## TOPIC WISE MULTIPLE CHOICE QUESTIONS

### 10.1 LEAST DISTANCE OF DISTINCT VISION

(1) The minimum distance from the eye a which an mbient appars to be dintinct is called
(a) infinite noint
(b) eas di tance of fuzzy vision
(c) lea t distane of aistinct vision
(4) none of these
(2) The least distanco f distinct vision for the normal eye is

LHR-2016 (G-II)
(a) 2 jcm
(b) 2.5 cm
(d) 15 cm
(d) 20 cm

The least distance of distinct vision
(a) decreases with age
(b) increases with age
(c) no change
(d) none of these
(4) A human eye acts like
(a) mirror
(b) lens
(c) laser
(d) all of these
(5) Far point for the human eye is
(a) 10 cm
(b) 25 cm
(c) 20 cm
(d) infinity
10.2 MAGNIFYING POWER AND RESOLVING POWER OF OPTICAL INSTRUMENTS
(6) Product of number of rulings " $N$ " and the order of diffraction " $m$ " is equal to:

LHR-2019 (G-II)
(a) Resolving power
(b) Magnification
(c) Near point
(d) Magnifying power
(7) Rayleigh formula for resolving power

SGD-2016 (G-I)
(a) $R=1.22 \lambda / D$
(b) $R=1.22 D / \lambda$
(c) $R=D / 1.22 \lambda$
(d) $R=\lambda / 1.22 D$
(8) The ratio of the angles subtended by the image as seen through tin ontical derice to that subtended by the object at the unainet eye is caそed
(a) linear magnification
(b) leas distance of distinct vision
(c) angular magnification
(d) near pojilt
(9) The $p w$ of lens is meastred in
(a) joul
(b) diopter
(2) Watt
(d) meters

10 jnit of nagnification
(a) meter
(b) diopter
(c) cm
(d) no unit
(11) To increase the resolving power of lens
(a) increase $\lambda$ and D
(b) increase $\lambda$ and decrease $D$
(c) decrease $\lambda$ and increase D
(d) decrease $\lambda$ and $D$
(12) The resolving power of diffraction gratings define as
(a) $\frac{\lambda}{\Delta \lambda}$
$\bigcirc(\mathrm{l}), \frac{\Delta \lambda}{\lambda}$
(c) $\frac{\lambda_{1}-\lambda}{\lambda}$
(d) $\frac{\lambda_{2}-\lambda_{1}}{\Delta \lambda}$
(13) Tho atio of the sice of the image to the size of object is called
(a) h aglification
(b) angular magnification
(c) classification
(d) linear classification
(14) When an object is viewed at a shorter distance, the image on the retina of the eye is
(a) smaller
(b) greater
(c) unchanged
(d) remain same
(15) The resolving power of an optical instrument can be expressed
(a) $R=\frac{1}{\alpha_{\text {min }}}$
(b) $\mathrm{R}=\alpha_{\text {max }}$
(c) $R=\alpha_{\text {res }}$
(d) $\mathrm{R}=\alpha$
(16) Magnification of a lens is negative when the image is
(a) real and inverted
(b) real and erected
(c) virtual and inverted
(d) virtual and erect
(17) Wavelength of light used in an optical instrument are $\lambda_{1}=4000 \AA$ and $\lambda_{2}=5000 \AA$, then ratio of their respective resolving powers (corresponding to $\lambda_{1}$ and $\lambda_{2}$ ) is
(a) $16: 25$
(b) $9: 1$
(c) $4: 5$
(d) $5: 4$
(18) When the image is real and inverted the magnification of the lens is
(a) positive
(b) neutral
(c) negative
(d) virtual
(19) The smaller value of $\alpha_{\text {min }}$ $\qquad$ is the resolving power.
(a) smaller
(b) greater
(c) zero
(d) none of these
(20) A magnifying glass has a focal length of 15 cm . If the near point of the eye is 15 cm from the eye the angular magnification of the glass is about:
(a) 0.067
(b) 0.33
(c) 2.7
(21) A good optical device shculd haz\%
(a) high magnification power ahd/high resolving power
(b) Lowagnification porct and hith resolving power
(c) Low magn tication power and Low resolving power
(d) gh masnifications power and low resolving power

A3MER RENUKOSCOPE
(2,) The magnifying power of convex lens of focal length 10 cm is: GRW-2019 (G-I)
(a) 7
(b) 9.6
(c) 3.5
(d) 11
(23) The magnifying power of a magnifying glass is:

