TOPIC WISE MULTIPLE CHOICE QUESTIONS

3.5 EOUATIONS OF UNIFORMIY ACCELERATED MOTION

(1) Equations of motion hold only when there is \qquad
(b) lin ear inption with va riable acceleration
(a) linear motion with con tant velocity
(b) linerrimption
(c) linear 1motion with anifarm accelertion d none of these
(2) The distance covered by : body in inie "t" starting from rest is LHR-2018 (G-I)
(a) ${ }^{\square t^{2}}$
(b) $2 a t^{2}$
(b) $\frac{1}{2} a$
(d) $\frac{1}{2} \mathrm{a}^{2} \mathrm{t}$
(3) Velocity of an object dropped from a building at any instant ' t ' is given by:

FSD-2017
(a) $\frac{1}{2} \mathrm{gt}^{2}$
(b) $\mathrm{v}_{\mathrm{i}} \mathrm{t}+\frac{1}{2} \mathrm{gt}^{2}$
(c) at
(d) gt
(4) Distance travelled by free falling object in first second is:

RWP-2019 (G-I)
(a) 4.9 m
(b) 9.8 m
(c) 19.6 m
(d) 10 m
(5) A mass of $\mathbf{1} \mathbf{~ k g}$ is freely falling. The force of gravity is

SWL-2017
(a) 1 N
(b) 9.8 N
(c) 0.5 N
(d) zero
(6) If an object is dropped from the height h then its velocity is given by
(a) gt
(b) $1 / 2 \mathrm{gt}^{2}$
(c) $\mathrm{v}_{\mathrm{i}} \mathrm{t}+1 / 2 \mathrm{gt}^{2}$
(d) none of these
(7) Acceleration due to gravity near the surface of the earth is
(a) $0 \mathrm{~ms}^{-2}$
(b) $9.8 \mathrm{~ms}^{-2}$
(c) $1.6 \mathrm{~m} / \mathrm{s}^{2}$
(d) $11.2 \mathrm{~m} / \mathrm{s}^{2}$
(8) Distance covered by a free falling body during $2^{\text {nd }}$ second of its noions
(a) 4.9 m
(c) 14.7 m
(b) 0.8 m
(c) 19.6 m
(9) A paratroper moves ciennvard vith
(a) zerfuncel aration
(b) negative acceleration
(c) positive ace eleration
(d) none of these
(19) 1 d ouliect is moving with constant velocity of $20 \mathrm{~ms}^{-1}$ towards north then its acceleration will be
(a) $5 \mathrm{~ms}^{-2}$
(b) $10 \mathrm{~ms}^{-2}$
(c) $9 \mathrm{~ms}^{-2}$
(d) $0 \mathrm{~ms}^{-2}$
(11) As we go at a greater height from the surface of earth, the value of g
(a) increases
(b) decreases
(c) remain same
(d) none of these
(12) Which one is the correct relation
(a) $a=\frac{v_{f}-v_{i}}{2 t}$
(c) $a=\frac{20}{} s-1, t$
(b)
$a=f^{2}+y_{i}^{2}$
(d) $a=\frac{\left(s+v_{i} t\right)}{2 t^{2}}$

3.7 MOMDNTUNANDTMESND

(13) Tha ;ythem on which no external force acts is called
(a) isolated system
(b) open system
(c) non-inertial system
(d) thermal system
(14) Impulse can be defined as
(RWP 2014)
(a) $\stackrel{1}{I}=\stackrel{\mathrm{u}}{F} \times \stackrel{\text { ü }}{d}$
(b) $\stackrel{\stackrel{1}{I}}{I} \underset{\mathbf{u}}{\mathbf{u}} \times t$
(c) $\stackrel{\mathbf{1}}{I}=\stackrel{\mathbf{u}}{F} \times \stackrel{\text { ̈ }}{V}$
(d) $\stackrel{\mathrm{r}}{I}=\frac{F}{t}$
(15) Impulse has same unit as that of:
(DGK 2012, 13)FSD 2019 (G-I)
(a) force
(b) energy
(c) mass
(d) linear momentum
(16) A force of 10 N acts on a body of mass 5 kg for one second, the change in its momentum will be

MTN-2018 (G-II)
(a) $10 \mathrm{~kg} \mathrm{~ms}^{-1}$
(b) $50 \mathrm{~kg} \mathrm{~ms}^{-1}$
(c) $2 \mathbf{~ k g ~ m s}^{-1}$
(d) $20 \mathbf{~ k g ~ m s}^{-1}$
(17) The product of force and time is called
(a) Impulse
(b) momentum
(c) acceleration
(d) torque
(18) A force of 10 N act on a body of mass 10 kg for 5 sec . The change in momentum of the body is
(a) 10 Ns
(b) 100 Ns
(c) 50 Ns
(d) 150 Ns
(19) Force acting on a body is equal to
(a) rate of change of momentum
(b) change of momentum
(c) momentum
(d) both a \& b
(20) Dimension of momentum is
(a) [MLT]
(c) $\left[\mathrm{ML}^{-1} \mathrm{~T}\right]$
(21) The unit of impulse is
(a) Nn
(c) Ns^{-1}
(b) Ns
(b) $\mathrm{CM} / \mathrm{T}^{2}$

