TOPIC WISE MULTIPLE CHOICE QUESTIONS

11.1 KINETIC THEORY OF GASES

(1) Root mean square velocity is related to the absollte tenperatere of an ideal gas as:
(a) $\mathrm{V}_{\text {rins }}=\mathrm{T}$ (a) $\mathrm{V}_{\mathrm{rms}} \propto \mathrm{T}^{2}$
(c) $\bar{y}_{\text {ms }} \times x / \bar{T}$
(d) $\mathrm{V}_{\mathrm{rms}} \propto \frac{1}{\sqrt{\mathrm{~T}}}$

If $\mathbf{p}=$ pressure; $\mathrm{V}=$ volume of a gas $\mathrm{P} \Delta \mathrm{V}$ represents:
LHR-2019 (G-I)
(a) work
(b) density
(c) power
(d) temperature
(3) At constant temperature, if pressure is halved then its volume is: GRW-2019 (G-I)
(a) constant
(b) halved
(c) four times
(d) doubled
(4) For an ideal gas, the potential energy associated with its molecules is

LHR-2018 (G-II)
(a) maximum
(b) zero
(c) $\frac{1}{2} \mathrm{kx}_{\mathrm{o}}^{2}$
(d) $\frac{1}{2} \mathrm{kx}$ 。
(5) At constant temperature and pressure, if volume of given mass of a gas is doubled, then density of the gas becomes:

LHR-2017 (G-I)
(a) double
(b) $\frac{1}{4}$ of original
(c) $\frac{1}{2}$ of original
(d) unchanged
(6) The value of Boltzman constant is:
(a) $6.02 \times 10^{23} \mathrm{JK}^{-1}$
(c) $1.38 \times 10^{-23} \mathrm{JK}^{-1}$

(a) $\mathrm{PT}=\mathrm{NUK}$
(b) $\mathrm{P}=\mathrm{NKT}$
(c) $P_{V}=n \mathrm{n}$
(d) $\mathrm{P}=\mathrm{nRT}$

The SI unit of product of pressure and volume is:
RWP-2019 (G-I)
(a) Watt
(b) Joule
(c) Pascal
(d) N.m
(9) Average translation K.E of a gas molecule is:

FSD 2019 (G-I)
(a) $\frac{1}{2} \mathrm{kT}$
(b) kT
(c) $\frac{2}{3} \mathrm{kT}$

(10) Pressure of at gas is given as
(a) $\frac{1}{2} \rho<$
(b) $\frac{2}{3} \rho<v^{2}>$
(d) $\frac{1}{3} 1(6)<\nu^{2}>$
(d) $\left.\frac{4}{3} \rho<v^{2}\right\rangle$
(11) The Average Kinetic Energy of Gas is zero at:

BWP-2019 (G-II)
(a) $0^{\circ} \mathrm{C}$
(b) $-273^{\circ} \mathrm{C}$
(c) $100^{\circ} \mathrm{C}$
(d) 100 K
(12) A diatomic gas molecule has:

BWP-2017 (G-II)
(a) translational energy
(b) rotational energy only
(c) vibrational energy only
(d) all translational, rotational and vibrational energy
(13) Boltzman constant, universal gas constant and Avogadro number are related as:

BWP-2017 (G-II)
(a) $\mathrm{k}=\frac{\mathrm{R}}{\mathrm{N}_{\mathrm{A}}}$
(b) $\mathrm{k}=\frac{\mathrm{N}_{\mathrm{A}}}{\mathrm{R}}$
(c) $\mathrm{R}=\frac{\mathrm{k}}{\mathrm{N}_{\mathrm{A}}}$
(d) $\mathrm{R}=\frac{\mathrm{N}_{\mathrm{A}}}{\mathrm{k}}$
(14) Fahrenheit and centigrade thermometers have same reading at
(a) -100°
(b) 32°
(c) -40°
(d) 273°
(15) Temperature of $-273^{\mathbf{0}} \mathrm{C}$ on Kelvin scale is
(a) 100 K
(b) 373 K
(c) 0 K
(d) 273 K
(16) Pressure of a gas can be written as
(a) $P=\frac{1}{3} \rho\left\langle v^{2}\right\rangle$
(c) $\mathrm{P}=2 \mathrm{~N}=-\mathrm{m}$

Thu ransiational K. E per molecule of an ideal gas is given by
(6) 3 . $k 7$
(b) $\frac{3}{2} \mathrm{kT}$
(c) $\frac{3}{2} \mathrm{kT}^{2}$
(d) $\frac{3}{2 k T}$
(18) The collisions among the gas molecules and with the walls of container are assumed to be
(a) perfectly elastic
(b) elastic
(c) inelastic
(d) norep them
(19) The application of kinetic theory cen bestulied in
(a) diffusion of gases
(b) brbernian mocion
(c) both E ,
(d) nene of these
(20) Which of the fillowing the nometcre has only positive degrees of temperature?
(a) Celsius
(b) Fahrenheit
(c) Relvin
(d) none