BWP-2019 (G-I)
(a) $1-\frac{d}{f}$
(b) $1-\frac{f}{d}$
(c) $\frac{f}{d}$
(d) $\frac{d}{f}-\sqrt{1}$
(24) The manrinication of conivek len of foca length Sem is equal toMTN-2018 (G-I)
(a) $\frac{1}{5}$
(b) 5
(c) 5
(d) 25
2.5) The nagnitying power of a simple microscope is

BWP-2016 (G-I)
(a) $M=1+\frac{f}{d}$
(b) $M=1+\frac{d}{f}$
(c) $M=1+\frac{1}{f}$
(d) $M=1+d f$
(26) If a convex lens is used as a magnifying glass, which lens will give higher magnification that has

DGK-2016 (G-I)
(a) short size
(b) long focal length
(c) large size
(d) short focal length
(27) Watch makers uses
(a) convex lens
(b) concave lens
(c) plano-concave lens
(d) mirror
(28) Focal length of convex lens will be maximum for
(a) blue light
(b) red light
(c) green light
(d) yellow light
(29) If the image is at the least distance of the distinct vision then
(a) $q=\mathrm{d}$
(b) $q=1 / d$
(c) $1 / q=d$
(d) $q-d=1$
(30) In a simple microscope, if final image is located at infinity then its magnifying power is
(a) $\frac{25}{f}$
(b) $\frac{25}{D}$
(c) $\frac{f}{25}$
(d) $1+\frac{25}{f}$
(31) If the object is 5 mm high and image is 2 cm high then the magnification is
(a) 4
(b) 1
(c) 2
(d) 10
(32) For a lens of high magnification the focaliength shorid be
(a) large
(c) of any size
(b) s.n.ll
If $f=5 \mathrm{~cm}$ tigen the mannizication of he irp e micesscope will be
(a) $\mathrm{M}=4$
(id) $\mathrm{M}=6$
(c) $\mathrm{M}=5$
(d) $\mathrm{M}=2$
(34) In ragnifying pilase, he ouject is placed at
(a) Focy
(b) Between f and 2 f
(d) Deyond $2 f$
(d) Between lens and f

The magnifying power of a magnifying glass of focal length of 25 cm will be
(a) 5
(b) 2
(c) 6
(d) 0
(36) When beam of white light falls perpendicularly on a plane of glass then the angle of refraction will be
(a) $90^{\circ}$
(b) $60^{\circ}$
(c) $0^{\circ}$
(d) 18
(37) The image formed by the simple merescupe is
(a) inverted and real
(b) ercel al d vrtual
(c) rea an l erect
(d) inverted and magnified
(38) If $f=5011$ and the fina mage is formed at $d=25 \mathrm{~cm}$, the magnifying power of simnle inicroscope:
(a. 5
(b) $3 / 2$
(r) 11
(d) 1

## 15D. 7 COMPOUND MICROSCOPE

(39) The focal length of the objective used in compound microscope
(a) large
(b) small
(c) same as eyepiece
(d) none of these
(40) The magnifying power of compound microscope
(a) $M=\frac{q}{p}\left(1+d f_{e}\right)$
(b) $M=\frac{q}{p}\left(1+\frac{d}{f_{e}}\right)$
(c) $M=\frac{q}{p}\left(1+\frac{f_{e}}{d}\right)$
(d) $M=\frac{p}{q}\left(1+\frac{d}{f_{e}}\right)$
(41) The image formed by the eyepiece of compound microscope is
(a) real and inverted
(b) real and erect
(c) virtual and erect
(d) virtual and inverted
(42) The resolving power of a compound microscope depends upon
(a) the refractive index of the medium in which object is placed
(b) diameter of objective
(c) width of objective lens
(d) nature of lens
(43) The angular magnification of the compound microscope is defined by
(a) $\frac{\tan \theta_{o}}{\tan \theta_{e}}$
(b) $\frac{\tan \theta_{e}}{\tan \theta_{o}}$
(c) $\tan \theta_{e} \times \tan \theta_{o}$
(d) $\frac{1}{\tan \theta_{e} \sqrt{\tan } 9}$
(44) For higher magnification which eftherion instr inent is used
(a) optical fiber
(b) compound microsespe
(c) col(11)ator

