TOPIC WISE MULTIPLE CHOICE QUESTIONS

2.1: BASIC CONCEPT OF VECTORS

(1) Name the quantity which is a vector
(a) Speed
(c) Temperature
(b) Forice
(d) Density
(2) The direction sefvecrer in pace is pecified by:

LHR 2015 (G-II)
(a) 1 - Angle
(b) 2 - Angles
(a) 3 -Angles
(d) 4 - Angles
$\sqrt{3}$ if $\hat{i}=2 \hat{i}+\hat{j}+2 \hat{k}$ then $|\mathrm{A}|$ is:
LHR-2016 (G-II)
(a) zero
(b) 3
(c) 5
(d) 9
(4) If $|a+b|=|a-b|$ then angle between \vec{a} and \vec{b} is

LHR-2017 (G-I)
(a) 0°
(b) 45°
(c) 90°
(d) 180°
(5) Maximum number of components of a vector may be

LHR-2018 (G-II)
(a) one
(b) two
(c) three
(d) infinite
(6) The magnitude of a vector $\vec{r}=3 \hat{i}+6 \hat{j}+2 \hat{k}$ is

LHR-2018 (G-I)
(a) -1
(b) -7
(c) 7
(d) 8
(7) If the resultant of two vectors each of magnitude ' F ' is also of magnitude ' F ' then the angle between them will be:

GRW-2019 (G-I)
(a) 30°
(b) 60°
(c) 90°
(d) 120°
(8) $\quad|\hat{\mathrm{i}}-\hat{\mathrm{j}}-3 \hat{\mathrm{k}}|=$
(RWP 2012)
(a) $\sqrt{5}$
(b) $\sqrt{7}$
(c) $\sqrt{11}$
(d) $\sqrt{13}$
(9) $\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}=\overrightarrow{\mathrm{B}}+\overrightarrow{\mathrm{A}}$, this show that addidion vertors is
(a) Associative
(b) Conmutto ve
(c) Adity ve
(i) Additive Inverse
(10) Unit vecto of given vector $\bar{A}=4 i+3 \hat{j}$ is:

MTN-2019 (G-I)
(6) $\frac{\sqrt{i}-i}{25}$
(b) 1
(c) $\frac{4 \hat{i}+3 \hat{j}}{5}$
(d) $\sqrt{\frac{4 \hat{i}+3 \hat{j}}{5}}$
(11) A scalar is a physical quantity which is completely specified by
(a) a number only
(b) Direction only
(c) A number with proper units
(d) None of these
(12) Another name of rectangular co-ordinat sustem
(a) vector system
(b) phylical co-cronate system
(c) Cartesian co-ordinate s stem
(d) Cantesian ordinate system
(13) A unit rector is obtained ly divding the vector with
(a) its ciesctichr
(b) Its magnitude
(c) Itsel
(d) Any scalar quantity
(14) Tvy vecto a. scia to be equal if (a) il e have equal magnitude
(b) they have same direction
(c) both a \& b
(d) they have opposite direction
(15) Number of angles required to represent the direction of vector in space are
(a) one
(b) two
(c) three
(d) four
(16) The vector of zero magnitude and arbitrary direction is called
(a) equal vector
(b) null vector
(c) unit vector
(d) resultant vector
(17) The maximum number of components of a resultant vector are
(a) two
(b) three
(c) infinite
(d) one
(18) If a vector $\overrightarrow{\mathbf{A}}$ is multiplied by negative number ($\mathrm{n}<0$) then its direction is changed by:
(a) 0°
(b) 90°
(c) 60°
(d) 180°
(19) The unit vector of $\overrightarrow{\mathbf{A}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}$ is
(a) $\overrightarrow{\mathrm{A}}$
(b) $\frac{1}{\sqrt{3}}$
(c) $\frac{(\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}})}{\sqrt{3}}$
(d) zero
(20) If $\overrightarrow{\mathbf{A}}=\mathbf{2 i}+3 \hat{\mathbf{j}}-4 \hat{\mathbf{k}}$ then magnitude of $\overrightarrow{\mathbf{A}}$
(a) $\sqrt{-3}$
(b) $\sqrt{-1}$
(c) $\sqrt{29}$
(d) -1
(21) The minimum number of componets of a result ni vector: re
(a) 1
(c) 3
(k) 2
d none of these
(22) The postion vector 1 of a point p 1, 2,-3) is given by:
(a) $2 \hat{i}-3 \hat{j}+4 \hat{k}$
(b) $-2 \hat{i}-3 \hat{j}+4 \hat{k}$
(c) $-\hat{i}+2 \hat{i}-3 i$
(d) none of these
(2.2) Dy using head to tail rule we can
(a) add the vectors
(b) subtract the vectors
(c) multiply the vectors
(d) both add and subtract the vectors
(24) Which of the given vector is a unit vector?
(a) i
(b) $\hat{i}+\hat{j}$
(c) $\mathrm{i}+\mathrm{j}+\mathrm{k}$
(25) Parallel vectors must have
(a) magnitude
(d) all re uni hectors
(c) bot (1) hghitwd anc direction
(b) direction
(N) same magnitude but opposite direction
(26) Which piocess is not possible for toro vectors?
(a) additio,
(b) subtraction
(c) 1 vision
(d) multiplication
2π /een a number is multiplied with a vector, only its direction is reversed if the number is
(a) 1
(b) -1
(c) -0.5
(d) -2
(28) The resultant of two forces of magnitude 5 N each, has also magnitude of 5 N , the angle between the forces is
(a) 0°
(b) 90°
(c) 120°
(d) 180°
(29) The vector which describe the location of a point w.r.t the origin is called
(a) parallel vector
(b) unit vector
(c) null vector
(d) position vector
(30) The relation $\overrightarrow{\mathbf{A}}+(-\overrightarrow{\mathbf{A}})$ results the
(a) parallel vector
(b) unit vector
(c) null vector
(d) position vector
(31) The vector subtraction is similar to vector
(a) addition
(b) division
(c) multiplication
(d) all of these
(32) A vector which has the same effect as all the original vectors taken together is called:
(a) Position vector
(b) null vector
(c) equal vector
(d) resultant vector
(33) The reverse process of addition of vectors is called
(a) negative of a vector
(b) multiplication of a vector
(c) subtraction of vector
(d) resolution of a vector
(34) The unit vector is expressed as
(a) $\mathrm{A}=|\overrightarrow{\mathrm{A}}| \times \overrightarrow{\mathrm{A}}$
(c) $A=\overrightarrow{\mathrm{A} A A}$
(35) The sum of a vector with ts negative verto esurs int?
(b) $\mathrm{A}=\frac{\overrightarrow{\mathrm{A}}}{\mathrm{A}}$
(d) none of these
(a) zer(Detor
(h) null vector
(c) both a and
(36) The min mun nu mber of coplanar forces of equal magnitude whose vector sum can be zero, are
(a) 3
(b) 2
(d)
(d) 4
$\overrightarrow{\mathbf{r}}=\mathbf{a} \hat{i}+\mathbf{b} j+\mathbf{c} k$
(a) equal vector
(b) position vector
(c) Unit vector
(d) negative vector
(38) The position vector is a vector that describes
(a) location of a point
(b) location of magnitude
(c) location of null vector
(d) none of these
(39) The vector having magnitude one is callea
(a) null vector
(b) negative vector
(c) unit vector
(d) po silio vector
(40)

If $\overrightarrow{\mathbf{A}}=2 \hat{i}+\hat{j}+2 k$, then $|\bar{A}|$
(a) zero
(b) 5
(c) 0
(d) 3

(iN) if rectangular components of a vector has opposite signs, then vector lies in quadrant.
(a) either in $1^{\text {st }}$ or in $2^{\text {nd }}$
(b) either in $2^{\text {nd }}$ or in $4^{\text {th }}$
(c) $3^{\text {rd }}$
(d) 4 th
(42) If a force of 10 N is acting along x-axis then its component along y-axis is:

GRW-2019 (G-II)
(a) zero
(b) 5 N
(c) 10 N
(d) 15 N
(43) If R_{x} and R_{y} both are negative then resultant lies in the quadrant: LHR-2019 (G-II)
(a) $1^{\text {st }}$
(b) $2^{\text {nd }}$
(c) $3^{\text {rd }}$
(d) $4^{\text {th }}$
(44) The magnitude of rectangular components are equal if its angle with x-axis is:
(FSD 2012)
(a) 30°
(b) 45°
(c) 60°
(d) 90°
(45) If both components of a resultant vector are negative, then resultant lies in FSD-2018
(a) $1^{\text {st }}$ quadrant
(b) $2^{\text {nd }}$ quadrant
(c) $3^{\text {rd }}$ quadrant
(d) $4^{\text {th }}$ quadrant
(46) Rectangular components have angle between them is:

FSD 2019 (G-I)
(a) 30°
(b) 45°
(c) 60°
(d) 90°
(47) If A_{x} and A_{y} both are negative, the resultant vector will lie in:
(DGK 2015)
(a) First quadrant
(c) Third quadrant
(a) 5 N
(b) 8.66
(c) 10 N
(d zer
(b) Second quadrant
(d) Fourth quadrant A force of 10 N makes
an angle of 30° with x-axis. The magnitude of x-component will be ITN-R01? (G) \cdot I)
(49) Two forces of magnitude 10 N e.h. Their re tan is qual to, 20 N . Then angle between them is:

MTN-2019 (G-II)
(a) 180°
(b) 30
(c) 90°
(d) 0°
(50) The resultant of t wh forces 3 N and 4 N making an angle 90° with each other is
(a. 15
(b) 7 N
(d) 5 V
(d) 3.5 N

Vector $\overrightarrow{\mathbf{A}}$ is along y-axis. Its \mathbf{x}-component will be
(a) $A \cos \theta$
(b) 0
(c) A
(d) $\mathrm{A} \sin \theta$
(52) The direction of vector $\overrightarrow{\mathbf{R}}$ is given by
(a) $\theta=\tan ^{-1}\left(\frac{R_{x}}{R_{x}}\right)$
(b) $\theta=\tan ^{-1}\left(\frac{R_{x}}{R}\right)$
(c) $\theta=\sin ^{-1}\left(\frac{R_{x}}{R_{y}}\right)$
(d) $\theta=\tan$

If R_{x} ispositive and k_{v} is regative, then the resuitant lies in
(a) $1^{\text {st }}$ cuadrant
(b) third quadrant
(c) fourth y y adran?
(d) $2^{\text {nd }}$ quadrant
(54) When a fo ce $1 \mathbf{1 0 0} \mathrm{~N}$ makes an angle of 60° with y-axis, its y-component is
(a) id) 1 I
(b) 5 N
(c) 50 N
(d) 15 N
(55) If a vector $\overrightarrow{\mathbf{A}}$ lies in $3^{\text {rd }}$ quadrant then its direction is given by $\theta=$
(a) Φ
(b) $180^{\circ}-\Phi$
(c) $180^{\circ}+\Phi$
(d) $360^{\circ}-\Phi$
(56) If a vector \vec{A} lies in $4^{\text {th }}$ quadrant and make angle of 60° with y-axis its direction is given by $\theta=$
(a) 30°
(b) 330°
(c) 270°
(d) none

2.3 PRODUCTS OF TWO VECTORS (SCALAR AND VECTOR PRODUCTS)

(57) $\hat{i} . \hat{i}=$
(a) \hat{i}
(b) i^{2}
(c) 1
(d) 2
(58) $\bar{B} \cdot \hat{B}$ is equal to:

MTN-2019 (G-II)
(a) B^{2}
(b) 1
(c) Zero
(d) B
(59) If $\bar{A} \times \bar{B}$ is along y-axis, then \vec{A} and \vec{B} are in:

BWP-2019 (G-I)
(a) x - y plane
(b) $y-z$ plane
(c) Space
(d) $\mathrm{x}-\mathrm{z}$ plane
(60) $(\hat{i} \times \hat{j}) \times \hat{k}+(\hat{j} \times \hat{i}) \times \hat{i}$ will be

DGK-2018 (G-II)
(a) $-\hat{j}$
(b) \hat{j}
(c) \hat{i}
(d) $\overrightarrow{0}$
(61) If magnitudes of scalar product and rector produet are same then the argie between the two vectors is
(a) 30°
(c) 60°
(l) $4:^{\circ}$
(62) The cos-pronuctof(a) vector A wh itself results:

MTN-2018 (G-II)
(a) \vec{A}
(b) A^{2}
(c) 2 ro
(d) null vector

If $i v$) Fin zero vectors \vec{A} and \vec{B} are parallel to each other then
MTN 2016 (G-I)
(a) $\vec{A} \cdot \vec{B}=0$
(b) $\vec{A} \cdot \vec{B}=A B$
(c) $|\vec{A} \times \vec{B}|=A B$
(d) $|\vec{A} \times \vec{B}|=\vec{A} \cdot \vec{B}$
(64) $\hat{i} .(\hat{j} \times \hat{k})$ is equal to:
(MTN 2015)
(a) 1
(b) 2
(c) 0
(d) \hat{k}
(65) Cross-product of $\hat{j} \times i$ is:
(a) zero
(c) \hat{i}

(66) The inaqnity de of $j!(\hat{i} \times k)$ is equal to

SGD-2016 (G-II)
(a)
(b) 1
(c) -1
(d) k
(67) The cross product, $\hat{k} \times \hat{j}$ is equal to
(RWP 2015)
(a) $-\hat{i}$
(b) $-\hat{j}$
(c) $-\hat{k}$
(d) \hat{i}
(68) If $\stackrel{1}{A}=4 \hat{i}, \stackrel{\mathrm{I}}{B}=-4 \hat{j}$ then angle of $\stackrel{\mathcal{L}}{A}+\stackrel{\mathrm{I}}{B}$ with X -axis is equal to; MIRPUR (AJK) 2015
(a) 45°
(b) 135°
(c) 225°
(d) 315°
(69) Cross product of $\hat{\mathfrak{j}} \times \hat{\mathrm{k}}$ is:

LHR-2019 (G-II)
(a) zero
(b) 1
(c) $\hat{\mathrm{i}}$
(d) $-\hat{\mathrm{i}}$
(70) If $\overrightarrow{\mathrm{F}}=(2 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}) \mathrm{N} ; \overrightarrow{\mathrm{d}}=(5 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}) \mathrm{m}$ work done is:

LHR-2019 (G-I)
(a) 15 J
(b) 18 J
(c) zero
(d) -18 J
(71) If $\mathrm{AB} \sin \theta=\mathrm{AB} \cos \theta$ then the angle between $\overrightarrow{\mathrm{A}}$ and $\overrightarrow{\mathrm{B}}$ is:

GRW-2019 (G-I)
(a) 30°
(b) 45°
(c) 60°
(d) 180°
(72) $(k \times \hat{k})$ is equal to:

LHR-2018 (G-II)
(a) $\hat{\mathrm{k}}$
(b) 1
(c) null vector
(d) zerp
(73) The magnitude of $\hat{i} \cdot(\hat{j} \times$ j) s equa: $\mathrm{o}:$

(a) 0
(c) -1

LHR 2015(G-I)
(74) $\quad|\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}}|=$
(a) $\triangle \mathrm{P}_{\mathrm{C}}$ uest
(b) $A B \sin \theta n$
(c) $\mathrm{AB} \sin \theta$
(d) none
(75) Scalar product of two vectors $\overrightarrow{\mathbf{A}}$ and $\overrightarrow{\mathbf{B}}$ is defined as:
(a) $\mathrm{AB} \sin \theta$
(b) $\mathrm{AB} \tan \theta$
(c) AB
(d) $\mathrm{AB} \cos \theta$
(76) What is angle between the given two vectors $\hat{\mathbf{i}}+\hat{\mathbf{j}}$ and $\hat{\mathbf{i}}-\hat{\mathbf{j}}$
(a) 0°
(b) 30°
(c) 45°
(d) 90°
(77) The scalar product of two vectors \vec{A} and \vec{B} uts in
(a) vector quantity
(c) linear racntity
(l) scaliar cuar tity

