
Given that: $a_{n} = 3n - 1$
Put $n = 1 \Rightarrow a_{n} = 3(1) - 1 = 2$
Put $n = 2 \Rightarrow a_{n} = 3(2) - 1 = 5$
Put $n = 3$ $n = 3$
 $n = 1$
 $\frac{15}{4} + 1 = n$
 $\frac{19}{4} = n$ Not Possible
So, 2 is not the term of A.P

Q.11 If
$$l,m,n$$
 are the p^{h} , q^{h} , and r^{h} terms of an A.P. show that
(i) $l(q-r)+m(r-p)+n(p-q)=0$
Solution:
Given that l,m,n are the p^{h},q^{h} , and r^{h} terms of an A.P.
 $a_{p}-l$ \Rightarrow $a_{+}(p-l)d = 0$ (i)
 $a_{q}=m$ \Rightarrow $a_{+}(p-l)d = n$ (ii)
 $a_{q}=m$ \Rightarrow $a_{+}(p-l)d = n$ (iii)
 $a_{+}(r-1)d = n$ (iii)
 $[a_{+}(r-1)d] - [a_{+}(q-1)d] = l - m$
 $(a_{+}pd-d) - (a_{+}qd-d) = l - m$
 $(p-q)d = l - m$
 $p-q = \frac{l-m}{d}$ (iv)
Subtract (iii) from (ii)
 $[a_{+}(q-1)d] - [a_{+}(r-1)d] = m - n$
 $(a_{+}qd-d) - (a_{+}rd-d) = m - n$
 $(a_{+}qd-d) - (a_{+}rd-d) = m - n$
 $(a_{+}qd-d) - (a_{+}rd-d) = m - n$
 $(q-r)d = m - n$
 $q-r = \frac{m-n}{d}$ (v)
Subtract (i) from (iii)
 $[a_{+}(r-1)d] - [a_{+}(r-1)d] = n - l$
 $(a_{+}rd-d) - (a_{+}pd-d) = n - l$
 $(r-p)d = n - l$
 $r-p = \frac{n-l}{d}$ (v)
Subtract (i) from (iii)
 $[a_{+}(r-1)d] - [n(r-p)+n(p-q)]$
L.H.S: $l(q-r)+m(r-p)+n(p-q) = 0$
Subtract $(a_{-}r) + m(r-p) + n(p-q) = 0$

(i)
$$p(\mathbf{n}-\mathbf{n})+q(\mathbf{n}-l)+r(l-\mathbf{m})=0$$

Solution:
L.H.S: $p(m-n)+q(n-l)+r(l-m)$.
From equations (iv), (v), (v)
 $p = \frac{l-w}{d}$, $r-p = \frac{n-l}{d}$, $n-l = d(r-p)$
 $l = \frac{l-w}{d}$, $m-n = d(q-r)$, $n-l = d(r-p)$
 $l = \frac{l-w}{d}$, $\frac{l}{l} = \frac{l-w}{d}$, $n-l = d(r-p)$
 $l = \frac{l-w}{d}$, $\frac{l}{l} = \frac{l-w}{d}$
Solution:
Given sequence is:
 $\left(\frac{4}{3}\right)^2 \left(\frac{7}{3}\right)^2 \left(\frac{10}{3}\right)^2$,,
Consider the A.P:
 $4.7,10,...,$
 $a_r = 4$; $d = 7-4=3$
As we know
 $a_r = a_r + (n-1)d$
 $a_r = 4 + (n-1)3$
 $a_r = 4 + 3n-3$
 $a_r = 3p-1$
Hence, the recorriced non-term of the
the streament is:
 $a_r = \left(\frac{3n+1}{3}\right)^2$
Hence proved that: $b = \frac{2nc}{a+c}$
 $l = \frac{a+c}{a+c}$
Hence proved that: $b = \frac{2nc}{a+c}$
Hence proved that: $b = \frac{2nc}{a+c}$

Q.14 If
$$\frac{1}{a} \frac{1}{b}$$
 and $\frac{1}{c}$ are in A.P. show that the common difference is $\frac{a-c}{2ac}$
Solution:
Given that:
 $\frac{1}{a}, \frac{1}{c}, \frac{1}{c}$ are in 8.P.
 $d = \frac{1}{a}, \frac{1}{c}, \frac{1}{c}$ are in 8.P.
 $d = \frac{1}{a}, \frac{1}{c}, \frac{1}{c}$ (i)
 $d = \frac{1}{c}, \frac{1}{b}$ (ii)
Adding (i) and (ii)
 $d + d = \frac{1}{b}, \frac{1}{c}, \frac{1}{c}, \frac{1}{b}$
 $2d = \frac{1}{c}, \frac{1}{a}$
 $2d = \frac{a-c}{ac}$
 $d = \frac{a-c}{2ac}$
Hence prove that common difference is $\frac{a-c}{2ac}$.

0

Arithmetic Mean (A.M.):

Then

A +

A number A is said to be the A.M. between the two numbers and hild, A, bare un A.P.

In general, we can say that a_n is the A.M between a_{n-1} and a_{n+1} i.e.,

$$a_n = \frac{a_{n-1} + a_{n+1}}{2}$$

n Arithmetic means between *a* and *b*:

Let $A_1, A_2, A_3, \dots, A_n$ be *n* arithmetic means between *a* and *b*.

Then $a, A_1, A_2, A_3, \dots, A_n, b$ are in A. P $\Rightarrow a_1 = a$ $a_{n+2} = b$ $a_1 + (n+2-1)d = b$ By using $a_n = a_1 + (n-1)d$ a + (n+1)d = b $d = \frac{b-a}{n+1}$ Thus, $A_1 = a + d = a + \frac{b-a}{n+1} = \frac{na+b}{n+1}$ $A_2 = a + 2d = a + 2\left(\frac{b-a}{n+1}\right) = \frac{na+b}{n+1}$ $A_1 = a + 3d + a + 3\left(\frac{b-a}{n+1}\right) = \frac{na+b}{n+1}$ Similarly, $A_n = a + nd = a + n\left(\frac{b-a}{n+1}\right) = \frac{a+nb}{n+1}$

Q.2 If 5,8 are two A.Ms between *a* and *b*. Find *a* and *b*.

Q.3 Find 6 A.Ms between 2 and 5

So

Solution:
Let
$$A_1, A_2, A_3, A_4, A_5, A_6$$
 be 6 A.Ms between 2 and 5
Then 2, $A_1, A_2, A_3, A_4, A_5, A_0, 5$ are in A. P
 $a_1 = 2$ $a_8 = 5$
 $a_1 = 3$
 $a_1 = 2$ $a_8 = 5$
 $7d = 5 - 2$
 $7d = 3$
 $d = \frac{3}{7}$
 $A_1 = a_2 = a_1 + d \begin{vmatrix} A_2 = a_3 = a_2 + d \\ = 2 + \frac{3}{7} \end{vmatrix}$ $\begin{vmatrix} A_3 = a_4 = a_3 + d \\ = \frac{20}{7} + \frac{3}{7} \end{vmatrix}$ $\begin{vmatrix} A_4 = a_5 = a_4 + d \\ = \frac{23}{7} + \frac{3}{7} \end{vmatrix}$ $\begin{vmatrix} A_5 = a_6 = a_5 + d \\ = \frac{26}{7} + \frac{3}{7} \end{vmatrix}$ $\begin{vmatrix} \frac{29}{7} + \frac{3}{7} \\ = \frac{20}{7} \end{vmatrix}$ $\begin{vmatrix} \frac{20}{7} + \frac{3}{7} \\ = \frac{23}{7} \end{vmatrix}$ $\begin{vmatrix} \frac{26}{7} + \frac{3}{7} \\ = \frac{29}{7} \end{vmatrix}$ $\begin{vmatrix} \frac{32}{7} \\ = \frac{32}{7} \end{vmatrix}$