2N Chal lis can be written mathematically as
(a) $V \propto T$
(b) $V \propto \frac{1}{T}$
(c) $P \propto T$
(d) $P \propto \frac{1}{T}$
(22) The temperature of a normal human body is $98.6^{\mathbf{0}} \mathrm{F}$. This temperature on centigrade scale is
(a) $0^{\circ} \mathrm{C}$
(b) $37^{\circ} \mathrm{C}$
(c) $73^{\circ} \mathrm{C}$
(d) $37.6^{\circ} \mathrm{C}$
(23) Pressure of a gas is
(a) $1 / 3 \rho<v>$
(b) $2 / 3 \rho\left\langle v^{2}\right\rangle$
(c) $1 / 3 \rho\left\langle v^{2}\right\rangle$
(d) $3 / 2 \rho\left\langle v^{2}\right\rangle$
(24) The direction of flow of heat between two bodies depends upon
(a) thermal conductivity
(b) specific heat
(c) internal energies
(d) temperature difference
(25) Pressure of gas depends upon
(a) molecular speed
(b) number of molecules
(c) mass of molecules
(d) all of them
(26) According to Boyle's law the volume is
(a) inversely proportional to temperature
(b) directly proportional to pressure
(c) inversely proportional to pressure
(d) directly proportional to temperature
(27) The unit of Boltzmann's constant is
(a) JK^{-1}
(b) $\mathrm{J}^{-1} \mathrm{~K}^{-1}$
(c) J K
(d) $\mathrm{J}^{-1} \mathrm{~K}$
(28) The unit of pressure
(a) Ns
(c) Nm^{-2}
(b) Nm
(d) Nm^{-3}
(a) trarishtional K.L
(b.) vivrational K.E
(c) rotational $\& \mathrm{E}$
(d) all of these
(30) At cons ant pessule hegraph between volume and absolute temperature
(a) prabol.
(b) straight line
(r) ${ }^{\text {b }}$ jperbola
(d) ellipse

In Boyle's law, if the pressure is three times then the volume of a gas becomes
(a) one half
(b) three times
(c) one third
(d) double
(32) The relation between Celsius and Fahrenheit scale is given by
(a) $T_{c}=\frac{5}{9}\left(T_{F}+32\right)$
(b) $T_{c}=\frac{9}{2}(T+32$
(c) $T_{c}=\frac{9}{5}\left(T_{F}-32\right)$
(d) $T_{c}=\frac{5}{3} I_{E}-32$,

(33) On KIVm scale ine rorna body ten perative is given by
(a) 210 K
(b) 320 K
(c) 310 K
(d) 373 K
(34) Th K E of the molecules of an ideal gas at absolute zero will be
(a.) zero
(b) low
(c) high
(d) remain same
(35) The relation $\mathbf{P V}=\mathbf{R T}$ holds good for
(a) one kilogram of gas
(b) one-meter cubic volume of gas
(c) one mole of gas
(d) one gram of gas
(36) The relationship between heat and other forms of energy is called
(a) thermal equilibrium
(b) thermodynamics
(c) thermal energy
(d) none of these

11.2 INTERNAL ENERGY

(37) The SI unit of internal energy is
(a) joule
(b) $\mathrm{J} \mathrm{K}^{-1}$
(c) erg
(d) J K
(38) The internal energy of a body is maximum when its temperature is
(a) 0 K
(b) 273 K
(c) -273 K
(d) $-273^{\circ} \mathrm{C}$
(39) The sum of all molecular energies of a substance is called
(a) K.E
(b) P.E
(c) internal energy
(d) chemical energy
(40) The molecules of an ideal gas are mere mass points which exerts
(a) maximum force on one another
(b) no force on one another
(c) equal force
(d) none of these
(41) When we heat a substance, energy associated with its atoms or molecules
(a) increases
(b) remains same
(c) decreases
(d) none of these
(42) Internal energy depends upon
(a) final state
(c) both a \& b

(b in it al sat?
(c) no ne of these
(43) The interrat energy of an ideal gas de pends upon onty
(a) presslre
(in) temperature
(c) vole m .
(d) all of these
(44) By ribling the oljects together, their internal energy
(a) ricre: ses
(b) decreases
(1) e mains constant
(d) becomes zero

The internal energy is analogous to
(a) gravitational P.E
(b) K.E
(c) Elastic P.E
(d) none of these
(46) When some amount of heat energy enters a system
(a) it increases its internal energy
(b) it decreases its internal encrigy
(c) the internal energy remains constant
(d) none of these
(47) The sum of all forms of molecular energy present in a thermorly nodic osiein is called its
(a) Environmental energy
(c) Heat
(b) Te mpe atule

11.3 WORK NHKLET

(48) Work cor b b the ystem on its environment is taken as
(a) p)sit ve
(b) negative
(c) heraid!
(d) none of these
(49, The work done can also be calculated by the area of the curve under
(a) P-V graph
(b) V-T graph
(c) P-T graph
(d) $\mathrm{P}-1 / \mathrm{V}$ graph
(50) The relation for the work done by the system can be expressed as
(a) $\mathrm{W}=\mathrm{A} \Delta \mathrm{V}$
(b) $\mathrm{W}=\mathrm{P} \Delta \mathrm{V}$
(c) $\mathrm{W}=\mathrm{A} \Delta \mathrm{P}$
(d) $\mathrm{W}=\mathrm{P} \Delta \mathrm{A}$
(51) The dimension of work done on the system
(a) $\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]$
(b) $\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]$
(c) $\left[\mathrm{MLT}^{-2}\right]$
(d) $\left[\mathrm{ML}^{-1} \mathrm{~T}^{-1}\right]$

11.4 FIRST LAW OF THERMODYNAMICS

(52) According to first law of thermodynamics the quantity which is conserved is:

GRW-2019 (G-II)
(a) force
(b) momentum
(c) power
(d) energy

GRW-2019 (G-II)
(53) What remains constant in adiabatic process?
(a) volume
(b) pressure
(c) entropy
(d) temperature
(54) The work done in isochoric process is:

LHR-2018 (G-I)
(a) constant
(b) variable
(c) zero
(d) depend on condition
(55) The change in internal energy is defined as:

LHR-2017 (G-II)
(a) Q - W
(b) $\mathrm{Q}-\mathrm{T}$
(c) $Q+P$
(d) $Q-P$
(56) Cloud formation in atmosphere is an exsmple of
(a) isothermal process
(c) adiabatic process
(b) $1:$ or hade precess
(57) First law of thermodyman ic io an die be tic process is:
(a) $\mathrm{Q}=\Delta$
(a) $\mathrm{W}=\mathrm{Q}+\mathrm{U}$
(b) $\mathrm{Q}=\mathrm{W}$
$W=-U$

