

Sequences also called progressions, are used to represent ordered lists of numbers. A sequence is a function whose domain is the subset of natural numbers N or W (in some cases). If a natural number n belongs to the domain of sequence $\left\{a_{n}\right\}$ then the corresponding elements in its range are denoted by a_{n}. The elements in the range of sequence $\left\{a_{n}\right\}$ are called its terms. A special notation a_{n} is used for $n^{\text {th }}$ term of the sequence.

Finite and Infinite Sequence:

A sequence having finite terms is called finite sequence e.g. $1,3,5, \ldots, 11$ is a finite sequence. Whereas, a sequence with infinite number of terms is called an infinite sequence. e.g., $3,7,11, \ldots$ is an infinite sequence. An infinite sequence has no last term.

Real Sequence:

If all members of a sequence are real numbent, then it is solied area secheace.

EXERCISE 6.1

Q. 1 Write the first four terms of the following sequences, if
(i) $a_{n}=2 n-3$

Solution:

As given $\pi_{n}=2 n-3$
Put $n=1=-a \quad=2(1)-3=-$
$F \mathrm{ct}$? $=? \Rightarrow \rightarrow a_{2}=2,-3=1$
Dat $n=3 \Rightarrow a_{3}=2(3)-3=3$
Put $n=4 \Rightarrow a_{4}=2(4)-3=5$
So first four terms are
$-1,1,3,5$
(ii) $\quad a_{n}=(-1)^{n} n^{2}$

Solution:

As given $a_{n}=(-1)^{n} n^{2}$
Put $n=1 \Rightarrow a_{1}=(-1)^{1}(1)^{2}=-1 \times 1=-1$
Put $n=2 \Rightarrow a_{2}=(-1)^{2}(2)^{2}=1 \times 4=4$
Put $n=3 \Rightarrow a_{3}=(-1)^{3}(3)^{2}=-1 \times 9=-9$
Put $n=4 \Rightarrow a_{4}=(-1)^{4}(4)^{2}=1 \times 16=16$
So first four terms are
$-1,4,-9,16$
(iii) $a_{n}=(-1)^{n}(2 n-3)$

Solution:

As given $a_{n}=(-1)^{n}(2 n-3)$
Put $n=1 \Rightarrow a_{1}=(-1)^{1}(2(1)-3)=-(-1)=-1$
Put $\left.\left.n=2 \Rightarrow c_{2}=1\right)^{2}(q-(f)-\beta)=1(4)-1\right) \leq 1$
Put $i+=3 \Rightarrow a_{3}=(-1)^{3}\left(\frac{1}{(3)}-3\right)=(-1)(6-3)=(-1)(3)=-3$
PA 12.
So first four terms are
$1,1,-3,5$
(iv) $a_{n}=3 n-5$

Solution:

As given $a_{n}=3 n-5$
Put $n=1 \Rightarrow a_{1}=3(1)-5=3-5=$
Put $\left.n:=2 \Rightarrow d_{2}-312\right)-5=5-5=1$
Put $n=3 \Rightarrow a_{3}=3(3)-5-9-5=4$
$19+$
$n=4 \Rightarrow a_{4}=3(4)-5=12-5=7$
So first four terms are
$-2,1,4,7$
(v) $\quad a_{n}=\frac{n}{2 n+1}$

Solution:

As given $a_{n}=\frac{n}{2 n+1}$
Put $n=1 \Rightarrow a_{1}=\frac{1}{2(1)+1}=\frac{1}{3}$
Put $n=2 \Rightarrow a_{2}=\frac{2}{2(2)+1}=\frac{2}{4+1}=\frac{2}{5}$
Put $n=3 \Rightarrow a_{3}=\frac{3}{2(3)+1}=\frac{3}{6+1}=\frac{3}{7}$
Put $n=4 \Rightarrow a_{4}=\frac{4}{2(4)+1}=\frac{4}{8+1}=\frac{4}{9}$
So first four terms are
$\frac{1}{3}, \frac{2}{5}, \frac{3}{7}, \frac{4}{9}$
(vi)

Solution:
As g ven $u_{n}=\frac{1}{2^{n}}$
Put $n=1 \Rightarrow a_{1}=\frac{1}{2^{1}}=\frac{1}{2}$

Put $n=2 \Rightarrow a_{2}=\frac{1}{2^{2}}=\frac{1}{4}$

Fut $n=4 \Rightarrow a_{4}=\frac{1}{2^{4}}=\frac{1}{16}$
So first four terms are
$\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}$
(vii) $a_{n}-a_{n-1}=n+2, a_{1}=2$

Solution:

As given $a_{n}-a_{n-1}=n+2$
and $a_{1}=2$
Put $n=2$ in equation (i)
$a_{2}-a_{2-1}=2+2$
$a_{2}-a_{1}=4$
$a_{2}-2=4$
$a_{2}=4+2$
$a_{2}=6$
Put $n=3$ in equation (i)
$a_{3}-a_{3-1}=3+2$
$a_{3}-a_{2}=5$
$a_{3}-6=5$
$a_{3}=5+6$
$a_{4}-a_{4-1}=4+2$
$a_{4}-a_{3}=6$
$a_{4}-11=6$
$a_{4}=6+11$
$a_{4}=17$
$a=1+\sqrt{2}$
Put $a=4$ in ec uation (i)

So first four terms are
2, 6, 11, 17
(viii) $a_{n}=n a_{n-1}, a_{1}=1$

Solution:

As given $a_{n}=n a_{n-1}$
and $a_{1}=1$
Put (n) $=2$ in ear. (i)
$a_{2}=2 a a_{-1}=2 s_{1}=Z-(1)=2$

$\sqrt[x 5]{n}=3$ in 4 . (i)

$$
\text { (ix) } a_{n}=(n+1) a_{n-1}, a_{1}=1
$$

Solution:

(1)

$a_{n}=\left(\pi-1, a_{n-1}\right.$

 and $a_{1}=1 \quad$Put $n=2$ in eq. (i)
$\sqrt{u_{3}=3 a_{3-1}=3 a_{2}=3(2)=6}$
Put $n=4$ in eq. (i)
$a_{4}=4 a_{4-1}=4 a_{3}=4(6)=24$
So first four terms are
1, 2, 6, 24

$$
a_{2}=(2+1) a_{n-1}=3 a_{1}=3(1)=3
$$

Put $n=3$ in eq. (i)
$a_{3}=(3+1) a_{3-1}=4 a_{2}=4(3)=12$
Put $n=4$ in eq. (i)
$a_{4}=(4+1) a_{4-1}=5 a_{3}=5(12)=60$
So first four terms are
1,3,12, 60
(x) $a_{n}=\frac{1}{a+(n-1) d}$

Solution:

As given $a_{n}=\frac{1}{a+(n-1) d}$
Put $n=1 \Rightarrow a_{1}=\frac{1}{a+(1-1) d}=\frac{1}{a+0(d)}=\frac{1}{a+0}=\frac{1}{a}$
Put $n=2 \Rightarrow a_{2}=\frac{1}{a+(2-1) d}=\frac{1}{a+(1) d}=\frac{1}{a+d}$
Put $n=3 \Rightarrow a_{3}=\frac{1}{a+(3-1) d}=\frac{1}{a+2 d}$
Put $n=4 \Rightarrow a_{4}=\frac{1}{a+(4-1) d}=\frac{b}{a}$
So firstifur term are
Q. 2 Find the indicated terms of the following sequences.
(i) $\mathbf{2 , 6 , 1 1}, \mathbf{1 7}, \ldots \mathbf{a}_{7}$

Solution:

$2,6,11,17, \cdots \omega_{7}$
Here
$a=-2$
$a,=2 \oplus 4-6$
$a_{3}=6+5=11$
$a_{4}=11+6=17$
$a_{5}=17+7=24$
$a_{6}=24+8=32$
$a_{7}=32+9=41$
So $a_{7}=41$
(ii) $1,3,12,60, \ldots, a_{6}$

Solution:
$1,3,12,60, \ldots \ldots . ., a_{6}$
Here
$a_{1}=1$
$a_{2}=1 \times 3=3$
$a_{3}=3 \times 4=12$
$a_{4}=12 \times 5=60$
$a_{5}=60 \times 6=360$

$$
a_{6}=360 \times 7=2520
$$

So $a_{6}=2520$
(iii) $\int \frac{3}{2}, \frac{5}{4}, \cdots, \ldots \ldots . a_{7}$

Solution:
$1, \frac{3}{2}, \frac{5}{4}, \frac{7}{8}, \ldots \ldots . a_{7}$
Here
$a_{1}=\frac{1}{1}=1$
$a_{2}=\frac{1+2}{1 \times 2}=\frac{3}{2}$
$a_{3}=\frac{3+2}{2 \times 2}=\frac{5}{4}$
$a_{4}=\frac{5+2}{4 \times 2}=\frac{7}{8}$
$a_{5}=\frac{7+2}{8 \times 2}=\frac{9}{16}$
$a_{6}=\frac{9+2}{16 \times 2}=\frac{11}{32}$
$a_{7}=\frac{11+2}{32 \times 2}=\frac{13}{64}$
So, $a_{7}=\frac{13}{64}$
(iv) $1,1,-3,5,-7,9, \ldots . . \mathbf{a}_{8}$

Solution:
$1,1,-3.5,-7,9$,
$a_{1}=1$
$a_{R}=--4=-3$
a) $-3-4=-7$
$a_{7}=-7-4=-11$

$$
\begin{aligned}
& a_{2}=1 \\
& a_{4}=1+4=5 \\
& a_{6}=5+4=9 \\
& a_{8}=9+4=13
\end{aligned}
$$

So, $a_{8}=13$
(v) $1,-3,5,-7,9,-11 \ldots . . . \mathrm{a}_{8}$

Solution:

$1,-3,5,-7,9,-11 \ldots . . . a_{8}$
$a_{1}=1$
$a_{3}=1+4=5$
$a_{5}=5+4=9$
$a_{0}=9+4=13$

So, $a_{8}=-15$
Q. 3 Find the next two terms of the following sequences:
(i) 7,9,12,16,......

Solution:

7,9,12,16,......
Here
$a_{1}=7$
$a_{2}=7+2=9$
$a_{3}=9+3=12$
$a_{4}=12+4=16$
$a_{5}=16+5=21$
$a_{6}=21+6=27$
So next two terms are
21,27
(ii) $1,3,7,15,31, \ldots$.

Solution:

$1,3,7,15,31, \ldots$.
Here
$a_{1}=1$
$a_{2}=1-2=3$
$a_{3}=3+4=7$

$a_{4}=7+8=15$
$a_{5}=15+16=31$
$a_{6}=31+32=63$
$a_{7}=63+64=127$
So next two terms are
63,127
(iii) $-1,2,12,40, \ldots$.

Solution:

$-1,2,12,40$,
Here
$a_{1}=-1 \times 1=-1$
$a_{2}=(-1+2)(1 \times 2)=1 \times 2=2$
$a_{3}=(1+2)(2 \times 2)=3 \times 4=12$
$a_{4}=(3+2)(4 \times 2)=5 \times 8=40$
$a_{5}=(5+2)(8 \times 2)=7 \times 16=112$
$a_{6}=(7 \pm 2)(16 \cdot 22)=9 \times 32=288$
Sc lest tine term, ate
112,283
(iv) $1,-3,5,-7,9,-11, \ldots$

Solution:

$1,-3,5,-7,9,-11, \ldots$
$a_{1}=1$
$a_{3}=1+4=-5$
$a_{5}=5+b=9$
$a_{7}=9+4=13$

So, next two terms are 13 and -15

Arithmetic progression:

A sequence $\left\{a_{n}\right\}$ is an Arithmetic sequence or arithmetic progression (A.P), if $a_{n}-a_{n-1}$ is the same number $\forall n \in N$ and $n>1$. The difference $a_{n}-a_{n-1}(n>1)$ i.e., the difference of two consecutive terms of an A.P., is called the common difference and is usually denoted by \boldsymbol{d}.