 $\frac{17}{7}, \frac{20}{7}, \frac{23}{7}, \frac{26}{7}, \frac{29}{7}, \frac{32}{7}$ are 6 A.Ms, between 2 and 5

Q.4 Find four A.Ms between
$$\sqrt{2}$$
 and $\frac{12}{\sqrt{2}}$

Let
$$A_1, A_2, A_3, A_4$$
 be four A.Ms between $\sqrt{2}$ and $\frac{12}{\sqrt{2}}$
So, $\sqrt{2}, A_1, A_2, A_3, A_4, \frac{12}{\sqrt{2}}$ are in A.P.
 $a_1 = \sqrt{2}$, $a_5 = \frac{12}{\sqrt{2}}$
 $a_1 + 5a = \frac{2}{\sqrt{2}}$
 $Q a_n = a_1 + (n-1)d$
 $\sqrt{2} + 5d = \frac{12}{\sqrt{2}}$

So, 4, A₁, A₂, A₃, A₄, A₅, A₆, A₇, 8 are in A.P.

$$a_1 = 4$$
, $a_9 = 8$
 $a_1 + 8d = 8$
 $a_1 + 8d = 8$
 $8d = 4$
 $d = \frac{1}{2}$
 $A_1 = a_1 + d$
 $a_1 = 4$, $d = \frac{1}{2}$
 $A_1 = a_1 + d$
 $a_2 = A_1 + d$
 $a_3 = A_2 + d$
 $a_3 = A_2 + d$
 $a_4 = 4, \frac{1}{2}$
 $A_1 = \frac{9}{2}$
 $A_1 = \frac{9}{2}$
 $A_2 = 5$
 $A_2 = 5$
 $A_2 = 5$
 $A_3 = \frac{10}{2}$
 $A_3 = \frac{12}{2}$
 $A_4 = 6$
 $A_5 = \frac{13}{2}$
 $A_5 = \frac{13}{2}$
 $A_5 = \frac{13}{2}$
 $A_6 = 7$
 $A_7 = \frac{15}{2}$
 $A_7 = \frac{15}{2}$
 $A_7 = \frac{13}{2}$, $\frac{15}{2}$ are 7 A.Ms between 4 and 8
433

Q.6 Find three A.Ms between 3 and 11.

Solution:

Q.6
 Find three A.Ms between 3 and 11.

 Solution:
 Let
$$A_1, A_2, A_3$$
 be 3 A.Ms between 3 and 11

 So, $3, A_1, A_2, A_3, 11$ are in A.P.
 $a_1 = 3$
 $c_5 = 11$
 $a_1 = 3$
 $c_5 = 11$
 $\therefore a_n = a_1 + (n-1)d$
 $3 + 4d = 11$
 $\therefore a_n = a_1 + (n-1)d$
 $4d = 8$
 $d = 2$
 $A_1 = a_2 = a_1 + d$
 $A_2 = a_3 = A_1 + d$
 $A_3 = a_4 = A_2 + d$
 $a_1 = 5$
 $A_2 = 7$
 $A_3 = 9$

5,7,9 are three A.Ms between 3 and 11

Q.7 Find *n* so that
$$\frac{a^n + b^n}{a^{n-1} + b^{n-1}}$$
 may be the A.M between *a* and *b*.

Let
$$\frac{a^{n} + b^{n}}{a^{n-1} + b^{n-1}}$$
 be the A.M between a and b .
 $\frac{a^{n} + b^{n}}{a^{n-1} + b^{n-1}} = \frac{a+b}{2}$ QA.M = $\frac{a+b}{2}$
 $2(a^{n} + b^{n}) = (a+b)(a^{n-1} + b^{n-1})$
 $2a^{n} + 2b^{n} = a.a^{n-1} + a.b^{n-1} + b.a^{n-1} + b.b^{n-1}$
 $2a^{n} + 2b^{n} = a^{n} + ab^{n-1} + ba^{n-1} + b^{n}$
 $2a^{n} - a^{n} - a^{n-1}b = ab^{n-1} + b^{n} - 2b^{n}$
 $a^{n} - a^{n-1}b = ab^{n-1} + b^{n}$
 $a^{n} - a^{n-1}b = ab^{n-1} + b^{n}$
 $a^{n-1} = \frac{a-b}{a-b}$ Where $a-b \neq 0$

MMM

Series:

The sum of an indicated number of terms in a sequence is called a sures. For example, the sum of first seven terms of the sequence $\{n^2\}$ is the series, 1 + 4 + 9 + 16 + 25 + 36 + 49

Arithmetic Series:

The sum of an indicated number of terms in an A.P is called Arithmetic series.

e.g.
$$a_1 - (a_1 + d) + (a_1 + 2d) + \dots + a_1 + (n-1)d$$
 is called an arithmetic series.

Sun of first n Terms of an Arithmetic Series:

For any sequence $\{a_n\}$, we have,

$$S_n = a_1 + a_2 + a_3 + \dots + a_n$$

If $\{a_n\}$ is an A.P., then S_n can be written with usual notations as:

$$S_n = a_1 + (a_1 + d) + (a_1 + 2d) + \dots + (a_n - 2d) + (a_n - d) + a_n \rightarrow (i)$$

If we write the terms of the series in the reverse order, the sum of n terms remains the same, that is:

$$S_n = a_n + (a_n - d) + (a_n - 2d) + \dots + (a_1 + 2d) + (a_1 + d) + a_1 \rightarrow (ii)$$

Adding (i) and (ii), we have

$$2S_n = (a_1 + a_n) + (a_1 + a_n) + (a_1 + a_n) + \dots + (a_1 + a_n) + (a_1 + a_n) + (a_1 + a_n)$$

= $(a_1 + a_n) + (a_1 + a_n) + (a_1 + a_n) + \dots + \dots + (a_n + a_n) + (a_n + a_n)$
$$2S_n = n(a_1 + a_n)$$

$$S_{n} = \frac{n}{2} (a_{1} + a_{n})$$

$$= \frac{n}{2} [a_{1} + a_{1} + (n-1)d]$$

$$S_{n} = \frac{n}{2} [2a_{1} + (n-1)d]$$

EXERCISE 62
9.1 Find the sum of all the integral multiples of 3 between 4 and 97.
Solution:
Required sum is

$$S_{n} = 6 + 9 + 12 + ... + 570$$

 $= 3(2 + 1 + 14 + 1 + 32)$
 $= 3(2 + 1 + 14 + 1 + 32)$
 $= 3(2 + 1 + 14 + 1 + 32)$
 $= 3(2 + 1 + 14 + 1 + 32)$
 $= 3(2 + 1 + 14 + 1 + 32)$
 $= 3[\frac{31}{2}(2 + 32)]$
 $= 3[\frac{31}{2}(2 + 32)]$
 $= 3(31 \times 17)$
 $S_{n} = 1581$
9.2 Sum the series
(1) $(-3) + (-1) + 1 + 3 + 5 + + a_{16}$
 $a_{1} = -3$, $d = -1 - (-3) = -1 + 3 = 2$, $n = 16$
Using formula,
 $S_{n} = \frac{n}{2}[2a_{1} + (n - 1)d]$
 $S_{1n} = \frac{16}{2}[2 \times (-3) + (16 - 1)2]$
 $= 8(n + 30)$
 $= 8(2 + 30)$

