N.

TOPIC WISE MULTIPLE CHOICE QUESTIONS					
10.1	10.1 LEAST DISTANCE OF DISTINCT VISION				
(1)	The minimum distance from the eye a	vhich an object ap	pears to be dutinct is		
	called D	2 161 1 11 1 1 1			
	(a) infinite point	(b) least distance of f	uzzy vision		
	(c) least distance of distinct vision (d) none of these				
(2)	The least distance of distinct vision for the normal eye is LHR-2016 (G-II)				
	(a) 2 jcm	(b) 2.5cm			
TNN	(g) 15cm	(d) 20cm			
y (3)~	The least distance of distinct vision				
	(a) decreases with age	(b) increases with age	2		
	(c) no change	(d) none of these			
(4)	A human eye acts like				
	(a) mirror	(b) lens			
(=)	(c) laser	(d) all of these			
(5)	Far point for the human eye is	(1) 25			
	(a) 10cm	(b) 25 cm			
10.2	(c) 20cm	(\mathbf{d}) infinity			
10.2	<u>LUZZWANCHI BY INCH KOMPERTANI DER DSOLDY INCH KOMPERODEO POLCA DI INSTERUM DNI S</u>				
(0)	(o) rrounce of number of runngs "IN" and the order of diffraction "m" is equal to:				
	(a) Resolving power	(b) Magnification	LIIK-2017 (G-II)		
	(c) Near point	(d) Magnifying powe	r		
(7)	Rayleigh formula for resolving nower	(u) magninging powe	SGD-2016 (G-I)		
(,)	(a) $P = \frac{1}{22\lambda}$	(b) $p = 1.22D/$			
	(a) $K = \frac{1}{D}$	(b) $K = \frac{1}{\lambda}$			
	(c) $R = \frac{D}{1222}$	(d) $R = \frac{\lambda}{122D}$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
(8)	The ratio of the angles subtended by the	e image as seen throug	h the optical device to		
(0)	that subtended by the object at the upgided are is called				
	(a) linear magnification	(\mathbf{p}) least distance of \mathbf{q}	listinct vision		
	(c) angular magnification (d) neur noist		D		
(9)	The power of lens is measured in	und and			
	(a) joule	(b) diopter			
	(e) Watt	(d) meters			
n Al	Unit of magnification				
100	(a) meter	(b) diopter			
	(c) cm	(d) no unit			

R

N

(11)	To increase the resolving power of lens	
	(a) increase λ and D	(b) increase λ and decrease \mathbb{D}
	(c) decrease λ and increase D	(d) decrease λ and \overline{D}
(12)	The resolving power of diffraction grati	g is defined as
()		
	(a) $\frac{\pi}{\Lambda^2}$	$(\mathbf{b}) = (\mathbf{b})$
	(c) $\frac{\lambda_1 - \lambda_2}{\lambda_1 - \lambda_2}$	(d) $\frac{\lambda_2 - \lambda_1}{\lambda_2 - \lambda_1}$
		$\Delta\lambda$
(13)	The ratio of the size of the image to the si	ze of object is called
RAN	(a) in again fication	(b) angular magnification
NAA	(c) classification	(d) linear classification
(14)	When an object is viewed at a shorter dist	ance, the image on the retina of the eye is
	(a) smaller	(b) greater
	(c) unchanged	(d) remain same
(15)	The resolving power of an optical instrum	nent can be expressed
	(a) $\mathbf{R} = \frac{1}{2}$	(b) $\mathbf{D} = \mathbf{a}$
	(a) $\mathbf{K} = \frac{\mathbf{\alpha}_{min}}{\mathbf{\alpha}_{min}}$	(b) $\mathbf{K} = \mathbf{a}_{\max}$
	(c) $\mathbf{R} = \alpha_{max}$	(d) $\mathbf{R} = \alpha$
(16)	Magnification of a lens is negative when f	$(\mathbf{u}) \mathbf{K} = \mathbf{u}$
(10)	(a) real and inverted	(b) real and erected
	(c) virtual and inverted	(d) virtual and erect
(17)	Wavelength of light used in an optical ins	strument are $\lambda_1 = 4000$ Å and $\lambda_2 = 5000$ Å.
()	then ratio of their respective resolving nowers (corresponding to λ_1 and λ_2) is	
	(a) 16 : 25	(b) 9 : 1
	(c) $4:5$	(d) 5 : 4
(18)	When the image is real and inverted the	magnification of the lens is
	(a) positive	(b) neutral
	(c) negative	(d) virtual
(19)	The smaller value of α _{min} is	the resolving power.
	(a) smaller	(b) greater
	(c) zero	(d) none of these
(20)	A magnifying glass has a focal length o	f 15 cm. If the near point of the eye is 25
	cm from the eye the angular magnificat	tion of the glass is about:
	(a) 0.067	
(21)	A good optical device should have	
(21)	(a) high magnification mover and high reso	Ving Dower U
	(b) I ov vognification power and high reso	lying nower
	(c) Low magnification power and Low reso	lving power
	(d) in gh magnifications power and low reso	lving power
- n.fh	MATEMEROSCOPE	
NET	The magnifying power of convex lens of f	Cocal length 10cm is: GRW-2019 (G-I)
100	(a) 7	(b) 9.6
	(c) 3 5	(d) 11
	() 5.5	(u) 11

N.

