## TOPIC WISE MULTIPLE CHOICE QUESTIONS

### 1.6 PRECISION AND ACCURACY

(1) A precise measurement is one which has
(a) less precision
(c) less absoute uncertaints
(he) maximum precision (d) eoth' and ' $c$ '

(a) 1
(b) 2
(a) 3
(d) 4
(3) The least count of meter rod is
(a) 0.1 cm
(b) 0.01 cm
(c) cannot be zero
(d) can be zero
(4) The absolute uncertainty of screw gauge is
(a) 0.01 cm
(b) 0.01 mm
(c) 0.001 mm
(d) 0.1 cm
(5) Any measurement taken from an instrument will be more precise, if instrument has
(a) large absolute uncertainty
(b) small least count
(c) both $a$ and $b$
(d) none of these
(6) The relation for fractional uncertainty can be given by
(a) $\frac{\text { absolute uncertainty }}{\text { measured value }}$
(b) $\frac{\text { measured value }}{\text { absolute uncertainty }}$
(c) $\frac{\text { least count }}{\text { absolute uncertainty }}$
(d) $\frac{\text { measured value }}{\text { least count }}$

### 1.7 ASSESSMENT OF TOTAL UNCERTAINTY IN THE FINAL RESULT

(7) There are four readings of a micrometer to measure the diameter of a wire in mm are $1.21,1.23,1.25,1.23$. The mean of deviations is:

MTN-2019 (G-II)
(a) 0.02 mm
(b) 0.01 mm
(c) 0.10 mm
(d) 0.20 mm
(8) In addition and subtraction resutant unertainty is obtained by
(a) adding absolute uncertaincies
(b) sultaction or absclute uncertainties
(c) addition of $\%$ age vace tainties
(湢) multiplication of \% age uncertainties
(9) Velocit of obect ha $2 \%$ wertainty and mass has $\mathbf{1 \%}$ uncertainty. Total \% age merertant in ke is
(d) $3 \%$
(b) $4 \%$
(c) $5 \%$
(d) $6 \%$
(10) For total assessment of uncertainty in the final result obtained by multiplication and division
(a) add absolute uncertainty
b) add percatage uncee tainty
(c) subtract absolute uncertainty

(dadd fractionil uncertainty
(11) Length of a side of a cubs is 20 m . It volunde $i$.
(a) $80 \mathrm{~mm}^{3}$
(b) $8 \mathrm{~cm}^{3}$
(c) $8 \mathrm{~m}^{3}$
(d) $800 \mathrm{~m}^{3}$
(12) The uncertainty in tirning access can be determined by
(a) 1 vidine he 10 of timing device by number of vibrations
(h) diving the number of vibration by L.C of timing device
(c) multiplying the L.C of timing device with number of vibration
(d) adding the L.C of timing device by number of vibration
(13) The percentage uncertainty in measurement of mass and velocity are $2 \%$ and $3 \%$. The maximum uncertainty in the measurement of kinetic energy is (LHR 2013)
(a) absolute uncertainties are added
(b) fractional uncertainties are added
(c) \% age uncertainties are added
(d) errors are added

### 1.8 DIMENSIONS OF PHYSICAL QUANTITIES

(14) Dimension analysis helps in
(a) deriving the formula
(b) to convert one system of unit into another
(c) to confirm the correctness of any physical equation
(d) all of these
(15) The dimension of force is
(GRW 2014)
(a) $\left[\mathrm{ML}^{-2} \mathrm{~T}^{2}\right]$
(b) $\left[\mathrm{MLT}^{-1}\right]$
(c) $\left[\mathrm{MLT}^{-2}\right]$
(d) $\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]$
(16) Physical quantity "pressure" is terms of base unit is:

LHR-2018 (G-I)
(a) $\mathrm{kg}^{-1} \mathrm{~ms}^{-2}$
(b) $\mathrm{kg}^{2} \mathrm{~ms}^{-3}$
(c) $\mathrm{kg}^{2} \mathrm{~m}^{-2} \mathrm{sec}$
(d) $\mathrm{kg} \mathrm{m}^{-1} \mathrm{~s}^{-2}$
(17) Dimension of frequency is same that of
(a) time period
(b) angular velocity
(c) angular acceleration
(d) mass
(18) Which pair has same unit:
(a) work and power
(c) force and torque
(19) Mass is highy concentroted fuymol:
(a) Ine cti
(c) Plas nc
(b) Energy
(b) nonenturand inpuse
(c) to que and power
(20) Presiur has cinension
(d) $\left.\operatorname{li}_{2} T_{2}\right]$
(b) $\left[M L^{-2} T^{-2}\right]$
(c) $\left[M L^{-1} T^{-2}\right]$
(d) $\left[M L^{2} T^{2}\right]$
(21) Gravitational constant (G) has dimension
(a) $\left[M L^{2} T^{-2}\right]$
(b) $\left[M L^{-2} T^{2}\right]$
(c) $\left[M L^{-1} T^{-2}\right]$
(d) $\left[M^{-1}-1 T^{2}\right]$
(22) The branch of physics which is cronce ned vith ultirnate particles of which matter is composed $0^{\circ}$

DGK-2016 (G-II)
(a) Atomic physics
(D) Nuclear physics
(c) Plas ne physices
(d) Particle physics
(23) In It light of Einsten's famous equation $E=\mathbf{m c}^{2}$ the energy for mass of $2 \mathbf{k g}$ is envel 18

MTN-2018 (G-I)
(a) $3 \times 10^{8}$ Joules
(b) $9 \times 10^{16}$ Joules
(c) $4 \times 10^{16}$ Joules
(d) $18 \times 10^{16}$ Joules
(24) The dimension of power is
(a) $\left[M L^{-1} T^{-2}\right]$
(b) $\left[M L^{2} T^{-3}\right]$
(c) $\left[M L^{2} T^{-2}\right]$
(d) $\left[M L T^{-3}\right]$
(25) Ratio of dimension of power and work [power] : [work ]

DGK-2016 (G-I)
(a) $1: \mathrm{T}$
(b) $1: \mathrm{T}^{2}$
(c) $\mathrm{T}: 1$
(d) $\mathrm{T}^{2}: 1$
(26) Relativistic mechanics was developed by:

BWP-2017 (G-II)
(a) Newton
(b) Faraday
(c) Kepler
(d) Einstein
(27) The dimension of $\sqrt{\frac{F \times l}{m}}$ is same that of dimension of
(a) force
(b) momentum
(c) velocity
(d) acceleration
(28) Which of the given pairs not has same dimensions?
(a) work, torque
(b) force, weight
(c) impulse, momentum
(d) power, energy
(29) $\left[M^{0} L^{0} T^{-1}\right]$ is dimension of
(a) velocity
(b) frequency
(c) force
(daceretion
(30) The dimension of $\mathrm{mc}^{2}$ is ane astive dime sion of
(a) force
(b) monetilum
(c) powo
(d) energy
(31) In an equation if the quatines on both sides are same, the irrespective of the form of the forn la then this is called.
(a) Difiple of dimension
(b) principle of homogeneity of dimension
(c) principle of homogenous of equation
(d) principle of dimensional equation

## ANSWER KEYS



## SHORT QUESTIONS

## (From Textbook Exercise)

1.4 Three students measured the length of a needle winn scale on whinh mingum division is 1 mm and recorded as(i) 0.2145 n ii 021 n (ii) 6.214 n . vinich record is correct and why?
Ans: In the se echrds (iii) 5.214 in is nore correct bechuse the least count of scale is 1 mm which can be written as 0.001 m . So we car measure the length upto three decimal places.
1.7 Does a dinen ionalanaiysis give any information on constant of proportionally that qray apear in algebraic expression? Explain.
Ins. Dimensional analysis does not give any information about the constant of proportionality k. This constant k can be determined experimentally.

## Example

The relation for the time period of a simple pendulum is given as
$T=$ cosntant $\sqrt{\frac{l}{\mathrm{~g}}}$
The numerical value of constant in the above relation cannot be measured by dimensional analysis, however, it can be found by experiments.
1.8 Write the dimensions of (i) Pressure (ii) Density

Ans: (i) Pressure (ii) Density
(i) As pressure $P=\frac{F}{A}$
$\therefore[P]=\frac{[F]}{[A]}$
But $[F]=\left[M L T^{-2}\right]$ and $[A]=\left[L^{2}\right]$
$\therefore[P]=\frac{\left[M L T^{-2}\right]}{\left[L^{2}\right]}=\left[M L^{-1} T^{-2}\right]$
(ii) As density is given by

$$
\rho=m / V
$$


$=\frac{[1]}{\left[L^{3}\right]}=\left[M L^{-3}\right]$
1.9 The wavelength $\lambda$ of a wave depends on the speed $v$ of the wave and its frequency $f$ knowing that $[\lambda]=[L],[V]=\left[L T^{-1}\right]$ and $[f]=\left[T^{-1}\right]$ Decide whick re the following is correct. $f=v \lambda \quad$ or