(ii)
$$\frac{3}{\sqrt{2}} + 2\sqrt{2} + \frac{5}{\sqrt{2}} + \dots + a_{13}$$

Solution:
Given series is:
 $\frac{3}{\sqrt{2}} + 2\sqrt{2} + \frac{5}{\sqrt{2}} + \dots + a_{18}$
 $\frac{3}{\sqrt{2}} + 2\sqrt{2} + \frac{5}{\sqrt{2}} + \dots + a_{18}$
 $\frac{3}{\sqrt{2}} + 2\sqrt{2} + \frac{5}{\sqrt{2}} + \dots + a_{18}$
 $\frac{3}{\sqrt{2}} + 2\sqrt{2} + \frac{5}{\sqrt{2}} + \dots + a_{18}$
 $\frac{3}{\sqrt{2}} + 2\sqrt{2} + \frac{5}{\sqrt{2}} + \dots + a_{18}$
 $\frac{3}{\sqrt{2}} + 2\sqrt{2} + \frac{5}{\sqrt{2}} + \dots + a_{18}$
 $\frac{3}{\sqrt{2}} + 2\sqrt{2} + \frac{5}{\sqrt{2}} + \frac{2}{\sqrt{2}} = \frac{4-3}{\sqrt{2}} = \frac{1}{\sqrt{2}}$
 $\frac{3}{\sqrt{2}} + \frac{1}{\sqrt{2}} = \frac{13}{2} \left[2\left(\frac{3}{\sqrt{2}}\right) + (13-1)\frac{1}{\sqrt{2}} \right]$
 $= \frac{13}{2} \left(\frac{6}{\sqrt{2}} + \frac{12}{\sqrt{2}}\right)$
 $= \frac{13}{2} \left(\frac{18}{\sqrt{2}}\right)$
 $S_{13} = \frac{117}{\sqrt{2}}$
(ii) $1.11 + 1.41 + 1.71 + \dots + a_{10}$
Solution:
Given series is:
 $1.11 + 1.41 + 1.71 + \dots + a_{10}$
 $a_1 = 1.11$, $n = 10$, $d = 1.41 - 1.11 = 0.3$

Using formula,

$$a_{1} = 1.11 , n = 10 , d = 1.41 - 1.11 = 0.3$$

Using formula,
$$S_{n} = \frac{n}{2} [2a_{1} + (n-1)d]$$
$$S_{10} = \frac{10}{2} [2(1,11) + (10-1)0.3]$$
$$= 5(2.22 + 2.7)$$
$$= 5(2.22 + 2.7)$$
$$= 5(2.4.92)$$
$$S_{10} = 24.6$$

(iv)
$$-8-3\frac{1}{2}+1+....+a_{II}$$

Solution:
Given series is:
 $-8-3\frac{1}{2}+1+...+a_{II}$
 $a = 8 \cdot v = 10$ $d = -3\frac{1}{2}-(-8) = -\frac{7}{2}+8 = \frac{-7+16}{2} = \frac{9}{2}$
Using normula,
 $S_n = \frac{n}{2}[2a_1+(n-1)d]$
 $S_{11} = \frac{11}{2}[2(-8)+(11-1)(\frac{9}{2})]$
 $= \frac{11}{2}(-16+10(\frac{9}{2}))$
 $= \frac{11}{2}(-16+45)$
 $= \frac{11}{2}(29)$
 $= 11\times14.5$
 $S_{11} = 159.5$
(v) $(\mathbf{x}-\mathbf{a})+(\mathbf{x}+\mathbf{a})+(\mathbf{x}+3\mathbf{a})+.....+$ to n terms
Solution:
Given series is:
 $(x-a)+(x+a)+(x+3a)+.....+$ to n terms
 $a_1 = x - a$, $n = n$, $d = x + a - (x-a) = x + a - x + a = 2a$
Using formula,
 $S_n = \frac{n}{2}[2a_1 + (n-1)d]$
 $= \frac{n}{2}[2a_1 + (n-1)d]$
 $= \frac{n}{2}[2a_1 + (n-1)d]$

$$= \frac{n}{2} (2x + 2na - 4a)$$

$$= \frac{n}{2} \times 2(x + na - 2a)$$

$$S_{a} = n \left[x + (n-2)a \right]$$
(i)
$$I = \sqrt{x}, \quad \frac{1}{1 + \sqrt{x}} + \frac{1}{1 + \sqrt{x}} + \dots + \text{ to } n \text{ terms}$$
Solution:
Given series is:
$$\frac{1}{1 - \sqrt{x}} + \frac{1}{1 - x} + \frac{1}{1 + \sqrt{x}} + \dots + \text{ to } n \text{ terms}$$

$$a_{1} = \frac{1}{1 - \sqrt{x}} = -\frac{1 + \sqrt{x}}{(1 - \sqrt{x})(1 + \sqrt{x})} = \frac{1 + \sqrt{x}}{1 - x}$$

$$d = \frac{1}{1 - x} - \frac{1 + \sqrt{x}}{1 - x}$$

$$d = \frac{1}{1 - x}$$
Using formula,
$$S_{n} = \frac{n}{2} \left[2a_{n} + (n-1)d \right]$$

$$= \frac{n}{2} \left[2\left(\frac{1 + \sqrt{x}}{1 - x}\right) + (n-1)\left(\frac{-\sqrt{x}}{1 - x}\right) \right]$$

$$= \frac{n}{2} \left[\frac{2(1 + \sqrt{x}) + (n-1)(-\sqrt{x})}{1 - x} \right]$$

$$= \frac{n}{2} \left[\frac{2 + 2\sqrt{x} - n\sqrt{x} + \sqrt{x}}{1 - x} \right]$$

$$= \frac{n}{2} \left[\frac{2 + (\sqrt{x} - n\sqrt{x} + \sqrt{x})}{1 - x} \right]$$

(vii)
$$\frac{1}{1+\sqrt{x}} + \frac{1}{1-x} + \frac{1}{1-\sqrt{x}} + \dots + \text{to n terms}$$
Solution:
Given series is:

$$\frac{1}{1+\sqrt{x}} + \frac{1}{1+x} + \frac{1}{1+\sqrt{x}} + \dots + + 0 \text{ n terms}$$

$$\frac{1}{1+\sqrt{x}} + \frac{1}{1+x} + \frac{1}{1+\sqrt{x}} + \dots + + 0 \text{ n terms}$$

$$\frac{1}{1+\sqrt{x}} + \frac{1}{1+\sqrt{x}} + \frac{1}{1+\sqrt{x}} + \dots + + 0 \text{ n terms}$$

$$a_1 = \frac{1}{1+\sqrt{x}} + \frac{1}{1+\sqrt{x}} + \frac{1}{1+\sqrt{x}} + \frac{1}{1-x}$$

$$a_1 = \frac{1-\sqrt{x}}{1-x}$$

$$d = \frac{1}{1-x} + \frac{1-\sqrt{x}}{1-x} = \frac{1-1+\sqrt{x}}{1-x}$$

$$d = \frac{1}{1-x} + \frac{1}{1-x} + \frac{1}{1-x}$$
Using formula,

$$S_n = \frac{n}{2} \left[2(a_1 + (n-1))d \right]$$

$$= \frac{n}{2} \left[2\left(\frac{1-\sqrt{x}}{1-x}\right) + (n-1)\left(\frac{\sqrt{x}}{1-x}\right) \right]$$

$$= \frac{n}{2} \left[\frac{2(1-\sqrt{x})+(n-1)\sqrt{x}}{1-x} \right]$$

$$= \frac{n}{2} \left[\frac{2-2\sqrt{x}+n\sqrt{x}-\sqrt{x}}{1-x} \right]$$

$$= \frac{n}{2} \left[\frac{2+n\sqrt{x}-3\sqrt{x}}{1-x} \right]$$

$$= \frac{n}{2} \left[\frac{2+n\sqrt{x}-3\sqrt{x}}{1-x} \right]$$

Q.3 How many terms of the series
(i)
$$-7+(-5)+(-3)+......$$
 amount to 65?
Solution:
 $a_1 = -7$, $S_n = 65$, $d = -3-(-7)-5+7+3$
Using termina,
 $S_n = \frac{n}{2}[22, +(n-1)2]$
 $65 = \frac{n}{2}(-14+2n-2)$
 $65 = \frac{n}{2}(-14+2n-2)$
 $65 = \frac{n}{2}(2n-16)$
 $65 = \frac{n}{2}(2(n-8))$
 $65 = n(n-8)$
 $65 = n(n-8)$
 $65 = n^2 - 2(n-8)$
 $65 = n^2 - 2(n-8)$
 $65 = n^2 - 8n$
 $n^2 - 8n - 65 = 0$
 $n^2 - 13n + 5n - 65 = 0$
 $n(n-13) + 5(n-13) = 0$
Either
 $n-13 = 0$
 $n+5 = 0$
 $n=13$
(ii) $-7+(-4)+(-1)+.....$ amount to 114?
Solution:
Given series is:
 $-7+(-6)+(-1)+.....$ amount to 114?
 $7 - 8 = -4(-7) = -4+7 = 3$
 $8n = \frac{n}{2}[2a_1 + (n-1)d]$