Rule for the \boldsymbol{n} th term of A.P:

We know that $a_{n}-a_{n-1}=d \quad(n>1)$
Which implies $a_{n}=a_{n-1}+d \quad(n>1)$
Putting $n=2,3,4, \ldots$ in (i) we get
$a_{2}=a_{1}+d=a_{1}+(2-1) d$
$a_{3}=a_{2}+d=\left(a_{1}+d\right)+d$
$a_{3}=a_{1}+2 d=a_{1}+(3-1) d$
$a_{4}=a_{3}+d=\left(a_{1}+2 d\right)+d$
$a_{4}=a_{1}+3 d=a_{1}+(4-1) d$
Thus wesonclide char
$n^{-2}=a_{1}-(r-1) d$
Where $a_{n}=n^{\text {th }}$ term or general term,
$a_{1}=1^{\text {st }}$ term,$n=$ Number of terms,$d=$ Common difference

EXERCISE 6.2

Q. 1 Write the first four terms of the following arithmetic sequence. If

Three con ecutive terms are
$2,25,2$,
Common difference
$=d=26-23=3$
$a_{2}=a_{1}+d=5+3=8$
$a_{3}=a_{1}+2 d=5+2(3)=11$
$a_{4}=a_{1}+3 d=5+3(3)=14$
So first four terms are
5, 8, 11,14
(ii) $\quad \mathbf{a}_{5}=\mathbf{1 7}$ and $\mathbf{a}_{9}=\mathbf{3 7}$

Solution:

$$
\begin{gather*}
a_{5}=17 \\
\Rightarrow a_{1}+4 d=17 \tag{i}
\end{gather*}
$$

and $a_{9}=37$
$\Rightarrow a_{1}+8 d=37$
Equation (ii) - equation (i)

$$
a_{1}+8 d=37
$$

$\frac{ \pm a_{1} \pm 4 d= \pm 17}{4 d=20}$
$d=5$ Put in (i)
$a_{1}+4(5)=17$
$a_{1}+20=17$

$a_{2}=x_{1}+d=-3+5=2$
$a_{3}=a_{1}-2 a=-3+2(5)=7$
$a_{4}=a_{1}+3 d=-3+3(5)=12$
So first four terms are $-3,2,7,12, \ldots \ldots$.

We know that
$a_{4}=a_{1}+3 d ; a_{7}=a_{1}+6 d$
$3\left(a_{1}+6 d\right)=7\left(a_{1}+3 d\right)$
$3 a_{1}+18 d=7 a_{1}+21 d$
$3 a_{1}-7 a_{1}+18 d-21 d=0$
$-4 a_{1}-3 d=0$
$-\left(4 a_{1}+3 d\right)=0$
$4 a_{1}+3 d=0$
and $a_{10}=33$
$\Rightarrow a_{1}+9 d=33$
Equation (i) multiply by 3 , then subtract equation (ii) from equation (i)
$12 a_{1}+9 d=0$
$\frac{ \pm a_{1} \pm 9 d= \pm 33}{11 a_{1}=-33}$
$a_{1}=-3$
Put in (i)
$4(-3)+3 d=0$
$-12+3 d=0$
$3 d=12$
$d=4$
No s, $c_{2}=e_{1}+d=-3+4=1$
$a_{3}=a_{1}+2 d=-3+2(4)=-3+8=5$
$a_{4}=a_{1}+3 d=-3+3(4)=-3+12=9$
So first four terms are
$-3,1,5,9, \ldots \ldots$.

Q. 2 If $a_{n-3}=2 n-5$, find the $n t h$ term of the sequence.

Solution:

$a_{n-3}=2 n-5$
Put $n=4 \Rightarrow a_{4-3}=2(4)-5 \Rightarrow a_{1} \Rightarrow \hat{9}$ A ternative Method:
Put $n=3 \Rightarrow a_{i-3}=2(5)-5 \Rightarrow a_{n}=5$
Put $n=5=\Rightarrow a_{6}=2(6)-5 \Rightarrow a_{3}=7$
Dammondifference
$d=5-3=2 ; d=7-5=2$
As difference is same so it is arithmetic
Replace n by $n+3$

$$
\begin{aligned}
& a_{n+3-3}=2(n+3)-5 \\
& a_{n}=2 n+6-5 \\
& a_{n}=2 n+1
\end{aligned}
$$

sequence. So

$$
\begin{aligned}
a_{n} & =a_{1}+(n-1) d \\
& =3+(n-1) 2 \\
& =3+2 n-2 \\
a_{n} & =2 n+1
\end{aligned}
$$

Q. 3 If the 5th term of an A.P is 16 and the 20th term is 46, what is its 12th term?

Solution:

$$
\begin{array}{ll}
a_{5}=16, \quad a_{20}=46, & a_{12}=? \\
a_{1}+4 d=16 \rightarrow(\mathrm{i}) \quad ; & a_{1}+19 d=46 \rightarrow(\mathrm{ii}) \quad \mathrm{Q} a_{n}=a_{1}+(n-1) d
\end{array}
$$

$E q i)-E q i i)$

$$
\begin{gathered}
a_{1}+4 d=16 \\
\pm a_{1} \pm 19 d= \pm 46 \\
\hline-15 d=-30 \\
d=2
\end{gathered}
$$

Put in (i)
$a_{1}+4(2)=16$
$a_{1}+8=16$
$a_{1}=8$
INovV of $12=a_{1}+11 d=8+11(2)=30$
Q. 4 Find the 13th term of the sequence $\mathrm{x}, 1,2-\mathrm{x}, 3-2 \mathrm{x}, \ldots$.

Solution:
$x, 1,2-x, 3-2 x, \ldots$.
$a_{1}=x \quad, n=13, a_{13}=$?
$d=a_{2}-\mathcal{G}_{1}=1-x \quad a_{1}=a_{3}-a_{2}=2_{2}-x,-1=2-x-1=1-x$
As $a_{n}=a_{1}-(y-1) a$
$a_{13}=a_{0}+12 d$
$=x+12(1-x)$
$=x+12-12 x$
$a_{13}=12-11 x$
Q. 5 Find the 18 term of the A.P. if its 6th term is 19 and the 9th term is 31.

Solution:

$$
\begin{align*}
& a_{6}=19 \quad, \quad a_{18}=? \\
& \Rightarrow a_{1}+5 d=19 \tag{i}
\end{align*}
$$

and $a_{9}=31$

$$
\begin{equation*}
\Rightarrow a_{1}+8 d=31 \tag{ii}
\end{equation*}
$$

$E q i)-E q i i)$

$$
a_{1}+5 d=19
$$

$$
\frac{ \pm a_{1} \pm 8 d= \pm 31}{-3 d=-12}
$$

$$
d=4
$$

Put in (i)
$a_{1}+5(4)=19$
$a_{1}+20=19$
$a_{1}=-1$
Nov: $a_{18}=d+17 d$
$=-1+17(4)$

$$
=-1+68
$$

$$
a_{18}=67
$$

Q. 6 Which term of the A.P 5,2,-1,...... is -85 ?

Solution:

$5,2,-1, \ldots \ldots-85$
Here $\quad a_{1}=5, d=a_{2}-a_{1}=2-5=-3$,
$a_{n}=-85$
As we know
$a_{n}=a_{1}+(n-1) d$
$-85=5+(n-1)(-3)$
$-90=(n-1)(-3)$
$30=n-1$
$31=n$
So, -85 is the $31+\operatorname{term}$ of tegiven
Q. 7 Which term of the A.P
$-2,1,10, \ldots . . .$. is 148 ?
Solution:
$-2,4,10, \ldots148$
Here $\quad a_{1}=-2, d=a_{2}-a_{1}$

$$
=4-(-2)=6, a_{n}=148
$$

As we know
$a_{n}=a_{1}+(n-1) d$
$148=-2+(n-1) 6$
$150=(n-1) 6$
$25=n-1$
$26=n$
So 148 is the $26^{\text {th }}$ teran of the given
A.P.

Q. 8 How many terms are there in the

11 which
$\mathrm{a}_{1}=11 ; \mathrm{a}_{\mathrm{n}}=68 ; d=3$?
Solution:
Given that:
$a_{1}=11 ; a_{n}=68 ; d=3, n=$?
As we know
$a_{n}=a_{1}+(n-1) d$
$68=11+(n-1)(3)$
$68-11=(n-1) 3$
$\frac{57}{3}=n-1$
$19=n-1$
$19+1=n$
$20=n$
The number of terms in A.P are 20.
Q. 9 If the \boldsymbol{n} th term of the A.P is $\mathbf{3 n}-\mathbf{1}$, find the A.P.

Solution:

Given that: $a_{n}=3 n-1$
Put $n=1 \Rightarrow a_{1}=3(1)-1=2$
Put $n=2 \Rightarrow a_{2}=3(2)-1=5$
Put $n=-3 \cdot \Rightarrow a_{3}=3(3)-1-=3$
Put $n=4 \Rightarrow a_{1}=-(7)-1=11$
Spve A P. il $3,5,0,11, \ldots \ldots \ldots$
Q. 10 Determine whether i)-19 ii) 2 are the terms of the $1 . P 17,13, \%, \ldots$
(i) $\mathrm{For}-19$

Soluticn:
Let $a_{n}=-19$
$17,13,9, \ldots \ldots-19$
$a_{1}=17 ; d=13-17=-4$
As $a_{n}=a_{1}+(n-1) d$
$-19=17+(n-1)(-4)$
$-19-17=(n-1)(-4)$
$-36=(n-1)(-4)$
$\frac{-36}{-4}=(n-1)$
$9=n-1$
$9+1=n$
$10=n$
So, -19 is the term of A.P
(ii) For 2

Solution:

Let $a_{n}=2$
$17,13,9, \ldots \ldots .2$
$a_{1}=17 ; d=13-17=-4$
As $a_{n}=a_{1}+(n-1) d$
$2=17+(n-1)(-4)$
$2-17=(n-1)(-4)$
$-15=(n-1)(-4)$

$\frac{1}{4}=n-1$
$\frac{15}{4}+1=n$
$\frac{19}{4}=n$ Not Possible
So, 2 is not the term of A.P
Q. 11 If l, m, n are the $p^{\text {th }}, q^{\text {th }}$, and $r^{\text {th }}$ terms of an A.P. show that

(i) $\quad l(\mathbf{q}-\mathbf{r})+\mathbf{m}(\mathbf{r}-\mathbf{p})+\mathbf{n}(\mathbf{p}-\mathbf{q})=\mathbf{0}$

Solution:

Given that l, m, n are the $p^{\text {th }}, q^{\text {th }}$, add $r^{\text {th }}$ terns of a A A.P.
$\left.\begin{array}{l}a_{p}=l \\ a_{q}=m \\ a_{=2}=n\end{array}\right] \begin{aligned} & \Rightarrow \quad a_{1}+(p-1) d=\lambda \\ & \Rightarrow\left\{\begin{array}{l}a_{1}+(q-(1) d=m \\ \Rightarrow d_{1}+(r-1) d=n\end{array}\right.\end{aligned}$
Sistaci(ii) from (i)
$\left[a_{1}+(p-1) d\right]-\left[a_{1}+(q-1) d\right]=l-m$
$\left(a_{1}+p d-d\right)-\left(a_{1}+q d-d\right)=l-m$
$(p-q) d=l-m$
$p-q=\frac{l-m}{d}$
Subtract (iii) from (ii)
$\left[a_{1}+(q-1) d\right]-\left[a_{1}+(r-1) d\right]=m-n$
$\left(a_{1}+q d-d\right)-\left(a_{1}+r d-d\right)=m-n$
$(q-r) d=m-n$
$q-r=\frac{m-n}{d}$
Subtract (i) from (iii)
$\left[a_{1}+(r-1) d\right]-\left[a_{1}+(p-1) d\right]=n-l$
$\left(a_{1}+r d-d\right)-\left(a_{1}+p d-d\right)=n-l$
$(r-p) d=n-l$
$r-p=\frac{n-l}{d}$
L.H.S: $l(q-r)+m(r-p)+n(p-$ ($) ~$

$$
\text { = } 0 \text { R.H.S }
$$

So, $l(q-r)+m(r-p)+n(p-q)=0$
(ii) $\quad \mathbf{p}(\mathbf{m}-\mathbf{n})+\mathbf{q}(\mathbf{n}-l)+\mathbf{r}(l-\mathbf{m})=\mathbf{0}$

Solution:

L.H.S: $p(m-n)+q(n-l)+r(l-m)$

From equations (iv), (v), (vi)

Pl- alues of $(l-m),(m-n),(n-l)$
$=p(q-r) d+q(r-p) d+r(p-q) d$
$=p q d-p r d+q r d-p q d+p r d-q r d$
= 0 R.H.S
So, $p(m-n)+q(n-l)+r(l-m)=0$

Q. 12 Find the nth term of the sequence

$\left(\frac{4}{3}\right)^{2},\left(\frac{7}{3}\right)^{2},\left(\frac{10}{3}\right)^{2}, \ldots \ldots \ldots$.