(2	23)	The magnifying power of a magnifying gl	ass is:	BWP-2019 (G-I)
		(a) $1 - \frac{d}{f}$	(b) $1 - \frac{f}{d}$	VIS COUL
		(c) $\frac{f}{d}$	$(d), \frac{a'}{f} + 1$	
(2	24)	The magnification of a convex lens of foca	al length 5cm is equal	toMTN-2018 (G-I)
		(a) $\frac{1}{5}$	(b) 5	
	0	(Q)	(d) 25	
M	25)	The noghinying power of a simple micros	scope is	BWP-2016 (G-I)
	10	(a) $M = 1 + \frac{f}{d}$	(b) $M = 1 + \frac{d}{f}$	
		(c) $M = 1 + \frac{1}{f}$	(d) $M = 1 + df$	
(2	26)	If a convex lens is used as a magnifying g	lass, which lens will gi	ive higher
		magnification that has		DGK-2016 (G-I)
		(a) short size	(b) long focal length	
		(c) large size	(d) short focal length	
(4	27)	Watch makers uses	(1-)	
		(a) convex lens	(b) concave lens	
C	101	(c) plano-concave lens	(a) initior	
(4	20)	(a) blue light	(b) red light	
		(a) once light	(d) vellow light	
C	29)	If the image is at the least distance of the	distinct vision then	
(*	_>)	(a) $a = d$	(b) $a = 1/d$	
		(c) $\frac{1}{4} = d$	(d) $q - d = 1$	
(3	30)	In a simple microscope, if final image is loc	ated at infinity then its	s magnifying power is
	ŕ	25 25	f	
		(a) $\frac{1}{f}$ (b) $\frac{1}{D}$	(c) $\frac{1}{25}$	(d) $1 + \frac{f}{f}$
G	31)	If the object is 5mm high and image is 2c	m high then the magn	ification is
(-	/	(a) 4	(b) 1	
		(c) 2	(d) 10	$\pi G (0) UUU$
(3	32)	For a lens of high magnification the focal	length should be	VIGIOS
		(a) large	(b) small	() Cue
		(c) of any size	(c) none of these	
(3	33)	If $f = 5$ cm then the magnification of the si	nple microscope will	De
		(a) M = 4	\mathcal{A} (b) $\mathbf{M} = 6$	
(7		(c) $M = 5$	(d) $M = 2$	
(2	54)	In raignifying glass, the object is placed at	(b) Potwoon f and 7f	
M	NN	(c) Beyond 2f	(d) Between long and	f
No	Ŋ	The magnifying nower of a magnifying of	ass of focal length of	25cm will be
) <	,	(a) 5	(b) 2	
		(c) 6	(d) 0	

J

(36)	When beam of white light falls perpendic	cularly on a plane of glass then the angle of
	retraction will be $(a) 00^{\circ}$	(b) 60° = 760 (C))
	(a) 50	(b) 00 (d) 180°
(37)	The image formed by the simple micros	
(37)	(a) inverted and real	(h) are charter and writer
	(c) real and erect	(d) inverted and magnified
(38)	If $f = 5$ and the final image is formed	ed at $d = 25$ cm the magnifying nower of
(50)	simple microscope:	tu at u = 25 cm, the magnifying power of
0	(a) 5	(h) 3/2
MAN	NO OLL	(d) 1
UD.+C	OMPOUND MICROSCOPE	
(39)	The focal length of the objective used in c	ompound microscope
	(a) large	(b) small
	(c) same as eyepiece	(d) none of these
(40)	The magnifying power of compound micr	oscope
	a a a	q(d)
	(a) $M = \frac{1}{n} (1 + df_e)$	(b) $M = \frac{1}{p} \left[1 + \frac{1}{f} \right]$
	P	$P \left(\int_{e} \right)$
	(c) $M = \frac{q}{1+\frac{f_e}{f_e}}$	(d) $M = \frac{p}{1+d}$
	p(1 d)	$\left(\begin{array}{c} \mathbf{u} \\ \mathbf{u} \\$
(41)	The image formed by the evepiece of com	pound microscope is
	(a) real and inverted	(b) real and erect
	(c) virtual and erect	(d) virtual and inverted
(42)	The resolving power of a compound micro	oscope depends upon
	(a) the refractive index of the medium in wh	ich object is placed
	(b) diameter of objective	
	(c) width of objective lens	
	(d) nature of lens	
(43)	The angular magnification of the compou	nd microscope is defined by
	(a) $\frac{\tan \theta_o}{\cos \theta_o}$	(b) $\frac{\tan \theta_e}{\theta_e}$
	$\tan \theta_e$	$\tan \theta_o$
		(1) 1 (200) (200)
	(c) $\tan \theta_e \times \tan \theta_o$	(d) $\frac{1}{\tan \theta \times \tan \theta}$
(44)	For higher magnification which the for	lowing instrument is used
(++)	(a) optical fiber	(\mathbf{b}) compound microscope
	(c) col/imator	(d) LED
(45)	The diverging lens of compound my cosco	one is
(10)	(a) evepiece	(b) objective
00	@eve_	(d) none of these
146	The magnifying power of compound micr	oscope is given by the relation
100	(a) $M_0 - M_e$	$(\mathbf{b})\mathbf{M}_{o}\times\mathbf{M}_{o}$
	(c) $M_{0} + M_{0}$	(d) M ₂ /M ₂
		(**/ ***U ****