$$14 = \frac{n}{2} \Big[2 \times (-7) + (n-1)3 \Big]$$

$$114 = \frac{n}{2} \Big(-14 + 3n - 3 \Big)$$

$$228 = n(3n-17)$$

$$228 = 502 + 173$$

$$3n^{2} - 17n + 228 = 0$$

$$3n(n-12) + 19(n-12) = 0$$
Either
$$0$$

$$n - 12 = 0 \Big]$$

$$3n + 19 = 0$$

$$n - 12 = 0 \Big]$$

$$n = -\frac{19}{3} \text{ Not Possible}$$
So, $n = 12$
Q.4 Sum the series
(i) $3 + 5 - 7 + 9 + 11 - 13 + 15 + 17 - 19 + \dots \text{ to } 3n \text{ terms}$
Solution:
$$3 + 5 - 7 + 9 + 11 - 13 + 15 + 17 - 19 + \dots \text{ to } 3n \text{ terms}$$

$$(3 + 5 - 7) + 9 + 11 - 13 + (15 + 17 - 19 + \dots \text{ to } n \text{ terms}$$

$$1 + 7 + 13 + \dots \text{ to } n \text{ terms}$$

$$a_{1} - 1, d = 7 - 1 = 6, d = 13 - 7 = 6, n = n$$
Using formula,
$$S_{n} = \frac{n}{2} \Big[2a_{1} + (n-1)d \Big]$$

$$= \frac{n}{2} \Big[2x_{1} + (n-1)d \Big]$$

$$= \frac{n}{2} (2 + 6n = 6)$$

$$= \frac{n}{2} (6n - 4)$$

$$= \frac{n}{2} 2^{2} (3n - 2)$$

$$S_{n} = n(3n - 2)$$

(ii)
$$1+4-7+10+13-16+19+22-25+\dots$$
 to 3*n* terms
Solution:
Given series is:
 $1+4-7+10+13-16+19+22-25+\dots$ to 3*n* terms
 $(1+4-7)+(10+13-16)+(19+22-25)+\dots$ to *n* terms
 $-2+7+16+\dots$ to *n* terms
 $a_1 = -2$, $d = 7-(-2) = 7+2=9$, $d = 16-9=7$, $n = n$
Using form the,
 $S_n = \frac{n}{2} [2a_1 + (n-1)d]$
 $S_n = \frac{n}{2} [2(-2) + (n-1)9]$
 $= \frac{n}{2} (-4+9n-9)$
 $S_n = \frac{n}{2} (9n-13)$

Q.5 Find the sum of 20 terms of the series whose *r*th term is 3r + 1. Solution:

Given that:

$$a_r = 3r + 1$$
 (i)
Put $r = 1$, $a_1 = 3(1) + 1 = 3 + 1 = 4$
Put $r = 2$, $a_2 = 3(2) + 1 = 6 + 1 = 7$
Put $r = 3$, $a_3 = 3(3) + 1 = 9 + 1 = 10$
Put $r = 4$, $a_4 = 3(4) + 1 = 12 + 1 = 13$
The series is:
 $4 + 7 + 10 + 13 + \dots$ to 20 terms
 $a_1 = 4$, $d = 7 - 4 = 3$, $d = 10 - 7 = 3$, $n = 20$
Using formula,
 $S_n = \frac{n}{2} [24 + (n-1)d]$
 $S_{30} = \frac{20}{2} [2 + 4 + (20 - 1)3]$
 $= 10(8 + 19 \times 3)$
 $= 10(65)$
 $S_{20} = 650$

J.COJ

Q.6 If $S_n = n(2n-1)$ then find the series.

Solution:

$S_{n} = n(2n-1)$ Put n = 1 $S_{1} = 1(2(1)-1) = 2-1 = 1$ Put n = 2, $S_{2} = 2(2(2)-1) = 2(4-1) = 2(3) = 6$ Put n = 3, $S_{3} = 3(2(3)-1) = 3(6-1) = 3(5) = 15$

Put
$$n=4$$
, $S_4 = 4(2(4)-1) = 4(8-1) = 4(7) = 28$

As we know that,

As given that:

$$a_{1} = S_{1} = 1$$

$$a_{2} = S_{2} - S_{1} = 6 - 1 = 5$$

$$a_{3} = S_{3} - S_{2} = 15 - 6 = 9$$

$$a_{4} = S_{4} - S_{3} = 28 - 15 = 13$$

Thus the series is:

 $1 + 5 + 9 + 13 + \dots$

Q.7 The ratio of the sums of *n* terms of two series in A.P is 3n+2:n+1. Find the ratio of their 8th terms.

Solution:

Let a_1, a'_1 be the first terms and d, d' be the common differences of two series in A.P. respectively. Let S_n and S'_n be the sums of *n* terms of the two series then:

$$S_{n} = \frac{n}{2} \Big[2a_{1} + (n-1)d \Big] , S_{n}' = \frac{n}{2} \Big[2a_{1}' + (n-1)d' \Big]$$
As given that:

$$S_{n} : S_{n}' = 3n + 2 : n + 1$$

$$\frac{S_{n}}{S_{n}'} = \frac{3n + 2}{n + 1}$$

$$\frac{n}{2} \Big[2a_{1} + (n-1)d' \Big] = \frac{3n + 2}{n + 1}$$

$$\frac{2a_{1} + (n-1)d'}{2a_{1}' + (n-1)d'} = \frac{3n + 2}{n + 1}$$

So the ratio of their 8th terms is: $a_8 : a'_8 = 47:16$

Q.8 If S_2, S_3, S_5 are the sum of 2n, 3n, 5n terms of an A.P. show that $S_5 = 5(S - S_2)$

Solution:
As
$$S_2, S_3, S_5$$
 are the sums of $2n, 3n, 5n$ terms of an A.P. So,
 $S_2 = \frac{2n}{2} \Big[2a_1 + (2n-1)d \Big]$
 $S_3 = \frac{3n}{2} \Big[2a_1 + (3n-1)d \Big]$
 $S_3 = \frac{5n}{2} \Big[2a_1 + (3n-1)d \Big]$
We have to prove that
 $S_5 = 5(S_3 - S_2)$
R.H.S: $= 5(S_3 - S_2)$

$$= 5 \left[\frac{3n}{2} \left[2a_1 + (3n-1)d \right] - \frac{2n}{2} \left[2a_1 + (2n-1)d \right] \right]$$

$$= 5 \left[\frac{3n}{2} \left[2a_1 + 3nd - d \right] - \frac{2n}{2} \left[2a_1 + 2nd - d \right] \right]$$

Taking common $\frac{n}{2}$

$$= \frac{5n}{2} \left[3(2a_1 + 3nd - d) - 2(2a_1 + 2nd - d) \right]$$

$$= \frac{5n}{2} (6a_1 + 9nd - 3d - 4a_1 - 4nd + 2d)$$

$$= \frac{5n}{2} (2a_1 + 5nd - d)$$

$$= \frac{5n}{2} \left[2a_1 + (5n-1)d \right]$$

$$= S_5$$

Hence, proved that: $S_5 = 5(S_3 - S_2)$

Q.9 Obtain the sum of all integers in the first 1000 integers which are neither divisible by 5 nor by 2.