(c) [MLT
(22) Dircetic n of inpulse is same as that of
(a) : 1 anse n momentum
(b) velocity
(1) change in acceleration
(d) no direction
(23) SI unit of momentum is same as that of
(a) impulse
(b) velocity
(c) force
(d) acceleration
(24) Which bullet of same momentum is more effective in knocking a bear down
(a) rubber bullet
(b) lead bullet
(c) both are equally effective
(d) none of these
(25) If the force of 250 N acts on an object for 2 econds, ther chang in mon wn
(a) 50 Ns
(b) 4.50 Ns
(c) 500 Ns
(a) $125 \mathrm{~L} / \mathrm{s}$

(a) increase
(b) decreases
(c) conser ed
(d) none of these
(27) Bars a roving bject has impulse?
(d) 7 aydrinay not be
(b) yes always
(c) never
(d) none of these
(28) The force which might be enough to fracture the naked skull is
(a) 50 N
(b) 10 N
(c) 15 N
(d) 5 N
(29) The relation $I=\bar{F} \times \Delta t$ shows
(a) momentum
(b) power
(c) impulse
(d) work
(30) The rate of change in momentum is called
(a) force
(b) torque
(c) distance
(d) time
(31) When the retarding time is increased during the impact than the average force
(a) increases
(b) decreases
(c) zero
(d) no change
(32) The motor cycle's safety helmet prevents the serious injury due to padding because it
(a) extends the time of impact
(b) increases impulsive force
(c) decreases the impulsive force
(d) both a and c
(33) A tennis ball hits with the wall for collision time of 0.2 sec , if the impulse reduces to 10Ns then the impulsive force will be
(a) 10 N
(b) 100 N
(c) 5 N
(d) 50 N

3.8 ELASTIC AND INELASTIC COLLISION

(34) The collision in which linear momentum as well as K. E is conserved is called
(a) nearly elastic collision
(b) perfectly elastic collision
(c) non elastic collision
(d) none of these

(35) In an inelastic collision
(a) momentum is conserved
(c) both a \& b
(36) In case of ciastic collision
(h) ene gy s conserved
(a) magnthde pirelative velocity of appoach equal to the magnitude of relative velocity of sppuatiph
(b) Ilagnith de of relatve velocity of approach is doubled of the magnitude of relative veled dity of separation
(d) magnitude of relative velocity of approach greater to magnitude of relative velocity of separation
(d) magnitude of relative velocity of approach very less to the magnitude of relative velocity of separation
(37) For two colliding balls which condition is applicable for one dimensional elastic collision
(a) they should be non-rotating
(b) they should be smooth
(c) both a and b
(d) none of these
(38) When two objects undergoes an inelastic cullision
(a) objects comes to rest after collision
(b) momentum of the objects changes
(c) monial tum does nouchange
(d) the av of conservation of enersy is viviated
3.9 FORCE D TL TGWATLRELEN
(39) When water sirikes a wall the force exerted by water on the wall is
(a) $F=m v$
(b) $\vec{F}=\frac{m \vec{v}}{t}$
(c) $\vec{F}=\frac{m t}{\vec{v}}$
(d) $\vec{F}=\frac{m}{\vec{v}}$
(40) Suppose a water flows out from a pipe at $3 \mathrm{kgs}^{-1}$ and its velocity changes from $5 \mathrm{~ms}^{-1}$ to zero on striking the wall, then force of water will be
(a) 15 N
(b) 20 N
(c) $5 \mathrm{kgms}^{-1}$
(d) $15 \mathrm{kgms}^{-1}$
3.10 MOMENTUM AND EXPLOSIVE FORCES
(41) When the bullet is fired from the rifle, it follows the principle of
(a) conservation of energy
(b) conservation of force
(c) conservation of mass
(d) conservation of momentum

3.11 ROCKET PROPULSION

(42) When a rocket moves upward its acceleration
(a) constant
(b) decrease
(c) increases continuously
(d) become zero mass of rocket is in the form of fuel