MTN-2018 (G-I), MTN-2019 (G-I), FSD-2017

In 1 eonouynamics system internal energy decreases by 100 J of work is done on the system then heat lost will be

SGD-2016 (G-I)
(a) zero
(b) 100 J
(c) 200 J
(d) -200 J
(59) Human metabolism is the example of:

MTN-2019 (G-II)
(a) first law of thermodynamics
(b) entropy
(c) second law of thermodynamics
(d) adiabatic process
(60) First law of Thermodynamics is the statment of of con ervation of
(a) mass
(c) momentum
(b) er ergy

Examper of firstiar of thermody anics
(a) workit of bioycle pimp
(b) human metabolism
(c) bakes applied by an actomobile
(d) all of these
(52 Th process:- which no heat can enter or leave the system is called
(c) isothermal process
(b) adiabatic process
(c) isobaric process
(d) isochoric process
(63) The relation for the $1^{\text {st }}$ law of thermodynamics can be expressed as
(a) $\Delta U=\Delta W-Q$
(b) $\Delta W=\Delta U-Q$
(c) $Q=\Delta U-\Delta W$
(d) $Q=\Delta U+W$
(64) The isothermal process obeys
(a) Charle's law
(b) Boyle's law
(c) Stefen's law
(d) Pascal's law
(65) The curve representing an isothermal process is called
(a) an isotherm
(b) an adiabat
(c) an isobar
(d) an isochoric
(66) An adiabatic compression causes the temperature of the gas
(a) to increase
(b) to decrease
(c) to remain constant
(d) to become zero
(67) The rapid expansion and compression of air through which a sound wave is passing, obeys
(a) isothermal process
(b) isochoric process
(c) adiabatic process
(d) isobaric process
(68) In relation $P V^{\gamma}=$ constant the γ is given by
(a) $\frac{C_{v}}{C_{p}}$
(b) $\frac{C_{P}}{C_{v}}$
(c) $C_{p}-C_{v}$
(d) $C_{v}-C_{p}$
(69) Compressed air coming out of punctured fyotbal be onts ooler because op
(a) isothermal expansion
(c) energy dissipation
(b) actiaba ic expansion

For ar is thermat process
first lav of thermodynamics becomes
(a) $\mathrm{Q}=\mathrm{W}$
(b) $\mathrm{Q}=\Delta \mathrm{U}+\mathrm{W}$
(c) $\mathrm{W}=-\Delta \mathrm{U}$
(d) $\mathrm{W}=0$

2(1) Difference between C_{p} and C_{v} is equal to
LHR-2019 (G-II)
(a) Avogadro's number
(b) Planck's constant
(c) Universal gas constant
(d) Boltzmann's constant
(72) If C_{p} for a gas is $\frac{7 R}{2}$ then the value of C_{v} will be:
(a) $\frac{3 R}{2}$
(c) $\frac{9 R}{2}$
(73) The defer nce between tompolar heat eapacities is equal to

DGK-2018 (G-I)
(a) tempera ure
(b) pressure
(c) Tluine
(d) universal gas constant
(74) Tinc a(1)dent of heat required to raise the temperature of one mole of substance nhrough 1 Kelvin is called
(a) Specific heat
(b) molar specific heat
(c) specific heat at constant volume
(d) Heat capacity
(75) The amount of heat required to raise the temperature of one mole of substance through 1 kelvin at constant pressure is called
(a) Specific heat
(b) molar heat capacity at constant pressure
(c) molar specific heat capacity at constant pressure
(d) Heat capacity at constant pressure
(76) If 1 mole of an ideal gas is heated at constant pressure then
(a) $Q_{P}=C_{V} \Delta T$
(b) $Q_{P}=C_{P} \Delta T$
(c) $Q_{V}=C_{V} \Delta T$
(d) $Q_{V}=C_{P} \Delta T$
(77) The difference between the molar specific heat at constant pressure and at constant volume is called
(a) molar gas constant
(b) universal gas constant
(c) pressure constant
(d) Boltzman constant
(78) The amount of heat required to raise the temperature of one kg of substance through $1{ }^{\circ} \mathrm{C}$ is called
(a) Specific heat
(b) molar heat capacity
(c) heat of fusion
(d) latent heat of fusion
(79) The value of universal gas constant is
(a) $8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
(b) $81.34 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
(c) $0.8134 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
(d) $8134 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
(80) The relation for the molar specific heat of a gas $\mathrm{C}_{P}-\mathrm{C}_{V}$ is
(a) $\mathrm{C}_{\mathrm{P}}-\mathrm{C}_{\mathrm{V}}=\mathrm{R}$
(c) $\mathrm{C}_{\mathrm{P}}=\mathrm{R}-\mathrm{C}_{\mathrm{V}}$
(b) Co $-C_{1}=R$
(d) $\mathrm{C}=\mathrm{B} \cdot \mathrm{C}_{\mathrm{P}}$
(81) For 1 mole f gas the rela ion $P / B=$
(a) $\mathrm{R} \triangle$ (T
(c) $\mathrm{R} \Delta \mathrm{P}$
(in) $R \Delta V$
(d) $\mathrm{P} \Delta \mathrm{T}$