The series of the first 1000 integers which are neither divisible by 5 nor by 2 is:

$$=1+3+7+9+11+13+17+19+21+23+27+29+.....+9991+993+997+999$$

$$=(1+3+7+9)+(11+13+17+19)+(21+23+27+29)+......(991+993+997+999)$$

$$=20+60+100+.....+3980$$

$$a_{1} = 20 , d = 60-20 = 40 , d = 100-60 = 40 , a_{n} = 3980$$
As we know that:

$$a_{n} = a_{1} + (n-1)d$$

$$3980 = 20 + (n-1)40$$

$$3980 - 20 = (n-1)40$$

$$3960 = (n-1)40$$

$$3960 = (n-1)40$$

$$3960 = (n-1)40$$

$$3960 = (n-1)40$$

Using formula,

Using formula,

$$S_{n} = \frac{n}{2} \Big[2a_{1} + (n-1)d \Big]$$

$$S_{100} = \frac{100}{2} \Big[2 \times 20 + (100-1)40 \Big]$$

$$= 50(40 + 69 \times 40)$$

$$= 50(40 + 3960)$$

$$= 50(40)60$$

$$S_{100} = 200000$$

 S_8 and S_9 are the sums of the first eight and nine terms of an A.P. Find S_9 if Q.10

 $50S_9 = 63S_8$ and $a_1 = 2$

Solution:

Given that: $50S_9 = 63S_8$ and $a_1 = 2$ $S_8 = \frac{8}{2} \left[2a_1 + (8-1)d \right]$ $\therefore S_n = \frac{n}{2} \left[2a_1 + (n-1)d \right]$ $S_8 = 4(2a_1 + 7d)$ Similarly, $S_9 = \frac{9}{2} \left[2a_1 + (9-1)d \right]$ $=\frac{9}{2}(2a_1+8d)$ $=\frac{9}{2}\times 2(a_1+4d)$ NUNN72].com $S_9 = 9(a_1 + 4d)$ Now, $50 S_9 = 63 S_8$ $50[9(1_1 - 4d)] = 63[4(2c_1 + 7d)]$ As given that $a_1 = 2$ 450(2+4d) = 252(4+7d)900 + 1800d = 1008 + 1764d1800d - 1764d = 1008 - 900

Q.11 The sum of 9 terms of an A.P is 171 and its eight term is 31. Find the series. Solution:

Given that:

$$a_8 = 31$$

$$\Rightarrow a_1 + 7d = 31$$
 (i)

and $S_9 = 171$

As we know that,

$$S_{n} = \frac{n}{2} [2a_{1} + (n-1)d]$$

$$\Rightarrow \frac{9}{2} [2a_{1} + (9-1)d] = 171$$

$$\frac{9}{2} (2a_{1} + 8d) = 171$$

$$\frac{9}{2} \times 2(a_{1} + 4d) = 171$$

$$9(a_{1} + 4d) = 171$$

$$a_{1} + 4d = 19$$
Equation (i) - equation ((i))
(ii)
$$a_{1} + 1/d = 31$$

$$a_{1} + 1/d = 4$$

Q.14	The sum of three number numbers.	rs in a	n A.P is 24 and their product is 440.	Find the
Solution:				
	Let $a-d, a, a+d$ are the three numbers in A.P.			
	Sum = 24 a - d + a + a = 24			
MM	3a = 24 $a = 8$ Product = 440			
00	(a-d)(a)(a+d) = 440			
	Put $a=8$,			
	$(8-d)(\cancel{8})(8+d) = \cancel{440}$			
	$(8)^2 - (d)^2 = 55$			
	$64 - d^2 = 55$			
	$64 - 55 = d^2$			
	$9 = d^2$			
	$d = \pm 3$			
	When $a = 8$ and $d = 3$,	When $a = 8$ and $d = -3$	
	the numbers are:	,	the numbers are:	
	a-d, a , $a+d$,	a-d, a , $a+d$	
	8-3,8,8+3	,	8 - (-3), 8, 8 + (-3)	
	5,8,11	,	8+3,8,8-3	
			11,8,5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	So the required numbers are	5,8,1	1 or 11, 8, 5.	COM
Q.15	5 Find four numbers in A.P whose sum is 32 and the sum of whose squares is 276.			
Solution:				
	Let $a-3d, a-d, a+d, a+3d$ are the icur numbers in AP			
	According to given condition that the sum of numbers is 32			
MAN	a - 3d + a - d + a + d + a + 3 4a = 32	a = 32		
199	$\sqrt{2} = \delta$	n that th	a sum of squares of numbers is 276	(i)
~	According to given condition	n mat th	e sum of squares of numbers is 276	

$$(a-3d)^{2} + (a-d)^{2} + (a+d)^{2} + (a+3d)^{2} = 276$$

$$a^{2} + 9d^{2} - 6ad^{2} + a^{2} + d^{2} - 2ad^{2} + a^{2} + 2ad^{2} + a^{2} + 9d^{2} + 6d^{2} = 276$$

$$4a^{2} + 20d^{2} = 276$$

$$4(a^{2} + 5d^{2}) = 276$$

$$a^{2} + 5d^{2} = 69$$
Put $a = 8$ iron (i)
$$8^{3} + 5d^{2} = 69$$

$$5d^{2} = 1$$

$$d = \pm 1$$
When $a = 8$ and $d = 1$, When $a = 8$ and $d = -1$
the numbers are:
$$a - 3d, a - d, a + d, a + 3d$$

$$a - 3d, a - d, a + d, a + 3d$$

$$8 - 3(1), 8 - 1, 8 + 1, 8 + 3(1)$$

$$8 - 3(-1), 8 - (-1), 8 + (-1), 8 + 3(-1)$$

$$8 - 3, 7, 9, 8 + 3$$

$$5, 7, 9, 11$$

$$11, 9, 7, 5$$

So required numbers are 5,7,9,11 or 11,9,7,5.

Q.16 Find the five numbers in A.P whose sum is 25 and the sum of whose squares is 135 Solution:

Let a-2d, a-d, a, a+d, a+2d are the five numbers in A.P According to given condition that the sum of numbers is 25 0)[/ a - 2d + a - d + a + a + d + a + 2d = 255a = 25a = 5(i) According to given condition that the sum of scuares of numbers is 135 $+(a+\dot{a})^{2}+(a+2a)^{2}=135$ $(a-2d)^2$ $a' + (a)^2$ 101 $2ad + a^2 + a^2 + d^2 + 2ad + a^2 + 4d^2 + 4ad = 135$ $a^{2} + 4d^{2}$ 410 $10d^2 = 135$ $5(a^2+2d^2)=135$ $a^2 + 2d^2 = 27$

Y

Put
$$a = 5$$
 from (i)
 $5^{2} + 2d^{2} = 27$
 $2d^{2} = 2$
 $d^{2} = 1$
 $d = \pm 1$
When $a = 5$ and $a = 1$, When $a = 5$ and $d = -1$
the numbers are:
 $a - 2d, a - d, a, a + d, a + 2d$
 $5 - 2(1), 5 - 1, 5, 5 + 1, 5 + 2(1)$
 $5 - 2, 4, 5, 6, 5 + 2$
 $3, 4, 5, 6, 7$
Solution:
 $a_{6} + a_{8} = 40$
 $\Rightarrow a + 5d + a + 7d = 40$
 $\Rightarrow a + 5d + a + 7d = 40$
 $\Rightarrow a + 5d + a + 7d = 40$
 $\Rightarrow a + 5d + a + 7d = 40$

and 7^{ac} terms is 220. Find the A.P.
Solution:

$$a_6 + a_8 = 40$$

 $\Rightarrow a_1 + 5d + a_1 + 7d = 40$
 $2a_1 + 12d = 40$
 $2(a_1 + 6d) = 40$
 $a_1 + 6d = 20$ (i)
and $(a_4)(a_7) = 220$
 $\Rightarrow (a_1 + 3d)(a_1 + 6d) = 220$
Put $a_1 + 6d = 20$ from (i)
 $(a_1 + 3d)(20) = 220$
 $a_1 + 3d = 11$ (ii)
Equation (i) – equation (ii)

