		TOPIC WISE MULTIPLE	CHOICE QUESTION	s _ ran
	2.1: E	BASIC CONCEPT OF VECTORS	C	
	(1)	Name the quantity which is a vector	March	(GR3V 2914)
		(a) Speed	(b) Force	Chi
		(c) Temperature	(d) Density	
	(2)	The direction of vector in space is specifi	ed by:	LHR 2015 (G-II)
		(a) 1 – Ang'e	(b) 2 – Angles	
	đ	(c) 3 - Angles	(d) 4 – Angles	
ant	MN	If $\hat{A} = 2\hat{i} + \hat{j} + 2\hat{k}$ then $ A $ is:		LHR-2016 (G-II)
MM.	00	(a) zero	(b) 3	
<u> </u>		(c) 5	(d) 9	
	(4)	If $ a+b = a-b $ then angle between \vec{a} and	d b is	LHR-2017 (G-I)
		$(\mathbf{a}) 0^{\circ}$	(b) 45°	
		(c) 90°	(d) 180°	
	(5)	Maximum number of components of a ve		LHR-2018 (G-II)
		(a) one	(b) two	
		(c) three	(d) infinite	
	(6)	The magnitude of a vector $\vec{r} = 3\hat{i} + 6\hat{j} + 2\hat{k}$	K is	LHR-2018 (G-I)
		(a) -1	(b) –7	
		(c) 7	(d) 8	
	(7)	If the resultant of two vectors each of n	nagnitude 'F' is also of m	agnitude 'F' then
		the angle between them will be:		GRW-2019 (G-I)
		(a) 30°	(b) 60°	
		(c) 90°	(d) 120°	
	(8)	$\left \hat{i}-\hat{j}-3\hat{k}\right =$		(RWP 2012)
		(a) $\sqrt{5}$	(b) √7	
		(c) $\sqrt{11}$	(d) 13	SIGON
	(9)	$\vec{A} + \vec{B} = \vec{B} + \vec{A}$, this shows that addition o		(BWP 2012)
		(a) Associative	(b) Commutative	
		(c) Ad litive	(d) Additive Inverse	
	(10)	Unit vector of a given vector $\overline{A} = 4\hat{i} + 3\hat{j}$ is	:	MTN-2019 (G-I)
	~ 1			
NAT	NN	$\frac{1}{25}$	(b) 1	
90	~	(a) $\frac{4\hat{i}+3\hat{j}}{\hat{j}}$	(d) $\sqrt{4\hat{i}+3\hat{j}}$	
		$\left(c \right) = \frac{1}{5}$	(d) $\sqrt{\frac{n+3f}{5}}$	

		(c) A number with proper units	(d) None of these
	(12)	Another name of rectangular co-ordinate	
		(a) vector system	(b) physical co-ordinate system
	(10)	(c) Cartesian co-ordinate system	(d) Cartesi un ordinate system
	(13)	A unit rector is obtained by dividing the	
		(a) its direction (c) Itself	(b) Its magnitude(d) Any scalar quantity
	(14)	Two vectors are said to be equal if	(u) Any scalar quantity
0	AR	(a) il evhave equal magnitude	(b) they have same direction
AM	NN.	(c) both a & b	(d) they have opposite direction
UV.	(15)	Number of angles required to represent the	
<i>~</i>	(10)	(a) one	(b) two
		(c) three	(d) four
	(16)	The vector of zero magnitude and arbitra	ry direction is called
		(a) equal vector	(b) null vector
		(c) unit vector	(d) resultant vector
	(17)	The maximum number of components of	a resultant vector are
		(a) two	(b) three
		(c) infinite	(d) one
	(18)		where $(n < 0)$ then its direction is changed by:
		(a) 0°	(b) 90°
		(c) 60°	(d) 180°
	(19)	The unit vector of $\vec{A} = \hat{i} + \hat{j} + \hat{k}$ is	
		(a) \vec{A}	(h) ¹
			(b) $\frac{1}{\sqrt{3}}$
			(b) $\frac{1}{\sqrt{3}}$
		(c) $\frac{(\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}})}{\sqrt{3}}$	(b) $\frac{1}{\sqrt{3}}$ (d) zero
	(20)		
		(c) $\frac{(\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}})}{\sqrt{3}}$	(d) zero
		(c) $\frac{(\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}})}{\sqrt{3}}$ If $\vec{\mathbf{A}} = 2\mathbf{i} + 3\hat{\mathbf{j}} - 4\hat{\mathbf{k}}$ then magnitude of $\vec{\mathbf{A}}$ (a) $\sqrt{-3}$	(d) zero (b) $\sqrt{-1}$
	(20)	(c) $\frac{(\hat{i}+\hat{j}+\hat{k})}{\sqrt{3}}$ If $\vec{A} = 2i + 3\hat{j} - 4\hat{k}$ then magnitude of \vec{A} (a) $\sqrt{-3}$ (c) $\sqrt{29}$	(d) zero (b) $\sqrt{-1}$ (d) -1
		(c) $\frac{(\hat{i}+\hat{j}+\hat{k})}{\sqrt{3}}$ If $\vec{A} = 2i + 3\hat{j} - 4\hat{k}$ then magnitude of \vec{A} (a) $\sqrt{-3}$ (c) $\sqrt{29}$ The minimum number of components of	(d) zero (b) $\sqrt{-1}$ (d) -1 a resultant vector are
	(20)	(c) $\frac{(\hat{i}+\hat{j}+\hat{k})}{\sqrt{3}}$ If $\vec{A} = 2i + 3\hat{j} - 4\hat{k}$ then magnitude of \vec{A} (a) $\sqrt{-3}$ (c) $\sqrt{29}$ The minimum number of components of (a) 1	(d) zero (b) $\sqrt{-1}$ (d) -1 a resultant vector are (b) 2
	(20) (21)	(c) $\frac{(\hat{i}+\hat{j}+\hat{k})}{\sqrt{3}}$ If $\vec{A} = 2\hat{i}+3\hat{j}-4\hat{k}$ then magnitude of \vec{A} (a) $\sqrt{-3}$ (c) $\sqrt{29}$ The minimum number of components of (a) 1 (c) 3	(d) zero (b) $\sqrt{-1}$ (d) -1 a i c sultant vector are (b) 2 (d) none of these
	(20)	(c) $\frac{(\hat{i}+\hat{j}+\hat{k})}{\sqrt{3}}$ If $\vec{A} = 2i + 3\hat{j} - 4\hat{k}$ then magnitude of \vec{A} (a) $\sqrt{-3}$ (c) $\sqrt{29}$ The minimum number of components of (a) 1 (c) 3 The position vector \vec{r} of a point $p < 1 > 2, -3$	(d) zero (b) $\sqrt{-1}$ (d) -1 a resultant vector are (b) 2 (d) none of these b) is given by:
	(20) (21)	(c) $\frac{(\hat{i}+\hat{j}+\hat{k})}{\sqrt{3}}$ If $\vec{A} = 2i + 3\hat{j} - 4\hat{k}$ then magnitude of \vec{A} (a) $\sqrt{-3}$ (c) $\sqrt{29}$ The minimum number of components of (a) 1 (c) 3 The position vector, \vec{r} of a point $p(\cdot 1, 2, -3)$ (a) $2\hat{i} - \hat{j}\hat{j} + 4\hat{k}$	(d) zero (b) $\sqrt{-1}$ (d) -1 (d) -1 (e) 2 (d) none of these (b) 2 (c) 1 (c) 2 (c) 1 (c) 2 (c) 1 (c) 2 (c) 2
	(20) (21)	(c) $\frac{(\hat{i}+\hat{j}+\hat{k})}{\sqrt{3}}$ If $\vec{A} = 2i + 3\hat{j} - 4\hat{k}$ then magnitude of \vec{A} (a) $\sqrt{-3}$ (c) $\sqrt{29}$ The minimum number of components of (a) 1 (c) 3 The position vector \vec{r} of a point $p(.1, 2, -3)$ (a) $2\hat{i} - 3\hat{j} + 4\hat{k}$ (c) $-\hat{i} + 2\hat{i} - 3\hat{k}$	(d) zero (b) $\sqrt{-1}$ (d) -1 a resultant vector are (b) 2 (d) none of these b) is given by:
MA	(20) (21)	(c) $\frac{(\hat{i}+\hat{j}+\hat{k})}{\sqrt{3}}$ If $\vec{A} = 2i + 3\hat{j} - 4\hat{k}$ then magnitude of \vec{A} (a) $\sqrt{-3}$ (c) $\sqrt{29}$ The minimum number of components of (a) 1 (c) 3 The position vector \vec{r} of a point $p(\cdot 1, 2, -3)$ (a) $2\hat{i} - \hat{j}\hat{j} + \hat{4}\hat{k}$ (c) $-\hat{i} + \hat{2}\hat{i} - 3\hat{k}$ By using head to tail rule we can	(d) zero (b) $\sqrt{-1}$ (d) -1 a resultant vector are (k) 2 (d) none of these b) is given by: (b) $-2\hat{i}-3\hat{j}+4\hat{k}$ (d) none of these
W	(20) (21)	(c) $\frac{(\hat{i} + \hat{j} + \hat{k})}{\sqrt{3}}$ If $\vec{A} = 2i + 3\hat{j} - 4\hat{k}$ then magnitude of \vec{A} (a) $\sqrt{-3}$ (c) $\sqrt{29}$ The minimum number of components of (a) 1 (c) 3 The position vector \vec{r} of a point $p (\cdot 1, 2, -3)$ (a) $2\hat{i} - 3\hat{j} + 4\hat{k}$ (c) $-\hat{i} + 2\hat{j} - 3\hat{k}$ By using head to tail rule we can (a) add the vectors	(d) zero (b) $\sqrt{-1}$ (d) -1 (e) 2 (d) none of these (b) $2\hat{i} - 3\hat{j} + 4\hat{k}$ (c) none of these (b) subtract the vectors
W	(20) (21)	(c) $\frac{(\hat{i}+\hat{j}+\hat{k})}{\sqrt{3}}$ If $\vec{A} = 2i + 3\hat{j} - 4\hat{k}$ then magnitude of \vec{A} (a) $\sqrt{-3}$ (c) $\sqrt{29}$ The minimum number of components of (a) 1 (c) 3 The position vector \vec{r} of a point $p(\cdot 1, 2, -3)$ (a) $2\hat{i} - \hat{j}\hat{j} + \hat{4}\hat{k}$ (c) $-\hat{i} + \hat{2}\hat{i} - 3\hat{k}$ By using head to tail rule we can	(d) zero (b) $\sqrt{-1}$ (d) -1 a resultant vector are (k) 2 (d) none of these b) is given by: (b) $-2\hat{i}-3\hat{j}+4\hat{k}$ (d) none of these