N

N

	(47)	The magnification of two lenses of compou	nd microscone are 2 an	d 5 then magnifying
	()	power of microscope is		
		(a) 7	(b) 3	75) (((0))
		(c) 10	(d) 20	160
	(48)	The compound microscope is based on the	e principle of	1 Case
		(a) reflection	(b) refraction	1
		(c) both a & b	(d) none of these	
	(49)	In a compound microscope magnificati	on produced by object	tive is 5 and that
		produced by eye piece is 50, the total magnetic 250	ification produced by th	ne microscope is
		(a) 250 times	(b) 10 times (d) 100 times	
~	INTERNAL STATE	ICAL TELESCODE	(u) 100 times	
\cap		If $f = 100 \text{ are } f = 5 \text{ are length and magnitude}$	fuing nower of an astro	nomical talasaana
	0.00	If $I_0 = 100$ cm; $I_e = 5$ cm length and magnit.	lying power of an astro	nonnear telescope
		18:		
		$(a) 0.05 cm \cdot 20$	(b) $05 \text{ cm} \cdot 20$	LHR-2019 (G-1)
		(a) 0.050111 , 20 (c) $20cm \div 500$	(d) $105 \text{ cm} \cdot 20$	
	(51)	Magnifying nower of telescone is:	(u) 105 cm , 20	I HR 2015(C-II)
	(31)	f	f	LIIK 2013(0-II)
		(a) $\frac{J_e}{2}$	(b) $\frac{J_o}{a}$	
		f_o	f_e	
		(c) f f	(d) $\frac{1}{}$	
		(c) $J_e J_o$	$f_e f_o$	
	(52)	For formal adjustment what is the length	of astronomical telesco	pe of focal lengths
		of objective and eye-piece are 100 and 20	cm respectively. D	GK-2018 (G-I)
		(a) 100 cm	(b) 20 cm	
		(c) 5 cm	(d) 120 cm	
	(53)	If focal length of objective and eye piece is	s 0.5 m and 10 cm respe	ctively then
		magnifying power of telescope will be		SWL-2017
		(a) 5	(b) 0.5 (l) 20	
	(54)	(c) 10 The final image seen from the estrenomia	$(\mathbf{a}) 20$	
	(54)	The linal image seen from the astronomic (a) real erect and enlarged	(b) real inverted and en	larged
		(a) virtual inverted and enlarged	(d) virtual erect and end	arged
	(55)	In astronomical telescope the image form	d hy eveniece is	
	$(\mathbf{J}\mathbf{J})$	(a) real	(b) virtual	
		(c) neither real nor virtual	(d) none of these (761 ((0)000
	(56)	A simple astronomical telescope consists		666
	. ,	(a) two concave lenses	(b) two convex lenses	1 Cento
		(c) one concave and one convex lens	(c) two plano-concave l	ens
	(57)	The rays after refraction through the ey	e piece will become pa	rallel and the final
		image appears to be forn ed at	N	
		(a) f	(b) 2f	
		(c) between f and 2f	(d) infinity	
~	(58)	The resolving power of an astronomical te	elescope depends on	
\square	NV4	(1) the focal length of the objective lens		
Ľ	00	(b) the least distance of distinct vision of the	observer	
		(c) the focal length of the eyepiece		
		(d) the diameter of the objective lens		

(59)	For normal adjustment the distance b	between the objective and eye-piece of a
	telescope is	
	(a) $f_0 + f_e$	(b) $f_0 - f_e$
(60)	(c) $I_e - I_o$ In simple estronomical telescone the foca	(a) none of these
(00)	(a) less than eveniece	(h) greater than even ince
	(c) equal to eveniece	(d) hone of these
(61)	In astronomical telescope, if the focal len	the of objective and eve piece is 35 cm and
	5cm respectively, then its length for norm	nal adjustment is
-	(a) +)cn	(b) 35cm
MAN	(c) 4 5 an	(d) 3.5cm
[[\(62)]	A good telescope used by astronomers ha	is an objective of
	(a) long focal length and small aperture	(b) small focal length and large aperture
(\mathbf{C})	(c) long focal length and of large aperture	(d) small focal length and small aperture
(63)	The focal length of the objective of telesco	ope (I_0) can be expressed as
	(a) $\frac{M}{M}$	(b) $\frac{f_e}{f_e}$
	f_e	M
	(c) $M \times f$	(d) $\frac{1}{1}$
	(c) $m \wedge f_e$	Mf_e
10.6 SI	PECTROMETER	
(64)	Which is not the essential component of a	a spectrometer? (FSD 2015)
	(a) collimator	(b) telescope
	(c) turntable	(d) microscope
(65)	An optical device used to study spectra fi	com different sources of light is called
	(a) micrometer	(b) spectrometer
	(c) collimator	(d) telescope
(66)	Spectrometer consists of	
	(a) four parts	(b) three parts
	(c) rive parts	(d) two parts
(07)	(a) parallel beam of light	(b) conversing beam of light
	(c) diverging beam of light	(d) all of these
(68)	A fixed metallic tube with a convex lens a	at one end of the spectrometer is called
(00)	(a) telescope	(b) microscope
	(c) collimator	(d) periscove
(69)	The grating placed on the turn table whi	h is capable of rotating about
	(a) horizontal axis	(b) vertical axis
	(c) both a \hat{x} b	(d) in all direction
(70)	A circular scale of the spectrometer, grad	luated in
	(a) 180 [°]	(b) 90°
	(c) half degree	(d) 360°
(NRM)	une resolving power of spectrometer of "N	" number of rulings is expressed as
100	(a) $\mathbf{R} = \mathbf{N} + \mathbf{m}$	(b) $R = \frac{m}{m}$
	(c) $\mathbf{K} = \mathbf{N} \times \mathbf{m}$	(d) none of these