SWL-2017,DGK-2016 (G-I)
(a) 60%
(b) 70%
(c) 80%
(d) 90%
(44) A mass of fuel consumed by a typical rocket to overcome earth's gravity is
(a) $10000 \mathrm{kgs}^{-1}$
(b) $1000 \mathrm{kgs}^{-1}$
(c) $100 \mathrm{kgs}^{-1}$
(d) $10 \mathrm{kgs}^{-1}$
(45) A typical rocket ejects the burnt gases at speeds of over
(a) $400 \mathrm{~ms}^{-1}$
(c) $40 \mathrm{~ms}^{-1}$
(46) The rocket carries its fuctio the form of
(a) solid on!
(c) sold d iquid
(b) iquid enty
(b) $4000 \mathrm{~ms}^{-1}$

The acelelation of ruckers expressed as
(a) $\sqrt{a}=-\frac{m v}{m}$
(b) $\vec{a}=\frac{m t}{M}$
(c) $\vec{a}=\frac{M}{m \vec{v}}$
(d) $\vec{a}=\frac{m \overrightarrow{v^{2}}}{M}$
(48) Rocket ejects the burnt gasses at a speed of over (consuming fuel at rate of $10000 \mathrm{~kg} / \mathrm{s}$)

JMR-2019 (G)
(a) $4000 \mathrm{~m} / \mathrm{s}$
(b) $400 \mathrm{~m} / \mathrm{s}$
(c) $4000 \mathrm{~cm} / \mathrm{s}$
(d) $400 \mathrm{~m} / \mathrm{m}$

3.12 PROJECTILE MOTION

(49) A fighter plane drops a bonk when it the top denemies tirget. Bomb misses the target due to
(a) horizantal conponent of velocity
(b) action of gravity
(c) vertical ornonent vi vecity
(d) bad weather
(50) Mintion of po osectile is

LHR 2015(G-I)
(a) onelmensional
(b) two dimensional
(c) three dimensional
(d) four dimensional
(51) Total time of flight of projectile is given as
(GRW 2014)
(a) $\frac{v_{i} \sin \theta}{g}$
(b) $\frac{2 v_{i} \sin \theta}{g}$
(c) $\frac{\mathrm{v}_{\mathrm{i}} \sin \theta}{2 \mathrm{~g}}$
(d) $\frac{2 \mathrm{v}_{\mathrm{i}} \sin ^{2} \theta}{\mathrm{~g}}$
(52) Which shows correct relation between H and T of projectile? LHR-2018 (G-II)
(a) $\mathrm{H}=\frac{2 \mathrm{~T}^{2}}{8}$
(b) $\mathrm{H}=\frac{\mathrm{gT}^{2}}{8}$
(c) $\mathrm{H}=\frac{8 \mathrm{~g}}{\mathrm{~T}^{2}}$
(d) $\mathrm{H}=\frac{8}{\mathrm{gT}^{2}}$
(53) The horizontal range of a projectile at 30° with horizontal is same at an angle:
(SWL 2015)LHR-2017 (G-I)
(a) 40°
(b) 45°
(c) 90°
(d) 60°
(54) The horizontal component of velocity of projectile: (RWP 2012),LHR-2017 (G-I)
(a) increases
(b) decreases
(c) increases or decreases
(d) remains constant
(55) Ranges of projectile are equal for pair of angles; (MTN 2015)MIRPUR (AJK) 2015
(a) $45^{\circ}, 50^{\circ}$
(b) $45^{\circ}, 60^{\circ}$
(c) $40^{\circ}, 50^{\circ}$
(d) $40^{\circ}, 55^{\circ}$
(56) The range of projectile is same for
(a) 0,45
(b) 35,55
(c) 15,60
(c) $3(, 75$
(57) The angle for which the nazinh height ind horizonail range of a projectile equal
(c, 30,3 to eachother is
(BWP 2014)
(a) 30°
(b) 45°
(c) 60°
(d) 76°
(581 Th velocity of projectile at maximum height is
DGK-2016 (G-II)
(c) $\mathrm{v}_{\mathrm{i}} \cos \theta$
(b) zero
(c) $v_{i} \sin \theta$
(d) none of these
(59) If the initial velocity of a projectile becomes doubled, the time of flight will be come:

MTN-2018 (Cfin
(a) double
(b) same
(c) 3 times
(d) 4 times
(60) In projectile motion, acceleration bas zeñ value dons,
(a) Vertical direction
(b) ho ri or the lirection
(c) Botla and b
(d) nene of these
(61) In projectile motion he accereration vertical direction is
(a) $9.8 \mathrm{~m} / \mathrm{s}^{2}$
(b) zero
(c) Variable
(d) none of these