N.

(24)	Which of the given vector is a unit	vector?
	(a) i	(\mathbf{b}) $\hat{\mathbf{i}} + \hat{\mathbf{j}}$
	(c) $\hat{i} + \hat{j} + \hat{k}$	(d) all are unit vectors
(25)	Parallel vectors must have same	
(-)	(a) magnitude	(b) direction
	(c) both magnitude and direction	(d) same magnitude but opposite direction
(26)	Which process is not possible for tw	
	(a) addition	(b) subtraction
nal	(c) division	(d) multiplication th a vector, only its direction is reversed if the
MM	number is	in a vector, only its direction is reversed if the
	(a) 1	(b) -1
	$(a)^{-1}$ (c) -0.5	(d) -2
(28)		gnitude 5N each, has also magnitude of 5N, the
	angle between the forces is	
	(a) 0°	(b) 90°
	(c) 120°	(d) 180°
(29)		tion of a point w.r.t the origin is called
	(a) parallel vector	(b) unit vector
	(c) null vector \rightarrow	(d) position vector
(30)	The relation $\overline{\mathbf{A}} + (-\overline{\mathbf{A}})$ results the	
	(a) parallel vector	(b) unit vector
	(c) null vector	(d) position vector
(31)	The vector subtraction is similar to	
	(a) addition	(b) division
(22)	(c) multiplication	(d) all of these s all the original vectors taken together is called:
(32)	(a) Position vector	(b) null vector
	(c) equal vector	(d) resultant vector
(33)	The reverse process of addition of v	
()	(a) negative of a vector	(b) multiplication of a vector
	(c) subtraction of vector	(d) resolution of a vector
(34)	The unit vector is expressed as	$\mathcal{C}(\mathcal{O})$
	(a) $A = \vec{A} \times \vec{A}$	(b) $A=\overline{A}$
	\cap	
(25)	(c) $A = \overline{A}AA$	$(\mathbf{c}) \mathbf{A} = \mathbf{A} \times \mathbf{A}$
(35)	The sum of a vector with its negative (a) zero vetor	(b) null vector
	(c) both a and b	(d) none of these
(36)		es of equal magnitude whose vector sum can be zero, are
(00)	(a) 3	(b) 2
ANI	10000	(d) 4
37	$\vec{\mathbf{r}} = \mathbf{a}\hat{i} + \mathbf{b}j + \mathbf{c}k$	
()	(a) equal vector	(b) position vector
	(c) Unit vector	(d) negative vector
	· ·	

(38) The position vector is a vector that desc	cribes							
(00	(a) location of a point	(b) location of magnitude							
	(c) location of null vector	(d) none of these	$\mathcal{C}(0) \cup \mathcal{C}(0) \cup \mathcal{C}$						
(20			LIGE						
(39		700							
	(a) null vector	(b) negative vector							
	(c) unit vector	(a) position vector							
(40) If $\vec{\mathbf{A}} = 2\hat{i} + j + 2k$, then $ \vec{\mathbf{A}} $ is	Ulas							
(•••									
	(a) zero	(b) 5							
	(c) o	(d) 3							
2.2	NECTOR ADDITION BY RECTANGUL								
		tor has opposite signs, then ve	ctor lies in						
VIV V	quadrant.	(I) : (1) : and : (th							
\bigcirc	(a) either in 1^{st} or in 2^{nd}	(b) either in 2^{nd} or in 4^{th}							
	(c) 3^{rd}	(d) 4th							
(42) If a force of 10N is acting along x-axis t	1 81							
		GRW	-2019 (G-II)						
	(a) zero	(b) 5N							
	(c) 10N	(d) 15N							
(43			-2019 (G-II)						
(10	(a) 1^{st}	(b) 2^{nd}							
	$(\mathbf{c}) 3^{rd}$	$(\mathbf{d}) 4^{\text{th}}$							
(44			vic ic.						
() The magnitude of rectangular compone	ents are equal if its angle with x-a	(FSD 2012)						
	$(a) 20^{0}$	(b) 45°	$(\mathbf{FSD}\ 2012)$						
	(a) 30°								
(1	(c) 60°	(d) 90°							
(45		· are negative, then resultant lies in	r FSD-2018						
	(a) $1^{\text{st}}_{\text{rd}}$ quadrant	(b) 2^{nd}_{t} quadrant							
	(c) 3^{rd} quadrant	(d) 4 th quadrant							
(46) Rectangular components have angle be	tween them is: FSI	D 2019 (G-I)						
	(a) 30°	(b) 45°							
	(c) 60°	(d) 90°							
(47			(DGK 2015)						
((a) First quadrant	(b) Second quadrant	(_ 0)						
(48	· · · ·	(d) Fourth quadrant A force of	10 N makes						
(+0	an angle of 30° with x-axis. The magnit								
	0	(b) 8.66	-porpropring to be						
	(a) $5N$		1000						
(40	(c) 10N	(I) zero							
(49									
		between them is: MTN-2019 (G-II)							
	(a) 180°	(b) 30°							
	(c) 90°	$(\mathbf{d}) 0^{\circ}$							
(50) The resultant of two for ces 3N and 4N i	making an angle 90° with each oth	ier is						
	MON LUU	(b) 7N							
-	10510	(d) 3.5N							
	Vector \vec{A} is along y-axis. Its x-component								
00 .	(a) A $\cos\theta$	(b) 0							
	(c) A	(d) A $\sin\theta$							