Solution:

Given sequence is:
$\left(\frac{4}{3}\right)^{2},\left(\frac{7}{3}\right)^{2},\left(\frac{10}{3}\right)^{2}$,
Consider the A. P:
4,7,10,......
$a_{1}=4 ; d=7-4=3$
As we know
$a_{n}=a_{1}+(n-1) d$
$a_{n}=4+(n-1) 3$
$a_{n}=4+3 n-3$
$a_{n}=3 n=1$
Herce, the ectuired nth term of the y) el Mance is:
$a_{n}=\left(\frac{3 n+1}{3}\right)^{2}$
Q. 13 If $\frac{1}{a}, \frac{1}{b}$ and $\frac{1}{c}$ are in A.P. show that $\mathrm{b}=\frac{2 \mathrm{ac}}{\mathrm{a}+\mathrm{c}}$

Solution:

Given that:
$\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ are in A.P.
$d=\frac{1}{b}-\frac{1}{a}$
$d=\frac{1}{c}-\frac{1}{b}$
Common difference is same in A.P.
So comparing (i) and (ii)
$\underbrace{\frac{1}{a}}_{\frac{1}{b}-\frac{1}{b}-\frac{1}{a}=\frac{1}{a}-\frac{1}{1}=\frac{1}{c}=\frac{1}{c}+\frac{1}{a}}$
$\frac{2}{b}=\frac{a+c}{a c}$
$\frac{1}{b}=\frac{a+c}{2 a c}$
$b=\frac{2 a c}{a+c}$
Hence proved that: $b=\frac{2 a c}{a+c}$
Q. 14 If $\frac{1}{\mathrm{a}}, \frac{1}{\mathrm{~b}}$ and $\frac{1}{\mathrm{c}}$ are in A.P. show that the common difference is $\frac{\mathrm{a}-\mathrm{c}}{2 \mathrm{c}}$

Solution:

Adding (i) and (ii)

$$
\begin{aligned}
& d+d=\frac{1}{b}-\frac{1}{a}+\frac{1}{c}-\frac{1}{b} \\
& 2 d=\frac{1}{c}-\frac{1}{a} \\
& 2 d=\frac{a-c}{a c} \\
& d=\frac{a-c}{2 a c}
\end{aligned}
$$

Hence prove that common difference is $\frac{a-c}{2 a c}$.

Arithmetic Mean (A.M.):

A number A is said to be the A.M. between the two numbers a and
Then
$A-a=b-A$
$A+A=,+c$
$2 A=a+b$
$\sqrt{ }$
In general, we can say that a_{n} is the A.M between a_{n-1} and a_{n+1} i.e.,

$$
a_{n}=\frac{a_{n-1}+a_{n+1}}{2}
$$

\boldsymbol{n} Arithmetic means between \boldsymbol{a} and \boldsymbol{b} :

Let $A_{1}, A_{2}, A_{3}, \ldots A_{n}$ be n arithmetic means between a and b.
Then $a, A_{1}, A_{2}, A_{3}, \ldots \ldots . . A_{n}, b$ are in A. P
$\Rightarrow a_{1}=a$
$a_{n+2}=b$
$a_{1}+(n+2-1) d=b \quad$ By using $\quad a_{n}=a_{1}+(n-1) d$
$a+(n+1) d=b$

$$
d=\frac{b-a}{n+1}
$$

Thus, $A_{1}=a+d=a+\frac{b-a}{n+1}=\frac{n a+b}{n+1}$

Sir ailarly,
$A_{n}=a+n d=a+n\left(\frac{b-a}{n+1}\right)=\frac{a+n b}{n+1}$

EXERCISE 6.3

Q. $1 \quad$ Find A.M between

(i) $3 \sqrt{5}$ and $5 \sqrt{5}$

Solution:

$a=3 \sqrt{5}, \quad Q=5 \sqrt{5}$
A.M.

$$
\begin{aligned}
& =\frac{3 \sqrt{5}+5 \sqrt{5}}{2} \\
& =\frac{8 \sqrt{5}}{2}
\end{aligned}
$$

A.M. $=4 \sqrt{5}$
(ii) $x-3$ and $x+5$

Solution:

$a=x-3 ; b=x+5$
A.M. $=\frac{a+b}{2}$

$$
=\frac{x-3+x+5}{2}
$$

A.M. $=x+1$
(iii) $1-x+x^{2}$ and $1+x+x^{2}$

Solution:

$$
a=1-x+x^{2} \quad ; \quad b=1+x+x^{2}
$$

$$
\begin{aligned}
\text { A.M. } & =\frac{a+b}{2} \\
& =\frac{1-x+x^{2}+1+x+x^{2}}{2} \\
& =\frac{2+2 x^{2}}{2} \\
& =\frac{2\left(1+x^{2}\right)}{2}
\end{aligned}
$$

A.M. $=1+x^{2}$
Q. 2 If 5,8 are two A.Ms between a and b. Find a and b.

Solution:
As 5,8 are two A.Ms between a and b
so, $a, 5,8, b$ are in A.P
$5-a=8-5 \quad, \quad 8-5=\mathrm{b}-8$
$5-a=3 \quad, \quad 3=b-8$
$5-3=a \quad, \quad 3+8=b$
$a=2 \quad, \quad b=11$

Q. 3 Find 6 A.Ms between 2 and 5

Solution:

Let $A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, A_{6}$ be 6 A.Ms betweer 2 and 5
Then $2, A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, A_{5}, 0$ are in. P

\[

\]

Q. 4 Find four A.Ms between $\sqrt{2}$ and $\frac{12}{\sqrt{2}}$.

Solution:

Let $A_{1}, A_{2}, A_{3}, A_{4}$ be four A.Ms between $\sqrt{2}$ and $\frac{12}{\sqrt{2}}$
So, $\sqrt{2}, A_{1}, A_{2}, A_{3}, A_{4}, \frac{12}{\sqrt{2}}$ are in A.P.
$a_{1}=\sqrt{2}, a_{5}=\frac{12}{\sqrt{2}}$
$\mathrm{Q} a_{n}=a_{1}+(n-1) d$

$$
\sqrt{2}+5 d=\frac{12}{\sqrt{2}}
$$

$$
\begin{aligned}
& 5 d=\frac{12}{\sqrt{2}}-\sqrt{2} \\
& 5 d=\frac{12-2}{\sqrt{2}} \\
& 5 d=\frac{10}{\sqrt{2}} \\
& d=\frac{1}{-\sqrt{2}}=- \\
& d=\frac{2}{\sqrt{2}} \\
& d=\sqrt{2}
\end{aligned}
$$

$\sqrt[N]{N}$

$$
\begin{array}{l|l|l|c}
\begin{array}{l}
A_{1}=a_{2}=a_{1}+d \\
=\sqrt{2}+\sqrt{2}
\end{array} & \begin{array}{c}
A_{2}=a_{3}=a_{2}+d \\
=2 \sqrt{2}+\sqrt{2} \\
A_{1}=2 \sqrt{2}
\end{array} & \begin{array}{c}
A_{3}=a_{4}=a_{3}+d \\
=\sqrt{2}+3 \sqrt{2} \\
2
\end{array} & A_{4}=a_{5}=a_{4}+d \\
=4 \sqrt{2} & A_{3}=4 \sqrt{2} & \begin{array}{l}
=\sqrt{2}+\sqrt{2} \\
2 \sqrt{2}, 3 \sqrt{2}, 4 \sqrt{2}, 5 \sqrt{2} \text { are four A.Ms between } \sqrt{2} \text { and } \frac{12}{\sqrt{2}}
\end{array}
\end{array}
$$

Q. $5 \quad$ Insert 7 A.Ms between 4 and 8.

Solution:

Let $A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, A_{6}, A_{7}$ be 7 A. Ms between 4 and 8 .
So, $4, A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, A_{6}, A_{7}, 8$ are in A.P.

$$
\begin{array}{ll}
a_{1}=4 & \\
& \quad a_{9}=8 \\
& \\
a_{1}+8 d=8 \\
4+8 d & =8 \\
& \\
& \\
& \\
&
\end{array}
$$

$$
\begin{array}{cc}
d=\frac{1}{2} \\
A_{1} & =a_{1}+d \\
=4+\frac{1}{2} \\
A_{2}=A_{1}+d & A_{3}=A_{2}+d
\end{array}
$$

$$
\frac{9}{2}, 5, \frac{11}{2}, 6, \frac{13}{2}, 7, \frac{15}{2} \text { are } 7 \text { A.Ms between } 4 \text { and } 8
$$

Q. 6 Find three A.Ms between 3 and 11.

Solution:

Let A_{1}, A_{2}, A_{3} be 3 A.Ms between 3 and 11 So, $3, A_{1}, A_{2}, A_{3}, 11$ are in A P .
$\because a_{n}=a_{1}+(n-1) d$

$$
\begin{aligned}
3+4 d & =11 \\
4 d & =8 \\
d & =2
\end{aligned}
$$

$$
\begin{array}{c|c|c}
A_{1}=a_{2}=a_{1}+d & A_{2}=a_{3}=A_{1}+d & A_{3}=a_{4}=A_{2}+d \\
=3+2 & =5+2 & =7+2 \\
A_{1}=5 & A_{2}=7 & A_{3}=9
\end{array}
$$

5,7,9 are three A.Ms between 3 and 11
Q. $7 \quad$ Find \boldsymbol{n} so that $\frac{a^{n}+b^{n}}{a^{n-1}+b^{n-1}}$ may be the A.M between \boldsymbol{a} and \boldsymbol{b}.

Solution:
Let $\frac{a^{n}+b^{n}}{a^{n-1}+b^{n-1}}$ be the A.M between a and b.
$\frac{a^{n}+b^{n}}{a^{n-1}+b^{n-1}}=\frac{a+b}{2} \quad$ Q A.M $=\frac{a+b}{2}$
$2\left(a^{n}+b^{n}\right)=(a+b)\left(a^{n-1}+b^{n-1}\right)$
$2 a^{n}+2 b^{n}=a \cdot a^{n-1}+a \cdot b^{n-1}+b \cdot a^{n-1}+b \cdot b^{n-1}$
$2 a^{n}+2 b^{n}=a^{n}+a b^{n-1}+b a^{n-1}+b^{n}$
$2 a^{n}-a^{n}-a^{n-1} b=a b^{n-1} \div b^{n}-2 b^{n}<$
$a^{n}-a^{n} 5=a b^{\prime},-1-b^{n} \quad D$
$\sqrt{a-1} \sqrt{(a-b)}=b-(a-b)$
$\frac{a^{n-1}}{b^{n-1}}=\frac{a-b}{a-b}$
Where $a-b \neq 0$

$$
\begin{aligned}
& \frac{a^{n-1}}{b^{n-1}}=1 \\
& \left(\frac{a}{b}\right)^{n-1}=\left(\frac{a}{b}\right)^{0} \\
& n-1=0 \\
& n=1
\end{aligned}
$$

Q.8 Shpy that the stin of n A.Ms between a and b is equal to n times of their A.M. solution.

Let $A_{1}, A_{2}, A_{3}, \ldots, A_{n}$ be n A.Ms between a and b.
Then $a, A_{1}, A_{2}, A_{3} \ldots . . ., A_{n}, \mathrm{~b}$ are in A.P
Let d be common difference
$\therefore A_{1}=a+d \quad, \quad b=A_{n}+d \Rightarrow A_{n}=b-d$
Let S_{n} be the sum of n A.Ms between a and b

$$
\begin{aligned}
\therefore S_{n} & =\frac{n}{2}\left[A_{1}+A_{n}\right] \\
A_{1}+A_{2}+\ldots+A_{\mathrm{n}} & =\frac{n}{2}[a+\chi+b-\chi] \\
& =n \frac{(a+b)}{2}
\end{aligned}
$$

Hence proved that sum of n A.Ms between a and b is equal to the n times their A.M.

Series:

The sum of an indicated number of terms in a sequence is called a sies. For eme, the sum of first seven terms of the sequenc $\left\{p^{2} \frac{1}{1}\right.$ is the seriep, $1+4+9-10+25936+49$

Arithmetic Series:

The sumb an indimatean nuber of terns in All.P is called Arithmetic series.
e.g. $a_{1}-\left(c_{1}+d\right)+\left(c_{1}-2 \frac{1}{2}\right)+\ldots+a_{1}+(n-1) d$ is called an arithmetic series.