A:) in woctile motion horizontal velocity
(a) Reduces to zero
(b) remains constant
(c) Zero
(d) all of these
(63) Projectile moves with constant
(a) horizontal velocity
(b) vertical velocity
(c) acceleration due to gravity
(d) both a and c
(64) Which of them is not a projectile motion?
(a) football kicked off by a player
(b) an object dropped from an aero plane
(c) a missile launched from a launching pad
(d) none of these
(65) At maximum height of projectile motion, the angle between velocity and acceleration is
(a) 45°
(b) 90°
(c) 180°
(d) 76°
(66) At the highest point during projectile motion
(a) acceleration is zero
(b) velocity is zero
(c) vertical component of velocity is zero
(d) none of these
(67) Which parameter changes during projectile motion?
(a) vertical velocity
(b) acceleration
(c) horizontal velocity
(d) both a and b '
(68) A body is projected at angle ' θ ' with horizontal by velocity v_{i}, the vertical component of its velocity at any time t is
(a) $v_{i} \sin 2 \theta+g t$
(b) $v_{i} \cos \theta$
(c) $v_{i} \cos \theta-g t$
(d) $v_{i} \sin \theta-g t$
(69) The horizontal velocity at the point of hitting is given
(a) $v_{i} \sin \theta$
(b) $v_{i} \cos \theta$
(c) $v_{i} \cos \theta t$
(d) $y \cos \theta / t$
(70) Height of projectile is calaled $\mathrm{H}=$
(a)

(b) $\frac{v_{i}^{2} \operatorname{lon} 2 \theta}{g}$
(c) $\frac{v_{i}^{2} s^{2} n^{2}}{} \theta^{\theta}$
(d) $\frac{v_{i}{ }^{2} \sin \theta}{2 g}$
(r1) Friat ater by a projectile to reach maximum height is $\mathbf{t}=$
(a) $\frac{v_{i} \sin \theta}{2 g}$
(b) $\frac{v_{i} \sin 2 \theta}{g}$
(c) $\frac{v_{i} \sin \theta}{g}$
(d) none
(72) For range to have maximum value, the function $\sin 2 \theta$ should have value
(a) 90
(b) 1
(c) 45
(d) 0
(73) Range of projectile is maximum when $\theta=$
(a) 45°
(c) 60°
(b) 90°
(d) 30°

(74) Maximuy range of projectile is given by
(a) $\frac{2 v_{i}}{g}$
(b) $\frac{v_{i}{ }^{2}}{g}$
(d) $\frac{v_{i}{ }^{2} \sin 2 \theta}{g}$
(15) When a projectile is fired at angle θ, then the relation between height " H " and range " R " is
(a) $\mathrm{H}=\mathrm{R}$
(b) $\mathrm{H}=\frac{R}{2}$
(c) $\mathrm{H}=\frac{R}{4} \tan \theta$
(d) $\mathrm{H}=4 \mathrm{R}$
(76) A ballistic flight is the motion under
(a) Inertia
(b) Gravity
(c) Both a and b
(d) Aerodynamic forces
(77) Ballistic trajectory is the path followed by projectile
(a) Powered and unguided
(b) Un-powered and unguided
(c) Un-powered and guided
(d) Powered and guided
(78) Two projectile are projected at angle of 20° and 70° with same velocity which one have longer range
(a) Which is fired at 20°
(b) Which is fired at 70°
(c) Both have same range
(d) none of these
(79) One ball is allowed to drop freely and the other is projected horizontally at the same time which ball will reach the ground earlier
(a) First ball
(b) Second ball
(c) Both will reach at the same time
(d) none of these
(80) A ball is allowed to fall freely from certain height. It covers a distance in first second equal to:
(a) 2 g
(c) $\frac{g}{2}$
(b) g
(d) g$)^{2}$
(81) The angle of projection for which the max mon neigh and the norizontal range of a projectile are equarts
(GRW 2013)
(a) 45°
(b) $\tan ^{-1}\left(\frac{1}{4}\right)$
(d) is n (4)
(d) none of these
ror which pair ranges of projectile are same.
(GRW 2015)
(a) $45^{\circ}, 50^{\circ}$
(b) $60^{\circ}, 40^{\circ}$
(c) $30^{\circ}, 60^{\circ}$
(d) none of these

ANSWER KEYS

(Topic Wise Multiple Choice Questions)

1	c	16	a	31	b	40\%	d	61			
2	c	17	a	32	d	4	1		b		b
3	d	18	c	31	d	48	\&	63	,	178	-
4		19	a	34	,	49	a	64	d	79	c
	b	20	d	,	a	50	b	65	b	80	c
	a	213	b	36	a	51	b	66	c	81	c
17	b	22	a	37	c	52	b	67	a	82	c
8	a	23	a	38	c	53	d	68	d		
9	c	24	b	39	b	54	d	69	b		
10	d	25	c	40	a	55	c	70	a		
11	b	26	c	41	d	56	b	71	c		
12	c	27	a	42	c	57	d	72	b		
13	a	28	d	43	c	58	a	73	a		
14	b	29	c	44	a	59	a	74	b		
15	d	30	a	45	b	60	b	75	c		

SHORT QUESTIONS

(From Textbook Exercise)
3.9. Define impulse and show that how it is related to linear monent ini?
 LHR-16 (G-II), FSD-17, LHR-17 (G-IT) LHR-1s (G)II), GDNII-19 (br-I)
When the force acts on a bodian a very shortinterval of time then the product of averagefore and time to whieh the foice acts s solled impulse

As

Hence Impulse is equal to change in linear momentum.
3.10. State the law of conservation of linear momentum, pointing out the importance of isolated system. Explain, why under certain conditions, the law is useful even though the system is not completely isolated?