(.	52)	The direction of vector $\vec{\mathbf{R}}$ is given by		
		(a) $\theta = \tan^{-1}(\frac{R_x}{R})$	(b) $\theta = \tan^{-1}(\frac{R_x}{R})$	75 C(0)UUU
		<i>x</i>	N-NR	(0)000
			(d) $\theta = \tan^{-1}(\frac{\mathbf{r}_y}{\mathbf{r}_x})$	
(a) $\theta = \tan^{-1}\left(\frac{R}{R_{c}}\right)$ (b) $\theta = \tan^{-1}\left(\frac{R}{R_{c}}\right)$ (c) $\theta = \sin^{-1}\left(\frac{R}{R_{c}}\right)$ (d) $\theta = \tan^{-1}\left(\frac{R}{R_{c}}\right)$ (e) $\theta = \sin^{-1}\left(\frac{R}{R_{c}}\right)$ (f) $\theta = \tan^{-1}\left(\frac{R}{R_{c}}\right)$ (g) $\theta = \tan^{-1}\left(\frac{R}{R_{c}}\right)$ (h) third quadrant (h) third quad				
(3	54)		f 60° with y-axis, its y-con	nponent is
- OTN	NN	(1) (1)		-
NNV.	N		()	
	55)			-
			· · /	
(3	56)		nake angle of 60° with y-	axis its direction is
		0	(1) 2200	
2	2 DD			ICTS
			XAND VECTOR I RODO	
(;	57)	^	2	
			(d) 2	
(:	58)	B.B is equal to:		MTN-2019 (G-II)
	7 0)			
(:	59)			BWP-2019 (G-1)
	$\langle 0 \rangle$		$(\mathbf{u}) \mathbf{x} = \mathbf{z}$ prane	
()	60)	$(1 \times J) \times K + (J \times I) \times I$ will be		DGK-2018 (G-11)
		$(\mathbf{a}) - \hat{\mathbf{j}}$	(b) j	- 60
		(c) \hat{i}	$\tilde{0}$ (b)	r = c = c = c = c = c = c = c = c = c =
()	61)			ne; then the angle
`		•		
				1
		(c) 60°	(d) 180°	,
(62)	The cross-pronuct of a vector A with its	elf results:	MTN-2018 (G-II)
		(a) \vec{A}	(b) A^2	
	- 05	(c) 22 ro	(d) null vector	
- NIN	63)	If two iton zero vectors \vec{A} and \vec{B} are parallel	to each other then	MTN 2016 (G-I)
NVA Z	10	(a) $\overrightarrow{A} \cdot \overrightarrow{B} = 0$	(b) $\overrightarrow{A} \cdot \overrightarrow{B} = AB$	
00		(c) $\left \overrightarrow{A} \times \overrightarrow{B} \right = AB$	(d) $\left \overrightarrow{A} \times \overrightarrow{B} \right = \overrightarrow{A} \cdot \overrightarrow{B}$	
		$(C) A \land D - AD$	$(\mathbf{u}) A \land D - A . D$	

(64)	$\hat{i}.(\hat{j} imes\hat{k})$ is equal to:		(MTN 2015)
	(a) 1	(b) 2	(0)
	(c) 0	(d) \hat{k}	VGOG
(65)	Cross-product of $\hat{j} \times i$ is:	9 2 10 1111	FSD 2019 (G-I)
	(a) zero		, D
	(c) i Ollorooll	(ū) –i	
		JUL	
(66)	The magnitude of $j = \{i \times \kappa\}$ is	equal to	SGD-2016 (G-II)
NN		(b) 1	
100	(c) −1	(d) <i>k</i>	
(67)	The cross product, $\hat{k} \times \hat{j}$ is e	qual to	(RWP 2015)
	(a) $-\hat{i}$	(b) $-\hat{j}$	
	(c) $-\hat{k}$	(d) \hat{i}	
(68)	If $\stackrel{r}{A} = 4\hat{i}, \stackrel{r}{B} = -4\hat{i}$ then angle	e of $A + B$ with X-axis is equal to;	MIRPUR (AJK) 2015
~ /	(a) 45°	(b) 135°	
	(c) 225°	(d) 315°	
(69)	Cross product of $\hat{j} \times \hat{k}$ is:		LHR-2019 (G-II)
	(a) zero	(b) 1	
	(c) i	$(\mathbf{d}) - \hat{\mathbf{i}}$	
(70)	If $\vec{F} = (2\hat{i} + 4\hat{j})N; \vec{d} = (5\hat{i} + 2\hat{j})$	m work done is:	LHR-2019 (G-I)
()	(a) 15 J	(b) 18 J	
	(c) zero	(d) -18 J	
(71)		he angle between \vec{A} and \vec{B} is:	GRW-2019 (G-I)
	(a) 30°	(b) 45°	
	(c) 60°	(d) 180°	
(72)	$\left(\mathbf{k} imes \hat{\mathbf{k}} ight)$ is equal to:		LHR-2018 (G-II)
	(a) k	(b) 1	~ (O)UUU
	(c) null vector	(d) zero	V Co Job
(73)	The magnitude of $\hat{i}.(\hat{j}\times\hat{j})$ is	s equato;	LHR 2015(G-I)
	(a) 0		Ū
	(c) -1 ()	$(\mathbf{\ddot{u}}) \hat{i}$	
(74)	$\vec{\mathbf{A}} \times \vec{\mathbf{B}}$		
- 01	T(a) AB-cuse	(b) ABsin θ n	
NN	(d) AB $\sin\theta$	(d) none	
(75)	Scalar product of two vector		
	(a) AB $\sin \theta$	(b) AB $\tan \theta$	
	(c) AB	(d) AB $\cos \theta$	

N

	(76)	What is angle between the given two vector	ors $\hat{i} + \hat{j}$ and $\hat{i} - \hat{j}$
		(a) 0°	(b) 30°
		(c) 45°	(d) 90°
	(77)	The scalar product of two vectors \vec{A} and	
		(a) vector quantity	(b) scalar quantity
	(70)	(c) linear quantity	(d) none of these
	(78)	Vector product of two vectors A and B is	
		(a) AB $\sin \theta$	(b) AB $\sin \theta \mathbf{n}$
-	OF	(c) AB cost n	(d) both 'a' and 'b'
M	161	By increasing the value of angle $(0^{\circ} < \theta + \theta)$	$< 90^{\circ}$) between the two given vectors their
U	00	cross product in magnitude	
		(a) increases	(b) decrease
		(c) remain same	(d) may increase or decrease
	(80)	-	eir scalar product is equal to half of the
		product of their magnitude	
		(a) 30°	(b) 45°
	(01)	(c) 60°	(d) 80°
	(81)	Which Product of two vectors is commuta (a) cross	(b) scalar
		(c) both 'a' and 'b'	(d) none of these
	(82)	If \vec{A} and \vec{B} are two parallel vectors then v	
	(02)	-	_
		(a) $\mathbf{A} \cdot \mathbf{B} = 0$	(b) $\mathbf{A} \times \mathbf{B} = 0$
	$\langle 02 \rangle$	(c) $\vec{\mathbf{A}} \times \vec{\mathbf{B}} = \vec{0}$	(d) $\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}} = AB$
	(83)		the magnitude of their resultant force is
		minimum when angle between them is (a) 0°	(b) 45°
		(c) 90°	(d) 180°
	(84)	If $\vec{A} \cdot \vec{B} = 0$, then	(4) 100
	(04)	(a) \vec{A} is parallel to \vec{B}	(b) \vec{A} is anti-parallel to \vec{B}
		→ →	
	(95)	(c) \hat{A} is perpendicular to \hat{B} $\hat{k} \times \hat{k} =$	(d) all of these
	(85)		01/21/2000
		(a) 1 (c) k^2	(b) zero (d) n ill vector
	(86)		dded and magnitude of their resultant is
	(00)	zero. The angle between any of two vector	is is
		(a) 30 ^o	(b) 60°
		(c) 90°	(d) 120°
	(87)	Force is equal to product of mass and acc	eleration, the product is called
n l	NN	(a) scalar product	(b) vector product
$\langle \rangle$	UU	(c) simple product	(d) none
0	(88)		rectangular components have magnitude
		(a) $A_x = A \sin\theta$, $A_y = A \cos\theta$ (c) $A = A \tan\theta$, $A = A \cot\theta$	(b) $A_x = A \cos\theta$, $A_y = A \sin\theta$ (d) $A = A \cot\theta$, $A_y = A \tan\theta$
		(c) $A_x = A \tan\theta$, $A_y = A \cot\theta$	(d) $A_x = A \cot\theta$, $A_y = A \tan\theta$