Ing of firs h rerms of an Arithmetic Series:

For any sequence $\left\{a_{n}\right\}$, we have,
$S_{n}=a_{1}+a_{2}+a_{3}+\ldots+a_{n}$
If $\left\{a_{n}\right\}$ is an A.P., then S_{n} can be written with usual notations as:

$$
S_{n}=a_{1}+\left(a_{1}+d\right)+\left(a_{1}+2 d\right)+\ldots+\left(a_{n}-2 d\right)+\left(a_{n}-d\right)+a_{n} \rightarrow(i)
$$

If we write the terms of the series in the reverse order, the sum of n terms remains the same, that is:
$S_{n}=a_{n}+\left(a_{n}-d\right)+\left(a_{n}-2 d\right)+\ldots+\left(a_{1}+2 d\right)+\left(a_{1}+d\right)+a_{1} \rightarrow$ (ii)
Adding (i) and (ii), we have

$$
\begin{aligned}
2 S_{n} & =\left(a_{1}+a_{n}\right)+\left(a_{1}+a_{n}\right)+\left(a_{1}+a_{n}\right)+\ldots . .+\left(a_{1}+a_{n}\right)+\left(a_{1}+a_{n}\right)+\left(a_{1}+a_{n}\right) \\
& =\left(a_{1}+a_{n}\right)+\left(a_{1}+a_{n}\right)+\left(a_{1}+a_{n}\right)+\ldots \ldots . . . \text { to } n \text { terms } \\
2 S_{n} & =n\left(a_{1}+a_{n}\right)
\end{aligned}
$$

$$
S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)
$$

$$
=\frac{n}{2}\left[a_{1}+a_{1}+(n-1) d\right]
$$

$$
S_{n}=\frac{n}{2}\left[2 a_{1}+(\kappa-1) d\right.
$$

EXERCISE 6.4

Q. $1 \quad$ Find the sum of all the integral multiples of 3 between 4 and 97.

Solution:

Required sum is

$$
\begin{aligned}
S_{n} & =6 ;)^{9}+2+\ldots+90 \\
& =3(z+3+4+\ldots-\cdots z)
\end{aligned}
$$

$\sqrt[N]{N \sin } \sqrt{ } \sigma_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right), \quad a_{1}=2, \quad a_{n}=32, \quad n=31$

$$
\begin{aligned}
S_{31} & =3\left[\frac{31}{2}(2+32)\right] \\
& =3\left[\frac{31}{2}(34)\right] \\
& =3(31 \times 17) \\
S_{31} & =1581
\end{aligned}
$$

Q. 2 Sum the series

(i) $(-3)+(-1)+1+3+5+\ldots \ldots+a_{16}$

Solution:

Given series is:

$$
\begin{aligned}
& (-3)+(-1)+1+3+5+\ldots \ldots+a_{16} \\
& a_{1}=-3, d=-1-(-3)=-1+3=2, \quad n=16
\end{aligned}
$$

Using formula,
$S_{n}=\frac{n}{2}\left[2 a_{1}+(n-1) d\right]$
$S_{16}=\frac{16}{2}[2 \times(-3)+(16-1) 2]$ $=8(-6 \cdot-3)$
(ii) $\frac{3}{\sqrt{2}}+2 \sqrt{2}+\frac{5}{\sqrt{2}}+\ldots \ldots \ldots+a_{13}$

Solution:

Given series is:

$$
\frac{3}{\sqrt{2}}+2 \sqrt{v^{2}}+\frac{5}{\sqrt{8}}+\ldots \ldots+a_{1}
$$

$$
a_{1}=\sqrt{\frac{3}{\sqrt{3}}}, L_{2}=3, a_{a}=2 \sqrt{2}-\frac{3}{\sqrt{2}}=\frac{2(2)-3}{\sqrt{2}}=\frac{4-3}{\sqrt{2}}=\frac{1}{\sqrt{2}}
$$

Using formula,

$$
\begin{aligned}
& S_{n}=\frac{n}{2}\left[2 a_{1}+(n-1) d\right] \\
& \begin{aligned}
S_{13} & =\frac{13}{2}\left[2\left(\frac{3}{\sqrt{2}}\right)+(13-1) \frac{1}{\sqrt{2}}\right] \\
& =\frac{13}{2}\left(\frac{6}{\sqrt{2}}+\frac{12}{\sqrt{2}}\right) \\
& =\frac{13}{2}\left(\frac{18}{\sqrt{2}}\right) \\
S_{13} & =\frac{117}{\sqrt{2}}
\end{aligned}
\end{aligned}
$$

(iii) $1.11+1.41+1.71+. \mathrm{a}_{10}$

Solution:

Given series is:
$1.11+1.41+1.71+\ldots a_{10}$
$a_{1}=1.11, n=10, d=1.41-1.11=0.3$
Using formula,
$S_{n}=\frac{n}{2}\left[2 a_{1}+(n-1) d\right]$
$\left.S_{10}=\frac{10}{62}(9(1) \cdot 11)+(16-1) \cdot(3]-1\right]$
$=5(2.22+2.7)$
$-5(4+92)$
$S_{10}=24.6$
(iv) $-8-3 \frac{1}{2}+1+\ldots \ldots . .+a_{11}$

Solution:

Using formula,

$$
\begin{aligned}
S_{n}= & \frac{n}{2}\left[2 a_{1}+(n-1) d\right] \\
S_{11} & =\frac{11}{2}\left[2(-8)+(11-1)\left(\frac{9}{2}\right)\right] \\
& =\frac{11}{2}\left(-16+10\left(\frac{9}{2}\right)\right) \\
& =\frac{11}{2}(-16+45) \\
& =\frac{11}{2}(29) \\
& =11 \times 14.5 \\
S_{11} & =159.5
\end{aligned}
$$

(v) $\quad(x-a)+(x+a)+(x+3 a)+\ldots+$ to n terms

Solution:

Given series is:
$(x-a)+(x+a)+(x+3 a)+\ldots \ldots . .+$ to n terms
$a_{1}=x-a, n=n, d=x+a-(x-a)=x+a-x+a=2 a$
Using formula,
$S_{n}=\frac{n}{2}\left[2 a_{1}+(n-1) d\right]$
$=\frac{n}{2}[2(x-x)+(n-1) ? a]$
$\sqrt[\sim]{\sqrt{n}}=\frac{2 \cdot(2 \infty-2 a+2 n a-2 a)}{2}$

$$
\begin{aligned}
& =\frac{n}{2}(2 x+2 n a-4 a) \\
& =\frac{n}{2} \times 2(x+n a-2 a) \\
S_{n} & =n[x+(n-2) a]
\end{aligned}
$$

(vi)

Badion.
Given series is:

$$
\begin{aligned}
& \frac{1}{1-\sqrt{x}}+\frac{1}{1-x}+\frac{1}{1+\sqrt{x}}+\ldots \ldots . .+ \text { to } n \text { terms } \\
& a_{1}=\frac{1}{1-\sqrt{x}}=\frac{1+\sqrt{x}}{(1-\sqrt{x})(1+\sqrt{x})}=\frac{1+\sqrt{x}}{1-x} \\
& d=\frac{1}{1-x}-\frac{1+\sqrt{x}}{1-x} \\
& d=\frac{-\sqrt{x}}{1-x}
\end{aligned}
$$

Using formula,
$S_{n}=\frac{n}{2}\left[2 a_{1}+(n-1) d\right]$
$=\frac{n}{2}\left[2\left(\frac{1+\sqrt{x}}{1-x}\right)+(n-1)\left(\frac{-\sqrt{x}}{1-x}\right)\right]$
$=\frac{n}{2}\left[\frac{2(1+\sqrt{x})+(n-1)(-\sqrt{x})}{1-x}\right]$
$=\frac{n}{2}\left[\frac{2+2 \sqrt{x}-n \sqrt{x}+\sqrt{x}}{1-x}\right]$
$\sqrt[\sim]{\sqrt{N_{n}}=\frac{n}{2}\left[\frac{2+(3-n) \sqrt{x}}{1-x}\right]}$
(vii) $\frac{1}{1+\sqrt{x}}+\frac{1}{1-x}+\frac{1}{1-\sqrt{x}}+\ldots \ldots+$ to n terms

Solution:

Given series is:

$a_{1}=\frac{1-\sqrt{x}}{1-x}$
$d=\frac{1}{1-x}-\frac{1-\sqrt{x}}{1-x}=\frac{1-1+\sqrt{x}}{1-x}$
$d=\frac{\sqrt{x}}{1-x}$
Using formula,

$$
\begin{aligned}
S_{n} & =\frac{n}{2}\left[2 a_{1}+(n-1) d\right] \\
& =\frac{n}{2}\left[2\left(\frac{1-\sqrt{x}}{1-x}\right)+(n-1)\left(\frac{\sqrt{x}}{1-x}\right)\right] \\
= & \frac{n}{2}\left[\frac{2(1-\sqrt{x})+(n-1) \sqrt{x}}{1-x}\right] \\
= & \frac{n}{2}\left[\frac{2-2 \sqrt{x}+n \sqrt{x}-\sqrt{x}}{1-x}\right]
\end{aligned}
$$

Q. 3 How many terms of the series
(i) $\quad-7+(-5)+(-3)+\ldots$. amount to 65?

Solution:

$a_{1}=-7, S_{n}=65$,
Using fort in a,
$S_{n}=\frac{n}{2}\left[2 c_{1}+(n-1) d\right\rfloor$
$65-\frac{n}{2}[2(-7)+(n-1) 2]$
$65=\frac{n}{2}(-14+2 n-2)$
$65=\frac{n}{2}(2 n-16)$
$65=\frac{n}{\not 2} \not 2(n-8)$
$65=n(n-8)$
$65=n^{2}-8 n$
$n^{2}-8 n-65=0$
$n^{2}-13 n+5 n-65=0$
$n(n-13)+5(n-13)=0$
$(n-13)(n+5)=0$

Either	$\begin{array}{l}\text { Or } \\ n-13=0\end{array}$
$n=13$	$\begin{array}{l}n=0 \\ n=-5 \quad \text { Not Possible }\end{array}$

So, $n=13$
(ii) $-7+(-4)+(-1)+$

Solution:

Given series is:
$-7+\left(-\frac{3}{9}\right)+(-i)+\cdots \ldots$ ancounto 151

$$
a_{1}=-7-7, \cup_{2}=-1.4, d=-4-(-7)=-4+7=3
$$

Using rormula,
$S_{n}=\frac{n}{2}\left[2 a_{1}+(n-1) d\right]$

$$
\begin{aligned}
& 114=\frac{n}{2}[2 \times(-7)+(n-1) 3] \\
& 114=\frac{n}{2}(-14+3 n-3) \\
& 228=n(3 n-17) \\
& 228=3 n \\
& 3 n^{2}-12 n+22, \\
& 3 n^{2}-35 n+13 n-228=0 \\
& 3 n(n-12)+19(n-12)=0 \\
& (n-12)(3 n+19)=0
\end{aligned}
$$

| $\begin{array}{l}\text { Either } \\ n-12=0\end{array}$ | $\begin{array}{l}\text { Or } \\ n=12\end{array}$ |
| :--- | :--- | \(\begin{aligned} \& 3 n+19=0

\& n=-\frac{19}{3} Not Possible\end{aligned}\).
So, $n=12$

Q. 4 Sum the series

(i) $3+5-7+9+11-13+15+17-19+$ \qquad to $3 \boldsymbol{n}$ terms

Solution:

$3+5-7+9+11-13+15+17-19+$ \qquad to $3 n$ terms
$(3+5-7)+(9+11-13)+(15+17-19)+$ \qquad to n terms
$1+7+13+$ \qquad to n terms
$a_{1}=1, d=7-1=6, d=13-7=6, n=n$
Using formula,
$S_{n}=\frac{n}{2}\left[2 a_{1}+(n-1) d\right]$
$=\frac{n}{2}[2 \times 1+(n-1) 6]$
$=\frac{n}{2}(2+6 \cdot 1-6)$
$=\frac{n}{2}(6 n-4)$
$=\frac{2}{2} \not 2(3 n-2)$
$S_{n}=n(3 n-2)$
(ii) $1+4-7+10+13-16+19+22-25+\ldots . . .$. to $3 n$ terms

Solution:

Given series is:
$1+4-7+10+13-16+19+22-25+\ldots . . .10 . v t t r m s$
$(1+4-7)+(10+13-16)+(19+22-25)+\cdots \cdots \cdot$ to de te ias
$-2+7+16+.+10 n$ terns
$a_{1}=-2, d^{\prime}=-(-2)=7-2,-d=16-9=7, n=n$
1 Finis forms,

$$
\begin{aligned}
S_{n} & =\frac{n}{2}\left[2 a_{1}+(n-1) d\right] \\
S_{n} & =\frac{n}{2}[2(-2)+(n-1) 9] \\
& =\frac{n}{2}(-4+9 n-9) \\
S_{n} & =\frac{n}{2}(9 n-13)
\end{aligned}
$$

Q. 5 Find the sum of 20 terms of the series whose r th term is $3 r+1$.

Solution:

Given that:
$a_{r}=3 r+1$
Put $r=1, a_{1}=3(1)+1=3+1=4$
Put $r=2, a_{2}=3(2)+1=6+1=7$
Put $r=3, a_{3}=3(3)+1=9+1=10$
Put $r=4, a_{4}=3(4)+1=12+1=13$
The series is:
$4+7+10+13+$ to 20 terms
$a_{1}=4, d=7-4=3, d=10-7=3, \pi=20$
Using formula,

Q. 6 If $S_{n}=n(2 n-1)$ then find the series.

Solution:

As given that:
$S_{n}=n(2 n-1)$
Put $n \cong S=1(2(1)-1)=2-1=1$
Put $n=2, S_{2}=2(2(2)-1)-2(4-1)=2(3)=6$
Pet $n \in 3, S_{3}=3(2(3)-1)=3(6-1)=3(5)=15$
Put $n=4, S_{4}=4(2(4)-1)=4(8-1)=4(7)=28$
As we know that,
$a_{1}=S_{1}=1$
$a_{2}=S_{2}-S_{1}=6-1=5$
$a_{3}=S_{3}-S_{2}=15-6=9$
$a_{4}=S_{4}-S_{3}=28-15=13$
Thus the series is:
$1+5+9+13+$. \qquad
Q. 7 The ratio of the sums of n terms of two series in A.P is $3 n+2: n+1$. Find the ratio of their 8th terms.

Solution:

Let a_{1}, a_{1}^{\prime} be the first terms and d, d^{\prime} be the common differences of two series in A.P. respectively. Let S_{n} and S_{n}^{\prime} be the sums of n terms of the two series then:
$S_{n}=\frac{n}{2}\left[2 a_{1}+(n-1) d\right], S_{n}^{\prime}=\frac{n}{2}\left[2 a_{1}^{\prime}+(n-1) d^{\prime}\right]$
As given that:
$S_{n}: S_{n}^{\prime}=3 n+2: n+1$
$\frac{S_{n}}{S_{n}^{\prime}}=\frac{3 n+2}{n+7}$
$\begin{aligned} & \frac{n}{2}\left[2 a_{1}+(n-1) d\right] \\ & \left.\frac{n}{n}=\left[2 a_{1}+-\frac{-1}{n}-1\right) d^{\prime}\right]\end{aligned}=\frac{3 q_{2}+2}{n+1}$
$\frac{2 a_{1}+(n-1) d}{2 a_{1}^{\prime}+(n-1) d^{\prime}}=\frac{3 n+2}{n+1}$
$\frac{2\left[a_{1}+\left(\frac{n-1}{2}\right) d\right]}{2\left[a_{1}^{\prime}+\left(\frac{n-1}{2}\right) d^{\prime}\right]}=\frac{3 n+2}{n+1}$
$\xrightarrow[a_{1}+\binom{n-1}{-9}]{ }$
$a_{1}^{\prime}+\left(\frac{n}{-2}-1-x^{\prime}=-\frac{3 n+2}{n+1}\right.$
ant he ratio of $8^{\text {th }}$ terms,
Put $\frac{n-1}{2}=7$
$n-1=14$
$n=15$
Put $n=15$ in equation (i)
$\frac{a_{1}+\left(\frac{15-1}{2}\right) d}{a_{1}^{\prime}+\left(\frac{15-1}{2}\right) d^{\prime}}=\frac{3(15)+2}{15+1}$
$\frac{a_{1}+7 d}{a_{1}^{\prime}+7 d^{\prime}}=\frac{45+2}{16}$
$\frac{a_{8}}{a_{8}^{\prime}}=\frac{47}{16}$
So the ratio of their $8^{\text {th }}$ terms is: $a_{8}: a_{8}^{\prime}=47: 16$
Q. 8 If S_{2}, S_{3}, S_{5} are the sum of $2 n, 3 n, 5 n$ terms of an A.P. show that $S_{5}=5\left(S-S_{2}\right)$

Solution:

As S_{2}, S_{3}, S_{5} are the sums of $2 n, 3 n, 5 n$ terms of an A.P. So,
$S_{2}=\frac{2 n}{2}\left[2 a_{1}+(2 n-1) d\right]$
$S_{3}=\frac{3 n}{2}\left[a^{2} a_{1}+(3 n-1) a\right]$
$\underset{\text { Weave }}{S}=\frac{5 n}{2}\left[2 a_{1}+\left[=n-1 \frac{1}{2}\right]\right.$
$S_{5}=5\left(S_{3}-S_{2}\right)$
R.H.S: $=5\left(S_{3}-S_{2}\right)$

$$
\begin{aligned}
& =5\left[\frac{3 n}{2}\left[2 a_{1}+(3 n-1) d\right]-\frac{2 n}{2}\left[2 a_{1}+(2 n-1) d\right]\right] \\
& =5\left[\frac{3 n}{2}\left[2 a_{1}+3 n d-d\right]-\frac{2 n}{2}\left[2 a_{1}+2.2 d-\frac{-i}{u}\right]\right]
\end{aligned}
$$

Taking coumon n

$$
\begin{aligned}
& \left.=-53(2 a+3 n d-d)-2\left(2 a_{1}+2 n d-d\right)\right] \\
& =\frac{5 n}{2}\left(6 a_{1}+9 n d-3 d-4 a_{1}-4 n d+2 d\right) \\
& =\frac{5 n}{2}\left(2 a_{1}+5 n d-d\right) \\
& =\frac{5 n}{2}\left[2 a_{1}+(5 n-1) d\right] \\
& =S_{5}
\end{aligned}
$$

Hence, proved that: $S_{5}=5\left(S_{3}-S_{2}\right)$
Q. 9 Obtain the sum of all integers in the first 1000 integers which are neither divisible by 5 nor by 2 .

Solution:

The series of the first 1000 integers which are neither divisible by 5 nor by 2 is:
$=1+3+7+9+11+13+17+19+21+23+27+29+\ldots \ldots+9991+993+997+999$
$=(1+3+7+9)+(11+13+17+19)+(21+23+27+29)+\ldots \ldots \ldots .(991+993+997+999)$
$=20+60+100+\ldots \ldots .+3980$
$a_{1}=20, d=60-20=40, d=100-60=40, a_{n}=3980$
As we know that:
$a_{n}=a_{1}+(n-1) d$
$3980=20+(n-1) 40$
3980-20 $=(n-1) 10$
$3960=n-1) 4 ?$
$99=n-1$
$n=100$

Using formula,

$$
S_{n}=\frac{n}{2}\left[2 a_{1}+(n-1) d\right]
$$

$S_{100}=\frac{100}{2}\left[2 \times 20+(100-)^{2} 0\right]$

$$
=50 \cdot 4+09 \times 400
$$

$$
=50(40+3900
$$

$\sqrt{N}=55(4050)$
$S_{100}=200000$
Q. $10 S_{8}$ and S_{9} are the sums of the first eight and nine terms of an A.P. Find S_{9} if $\mathbf{5 0 S} \mathbf{9}_{\mathbf{9}}=\mathbf{6 3 S} \mathrm{S}_{8}$ and $\mathrm{a}_{1}=\mathbf{2}$

Solution:

Given that:
$50 S_{9}=63 S_{8}$ and $a_{1}=2$
$S_{8}=\frac{8}{2}\left[2 a_{1}+(8-1) d\right] \quad \because S_{n}=\frac{n}{2}\left[2 a_{1}+(n-1) d\right]$
$S_{8}=4\left(2 a_{1}+7 d\right)$
Similarly,
$S_{9}=\frac{9}{2}\left[2 a_{1}+(9-1) d\right]$
$=\frac{9}{2}\left(2 a_{1}+8 d\right)$
$=\frac{9}{2} \times 2\left(a_{1}+4 d\right)$
$S_{9}=9\left(a_{1}+4 d\right)$
Now,
$50 S_{9}=63 S_{8}$
$\left.50\left[9\left(a_{1}\right)-4 d i\right)\right]=\sin \left[4\left(2 \sigma_{1}+i d\right)\right]$
As give 1 that $a_{1}=2$
$15012(2(4 d)=252(4+7 d)$
$900+1800 d=1008+1764 d$
$1800 d-1764 d=1008-900$
$36 d=108$
$d=\frac{108}{36}$
$d=3$
Now,
$S_{9}=9 @+4 d$
Put $g_{1}=2$ and $a=3$
$V=9(0++\times 3)$
$=9(2+12)$
$=9(14)$
$S_{9}=126$
Q. 11 The sum of 9 terms of an A.P is 171 and its eight term is 31 . Find the series.

Solution:
Given that:
$a_{8}=31$
$\Rightarrow a_{1}+7 d=31$
and $S_{9}=171$
As we know that,
$S_{n}=\frac{n}{2}\left[2 a_{1}+(n-1) d\right]$
$\Rightarrow \frac{9}{2}\left[2 a_{1}+(9-1) d\right]=171$
$\frac{9}{2}\left(2 a_{1}+8 d\right)=171$
$\frac{9}{2} \times 2\left(a_{1}+4 d\right)=171$
$9\left(a_{1}+4 d\right)=171$
$\left.a_{1}+4 d=\right)^{9}$
Equation (i) - equation (i)

$d=4$
Put $d=4$ in (i)
$a_{1}+7(4)=31$
$a_{1}+28=31$
$a_{1}=31-28$
$a_{1}=3$
Now,
$a_{2}=a+d$
$a_{2}=3-4$
$q_{2}=7$
(1)ats the series
$3+7+11+15+$
Q. 12 The sum of S_{9} and S_{7} is 203 and $S_{9}-S_{7}=49 . S_{7}$ and S_{9} being the sums of the first 7 and 9 terms of an A.P. respectively. Determine the series.

Solution:

Given that
$S_{9}+S_{7}=203$
$S_{9}-S_{7}=49$
Adding (i) and (ii)

$$
\begin{gather*}
S_{9}+S_{7}=203 \tag{iv}\\
S_{9}-S_{7}=49 \\
\hline 2 S_{9}=252 \\
S_{9}=126
\end{gather*}
$$

Put $S_{9}=126$ in (i)
$126+S_{7}=203$
$S_{7}=203-126$
$S_{7}=77$
Now,

$$
\frac{9}{2}\left(2 a_{1}+8 d\right)=126
$$

$\frac{9}{2} \times 2\left(a_{1}+4 d\right)=126$
$9\left(a_{1}+4 d\right)=126$
$a_{1}+4 d=14$
and $S_{7}=77$
$\frac{7}{2}\left[2 a_{1}+(7-1) d\right]=77$
$\frac{7}{2}\left(2 a_{1}+6 d\right)=77$
$a_{1}+3 d=11$
Equation (iii) - equation (iv)

$$
\begin{aligned}
& a_{1}+4 d=14 \\
& \pm a_{1} \pm 3 d= \pm 11 \\
& d=3
\end{aligned}
$$

Put $d=3$ in (iii)
$a_{1}+4(3)=14$

Now,

$a_{2}=a_{1}+d$	$a_{3}=a_{2}+d$	$a_{4}=a_{3}+d$
$a_{2}=2+3$	$a_{3}=5+3$	$a_{4}=8+3$
$a_{2}=5$	$a_{3}=8$	$a_{4}=11$

Thus the series;
$2+5+8+11+$
Q. $13 \quad S_{7}$ and S_{9} are the sums of the first

7 and 9 terms of an A.P
respectively.
If $\frac{S_{9}}{S_{7}} 11$ and $\overbrace{7}=20 \cdot$ ling the
neres.
Solution:
Given that:
$a_{7}=20$
$\Rightarrow a_{1}+6 d=20$
(i)
$\frac{S_{9}}{S_{7}}=\frac{18}{11}$
As we know that,
$S_{n}=\frac{n}{2}\left[2 a_{1}+(n-1) d\right]$
$\Rightarrow \frac{\frac{9}{2}\left[2 a_{1}+(9-1) d\right]}{\frac{7}{2}\left[2 a_{1}+(7-1) d\right]}=\frac{18}{11}$
$\frac{9\left(2 a_{1}+8 d\right)}{7\left(2 a_{1}+6 d\right)}=\frac{18}{11}$

$\frac{1\left(a_{1}+4 d\right)}{7\left(a_{1}+3 d\right)}=\frac{18^{2}}{11}$
$11\left(a_{1}+4 d\right)=2 \times 7\left(a_{1}+3 d\right)$
$11 a_{1}+44 d=14 a_{1}+42 d$ $\left.\square 2 d=3 a_{1}\right]=44 d-42 t=1 t_{1}-1 a_{1}$
$d=\frac{3}{2} a_{1}$

Put $d=\frac{3}{2} a_{1}$ in (i)
$a_{1}+\not \varnothing\left(\frac{3}{\not 2}\right) a_{1}=20$
$a_{1}+9 a_{1}=20$
$10 a_{1}=20$
$a_{1}=2$
Put $a_{1}=2$ in (ii)
$d=\frac{3}{\not 2} \times \not 2$
$d=3$
Now,
$a_{2}=a_{1}+d, a_{3}=a_{2}+d \quad a_{4}=-a+(d)$

Thus the series is
$2+5+8+11+$. \qquad
Q. 14 The sum of three numbers in an A.P is 24 and their product is 440 . Find the numbers.