GRW-14(G-I), SGD-15(G-II)
Ans: Importance:
For an isolated system, total change in linear momentum due to mutually interacting forces is zero.
Statement:
It states that, the total linear momentum of an isolated system remains constant.
Law is also useful in a situation when mutually interacting forces are much greater than external force because in this situation external force is negligible.

Example

Firing of a bullet from gun.
3.11. Explain the difference between elastic and inelastic collisions. Explain how would a bouncing ball behave in each case? Give plausible reasons for the fact that K.E is not conserved in most cases?

BWP-15(G-I), MTN-15(G-I)\&(G-II), SGD-16 (G-II)
Ans:

Elastic Collision Inclastic Collision

In ideal case, when no K.E is lost, the A collision in which the K.E of the collision is said to be perfectly elastic.
system is not concerved is inelastic collision.
Suppose we drop a ball from a certain hejg ti has elantic collividn oñoriking the floor, it will come at the priginal haght bat in case of inglastic collision, ball will lose some part of kinetic energy and will not bource back at the same height.
In mostof he rases sme partof kir et concrgy is lost as heat and sound energies.
3.12. Explair what is neant by nojectile motion. Derive expressions for (a) the time of fing (b) the renge of projectile Show that range of projectile is maximum when preiectile is thrown at an angle of $\mathbf{4 5}^{\circ}$ with the horizontal.
SGD-15(G-II), MTN-15(G-I), BWP-15(G-I), RWP-15(G-I), FSD-15(G-I), LHR-15(G-I)\&(G-II), MIRPUR (AJK) 15, SGD-16 (G-I), SWL-17, LHR-17 (G-II), BWP-19 (G-II)
Ans: See the book
3.13. At what point or points in its path does a projectile have its minimum speed, its maximum speed?
SGD-15(G-II), SWL-16, MTN-16 (G-II), DGK-16 (G-II), SGD-16 (G-I)\&(G-II), LIK-16 G-I, PIVP-17 (r-I) \& (C II), DGK-18 (G-I), FSD-18, FSD-19, BWP-19 (G-I)

Ans: (i) The projectile has minimum speed at maxilnum height because at this point the vertical component of the velocityis ze o. 1.4. v = vony
(ii) It has nakimum speed at the point pefriection and point of landing, because at these points ver i ai corponent tf velociny has maximum value. i.e. $v=\sqrt{v_{x}^{2}+v_{y}^{2}}$

TOPIC WISE SHORT QUESTIONS
BA EVEILN OF EQUATIONS OF UNIFORMLY ACCELERATED MOTION
(//) Does the man can jump high on the surface of Moon?
Ans: Let a man makes high jump with initial velocity v_{i} and at highest point its final velocity v_{f} becomes zero, also $\mathrm{a}=-\mathrm{g}$. Then height attained by him is given as.
$\mathrm{V}_{\mathrm{f}}{ }^{2}-\mathrm{V}_{i}^{2}=2 \mathrm{as}$
$0^{2}-\mathrm{V}_{i}^{2}=-2 \mathrm{gh}$
$\mathrm{h}=\frac{\mathrm{V}_{\mathrm{i}}{ }^{2}}{2 g}$
Since at the surface of moon, the value of g is low, thus he will attain more height.
(8) Calculate the distance covered by a free-falling body during first second of its motion.

SGD-2018 (G-I)
Ans:

$$
\begin{aligned}
& S_{n t h}=\frac{1}{2} g(2 n-1) \\
& S_{1 s t}=\frac{1}{2}(10)(2(1)-1) \\
& S_{1 s t}=5 \mathrm{~m}
\end{aligned}
$$

Newton's Third Law of Motion:

When two bodies interact the action is always equal and opposite to reaction.
"To every action force there is an equal and opposite reaction force."
It means that action always acts on one body and reaction on the other body. Thatisy action and reaction never balanced each other.
If two bodies A and B collide, the action of boday A, B force F_{F} and reaction of B

(9) Define ine tia non in tial frame of ererences

DGK-2016 (G-II)
Ans: Frame Pi Reicreace:
Fo Cate a poin ir plane or space we require a coordinate system.
Farrecotirterence is a coordinate system used to measure some observation about an event on body such as velocity and acceleration etc.
There are two kinds of frames of reference.