	(89)	$\hat{\mathbf{j}}.\hat{\mathbf{i}} =$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
		(a) 1	(b) zero
	(90)	 (c) k If the dot product is negative, then angle (a) 0° (c) 180° 	(d) $-\mathbf{k}$ bet veen the vector; is (b) 90° (d) 270°
	(91)	The vector product of two vectors $\overline{\mathbf{A}}$ and $\overline{\mathbf{B}}$	
		(a) $C = AB \sin t^{j}$ (c) $\bar{C} = \vec{\lambda} \cdot \vec{E} \cos t^{j}$	(b) $C = AB\cos(90 - \theta)$ (d) both a and b
AAA	(92)	Set lot product of a vector A is equal to (a) A	(b) A ²
A.A.	0 -	(a) $A^{(a)}$ (c) $A^{2/2}$	(d) none of these
	(93)	If $ \vec{A} \times \vec{B} = \vec{A}.\vec{B} $ then angle between the ve	
	()	(a) 0°	(b) 90°
		(c) 180°	(d) 45°
	(94)	Cross-product of two parallel vectors is:	
		(a) Maximum	(b) negative
	(95)	(c) zero Which relation is incorrect?	(d) null vector
	()))	(a) $\vec{\tau} = \vec{r} \times \vec{F}$	(b) $\vec{F} = q(\vec{v} \times \vec{B})$
		(c) $P = \vec{F} \times \vec{v}$	(d) $\vec{L} = \vec{r} \times \vec{p}$
	(96)	$\vec{\mathbf{A}}$. A is equal to	
	()0)	(a) 1	(b) zero
		(c) A	(d) $A \cos\theta$
	(97)	If $\vec{A} = \vec{B}$ then which equation is not corre	ect
		(a) $\mathbf{A}.\mathbf{B} = \mathbf{A}\mathbf{B}$	$(b) \mathbf{A} = \mathbf{B}$
		$(\mathbf{c}) \mathbf{A} = \mathbf{B}$	(d) all are correct
	(98)	Which of the following is a scalar product	
		(a) torque(c) power	(b) work (d) both work and power
	(99)	Scalar projection of vector \vec{B} on \vec{A} is wr	
		(a) $B\cos\theta$	
		(c) AB $\cos\theta$	$(\mathbf{I}) \neq \mathbf{s} \cdot \mathbf{n} \mathbf{f}$
	(100)	$(\hat{\mathbf{i}} \times \hat{\mathbf{j}}) + (\hat{\mathbf{j}} \times \mathbf{k})$ is equal to	
		(a) 1	(b) null vector
	(101)	(c) zero Self cross product of a unit vector is equa	(d) i+k l to
		(E) zero	(b) null vector
AMA	7171)	(c) one	(d) negative
MA,	(102)	Which one is correct $(x, \overline{x}, \overline{z}, z$	
-		(a) $\vec{\mathbf{A}}.\vec{\mathbf{B}} = -\vec{\mathbf{A}}.\vec{\mathbf{B}}$	(b) $\vec{\mathbf{A}} \times \vec{\mathbf{B}} \neq \vec{\mathbf{B}} \times \vec{\mathbf{A}}$
		(c) $\vec{\mathbf{A}} \times \vec{\mathbf{B}} = \vec{\mathbf{B}} \times \vec{\mathbf{A}}$	(d) none of these

(103)	Area of parallelogram whose adjacent si	des are \vec{A} and \vec{B} is given by							
	(a) zero	(b) AB $\cos \theta$							
	(c) AB sin θ	(d) AB							
(104)	The cross product $\hat{i} \times \hat{j}$ is								
	(a) 1 $\int \partial $								
	(c) k \cap	(d) -k							
(105)	Which condition could make $\vec{A} \times \vec{P} = \vec{O}$								
× ,	(a) both vec ors are parallel or anti-parallel	(b) vector $\vec{\mathbf{B}}$ is a null vector							
- OT	(c) vector $\vec{\Delta}$ is null vector	(d) all of these							
105	At which angle the scalar product could								
MMAAA	(a) 60°	(b) 90°							
0	(c) 180°	(d) 45°							
(107)	At what angle the dot product will be ha								
	(a) 0°	(b) 90°							
	(c) 60°	(d) 45°							
(108)	The i.k is equal to								
	(a) zero	(b) 1							
	(c) $-\hat{j}$	(d) $\hat{\mathbf{j}}$							
(109)	The position vector of point P(x,y) can b	e written as							
	(a) $\vec{\mathbf{r}} = x\hat{\mathbf{i}} + y\hat{\mathbf{j}}$	(b) $\vec{\mathbf{r}} = x\hat{\mathbf{j}} + y\hat{\mathbf{i}}$							
	(c) $\vec{\mathbf{r}} = x\hat{\mathbf{j}} + 0\hat{\mathbf{i}}$	(d) none of these							
(110)	If $\vec{F_1} = 3\hat{i} + 2\hat{j}$ and $\vec{F}_2 = 2\hat{i} + 3\hat{j}$ then $\vec{F}_1 \cdot \vec{F}_2$, will be							
× ,	(a) 24	(b) 12							
	(c) 6	(d) 0							
(111)	Which property does not hold for vector	product							
	(a) associative property	(b) commutative property							
	(c) distributive property over addition	(d) none of these							
(110)	$\frac{A_x B_x + A_y B_y + A_z B_z}{A_z B_z}$								
(112)	The expression AB is equ								
	(a) $\cos\theta$	(b) $\sin\theta$							
	(c) $\tan\theta$	(d) projection of A on B							
(113)	\vec{A} . \vec{A} is equal to \vec{A}								
× ,	(a) zero	(b) one							
	(c) A O	$(\mathbf{d}) \mathbf{A}^2$							
(114)	$(\hat{\mathbf{i}} \times \hat{\mathbf{j}}) + (\hat{\mathbf{j}} \times \hat{\mathbf{i}})$								
		(b) null vector							
- AMAN	NO-LOLLE	(d) i^2							
(1/1/ /1/2)	For the two perpendicular vectors, cross								
00	(a) maximum	(b) minimum (d) none of these							
	(c) zero	(d) none of these							