(d) LED
(45) The di erging lens of compound - icroscope is
(a) ejepiede
(b) objective
(a) eve
(d) none of these

16
(a) $\mathrm{M}_{\mathrm{o}}-\mathrm{M}_{\mathrm{e}}$
(b) $\mathrm{M}_{\mathrm{o}} \times \mathrm{M}_{\mathrm{e}}$
(c) $\mathrm{M}_{\mathrm{o}}+\mathrm{Me}_{\mathrm{e}}$
(d) $\mathrm{M}_{0} / \mathrm{M}_{\mathrm{e}}$
(47) The magnification of two lenses of compound microscope are 2 and 5 then magnifying power of microscope is
(a) 7
(b) 3
(c) 10
(d) 20
(48) The compound microscope is base on the pinciple of
(a) reflection
(b) refract on
(c) both a $\&=b$
(d) hone these
(49) In a compound memose pe magnification produced by objective is 5 and that produceuly ye piece is 50, the totat magnification produced by the microscope is
(a) 250 ines
(b) 10 times
(d) 100 times

## 

(1.) if $f_{o}=100 \mathrm{~cm} ; f_{e}=5 \mathrm{~cm}$ length and magnifying power of an astronomical telescope is:

LHR-2019 (G-I)
(a) $0.05 \mathrm{~cm} ; 20$
(b) 95 cm ; 20
(c) $20 \mathrm{~cm} ; 500$
(d) $105 \mathrm{~cm} ; 20$
(51) Magnifying power of telescope is:

LHR 2015(G-II)
(a) $\frac{f_{e}}{f_{o}}$
(b) $\frac{f_{o}}{f_{e}}$
(c) $f_{e} f_{o}$
(d) $\frac{1}{f_{e} f_{o}}$
(52) For formal adjustment what is the length of astronomical telescope of focal lengths of objective and eye-piece are 100 and 20 cm respectively. DGK-2018 (G-I)
(a) 100 cm
(b) 20 cm
(c) 5 cm
(d) 120 cm
(53) If focal length of objective and eye piece is 0.5 m and 10 cm respectively then magnifying power of telescope will be

SWL-2017
(a) 5
(b) 0.5
(c) 10
(d) 20
(54) The final image seen from the astronomical telescope
(a) real, erect and enlarged
(b) real, inverted and enlarged
(c) virtual, inverted and enlarged
(d) virtual, erect and enlarged
(55) In astronomical telescope the image formed by eyepiece is
(a) real
(b) virtual
(c) neither real nor virtual
(d) none of these
(56) A simple astronomical telescope consists oi
(a) two concave lenses
(c) one concave and one convex lens
(b.tivo conver fenses
(c) one (c) tuo piaro-concave lens
(57) The rays after refraction throrgh the eys piece yil wecome parallel and the final image anpearctobe forntd at
(a) f
(b) 2 f
(c) 品tween and 2 f
(d) infinity
(58) Tha resolving power of an astronomical telescope depends on
(c)) the focal length of the objective lens
(b) the least distance of distinct vision of the observer
(c) the focal length of the eyepiece
(d) the diameter of the objective lens
(59) For normal adjustment the distance between the objective and eye-piece of a telescope is
(a) $f_{0}+f_{e}$
(b) $f_{o}-f_{e}$
(c) $f_{e}-f_{o}$
(d) nonsp these
(60) In simple astronomical telescope the foom lagth of objective is
(a) less than eyepiece
(b) greater than eye piece
(c) equal totyepiece
(d) nend or these
(61) In astronomical tescope, if the fa lengths of objective and eye piece is 35 cm and 5 cm respectively, ther its ens th for normal adjustment is
(a) $f) \mathrm{cm}$
(b) 35 cm
(c) 45 (an
(d) 3.5 cm
(1.) 1 good telescope used by astronomers has an objective of
(a) long focal length and small aperture
(b) small focal length and large aperture
(c) long focal length and of large aperture
(d) small focal length and small aperture
(63) The focal length of the objective of telescope ( $f_{0}$ ) can be expressed as
(a) $\frac{M}{f_{e}}$
(b) $\frac{f_{e}}{M}$
(c) $M \times f_{e}$
(d) $\frac{1}{M f_{e}}$