Inertial frame:

Those frames of reference which are either at rest or moving with uinform relat velocity are called inertial frames.

* Newton's Law of inertia holds in there rames
* They have no acceleration.

Non inertial frame:
Those irmmes whin are not moving with nifoim relative velocities are called non inetial fraties.

* Neuton's law of ir er ilacoes not hold in these frames.
* They have accercration.

(h) As the unit of momentum is $\mathrm{kg} \mathrm{ms}^{-1}$. Show that its unit is also Ns.

Ans: Unit of momentum $\quad=k g \frac{\mathrm{~m}}{\mathrm{~s}}$
Multiplying and dividing by $s=k g \frac{\mathrm{~m}}{\mathrm{~s}} \times \frac{s}{s}$

$$
=\operatorname{kg} \frac{\mathrm{m}}{\mathrm{~s}^{2}} \times s
$$

As, $\quad \operatorname{kg} \frac{m}{s^{2}}=N$
$=\mathrm{Ns}$
(11) Prove that change of momentum is the impulse?

Ans: By Newton's $2^{\text {nd }}$ law

$$
\begin{aligned}
& \vec{F}=m \vec{a} \\
& \vec{F}=\frac{m \overrightarrow{v_{f}}-m \overrightarrow{v_{i}}}{\Delta t} \\
& \vec{F} x \Delta t=m \overrightarrow{v_{f}}-m \overrightarrow{v_{i}} \\
& \vec{I}=\Delta \overrightarrow{\mathrm{P}}
\end{aligned}
$$

(12) Find the Dimensional formulas for i) Impulse ii) Momentum

Ans: (i) Dimension of Impulse

$$
\vec{I}=\vec{F} \times t
$$

$$
[I]=[F][T]
$$

$$
[I]=[M]\left[q\left(\frac{1 H}{I} 1\right)\right]
$$

(ii) Dinen ion of monenturn

$$
\begin{aligned}
& \mathrm{P}=\mathrm{mV} \\
& {[P]=[m][V]} \\
& =[M]\left[L T^{-1}\right] \\
& =\left[M L T^{-1}\right]
\end{aligned}
$$

(13) Which will be more effective in knocking a bear down, rubber bullet or lead bullet?

Ans: Since the rubber is soft as compared to lead bullet, it will not enter the sinin of Pasy 80 retarding time for rubber bullet is large as compared to lead hulet. 'hereffe the averae impulsive force due to lead bullet is more effective tornocl the kea do NH
(14) What is the effect on the speed of figltur wane hasing ant ther when it opens fire? What happens to the speed of rursielplimp wen it retur the fre?
Ans: When firthter proc chasing an ther prane opens fire then due to reacting force of firing its clodity dracreases, while the seed of the pursued plane when it fire backward, velocity incleases due io the reacting force.
(15) Fev the helmet prevent the serious injury.

Ans: 1) ae moiorcycle's safety helmet is padded so as to extend the time of any collision and hence average force reduces. So it prevents serious injury.
(16) Show that $\overrightarrow{\mathrm{F}}=\frac{\Delta \overrightarrow{\mathrm{P}}}{\Delta \mathrm{t}}$

LHR-2013
Ans: $\vec{F}=m \vec{a}$
$\vec{F}=\frac{m \overrightarrow{v_{f}}-m \overrightarrow{v_{i}}}{\Delta t}$
$\vec{F}=\frac{m \overrightarrow{v_{f}}-m \overrightarrow{v_{i}}}{\Delta t}$
$\vec{F}=\frac{\Delta \vec{P}}{\Delta t}$
(17) A 20 g ball hits the wall of a squash court with a constant force of $\mathbf{5 0} \mathbf{N}$. If the time of impact of the force is 0.5 sec ., find the impulse?

LHR-2017 (G-I)
Ans: $\quad I=F \times \Delta t$
$I=50 \times 0.5$
$I=25 \mathrm{Nsec}$
(18) What is the effect on the speed of a fighter plane chasing another when it opens the fire?

DGK-2016 (G-II)
Ans: The speed of chasing plane will decrease when it opens the fire due to newton's $3^{\text {rd }}$ law, there will be a reaction force on the plane.
(19) State law of conservation of momentum. What is its limitation?

SWIC-20 19
Ans: It states "In the absence of an external force, the total linean mor er tyon an iseloted system remains conserved.