(82) Mathenaticaly, the noiar specific heat at constant pressure can be expressed as
(d) $:_{p} \frac{Q_{p}}{\Delta T}$
(b) $C_{p}=\frac{\Delta T}{Q_{p}}$
(c) $C_{p}=\frac{T}{\Delta Q_{p}}$
(d) $C_{p}=\Delta Q_{p} \times T$
(83) Which of the following relation holds for $\mathbf{C}_{\mathbf{P}}-\mathbf{C}_{\mathbf{V}}=\mathbf{R}$
(a) $C_{V}=C_{P}$
(b) $C_{V}<C_{P}$
(c) $C_{V}>C_{P}$
(d) $C_{V}+C^{2}$
11.6 REVERSIBLE AND IRREVERSIBLE PRTGESTES
(84) Work done against friction is ?
(a) reversipif process
(b) 1reverisible process
(c) adiabatic process
(d) isobaric process
(85) All chang: which oceur suduly or which involve friction or dissipation of energy are
(a), Be ersible
(b) adiabatic
(c) isothermal
(d) irreversible
(86) The dissipation of energy through conduction, convection and radiation are
(a) reversible process
(b) irreversible process
(c) isothermal process
(d) isobaric process
(87) If a process cannot be traced in the backward direction by reversing the controlling factors, it is called
(a) irreversible process
(b) reversible process
(c) adiabatic process
(d) isothermal process
(88) A succession of events which brings the system back to its initial condition is called
(a) cycle
(b) irreversible process
(c) isothermal process
(d) adiabatic process
(89) Explosion is an example of
(a) highly reversible process
(b) highly irreversible process
(c) slowly irreversible process
(d) cyclic process

11.8 SECOND LAW OF THERMODYNAMICS

(90) It is impossible for heat engine to convert all heat into useful work, the law is called
(a) $1^{\text {st }}$ law of thermodynamics
(b) $2^{\text {nd }}$ law of thermodynamics
(c) law of conservation of energy
(d) law of conservation of mass
(91) The statement "it is impossible to devise a process which may convert heat, extracted from a single reservoir entirely into work" given by
(a) Lord Kelvin
(b) Joule
(c) Newton
(d) Pascal
(92) The statement "it is impossible for a self-acting machine, th a asicr h at f onga lower temperature to higher temperatur " oheys
(a) $1^{\text {st }}$ law of thermodynan亩s
(h) 2 d au of hermodynamics
(c) law of conservation of ino nen/um
(d) aw of dmervation of energy
(93) The o eans and our atmppere contein large amount of heat energy but it cannot be con ented into useful
(a) chen ical work
(b) mechanical work
(o) electrical uurk
(d) power

INSCNRFŌT ENGINE AND CARNOT THEOREM

(94) Carnot engine cycle consists of:

RWP-2019 (G-I)
(a) two steps
(b) three steps
(c) single step
(d) four steps
(95) If temperature of sink is decreased, the efficiency of Carnot engine.

MTN 2019 (G)
(a) decreases
(b) increases
(c) remains same
(d) firstincreases then de ereaces
(96) Efficiency of heat engine working betwen tempeature $2^{\circ} \mathrm{C}$ and $32 \% \mathrm{C}$ will be DGK-2018 (G-II)
(a) 50%
(b) 90%
(c) 40% (d) 61%
(97) If the tomprature of the sinh is absolute zero, then efficiency of heat engine should be

DGK-2018 (G-I)
(a) 1)(0\%
(b) 50%
(c) zero
(d) infinite
(98) A Carnot engine has an efficiency of 50%, when its sink temperature is at $27^{\circ} \mathrm{C}$. The temperature of the source is:

BWP-2017 (G-I)
(a) $273^{\circ} \mathrm{C}$
(b) $300^{\circ} \mathrm{C}$
(c) $327^{\circ} \mathrm{C}$
(d) $373^{\circ} \mathrm{C}$
(99) No heat engine can be more efficient than a Carnot engine operating between the same two
(a) pressure
(b) Carnot cycle
(c) temperature
(d) working substance
(100) The efficiency of heat engine is defined as
(a) $\eta=\frac{\text { Output }}{\text { Input }}$
(b) $\eta=\frac{\text { Input }}{\text { Output }}$
(c) $\eta=$ Output \times Input
(d) $\eta=\frac{1}{\text { Input } \times \text { Output }}$
(101) Sadi Carnot mentioned an ideal engine in
(a) 1897
(b) 1840
(c) 1678
(d) 1856
(102) In Carnot engine internal energy in one cycle,
(a) becomes zero
(b) remains constant
(c) increases
(d) decreases
(103) A refrigerator transfers heat energy from
(a) low to high temperature
(b) high to low temperature
(c) no transfer
(d) maintain its internal energy
(104) Efficiency of carnot engine is $\mathbf{1 0 0 \%}$ if T_{2} low temperature is at
(a) $0^{\circ} \mathrm{C}$
(b) $0^{\circ} \mathrm{F}$
(c) 0 K
(c) 0 K (lallbove
(105) Carnot engine worked or the basmof
(a) isothermel process (b) adiabat c process
(c) isobaric procoss
(d) both a \& b
(106) The Carriot cyldecan be shown by
(a) ${ }^{5}$ graph
(b) P-V graph
(a) P. T all
(d) P-V-T graph
(1.7) The efticiency of Carnot engine is
(a) 100%
(b) less than 100%
(c) less than 10%
(d) none of these
(108) The efficiency of Carnot engine in term of temperature can be expressed by
(a) $\eta=1-\frac{T_{1}}{T_{2}}$
(c) $\eta=\frac{T_{2}-T_{1}}{T_{1}}$
(b) $\eta=\frac{T_{1}-T_{2}}{T_{1}}$
(109) The unit of efficiency is
(a) Nn