### 10.6 SPECTROMETER

(64) Which is not the essential component of a spectrometer? (FSD 2015)
(a) collimator
(b) telescope
(c) turntable
(d) microscope
(65) An optical device used to study spectra from different sources of light is called
(a) micrometer
(b) spectrometer
(c) collimator
(d) telescope
(66) Spectrometer consists of
(a) four parts
(b) three parts
(c) five parts
(d) two parts
(67) In spectrometer the function of collimator is to produce
(a) parallel beam of light
(b) converging beam of light
(c) diverging beam of light
(d) all of these
(68) A fixed metallic tube with a convex lens at one end of the spectrometer is called
(a) telescope
(b) microscope
(c) collimator
(d) perisscue
(69) The grating placed on the turn table whilh capabe of rating about
(a) horizontal axis
(c) both-a $\hat{\sim} p$
(b) vertica dis

A circelar scare of
pectrmeter rawated in
(a) 180
(b) $90^{\circ}$
(c) hillf desree
(d) $360^{\circ}$

Vhe (G)Ning power of spectrometer of " N " number of rulings is expressed as
(a) $\mathrm{R}=\mathrm{N}+\mathrm{m}$
(b) $\mathrm{R}=\frac{m}{N}$
(c) $\mathrm{R}=\mathrm{N} \times \mathrm{m}$
(d) none of these

### 10.7 SPEED OF LIGHT

(72) In Michelson's experiment, the angle subtended by a side of the eight sided mina is:

TSD-2017
(a) $\frac{\pi}{8} \mathrm{rad}$
(c) $\frac{\pi}{2} \mathrm{rad}$
(b) $\frac{\pi}{4}$ rad
(d)
(73) Who was the firs hersen te nake attempt to measure the speed of light
(a) Michelin
(b) Galileo
(c) Enstcin
(d) Newton

The speed of light in materials other than vacuum is always
(a) greater than c
(b) less than c
(c) equal to c
(d) none of these
(75) Michelson's formula for the speed of light is
(a) $c=\frac{16 f}{d}$
(b) $c=\frac{16 d}{f}$
(c) $c=16 f d$
(d) $c=\frac{f d}{16}$
(76) The speed of light in the medium of refractive index of 1.5 is
(a) $2 \times 10^{8} \mathrm{~ms}^{-1}$
(b) $3 \times 10^{8} \mathrm{~ms}^{-1}$
(c) $0.5 \times 10^{8} \mathrm{~ms}^{-1}$
(d) $1.5 \times 10^{8} \mathrm{~ms}^{-1}$
(77) The speed of light in vacuum is
(a) $3 \times 10^{5} \mathrm{kms}^{-1}$
(b) $3 \times 10^{-8} \mathrm{~ms}^{-1}$
(c) $3 \times 10^{8} \mathrm{kms}^{-1}$
(d) $3 \times 10^{6} \mathrm{~ms}^{-1}$
(78) The speed of light in air
(a) very less than in vacuum
(b) very greater than in vacuum
(c) nearly equal to in vacuum
(d) zero
(79) The speed of light in diamond is $1.5 \times 10^{8} \mathrm{~ms}^{-1}$ its refractive index w.r.t to air is
(a) 1
(b) 3
(c) 1.5
(d) 2

### 10.8 INTRODUCTION OF FIBRE OPTICS

(80) Information carrying capacity of fibre optics is known as

LHR-2016 (G-I), LHR-2018 (G-IN,
(a) semiconductor
(b) band length
(c) bandwidth
(d) laser
(81) Photo phone was invented by
(a) Graham Bell
(c) Galileo

(lb) A es arder Fleming,

The patical ure oi services of cpical fibreis
(a) tele oinmul ication
(b) word pecessing
(c) riage tuacinission and receiving equipment
(c) al of these
(i93) Which light can travel faster through the optical fibre
(a) infra red
(b) ultraviolet
(c) visible
(d) none of these
(84) Characteristic of optical fibre is
(a) much thinner
(b) light weight
(c) extremely wide bandwidth
(d) all of these
(85) Graham Bell was able to transmit a voic message -ia
(a) microscope
(b) periscope
(c) beam of light
(d) te escop.
(86) The detectior used in phot phone is nade of
$\qquad$
(a) selenian
(D) copper
(c) curis
(d) aluminum
(87) Wiúl respert io ef ficieacy an optical fibre of diameter $\mathbf{6 m m}$, can replace the bundle of
(a) $=\operatorname{Pratr} 47.62 \mathrm{~cm}$
(b) aluminum wire of 7.62 cm
(c) copper of 6.72 cm
(d) aluminum wire of 6.34 cm