Ans:
(i) $f=v \lambda$
$[f]=[\mathrm{V}[q]$
Dimens on of $\mathrm{c} \cdot \mathrm{H}:=\left[7=\left[{ }^{2}\right]\right.$

Dingencion ocr.H.S $=[V][\lambda]=\left[L T^{-1}\right][L]=\left[L^{2} T^{-1}\right]$
Dimension of L.H.S $\neq$ Dimension of R.H.S
Thus, equation is dimensionally incorrect
Now,
(ii)

$$
\begin{gathered}
f=\frac{V}{\lambda} \\
{[f]=\frac{[V]}{[\lambda]}}
\end{gathered}
$$

Dimension of L.H.S $=[f]=\left[T^{-1}\right]$
Dimension of R.H.S $=\frac{[V]}{[\lambda]}=\frac{\left[L T^{-1}\right]}{[L]}=\left[T^{-1}\right]$
Dimension of L.H.S = Dimension of R.H.S
Thus equation is dimensionally correct

## TOPIC WISE SHORT QUESTIONS

### 1.6 PRECISION AND ACCURACY

(1) How the accuracy of a measurement can be indicated?

Ans: The accuracy of a measurement can be indicated by taking fractional or percentage error. If it has less value, the measurements would be more accurate.
(2) Differentiate between precise and accuracy. DGK-2016 (G-II), BWP-2017 (G-II), MT-N-2015 (G-1I), 20 \& (6-1
Ans:

## Precise

(i) A presise measurement is th/e one (i) which ws leps aboplute underainty
(ii) Precision depend upor the absolute uncirta nt or least count.
(ii) Accuracy depend upon the fractional or percentage uncertainty.
(3) When a measurement is said to be precise?

DGK-2018 (G-I)
Ans: A measurement is said to be precise when it has less precision. e.g. in order to zeta precise measurement, the more precise instrument must be usea, e.e smarer the mysical quantity, more precise instrument must be wed.
(4) What is the limitation of areasuring Instunnent?

Ans. Every device capable to ineaspare hy sifal quatity be length, mass, time and temperatere has some limit of precisior.

### 1.7 ASSESSMFMT DFTPIALTNGMRUNNTY IN THE FINAL RESULT

(5) Add the masses given in ig upto appropriate precision 2.189,0.089, 11.8 and 5.32 BWP-2012, GRW-2016
An: 10ta mass $=2.189+0.089+11.8+5.32=19.390 \mathrm{~kg}$
As least precision is 11.8 kg , having one decimal place. Therefore, the total mass must have one decimal place which is the appropriate precision.
Total mass $=19.4 \mathrm{~kg}$
(6) What will be the percentage uncertainty in a radius of a small sphere measured as 2.25 cm by a Vernier caliper with least count 0.01 cm ?

BWP-2017 (G-I)
Ans: If the radius of a small sphere is measured as 2.25 cm by a Vernier callipers with least count 0.01 cm then
the radius $r$ is recorded as $r=2.25 \pm 0.01 \mathrm{~cm}$
Absolute uncertainty $=$ Least count $= \pm 0.01 \mathrm{~cm}$
\%age uncertainty in $\mathrm{r}=\frac{0.01 \mathrm{~cm}}{2.25 \mathrm{~cm}} \times \frac{100}{100}=0.4 \%$
(7) Given that $V=(5.2 \pm \mathbf{0 . 1})$ volt. Find its percentage uncertainty. $\quad$ BWP-2019 (G-I)

Ans: The percentage uncertainty of the voltage is measuring by this formula
Percentage uncertainty for $\mathrm{V}=\frac{\text { least count }}{\text { measuring value }} \times 100 \%$
$\mathrm{V}=5.2 \pm 0.1 \mathrm{~V}$
The $\%$ age uncertainty for $\mathrm{V}=\frac{0.1 \mathrm{~V}}{5.2 \mathrm{~V}} \times \frac{100}{100}=$ about $2 \%$
(8) How can we find uncertainty in a time period?