Vectormedurtof two veciors A and B ic dénned as
(a) AB in C
(b) $\mathrm{AB} \sin \theta \mathbf{n}$
(c) AB coses n
(d) both ' a ' and ' b '
$B y$ increasing the value of angle $\left(0^{\circ}<\theta<90^{\circ}\right)$ between the two given vectors their cross product in magnitude
(a) increases
(b) decrease
(c) remain same
(d) may increase or decrease
(80) At which angle between two vectors, their scalar product is equal to half of the product of their magnitude
(a) 30°
(b) 45°
(c) 60°
(d) 80°
(81) Which Product of two vectors is commutative?
(a) cross
(b) scalar
(c) both 'a' and 'b'
(d) none of these
(82) If $\overrightarrow{\mathbf{A}}$ and $\overrightarrow{\mathbf{B}}$ are two parallel vectors then which one is not correct
(a) $\mathrm{A} . \mathrm{B}=0$
(b) $\mathbf{A} \times \mathbf{B}=\overrightarrow{\mathbf{0}}$
(c) $\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}}=\overrightarrow{\mathbf{0}}$
(d) $\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}}=A B$
(83) Two forces act together on an object the magnitude of their resultant force is minimum when angle between them is
(a) 0°
(b) 45°
(c) 90°
(d) 180°
(84) If $\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}}=\mathbf{0}$, then
(a) \vec{A} is parallel to $\overrightarrow{\mathrm{B}}$
(b) \vec{A} is anti-parallel to $\overrightarrow{\mathrm{B}}$
(c) \vec{A} is perpendicular to $\overrightarrow{\mathrm{B}}$
(d) all of these
(85) $\hat{\mathrm{k}} \times \hat{\mathrm{k}}=$
(a) 1
(c) k^{2}
(b) zero

Three vectors of equal magnita areadded and nagn tude o their resultant is zero. The angle between anyof ino vectors is
(a) 30°
(b) 60°
(c) 90°
(d) 120°
(87) Ferce is equal th urouct of mass and acceleration, the product is called
(a) s) aid p poduct
(b) vector product
(c) simple product
(d) none
(88) Vector A is making angle θ with y-axis its rectangular components have magnitude
(a) $\mathrm{A}_{\mathrm{x}}=\mathrm{A} \sin \theta, \mathrm{A}_{\mathrm{y}}=\mathrm{A} \cos \theta$
(b) $\mathrm{A}_{\mathrm{x}}=\mathrm{A} \cos \theta, \mathrm{A}_{\mathrm{y}}=\mathrm{A} \sin \theta$
(c) $\mathrm{A}_{\mathrm{x}}=\mathrm{A} \tan \theta, \mathrm{A}_{\mathrm{y}}=\mathrm{A} \cot \theta$
(d) $\mathrm{A}_{\mathrm{x}}=\mathrm{A} \cot \theta, \mathrm{A}_{\mathrm{y}}=\mathrm{A} \tan \theta$
(89) $\hat{\mathbf{j}} \cdot \hat{\mathbf{i}}=$
(a) 1
(b) zero
(c) \mathbf{k}
d) $-\mathbf{k}$
(90) If the dot product is negative, thengle bet reen the vectors is
(a) 0°
(c) 180°
(l) 90°
(d) 270
(91) The vector produc: of tro vectors \vec{A} and \vec{D} is vector $\overrightarrow{\mathbf{C}}$ whose magnitude is given by
(a) $\mathrm{C}=A \beta \operatorname{in} C ?$
(b) $C=A B \cos (90-\theta)$
(c) $\bar{c}=\overrightarrow{1} \cdot \dot{b} c o s e$
(d) both a and b
(2) Seit dQ product of a vector A is equal to
(a) A
(b) A^{2}
(c) $\mathrm{A}^{2} / 2$
(d) none of these
(93) If $|\vec{A} \times \vec{B}|=|\vec{A} \cdot \vec{B}|$ then angle between the vectors is
(a) 0°
(b) 90°
(c) 180°
(d) 45°
(94) Cross-product of two parallel vectors is:
(a) Maximum
(b) negative
(c) zero
(d) null vector
(95) Which relation is incorrect?
(a) $\vec{\tau}=\vec{r} \times \vec{F}$
(b) $\vec{F}=q(\vec{v} \times \vec{B})$
(c) $P=\vec{F} \times \vec{v}$
(d) $\vec{L}=\vec{r} \times \vec{p}$
(96) $\overrightarrow{\mathbf{A}} . \mathrm{A}$ is equal to
(a) 1
(b) zero
(c) A
(d) $\mathrm{A} \operatorname{Cos} \theta$
(97) If $\overrightarrow{\mathbf{A}}=\overrightarrow{\mathbf{B}}$ then which equation is not correct
(a) $\mathbf{A} \cdot \mathrm{B}=\mathrm{AB}$
(b) $\mathbf{A}=\mathbf{B}$
(c) $\mathrm{A}=\mathrm{B}$
(d) all are correct
(98) Which of the following is a scalar product?
(a) torque
(b) work
(c) power
(d) both work and power
(99) Scalar projection of vector $\overrightarrow{\mathbf{B}}$ on $\overrightarrow{\mathbf{A}}$ is written as
(a) $\mathrm{B} \cos \theta$
(c) $\mathrm{AB} \cos \theta$
(b) $A \cos \theta$
(I) A s nt
(100) $(\hat{\mathbf{i}} \times \hat{\mathbf{j}})+(\hat{\mathbf{j}} \times \mathbf{k})$ is equal to
(a) 1

(c) zero

(b) nuil vector
(101) Self ross prod ict of a wit vector is equal to
(a) k ro
(b) null vector
(1) ale
(d) negative
(102) Which one is correct
(a) $\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{B}}=-\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{B}}$
(b) $\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}} \neq \overrightarrow{\mathbf{B}} \times \overrightarrow{\mathbf{A}}$
(c) $\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}}=\overrightarrow{\mathbf{B}} \times \overrightarrow{\mathbf{A}}$
(d) none of these
(103) Area of parallelogram whose adjacent sides are $\overrightarrow{\mathbf{A}}$ and $\overrightarrow{\mathbf{B}}$ is given by
(a) zero
(b) $\mathrm{AB} \cos \theta$
(c) $\mathrm{AB} \sin \theta$
(d) AB
(104) The cross product $\hat{\mathbf{i}} \times \hat{\mathbf{j}}$ is

(a) 1

(c) k \qquad
(105) Which con di ion could make $\vec{A} \times \vec{D}=\overrightarrow{0}$
(a) both vectors ar y paralici or anti-parallel
(b) vector $\overrightarrow{\mathbf{B}}$ is a null vector
$(\mathrm{c}) \vee \operatorname{cec}(\vec{\Delta}$ is null vector
(d) all of these
(106) At which angle the scalar product could be negative
(a) 60°
(b) 90°
(c) 180°
(d) 45°
(107) At what angle the dot product will be half of its magnitude
(a) 0°
(b) 90°
(c) 60°
(d) 45°
(108) The $\hat{\mathbf{i}} . \mathrm{k}$ is equal to
(a) zero
(b) 1
(c) $-\hat{j}$
(d) $\hat{\mathbf{j}}$
(109) The position vector of point $P(x, y)$ can be written as
(a) $\overrightarrow{\mathbf{r}}=x \hat{\mathbf{i}}+y \hat{\mathbf{j}}$
(b) $\overrightarrow{\mathbf{r}}=x \hat{\mathbf{j}}+y \hat{\mathbf{i}}$
(c) $\overrightarrow{\mathbf{r}}=x \hat{\mathbf{j}}+0 \hat{\mathbf{i}}$
(d) none of these
(110) If $\vec{F}_{1}=3 \hat{i}+2 \hat{j}$ and $\vec{F}_{2}=2 \hat{i}+3 \hat{j}$ then $\vec{F}_{1} \cdot \vec{F}_{2}$ will be
(a) 24
(b) 12
(c) 6
(d) 0
(111) Which property does not hold for vector product
(a) associative property
(b) commutative property
(c) distributive property over addition
(d) none of these
(112) The expression $\frac{A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}}{A B}$ is equal to
(a) $\cos \theta$
(b) $\sin \theta$
(c) $\tan \theta$
(d) projection of
(113) $\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{A}}$ is equal to
(a) zero
(c) A
$(\hat{\mathbf{i}} \mathbf{x} \hat{\mathbf{j}})+(\hat{\mathbf{j}} \times(\hat{\mathbf{i}})$
(a) 1
(b) null vector
(r) -1
(d) i^{2}
(1.15) For the two perpendicular vectors, cross product has value
(a) maximum
(b) minimum
(c) zero
(d) none of these
(116) If two non-zero vectors \vec{a} and \vec{b} are parallel to each other, then
(a) $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=0$
(b) $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=\mathbf{a b}$
(c) $|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|=\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}$
(d) none p these
(117) $\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}}$ is along Z-axis. Tlen two vestor and $\vec{\beta}$ ie in
(a) xz-plane
(b) zz-plane
(c) $x y$-01ane
(d) in three dimensional space
(118) The m:gri udy o $\vec{A} \cdot \overrightarrow{1}$ is equat to the
(2) fea of triansle
(b) area of sphere
(c) a eead $\frac{1}{1}$ atallelogram
(d) area of circle
(9) Consider a vector $4 \hat{i}-3 j$, another vector that is perpendicular to it is
(a) $4 \mathrm{i}+3 \mathrm{j}$
(b) 6 i
(c) $3 \mathrm{i}-4 \mathrm{j}$
(d) 7 k
(120) The resultant of two forces 3 N and 4 N making an angle 0° with each other is
(a) 1 N
(b) 7 N
(c) 5 N
(d) 3.5 N
(121) The dot product $\hat{i} \cdot \hat{i}=j . j=k . k$ is equal to
(a) 0
(b) 1
(c) -1
(d) \hat{i}
(122) The scalar product of two vectors is maximum when they are
(a) Parallel
(b) Perpendicular
(c) Anti-parallel
(d) Null