(c) J K
(b) K
(d) no unit \square
$\left(r^{2}=T_{1}-F_{2}\right.$
(110) On whi hactor the eficiency of Carnot engine depends upon
(a) : mo rature of sink
(b) temperature of source
(v) botha \& b
(d) working substance
(11) If the temperature of the sink is increased then the efficiency of the Carnot engine
(a) decreases
(b) increases
(c) remain same
(d) zero
(112) Carnot cycle is an example of
(a) isothermal process
(b) adiabatic process
(c) irreversible process
(d) reversible process
(113) All Carnot engines operating between the same two temperatures have
(a) same efficiency
(b) zero efficiency
(c) maximum efficiency
(d) depend upon the nature of working substances
(114) A turbine in steam power plant takes steam from a boiler at 700 K and exhausts in a low temperature reservoir at 350 K . What is maximum possible efficiency
(a) 5%
(b) 100%
(c) 0.50%
(d) 50%
(115) If an air conditioner is left ON in the middle of a room. Then temperature of room
(a) increases
(b) decreases
(c) remains same
(d) may increase or decrease
(116) The highest efficiency of a heat engine whose lower temperature is $27^{\circ} \mathrm{C}$ and the higher temperature of $227^{\circ} \mathrm{C}$ is
(a) 20%
(b) 0.4%
(c) 40%
(d) 100%
(117) Which of the following is used as working substance in Carnot cycle?
(a) real gas
(b) ideal gas
(c) polar gas
(d) ammilia ças

ANSWER KEYS
(Topic Wise Multiple Choice Questions)

1	c	16	d	31	c	46		614	1		b		9		0
2	a	17	b	32	1	474			b		1	,	b		b
3	d	18	a	33	c	88	a	6	d				b	08	b
	1	2		4	a		a		b	79	a	94	d	109	d
	c	21	c	3.	-			65	a	80	a	95	b	110	c
6	c		a	30	b	51	b	66	a	81	a	96	a	111	a
7	c	22	b	37	a	52	d	67	c	82	a	97	a	112	c
8_{8}	b	23	c	38	b	53	c	68	b	83	b	98	c	113	a
9	d	24	d	39	c	54	c	69	b	84	b	99	c	114	d
10	a	25	d	40	b	55	a	70	a	85	d	100	a	115	a
11	b	26	c	41	a	56	c	71	c	86	b	101	b	116	c
12	d	27	b	42	c	57	d	72	b	87	a	102	b	117	b
13	a	28	c	43	b	58	b	73	d	88	a	103	a		
14	c	29	a	44	a	59	a	74	b	89	b	104	c		
15	c	30	b	45	c	60	d	75	c	90	b	105	d		

SHORT QUESTIONS

(From Textbook Exercise)
11.1 Why is the average velocity of the molecules in a gas zaro bu the siverag. of the square of velocities is not zero?

Ans: The molecules in a gas art in a sta fe renton motion. Tije rumber of molecules along positiver ax is is equat the n mber of molfales along negative x -axis. This is also true for axi mera-axis.
$\left\langle V_{7}>=V_{x}\right|-\frac{V_{1}}{2}=0$
sinialy,
$\left\langle V_{y}\right\rangle=0$
And,
$\left\langle V_{z}\right\rangle=0$
But the average of square of velocities is not zero because square of a negative value is also positive:

$$
\frac{\left(\mathrm{V}_{x}\right)^{2}+\left(-\mathrm{V}_{x}\right)^{2}}{2}=\frac{2 \mathrm{~V}_{x}^{2}}{2}=\mathrm{V}_{x}^{2}
$$

11.2 Why does the pressure of a gas in a car tyre increase when it is driven through some distance?
MTN-15 (G-II), RWP-15 (G-I), GRW-15(G-I), MIRPUR (AJK) 15, BWP-16 (G-I), MTN-16 (G-I), RWP-16 (G-I), FSD-17, LHR-17 (G-II), SWL-18, DGK-18 (G-I)\& (G-II), GRW-19 (G-II), FSD-19 (G-I)
Ans: When the car is driven through some distance, then the work has to be done to overcome friction and a part of work done is converted into heat. As a result, temperature of a gas increases and hence kinetic energy of molecules increases,
As pressure $\propto \mathrm{K} . \mathrm{E}$ of gas molecules.
So, pressure of gas molecules increases.
11.5 Specific heat of a gas at constant pressure is greater than specific heat at constant volume. Why?
DGK-15(G-I), SGD-15 (G-II), FSD-15 (G-I), MTN-15(G-I), GRW-15(G-I), RWP-15(G-I), SGD-16 (G-I) \& (G-II), MTN-16 (G-I),LHR-16 (G-II), BWP-17 (G-I), SWL-17, SGD-18 (G-I), FSD-18, DGK-18 (G-I), GRW-18, RWP-19 (GI), SWL-19, MTN-19 (G-I), BWP-19 (G-II)

Ans: When a gas is heated at constant pressure, then part of heat is used in doing work and part of heat is used in increasing the internal energy or temperature of the gas.
When a gas is heated at constant volume, then whole of the reai supplied is usedus in increasing the internal energy of the system. That's wity pecisic heat at ensent piessure is greater than specific heat at-onstan volume.
Since,

$$
C_{p}-C_{v}=R
$$

11.6 Given mexanpiep a prpces in .inch no heat is transferred to or from the system but the temperaty r of the system changes.

DGK-16 (G-I), SGD-16 (G-I) \& (G-II) Frac racess in which no heat enters or leaves the system is called 'Adiabatic Process.' When a gas expands adiabatically, work is done at the cost of internal energy.
$W=-\Delta U$
As a result, the temperature of the system falls.
11.7 Is it possible to convert internal energy into mechanical energy? Explain with an example.
BWP-15(G-I), MTN-15(G-I), SWL-16, GRW-16 (G-I), LHR-16 (G-I), FSD-18 DGK 18 (ヶ-P, LHR. 1 (G)N FSD-19 (G-I), LHR-19 (G-II)
Ans: Yes, it is possible to convert inter@al energ in vork io in "A diabatic process", when a gas expands, work is done at the costof indernal energy. $W=-\Delta I$.