## H. 5 FIBRE OPTIC PRINCIPLES

(88) If the speed of light in vacuum is $c$, then its velocity in a medium of refractive index 1.3 is:

LHR-2017 (G-II)
(a) 1.3 c
(b) $\frac{1.3}{\mathrm{c}}$
(c) $\frac{\mathrm{c}}{1.3}$
(d) c
(89) Critical angle is that incident angle in denser medium for which angle of refraction is
(GRW 2014)
(a) $0^{\circ}$
(b) $45^{\circ}$
(c) $180^{\circ}$
(d) $90^{\circ}$
(90) The ratio $\frac{c}{v}$ is equal to:

MTN-2019 (G-II)
(a) Critical angle
(b) Total reflection
(c) Refractive index
(d) Angle of refraction
(91) For glass air boundary, the value of critical angle is:

SWL-2016 (G-I)
(a) $41.4^{\circ}$
(b) $41.6^{\circ}$
(c) $41.8^{\circ}$
(d) $42.2^{\circ}$
(92) Snell's law is expressed as
(a) $\sin \theta_{c}=\frac{1}{n_{2} n_{1}}$
(b) $n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}$
(c) $\frac{n_{1} \sin \theta_{1}}{n_{2} \sin \theta_{2}}=0$
( $l_{1}-2 \cdot \sin \theta_{2}=0$
(93) Cladding is the layer of lowerriactive index over central cort of
(a) smell)refractive mdex
(b) high refractive index
(c) zeroreflactive ir dex
(d) none of these
(94) Whon the light enters in ine glass, there is no change in its
(a, velocity
(b) wavelength
(1) flequency
(d) direction

The main drawback of multimode step index fibre is
(a) quality of fibre
(b) size of cable
(c) dispersion of signal
(d) amount of data
(96) For the protection, the optical fibre is covered with
(a) glass jacket
(b) copper jacket
(c) plastic jacket
(d) rubber jacket
(97) When a ray passes through the denser ntium to tic rarel medumereraeting ray
(c) moves aiong to the nernai
(d) none of these
(98) Now adays, anew type of opticat ibse is ised in which the central core has
(a) high der sity
(b) low density
(c) © i lefractive i.dex
(d) zero refractive index
( 99 ) rab bey the pnenomenon of total internal reflection, the angle of incidence of ray
(a) should be greater than critical angle
(b) should be less than critical angle
(c)should be equal to critical angle
(d) should be zero
(100) A ray which passes through the rigid rod (glass rod) and parallel to the axis of rigid rod is called
(a) reflected ray
(b) axial ray
(c) no-axial ray
(d) X-rays
(101) The optical fibre whose density gradually decreases towards its periphery is called
(a) single mode step index fibre
(b) multimode graded index fibre
(c) multimode step index fibre
(d) single graded step index fibre
(102) Snell's law helps to find
(a) frequency of light
(b) wavelength of light
(c) refractive index of any material
(d) none of these
(103) When $\boldsymbol{\theta}_{\mathbf{2}}=90^{\circ}$ and $\boldsymbol{\theta}_{1}=\boldsymbol{\theta}_{\mathrm{C}}$ then Snell's law becomes
(a) $\sin \theta_{c}=n_{1} n_{2}$
(b) $\sin \theta_{\mathrm{c}}=\frac{n_{1}}{n_{2}}$
(c) $\sin \theta_{\mathrm{c}}=\frac{\mathrm{n}_{2}}{\mathrm{n}_{1}}$
(d) $\sin \theta_{\mathrm{c}}=\frac{1}{\mathrm{n}_{1} \mathrm{n}_{2}}$

## ANSWER KEYS

(Topic Wise Multiple Choice Questions)


## SHORT QUESTIONS

(From Textbook Exercise)
10.1 What do you understand by linear magnification and ang ilar magnification? Explain how a convex lens is used as a magnifipr


Ans: Linear Mighification:
The ratiop stze cfimge to thPsize object is called linear magnification.
So, $M=I \circ$
Argular Magrification:
The rato of angle subtended by the image as seen through optical device to that subtended by the object at unaided eye. So, $M=\beta / \alpha$
Convex lens as Magnifier:


When an object is placed with in the principle focus of a convex lens then a highly magnified, virtual and erect image is formed at the same side of the lens. In this way the convex lens behaves as magnifier.
10.2 Explain the difference between angular magnification and resolving power of an optical instrument. What limits the magnification of an optical instrument?