2.4 TORQUE

(123) Turning effect of force is called
(a) moment of force
(b) momentum
(c) torque
(d) both a and c
(124) Dimension of torque is
(a) $\left[\mathrm{ML}^{2} \mathrm{~T}^{-1}\right]$
(b) $\left[\mathrm{ML}^{+2} \mathrm{~T}^{-2}\right]$
(c) $\left[\mathrm{ML}^{-1} \mathrm{~T}^{2}\right]$
(d) $\left[\mathrm{ML}^{-2} \mathrm{~T}^{-2}\right]$
(125) Torque ($\vec{\tau}$) is defined as
(a) $\mathbf{r} \times \mathbf{F}$
(b) $\mathbf{F} \times \mathbf{r}$
(c) $\mathrm{Fr} \cos \theta$
(d) $\mathrm{rF} \tan \theta$
(126) Conventionally, clockwise torque is taken as
(a) zero
(c) positive
(b) negative
(d) none of these
(127) Torque has maximum value irgle hetwen and is

(a) $30^{\circ} \bigcirc$
(a) 90°
(c) 45°
(d) 60°
(128) The ${ }^{\text {T }}$ erpendichar distance from the axis of rotation to the line of action of force is called
(a) rominilaa
(b) moment arm
(d) wrque
(d) center of gravity
(129) A body cannot rotate about its center of gravity under the action of its weight because
(a) momentum is zero
(b) moment arm is zero
(c) moment arm is maximum
(d) turning effect is maximum
(130) The moment of force is defined as $\overrightarrow{\boldsymbol{\tau}}=\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{F}}$ where \vec{r} is
(a) position vector w.r.t pivot point
(c) radius vector
(b) Couple arm
(d) momertw an
(131) The SI unit of torque is (a) joule
(c) N s

((0) J S
(132) If the b dy is rotating with un form angular velocity then torque acting on body is
(a) Maximum
(b) minimum
(6) Der
(d) negative
(133)

When the line of action of the applied force passes through the pivot point, the value of moment arm will be
(a) maximum
(b) zero
(c) minimum
(d) none of these
(134) The torque acting on a body determines its
(a) angular velocity
(b) angular displacement
(c) force
(d) angular acceleration
(135) Torque is analogous of
(a) force for rotational motion
(b) force for linear motion
(c) angular velocity
(d) angular momentum

ANSWER KEYS

(Topic Wise Multiple Choice Questionis)

1	b	16	b	31	a	46	d	61	b	76	1	793	d	10	c	12	b
2	c	17	a	32	d	$4{ }^{\prime}$	\cdots	6	d	Th	b	49	b)	147	1	122	a
3	$\stackrel{\text { L }}{\sim}$	118	d	33	$\stackrel{\text { a }}{\square}$		1.	63\%	b	78	1	93	d	108	a	123	d
4	2	19	c	34	b	49	d	14	a	79	a	94	c	109	a	124	b
5	d	2	c	35	1	50	c	65	c	80	c	95	c	110	b	125	a
(1)	c	21	c	46	b	51	b	66	b	81	b	96	c	111	b	126	b
N	1	22	c	37	b	52	d	67	a	82	a	97	d	112	a	127	b
$\sqrt{ }$	c	23	d	38	a	53	c	68	d	83	d	98	d	113	d	128	b
9	b	24	a	39	c	54	c	69	c	84	c	99	a	114	b	129	b
10	c	25	c	40	d	55	c	70	b	85	d	100	d	115	a	130	a
11	c	26	c	41	b	56	b	71	b	86	d	101	b	116	b	131	b
12	c	27	b	42	a	57	c	72	b	87	c	102	b	117	c	132	c
13	b	28	c	43	c	58	d	73	b	88	a	103	c	118	c	133	b
14	c	29	d	44	b	59	d	74	c	89	b	104	c	119	d	134	d
15	c	30	c	45	c	60	a	75	d	90	c	105	d	120	b	135	b

SHORT QUESTIONS

(From Textbook Exercise)
2.1. Define the terms (i) Unit vector (ii) Position vector and (iii) components of aect r.

Ans: (i) Unit Vector
A unit vecter in a given d rection is a vector vith madritude one in that direction. It is used top. pre ent time diiectionfer a lector. A unit vector in the direction of \vec{A} is written as A_{\cap} which we read as ' A nat 'Thus

$$
A_{1}=A A \quad A=\frac{\vec{A}}{A} \quad \text { OR } \quad A=\frac{A_{x} \hat{i}+A_{y} \hat{j}+A_{z} k}{\sqrt{A_{x}^{2}+A_{y}^{2}+A_{z}^{2}}}
$$

Examples of unit vectors are:

(i) $\hat{\mathrm{i}}$ is unit vector along x -axis
(ii) \hat{j} is unit vector along y-axis.
(iii) k is unit vector along z -axis.
(iv) n is unit vector which may have any direction.
(ii) Position Vector

It is a vector that describes the location of a point with respect to the origin. It is represented by a straight line drawn in such a way that its tail coincides with the origin and the head with point P.

- Position vector of point $\mathrm{P}(\mathrm{a}, \mathrm{b})$ in a plane is written as $\vec{r}=a \hat{i}+b j$ and $r=\sqrt{a^{2}+b^{2}}$ as in figure (i).

Fig (i)

- Positionvector \vec{r} of point $(\sqrt{2}, 2$,) spare has possitions a, b and c on x, y and z axes respetively whe are kn un as ectangular components of vector r as shown in fig (ii).

$$
\vec{r}=c \hat{i}+b j+c k \quad \text { and } r=\sqrt{a^{2}+b^{2}+c^{2}} .
$$

iin Components of a Vector

A component of a vector is its effective value in a given direction. A vector may be considered as the resultant of its component vectors along the specified directions.
2.2. The vector sum of three vectors gives a zero resultant. What can be the orientation of the vectors?
 LHR-18 (G-I)
Ans: When the three vectors $\vec{F}_{1} \overrightarrow{F_{2}}$ and $\stackrel{\rightharpoonup}{F_{3}} \operatorname{ar}$ arand in such a wav that hey form a triangle, then their re ultant is zenp. Whan heed of \vec{F}_{3} covincides with tail of \vec{F}_{1}, then resultant becomestro. So, me can vrite $\vec{F}=\overrightarrow{F_{1} \oplus} \vec{F}_{2}+\vec{F}_{3}=0$

2.9. Is it possible to add a vector quantity to a scalar quantity? Explain. RWP-16 (G-I), LHR-16 (G-II), BWP-17 (G-I), SWL-19, GRW-19 (G-II), MTN-19 (G-II)
Ans: No, a vector quantity cannot be added to a scalar quantity.
By the rule of vector addition, only similar physical quantities can be added, whereas vectors and scalar are not similar physical quantities. Vectors possess, both magnitude and direction and scalars have only magnitude, thus these cannot be added.
2.10. Can you add zero to a null vector?