- In stean engile theenersy of nolecyles of uie steam is used up in running the engine.
11.8 Is it possible to con truct theat engine that will not expel heat into the atmosphere? SOD-1 $5(G \cdot I), 1 / T A-5(j-11)$, LHR-15(G-I)\& $(G-I I)$, SGD-16 (G-I), RWP-16 (G-I), LHR-16 (G-I), BWP-17 (G-I) \& (C-1t) IGK-II (G-I), SWL-18, GRW-18, RWP-19 (G-I), BWP-19 (G-I)
Ans. No, it is not possible to construct a heat engine that will not expel heat into the atmosphere. According to second law of thermodynamics, in order to convert heat into work, a part of heat has to be rejected to the sink, (cold reservoir)
11.11 Can the mechanical energy be converted completely into heat energy? If so give an example.

SGD-15(G-I), SWL-18, RWP-19 (G-I),BWP-19(G-II)
Ans: Yes, it is possible to convert mechanical energy completely into heat energy for example: When brakes are applied to stop a running car, then the car stops due to friction and mechanical energy supplied is completely converted into heat energy due to friction.
Also when a gas is compressed adiabatically, the work done is used to increase the internal energy which appears as heat energy.
$-W=\Delta U$

TOPIC WISE SHORT QUESTIONS

11.1 KINETIC THEORY OF GASES

(1) What is thermodynamics?

BWP-2019 (G-II)
Ans: It deals with various phenomena of energy and related properties of matter, especially the transformation of heat into other forms of energy. An example of such transformation is the process converting heat into mechanical work.
Examples: Heat engine, refrigerator etc.
(2) Define pressure of a gas.

According to kinetic theory, the pressure exerted by a gas is merely the momentum transferred to the walls of the container per second per unit area due to he contint ©us collisions of the molecules of the gas.
(3) Write any three / four postulater (of kinet icery of es?

$$
\text { Thl-20IG (GI), sci }-2015(\mathrm{G}-\mathrm{I}) \text {, MTN-2018 (G-I) }
$$

Ans: Postulgter of Kineticíneo y f fa es
(i) The of he molecules is much sriation than the separation between molecules.
(ii) A finite volve of ras comsts of very large number of molecules.
(iii) The gas molecules are in random motion and may change their direction of motion hter every collision.
(iv) Collisions between gas molecules themselves and with walls of container are assumed to be perfectly elastic.
(4) What is the relation between absolute temperature and average K.E of the gas molecules?
Ans: We know that $\mathrm{PV}=\mathrm{nRT}$
If N_{A} is the Avogadro numbers then
$\mathrm{PV}=\frac{N}{N_{A}} R T$
$\mathrm{PV}=\mathrm{NKT} \quad$ (i)
Where $\mathrm{N}=\frac{R}{V_{A}}$ is hit Eotzinan's coistant.

Comparing eq (i) and (ii)

$$
\begin{aligned}
\mathrm{NK} \mathrm{~T} & =\frac{2}{3} N<\frac{1}{2} m v^{2}> \\
\mathrm{T} & =\frac{2}{3 K}<\frac{1}{2} m v^{2}> \\
\mathrm{T} & =\text { Constant }<\frac{1}{2} m v^{2}> \\
\mathrm{T} & \propto<\frac{1}{2} m v^{2}>
\end{aligned}
$$

This relation shows that absolute temperature of an Ideal gas is directly proportional to the average translational K.E of the gas molecules.
(5) A molecule of gas having mass ' m ' moving with velocity v collides with wall of container and rebounds. What is the change in momentum?
Ans: Let initial momentum of the molecule before striking the wall $=m v_{1 x}$.
Final momentum of the molecule after the collision $=-\mathrm{mv}_{1 \mathrm{x}}$
Change in momentum $=$ final momentum - Initial momentum

$$
\begin{aligned}
& =-m v_{1 x}-m v_{1 x} \\
& =-2 m v_{1 x}
\end{aligned}
$$

Change in momentum $=-2 \mathrm{mv}_{1 \mathrm{x}}$
(6) Derive Boyle's Law from Kinetic theory of gases?

SWL-2019 (G-I), MTN-2016 (G-II)
OR
(7) Given $\mathrm{P}=\frac{2}{3} \mathrm{~N}_{\mathrm{o}}<\frac{1}{2} \mathrm{mv}^{2}>$ where N_{o} is the number of molecules per nit wom prove Boyle's and Charles's Laws. BVP-201.3, SWM-2013.2014
Ans: From kinetic theory of gases. $\mathrm{PV}=\frac{2}{3} N<\frac{1}{2} m v^{2}>$
If we krep the temperaure constant. Average K.E i.e. $<\frac{1}{2} m v^{2}>$ remains constant. So the fight harid si ile ot te equation is constant.
Hence PVV Constant

$$
P \propto \frac{1}{V}
$$

Thus, pressure P is inversely proportional to volume V at constant temperature of the gas which is Boyles Law.
(8) Derive Charles's Law and Boyle's Law from Kinetic theory of gases?

LHR-2018 (G-I)\&2019(G-I), RWP-13 scin-2016(GA)
Ans: We know that $\mathrm{P}=\frac{2}{3} \frac{N}{V}\left\langle\frac{1}{2} m v^{2}>\right.$
Charle's Law

$\sqrt{ } \sqrt{ }+2<\frac{1}{2} m v^{2}>$
As $<\frac{1}{2} m v^{2}>\propto T$
Hence $V \propto T$
Thus volume is directly proportional to absolute temperature of the gas provided pressure is kept constant. This is known as Charles Law

Boyle's law

The volume V of a given mass of a gas is inversely proportional to the pressure at constant temperature.
Mathematically:

$$
P \propto \frac{1}{V} \quad \text { Hence } \quad \mathrm{PV}=\text { Constant } \quad \text { If } \mathrm{T}=\text { Constant }
$$

(9) Show that the ratio of the root mean square speeds of molecules of two different gases at a certain temperature is equal to the square root of the inverse ratio of their masses.