Solution:

Let $a-d, a, a+d$ are the theee nuinbers in $\mathrm{A} . \mathrm{P}$.
Sum $=24$
$a-d+a+a+a=24$
$3 a=24$

Droduct $=440$
$(a-d)(a)(a+d)=440$
Put $a=8$,
$(8-d)(8)(8+d)=440$
$(8)^{2}-(d)^{2}=55$
$64-d^{2}=55$
$64-55=d^{2}$
$9=d^{2}$
$d= \pm 3$
When $a=8$ and $d=3 \quad, \quad$ When $a=8$ and $d=-3$
the numbers are: , the numbers are:
$a-d, a, a+d \quad, \quad a-d, a, a+d$
$8-3,8,8+3$
$8-(-3), 8,8+(-3)$
5, 8, 11
$8+3,8,8-3$
$11,8,5$
So the required numbers are $5,8,11$ or $11,8,5$.

Q. 15 Find four numbers in A.P whose sum is 22 and the swom hose squares is 2 gh.

 Solution:Let $a-3 d, a-d, a+d, a+3 d$ aredericur numbersin
According to given condition that the sum of numbers is 32
$a-3 d+a-d+a+c+a+3 c-32$
$+n_{n}=32$
According to given condition that the sum of squares of numbers is 276
(i)
$(a-3 d)^{2}+(a-d)^{2}+(a+d)^{2}+(a+3 d)^{2}=276$
$a^{2}+9 d^{2}-6 a d+a^{2}+d^{2}-2 a d+a^{2}+d^{2}+2 a d+a^{2}+9 d^{2}+6 d d=276$
$4 a^{2}+20 d^{2}=276$
$4\left(a^{2}+5 d^{2}\right)=276$
$a^{2}+5 a^{2}=60$
Put $a=8$ rom (i)
1- $O=6$
$04+5 d^{2}=69$
$5 d^{2}=69-64$
$5 d^{2}=5$
$d^{2}=1$
$d= \pm 1$
When $a=8$ and $d=1 \quad, \quad$ When $a=8$ and $d=-1$
the numbers are:
$a-3 d, a-d, a+d, a+3 d$
$a-3 d, a-d, a+d, a+3 d$
$8-3(1), 8-1,8+1,8+3(1)$
$8-3(-1), 8-(-1), 8+(-1), 8+3(-1)$
$8-3,7,9,8+3$
$8+3,8+1,8-1,8-3$
5,7,9,11
$11,9,7,5$
So required numbers are $5,7,9,11$ or $11,9,7,5$.
Q. 16 Find the five numbers in A.P whose sum is $\mathbf{2 5}$ and the sum of whose squares is $\mathbf{1 3 5}$ Solution:

Let $a-2 d, a-d, a, a+d, a+2 d$ are the five numbers in A.P
According to given condition that the sum of numbers is 25
$a-2 d+a-d+a+a+d+a+2 d=25$
$5 a=25$
$a=5$
According to given condition that ane ir of scares of numbers is 135
$\left(a-2(a)^{2}+\left(a a^{2}\right)^{2}+(a)^{2}+\left(a+a^{2}\right)^{2}+(a+2 a)^{2}=135\right.$
$a^{2}+4 d^{2}-4 a c^{2}+d^{2}+d^{2}=2 a a a^{2}+a^{2}+a^{2}+d^{2}+2 a d+a^{2}+4 d^{2}+4 a d=135$
$50^{2}-10 d^{2}=135$
$5\left(a^{2}+2 d^{2}\right)=135$
$a^{2}+2 d^{2}=27$

Put $a=5$ from (i)
$5^{2}+2 d^{2}=27$
$25+2 d^{2}=27$
$2 d^{2}=2$
$d^{2}=1$
$d= \pm 1$
What $a=5$ ard $a=1$
When $a=5$ and $d=-1$
the tubers are: , the numbers are:
$a-2 d, a-d, a, a+d, a+2 d$
$a-2 d, a-d, a, a+d, a+2 d$
$5-2(1), 5-1,5,5+1,5+2(1)$
$5-2(-1), 5-(-1), 5,5+(-1), 5+2(-1)$
$5+2,5+1,5,5-1,5-2$
$5-2,4,5,6,5+2$
7,6,5,4,3
3,4,5,6,7
So required numbers are $3,4,5,6,7$ or $7,6,5,4,3$.
Q. 17 The sum of the $6^{\text {th }}$ and $8^{\text {th }}$ terms of an A.P is 40 and the product of 4th and $7^{\text {th }}$ terms is $\mathbf{2 2 0}$. Find the A.P.

Solution:
$a_{6}+a_{8}=40$
$\Rightarrow a_{1}+5 d+a_{1}+7 d=40$
$2 a_{1}+12 d=40$
$2\left(a_{1}+6 d\right)=40$
$a_{1}+6 d=20$
and $\left(a_{4}\right)\left(a_{7}\right)=220$
$\Rightarrow\left(a_{1}+3 d\right)\left(a_{1}+6 d\right)=22$
Put $a_{1}+\sigma d=20$ rom (i)
$\left(a_{1}+3 d\right)(20)=220$

$$
\begin{gathered}
a_{1}+6 d=20 \\
\pm a_{1} \pm 3 d= \pm 11 \\
\hline 3 d=9 \\
d=3
\end{gathered}
$$

Put $d=3$ in (i)

$$
\begin{aligned}
& a_{1}+6(3)=20 \\
& a_{1}+18=20 \\
& a_{1}=2
\end{aligned}
$$

Now,

$$
\begin{aligned}
& \text { Now, } \\
& a_{2}=a_{1}+d a_{3}=a_{2}+d \quad a_{4}=a_{3}+(d)
\end{aligned}
$$

Thus the A.P is
$2,5,8,11, \ldots \ldots$.

Equation (i) - equation (ii)
Q. 18 If a^{2}, b^{2} and c^{2} are in A.P, show that $\frac{1}{b+c}, \frac{1}{c+a}, \frac{1}{a+b}$ are in A.P.

Solution:

a^{2}, b^{2}, c^{2} are in A.P. So,
$b^{2}-a^{2}=c^{2}-b^{2}$
$(b+a)(b--a)=(c+b)(c-b)$
yct aqe on show that $\frac{1}{b+c}, \frac{1}{c+a}, \frac{1}{a+b}$ are in A.P.
If $\frac{1}{b+c}, \frac{1}{c+a}, \frac{1}{a+b}$ are in A.P. then:
$\frac{1}{c+a}-\frac{1}{b+c}=\frac{1}{a+b}-\frac{1}{c+a}$
$\frac{b+c-(c+a)}{(c+a)(b+c)}=\frac{c+a-(a+b)}{(c+a)(a+b)}$
$\frac{b+\not b-\not b-a}{(c+a)(b+c)}=\frac{c+\not a-\not a-b}{(c+a)(a+b)}$
$\frac{(b-a)}{(b+c)}=\frac{(c-b)}{(a+b)}$
$(b+a)(b-a)=(c+b)(c-b)$
(ii)

By comparing (i) and (ii) it is proved that, $\frac{1}{b+c}, \frac{1}{c+a}, \frac{1}{a+b}$ are in A.P.

EXERCISE 6.5

Q. 1 An man deposits in a bank Rs. 10 in the first month; Rs 15 in the secend ment Rs 20 in the third month and so on. Finü how mugne ill have deasiten ino ine bank by the 9th month.

Solution:

Series offine depositedombunt is:
$10+15+20+\ldots \ldots$ to 9 terns
$a=0, d=10=5, \quad n=9$
Using formula,
$S_{n}=\frac{n}{2}\left[2 a_{1}+(n-1) d\right]$
$S_{9}=\frac{9}{2}[2(10)+(9-1) 5]$
$S_{9}=\frac{9}{2}(20+40)$
$S_{9}=\frac{9}{2}(60)$
$S_{9}=9 \times 30$
$S_{9}=270$
So the deposited amount by the 9th month is 270 .
Q. 2378 trees are planted in rows in the shape of an isosceles triangle, the number in successive rows decreasing by one from the base to the top. How many trees are there in the row which forms the base of the triangle?

Solution:

The series of trees from top to bottom is:
$1+2+3+\ldots . . n$ terms
$a_{1}=1, d=2-1=1, n=n, S_{n}=378$
Using formula,
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$378=\frac{n}{2}[-2(1)+(n-(1)(1)]$
$378=\frac{a}{2}(2+n-1)$
$378=\frac{n(n+1)}{2}$
$756=n^{2}+n$
$n^{2}+n-756=0$
$n^{2}+28 n-27 n-756=0$
$n(n+28)-27(n+28)=0$
$(n-27)^{\prime}(n+28)=0$
Either
$2-27=0$
$n=-28$ Not Possible
The number of trees in the base row, in the triangle is:
$a_{n}=a_{1}+(n-1) d$
$a_{27}=1+(27-1) \times 1$
$=1+26 \times 1$
$a_{27}=27$
Q. 3 A man borrows Rs 1100 and agree to repay with a total interest of Rs 230 in 14 installments, each installment being less than the preceding by Rs $\mathbf{1 0}$. What should be his first installment?
Solution:
Let the first installment is x, so the sequence is:
$x, x-10, x-20, \ldots \ldots$. to 14 terms
$S_{14}=$ total amount to pay $=1100+270=1330$
$a_{1}=x, d=x-10-x=-10$,
Using formula,
$S_{n}=\frac{n}{2}\left[2 a_{1}+(n-1) d\right]$
$S_{14}=\frac{14}{2}[2 x+(14-1)(-10)]$
$1330=7(2 x-130)$
$\frac{1330}{7}=2 x-130$
$190=2 x-130$
$190+1.30=2$.

$x=160$
Thus the first installment is 160 .
Q. 4 A clock strikes once when its hour hand is at one. Twice when it is at two and so on. How many times does the clock strike in twelve hours?

Solution:

The strikes of clock form the sequence.
1,2,3, to 12 terms
$a_{1}=1, Q_{d}=2-1, n=12$

$$
\left.\sqrt{n}=\sqrt{\frac{n}{2}}\left[2 a_{1}\right]+(1,-1) \frac{a}{a}\right]
$$

$S_{12}=\frac{12}{2}[2 \times 1+(12-1) 1]$

$$
=6(2+11)
$$

$$
=6(13)
$$

$S_{12}=78$
So the clock strikes 78 times in twelve hours.
Q. 5 A student saves Rs. 12 at the end of the first week and goes on increasing his saving Rs. 4 weekly. After how many weeks will he be able to save Rs 2100 ?
Solution:
The sequence of his saving at the end of n weeks is:
$12,16,20, \ldots \ldots .$. to n terms
$S_{n}=2100, a_{1}=12, d=16-12=4, n=n$
$S_{n}=\frac{n}{2}\left[2 a_{1}+(n-1) d\right]$
$2100=\frac{n}{2}[2 \times 12+(n-1) 4]$
$2100=\frac{n}{2}(24+4 n-4)$
$2100=\frac{n}{2}(4 n+20)$
$2100=-\frac{n}{2} \sqrt{4}(n \pm 5)$
$2100=2-2(2+5)$
2100
$\Theta_{n}(n+5)$
$1050=n(n+5)$
$1050=n^{2}+5 n$
$n^{2}+5 n-1050=0$
$n^{2}+35 n-30 n-1050=0$
$n(n+35)-30(n+35)=0$
$(n-30)(n+35)=0$
Eithrr
$n-30=0$
$n+35=0$
2- -1.0 U $n=-35$ Not possible
1 Thus the student save Rs. 2100 in 30 weeks.
Q. 6 An object falling from rest, falls 9 meters during the first second, 27 meters during the next second, 45 meters during the third second and so on.
(i) How far will it fall during the fifth second?
(ii) How far will it fall up to the fifth second?