MTN-15(G-I), BWP-15(G-I), SGD-15(G-II), RWP-15(G-I), LHR-15(G-I), MIRPUR (AJK) 15, LHR-17 (G-II)
Ans: No, a vector quantity cannot be added to a scalar quantity. Null vector is a vector with zero magnitude but simple zero is a scalar. As scalar cannot be added to vector, therefore we cannot add zero to a null vector.
2.12. Show that the sum and difference of two perpendicular vectors of equal lengths are also perpendicular and of the same length.

DGK-15(G-I), BWP-15(G-I), BWP-17 (G-I)
Ans: As $|\vec{A}|=|\vec{B}|$ and $\vec{R}=\vec{A}+\vec{B}$ and $\overrightarrow{R^{\prime}}=\vec{A}-\vec{B}$ as shown in figure.
Angle between \vec{A} and $\vec{B}=90^{\circ}$
In right angled triangle $\triangle \mathrm{AOB}$

$$
\angle A O B=45^{\circ}
$$

In right angled triangse $\triangle \mathrm{EOC}$

So OA Sinerpendicelar tpo
$\sqrt{ } \circ v|\vec{R}|=\sqrt{ } \sqrt{A^{2}}+\frac{-(-B)^{2}}{2}$

So the magnitude of $(\vec{A}+\vec{B}) \&(\vec{A}-\vec{B})$ are equal and perpendicular to each other
2.13. How would the two vectors of the same magnitude have to be oriented, if they were to be combined to give a resultant equal to a vector of the same magritude.
Ans: The two vectors to be combined to givfa resultantraua to ertat oi er arme magnitude if they were oriented at an angle of 120°.
Proof: The magnitude of resultant on twoders \vec{A} ard \vec{E}

$$
R=\sqrt{ } 1^{2}+b^{2}-24 R \cdot \cos \theta
$$

If

$$
\begin{aligned}
& K=A=B=F \\
& F^{2}:=F^{2}+F=2 F \operatorname{Cos} \theta \\
& 1=1+2 \cos \theta \\
& 2 \cos \theta=-1 \\
& \cos \theta=\frac{-1}{2} \text { or } \theta=\cos ^{-1}\left(-\frac{1}{2}\right)=120^{\circ}
\end{aligned}
$$

2.15. Suppose the sides of a closed polygon represent vector arranged head to tail. What is the sum of these vectors?

MTN-18 (G-I), FSD-19 (G-I)
Ans: Vectors $\vec{L}, \vec{M}, \vec{N}, \vec{O}, \vec{P}$ are represented by the sides $\mathrm{OA}, \mathrm{AB}, \mathrm{BC}, \mathrm{CD}$, DO , of a closed polygon. If the sides of the closed polygon represent the vectors arranged by head to tail rules then $\vec{R}=\vec{L}+\vec{M}+\vec{N}+\vec{O}+\vec{P}=0$ i.e Resultant is zero.
2.16. Identify the correct answer.

(i) Two ships X and Y are traveling in different directions at equal speeds. The actual direction of motion of X is due north but to an observe on Y, the apparent direction of motion of X is north-east. The actual direction of motion of Y as observed from the shore will be
(a) East
(b) West
(c) South - east
(d) South - west

Ans: (i) Given directions of motion of two ships are shown in fig (a). Fig (b) shows that actual direction of motion of Y i.e $\overrightarrow{\mathrm{V}}_{\mathrm{y}}$ is towards west.
 Fig (a)

 plane inclined at an angle E - 1 the horizonta as shown in Fig. 2.22. The magnitude of the res ltant force acting up and along the surface of the plane, on the object is a) $F \cos \theta-n \cdot 5$ sin θ
b) $I / \operatorname{in} \theta-\operatorname{ng} \cos \theta$
c) $1 \cos \theta+m g \cos \theta$
d) $F \sin \theta+m g \sin \theta$
e) $m g \tan \theta$

Ans:
(a) $F \cos \theta-m g \sin \theta$

2.17. If all the components of the vectors, A_{1} and A_{2} were reversed, how would this alter $\vec{A}_{1} \times \vec{A}_{2}$?
Ans: If all the components of the vectors \vec{A}_{1} and \vec{A}_{2} are reversed then we set new veefores which are negative of \vec{A}_{1} and \vec{A}_{2} i.f $\overrightarrow{A_{1}^{\prime}}=-\vec{A}_{1}$, 1 वa $\vec{A}=-\vec{A} \vec{A}$ Now $\vec{A}_{1} \times \vec{A}_{2}^{\prime}=\left(-\vec{A}_{1}\right) \times\left(-\vec{A}_{2}\right)$

It showsthet $\overline{4} \times \sqrt[4]{ }$. wil no ater

ITarcowise short questions

RRIANCLENCEPTS OF VECTORS

(d) How can we express the magnitude of a vector?

Ans: Symbolically, the magnitude of a vector can be represented by light face letter e.g A, d, r, etc. Graphically, the magnitude of a vector can be measured by length of a vector according to selected scale.
(2) What is meant by Null vector?

Ans: A vector whose magnitude is zero and has an arbitrary direction is called Null vector. It is represented by \vec{O}.
We can obtain the null vector by adding a vector into its negative vector.

$$
\vec{A}+(-\vec{A})=\overrightarrow{0}
$$

(3) If force of magnitude 20 N makes an angle of 30° with x - axis then find its y - component?

Ans: $\mathrm{F}=20 \mathrm{~N}$
$\theta=30^{\circ}$
$\mathrm{F}_{\mathrm{y}}=$?
$\mathrm{F}_{\mathrm{y}}=\mathrm{F} \operatorname{Sin} \theta$
$=20 \operatorname{Sin} 30^{\circ}$
$=20\left(\frac{1}{2}\right)$
$\mathrm{F}_{\mathrm{y}}=10 \mathrm{~N}$
(4) If force \vec{F} of magnitude 10 N makes an angle of 30° with y-axis then find its x-component.

Ans: $\mathrm{F}=10 \mathrm{~N}$
Angle of \vec{F} with x-axis
$\theta=90^{\circ}-30^{\circ}=60^{\circ}$
$\mathrm{F}_{\mathrm{x}}=$?
$\mathrm{F}_{\mathrm{x}}=\mathrm{F} \cos \theta$
$=10 \cos \left(60^{\circ}\right)$
$=10\left(\frac{1}{2}\right)=5 \mathrm{~N}$
(5) Wai is inestive of a vector? How a vector \vec{B} is subtracted from a vector \vec{A} ?

LHR-2012
Ans. When a given vector is multiplied by a number such that $\mathrm{n}<0$ then new vector will be known as negative vector of given vector. In vector subtraction, actually, the negative vector of one vector is added with other vector. If vector \vec{B} is to be subtracted from a
vector \vec{A}, then it can be done by taking the negative of vector \vec{B} and adding it in vector \vec{A}. Resultant vector according to head to tail rule gives the difference $\vec{i}-\vec{B}$.
Note: Vectors subtraction is not commutative. i.f. $\overrightarrow{\mathrm{A}}-\overrightarrow{\mathrm{B}} \neq \overrightarrow{\mathrm{B}}$

(1) Find t e unit vector of the vector $\vec{A}=4 \hat{i}+3 \hat{j}$.

LHR-2012
As we know that:
$\hat{A}=\frac{\vec{A}}{A}$ where A is magnitude of given vector.
$A=\sqrt{A_{x}^{2}+A_{y}^{2}}$
$\mathrm{A}=\sqrt{4^{2}+3^{2}}$
$A=\sqrt{16+9}$
$\mathrm{A}=\sqrt{25}=5$
Therefore: $\hat{\mathrm{A}}=\frac{\overrightarrow{\mathrm{A}}}{\mathrm{A}}=\frac{4 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}}{5}$

(7) Define Null Vectors, Equal Vectors.

LHR-2014
Ans: Null Vector:
Null vector is a vector of zero magnitude and arbitrary direction. For example, the sum of a vector and its negative vector is a null vector. $\vec{A}+(-\vec{A})=\overrightarrow{0}$

Equal vectors:

Two vectors \vec{A} and \vec{B} are said to be equal if they have the same magnitude and direction, regardless of the position of their initial points.