MIRPUR (AJK) 2015
Ans: We know that according to the kinetic theory of gas
$\left.\left.\mathrm{P}=\frac{1}{3} \rho<\mathrm{v}^{2}\right\rangle=\frac{1}{3} \frac{\mathrm{mnN}_{\mathrm{A}}}{\mathrm{V}}<\mathrm{v}^{2}\right\rangle \quad \because \rho=\frac{\text { mass }}{\text { volume }}$
$\mathrm{PV}=\frac{1}{3} \mathrm{mnN}_{\mathrm{A}}<\mathrm{v}^{2}>\because \mathrm{PV}=\mathrm{nRT}$
$\mathrm{nRT}=\frac{1}{3} \mathrm{mnN}_{\mathrm{A}}\left\langle\mathrm{v}^{2}\right\rangle$
$\left.\Rightarrow<\mathrm{v}^{2}\right\rangle=\frac{3 \mathrm{RT}}{\mathrm{m} \mathrm{N}_{A}}$
Taking scyuare oot by both sides
$\sqrt{\sqrt{-v}}-\sqrt{2}-v_{\text {avg }}=\sqrt{\frac{3 R T}{\mathrm{mN}_{\mathrm{A}}}} \Rightarrow \frac{\left(\mathrm{v}_{\text {avg }}\right)_{1}}{\left(\mathrm{v}_{\text {avg }}\right)_{2}}=\sqrt{\frac{\mathrm{m}_{2}}{\mathrm{~m}_{1}}}$

11.2 INTERNAL ENERGY

(10) Define the term internal energy. Discuss in what form it is in an ideal gas.

MTN-2016(GII), 1 NK-20 $16(\mathrm{C}-\mathrm{I})$
Ans: The sum of all forms of molecular enersies (kinstic and potential of a slesance is termed as its internal energy. In case of an ideal gas it is in throthor 1 ineticenergy dnl.
(11) Why asolute value of internal energy cannot be measured?

BWP-2017 (G-I)
In case or re: 1 gases at high pressure and low temperature inter-molecular (wandervals) forchs pidduce potential energy between the molecules. That is why absolute value , ih e(1) a nergy cannot be measured.
(1) What energies has a diatomic molecule of a gas?

Ans: A diatomic gas molecule has both translational and rotational energy. It also has vibrational energy associated with the spring like bond between its atoms.
(13) What is the similarities and differences between internal energy and gravitational P.E.?

Similarities:
Both are types of energies having same unit (S.I unite Joule).
Differences:

INTERNAL ENERGY	GRAVITATIONAL P.E				
(i) I.E $~=~ K . E ~+~ P . E ~$	(i)	It is Potential Energy. (ii) It depends upon the temperature of the gas.	(ii)		It depends upon position from the
:---					
center of earth.					

11.3 WORK AND HEAT

(14) What are sign conventions for work?

Ans: Work may be positive or negative
(a) When work is done by the system on surroundings then it is taken positive.
(b) When work is done on the system by the surrounding then it is taken negative.
(15) Differentiate between Heat and Temperature

Ans:

As the a ciston moves up through a small distance Δy, the work (W) done by the gas is

$$
\mathrm{W}=\mathrm{F} \Delta \mathrm{y}=\mathrm{PA} \Delta \mathrm{y}
$$

Since (Change in volume) $A \Delta y=\Delta V$
Hence
$\mathrm{W}=\mathrm{P} \Delta \mathrm{V}$
The work done can also be calculated by area of the curve under $\mathrm{P}-\mathrm{V}$ graph as shown in.

11.4 FIRST LAW OF THERMODYNAMICS

(17) State first law of thermodynamics. And give its mathematical form.

SWL-2019 (G-I), BWP-2015, DGK-2015
Ans: Statement:
In any thermodynamics process, when heat Q is added to a system, this energy appears as an increase in the internal energy $\Delta \mathrm{U}$ stored in the system plus the work W done by the system on its surroundings.
Mathematically:

$$
\mathrm{Q}=\Delta \mathrm{U}+\mathrm{W}
$$

(18) State First Law of thermodynamics. How it is applicable on human body?

OR

How process of Human metabolism can be explained, by the first Law of Thermodynamics?

DGK -2016 (G-II)
Ans: Statement: (As above)
Energy transforming process that occurs within an organism are named as metabolism
We can apply the first law of thermodynamics, $\Delta \mathrm{U}=\mathrm{Q}-\mathrm{W}$ to ${ }^{2 n}$ orgalism of the hurnan body. Work done will result in the decrease n interal energy of the ord. . .on equently, the internal energy is maintained by the foud be eat.
(19) What will be heat lost if in terratersy decreases id 300 J and work of 120 J is done by the ystem?

BWP-2017 (G-I)
Ans: As intermplene gy decreased and k is done by the system. $Q=-\Delta U+W$
: $-30(+120$
$2=-180 \mathrm{~J}$
(20) Define adiabatic process. Give its examples.

BWP-2016 (G-I) LHR-2016 (G-II)
Ans: Adiabatic Process:
A process in which no heat enters or leaves the system is called adia ra rocess.
Therefore $\mathrm{Q}=0$, and first law of thermodyanice givs
$\mathrm{Q}=\Delta \mathrm{U}+\mathrm{W}$
$\mathrm{W}=-\Delta \mathrm{U}$
Exampe;
(i) Tier pil les Pape of air from hats tyre
(ii) The rapic expansion and compression of air through which a sound wave is passing.
(ii) Cloud ismation in the atmosphere.