Q.18 If
$$a^2, b^2$$
 and c^2 are in A.P. show that $\frac{1}{b+c}, \frac{1}{c+a}, \frac{1}{a+b}$ are in A.P.
Solution:
 a^2, b^2, c^2 are in A.P. So,
 $b^2 - a^2 = b^2$
 $(b+a)(b+x) = (c+b)(c-b)$ (i)
We have to show that $\frac{1}{b+c}, \frac{1}{c+a}, \frac{1}{a+b}$ are in A.P.
If $\frac{1}{b+c}, \frac{1}{c+a}, \frac{1}{a+b}$ are in A.P. then:
 $\frac{1}{c+a}, \frac{1}{b+c} = \frac{1}{a+b}, \frac{1}{c+a}, \frac{1}{a+b}$
 $\frac{b+c-(c+a)}{(c+a)(b+c)} = \frac{c+a-(a+b)}{(c+a)(a+b)}, \frac{b+c+c+a}{(c+a)(b+c)} = \frac{c+a-(a+b)}{(c+a)(a+b)}, \frac{b+c+c+a}{(c+a)(b+c)} = \frac{c+a-(a+b)}{(c+a)(a+b)}, \frac{(b-a)}{(b+c)} = \frac{(c-b)}{(c+b)(c-b)}, (ii)$
By comparing (i) and (ii) it is proved that, $\frac{1}{b+c}, \frac{1}{c+a}, \frac{1}{a+b}$ are in A.P.

EXERCISE 6.5

Q.1 An man deposits in a bank Rs.10 in the first month; Rs 15 in the second menth; Rs 20 in the third month and so on. Find how much he will have deposited in the bank by the 9th month.

Solution:

Using formula,

0

$$S_{n} = \frac{n}{2} [2a_{1} + (n-1)d]$$

$$S_{9} = \frac{9}{2} [2(10) + (9-1)5]$$

$$S_{9} = \frac{9}{2} (20 + 40)$$

$$S_{9} = \frac{9}{2} (60)$$

$$S_{9} = 9 \times 30$$

$$S_{9} = 270$$

Series of the deposited amount is:

5-10=5, n=9

10+15+20+... to 9 terms

)/=

So the deposited amount by the 9th month is 270.

Q.2 378 trees are planted in rows in the shape of an isosceles triangle, the number in successive rows decreasing by one from the base to the top. How many trees are there in the row which forms the base of the triangle?

Solution:

The series of trees from top to bottom is:

$$1+2+3+....n \text{ terms}$$

$$a_{1}=1, d=2-1=1, n=n, S_{n}=378$$
Using formula,
$$S_{n} = \frac{n}{2} \left[2a_{1} + (n-1)d \right]$$

$$378 = \frac{n}{2} \left[2(1) + (n-1)(1) \right]$$

$$378 = \frac{n}{2} (2+n-1)$$

$$378 = \frac{n(n+1)}{2}$$

756 =
$$n^2 + n$$

 $n^2 + n - 756 = 0$
 $n^2 + 28n - 27n - 756 = 0$
 $n(n + 28) - 27(n + 28) = 0$
 $(n - 27)(n + 28) = 0$
Either
 $n - 27 = 0$
 $n + 28 = 0$
 $n = -28$ Not Possible
The number of trees in the base row, in the triangle is:
 $a_n = a_1 + (n - 1)d$
 $a_{27} = 1 + (27 - 1) \times 1$
 $= 1 + 26 \times 1$
 $a_{27} = 27$

Q.3 A man borrows Rs 1100 and agree to repay with a total interest of Rs 230 in 14 installments, each installment being less than the preceding by Rs 10. What should be his first installment?

Solution:

Let the first installment is x, so the sequence is:

x, x-10, x-20,... to 14 terms S_{14} = total amount to pay = 1100+270=1330

$$a_1 = x$$
, $d = x - 10 - x = -10$,

Using formula,

$$S_{n} = \frac{n}{2} [2a_{1} + (n-1)d]$$

$$S_{14} = \frac{14}{2} [2x + (14-1)(-10)]$$

$$1330 = 7(2x-130)$$

$$\frac{1330}{7} = 2x - 130$$

$$190 = 2x - 130$$

$$190 + 1.0 = 2.2$$

$$2x = 320$$

$$x = \frac{529}{2}$$

$$x = 160$$
The of a finite line with 100

Thus the first installment is 160.

0

Q.4 A clock strikes once when its hour hand is at one. Twice when it is at two and so on. How many times does the clock strike in twelve hours?

Solution:

The strikes of clock form the sequence.

n = 12

1,2,3,..... to 12 terms

$$a_{1} = 1 , d = 2 - 1 - 1 ,$$

$$S_{n} \equiv \frac{n}{2} [2a_{1} - (n - 1)a]$$

$$S_{12} = \frac{12}{2} [2 \times 1 + (12 - 1)1]$$

$$= 6(2 + 11)$$

$$= 6(13)$$

$$S_{12} = 78$$

So the clock strikes 78 times in twelve hours.

Q.5 A student saves Rs. 12 at the end of the first week and goes on increasing his saving Rs. 4 weekly. After how many weeks will he be able to save Rs 2100?

Solution:

The sequence of his saving at the end of *n* weeks is:

12,16,20,...... to *n* terms

$$S_n = 2100$$
, $a_1 = 12$, $d = 16 - 12 = 4$, $n = n$
 $S_n = \frac{n}{2} [2a_1 + (n-1)d]$
 $2100 = \frac{n}{2} [2 \times 12 + (n-1)4]$
 $2100 = \frac{n}{2} (24 + 4n - 4)$
 $2100 = \frac{n}{2} (4n + 20)$
 $2100 = \frac{n}{2} (4n + 5)$
 $2100 = 2n(n+5)$
 $1050 = n(n+5)$
 $1050 = n(n+5)$
 $1050 = n^2 + 5n$

$$n^2 + 5n - 1050 = 0$$

 $n^2 + 35n - 30n - 1050 = 0$
 $n(n+35) - 30(n+35) = 0$
 $(n-30)(n+35) = 0$
Either On
 $n-30 = 0$
 $n = -35$ Not possible
Thus the student save Rs. 2100 in 30 weeks.
An object falling from rest, falls 9 meters during the first second, 27 meters during
the next second, 45 meters during the third second and so on.

- (i) How far will it fall during the fifth second?
- (ii) How far will it fall up to the fifth second?

Solution:

The sequence of the fall is

9,27,45,.....

 $a_1 = 9$, d = 27 - 9 = 18

(i) To calculate how far will it fall during the fifth second.

$$n = 5$$

As we know
 $a_n = a_1 + (n-1)d$
 $a_5 = 9 + (5-1)18$
 $a_5 = 9 + (4)18$
 $a_5 = 9 + 72$
 $a_5 = 81$

 $S_n = \frac{n}{2} \left[2a_1 + (n + 1) \right]$

So the object will fall a distance of \$1 meters during the fifth second. To calculate how far will it fall $u_{\overline{p}}$ to the fifth second.

n

5

(ii)

NAN

 $S_5 = ?$, $a_1 = 9$. d = 18Using formula,

 $S_5 = \frac{5}{2} [2 \times 9 + (5 - 1)18]$

-1)d

P(O)

$$S_{5} = \frac{5}{2}(18 + 4 \times 18)$$

$$S_{5} = \frac{5}{2}(18 + 72)$$

$$S_{5} = \frac{5}{2} \times 90$$

$$S_{5} = 5 \times 45$$

$$S_{5} = 225$$

So the object will fall a distance of 225 meters upto the fifth second.