	10.7 SI	PEED OF LIGHT	
	(72)	In Michelson's experiment, the angle subt	ended by a side of the eight sided mirror
		is:	FSD-2017
		(a) $\frac{\pi}{-}$ rad	(b) # rad
		(c) $\frac{\pi}{2}$ rad	d Coll of C
	(73)	Who was the first person to make attempt	t to measure the speed of light
		(a) Michelson	(b) Galileo (d) Newton
	MA	(C) 2111SWIII Why speed of light in materials other than	(d) Newton
\mathbb{N}	UU	(a) greater than c	(b) less than c
10		(c) equal to c	(d) none of these
	(75)	Michelson's formula for the speed of light	is
		(a) $a = \frac{16f}{10}$	(b) $a = \frac{16d}{16}$
		(a) $c = \frac{d}{d}$	(b) $c = \frac{f}{f}$
			fd fd
		(c) $c = 16 fd$	(d) $c = \frac{1}{16}$
	(76)	The speed of light in the medium of refrac	ctive index of 1.5 is
		(a) $2 \times 10^8 \text{ms}^{-1}$	(b) $3 \times 10^8 \text{ms}^{-1}$
		(c) $0.5 \times 10^8 \text{ms}^{-1}$	(d) $1.5 \times 10^8 \text{ms}^{-1}$
	(77)	The speed of light in vacuum is	
		(a) $3 \times 10^{3} \text{kms}^{-1}$	(b) $3 \times 10^{-6} \text{ms}^{-1}$
	(70)	(c) $3 \times 10^{\circ}$ kms ²	(d) $3 \times 10^{\circ} \text{ms}^{-1}$
	(78)	(a) very less than in vacuum	(b) very greater than in vacuum
		(c) nearly equal to in vacuum	(d) zero
	(79)	The speed of light in diamond is $1.5 \times 10^8 \text{ms}^{-1}$	¹ its refractive index w.r.t to air is
		(a) 1	(b) 3
		(c) 1.5	(d) 2
	10.8 IN	NTRODUCTION OF FIBRE OPTICS	
	(80)	Information carrying capacity of fibre opt	tics is known as
			LHR-2016 (G-I), LHR-2018 (G-I);
		(a) semiconductor (c) handwidth	(d) laser
	(81)	Photo phone was invented by	
	(01)	(a) Graham Bell	(b) A'exancer Fleming
		(c) Galileo	(d) Abu Ali Sena
	(82)	The practical use of services of optical fib	reis
		(a) teleconmunication	
		(b) word processing	
0	NR	(c) mage transmission and receiving equipm	ient
NΝ	NVI)	Which light can travel faster through the	ontical fibre
N.	057	(a) infra red	(b) ultraviolet
		(c) visible	(d) none of these
		· ·	