12 V /hat is difference between adiabatic process and isothermal process?
SWL-2016 (G-I), RWP-2019 (G-I)

Ans: Adiabatic process:

A process in which no heat enters or leaves the system is called an adiabatic process.

Since $\mathrm{Q}=0$; thus first law of thermodynamics becomes

$$
\begin{aligned}
& Q=\Delta U+W \\
& 0=\Delta U+W \\
& \text { or } \\
& \Delta U=-W
\end{aligned}
$$

Isothermal process:

A process in which temperature of the system remains constant is called isothermal process
If the temperature of the ideal gas is
constant, therefore $\Delta U=0$.
Hence first law of thermodynamics reduces to

$$
\begin{aligned}
& Q=\Delta U+W \\
& \mathrm{Q}=\mathrm{W}
\end{aligned}
$$

(22) Why adiabatic is steeper than isotherm?

(23) Explain bicycle pump as an example of first law of thermodynamics. MTN-2018 (G-I)

Ans: Bicycle Pump
A bicycle pump provides a good example to explain the first law othernadynamics. When we pump on the handle rapidly, it becones hot luc tonech anicit worn dore on the gas, raising thereby its internal energy. One such mple arangen is shown it fig. It consists of a bicycle pump with a blocked ontlet of hernoco pipe connected through the lockel cetlet allows the air temperafure o be monitered. When piston is rapidly pushed, the riometer snows a temperature rise due If in rease of internal energy of the air. The push force does work on the air, thereby, increasing its
 internal energy, which is shown, by the increase in temperature of the air.
Explain with example that heat can be added to a system without heating.
BWP-2019 (G-II)
Ans: Adiabatic Compression:
A process in which no heat enters or leaves he system is called an adiabatic process.

Explanation:

This process can be achieved either by insulating the vessel or performing the process quickly. Consider some gas contained in an insulating vessel fitted with an airtight piston. On compressing the gas, work is done on it, which results in rise of temperature. Since $\mathrm{Q}=0$; thus first law of thermodynamics becomes

$$
\begin{aligned}
& Q=\Delta U+W \\
& 0=\Delta U+W \\
& \text { or } \\
& \Delta U=-W
\end{aligned}
$$

Since work done on the system is negative, therefore ΔU is positive resulting rise in temperature.

Example:

The rapid expansion and compression of air through which a sound wave is passing.

11.5 MOLAR SPECIFIC HEATS OF A GAS

(25) Define molar specific heat of a gas at constant volume anui at censtant pree sure?

Ans: Molar specific heat of a gas at constant vole rep
It is defined as the amoun of heat wanserec, dired to raise the ter ap erature of one mole of the gas 自rough 1 k at 201 stigit rourne and is symborized by Cv
Molar coe cific heat af ol stant pressire:
It is det ned a. he amount freat transfer required to raise the temperature of one mole of the gas though- k at constant pressure. It is represented by the symbol Cp .

1.0) What do you mean by Reversible process? Give example

LHR-2017(G-I)
Ans: A reversible process is one which can be retraced in exactly reverse order, without producing any change in the surrounding.

Example:

Although no actual change is completely reversible but the processes of niquefaction ric evaporation of a substance, performed slowly, are practically rerersible. Sirmilarly, he slow compression of a gas in a cylinder is reversitle prozes as the con pressic can be cinanged to expansion by slowly decreasing the 1 essyre on the y is. on to reverse tre operation.

Conditions:

(i) The change nust take β ace at very sloy rate.
(ii) There sho uid lee no os of heat due to conduction, convection, friction etc.
(iii) The? ystem nus. a. ways be in thermal and mechanical equilibrium.

Thes: Ontions cannot be satisfied in practice so all real processes are irreversible process.
Differentiate between reversible and irreversible process?
MTN-2015, SWL-2015, SGD-2015 (G-II)
Ans:
Reversible process

- A reversible process is defined as that
which can be retraced in exactly reverse
order, without producing any change in the
surroundings.
- In the reverse process, the working substance passes through the same stages as in the direct process but thermal and mechanical effects at each stage are exactly reversed.
- Working substance restores to its original conditions.
- Although no actual change is reversible but following are few examples of reversible process.
(i) Liquefaction
(ii) Evaporation
(iii)Slow compression of a gas
(iv)Slow expansion of gas
11.8 SECOND LAW OF THERMODYNAMICS
(28) What is Second Law of Thermantiarios?

Ans: It can be stated in a number of diffie ent ways.
Lord Kevin's Statement
It is inpossith to devise a process which may convert heat, extracted from a single reservoif, antire y nio virithout leaving any change in the working substance.
This me: ns that a single heat reservoir, no matter how much energy it contains, can not b. made to perform any work.

What are the defects in first law of Thermodynamics and how they can be removed in second law of Thermodynamics?
First law of thermodynamics tells us that heat energy can be complely-ohverter rto equivalent amount of work but it is silent about the conditop is yor which this conversion takes place.

(33) Under what circumstances the efficiency of a Carnot engine will be 100% ? Is if possible?
Ans: The formula of the efficiency of a Carnot engine is

This riation shows that, the cificienc. of carmot engine depends on the temperature of hot and cind ese viir. If the fempeature of the cold reservoir T_{2} becomes zero Kelvin then the efficiency of the Earnot engine will be 100%. This is the lowest temperature ever tque reathod. So 100% efficient Carnot engine is not possible.
Carnot cycle provides the basis to define a temperature scale that is independent of material properties. Explain.

BWP-2019 (G-I)
Ans: The ratio of two temperatures T_{2} / T_{1} can be found by operating a reversible Carnot cycle between these two temperatures and carefully measuring the heat transfers Q_{2} and Q_{1}. The heat transfers are independent of the working substance of the Carnot cycle. The thermodynamic scale of temperature is defined by choosing 273.16 K as the absolute temperature of triple point of water as one fixed point and absolute zero as other point.