This means that parallel vectors of the same magnitude are equal to each other.
(8) The subtraction of a vector is equivalent to the addition of rie same yector, P ovg it CN-2014
Ans: The subtraction of a vector is equalem to he addition , f he si me vector with its direction reversed. Thus. to sulbtract vecter B irom yector A, revense the direction of B and addi to A as shover in the diagrem given below.
$\mathbf{A}-\mathbf{B}=\mathbf{A}-\cdot(\mathbf{B})$

(9) How do we add the vectors?

Ans: Addition of vectors:

Given two vectors \vec{A} and \vec{B}. Their sum is obtained by drawing their represent. tive Iir. in such a way that the tail of vector \vec{B} caincides wint the tead of vecter \vec{A}. Now 11 we join the tail of \vec{A} to the head of \vec{B}. Th sime will represen the vector um $(\vec{A}+\vec{B})$ in magnitude and direction. The veeor sem is callea re sultant yocior and is indicated by \vec{R}.

(10) Define the multiplication of a vector by a scalar.

GRW-2015
Ans: (i) Multiplication by a dimensionless scalar:
When a vector \vec{A} is multiplied by a positive number ' n ' the magnitude of the resultant vector $n \vec{A}$ becomes the ' n ' times the magnitude of \vec{A}, but directions of $n \vec{A}$ remains same as that of \vec{A}. If \vec{A} is multiplied by negative number (-n). The magnitude of
 resultant vector is n times the magnitude of \vec{A} but its direction is opposite to that of \vec{A}.
(ii) Multiplication by dimensional scalar:

If n is a scalar quantity and \vec{A} be vector then $n \vec{A}$ will be a new physical quantity having dimensions, equal to the product of the dimensions of n and \vec{A}. Example Momentum has dimension equal to product of dimensions of mass and velocity.
(11) Define unit vector. How we find it?

LHR-2016 (G-II)
Ans: "A vector whose magnitude is one is known as unit vector"
We know that
Vector $=$ magnitude \times direction
If magnitude $=1$, then
Unit vector $=1 \times$ Direction of a vector
Unit vector $=$ Direction of a vector
This shows that unit vector indicates only the direction of a vector. Mathematically,
$\overrightarrow{\mathrm{A}}=\mathrm{A} \hat{\mathrm{A}}$
$\hat{A}=\frac{\vec{A}}{A}$
(12) What in the angle bet veanit vectors \hat{i}, j and k. What are iner orientation
Ans: Dhe umi vectors \hat{i}, j and k are mutually perpendicular. So the angle between any two given unit vectors is 90°. The unit vectors \hat{i}, j and k are usually along x -axis, $\mathrm{y}-$ axis and $\mathrm{z}-$ axis
 respectively.
(13) Show that vector addition is commutative?

Ans: When \vec{A} is added to \vec{B} then resultant is $\vec{R}=\vec{A}+\vec{B}$ \qquad when \vec{B} is added to \vec{A} then the resultant is $\vec{R}-\vec{B}+\vec{A}$ --as shown in fig
So from equation (i) and (ii) it is char

$$
\bigcirc \sqrt{A}+\vec{B}=\vec{B}+\vec{A}
$$

It show that 1 sector addie ion is commutative.
(14) If too vectors are parallel and anti-parallel, what will be their resultant vector?

If wo (o)eturs are parallel, then the resultants is maximum and have the magnitude equal to the sum of the magnitudes of the given parallel vectors. If two vectors are anti parallel, the resultant is minimum and have the magnitude equal to the difference of the magnitudes of the given anti parallel vectors.
(15) Describe briefly, how we obtain the vector, when its rectangular components are given?

FSD-2012
Ans: If the rectangular components of a vector, as shown in Fig. are given, we can find out the magnitude of the vector by using Pythagorean Theorem.
In the right angled Δ IMP.

$$
\begin{array}{ll}
& (\mathrm{OP})^{2}=(\mathrm{OM})^{2}+(\mathrm{MP})^{2} \\
\text { or } & A^{2}=A_{x}^{2}+A_{y}^{2} \\
\text { or } & A=\sqrt{A_{x}^{2}+A_{y}^{2}}
\end{array}
$$

and direction θ is given by

$$
\begin{gathered}
\tan \theta=\frac{A_{y}}{A_{x}} \\
\text { or } \quad \theta=\tan ^{-1}\left(\frac{A_{y}}{A_{x}}\right)
\end{gathered}
$$

(16) Explain rectangular coordinate system.

FSD-2017
Ans: Two reference lines drawn at right angles to each other are known as coordinate axes and their point of intersecton is known as origin. This system of coordinate axes is : Ilea Cartesian or rectangualr coordiante system.

One of the lines is named a; x axis and other y - axis. Usually the $x-a x i s$ is taken as horizontal ax is. The other inge s allied y-axis and is taken as a vertical axis. The direction of a vector in a dian s denoted by angle θ which the representative line of the vector makes with 10. it VO axis in anticlockwise direction as shown in Fig 2.1(b). The point P shown in Fig 2.1 (b) has coordinates (a, b). This notation means that if we start at the origin, we can reach P by moving ' a ' units along the positive x-axis and then ' b ' units along the positive y-axis.

The direction of a vec in space - cquires another axis which is at right angle to both x and \bar{J} axes, as thon in Fig 2.2 (a). The third axis is called z -axis.

(17) What are rectangular components of a vector? At what angle there components are equal?

MTN-2012
Ans: Rectangular Components:
The components of a vector which are mutually perpendicular with each other are called rectangular component.
If given vector is making an angle of 45° then its horizontal and vertical components are equal in magnitude.
$A_{x}=A \cos \theta=A \cos 45^{\circ}=\frac{A}{\sqrt{2}}$
$A_{y}=A \sin \theta=A \sin 45^{\circ}=\frac{A}{\sqrt{2}}$
(18) Define position vector?

DGK-2016 (G-II)
Ans: The position vector $\overrightarrow{\mathrm{r}}$ is a vector that describes the location of a point with respect to the origin. It is represented by a straight line drawn in such a way that its tail coincides with the origin and the head with point P (a, b) as shown in Fig. The projections of po ition vec.or \vec{r} on the x and y axes are coordingtes a and b : nd the y are the rectangular comnonen s of the ector $\overrightarrow{2}$. Hence.

and
$r=\sqrt{a}-\frac{-5}{b}$
(i)
(19) To get sum of two vectors equal to null vector, what are the conditions? GRW-2018

Ans: To get sum of two vectors equal to null vector, following conditions shoit ope satistion.
(i) Two vectors should be of same magnitude
(ii) One vector should be negative of other vec or

For example, the sum of a vector are its negative vector is a rul veetor.
$\vec{A}+(-\vec{A}): \overrightarrow{-0}$
(20) What i the unit ecter in the direction of vector $\vec{A}=2 \hat{i}-\hat{j}+2 \hat{k}$.

LHR-2018 (G-II)
Ans: As a kloovthat:
$\hat{A}=\frac{\vec{A}}{\mathrm{~A}}$ where A is magnitude of given vector.
$A=\sqrt{A_{x}^{2}+A_{y}^{2}+A_{z}^{2}}$
$\mathrm{A}=\sqrt{2^{2}+1^{2}+2^{2}}$
$\mathrm{A}=\sqrt{4+1+4}$
$\mathrm{A}=\sqrt{9}=3$
Therefore: $\hat{A}=\frac{\overrightarrow{\mathrm{A}}}{\mathrm{A}}=\frac{2 \hat{\mathrm{i}}-\hat{\mathrm{j}}+2 \hat{\mathrm{k}}}{3}$
(21) A force of $\mathbf{1 0} \mathrm{N}$ makes an angle of 60° with x-axis. Find its \mathbf{x} and y-components.

SGD-2018 (G-I)
Ans: x, y components of the given vector are given below:
$A_{x}=A \cos \theta=10 \cos 60^{\circ}=10\left(\frac{1}{2}\right)=5 N$
$A_{y}=A \sin \theta=10 \sin 60^{\circ}=10\left(\frac{\sqrt{3}}{2}\right)=5 \sqrt{3} N$
(22) Is it possible to add 5 in $2 \hat{\mathbf{i}}$? Explain.