Chapter- 10

N

N

	(84)	Characteristic of optical fibre is (a) much thinner	(b) light weight	
	(85) (86)	 (c) extremely wide bandwidth Graham Bell was able to transmit a voice (a) microscope (c) beam of light The detector used in phone is made 	(d) all of these nessage via (b) periscope (d) telescope e of	121.Com
		(a) selenium (c) curie	(b) copper (d) aluminum	
R		(a) copper of 7.62cm (c) copper of 6.72cm (c) copper of 6.72cm	(b) aluminum wire of (d) aluminum wire of	7.62cm 6.34cm
J	(88)	If the speed of light in vacuum is c, then it	ts velocity in a mediu	n of refractive index
	(00)	1.3 is:	is verocity in a moura	LHR-2017 (G-II)
		(a) 1.3c	(b) $\frac{1.3}{c}$	
		(c) $\frac{c}{1.3}$	(d) c	
	(89)	Critical angle is that incident angle in den	ser medium for whic	h angle of refraction
		is		(GRW 2014)
		(a) 0°	(b) 45°	
		(c) 180°	(d) 90°	
	(00)			MTN 2010 (C II)
	(90)	The ratio $-$ is equal to: v		WIIN-2019 (G-11)
	(90)	The ratio $-$ is equal to: (a) Critical angle (c) Definition in dec	(b) Total reflection	WIIN-2019 (G-II)
	(90)	 (a) Critical angle (c) Refractive index For glass air boundary the value of critic 	(b) Total reflection(d) Angle of refraction	n SWL-2016 (G-I)
	(90) (91)	 (a) Critical angle (c) Refractive index For glass air boundary, the value of critic (a) 41.4° 	 (b) Total reflection (d) Angle of refractio al angle is: (b) 41.6° 	n SWL-2016 (G-I)
	(90) (91)	 The ratio – is equal to: (a) Critical angle (c) Refractive index For glass air boundary, the value of critic (a) 41.4° (c) 41.8° 	 (b) Total reflection (d) Angle of refractio al angle is: (b) 41.6° (d) 42.2° 	n SWL-2016 (G-I)
	(90) (91) (92)	 The ratio – is equal to: v (a) Critical angle (c) Refractive index For glass air boundary, the value of critic (a) 41.4° (c) 41.8° Snell's law is expressed as 	 (b) Total reflection (d) Angle of refractio al angle is: (b) 41.6° (d) 42.2° 	n SWL-2016 (G-I)
	(90) (91) (92)	The ratio $\frac{1}{v}$ is equal to: (a) Critical angle (c) Refractive index For glass air boundary, the value of critic (a) 41.4° (c) 41.8° Snell's law is expressed as (a) $\sin \theta_c = \frac{1}{n_2 n_1}$	(b) Total reflection (d) Angle of refractio al angle is: (b) 41.6° (d) 42.2° (b) $n_1 \sin \theta_1 = n_2 \sin \theta_2$	ⁿ SWL-2016 (G-I)
	(90) (91) (92)	The ratio $\frac{1}{v}$ is equal to: (a) Critical angle (c) Refractive index For glass air boundary, the value of critic (a) 41.4° (c) 41.8° Snell's law is expressed as (a) $\sin \theta_c = \frac{1}{n_2 n_1}$ (c) $\frac{n_1 \sin \theta_1}{n_2 \sin \theta_2} = 0$	(b) Total reflection (d) Angle of refraction al angle is: (b) 41.6° (d) 42.2° (b) $n_1 \sin \theta_1 = n_2 \sin \theta_2$ (d) $\frac{n_2 \sin \theta_2}{n_1 \sin \theta_1} = 0$	n SWL-2016 (G-I)
	(90) (91) (92) (93)	The ratio $\frac{1}{v}$ is equal to: (a) Critical angle (c) Refractive index For glass air boundary, the value of critic (a) 41.4° (c) 41.8° Snell's law is expressed as (a) $\sin \theta_c = \frac{1}{n_2 n_1}$ (c) $\frac{n_1 \sin \theta_1}{n_2 \sin \theta_2} = 0$ Cladding is the layer of lower refractive in	(b) Total reflection (d) Angle of refraction al angle is: (b) 41.6° (d) 42.2° (b) $n_1 \sin \theta_1 = n_2 \sin \theta_2$ (c) $\frac{n_2 \sin \theta_2}{n_1 \sin \theta_1} = 0$ (c) $\frac{n_2 \sin \theta_2}{n_1 \sin \theta_1} = 0$ index over central cor	n SWL-2016 (G-I)
	(90) (91) (92) (93)	The ratio $\frac{1}{v}$ is equal to: (a) Critical angle (c) Refractive index For glass air boundary, the value of critic (a) 41.4° (c) 41.8° Snell's law is expressed as (a) $\sin \theta_c = \frac{1}{n_2 n_1}$ (c) $\frac{n_1 \sin \theta_1}{n_2 \sin \theta_2} = 0$ Cladding is the layer of lower refractive in (a) small refractive index	(b) Total reflection (d) Angle of refraction al angle is: (b) 41.6° (d) 42.2° (b) $n_1 \sin \theta_1 = n_2 \sin \theta_2$ (c) $\frac{n_2 \sin \theta_2}{-2} = 0$ (c) $\frac{n_2 \sin \theta_2}{-2} = 0$ (c) high refractive inc	n SWL-2016 (G-I)
	(90) (91) (92) (93) (94)	The ratio $\frac{1}{v}$ is equal to: (a) Critical angle (c) Refractive index For glass air boundary, the value of critic (a) 41.4° (c) 41.8° Snell's law is expressed as (a) $\sin \theta_c = \frac{1}{n_2 n_1}$ (c) $\frac{n_1 \sin \theta_1}{n_2 \sin \theta_2} = 0$ Cladding is the layer of lower refractive in (a) small refractive index (c) zero refractive index When the light enters in the glass, there is	(b) Total reflection (d) Angle of refraction al angle is: (b) 41.6° (d) 42.2° (b) $n_1 \sin \theta_1 = n_2 \sin \theta_2$ (c) $\frac{n_2 \sin \theta_2}{n_1 \sin \theta_1} = 0$ (c) $\frac{n_2 \sin \theta_2}{n_1 \sin \theta_1} = 0$ (c) high refractive incomendation of these in the second	n SWL-2016 (G-I)
	(90) (91) (92) (93) (94)	The ratio $\frac{1}{v}$ is equal to: (a) Critical angle (c) Refractive index For glass air boundary, the value of critic (a) 41.4° (c) 41.8° Snell's law is expressed as (a) $\sin \theta_c = \frac{1}{n_2 n_1}$ (c) $\frac{n_1 \sin \theta_1}{n_2 \sin \theta_2} = 0$ Cladding is the layer of lower refractive in (a) small refractive index (c) zero refractive index When the light enters in the glass, there is (a) velocity	(b) Total reflection (d) Angle of refraction al angle is: (b) 41.6° (d) 42.2° (b) $n_1 \sin \theta_1 = n_2 \sin \theta_2$ (c) $\frac{n_2 \sin \theta_2}{n_1 \sin \theta_1} = 0$ index over central cor (b) high refractive ind (c) none of these is no change in its (b) wavelength	n SWL-2016 (G-I)
	(90) (91) (92) (93) (94)	The ratio $-$ is equal to: v (a) Critical angle (c) Refractive index For glass air boundary, the value of critic (a) 41.4° (c) 41.8° Snell's law is expressed as (a) $\sin \theta_c = \frac{1}{n_2 n_1}$ (c) $\frac{n_1 \sin \theta_1}{n_2 \sin \theta_2} = 0$ Cladding is the layer of lower refractive in (a) small refractive index (c) zero refractive index When the light enters in the glass, there is (c) velocity (c) frequency	(b) Total reflection (d) Angle of refraction al angle is: (b) 41.6° (d) 42.2° (b) $n_1 \sin \theta_1 = n_2 \sin \theta_2$ (c) $\frac{n_2 \sin \theta_2}{-2} = 0$ (c) $\frac{n_2 \sin \theta_2}{-2} = 0$ (c) $\frac{n_2 \sin \theta_2}{-2} = 0$ (c) high refractive incomplete in the set of	n SWL-2016 (G-I)
N	(90) (91) (92) (93) (94) (95)	The ratio $-$ is equal to: v (a) Critical angle (c) Refractive index For glass air boundary, the value of critic (a) 41.4° (c) 41.8° Snell's law is expressed as (a) $\sin \theta_c = \frac{1}{n_2 n_1}$ (c) $\frac{n_1 \sin \theta_1}{n_2 \sin \theta_2} = 0$ Cladding is the layer of lower refractive in (a) small refractive index (c) zero refractive index When the light enters in the glass, there is (c) velocity (c) frequency The main drawback of multimode step in	(b) Total reflection (d) Angle of refraction al angle is: (b) 41.6° (d) 42.2° (b) $n_1 \sin \theta_1 = n_2 \sin \theta_2$ (c) $\frac{n_2 \sin \theta_2}{n_1 \sin \theta_1} = 0$ (c) $\frac{n_2 \sin \theta_2}{n_1 \sin \theta_1} = 0$ (c) high refractive income (c) high refrac	n SWL-2016 (G-I)
N	(90) (91) (92) (93) (94) (95)	The ratio $-$ is equal to: v (a) Critical angle (c) Refractive index For glass air boundary, the value of critic (a) 41.4° (c) 41.8° Snell's law is expressed as (a) $\sin \theta_c = \frac{1}{n_2 n_1}$ (c) $\frac{n_1 \sin \theta_1}{n_2 \sin \theta_2} = 0$ Cladding is the layer of lower refractive in (a) small refractive index (c) zero refractive index When the light enters in the glass, there is (c) velocity (c) friequency The main drawback of multimode step in (a) quality of fibre (c) dispersion of signal	(b) Total reflection (d) Angle of refraction al angle is: (b) 41.6° (d) 42.2° (b) $n_1 \sin \theta_1 = n_2 \sin \theta_2$ (c) $\frac{n_2 \sin \theta_2}{n \sin \theta_1} = 0$ (c) $\frac{n_2 \sin \theta_2}{n \sin \theta_2} = 0$ (c) $\frac{n_2 \sin \theta_2}{n$	n SWL-2016 (G-I)