LHR-14(G-I), MTN-15(G-I), DGK-16 (G-I)
Ans:

## ANGULAR MAGNIFICATION

## RESOLVING POWER

- Angular magnification simply - The resolving power of an optical increases the apparent size of the image of an object when seen through an optical device.
- It can be made as large as we wish by using lenses of suitable focal lengths. instrument is its ability to reveal the minor details of an object under examination.
- It is the minimum angle between two point sources that allow the images to be resolved as two mistinet spoto (t) light rather tion ont.


## Limited magnification:

Due to spherical and chromatic ap-ritior. he megification ar optical instrument is limited and details of the objeot dannot be sele cleariy. The magnitication alone is of no use uness we dansee the cletain on the objeets distinctly.
10.3 Why who it he ac van asegs to use blue light with a compound microscope?

FDR-2, FDR 13 GKW-12, LHR-13(G-I), GRW-13(G-I), SGD-14(G-II), RWP-14(G-I), GRW-14(G-I), $1 . \mathrm{MR}_{1} 14(G-1 T)$ SGU-15(G-I), DGK-15(G-I), MTN-15(G-II), RWP-15 (G-I), LHR-15 (G-I) \& (G-II), MTN-16 (G-II), KVi-16 (G-I), LHR-16 (G-I), FSD-17, SWL-18, LHR-18 (G-I), FSD-18, SWL-19, RWP-19 (G-I), FSD-19 (G-I), MTN-19 (G-I), SWL-19, BWP-19 (G-II)
Ans: A wider objective and use of blue light of shorter wavelength produces less diffraction and increase its resolving power. Hence, it allows more details to be seen.
10.4 One can buy a cheap microscope for use by the children. The images seen in such a microscope have coloured edges. Why is this so?

LHR-12, GRW-12, GRW-13(G-I), GRW-14(G-II), SGD-16 (G-I) \& (G-H, LH R-1\% (G-II), MTN-9 (G-DI) In chromatic aberration, the lens behaves a5a prism Vhen lighi passes th@ughters then all wave lengths are not focused a one pniht. Luc to chromatic aberration of the lens the image seen in cheap microscepesivive olored edges
10.6 If a pers was loging threagh a telescepe-at the full moon, how would the appearanceot thembechanged by covering half of the objective lens?


If ine ghjective lens is half covered then there is no effect on the size of image but the bigitness of the image is reduced, because intensity of light depends upon diameter of the objective lens.

## TOPIC WISE SHORT QUESTIONS

### 10.1 LEAST DISTANCE OF DISTINCT VISION

(1) Define Least Distance of Distinct vision. How it is affected with increase of age?

Ans: The minimum distance from the eye at which an object appears to be distinct is called the least distance of distinct vision or near point.
Approximate near points of the normal eye of different ages are given below.

| Age (years) | Near Point (cm) |
| :---: | :---: |
| 10 | 10 |
| 20 | 12 |
| 30 | 15 |
| 40 | 25 |
| 50 | 40 |
| 60 | 100 |
|  |  |

### 10.2 MAGNIFYING POWER \& RESOLVING POWER OF OPTICAL INSTRUMIENTS

(2) Write down Raleigh expression for resolving power is lens. BWP-2012, 2019 (G-II)

Ans: Raleigh showed that for light of wavelength $l$ through a lens of diameter D , the resolving power is given by

$$
\begin{aligned}
\mathrm{R}= & \frac{1}{\propto_{\min }}=\frac{D}{1.22 \lambda} \\
\propto_{\min } & =1.22 \frac{\lambda}{\mathrm{D}}
\end{aligned}
$$

The smaller the value of $\mu$, greate: is the resolving iower.

### 10.3 SIMPLE MICROSCOPE

(3) Why ifthe converieng of mali foc al length nererred for a magnifying glass?

Ans: We know that,$I=++\frac{a}{f}$
It is lean fion the formula that convex lens of small focal length has high magnification. Therefore it is preferred.
What is the principle of the working of a simple microscope?
Ans:
In simple microscope, we should place the object within the focal length. So we can obtain an erect, virtual and magnified image at the least distance of distinct vision.
(5) Find the magnifying power of a convex lens of 10 cm focal length.