MTN-2019 (G-I)
Ans: No, a vector quantity cannot be added to a scalar quantity. It is not possible to add 5 iil $2 \hat{i}$ because 5 is a scalar and $2 \hat{i}$ is a vector. Physical quantities of same rat recan ne adden
(23) How can the direction of a vector be specified in hret dinensions? Ex Win with diagram.
Ans: The directign of a vector in arace is specit ec by the three angles which tio represen ative line of the vector makes with x, y and z ar es respectiveity as shown in Fig. The reini P of a vecto A is thus denoted by three coordinates (a), b (1).

2.2 VECTOR ADDITOIN BY RECTANGULAR COMPONENTS

(24) How can we add the number of vectors $\vec{A}, \vec{B}, \vec{C} \ldots$. by rectanpar componsts method.
Ans: To determine the resultant, we havers find its raynitude and direction se $R=\sqrt{R_{x}^{2}+R_{y}^{2}}$ $R=\sqrt{\left.\left(C_{1}+B_{x}+C_{x}+\cdots\right)+(4)+B+C \cdot \ldots\right)}$
Direstion

$$
\begin{aligned}
& \theta=\tan ^{-1}\left(\frac{R_{y}}{R_{x}}\right) \\
& \theta=\tan ^{-1}\left(\frac{A_{y}+B_{y}+C_{y}+\ldots}{A_{x}+B_{x}+C_{x}+\ldots}\right)
\end{aligned}
$$

(25) Mention various steps for vector addition by rectangular components.

Ans: The vector addition by rectangular components consists of the following steps.
(i) Find x and y components of all given vectors.
(ii) Find x - component R_{x} of the resultant vector by adding the x - components of all the given vectors.
(iii) Find y-component R_{y} of the resultant vector by adding y - components of all the given vectors.
(iv) Find the magnitude of the resultant vector \vec{R} using

$$
R=\sqrt{R_{x}^{2}+R_{y}^{2}}
$$

(v) Find the direction of the resultant vector \vec{R} by using equation.
$\theta=\tan ^{-1}\left(\frac{R_{y}}{R_{x}}\right)$
(26) If $\overrightarrow{\mathrm{A}}=4 \hat{\mathrm{i}}-4 \hat{\mathrm{j}}$, What is the orientation of $\overrightarrow{\mathrm{A}}$?

LHR-2019 (C-1)
Ans: As x-component of given vector A is positive and y-componentis ngativetheref his vector will lie in $4^{\text {th }}$ quadrant.
As we know that $\theta=360^{\circ}$ -

$$
\sqrt[N]{N}
$$

$$
\begin{aligned}
& \left(4==\tan ^{-1}\left(\begin{array}{l}
A_{y} \\
\phi=\tan ^{-1}\left(\frac{1}{4}\right)=\tan ^{-1}(1) \\
\theta=360^{\circ}-\phi \\
\theta=360^{\circ}-45^{\circ}=315^{\circ}
\end{array}\right.\right.
\end{aligned}
$$

2.3 PRODUCT OF TWO VECTORS

(27) Prove that $\vec{A}=2 \hat{i}-3 j+k$ and $\vec{B}=4 \hat{i}+j-5 k$ are mutually perpendicular

Ans: $\quad \vec{A}=2 \hat{i}-3 j+k$
$\vec{B}=4 \hat{i}+j-5 k$
$\vec{A} \cdot \vec{B}=(2 \hat{i}-\vec{j}+k) \cdot(4 \hat{i}+j-5 k)$
$\vec{A} \cdot \vec{B}=\left(\frac{2}{(}\right)(4)+(-3)(1-(1))(-5)$
$=8-3-5=0$
Sine dot oridect of two vectors $\vec{A} \& \vec{B}$ is equal to zero. So they are perpendicular to each other.
2.8, two vectors \vec{F}_{1} and $\overrightarrow{F_{2}}$ lie in $\mathbf{y z}$ - plane. Then what will be the orientation of $\overrightarrow{\boldsymbol{F}_{1}} \times \overrightarrow{\boldsymbol{F}_{2}}$?
Ans: The cross product of two vectors \vec{F}_{1} and \vec{F}_{2} is given by $\overrightarrow{F_{1}} \times \overrightarrow{F_{2}}=F_{1} F_{2} \sin \theta n$
By using right hand rule the direction of $\vec{F}_{1} \times \vec{F}_{2}$ is perpendicular to yz -plane ie along x - axis.

(29) Show that the self dot product of vector \vec{A} is equal to the square of its magnitude.
Ans: The dot product of a vector with itself is called self dot product.
Let \vec{A} be given vector then.

$$
\vec{A} \cdot \vec{A}=A A \cos \theta \quad \theta=0^{\circ}
$$

$=\mathrm{AA} \cos 0^{\circ}$
$=A^{2}(1)=A^{2}$
(30) If we have two non-zero vectors \vec{A} and \vec{B} then under what condition the dot product of two vectors will be maximum.
Ans: The dot product of two vectors will be maximum when the angle between them is zero.
$\vec{A} \cdot \vec{B}=A B \cos \theta$
$\vec{A} \cdot \vec{B}=A B \cos (0)$

$\vec{A} \cdot \vec{B}=A B$ (maximum value)

\vec{B}

(31) What is dot product? Write the formula of K.E in tennis of self ant product or velocity vector.
Ans: The scalar product of tho vapors A ard is scalar at antity, defined as $\vec{A} \cdot \vec{B}=4 B \sqcap \theta$ As kinetic energy of object of passreandspeed v is given by the relation
$K . F_{T}=\frac{-1}{2} m p$
As ie in ow square of magnitude of vector is equal to its self dot product. So
$v^{2}=\vec{v} \cdot \vec{v}$
$K . E=\frac{1}{2} m(\vec{v} \cdot \vec{v})$
(32) What does $\frac{\vec{A} \times \vec{B}}{A B \sin \theta}$ represent?

Ans: $\frac{\vec{A} \times \vec{B}}{A B \sin \theta}$ represent the unit vector. Which Whows hod rection of $\vec{A} \times \vec{B}$. By definition
$\vec{A} \times \vec{B}=A B \sin 2 n$

it is-antt vector perpendicular to plane containing \vec{A} and \vec{B}.
(33) What is the physical significance of cross product of two vectors?

Ans: Magnitude of $\vec{A} \times \vec{B}$ is equal to the area of the parallelogram formed with \vec{A} and \vec{B} as two adjacent sides.
Area of parallelogram $=($ length $)($ height $)$
$=(A)(B \sin \theta)$
$=A B \sin \theta$

(34) Show that square of a vector is a scalar quantity.

Ans: The scalar product of similar vectors i.e $(\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{A}})$ is called the square of vectors.
$\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{A}}=\mathrm{AA} \operatorname{Cos} \theta=0^{\circ}$
$\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{A}}=\mathrm{AA} \operatorname{Cos}(0)$
$\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{A}}=\mathrm{A}^{2}$
$\mathrm{A}^{2}=\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{A}}$
This relation shows that square of a vector is a scalar quantity.
(35) Show that the scalar product of two vectors is commutative.

Ans: The dot product of two vectors \vec{A} and \vec{B} making an angle θ with each other is defined as
$\vec{A} \cdot \vec{B}=(\mathrm{A})($ Projection of \vec{B} on $\vec{A})$
$=\mathrm{A}(\mathrm{B} \cos \theta)$
$=\mathrm{AB} \cos \theta \ldots$
(i)

Similarly,
$\vec{B} \cdot \vec{A} \in \mathrm{~B}$ proiertion of A on B

(i)
$\vec{B} \cdot \vec{A}=B(A \cdot c s \theta)=B A c c s \theta$
$\vec{B} \cdot \sqrt{A}=A E \cos (\cdots$
Fon equation (i) \& (ii)
$\vec{A} \cdot \vec{B}=\vec{B} \cdot \vec{A}$
This shows that scalar product is commutative.

(ii)
(36) With the help of diagram, show that $\vec{A} \times \vec{B}=-\vec{B} \times \vec{A}$.