Total linear momentum of an is olated, jsten rernans cernotant
Limittitie i: it is appliceble for the isolned system only.
(20) Calculite the in ar nomentur oो ball of mass 100 gm . Which moves with $5 \mathrm{~m} / \mathrm{s}$ alore, a straigh line.
$P_{1}=-1 y_{1}$
$\left.P=100 \times 10^{-3}\right)(5)$
$\mathrm{P}=0.5 \mathrm{~N} \mathrm{Sec}$
(21) A rubber ball and lead ball of same size are moving with same velocity. Which ball have greater momentum and why?
Ans: As we know that $\mathrm{P}=\mathrm{m} \mathrm{v}$
According to given stateraent velpelty the lead and rublee bal is same so momentum will be directly P oport al to the rinas

As mass of the read pall islarger as conmare to the rubber ball so lead ball will have greater nomer tum.

RHWNGMNDNOLASTIC COLLISION

22. In what type of collision the total energy and momentum are conserved.

Ans: In every type of collision both momentum and total energy are always remain conserved because both are fundamental laws.
(23) What is the benefit to use the seat belt during drive the car?

Ans: The seat belt may increase the collision time during impact so the impulsive forces decrease.
(24) Find the value of v_{1}^{\prime} and v_{2}^{\prime} after elastic collision of light body with massive body at rest.

RWP-2014
Ans: Velocity of the lighter body after collision
$v_{1}^{\prime}=\left(\frac{m_{1}-m_{2}}{m_{1}+m_{2}}\right) v_{1}+\frac{2 m_{2} v_{2}}{m_{1}+m_{2}}$
$v_{1}^{\prime}=\left(\frac{0-m_{2}}{0+m_{2}}\right) v_{1}+\frac{2 m_{2}(0)}{m_{1}+m_{2}}$
$v_{1}=-v_{1}$
Velocity of the heavy body after collision
$v_{2}^{\prime}=\frac{2 m_{1}}{m_{1}+m_{2}} v_{1}+\frac{m_{2}+m_{1}}{m_{1}+m_{2}} v_{2}$
$v_{2}^{\prime}=\frac{2(0)}{0+m_{2}} v_{1}+\frac{m_{2}+0}{0+m_{2}}(0)$
$v_{2}^{\prime}=0$

3.9 FORCE DUE TO WATER ILTOW

(25) What are the factors non which orce dus to vatectow depens?

GRW-2014
Ans: Force due to vater flow is dalcelated as

$$
F=\frac{m}{t} v
$$

is it is lear that force due to water flow depend upon

- Mass of water striking per second
- Velocity of striking water
(26) A 1500kg car has its velocity reduced from $20 \mathrm{~ms}^{-1}$ to $15 \mathrm{~ms}^{-1}$ in 3 sec . How large was the average retarding force.
Ans: As, $\vec{F}=m \vec{a}$

$$
\sqrt{7}=\frac{-5)(15-20)}{3}
$$

$$
\vec{F}=-2500 N
$$

3.10 MOMENTUM AND EXPLOSIVE FORCES

(27) How would you find, the momentum of an explosive force? Explain with an example.

LHR-2016 (G-I)
Ans: Within an isolated system if an explosion takes place, the law of conservation of momentum holds. e.g.
When a shell explodes in mid-air, its fragments fly off in different directions but sum of linear momentum of all its fragments equals to the initial momentum of shell before explosion as shown in figure.
(28) A bullet in fired from a refile. Derive the relation for velocity of refile. LHR-2019 (G-II)

Ans: Recoil of gun:
Consider a bullet of mass m is fired from a gun of mass M with a velocity \vec{v}.
The gun experiences a recoil. It moves in opposite direction with
 velocity $\overrightarrow{v^{\prime}}$. Velocity $\overrightarrow{v^{\prime}}$ of recoil can be calculated by applying law of conservation of momentum.
Total momentum of the system before firing $=0$
After Firing:

Momentum of bullet $=m \vec{v}$
Momentum of gun $=M \overrightarrow{v^{\prime}}$
Total momentum of system after firing $=M \overrightarrow{v^{\prime}+m} \vec{\sim}$
According to law of cons Thation ofmentum, in tiel momenturn before collision and final momentum after colli ion mas be sams.

$M=-m v$

Negative sign indicates that direction of motion of gun is in opposite direction with respect to the direction of motion of bullet.

3.11 ROCKET PROPULSION

(29) What is the principle of rocket propulsion?

Ans: The propulsion of rocket is based on the law of conservation of morneate and third awd of motion.
The rocket engine expels gases by burning fuer in dounwro d rection. Win the passage of time, the momentum of gases jicrease dup to increas of thei rhass. Hence to keep the total monentum constant, the morn ntury of noce increases in the upward direction by thirdlave ofmotion.
Rocket incteat os is mumen t im by increasing its velocity.

3.12 PRACil CHIM MOTDN

(30) 1) escribe the two uses of Ballistic missiles.

Ahs: i) The Ballistic missiles are useful only for short ranges.
ii) The shooting of a missile on a selected distant spot is a major element of warfare
(31) What is the relation for maximum range of projectile?