LHR-2013
Ans: Focal length of lens $=\mathrm{f}=10 \mathrm{~cm}$
Least distance $=\mathrm{d}=25 \mathrm{~cm}$
The magnification of lens is
$M=1+\frac{d}{f}=1+\frac{25}{10}=1+2.5=3.5$
(6) What is simple miaroscop? Wite dow the quation for its magnifying power.

LHR-2014
Ans: It consi ts of a sinere corvexlens of short focal length.
If a iobject is placed inside the focal point of a convex lens, then a virtual and magnified innage (15) formed at least distance of distinct vision.
Ine magnification of lens is
$M=1+\frac{d}{f}$
(7) Find the magnifying power of convex lens of 25 cm focal length act as a magnifying glass.

SWL-2017
Ans: The magnification of lens is

$$
\begin{aligned}
& M=1+\frac{d}{f}=1+\frac{25}{25} \\
& =1+1=2
\end{aligned}
$$

### 10.4 COMPOUND MICROSCOPE

(8) What is the normal adjustment of compound microscope?

Ans: In the normal adjustment of compound microscope, the eye piece is positioned so that the final image is formed at the near point of eye i.e. at a distance $d$.
(9) Define compound microscope? Write the names of its different parts?

Ans: Compound microscope is used whenever high magnification is desired. It consists of two convex lenses, an object lens of very short focal length and an eye - piece of comparatively longer focal length.
(10) What is the principle of working of a compound microscope?

Ans: The image formed by the objective lens must be within the focal length of the eye piece. Then a virtual, inverted, and magnified image is obtained.
(11) Why objective of short focal length is preferred in microscope?

Ans: The magnification of microscope can be expressed as $M=\frac{L}{f_{o}}\left(1+\frac{d}{f_{e}}\right)$ It is clear from the above relation $\left(M \propto \frac{1}{f}\right.$ ) that smalier ting tpal ve usth greater will be magnifying power. Theret ore, wicierse the ratanfigation or $m$ croscope an objective of shortfoca length is used
(12) In a compond miciocope magnfications of objective and eyepiece are 5 and 50 respect vely. What is he total magnification of microscope?
Ans: Masplificat on procuced by objective $\mathrm{M}_{1}=5$
Magliiaction produced by eye piece $\mathrm{M}_{2}=50$
Total Magnification $\mathrm{M}=$ ?

$$
\begin{aligned}
\mathrm{M} & =\mathrm{M}_{1} \times \mathrm{M}_{2} \\
& =5 \times 50 \\
\mathrm{M} & =250
\end{aligned}
$$

### 10.5 ASTRONOMICAL TELESCOPE

(13) What is the condition for the normal adjustment of the Telescope?

Ans: If the image of the object formed by the objective lies at the focus की both he pojective and the eye piece. Then final image is appeared to be formed a incinit. This is. the covition for normal adjustment.
(14) What is the length of Telescore in no mai djustment?

Ans: The leng) of the relescope is the distance between the objective and eye piece of a Telescope In armal adjus ment it is $\mathrm{f}_{\mathrm{o}}+\mathrm{f}_{\mathrm{e}}$.
(15) The objective of : telescope is of 20 cm and eye piece of 5.0 cm focal length. What is riagifeng power and length of telescope?
Ans. $£_{-}=20 \mathrm{~cm}$
$\mathrm{fe}=5.0 \mathrm{~cm}$
$\mathrm{M}=$ ?
$\mathrm{L}=$ ?
$\mathrm{M}=\frac{f_{o}}{f_{e}}$
$\mathrm{M}=\frac{20}{5}=4$
$\mathrm{L}=\mathrm{f}_{\mathrm{o}}+\mathrm{fe}$
$=20+5=25 \mathrm{~cm}$
(16) Draw the ray diagram of astronomical telescope.

Ans:

(17) What are the problems, having a high magnifying power in Astronomical telescope?

SWL-2014
Ans: Besides having a high magnifying power another problem which confronts astronomers while designing a telescope to see the distant planets ancsars is thit thev would like to gather as much light from the opject as popsible. This dilficuld is oreame by using the objective of large aperture so tha $t$ collect: a glea anount of fight from the astronomical objects. Thus of groitt lescope has ar objective of long focal length and large aneriur .
(18) An astronomitareppofiong ocar tength and large aperture is considered to be a good elat cope. Why?

DGK-2018 (G-II)
An: Vargifing pewer of the telescope $=M=\frac{f_{0}}{f_{e}}$
We know that diameter of lens is directly proportional to focal length of lens. For Large aperture of objective lens, focal length will also be large, that is why magnification of astronomical telescope will be high.