Ans: Consider two vectors $\vec{A} \& \vec{B}$ making an angle θ with each other. Dreation of roctct vector is obtained by right hand rule.
Rotate the first vector \vec{A} ifte \vec{B} thwigh the sral er ot two pos ible angles. This rotation is represertel by curling the finger of stiet hed right hand placed on the first vector \vec{A}, then thimb repreats the direction of vector product. The direction of $\vec{A} \times \vec{B}$ will be vertiolly upwad shown in the fig (a).
Accrang to this direction rule, $\vec{B} \times \vec{A}$ is a vector opposite to the direction of $\vec{A} \times \vec{B}$ as shown in fig (b)
Hence $\vec{A} \times \vec{B}=-\vec{B} \times \vec{A}$

Fig. (b)

Fig. (a)
(37) Prove that $\stackrel{u}{A} \cdot \stackrel{u}{\mathbf{B}}=\mathbf{A}_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}$

DGK-2012
Ans: Scalar product of two vectors $\vec{A} \& \vec{B}$ in terms of their rectangular components.
Let us consider two vectors \vec{A} and \vec{B} in terms of their rectangular components
$\vec{A}=A_{x} \hat{i}+A_{y} \hat{j}+A_{z} k \quad \vec{B}=B_{x} \hat{i}+B_{y} \hat{j}+B_{z} k$
$\vec{A} \cdot \vec{B}=\left(A_{x} \hat{i}+A_{y} \hat{j}+A_{z} k\right) \cdot\left(B_{x} \hat{i}+B_{y} \hat{j}+B_{z} k\right)$
$\hat{i} \hat{i}=j . j=k . k=1 \quad, \quad \hat{i} . j=j . k=k j=p$
$\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{B}}=\mathrm{A}_{\mathrm{y}} \mathrm{B}_{\mathrm{x}}+\mathrm{A}_{\mathrm{y}} \mathrm{B}_{\mathrm{y}}+\mathrm{A} \cdot \sqrt{b_{z}}$
(38) Write any tucciaracteris ic of scalion neduct.

MTN-2012
Ans: (i) If twp vectors are priclld then dot product is equal to the product of their magnitudes.
$\theta=0$

$$
\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{~B}}=\mathrm{AB} \cos \stackrel{0}{0}=\mathrm{AB}(1)=\mathrm{AB}
$$

In case of unit vectors $\hat{i} . \hat{i}=\hat{j} \cdot \hat{j}=\hat{k} \cdot \hat{k}=1$

And for antiparallel vectors $\left(\theta=180^{\circ}\right)$

$$
\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{~B}}=\mathrm{AB} \cos 180^{\circ}=\mathrm{AB}(-1)=-\mathrm{AB}
$$

(ii) The self dot product of a vecto $\vec{\rightarrow}$ is entral $10 \leqslant q$ arefof its n agnitu de.

$$
\begin{equation*}
\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{~A}}=\mathrm{AA} \cos 0^{\circ}=A^{2} \tag{39}
\end{equation*}
$$

Ans: (i) Torque abo a point is cef:ned as the cross product of position vector \vec{r} and force \vec{F}.

$$
\vec{\tau}=\vec{r} \times \overrightarrow{\mathrm{F}}
$$

(ii) Angular momentum is defined as the cross product of position vector \vec{r} and linear momentum $\overrightarrow{\mathrm{p}}$.

$$
\overrightarrow{\mathrm{L}}=\vec{r} \times \overrightarrow{\mathrm{p}}
$$

(iii) The force $\overrightarrow{\mathrm{F}}$ experienced by charge particle of charge q moving with velocity \vec{v} in a uniform magnetic field \vec{B} is

$$
\overrightarrow{\mathrm{F}}=\mathrm{q}(\vec{v} \times \overrightarrow{\mathrm{B}})
$$

(40) State right hand rule for cross product of two vectors.

GRW-2019 (G-I)
Ans: First join the tails of two vectors, then rotate the vector $\overrightarrow{\mathrm{A}}$ which appears first in the product towards the second vector $\overrightarrow{\mathrm{B}}$ through the smaller angle. The curl fingers of right hand show the direction of rotation, then erect thumb of right hand gives direction of $\vec{A} \times \vec{B}$.

(41) If $\overrightarrow{\mathrm{A}}=\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{B}}=\hat{2} \hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{i}}$ hen tind $A \cdot \vec{E}$.

Ans: $\quad \vec{A} \cdot \vec{B}-(\hat{i}-2 \hat{j}+3 \hat{k})(\hat{i}-\hat{j}+i \hat{i})$
$\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{B}}=(1)(2,-(-2)(-2)+(2)(1)$
$\sqrt[2]{2} \cdot 3=2+2+3=7$
(42) Name two conditions that would makes $\overrightarrow{\mathrm{A}}_{1} \cdot \overrightarrow{\mathrm{~A}}_{2}=0$

DGK-2018 (G-I)
Ans: Following are the conditions that would make $\overrightarrow{\mathrm{A}}_{1} \cdot \overrightarrow{\mathrm{~A}}_{2}=0$
(i) If $\overrightarrow{A_{1}}$ and $\overrightarrow{A_{2}}$ are perpendicular toyach oher minn $\overrightarrow{A_{1}} \cdot \overrightarrow{A_{2}}=A_{1} A_{2}\left(\cos 90^{\circ}\right)$ $=0$
(ii) Fither or vecto s $\bar{A}_{1} \mathrm{o}_{1} \vec{A}_{2}$ is a null vector.

$$
\hat{1}_{1} \cdot A_{2}=(0) A_{2} \cos \theta=0
$$

or

$$
\overrightarrow{A_{1}} \cdot \overrightarrow{A_{2}}=A_{1}(0) \cos \theta=0
$$

(43) Show that $\hat{i} \cdot \hat{j}=\hat{j} \cdot \hat{k}=\hat{k} \cdot \hat{i}=0$.

MTN-2019 (G-II)
Ans: The scalar product of two mutually perpendicular vectors is zero i.e if $\theta=90^{\circ}$ then

$$
\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{~B}}=\mathrm{AB} \cos 90^{\circ}=0
$$

So, $\quad \hat{i} . j=|\hat{i}||j| \cos 90^{\circ}=0$

$$
\begin{aligned}
& j \cdot k=|j||k| \cos 90^{\circ}=0 \\
& k \cdot \hat{i}=|k||\hat{i}| \cos 90^{\circ}=0
\end{aligned}
$$

Therefore, $\quad \hat{i} \cdot \hat{j}=\hat{j} \cdot k=k \cdot \hat{i}=0$

2.4 TORQUE

(44) Give two factors on which turning effect depends.

FSD-2019 (G-I)
Ans: Torque depends upon following factors by formula:

$$
\stackrel{\mathbf{1}}{\tau}=\stackrel{\mathbf{u}}{r} \times \stackrel{r}{F}=r \sin \theta \hat{n}
$$

(i) Force (If force is greater in magnitude more will be the torque and vise verss)
(ii) Moment arm (if moment arm is greater more will he mie thrring effect and ice versa)
(iii) Torque also depens lpon the sime a prle betven farce ald position vector.
(45) Define thr moment arm

Ans: The perper di da disance bequeen the line of action of force and x xis of rotan is caned moment arm. In the given figure rrane and $=\mathrm{OP}=\mathrm{r}$

(t) What is the rotational analogous of force?

Ans: Torque is rotational analogous of force which produces the linear acceleration in a body. The torque acting on a body produces angular acceleration.
(47) What is the moment of a force about the point lying on the axis of rotation?

LHR-201需T(I)

Ans: It is turning effect of a force produced in a body about an . is. It is meastren bey tive product of force and moment arm (In) is denote $\mathrm{Tl}_{\mathrm{t}} \mathrm{y} \overrightarrow{\mathrm{F}}$.
Let \vec{F} be the force and \vec{r} be the position vecor df the point w.r.t. p.vat point, then toque is $\vec{\tau}=\vec{r} \times \overrightarrow{\mathrm{F}}$. Tt il vertry cuantity has direct on olong the normal to plane containing \vec{r} and $\overrightarrow{\mathrm{F}}$.

This means torque τ is equal to the product of force F and moment $\operatorname{arm} \ell$.

$$
\tau=\ell F
$$

(48) What is difference between moment arm and moment of force?

FSD-2017
Ans: Torque: It is turning effect of a force produced in a body about an axis. It is measured by the product of force and moment arm and is denoted by $\vec{\tau}$.
Moment Arm: It is the perpendicular distance between line of action of force and pivot point. Usually it is denoted by " ℓ "