-(1	116)	If two non-zero vectors \vec{a} and \vec{b} are para	Illel to each other, then					
		(a) $\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = 0$	(b) $\vec{a} \cdot \vec{b} = ab$					
		(c) $\left \vec{a} \times \vec{b} \right = \vec{a} \cdot \vec{b}$	(d) none of these					
(2	117)	$\vec{A} \times \vec{B}$ is along Z-axis. Then two vector A	and B lie in					
		(a) xz-plane	(b) yz-plane					
		(c) xy-plane	(d) in three dimensional space					
(1	118)	The magnitude of $\vec{A} \times \vec{E}$ is equal to the						
	-	(2) wea of triangle	(b) area of sphere					
	NN	(c) wer of rarallelogram	(d) area of circle					
NIN	19)	Consider a vector $4\hat{i} - 3j$, another vector	that is perpendicular to it is					
00 -		(a) 4i + 3j	(b) 6i					
		(c) $3i - 4j$	(d) 7k					
(1	120)	The resultant of two forces 3N and 4N ma						
		(a) 1N	(b) 7N					
		(c) 5N	(d) 3.5N					
(2	121)	The dot product $\hat{i} \cdot \hat{i} = j \cdot j = k \cdot k$ is equal to						
		(a) 0	(b) 1					
		(c) –1	(d) \hat{i}					
(1	122)	The scalar product of two vectors is maxim	mum when they are					
		(a) Parallel	(b) Perpendicular					
		(c) Anti-parallel	(d) Null					
(.	123)	Turning effect of force is called	(h) momentum					
		(a) moment of force(c) torque	(b) momentum(d) both a and c					
ſ	124)	Dimension of torque is						
(-		(a) $[ML^2T^{-1}]$	(b) $[ML^{+2}T^{-2}]$					
		(c) $[ML^{-1}T^2]$	(d) $[ML^{-2}T^{-2}]$					
(125)	Torque $(\vec{\tau})$ is defined as						
× ×	-)	(a) $\mathbf{r} \times \mathbf{F}$	(b) $\mathbf{F} \times \mathbf{r}$					
		(c) $Fr \cos\theta$	(d) rF tan θ					
(1	126)	Conventionally, clockwise torque is taken						
		(a) zero	(b) negative					
		(c) positive	(c) none of these					
()	127)	Torque has maximum value if angle betw						
		(a) 30°	(b) 90°					
(1	190)	(c) 45°	(d) 60°					
()	128)	(a) romentum	rotation to the line of action of force is called (b) moment arm					
- nn	ND	(1) torque	(d) center of gravity					
VIN V	29)	A body cannot rotate about its center of grav						
00	,	(a) momentum is zero	(b) moment arm is zero					
		(c) moment arm is maximum	(d) turning effect is maximum					

(130)	The moment of force is defined as $\vec{\tau} = \vec{r} \times \vec{r}$	F where r is							
	(a) position vector w.r.t pivot point	(b) Couple arm							
	(c) radius vector	(d) momentum ann							
(131)	The SI unit of torque is O								
	(a) joule								
	(c) N s	(d) J s							
(132)	If the body is rotating with uniform angula	ar velocity then torque acting on body is							
- 0	(a) Maximun	(b) minimum							
NAN	(c) zero	(d) negative							
(133)	When the line of action of the applied force passes through the pivot point, the value								
	of moment arm will be								
	(a) maximum	(b) zero							
	(c) minimum	(d) none of these							
(134)	The torque acting on a body determines in	ts							
	(a) angular velocity	(b) angular displacement							
	(c) force	(d) angular acceleration							
(135)	Torque is analogous of								
	(a) force for rotational motion	(b) force for linear motion							
	(c) angular velocity	(d) angular momentum							

WWW. MAARAGUMYE.com

	ANSWERKETS																
				(To	opic	Wis	e M	Iultij	ple	Choi	ce (Questi	985	\mathcal{N}	11	6	10
1	b	16	b	31	a	_46	d (61	b	1765	d	91	নি	106	c	W.	b
2	с	17	a	32	d	47	1	62	d	ጉፖሌ	b	J94	b	407	9	122	a
3	ð	[Î]	d	33	Je.	48	K	63	b	78	6	-93	d	108	a	123	d
4	\mathbb{P}	19	C	-34(þ	49	4	<u>\</u> 41	a	79	a	94	c	109	a	124	b
5_	đ	20	c	35	l k	50	С	65	С	80	c	95	c	110	b	125	a
M	c	k L	Je	-36	b	51	b	66	b	81	b	96	c	111	b	126	b
V)	0'	22	c	37	b	52	d	67	a	82	a	97	d	112	a	127	b
8	с	23	d	38	a	53	c	68	d	83	d	98	d	113	d	128	b
9	b	24	a	39	c	54	c	69	с	84	c	99	a	114	b	129	b
10	с	25	с	40	d	55	c	70	b	85	d	100	d	115	a	130	a
11	с	26	с	41	b	56	b	71	b	86	d	101	b	116	b	131	b
12	c	27	b	42	a	57	С	72	b	87	c	102	b	117	c	132	c
13	b	28	c	43	С	58	d	73	b	88	a	103	c	118	c	133	b
14	c	29	d	44	b	59	d	74	С	89	b	104	c	119	d	134	d
15	c	30	c	45	c	60	a	75	d	90	c	105	d	120	b	135	b

ANSWER KEVS

MM

WWW. MANAKAGUMYZ. COM

SHORT QUESTIONS

(From Textbook Exercise)

2.1. Define the terms (i) Unit vector (ii) Position vector and (iii) Components of a vector. SGD-15(G-II), MTN-15(G-I), SGD-15(G-I), LH 2-7 G-D&(G-I), SWL-19

Ans: (i) Unit Vector

A unit vector in a given direction is a vector with magnitude one in that direction. It is used to represent the direction of a vector. A unit vector in the direction of \vec{A} is written as A_{\pm} , which we read as 'A hat 'Thus

$$\vec{A} = AA \qquad A = \frac{\vec{A}}{A} \qquad OR \qquad A = \frac{A_x \hat{i} + A_y \hat{j} + A_z k}{\sqrt{A_x^2 + A_y^2 + A_z^2}}$$

Examples of unit vectors are:

- (i) \hat{i} is unit vector along x-axis
- (ii) \hat{j} is unit vector along y-axis.
- (iii) k is unit vector along z-axis.
- (iv) n is unit vector which may have any direction.

(ii) Position Vector

It is a vector that describes the location of a point with respect to the origin. It is represented by a straight line drawn in such a way that its tail coincides with the origin and the head with point P.

• Position vector of point P (a, b) in a plane is written as $\vec{r} = a\hat{i} + bj$ and $r = \sqrt{a^2 + b^2}$ as in figure (i).

Components of a Vector

A component of a vector is its effective value in a given direction. A vector may be considered as the resultant of its component vectors along the specified directions.

2.2. The vector sum of three vectors gives a zero resultant. What can be the orientation of the vectors?

FSD-14(G-I), FSD-15(G-I), SGD-15(G-I), GRW-15(G-I), DGK-16 (G-I), BWP-16 (C-I), SGD-16 (G-I), LHR-18 (G-I)

Ans: When the three vectors $\vec{F_1}$, $\vec{F_2}$ and $\vec{F_3}$ are arranged in such a way that they form a triangle, then their resultant is zero. When nead of $\vec{F_3}$ coincides with tail of $\vec{F_1}$, then resultant becomes zero. So, we can write $\vec{F_1} \neq \vec{F_2} + \vec{F_3} = 0$ $\vec{F_1}$

2.9. Is it possible to add a vector quantity to a scalar quantity? Explain. *RWP-16 (G-I), LHR-16 (G-II), BWP-17 (G-I), SWL-19, GRW-19 (G-II), MTN-19 (G-II)*

- Ans: No, a vector quantity cannot be added to a scalar quantity. By the rule of vector addition, only similar physical quantities can be added, whereas vectors and scalar are not similar physical quantities. Vectors possess, both magnitude and direction and scalars have only magnitude, thus these cannot be added.
- **2.10.** Can you add zero to a null vector? *MTN-15(G-I), BWP-15(G-I), SGD-15(G-II), RWP-15(G-I), LHR-15(G-I), MIRPUR (AJK) 15, LHR-17 (G-II)*
- **Ans:** No, a vector quantity cannot be added to a scalar quantity. Null vector is a vector with zero magnitude but simple zero is a scalar. As scalar cannot be added to vector, therefore we cannot add zero to a null vector.
- **2.12.** Show that the sum and difference of two perpendicular vectors of equal lengths are also perpendicular and of the same length.