Solution:

The sequence of the fall is
9,27,45,.....
$a_{1}=9, \quad d=27-9=18$

(i) To calculate how far will it fall during the fifth second.

$$
n=5
$$

As we know

$$
\begin{aligned}
& a_{n}=a_{1}+(n-1) d \\
& a_{5}=9+(5-1) 18 \\
& a_{5}=9+(4) 18 \\
& a_{5}=9+72 \\
& a_{5}=81
\end{aligned}
$$

So the object will fall a distance of 81 meters duain the fifth second.
(ii) To calculate how far will tall nop to fil th eecond.

$S_{5}=\frac{5}{2}[2 \times 9+(5-1) 18]$

$$
\begin{aligned}
& S_{5}=\frac{5}{2}(18+4 \times 18) \\
& S_{5}=\frac{5}{2}(18+72) \\
& S_{5}=\frac{5}{2} \times 96 \\
& S_{5}=22
\end{aligned}
$$

So the object will fall a distance of 225 meters upto the fifth second.
Q. 7 An investor earned Rs. 6000 for year 1980 and Rs. 12000 for year 1990 on the same investment. If his earning has increased by the same amount each year. How much income he has received from the investment over the past eleven years?

Solution:

The first earned amount $=6000$
The final earned amount $=12000$
Total no. of years $=11$
$a_{1}=6000, a_{n}=12000, n=11, S_{11}=$?

Using formula,
$S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$
$S_{11}=\frac{11}{2}(6000+12000)$
$=\frac{11}{2}(18000)$
$=11 \times 9000$
$S_{11}=99000$
The income he received ofen the pas. elerven y lars is 95000 .
Q. 8 The sum ofinterior angles of pelygons haying sides $\frac{3}{3}, 4,5, \ldots \ldots$....c. from an A.P. Find the sumpt the intarior anglesfor a 16 sided polygon.

Solution:

S wh of the interior angles of $3-$ sided polygon $=\pi$
Sum of interior angles of 4 - sided polygon $=2 \pi$
Sum of interior angles of $5-$ sided polygon $=3 \pi$
Sum of interior angles of $16-$ sided polygon $=$?

So the sequence of sums of interior angles is:
$\pi, 2 \pi, 3 \pi$,
$a_{1}=\pi, d=2 \pi-\pi=\pi$
$n=14$ (For polygon having $16-$ rce.)
Using ion ula,
$a_{1}=-a_{1}+(r-1) \cdot d$
$\sqrt{ } \sqrt{a_{14}} \mathrm{~N}_{\pi}$
$\pi+(14-1) \pi$
$a_{14}=\pi+13 \pi$
$a_{14}=14 \pi$
Sum of interior angles of polygon having 16-sides is 14π.
Q. 9 The prize money Rs. 60,000 will be distributed among the eight teams according to their positions determined in the match-series. The award increases by the same amount of each higher position. If the last place team is given Rs. 4000, how much will be awarded to the first place team?

Solution:
Total amount $=S_{8}=60,000, n=8, a_{1}=4000, a_{8}=$?
Using formula,
$S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$
$S_{8}=\frac{8}{2}\left(4000+a_{8}\right)$
$60,000=4\left(4000+a_{8}\right)$
$\frac{60000}{4}=4000+a_{8}$
$15000=4000+a_{8}$
$a_{8}=1500-4000$
$a=10.00$
the prize money awarded to the first place team is 11000 .
Q. 10 A equilateral triangular base is filled by placing eight ball in the first row, 7 balls in the second row and so on with one ball in the last row. After this base raver, seerna layer is formed by placing 7 balls in its first row, 6 balls in iis srcomy Eow and so on with one ball in its last row. Continuins this procers apy mid o loiss isomed with one ball on top. How walls are thez in the pyranic?
Solution:
Balls inthe frst layer are
$8+7+6+4+.7+2+=36$
Balls in the 2nd la er a e
$7-6+5+4+3+2+1=28$
3 ais iethe 3 rd layer are
$6+5+4+3+2+1=21$
Balls in the 4th layer are
$5+4+3+2+1=15$
Ball in the 5th layer are
$4+3+2+1=10$

Balls in the 6th layer are
$3+2+1=6$
Balls in the 7th layer are
$2+1=3$
Balls in the 8th layer $=1$
The number of balls $=36+28+21+15+10+6+3+1=120$

Geometric progression (G.P):

A sequence $\left\{a_{n}\right\}$ is a geometric sequence or geometric progression if $\frac{a_{n}}{a_{n-1}}$ is the same non-zero number for all $n \in N$ and $n>1$. The quotient $\frac{a_{n}}{a_{n-1}}$ is usually denoted by r and is called common ratio of the G.P. The common ration $r=\frac{a_{n}}{a_{n-1}}$ is defined on!, if $a_{n-1}=0$, i.e., no term of the geometric sequence is zro.

Rule for \boldsymbol{n} th term of a G.P:
In G.P eacherm after the firs erm is an multiple of its preceding term. Thus we have, $a_{2}=a_{1} \because a_{1} r r^{2}-1$

$$
a_{3}=\left(a_{2} r=\left(a_{1} r\right) \cdot \Rightarrow a_{1} r=a_{1} r^{3-1}\right.
$$

$a_{4}=a_{3} r=\left(a_{1} r^{2}\right) r=a_{1} r^{3}=a_{1} r^{4-1}$
Similarly we have,
$a_{n}=a_{1} r^{n-1}$ which is the general term of a G.P

EXERCISE 6.6

Q. 1 Find the 5th term of the G.P 3,6,12,......

Solution:
$a_{1}=3, r=\frac{6}{3}=2, a_{5}=$?
Using on rhua
$a_{n}=a_{1} F^{n-1}$

Solution:

$$
\begin{aligned}
a_{1}=1+i & , n=11 \\
r & =\frac{2}{1+i}=\frac{2}{1+i} \times \frac{1-i}{1-i} \\
= & \frac{2 \times(1-i)}{1-i^{2}}=\frac{2 \times(1-i)}{1-(-1)} \\
r & =\frac{2 \times(1-i)}{2} \\
r & =1-i
\end{aligned}
$$

Using formula,

$$
\begin{aligned}
& a_{n}=a_{1} r^{n-1} \\
& a_{11}=(1+i)(1-i)^{11-1} \\
& =(1+i)(1-i)^{10} \\
& =(1+i)\left[(1-i)^{2}\right]^{5} \\
& =(1+i)(-2 i)^{5} \\
& =\left(1+i(2),-32 i^{5}\right. \\
& =(1+i)(-32 i) \\
& =-32 ; i(1+i) \\
& =-32\left(i+i^{2}\right) \\
& =-32(-1+i) \\
& a_{11}=32(1-i)
\end{aligned}
$$

Q. 3 Find the 12 th term of $1+i, 2 i,-2+2 i, \ldots \ldots$.

Solution:

$$
a_{1}=1+i, \quad n=12
$$

Using formula,

$$
\begin{aligned}
& a_{n}=a_{1} r^{n-1} \\
& a_{12}=a_{1} r^{11} \\
& =(1+i)(1+i)^{11} \\
& =(1+i)^{12} \\
& =\left[(1+i)^{2}\right]^{6} \\
& =(2 i)^{6} \\
& =64 i^{6} \\
& =64\left(i^{2}\right)^{3} \\
& =64(-1)^{3} \\
& a_{12}=-64
\end{aligned}
$$

Q. 4 Find the 11th term of the sequence $1+i, 2,2(1-i), \ldots . .$.

Solution:

$$
\begin{aligned}
a_{1}=1+i & , \quad n=11 \\
r & =\frac{2(1-i)}{2} \\
r & =1-i
\end{aligned}
$$

Using form lula,

$$
\left.\begin{array}{rl}
\begin{array}{rl}
a_{n} & =a_{1} r^{n-1} \\
& =(1+i)(1-i)^{10} \\
& =(1+i)\left((1-i)^{2}\right)^{5}
\end{array} \\
& =(10
\end{array}\right)
$$

$$
\begin{aligned}
& =(1+i)(-2 i)^{5} \\
& =(1+i)\left(-32 i^{5}\right) \\
& =(1+i)(-32 i) \\
& =-32\left(i+i^{2}\right) \\
& =-32(-1) \\
a_{11} & =32(1)-i)
\end{aligned}
$$

$$
(1-i)^{2}=1+i^{2}-2 i=1-1-2 i=-2 i
$$

Q. 5 If an autonotie-depreciates in value 5% every year, at the end of 4 years what is Hevape of the automobile purchased for Rs 12,000 ?

Soletion:

$$
a_{1}=12000, r=1-5 \%=1-\frac{5}{100}=1-0.05=0.95
$$

At the end of 4 years $n=5$
Using formula,

$$
\begin{aligned}
& a_{n}=a_{1} r^{n-1} \\
a_{5} & =a_{1} r^{4} \\
& =12000(0.95)^{4} \\
& =12000(0.8145) \\
a_{5} & =9774 \text { (Approximately) }
\end{aligned}
$$

Q. 6 Which term of the sequence: $x^{2}-y^{2}, x+y, \frac{x+y}{x-y}, \ldots \ldots .$. is $\frac{x+y}{(x-y)^{9}}$?

Solution:

$$
\begin{aligned}
& a_{1}=x^{2}-y^{2}=(x+y)(x-y), a_{n}=\frac{x+y}{(x-y)^{9}} \\
& r=\frac{x+y}{x-y} \times \frac{1}{x+y} \\
& r=\frac{1}{x-y}
\end{aligned}
$$

Using formula,
$a_{n}=a_{1} r^{n-1}$

$$
\frac{1}{(x-y)^{9} \times(x-y)}=\left(\frac{1}{x-y}\right)^{n-1}
$$

$$
\begin{aligned}
& \left(\frac{1}{x-y}\right)^{10}=\left(\frac{1}{x-y}\right)^{n-1} \\
& n-1=10 \\
& n=10+1 \\
& n=11
\end{aligned}
$$

Q. 7 If a,b,c.d avein G.Ppruse that

(i) a-b,b-c, are in C.E
(ii) $a^{2}+b^{2} b^{2}-c^{2}, c^{2}-d^{2}$ are in G.P
(iii) $a^{2}+b^{2}, b^{2}+c^{2}, c^{2}+d^{2}$ are in G.P

Solution:
As a, b, c, d are in G.P
$r=\frac{b}{a}, r=\frac{c}{b}, r=\frac{d}{c}$
$\frac{b}{a}=\frac{c}{b}=\frac{d}{c}$
$\frac{b}{a}=\frac{c}{b}, \frac{c}{b}=\frac{d}{c}, \frac{b}{a}=\frac{d}{c}$
$b^{2}=a c$
$c^{2}=b d$
$b c=a d$
(i) $\mathbf{a}-\mathbf{b}, \mathbf{b}-\mathbf{c}, \mathbf{c}-\mathbf{d}$ are in G.P.