Ans: The uncertainty in a time period is found by dividing the least countrotiming device (y) its number of vibrations.
i.e Uncertainty $=\frac{\text { Least count of timing der ice }}{\text { Number of varaion }}$


### 1.8 DIMENSONS PRTHYCXLQUMNHTIE

(9) Write any hree usts of dinensional analysis?

Ans: The lises or cin ensional analysis are
(i) It is used to find the relationship between different physical quantities.
(ii) It is used to convert one system of unit into another.
(iii) It is used to confirm the correctness of any physical equation.
(10) Find the dimension of gravitational constant.

MTN-2016 (G-II)
Ans: $F=\frac{G m_{1} m_{2}}{\mathrm{r}^{2}}$
$\mathrm{G}=\frac{\mathrm{Fr}^{2}}{\mathrm{~m}_{1} \mathrm{~m}_{2}} \ldots \ldots . . . .(\mathrm{i})$
$\mathrm{AsF}=\mathrm{Miq}$
$[\mathrm{F}]=\left[\mathrm{NT}, \mathrm{T}^{-}\right.$
So, fiom enyation (i)
$[\mathrm{G}]=\frac{\left.\mathrm{L}^{(1)} \mathrm{MLT}^{-2}\right]\left[\mathrm{L}^{2}\right]}{\left[\mathrm{M}^{2}\right]}$
Therefore
$[\mathrm{G}]=\left[\mathrm{M}^{-1} \mathrm{~L}^{3} \mathrm{~T}^{-2}\right]$
(11) What is dimension of angle? Derive it.

Ans: The angular displacement ' $\theta$ ' can be related by the linear displacement's by the relation
$\mathrm{S}=\mathrm{r} \theta$ $\qquad$
Where ' $r$ ' is the radius of circle.
From equation (i), the angle made at the centre of a circle can give the valve of angular displacement as
$\theta=\frac{S}{r}=\frac{\text { Length of arc AB }}{\text { Radius of circle }}$
$\therefore \quad[\theta]=\left[\frac{L}{L}\right] \quad\left\{\begin{array}{l}\because S=L \\ \because r=L\end{array}\right.$
$[\theta]=1$
Hence $\theta$ is dimensionless

(12) Write any two drawbacks of dimensional analysis?

Ans: (i) The dimensional analysis is unable to find the values of various constants.
(ii) It cannot be applied to physical quantities involving trigonometric and logarithmic functions.
(iii) It cannot differentiate between terms having same dimensions. and Torque, stress and pressure.
(13) What is meant by dimen ions of pinys cal quant tis?

Ans: Each base quantity is comidered as dension deneted sy specific symbol written with in the square brackels Its tard: for thequal tative nature of the physical quantity.
Dimens or of 'ength is ' 1 ' expessed as [L]
Dinension of rites is ' $M$ ' expressed as [M]
andilimension of time is ' T ', expressed as [ T ]
What is meant by dimensional analysis?
Ans: Method to check the correctness of a given formula or an equation and to derive it using the dimensions of involved physical quantities is called dimensional analysis.
(15) Calculate the dimensions of pressure and work?

Ans: Dimensions of Pressure $[\mathrm{P}]=\frac{[\mathrm{F}]}{[\mathrm{A}]}$


$$
[\mathrm{P}]=\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]
$$

Dimension of work $[\mathrm{W}]=[\mathrm{F}][\mathrm{d}]$

$$
\begin{aligned}
& {[\mathrm{W}]=\left[\mathrm{MLT}^{-2}\right][\mathrm{L}]} \\
& {[\mathrm{W}]=\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]}
\end{aligned}
$$

(16) Show that energy-mass equation $\mathrm{E}=\mathrm{mc}^{2}$ is dimensionally correct?

MTN-2016 (G-I), SWL-2016, 2017, DGK-2018 (G-II)
Ans: $\quad \mathrm{E}=\mathrm{mc}^{2}$
Dimension of L.H.S $=[\mathrm{E}]=[\mathrm{F} \times \mathrm{d}]=\left[\mathrm{MLT}^{-2}\right][\mathrm{L}]=\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]$
Dimension of R.H.S $=\left[\mathrm{m} \mathrm{c}^{2}\right]=[\mathrm{M}]\left[\mathrm{LT}^{-1}\right]^{2}=[\mathrm{M}]\left[\mathrm{L}^{2} \mathrm{~T}^{-2}\right]=\left[\mathrm{M} \mathrm{L}^{2} \mathrm{~T}^{-2}\right]$
Therefore, the relation $\mathrm{E}=\mathrm{mc}^{2}$ is dimensionally correct.
(17) Write the dimension of (i) Velocity (ii) Density