DGK-15(G-I), BWP-15(G-I), BWP-17 (G-I)

Ans: As
$$|\vec{A}| = |\vec{B}| and \vec{R} = \vec{A} + \vec{B}$$
 and $\vec{R}' = \vec{A} - \vec{B}$ as shown in figure.
Angle between $\vec{A} and \vec{B} = 90^{\circ}$
In right angled triangle $\triangle AOB$
 $\angle AOB = 45^{\circ}$
In right angled triangle $\triangle EOC$
 $\angle BOC = 45^{\circ}$
 $^{\circ} \angle AOC = \angle A \ CB + \angle BOC = 45^{\circ} + 45^{\circ} = 90^{\circ}$
So OA is perpendicular to OC
 $|\vec{N} \circ V| |\vec{R}| = \sqrt{A^2 + (-B)^2}$
 $|\vec{R}'| = \sqrt{A^2 + B^2}$

So the magnitude of $(\vec{A} + \vec{B}) \& (\vec{A} - \vec{B})$ are equal and perpendicular to each other

- 2.15. Suppose the sides of a closed polygon represent vector arranged head to tail. What is the sum of these vectors? MTN-18 (G-I), FSD-19 (G-I)
- Ans: Vectors $\vec{L}, \vec{M}, \vec{N}, \vec{O}, \vec{P}$ are represented by the sides OA, AB, BC, CD, DO, of a closed polygon. If the sides of the closed polygon represent the vectors arranged by head to tail rules then $\vec{R} = \vec{L} + \vec{M} + \vec{N} + \vec{O} + \vec{P} = 0$ i.e Resultant is zero.

2.16. Identify the correct answer.

(i) Two ships X and Y are traveling in different directions at equal speeds. The actual direction of motion of X is due north but to an observe on Y, the apparent direction of motion of X is north-east. The actual direction of motion of Y as observed from the shore will be
(a) East (b) West (c) South - east (d) South - west

Ans: (i) Given directions of motion of two ships are shown in fig (a). Fig (b) shows that actual direction of motion of Y i.e \vec{V}_y is towards west.

(ii) A horizontal force F is applied to a small object F of mass r_1 at rest on a smooth plane inclined at an angle ℓ to the horizontal as shown in Fig. 2.22. The magnitude of the resultant force acting up and along the surface of the plane, on the object is

 $a)F\cos\theta - mg\sin\theta$ $h F \sin \theta - ing \cos \theta$ c) $F \cos \theta + mg \cos \theta$ d) $F \sin \theta + mg \sin \theta$ e) mg tan θ Ans: (a) $F\cos\theta - mg\sin\theta$

If all the components of the vectors, A_1 and A_2 were reversed, how would this 2.17. alter $\vec{A}_1 \times \vec{A}_2$? LHR-13 (C-1) If all the components of the vectors \vec{A}_1 and \vec{A}_2 are reversed then we get Ans: which are negative of \vec{A}_1 and \vec{A}_2 i.e $\vec{A'}_1 = -\vec{A}_1$ or $\vec{a} \vec{A}$ Now $\vec{A'}_1 \times \vec{A'}_2 = (-\vec{A}_1) \times (-\vec{A}_2)$ $=A_1 \times A_2$ It shows that $A \times A$ will not alter TOPIC WISE SHORT QU ANBASIC CONCEPTS OF VECTORS How can we express the magnitude of a vector? Symbolically, the magnitude of a vector can be represented by light face letter e.g A, d, r, Ans: etc. Graphically, the magnitude of a vector can be measured by length of a vector according to selected scale. What is meant by Null vector? (2) Ans: A vector whose magnitude is zero and has an arbitrary direction is called Null vector. It is represented by \vec{O} . We can obtain the null vector by adding a vector into its negative vector. $\vec{A} + (-\vec{A}) = \vec{0}$ If force of magnitude 20N makes an angle of 30° with x - axis then find its y - component? (3) Ans: F = 20N $\theta = 30^{\circ}$ $F_v = ?$ $F_v = F Sin \theta$ $= 20 \text{ Sin } 30^{\circ}$ $F_{v} = 10N$ If force \vec{F} of magnitude 10N makes an angle of 30° with y-axis then find its x-component. (4) Ans: F = 10Ny - axisAngle of \vec{F} with x-axis $\theta = 90^\circ - 30^\circ = 60^\circ$ $F_x = ?$ $F_x = F \cos\theta$ $= 10 \cos(60^{\circ})$ x - axis0 What is negative of a vector? How a vector \vec{B} is subtracted from a vector \vec{A} ? LHR-2012 When a given vector is multiplied by a number such that n < 0 then new vector will be known as negative vector of given vector. In vector subtraction, actually, the negative vector of one vector is added with other vector. If vector \overline{B} is to be subtracted from a 26

M

N

vector
$$\overline{A}$$
, then it can be done by taking the negative of vector \overline{B} and adding it in vector \overline{A} . Resultant vector according to head to tail rule gives the difference $\overline{A}, \overline{B}$.
Note: Vectors subtraction is not commutative. i.e. $\overline{A} - \overline{B} \neq \overline{B}$, $\overline{A} = \overline{A}$, $\overline{A} = \overline{A$

by \overline{R} .

Ans: Addition of vectors:

Given two vectors \vec{A} and \vec{B} . Their sum is obtained by drawing their representative line unsuch a way that the tail of vector \vec{B} coincides with the head of vector \vec{A} . Now if we join the tail of \vec{A} to the head of \vec{B} . This line will represent the vector sum $(\vec{A} + \vec{B})$ in magnitude and direction (The vector sum ($\vec{A} + \vec{B}$) is magnitude and

direction. The vector sum is called resultant vector and is indicated

(10) Ans:

Define the multiplication of a vector by a scalar. (i) Multiplication by a dimensionless scalar:

When a vector \vec{A} is multiplied by a positive number 'n' the magnitude of the resultant vector $n\vec{A}$ becomes the 'n' times the magnitude of \vec{A} , but directions of $n\vec{A}$ remains same as that of \vec{A} . If \vec{A} is multiplied by negative number (-n). The magnitude of resultant vector is n times the magnitude of \vec{A} but its direction is opposite to that of \vec{A} .

LHR-2016 (G-II)

Ζ

GRW-2015

R

(ii) Multiplication by dimensional scalar:

If n is a scalar quantity and \vec{A} be vector then $n\vec{A}$ will be a new physical quantity having dimensions, equal to the product of the dimensions of n and \vec{A} . Example Momentum has dimension equal to product of dimensions of mass and velocity.

(11) Define unit vector. How we find it?

Ans: "A vector whose magnitude is one is known as unit vector" We know that

Vector = magnitude \times direction

If magnitude = 1, then

Unit vector = $1 \times$ Direction of a vector

Unit vector = Direction of a vector

This shows that unit vector indicates only the direction of a vector. Mathematically,

- $\vec{A} = A \hat{A}$
- $\hat{A} = \frac{\vec{A}}{A}$

A unit vector in the direction of A is written as A, which we read as 'A hat'.

(12) What is the angle between unit vectors \hat{i}, j and k. What are their orientation.

The unit vectors \hat{i} , j and k are mutually perpendicular. So the angle between any two given unit vectors is 90°. The unit vectors \hat{i} , j and k are usually along x-axis, y - axis and z - axis respectively.

(13) Show that vector addition is commutative?

Ans: When \vec{A} is added to \vec{B} then resultant is $\vec{R} = \vec{A} + \vec{B}$ ------ (i) when \vec{B} is added to \vec{A} then the resultant is $\vec{R} = \vec{B} + \vec{A}$ ----- (ii) as shown in fig So from equation (i) and (ii) it is clear

A + E = B + A

It shows that vector addition is commutative.