Solution:

If $a-b, b-c, c-d$ are in G.P, then:

$$
\begin{aligned}
& \frac{b-c}{a-b}=\frac{c-d}{b-c} \\
& (b-c)^{2}=(a-b)(c-d)
\end{aligned}
$$

L.H.S $=(b-c)^{2}$
$=b^{2}+c^{2}-2 b c$
$=b^{2}+c^{2}-b c-b c$
$-b^{2}-b c-h c+c^{2}$
नing (d), (ii), (iii)
$=a c-b \cdot-a c+b d$
$O=c(a-b)-d(a-b)$
$=(a-b)(c-d)$
=R.H.S
Hence proved that $a-b, b-c, c-d$ are in G.P
(ii) $\mathbf{a}^{2}-\mathbf{b}^{2}, b^{2}-\mathbf{c}^{2}, \mathbf{c}^{2}-\mathbf{d}^{2}$ are in G.P

Solution:

If $a^{2}-b^{2}, b^{2}-c^{2}, c^{2}-d^{2}$ are in G.P then
$\frac{b^{2}-c^{2}}{a^{2}-b^{2}}=\frac{c^{2}-d^{2}}{b^{2}-c^{2}}$
$\left(b^{2}-c^{2} \tilde{\sim}=(c+-5)\left(x^{2}-d x\right)\right.$
ICA. $\left.\therefore=a^{2}-a^{2}\right)^{2}$

$$
\begin{aligned}
& =b^{4}+c^{4}-2 b^{2} c^{2} \\
& =\left(b^{2}\right)^{2}-b^{2} c^{2}-b^{2} c^{2}+\left(c^{2}\right)^{2}
\end{aligned}
$$

Using (i), (ii) and (iii)

$$
\begin{aligned}
& =(a c)^{2}-b^{2} c^{2}-(a d)^{2}+(b d)^{2} \\
& =a^{2} c^{2}-b^{2} c^{2}-a^{2} d^{2}+b^{2} d^{2} \\
& =c^{2}\left(a^{2}-b^{2}\right)-d^{2}\left(a^{2}-b^{2}\right) \\
& =\left(c^{2}-d^{2}\right)\left(a^{2}-b^{2}\right) \\
& =\text { R.H.S. }
\end{aligned}
$$

Hence proved that $a^{2}-b^{2}, b^{2}-c^{2}, c^{2}-d^{2}$ are in G.P
(iii) $a^{2}+b^{2}, b^{2}+c^{2}, c^{2}+d^{2}$ are in G.P

Solution:

If $a^{2}+b^{2}, b^{2}+c^{2}, c^{2}+d^{2}$ are in G.P, then
$\frac{b^{2}+c^{2}}{a^{2}+b^{2}}=\frac{c^{2}+d^{2}}{b^{2}+c^{2}}$
$\left(b^{2}+c^{2}\right)^{2}=\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)$
L.H.S $=\left(b^{2}+c^{2}\right)^{2}$

$$
\begin{aligned}
& =\left(b^{2}\right)^{2}+\left(c^{2}\right)^{2}+2 b^{2} c^{2} \\
& =\left(b^{2}\right)^{2}+\left(c^{2}\right)^{2}+b^{2} c^{2}+b^{2} c^{0} \\
& =(a c)^{2}+(b d)^{2}+(a d)^{2}+b^{2} c^{2} \\
& \left.=a^{2} c^{2}-b^{2} c c^{2}+a^{2} d^{2}-b^{2} a^{2}-b^{2}\right)+d^{2}\left(a^{2}+b^{2}\right) \\
& =\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right) \\
& =\text { R.H.S }
\end{aligned}
$$

Hence proved that $a^{2}+b^{2}, b^{2}+c^{2}, c^{2}+d^{2}$ are in G.P
Q. 8 Show that the reciprocals of the terms of the geometric sequence $a_{1}, a_{1} r^{2}, a_{1} r^{4}, \ldots$ form another geometric sequence.
Solution:
As $a_{1}, a_{1} r^{2}, a_{1} r^{4}, \ldots$. are in G. P
Now reciprocals of the terms ci ©. Par

$\begin{aligned} \text { Common ratio } & =\frac{\frac{1}{a_{1} r^{2}}}{\frac{1}{a_{1}}} \\ & =\frac{1}{a_{1} r^{2}} \times a_{1} \\ & =\frac{1}{r^{2}}\end{aligned}$

$$
\begin{aligned}
\text { Common ratio } & =\frac{\frac{1}{a_{1} r^{4}}}{\frac{1}{a_{1} r^{2}}} \\
& =\frac{1}{a_{1} r^{4}} \times a_{1} r^{2} \\
& =\frac{1}{r^{2}}
\end{aligned}
$$

As common ratio is same, so it is proved that $\frac{1}{a_{1}}, \frac{1}{a_{1} r^{2}}, \frac{1}{a^{1} r^{4}}, \ldots \ldots .$. are in G.P
Q. 9 Find the nth term of the geometric sequence if: $\frac{a_{5}}{a_{3}}=\frac{4}{9}$ and $a_{2}=\frac{4}{9}$

Solution:

$a_{2}=\frac{4}{9}$
$\Rightarrow a_{1} r=\frac{4}{9}$
$\frac{a_{5}}{a_{3}}=\frac{4}{9}$
$\frac{a_{1} r^{4}}{a_{1} r^{2}}=\frac{4}{9} \Rightarrow r^{2}=\frac{4}{9} \Rightarrow r= \pm \frac{2}{3}$
Put $r=-3$ nation

$a_{1}=\frac{4}{9} \times \frac{3}{2}$
$a_{1}=\frac{2}{3}$
Using Formula,
$a_{n}=a_{1} r^{n-1}$
$\left.a_{n}=\left(\begin{array}{l}2 \\ \vdots \\ 3\end{array}\right)^{1}\left(\frac{2}{3}\right)^{n-1} \frac{(22)^{1+n-}}{3}\right)=\left(\frac{2}{3}\right)^{n}$
$\operatorname{Pet} 1=-\frac{-2}{3} \operatorname{nnil}$
$a_{1}\left(\frac{-2}{3}\right)=\frac{4}{9}$
$a_{1}=\frac{4}{9}\left(\frac{-3}{2}\right)$
$a_{1}=-\frac{2}{3}$
Using Formula,

$$
\begin{aligned}
a_{n} & =a_{1} r^{n-1} \\
& =\left(\frac{-2}{3}\right)^{1}\left(\frac{-2}{3}\right)^{n-1}=\left(\frac{-2}{3}\right)^{1+n-1}=\left(\frac{-2}{3}\right)^{n} \\
a_{n} & =(-1)^{n}\left(\frac{2}{3}\right)^{n}
\end{aligned}
$$

Q. 10 Find three consecutive numbers in G.P whose sum is 26 and their product is 216. Solution:

Let $\frac{a}{r}, a, a r$ be the three consecutive numbers of G.P.
Their product $\quad \frac{a}{r} \times a \times a r=216$

And su

$$
a^{3}=216
$$

Pita $=0$

$$
\frac{6}{r}+6+6 r=26
$$

Either

$$
\begin{array}{l|lc}
\text { Either } \begin{array}{c}
r-3=0 \\
r=3
\end{array} & \text { or } & 3 r-1=0 \\
\text { When } a=6 \text { and } r=3 \text {, the numbers } & r=\frac{1}{3}
\end{array}
$$

are:

$$
\begin{aligned}
& \frac{a}{r}, a, a r \\
& \frac{6}{3}, 6,6 \times 3 \\
& 2,6,18
\end{aligned}
$$

When $a=6$ and $r=\frac{1}{3}$, the numbers
are:

$$
\frac{a}{r}, a, a r
$$

$$
\frac{6}{\left(\frac{1}{3}\right)}, 6,6\left(\frac{1}{3}\right)
$$

$$
6 \times 3,6,2
$$

$$
18,6,2
$$

So, the required numbers are $2,6,18$ or $18,6,2$.
Q. 11 If the sum of four consecutive terms of a G.P is 80 and $A \cdot M$ on the second and he fourth of them is $\mathbf{3 0}$. Find the term.
Solution:
Let a_{1} @. r a $r^{2}, a_{1} r^{3}$ are ipur conser utive term of G.P.
Their Stm

$$
\begin{aligned}
& c_{1}+d r+a_{1} r^{3}=80 \\
& a_{1}\left(1+r+r^{2}+r^{3}\right)=80
\end{aligned}
$$

$$
a_{1}\left[1(1+r)+r^{2}(1+r)\right]=80
$$

$$
a_{1}(1+r)\left(1+r^{2}\right)=80
$$

$$
a_{1}\left(1+r^{2}\right)=\frac{80}{1+r}
$$

Also A.M. of $2^{\text {nd }}$ and $4^{\text {th }}$ term

$$
\begin{align*}
& a_{1}\left(1+r^{2}\right)=\frac{60}{r} \tag{ii}\\
& \frac{80}{1+r}=\frac{60}{r} \quad \text { from equation (i) } \\
& 80 r=60(1+r) \\
& 80 r=60+60 r \\
& 80 r-60 r=60 \\
& 20 r=60 \\
& r=3
\end{align*}
$$

Put $r=3$ in (ii)

$$
\begin{aligned}
& a_{1}\left(1+3^{2}\right)=\frac{60}{3} \\
& a_{1}(10)=20 \\
& a_{1}=2
\end{aligned}
$$

When $a_{1}=2$ and $r=3$ the t the rearired napbags ares

$\int \begin{aligned} & a_{1}, a_{r} r, a_{1} \cdot r^{2}, a_{1} r^{3} \\ & 22 \times 3,2 \times 3^{2} \\ & 2 \times 3^{3}\end{aligned}$

2,6,18,54
Q. 12 If $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ are in G.P. show that the common ratio is $\pm \sqrt{\frac{a}{c}}$

Solution:
If $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ are in G.P, then

$r=\frac{1}{b} \times a$
$r=\frac{a}{b}$
(i) $\quad r=\frac{b}{c}$

Multiply (i) and (ii)
$r . r=\frac{a}{b} \times \frac{b}{c}$
$r^{2}=\frac{a}{c}$
$r= \pm \sqrt{\frac{a}{c}}$
Q. 13 If the number 1,4 and 3 are subtracted from three consecutive terms of an A.P. the resulting numbers are in G.P. Find the numbers if their sum is 21.

Solution:

Let $a-d, a, a+d$ be the three consecutive terms of an A.P
Their sum $\quad a-d+a+a+d=21$

$$
3 a=21
$$

$$
a=7
$$

Again according to given condition:
$a-d-1, a-4, a+d-3$ re in Cr
Put $a=-3$
$7-a-7,7-4,7 x+a-3$
$\mathrm{O}=l, 5,4+d$ are in G.P , so ratio will be same
$\frac{3}{6-d}=\frac{4+d}{3}$
$(3)^{2}=(6-d)(4+d)$

$$
\begin{aligned}
& 9=24+6 d-4 d-d^{2} \\
& 9=24+2 d-d^{2} \\
& d^{2}-2 d+9-24=0 \\
& d^{2}-2 d-1.5=0 \\
& d^{2}-5 a+3 d-5=0 \\
& d(t-5)+3 \cdot d)=0
\end{aligned}
$$

$$
\begin{aligned}
& \text { Or } \\
& d-5=0 \\
& d=5
\end{aligned}
$$

When $d=5$ and $a=7$, the numbers are:
$a-d, a, a+d$
$7-5,7,7+5$
2,7,12
$7+3,7,4$
10,7,4
So the required numbers are $10,7,4$ or $2,7,12$
Q. 14 If three consecutive numbers in A.P are increased by $\mathbf{1 , 4 , 1 5}$ respectively, the resulting numbers are in G.P. Find the original numbers if their sum is 6.

Solution:

Let $a-d, a, a+d$ be the three consecutive numbers of an A.P.
Their sum

$$
\begin{aligned}
& a-d+a+a+d=6 \\
& 3 a=6 \\
& a=2
\end{aligned}
$$

Again according to the given condition
$a-d+1, a+4, a+a+15$ and 11 s.
Pu $a=2$
$2+\cdot d+2+4,2+d+15$

$=-d 6,17 \mathrm{~d}$ are in G.P so ratio will be same

$$
\frac{6}{3-d}=\frac{17+d}{6}
$$

$(6)^{2}=(3-d)(17+d)$

$$
36=51+3 d-17 d-d^{2}
$$

$$
36=51-14 d-d^{2}
$$

$$
d^{2}+14 d+36-51=0
$$

$$
d^{2}+14 d-15=0
$$

$$
a^{2}+5[5 d-d-15=0
$$

$$
\left.d\left(c^{\prime}+15\right)-\left(d^{\prime}+15\right)=1\right)
$$

$$
(d-1)(a+15)=0
$$

Either

$$
\begin{aligned}
& d-1=0 \\
& d=1
\end{aligned}
$$

When $a=2$ and $d=1$, the numbers are:
$a-d, a, a+d$
$2-1,2,2+1$
1,2,3

Or
$d+15=0$

$$
d=-15
$$

When $a=2$ and $d=-15$, the numbers are:

$$
\begin{aligned}
& a-d, a, a+d \\
& 2-(-15), 2,2+(-15) \\
& 2+15,2,2-15 \\
& 17,2,-13
\end{aligned}
$$

So the required numbers are $1,2,3$ or $17,2,-13$