### 10.6 SPECTROMETER

## (19) What is a collimator?

Ans: It consists of a fixed metallic tube with a convex lens at one and inv an ad ust able sit that can slide in and out of the tube at the other end , when the sit is j 1 sta thorus of the convex lens, the ray of light coming oun of the lens tecone parallel. For this reason it is called a collimator.
(20) Name tio three essentai con pont of a specterneter?

Ans: The essestial componen s di a ppecerometer are
(i) collimator
(ii) t arn table
(ivi) le escope
(6) What is spectrometer used for?

Ans: i) It is used to study spectra from different sources of light
ii) It is used to study, the deviation of light by a glass prism.
iii) It is used to measure the refractive index of the material of the prism.
iv) It is used to measure the wave length of the light by diffraction grating.

### 10.7 SPEED OF LIGHT

(22) Write a briefly note on Michelson's experiment arrangement to calculate the speed of light, and write down its formula.
Ans: An eight-sided polished mirror $M$ is mounted on the shaft of a motor whose velocity can be varied. Suppose the mirror is stationary in the position shown in the figure. A beam of light from the face 1 of the mirror M falls at the plane mirror m placed at a distance d from M . The beam is reflected back from the mirror $m$ and falls on the face 3 of the mirror M. On reflection from face 3, it enters the telescope.
Speed of light is calculated by following formula

$$
\mathrm{c}=16 \mathrm{fd}
$$

### 10.8 INTRODUCTION TO FIBRE OPTICS

(23) What is the advantage of light as transmission carrier over radio wave carrier?

Ans: The use of light as a transmission carrier wave in fiber optics has several advantages over radio wave carriers such as a much wider bandwidth capability and immunity from electromagnetic interference.

### 10.9 FIBRE OPTIC PRINCIPLES

(24) Define total internal reflection.

Ans: Total Internal Reflection
When the angle of incidence in denser medilma perones gieaten than crilizal angle, the incident ray is reflected in the same medrom, wich is called lotal internal reflection.
(25) Define Refractive index?

Ans: The in (e) of refaction is nerely the ratio of the speed of light c in vacuum to the speed of light in that na eria. Varirem,tically, $\quad 2=\frac{c}{v}$

## What is Snell's Law?

Ans: The ratio of angle of incidence to the angle of refraction is equal to ratio of indices of the mediums,

$$
\mathbf{n}_{1} \operatorname{Sin} \theta_{1}=\mathbf{n}_{2} \operatorname{Sin} \theta_{2}
$$

## (27) What is cladding?

Ans: A layer lying above the inner glass core is called cladding. Cladding hasiow density and therefore low refractive index than the inner glass core.
(28) Define critical Angle?

Ans: Critical Angle:
Critical angle is the angle of inditer in the demser nedium for which the angle of refraction In he rate nedinin is equal to $90^{\circ}$.
Accordme or hem lav
$n \sin \theta_{1}=n \sin \theta_{2}$
$\Rightarrow=\theta_{c} 0_{2}=90^{\circ}$
$\mathrm{n}_{1} \sin \theta_{\mathrm{c}}=\mathrm{n}_{2} \sin 90^{\circ}$
$\sin _{c}=\frac{n_{2}}{n_{1}}$
$\theta_{c}=\sin ^{-1}\left(\frac{n_{2}}{n_{1}}\right)$
(29) Calculate the critical angle for glass-air boundary, if refractive index of glass is $\mathbf{1 . 5}$ and the ray of light is passing from glass to air.

BWP-2017 (G-II)
Ans: According to Snells law
$\mathrm{n}_{1} \sin \theta_{1}=\mathrm{n}_{2} \sin \theta_{2}$
$\theta_{1}=\theta_{c}, \theta_{2}=90^{\circ}$
$\mathrm{n}_{1} \sin \theta_{\mathrm{c}}=\mathrm{n}_{2} \sin 90^{\circ}$
$\sin \theta_{c}=\frac{n_{2}}{n_{1}}$
$\theta_{c}=\sin ^{-1}\left(\frac{n_{2}}{n_{1}}\right)$
Refractive index of glass $=n_{1}=1.5$
Refractive index of air $=n_{2}=1$
$\theta_{c}=\sin ^{-1}\left(\frac{1}{1.5}\right)=41.8^{\circ}$