- (14) If two vectors are parallel and anti-parallel, what will be their resultant vector?
 Aux: If two vectors are parallel, then the resultants is maximum and have the magnitude equal to the sum of the magnitudes of the given parallel vectors. If two vectors are anti parallel, the resultant is minimum and have the magnitude equal to the difference of the magnitudes of the given anti parallel vectors.
- (15) Describe briefly, how we obtain the vector, when its rectangular components are given? FSD-2012
- **Ans:** If the rectangular components of a vector, as shown in Fig. are given, we can find out the magnitude of the vector by using Pythagorean Theorem.

In the right angled Δ OMP.

(OP)² = (OM)² + (MP)²
or
$$A^2 = A_x^2 + A_y^2$$

or
$$A = \sqrt{A_x^2}$$

and direction θ is given by

or

$$tan\theta = \frac{A_y}{A_x}$$
$$\theta = tan^{-1} \left(\frac{A_y}{A_x}\right)$$

(16) Explain rectangular coordinate system.

Ans: Two reference lines drawn at right angles to each other are known as coordinate axes and their point of intersecton is known as origin. This system of coordinate axes is valled Cartesian or rectangualr coordinate system.

One of the lines is named as x - axis and other y - axis. Usually the x - axis is taken as horizontal wis. The other line is called y - axis and is taken as a vertical axis. The direction of a vector in a plane is denoted by angle θ which the representative line of the vector makes with point $v \cdot x$ axis in anticlockwise direction as shown in Fig 2.1(b). The point P shown in Fig 2.1 (b) has coordinates (a, b). This notation means that if we start at the origin, we can reach P by moving 'a' units along the positive x-axis and then 'b' units along the positive y-axis.

FSD-2017

Fig (a)

(17) What are rectangular components of a vector? At what angle there components are equal? MTN-2012

Ans: Rectangular Components:

The components of a vector which are mutually perpendicular with each other are called rectangular component.

If given vector is making an angle of 45° then its horizontal and vertical components are equal in magnitude.

..... (i)

$$A_{x} = A\cos\theta = A\cos45^{\circ} = \frac{A}{\sqrt{2}}$$
$$A_{y} = A\sin\theta = A\sin45^{\circ} = \frac{A}{\sqrt{2}}$$

and

(18) Define position vector?

 $\vec{r} = a\hat{i} + b\hat{j}$

Ans: The position vector r is a vector that describes the location of a point with respect to the origin. It is represented by a straight line drawn in such a way that its tail coincides with the origin and the head with point P (a, b) as shown in Fig. The projections of position vector r on the x and y axes are the coordinates a and b and they are the rectangular components of the vector r. Hence.

A+1

(19) To get sum of two vectors equal to null vector, what are the conditions? GRW-2018

Ans: To get sum of two vectors equal to null vector, following conditions should be satisfied:

- (i) Two vectors should be of same magnitude
- (ii) One vector should be negative of other vector For example, the sum of a vector and its negative vector is a null vector. -A = 0
- What is the unit vector in the direction of vector $\vec{A} = 2\hat{i} \hat{j} + 2\hat{k}$. (20)LHR-2018 (G-II) As we know that: Ans:

where A is magnitude of given vector.

j+2k

$$A = \sqrt{A_x^2 + A_y^2 + A_z^2}$$

$$A = \sqrt{2^2 + 1^2 + 2^2}$$

$$A = \sqrt{4 + 1 + 4}$$

$$A = \sqrt{9} = 3$$
Therefore: $\hat{A} = \frac{\vec{A}}{A} = \frac{2\hat{i} - 1}{2}$

(21) A force of 10 N makes an angle of 60° with x-axis. Find its x and y-components.

SGD-2018 (G-I)

MTN-2019 (G-I)

x, y components of the given vector are given below: Ans:

$$A_x = A \cos \theta = 10 \cos 60^\circ = 10 \left(\frac{1}{2}\right) = 5N$$

 $A_y = A \sin \theta = 10 \sin 60^\circ = 10 \left(\frac{\sqrt{3}}{2}\right) = 5\sqrt{3}N$

- Is it possible to add 5 in $2\hat{i}$? Explain. (22)
- No, a vector quantity cannot be added to a scalar quantity. It is not possible to add 5 in Ans: 2î because 5 is a scalar and 2î is a vector. Physical quantities of same rative can be added
- How can the direction of a vector be specified in three dimensions? Explain with (23)MTN-2019 (G-II) diagram.
- The direction of a vector in space is specified by the line Ans: angles which the representative line of the vector makes with x, y and z axes respectively as shown in Fig. The point P of a vecto. A is thus denoted by three coordinates (a, b (O)

$$\begin{array}{c}
 Z & P(a,b,c) \\
 \overline{A} & \overline{A} \\
 \gamma & \beta \\
 \alpha & \overline{A} & Y
\end{array}$$

х/

2.2 VECTOR ADDITOIN BY RECTANGULAR COMPONENTS

- (24) How can we add the number of vectors $\vec{A}, \vec{B}, \vec{C}$ by rectangular components method.
- Ans: To determine the resultant, we have to find its magnitude and direction so

$$R = \sqrt{R_x^2 + R_y^2}$$

$$R = \sqrt{\left(A_x + B_x\right) + \left(C_x + \dots\right)^2 + \left(A_y + B_y + C_y + \dots\right)^2}$$
Direction
$$\theta = \tan^{-1}\left(\frac{R_y}{R_x}\right)$$

$$\theta = \tan^{-1}\left(\frac{A_y + B_y + C_y + \dots}{A_x + B_x + C_x + \dots}\right)$$

(25) Mention various steps for vector addition by rectangular components.

Ans: The vector addition by rectangular components consists of the following steps.

- (i) Find x and y components of all given vectors.
- (ii) Find x component R_x of the resultant vector by adding the x components of all the given vectors.
- (iii) Find y-component R_y of the resultant vector by adding y components of all the given vectors.
- (iv) Find the magnitude of the resultant vector \vec{R} using $R = \sqrt{R_x^2 + R_y^2}$
- (v) Find the direction of the resultant vector \vec{R} by using equation.

$$\theta = tan^{-1} \left(\frac{R_y}{R_x} \right)$$

(26) If $\vec{A} = 4\hat{i} - 4\hat{j}$, What is the orientation of \vec{A} ?

Ans: As x-component of given vector A is positive and y-component is negative therefore, this vector will lie in 4th quadrant. As we know that $\theta = 360^{\circ}$ to

$$\dot{\Phi} = \tan^{-1} \left(\begin{array}{c} A_y \\ A_x \end{array} \right)$$

$$\varphi = \tan^{-1} \left(\begin{array}{c} A \\ \overline{4} \end{array} \right) = \tan^{-1} \left(1 \right) = 45^0$$

$$\theta = 360^0 - \phi$$

$$\theta = 360^{\circ} - 45^{\circ} = 315^{\circ}$$

2.3 PRODUCT OF TWO VECTORS

Prove that $\vec{A} = 2\hat{i} - 3j + k$ and $\vec{B} = 4\hat{i} + j - 5k$ are mutually perpendicular. (27)

 $\vec{A} = 2\hat{i} - 3j + k$ Ans: $\vec{B} = 4\hat{i} + i - 5k$ $\vec{A}.\vec{B} = (2\hat{i} - 3j + k).(4\hat{i} + j)$ $\vec{A}.\vec{B} = (2)(4) + (-3)(1) + (1)$ = 8 - 3 - 5 = 0

> Since dot product of two vectors $\vec{A} \otimes \vec{B}$ is equal to zero. So they are perpendicular to each other. If two vectors $\overrightarrow{F_1}$ and $\overrightarrow{F_2}$ lie in yz – plane. Then what will be the orientation of $\overrightarrow{F_1} \times \overrightarrow{F_2}$? \vec{F}_{2}

The cross product of two vectors $\vec{F_1}$ and $\vec{F_2}$ is given by Ans: $\overrightarrow{F_1} \times \overrightarrow{F_2} = F_1 F_2 \sin \theta n$

By using right hand rule the direction of $\vec{F}_1 \times \vec{F}_2$ is perpendicular $\vec{F}_1 \times \vec{F}_2$ to yz -plane i.e along x - axis.