Ans: $\quad$ Dimension of velocity $=\frac{\text { Dimension of displacement }}{\text { Dimension of time }}$

$$
[\mathrm{v}]=\frac{[\mathrm{L}]}{[\mathrm{T}]}=[\mathrm{L}]\left[\mathrm{T}^{-1}\right]=\left[\mathrm{LT}^{-1}\right]
$$

Dimension of density $=\frac{\text { Dimension of mass }}{\text { Dimension of volume }}=\frac{[\mathrm{M}]}{\left[\mathrm{L}^{3}\right]}=\left[\mathrm{ML}^{-3} \mathrm{~T}^{0}\right]$
(18) Show that the equation $v_{f}=v_{i}+$ at is dimensionally correct LHR-2013, 2018 (Cy), R1R-2013

As,
First equation of motion is given by
$\mathrm{v}_{\mathrm{f}}=\mathrm{v}_{\mathrm{i}}+\mathrm{at}$
where initial velocity $=\sqrt{i}=:(v a r y c$ ty at $t=(6)$
(Firal velocity $=\mathrm{V}_{\mathrm{f}}=$ (v-locit. at tinz t )
nedelration $=a$
As,
Lin encidn of L.H.S. of the equation $=\left[\mathrm{v}_{\mathrm{f}}\right]=\left[\mathrm{LT}^{-1}\right]$
Dimensions of R.H.S. of the equation $=\left[\mathrm{v}_{\mathrm{i}}\right]+[\mathrm{a}] \times[\mathrm{t}]$

$$
\begin{aligned}
& =\left[\mathrm{LT}^{-1}\right]+\left[\mathrm{LT}^{-2}\right] \times[\mathrm{T}] \\
& =\left[\mathrm{LT}^{-1}\right]+\left[\mathrm{LT}^{-1}\right] \\
& =2\left[\mathrm{LT}^{-1}\right] \text { where } 2 \text { has no dimension }
\end{aligned}
$$

Hence,
Dimensions of L.H.S. $=$ Dimensions of R.H.S
Or $\quad\left[\mathrm{LT}^{-1}\right]=\left[\mathrm{LT}^{-1}\right]$
Thus we find that dimensions of althe thene term. are tle anne whicl proves the correctness of the equation $\mathrm{v}_{\mathrm{f}}=\mathrm{v}_{\mathrm{i}}+\mathrm{at}$
(19) Find the in ensions of cofficient of viscosity i.t. $F=6 \pi \eta r v$

BWP-2015, SWL-2013, 2016 (G-I),MTN-2012
Ans: $6 \pi$ is a nunber tan ing dimensions. It is not accounted in dimensional analysis. Then
or $\quad$ Substituting the dimensions of $F, r$ and $v$ in R.H.S.
$[\eta]=\frac{\left[\mathrm{MLT}^{-2}\right]}{[\mathrm{L}]\left[\mathrm{LT}^{-1}\right]}=\left[\mathrm{ML}^{-1} \mathrm{~T}^{-1}\right]$
Thus, the SI unit of coefficient of viscosity is $\mathrm{kg} \mathrm{m}^{-1} \mathrm{~s}^{-1}$.
(20) Check the correctness of relation $\mathrm{V}=\sqrt{\frac{\mathrm{f} \times \ell}{\mathrm{m}}}$

DGK-2016 (G-II)
Ans: Dimensions of L.H.S of the equation $=[\mathrm{v}]=\left[\mathrm{LT}^{-1}\right]$
Dimensions of R.H.S of the equation $=\left([F] \times[l] \times\left[m^{-1}\right]\right)^{\frac{1}{2}}$

$$
=\left(\left[\mathrm{MLT}^{-2}\right][\mathrm{L}]\left[\mathrm{M}^{-1}\right]\right)^{\frac{1}{2}}=\left[\mathrm{LT}^{-1}\right]
$$

Since the dimensions of both sides of the equation are the same, hence equation is dimensionally correct.

## (21) State the principle of homogeneity of dimensions.

Ans: In order to check the correctness of an equation, we are to show that the dimensions of the quantities on both sides of the equation are the same, irrespectively of the form of formula. This is called the principle of homogeneity of dimensions.