Ans: The projectile gain maximum range when it is projected at angle of 45° So,
$R=\frac{V i^{2} \operatorname{Sin} 2 \theta}{g}$
$=\frac{v i^{2} \sin 90^{\circ}}{g}$
$R_{\text {max }}=\frac{V i^{2}}{g} \quad \because \sin 90^{\circ}=1$
(32) What is the horizontal acceleration of the projectile?

Ans: As the horizontal component of velocity for projectile motion remain constant throughout the motion. So the horizontal acceleration is zero. Because in the horizontal direction, there is no force on the projectile.
(33) What is the time taken by projectile to reach maximum height?

Ans: As $T=\frac{2 V i \sin \theta}{g}$
Above relation is for time of flight for whole path of projectile. But the time required to reach the maximum height of projectile is given by.
Time to reach maximum height $=\frac{\text { Time of flight }}{2}$
$t=\frac{v i \sin \theta}{g}$
(34) What kinds of missiles are used or long andshort ianges?

Ans: (i) For short ranges ballistic (un-ng vered amp ct -g Lided) mjssiles a e used.
(ii) For lorgranges guided an l / po wered miss iles are ased.
(35) What is clifferencebet veen ballistic inissilé, Ballistic trajectory and Ballistic flight?

Ans: Ballisti 1 1issile:
The on-povered al d un-guided missiles are called ballistic missile
Baizistic Tvajectory
The path followed by the ballistic missiles is called ballistic trajectory.
Ballistic Flight:
A ballistic flight is that in which a projectile is given an initial push and is then allowed to move freely due to inertia and under the action of gravity.
(36) If a ball $\left(B_{1}\right)$ is projected at angle of 20^{0} then by what angle another ball $\left(B_{2}\right)$ should be projected to gain same range as ball $\left(B_{1}\right)$.
Ans: To gain the same range of $\operatorname{Ball}\left(\mathrm{B}_{2}\right)$ as the ball $\left(\mathrm{B}_{1}\right)$, it should be propeted ang of 70° (neglecting air friction).
In other words if the sum of projected angles of 7 wb abjects are 90° her the ranges will have the same values.
(37) Show that the relation or the rage of poiectine is same for both angles of projection of 60^{0} and 30°.

Ans:

${\underset{K}{30^{\circ}}}=\frac{\mathcal{F}_{i}^{2} \sin 60^{\circ}}{g}$
$\sin 60^{\circ}=0.866$
$R_{30^{\circ}}=\frac{V_{i}^{2}(0.866)}{g}$
$R_{60^{\mathrm{o}}}=\frac{V_{i}^{2} \sin 2(60)}{g}$
$R_{60^{\circ}}=\frac{V_{i}^{2} \sin 120^{\circ}}{g} \quad \because \sin 120^{\circ}=0.866$
$R_{60^{\circ}}=\frac{V_{i}^{2}(0.866)}{g}$ \qquad
From (1) and (2) it is clear
$\mathrm{R}_{30^{\circ}}=\mathrm{R}_{60^{\mathrm{o}}}$
(38) If angle of projection of projectile is 90°, find its range.

SWL-2019
Ans: $\quad R=\frac{V_{i}^{2} \sin 2 \theta}{g}$
$R=\frac{V_{i}^{2} \sin 2\left(90^{\circ}\right)}{g}$
$\mathrm{R}=0$
(39) The horizontal range of projectile is four times of its maximan tright. Nnat is angle of projection?
Ans: $\quad R=\frac{V_{i}^{2} \sin 2 \theta}{g}$
$\mathrm{H}=\frac{v_{i}^{2} \sin 2}{2 g}-\frac{\theta}{2}$
by (1) vid ne eq(1) andeq(2) we get
$\mathrm{Rem} \theta=-H$
$4 H \tan \theta=4 H$
$4 H \tan \theta=4 H \quad \because R=4 H$
$\tan \theta=1$

$$
\theta=45^{\circ}
$$

(40) Which quantity remains same at all points on the trajectory of a projectile: either velocity or acceleration? Explain.
Ans: Acceleration of the projectile remains constant throughout the tajec ory while ve ocitt ef projectile continuously changing, it will me maximan at projection poilet arcopoint of landing and it will be minimwn at hoblest peint of the rajectory
(41) Show that irnge R and maximarage are velated as: $\frac{R}{R_{\max }}=\sin 2 \theta$

LHR-2018 (G-II)
Ans: $R=\sqrt{-\frac{i^{2}}{O_{3}} n_{3}}-$
$R_{\text {max }}=\frac{V_{i}^{2} \sin 2\left(45^{0}\right)}{g}=\frac{V_{i}^{2}}{g}$
puttineq (1) $R=R_{\text {max }} \sin 2 \theta$
$\frac{R}{R_{\max }}=\sin 2 \theta$