An investor earned Rs. 6000 for year 1980 and Rs. 12000 for year 1990 on the same investment. If his earning has increased by the same amount each year. How much income he has received from the investment over the past eleven years?

Solution:

Q.7

The first earned amount = 6000 The final earned amount = 12000 Total no. of years = 11 $a_1 = 6000$, $a_n = 12000$, n = 11, $S_{11} = ?$

Using formula,

$$S_n = \frac{n}{2} (a_1 + a_n)$$

$$S_{11} = \frac{11}{2} (6000 + 12000)$$

$$= \frac{11}{2} (18000)$$

$$= 11 \times 9000$$

 $S_{11} = 99000$

The income he received over the past eleven years is 99000

Q.8 The sum of interior angles of polygous having sides 3,4,5,.....etc. from an A.P. Find the sum of the interior angles for a 16 sided polygon.

Solution:

Sum of the interior angles of $3 - \text{sided polygon} = \pi$

Sum of interior angles of $4 - \text{sided polygon} = 2\pi$

Sum of interior angles of 5 – sided polygon = 3π

Sum of interior angles of 16 - sided polygon = ?

3].COlí

So the sequence of sums of interior angles is:

So the sequence of sums of interior angles is:

$$\pi, 2\pi, 3\pi, \dots$$

 $a_1 = \pi$, $d = 2\pi - \pi = \pi$
 $n = 14$ (For polygon having '6 - (adel))
Using formula,
 $a_n = a_1 + (n + 1)d'$
 $a_{14} = \pi + (14 - 1)\pi$
 $a_{14} = \pi + 13\pi$
 $a_{14} = 14\pi$

Sum of interior angles of polygon having 16–sides is 14π .

The prize money Rs. 60,000 will be distributed among the eight teams according to Q.9 their positions determined in the match-series. The award increases by the same amount of each higher position. If the last place team is given Rs. 4000, how much will be awarded to the first place team?

Solution:

MV

Total amount =
$$S_8 = 60,000$$
 , $n = 8$, $a_1 = 4000$, $a_8 = ?$

Using formula,

$$S_{n} = \frac{n}{2}(a_{1} + a_{n})$$

$$S_{8} = \frac{8}{2}(4000 + a_{8})$$

$$60,000 = 4(4000 + a_{8})$$

$$\frac{60000}{4} = 4000 + a_{8}$$

$$15000 = 4090 + a_{8}$$

$$a_{8} = 15000 - 4000$$

$$a_{8} = 15000 - 4000$$
The prize money awarded to the first place team is 11000.

A equilateral triangular base is filled by placing eight ball in the first row, 7 balls in 0.10 the second row and so on with one ball in the last row. After this base layer, second layer is formed by placing 7 balls in its first row, 6 balls in its second row and so on with one ball in its last row. Continuing this process a pyramid of balls is formed with one ball on top. How balls are there in the pyranuc?

Solution:

Balls in the first layer are 8+7+6+5+4+3+2+1=36Balls in the 2nd laver are 7 - 6 + 5 + 2 - 3 + 2 + 1 = 28Balls is the 3rd layer are 6+5+4+3+2+1=21Balls in the 4th layer are 5+4+3+2+1=15Ball in the 5th layer are 4 + 3 + 2 + 1 = 10Balls in the 6th layer are 3+2+1=6Balls in the 7th layer are 2 + 1 = 3Balls in the 8th layer = 1The number of balls = 36+28+21+15+10+6+3+1=120

Geometric progression (G.P):

A sequence $\{a_n\}$ is a geometric sequence or geometric progression if $\frac{a_n}{a_n}$ is the same non-zero number for all $n \in N$ and n > 1. The quotient $\frac{a_n}{m}$ is usually denoted by *r* and is called common ratio of the G.P. The common ratio $r = \frac{a_n}{1}$ is defined only if a_{n-1} a_{n-1} i.e., no term of the geometric sequence is zero Rule for *n*th term of a G.P: In G.P each term after the first term is an *i* multiple of its preceding term. Thus we have, $a_{2} = a_{1}$ $= a_3 r = (a_1 r^2) r = a_1 r^3 = a_1 r^{4-1}$ Similarly we have, $a_n = a_1 r^{n-1}$ which is the general term of a G.P

EXERCISE 6.6

Find the 5th term of the G.P 3,6,12,..... Q.1 Solution:

Q.1 Find the 5th term of the G.P 3,6,12,.....
Solution:
$$a_1 = 3 , r = \frac{6}{3} = 2 , a_5 = ?$$

Using formula,
 $a_n = a_1 \sqrt{r}^n$
 $a_5 = 3(2)^{5-1}$
 $= 3(2)^4$
 $a_5 = 48$

Find the 11th term of the sequence $1+i, 2, \frac{4}{1+i}, \dots$ Q.2

Solution:

$$a_{1} = 1+i , n = 11$$

$$r = \frac{2}{1+i} = \frac{2}{1+i} \times \frac{1-i}{1-i}$$

$$= \frac{2 \times (1-i)}{1-i^{2}} = \frac{2 \times (1-i)}{1-(-1)}$$

$$r = \frac{2 \times (1-i)}{2}$$

$$r = 1-i$$

Using formula,

$$a_{n} = a_{1}r^{n-1}$$

$$a_{11} = (1+i)(1-i)^{11-1}$$

$$= (1+i)(1-i)^{10}$$

$$= (1+i)[(1-i)^{2}]^{5}$$

$$= (1+i)(-2i)^{5}$$

$$= (1+i)(-32i^{5})$$

$$= (1+i)(-32i)$$

$$= -32i(1+i)$$

$$= -32(i+i^{2})$$

$$= -32(-1+i)$$

$$a_{11} = 32(1-i)$$

Q.3 Find the 12th term of 1+i, 2i, -2+2i,

Solution:

Q.3 Find the 12th term of 1+1, 2, -2+2,
Solution:

$$a_{1} = 1+i , n = 12$$

$$r = \frac{2i}{1+i} = \frac{2i}{1+i} \times \frac{1+i}{2} + \frac{2}{2} + \frac{2i}{2} + \frac{2i}{2}$$

$$P(i+1) = 2(i+i)$$

$$a_{12} = -64$$

Find the 11th term of the sequence 1+i,2,2(1-i),....Q.4

Solution:

Solution:

$$a_1 = 1 + i$$
, $n = 11$
 $r = \frac{2(1 - i)}{2}$
 $r = 1 - i$
Using formula,
 $a_n = a_1 r^{n-1}$
 $i = (1 + i)(1 - i)^{10}$
 $= (1 + i)((1 - i)^2)^5$

$$= (1+i)(-2i)^{5} \qquad (1-i)^{2} = 1+i^{2}-2i = 1-1-2i = -2i$$

$$= (1+i)(-32i^{5})$$

$$= (1+i)(-32i) \qquad \cdot i^{5} = ii^{4} = i(i^{2})^{2} = i(-1)^{2} = i$$

$$= -32(i+i^{2})$$

$$= -32(i-1)$$

$$a_{11} = 32(1-i)$$

5 If an automobile depreciates in value 5% every year, at the end of 4 years what is

Q.5 It an automobile depreciates in value 5% every year, at the end of 4 years what is the value of the automobile purchased for Rs 12,000? Solution:

$$a_1 = 12000$$
, $r = 1 - 5\% = 1 - \frac{5}{100} = 1 - 0.05 = 0.95$
At the end of 4 years $n = 5$
Using formula,
 $a_n = a_1 r^{n-1}$

$$a_n - a_1 r$$

 $a_5 = a_1 r^4$
 $= 12000(0.95)^4$
 $= 12000(0.8145)$
 $a_5 = 9774$ (Approximately)

Q.6 Which term of the sequence:
$$x^2 - y^2$$
, $x + y$, $\frac{x + y}{x - y}$, is $\frac{x + y}{(x - y)^9}$?