Chapter- 10

Optical Instruments

	(96)	For the protection, the optical fibre is cover	red with
		(a) glass jacket	d) rubber jacket
	(07)	When a ray passes through the denser rad	dium to the raray module the reference
	(97) when a ray passes through the denser		ulum is the rarer mouthment rereating
		(a) hands towards the normal	b) bends (way from the normal
		(a) beinds towards the normal	d) none of these
	(08)	Now a days, a new type of antical fibra is as	ad in which the central core has
	()0)	(a) high dousing	b) low density
		(a) $\lim_{n \to \infty} u(x) \sin(y)$ (b)	d) zero refractive index
	(99)	Tables the menomenon of total internal re	eflection the angle of incidence of ray
ant	1MI	(a) should be greater than critical angle	b) should be less than critical angle
MMU	90	(c) should be equal to critical angle	d) should be zero
00	(100)	A ray which passes through the rigid rod (glass rod) and parallel to the axis of rigid
	(100)	rod is called	grass rou) and paramet to the ans of right
		(a) reflected ray	b) axial rav
		(c) no-axial ray	d) X-rays
	(101)	The optical fibre whose density gradually de	ecreases towards its periphery is called
		(a) single mode step index fibre	b) multimode graded index fibre
		(c) multimode step index fibre	d) single graded step index fibre
	(102)	Snell's law helps to find	
		(a) frequency of light (i	b) wavelength of light
		(c) refractive index of any material (e	d) none of these
	(103)	When $\theta_2 = 90^\circ$ and $\theta_1 = \theta_C$ then Snell's law	becomes
		(a) $\sin \theta - n n$ (1)	b) $\sin \theta = \frac{n_1}{2}$
		$(\mathbf{a}) \operatorname{Sino}_{c} - \mathbf{n}_{1} \mathbf{n}_{2} $	n_2
		(a) $\sin \theta$ n_2	d d d
		(c) $\sin\theta_c = \frac{1}{n_1}$ (c)	a) $\sin \Theta_c = \frac{1}{n_1 n_2}$
			EVS
		(Tonic Wise Multiple Ch	noice Questions)
		(Topic wise maniple en	loce Questions)
		1 c 16 d 31 a 46 b	61 a 76 a 91 c
		2 a 17 d 32 b 47 c	62 c 77 a 92 b
		3 b 18 a 33 b 48 b	63 c 78 c 93 h
		4 b 19 b 34 d 49 a	64 d 79 d 94 c
		5 d 20 c 35 b 50 d	65 6 80 0 95 0
		6 a 21 a 36 c 51 v	66 b 81 a 96 c
		<u>7</u> c 22 c 37 7 52 d	67 a 82 d 97 b
		8 c√23 d 38 c 53 a	<u>68 c 83 a 98 a</u>
		(19 b (24 c 39 c 54 c	69 b 84 d 99 a
		10 1 25 d 40 c 55 b	70 c 85 c 100 b
-	OF	11 c 26 d 41 d 56 b	71 c 86 a 101 b
ann	1/1/	12 a 27 a 42 b 57 d	72 b 87 a 102 c
NN)	00	13 a 28 b 43 b 58 d	73 b 88 c 103 c
0 -		14 b 29 a 44 b 59 a	74 b 89 d
		15 a 30 a 45 a 60 b	75 c 90 c

SHORT QUESTIONS

(From Textbook Exercise)

10.1 What do you understand by linear magnification and angular magnification? Explain how a convex lens is used as a magnifier? SGD-14(G-II), RWP-14(G-I), MTN-15(G-I), FSD-15(G-I), MTRIVI' (AJK)15, MTN-16 (C-I), BWP-17 (G-II), LHR-18 (G-I), FSD-19 (G-I), GRV-12' (C-II), LE'R-15 (G-I)

Ans: Linear Magnification: The ratio of size of image to the size of object is called linear magnification. So, M = I / OAugular Magnification: The ratio of angle subtended by the image as seen through optical device to that subtended by the object at unaided eye. So, $M = \beta / \alpha$

Convex lens as Magnifier:

When an object is placed with in the principle focus of a convex lens then a highly magnified, virtual and erect image is formed at the same side of the lens. In this way the convex lens behaves as magnifier.

10.2 Explain the difference between angular magnification and resolving power of an optical instrument. What limits the magnification of an optical instrument?

LHR-14(G-I), MTN-15(G-I), DGK-16 (G-I)

ANGULAR MAGNIFICATION	RESOLVING POWER
• Angular magnification simply	• The resolving power of an optical
increases the apparent size of the	instrument is its ability to reveal the
image of an object when seen	minor details of an object under
through an optical device.	examination.
• It can be made as large as we wish	• It is the minimum angle between two
by using lenses of suitable focal	point sources that allow the images to
lengths.	be resolved as two distinct spore of
	light rather than one.