- \vec{F}
- (29) Show that the self dot product of vector \vec{A} is equal to the square of its magnitude.
- The dot product of a vector with itself is called self dot product. Ans:

Let \overline{A} be given vector then.

$$A.A = AA\cos\theta \qquad \theta = 0^{\circ}$$
$$= AA\cos^{\circ} = A^{2}(1) = A^{2}$$

- If we have two non-zero vectors \vec{A} and \vec{B} then under what condition the dot product (30)of two vectors will be maximum.
- The dot product of two vectors will be maximum when the angle between them is zero. Ans:

 $\vec{A}.\vec{B} = AB\cos\theta$

 $\rightarrow \rightarrow$

$$A.B = AB\cos(0)$$

 $\vec{A}.\vec{B} = AB$ (maximum value)

- \overline{B} What is dot product? Write the formula of K.E in terms of self dot product? (31) velocity vector.
- The scalar product of two vectors A and B quantity, defined as scalar Ans: $A.B = AB\cos\theta$

As kinetic energy of object of mass th and speed v is given by the relation

$$K.E = \frac{1}{2}mv^2$$

As we know square of magnitude of vector is equal to its self dot product. So $v^2 = \vec{v}.\vec{v}$

$$K.E = \frac{1}{2}m\left(\vec{v}.\vec{v}\right)$$

(37)

- (36) With the help of diagram, show that $\vec{A} \times \vec{B} = -\vec{B} \times \vec{A}$.
- Ans: Consider two vectors A & B making an angle θ with each other. Direction of product vector is obtained by right hand rule.
 Rotate the first vector A into B through the smaller of two possible angles. This rotation is represented by curling the fingers of stretched right nand placed on the first vector A, then thank represents the direction of vector product. The direction of A x B will be vertically upward as shown in the fig (a).

According to this direction rule, $\vec{B} \times \vec{A}$ is a vector opposite to the direction of $\vec{A} \times \vec{B}$ as shown in fig (**b**)

Hence $\vec{A} \times \vec{B} = -\vec{B} \times \vec{A}$

Fig. (a)

DGK-2012

Scalar product of two vectors $\vec{A} \ll \vec{B}$ in terms of their rectangular components. Ans: Let us consider two vectors \vec{A} and \vec{B} in terms of their rectangular components $\vec{A} = A_x \hat{i} + A_y \hat{j} + A_z k$ $\vec{B} = B_x \hat{i} + B_y \hat{j} + B_z k$ $\vec{A} \cdot \vec{B} = (A_x \hat{i} + A_y \hat{j} + A_z k) \cdot (B_x \hat{i} + B_y \hat{j} + B_z k)$ $\hat{i}.\hat{i} = j.j = k.k = 1$ $\hat{i}.j = (j)k = k\hat{i} = 0$ $\vec{A} \cdot \vec{B} = A_x B_x + A_y B_y + A_z B_z$ Write any two characteristics of scalar product. (38) **MTN-2012** (i) If two vectors are parallel then dot product is equal to the product of their magnitudes. Ans: i.e. if $\theta = 0^{\circ}$ $\vec{A}.\vec{B} = AB \cos^{\circ} (1) = AB$ In case of unit vectors $\hat{i} \cdot \hat{i} = \hat{j} \cdot \hat{j} = \hat{k} \cdot \hat{k} = 1$

(39)

(40)

And for antiparallel vectors ($\theta = 180^{\circ}$)

$$\overrightarrow{A} \cdot \overrightarrow{B} = AB \cos 18\overrightarrow{0} = AB(-1) = -AB$$

(ii) The self dot product of a vector \vec{A} is equal to square of its magnitude

 $\vec{A} \cdot \vec{A} = AA \cos 0^\circ = A^2$ Write any two examples of cross product.

MTN-2012

Ans: (i) Torque about a point is defined as the cross product of position vector \vec{r} and force \vec{F} . $\vec{\tau} = \vec{r} \times \vec{F}$

(ii) Angular momentum is defined as the cross product of position vector \vec{r} and linear momentum \vec{p} .

$$\vec{L} = \vec{r} \times \vec{p}$$

(iii) The force \vec{F} experienced by charge particle of charge q moving with velocity \vec{v} in a uniform magnetic field \vec{B} is

$$\vec{F} = q(\vec{v} \times \vec{B})$$

- State right hand rule for cross product of two vectors. GRW-2019 (G-I)
- Ans: First join the tails of two vectors, then rotate the vector \vec{A} which appears first in the product towards the second vector \vec{B} through the smaller angle. The curl fingers of right hand show the direction of rotation, then erect thumb of right hand gives direction of $\vec{A} \times \vec{B}$.

Name two conditions that would makes $\vec{A}_1 \cdot \vec{A}_2 = 0$ DGK-2018 (G-I) (42)Following are the conditions that would make $\vec{A}_1 \cdot \vec{A}_2 = 0$ Ans: (i) If $\overrightarrow{A_1}$ and $\overrightarrow{A_2}$ are perpendicular to each other man $\overrightarrow{A_1}.\overrightarrow{A_2} = A_1 A_2 \left(\cos 90^{\circ}\right)$ $\therefore \cos 90^\circ = 0$ (ii) Either of vectors \overline{A} or $\overline{A_2}$ is a null vector. $\vec{A_1} \cdot \vec{A_2} = (0) A_2 \cos \theta = 0$ or $\overrightarrow{A_{1}}.\overrightarrow{A_{2}} = A_{1}(0)\cos\theta = 0$ Show that $\hat{i} \cdot \hat{j} = \hat{j} \cdot \hat{k} = \hat{k} \cdot \hat{i} = 0$. (43)MTN-2019 (G-II) The scalar product of two mutually perpendicular vectors is zero i.e if $\theta = 90^{\circ}$ then Ans: $\vec{A} \cdot \vec{B} = AB \cos 90^\circ = 0$ $\hat{i}.j = \left|\hat{i}\right| \left| j \right| \cos 90^\circ = 0$ So, $j.k = \left| j \right| \left| k \right| \cos 90^{\circ} = 0$ $k \cdot \hat{i} = \left| k \right| \left| \hat{i} \right| \cos 90^\circ = 0$ Therefore, $\hat{i} \cdot \hat{j} = \hat{j} \cdot k = k \cdot \hat{i} = 0$ 2.4 TORQUE (44)Give two factors on which turning effect depends. FSD-2019 (G-I) Torque depends upon following factors by formula: Ans: $\tau = r \times F = rF \sin \theta \hat{n}$ (i) Force (If force is greater in magnitude more will be the torque and vice verse) Moment arm (if moment arm is greater more will be the turning effect and vic (ii) versa) Torque also depend's upon the sine of angle between force and position vector. (iii) (45) Define the moment arm The perpendicular distance between the line of action of force Ans: and exis of rotation is called moment arm. In the given figure

moment arra = OP = r

46)

What is the rotational analogous of force?

Torque is rotational analogous of force which produces the linear acceleration in a body. Ans: The torque acting on a body produces angular acceleration.

(48)

(47) What is the moment of a force about the point lying on the axis of rotation?

Ans: It is turning effect of a force produced in a body about an axis. It is measured by the product of force and moment arm and is denoted by \vec{r} . Let \vec{F} be the force and \vec{r} be the position vector of the point w.r.t. pivot point, then toque is $\vec{r} = \vec{r} \times \vec{F}$. It is vector quantity has direction along the normal to plane containing \vec{r} and \vec{F} .

This means torque τ is equal to the product of force F and moment arm ℓ .

What is difference between moment arm and moment of force?

 $\tau = \ell F$

FSD-2017

LHR-2017(G-I)

Ans: Torque: It is turning effect of a force produced in a body about an axis. It is measured by the product of force and moment arm and is denoted by $\vec{\tau}$.

Moment Arm: It is the perpendicular distance between line of action of force and pivot point. Usually it is denoted by " ℓ "

E].CO VZ MMMo