Solution:

$$a_{1} = x^{2} - y^{2} = (x + y)(x - y) , a_{n} = \frac{x + y}{(x - y)^{9}}$$

$$r = \frac{x + y}{x - y} \times \frac{1}{x + y}$$

$$r = \frac{1}{x - y}$$
Using formula,
$$a_{n} = a_{r}r^{n-1}$$

$$\frac{(x + y)}{(x - y)^{9}} = (x - y)(x + y) \left(\frac{y}{x + y}\right)^{n-1}$$

$$\frac{1}{(x - y)^{9} \times (x - y)} = \left(\frac{1}{x - y}\right)^{n-1}$$

(ii)
$$a^2 - b^2, b^2 - c^2, c^2 - d^2$$
 are in G.P
Solution:
If $a^2 - b^2, b^2 - c^2, c^2 - d^2$ are in G.P, then
 $\frac{b^2 - c^2}{a^2 - b^2} = \frac{c^2 - d^2}{b^2 + c^2}$
 $(b^2 - c^2) = (a^2 - b^2)(b^2 - d^2)$
 $+4b^2 + c^4 - 2b^2c^2$
 $= (b^2)^2 - b^2c^2 - (ad)^2 + (bd)^2$
 $= a^2c^2 - b^2c^2 - (ad)^2 + (bd)^2$
 $= a^2c^2 - b^2c^2 - (ad)^2 + b^2d^2$
 $= c^2(a^2 - b^2) - d^2(a^2 - b^2)$
 $= (c^2 - d^2)(a^2 - b^2)$
 $= R.H.S.$
Hence proved that $a^2 - b^2, b^2 - c^2, c^2 - d^2$ are in G.P
(ii) $a^2 + b^2, b^2 + c^2, c^2 + d^2$ are in G.P
(iii) $a^2 + b^2, b^2 + c^2, c^2 + d^2$ are in G.P
(iii) $a^2 + b^2, b^2 + c^2, c^2 + d^2$ are in G.P
(iii) $a^2 + b^2, b^2 + c^2, c^2 + d^2$ are in G.P
(iii) $b^2 + c^2)^2 = (a^2 + b^2)(c^2 + d^2)$
L.H.S $= (b^2 + c^2)^2$
 $= (b^2)^2 + (c^2)^2 + 2b^2c^2$
 $= (b^2)^2^2 + (c^2)^2 + 2b^2c^2$
 $= (b^2)^2^2 + (c^2)^2 + b^2c^2$
 $= (b^2)^2^2 + (c^2)^2 + b^2c^2$
 $= (b^2)^2 + (c^2)^2 + b^2c^2$
 $= (a^2 + b^2)(c^2 + d^2)$
L.H.S $= (b^2 + c^2)^2$
 $= (a^2 + b^2)(c^2 + d^2)$
 $= R.H.S$

Hence proved that $a^2+b^2, b^2+c^2, c^2+d^2$ are in G.P

Q.8 Show that the reciprocals of the terms of the geometric sequence $a_1, a_1r^2, a_1r^4, \dots$ form another geometric sequence. Solution: As $a_1, a_1r^2, a_1r^4, \dots$ are in G.P Now reciprocals of the terms of G.P are $\frac{1}{a_1}, \frac{1}{a_1r^2}, \frac{1}{a_1r^4}, \dots$ Common ratio $= \frac{\frac{1}{a_1r^2}}{\frac{1}{a_1}}$ $= \frac{1}{a_1r^2} \times a_1$ $= \frac{1}{r^2}$ Common ratio $= \frac{1}{a_1r^4} \times a_1r^2$ $= \frac{1}{r^2}$

As common ratio is same, so it is proved that $\frac{1}{a_1}, \frac{1}{a_1r^2}, \frac{1}{a^1r^4}, \dots$ are in G.P

Q.9 Find the *n*th term of the geometric sequence if: $\frac{a_5}{a_3} = \frac{4}{9}$ and $a_2 = \frac{4}{9}$

Solution:

Using Formula,

$$a_{n} = a_{1}r^{n-1}$$
$$= \left(\frac{-2}{3}\right)^{1} \left(\frac{-2}{3}\right)^{n-1} = \left(\frac{-2}{3}\right)^{1+n-1} = \left(\frac{-2}{3}\right)^{n}$$
$$a_{n} = (-1)^{n} \left(\frac{2}{3}\right)^{n}$$

Q.10 Find three consecutive numbers in G.P whose sum is 26 and their product is 216. Solution:

Let $\frac{a}{r}$, *a*, *ar* be the three consecutive numbers of G.P. Their product $\frac{a}{r} \times a \times ar = 216$ $a^3 = 216$ $(a)^3 = (6)^3$ a = 6And sum $\frac{a}{r} + a + ar = 26$ Prix a = 6 $\frac{6}{r} + 6 + 6r = 26$

$$\frac{6}{r} + 6r = 26 - 6$$

$$\frac{6 + 6r^{2}}{r} = 20$$

$$6 + 6r^{2} = 20$$

$$6 + 6r^{2} = 20$$

$$6 + 6r^{2} = 20$$

$$6r^{2} + 20r + 3 = 0$$

$$3r^{2} - 9r - r + 3 = 0$$

$$3r(r - 3) - 1(r - 3) = 0$$

$$(r - 3)(3r - 1) = 0$$
Either $r - 3 = 0$

$$r = 3$$
When $a = 6$ and $r = 3$, the numbers are:

$$\frac{a}{r} \cdot a \cdot ar$$

$$\frac{a}{r} \cdot a \cdot ar$$

$$\frac{6}{3} \cdot 6.6 \times 3$$

$$2, 6, 18$$
When $a = 6$ and $r = \frac{1}{3}$, the numbers are:

$$\frac{a}{r} \cdot a \cdot ar$$

$$\frac{6}{3} \cdot 6.6 \times 3$$

$$2, 6, 18$$
When $a = 6$ and $r = \frac{1}{3}$, the numbers are:

$$\frac{a}{r} \cdot a \cdot ar$$

$$\frac{6}{3} \cdot 6.6 \times 3$$

$$2, 6, 18$$
So, the required numbers are 2, 6, 18 or 18, 6, 2.
So, the required numbers are 2, 6, 18 or 18, 6, 2.
So, the required numbers are 2, 6, 18 or 18, 6, 2.
So, the required numbers are 2, 6, 18 or 18, 6, 2.
Let $a \cdot (a) \cdot ar^{2} - ar^{4}$ are for the consecutive terms of G.P.
Their Sim $r + ar + bac + ar = 80$

$$a_{1}(1 + r) + r^{2}(1 + r)] = 80$$

$$a_{1}(1 + r) + r^{2}(1 + r)] = 80$$

$$a_{1}(1 + r)(1 + r^{2}) = 80$$

Q.13 If the number 1,4 and 3 are subtracted from three consecutive terms of an A.P. the resulting numbers are in G.P. Find the numbers if their sum is 21.

Solution:

Let a-d, a, a+d be the three consecutive terms of an A.P

Their sum
$$a-d+a+a+d=21$$

 $3a=21$
 $a=7$
Again according to given condition:
 $a-d-1$, $a-4$, $a+d-3$ are in G.P
Put $a=7$
 $7-a-1$, $7-4$, $7+a=5$
 $6-d, 3, 4+d$ are in G.P, so ratio will be same
 $\frac{3}{6-d} = \frac{4+d}{3}$
 $(3)^2 = (6-d)(4+d)$

So the required numbers are 10,7,4 or 2,7,12

Q.14 If three consecutive numbers in A.P are increased by 1,4,15 respectively, the resulting numbers are in G.P. Find the original numbers if their sum is 6.

Solution:

Let a-d, a, a+d be the three consecutive numbers of an A.P.

So the required numbers are 1,2,3 or 17,2,-13