Limited magnification:

Due to spherical and chromatic abarration the magnification of an optical instrument is limited and details of the object cannot be seen clearly. The magnification alone is of no use unless we can see the details of the objects distinctly.

10.3 Why would it be advantageous to use blue light with a compound microscope? <u>FDR-2, FDR 13</u> GRW 12, LHR-13(G-I), GRW-13(G-I), SGD-14(G-II), RWP-14(G-I), GRW-14(G-I), IJNR-14(G-I), SGD-15(G-I), DGK-15(G-I), MTN-15(G-II), RWP-15 (G-I), LHR-15 (G-I) & (G-II), MTN-16 (G-II), R VP-16 (G-I), LHR-16 (G-I), FSD-17, SWL-18, LHR-18 (G-I), FSD-18, SWL-19, RWP-19 (G-I), FSD-19 (G-I), MTN-19 (G-I), SWL-19, BWP-19 (G-II)

Ans: A wider objective and use of blue light of shorter wavelength produces less diffraction and increase its resolving power. Hence, it allows more details to be seen.

Ans:

10.4 One can buy a cheap microscope for use by the children. The images seen in such a microscope have coloured edges. Why is this so?

LHR-12, GRW-12, GRW-13(G-I), GRW-14(G-II), SGD-16 (G-I) & (G-I), LH (G-I), MTV-19 (C-II) In chromatic aberration, the lens behaves as a prism. When light passes through lens then all wave lengths are not focused a one point. Due to chromatic aderration of the lens the image seen in cheap microscopes have colored edges

10.6 If a person was looking through a telescope at the full moon, how would the appearance of the moon be changed by covering half of the objective lens?

LHR-12, GR W 14 (C-I), FSD 14 (G I), WF-15(G-I), RWF-15(G-I), GRW-15(G-I), RWP-16 (G-I), BWP-17 (G-I), LHR 17 (C-I), DGZ-18 (G-I) BWF-19 (G-I)

Ans: If the objective lens is half covered then there is no effect on the size of image but the bightness of the image is reduced, because intensity of light depends upon diameter of the objective lens.

TOPIC WISE SHORT QUESTIONS

10.1 LEAST DISTANCE OF DISTINCT VISION

- (1) Define Least Distance of Distinct vision. How it is affected with increase of age?
- **Ans:** The minimum distance from the eye at which an object appears to be distinct is called the least distance of distinct vision or near point.

Approximate near points of the normal eye of different ages are given below.

Age (years)	Near Point (cm)
10	10
20	12
30	15
40	25
50	40
60	100

10.2 MAGNIFYING POWER & RESOLVING POWER OF OPTICAL INSTRUMENTS

- (2) Write down Raleigh expression for resolving power is lens. BWP-2012, 2019 (G-II)
- Ans: Raleigh showed that for light of wavelength l through a lens of diameter D, the resolving power is given by

$$R = \frac{1}{\infty_{\min}} = \frac{D}{1.22\lambda}$$

$$\infty_{\min} = 1.22 \frac{\pi}{\Gamma}$$

The smaller the value of μ_{\min} , greate: is the resolving power.

10.3 SIMPLE MICROSCOPE

- (3) Why is the convex lens of small focal length preferred for a magnifying glass?
- Ans: We know that $M = 1 + \frac{a}{c}$.

It is clear from the formula that convex lens of small focal length has high magnification. Therefore it is preferred.

What is the principle of the working of a simple microscope?

Ans: In simple microscope, we should place the object within the focal length. So we can obtain an erect, virtual and magnified image at the least distance of distinct vision.

LCOM

LHR-2013

- (5) Find the magnifying power of a convex lens of 10cm focal length.
- Focal length of lens = f = 10cmAns: Least distance = d = 25cm The magnification of lens is

$$M = 1 + \frac{d}{f} = 1 + \frac{25}{10} = 1 + 2.$$

What is simple microscope? Write do wn the equation for its magnifying power. (6) LHR-2014

It consists of a single convex lens of short focal length. Ans:

5 = 3.5

If an object is placed inside the focal point of a convex lens, then a virtual and magnified intage is formed at least distance of distinct vision.

The magnification of lens is

$$M = 1 + \frac{d}{f}$$

- Find the magnifying power of convex lens of 25 cm focal length act as a magnifying (7) glass. SWL-2017
- The magnification of lens is Ans:

$$M = 1 + \frac{d}{f} = 1 + \frac{25}{25}$$

=1+1=2

10.4 COMPOUND MICROSCOPE

- (8) What is the normal adjustment of compound microscope?
- In the normal adjustment of compound microscope, the eye piece is positioned so that the Ans: final image is formed at the near point of eye i.e. at a distance d.
- (9) Define compound microscope? Write the names of its different parts?
- Ans: Compound microscope is used whenever high magnification is desired. It consists of two convex lenses, an object lens of very short focal length and an eye - piece of comparatively longer focal length.
- What is the principle of working of a compound microscope? (10)
- Ans: The image formed by the objective lens must be within the focal length of the eye piece. Then a virtual, inverted, and magnified image is obtained.
- (11) Why objective of short focal length is preferred in microscope?
- The magnification of microscope can be expressed as $M = \frac{L}{f_0} \left(1 + \frac{d}{f_0} \right)^2$ Ans:

It is clear from the above relation $\left(M \propto \frac{1}{c}\right)$ that smaller the focal ength greater will be

magnifying power. Therefore, to increase the magnification of microscope an objective of short focal length is used.

(12) In a compound micro cope magnifications of objective and evepiece are 5 and 50 respectively. What is the total magnification of microscope?

Ans: Magnification produced by objective $M_1 = 5$ Magnification produced by eye piece $M_2 = 50$ Total Magnification M =?

$$M = M_1 \times M_2$$
$$= 5 \times 50$$
$$M = 250$$

10.5 ASTRONOMICAL TELESCOPE

- (13) What is the condition for the normal adjustment of the Telescope?
- Ans: If the image of the object formed by the objective lies at the focus of both the objective and the eye piece. Then final image is appeared to be formed a infinity. This is the condition for normal adjustment.
- (14) What is the length of Telescope in it: normal adjustment?
- Ans: The length of the Telescope is the distance between the objective and eye piece of a Telescope In normal adjustment it is $f_0 + f_e$.
- (15) The objective of a telescope is of 20cm and eye piece of 5.0cm focal length. What is magnifying power and length of telescope?

Ans. $f_o = 20 \text{ cm}$ fe = 5.0 cm M = ? L = ? M = $\frac{f_o}{f_e}$ 20

$$M = \frac{20}{5} = 4$$
$$L = f_0 + f_0$$

$$=20+5=25$$
 cm

- (16) Draw the ray diagram of astronomical telescope.
- Ans:

(17) What are the problems, having a high magnifying power in Astronomical telescope? SWL-2014

- Ans: Besides having a high magnifying power another problem which confronts the astronomers while designing a telescope to see the distant planets and stars is that they would like to gather as much light from the object as possible. This difficulty is precome by using the objective of large aperture so that t collect: a great amount of light from the astronomical objects. Thus a good telescope has an objective of long focal length and large aperture.
- (18) An astronomical telescope of long local length and large aperture is considered to be a good 'elescope. Why? DGK-2018 (G-II)

ns: Magnifying power of the telescope =
$$M = \frac{f_o}{f_e}$$

We know that diameter of lens is directly proportional to focal length of lens. For Large aperture of objective lens, focal length will also be large, that is why magnification of astronomical telescope will be high.

10.6 SPECTROMETER

- (19) What is a collimator?
- Ans: It consists of a fixed metallic tube with a convex lens at one end and an adjustable slit that can slide in and out of the tube at the other end, when the slit is just at the focus of the convex lens, the ray of light coming cut of the lens become parallel. For this reason it is called a collimator.
- (20) Name the three essencial components of a spectrometer?
- Ans: The essential components of a spectrometer are
 - (i) collima or(ii) t irn table

(iii) telescope

What is spectrometer used for?

- **Ans:** i) It is used to study spectra from different sources of light
 - ii) It is used to study, the deviation of light by a glass prism.
 - iii) It is used to measure the refractive index of the material of the prism.
 - iv) It is used to measure the wave length of the light by diffraction grating.

10.7 SPEED OF LIGHT

- (22) Write a briefly note on Michelson's experiment arrangement to calculate the speed of light, and write down its formula.
- **Ans:** An eight-sided polished mirror M is mounted on the shaft of a motor whose velocity can be varied. Suppose the mirror is stationary in the position shown in the figure. A beam of light from the face 1 of the mirror M falls at the plane mirror m placed at a distance d from M. The beam is reflected back from the mirror m and falls on the face 3 of the mirror M. On reflection from face 3, it enters the telescope.

Speed of light is calculated by following formula

c = 16 f d

10.8 INTRODUCTION TO FIBRE OPTICS

(23) What is the advantage of light as transmission carrier over radio wave carrier?

Ans: The use of light as a transmission carrier wave in fiber optics has several advantages over radio wave carriers such as a much wider bandwidth capability and immunity from electromagnetic interference.

10.9 FIBRE OPTIC PRINCIPLES

- (24) Define total internal reflection.
- Ans: Total Internal Reflection

When the angle of incidence in denser medium becomes greater than triucal angle, the incident ray is reflected in the same medium, which is called total internal reflection.

- (25) Define Refractive index?
- Ans: The index of refraction is nerely the ratio of the speed of light c in vacuum to the speed of light in that material.

Mathematically,

What is Snell's Law?

is: The ratio of angle of incidence to the angle of refraction is equal to ratio of indices of the mediums,

 $n_1 Sin \theta_1 = n_2 Sin \theta_2$

- (27) What is cladding?
- Ans: A layer lying above the inner glass core is called cladding. Cladding has low density and therefore low refractive index than the inner glass core.
- (28) Define critical Angle?
- Ans: Critical Angle:

Critical angle is the angle of incidence n the denser readium for which the angle of refraction in the rate medium is equal to 90° . According to Shells law

$$\theta = \theta_c \cdot \theta_2 = 90^\circ$$

 $n_1 \sin \theta_1 = n_1 \sin \theta_2$

$$_1\sin\theta_c = n_2\sin 90^\circ$$

$$sin_{c} = \frac{n_{2}}{n_{1}}$$
$$\theta_{c} = sin^{-1} \left(\frac{n_{2}}{n_{1}} \right)$$

(29) Calculate the critical angle for glass-air boundary, if refractive index of glass is 1.5 and the ray of light is passing from glass to air. BWP-2017 (G-II)

GITUI

VZ

- **Ans:** According to Snells law
 - $n_1 \sin \theta_1 = n_2 \sin \theta_2$ $\theta_1 = \theta_c, \theta_2 = 90^{\circ}$

 $n_1 \sin \theta_c = n_2 \sin 90^\circ$

$$\sin \theta_c = \frac{n_2}{n_1}$$
$$\theta_c = \sin^{-1} \left(\frac{n_2}{n_1} \right)$$

MANN

Refractive index of glass = $n_1 = 1.5$

Refractive index of air = $n_2 = 1$

 $\theta_c = sin^{-1} \left(\frac{1}{1.5} \right) = 41.8^{\circ}$

6).CO