U

	TOPIC WISE MULTIPLE	CHOICE QUESTI	ONS
4.1 W	ORK DONE BY A CONSTANT FORCE		TA COULU
(1)	Work is the dot product of	1-75	VGOGG
(-)	(a) force and distance	(b) force and velocity	
	(c) force and energy	(d) force and displace	ement
(2)	Work done is maximum when the angle b	etween force and dis	placement is
	$(a) 0^{\circ}$	(b) 30°	
n	(c) 50°	(d) 90°	
(13)(Work has dimensions as that of		LHR-2018 (G-I)
0	(a) momentum	(b) power	
	(c) torque	(d) force	
(4)	Work done will be zero when angle betwee	en Fandd is:	LHR 2016 (G-II)
	(a) 120°	(b) 90°	
	(c) 60°	(d) 0°	
(5)	Scalar product of force and velocity is:		FSD 2019 (G-I)
	(a) work	(b) power	
	(c) energy	(d) acceleration	
(6)	Dimension of work is		
	(a) [MLT]	(b) $[ML^2T^{-1}]$	
	(c) $[MLT^{-2}]$	(d) $[ML^2T^{-2}]$	
(7)	Work can be defined as		
	(a) $W = Fd\cos\theta$	(b) $W = Fd\sin\theta$	
	(c) $W = \vec{F} \times \vec{d}$	(d) $W = \overrightarrow{F}.\overrightarrow{v}$	
(8)	Work done is negative if θ is		FSD-2018
	(a) 30°	(b) 60°	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	(c) 180°	(d) 90^0	and continu
(9)	At which angle between force and displa	cement work dene by	y force is half than its
	maximum		1 Cure
	(a) 30°	(t))45°	D
	(c) 60°	(d) 90°	
(10)	Dimension of work is sume that of		
5	(a) r on entium	(b) torque	
1/1/	Adrib May	(d) inertia	
Λîm	The component of force in the direction of $(a) = air 0$	the displacement 'd	´ 1S
	(a) $F \sin \theta$	(D) $F \cos \theta$ (d) $E (d \sin \theta)$	
	(\mathbf{C}) r tailo	$(\mathbf{u}) \mathbf{r} (\mathbf{u} \operatorname{SINB})$	

F

(12)	If $\theta < 90^{\circ}$ work is said to be	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	(a) negative	(b) positive
	(\mathbf{c}) zero	(d) positive
(13)	When force and displacement are in opposi	te direction, then the work done is taken as
(13)	(a) positive	(h) Negative
	(c) zero	(d) Inizite
(14)		
(14)	(a) N m	(h) Ns
	(c) N m ⁻¹	(d) N s^{-1}
(15)	Wardisa	
MAN	(a) scalar quantity	(b) vector quantity
	(c) fixed quantity	(d) constant quantity
(16)	If $\theta > 90^{\circ}$ work is said to be	(a) constant quantity
(10)	(a) negative	(b) positive
	(c) $regaring c$	(d) none of these
(17)	The work done would be zero if the angle	between force and displacement is
(17)	(a) 180°	(h) 45°
	(c) 0°	$(d) 90^{\circ}$
(18)	The unit of work in CGS system is	
(10)	(a) ioule	(b) Newton
	(c) dyne	(d) erg
(10)	When a nerson holding a nail by the fo	\vec{F} is moving forward then the work
(\mathbf{I})	being done on the pail is	The T is moving forward then the work
	(a) maximum	(b) negative
	(c) minimum	(d) zero
(20)	lerg –	
	(a) 10^{10} I	(b) 10^{-7} I
	(c) 10^7 J	(d) 10^{-5} I
(21)	A body of mass 4kg is moving with a velo	city of 4m/sec. How much force is required
()	to stop the body with in a distance of one	meter
	(a) 16N	(b) 32N
	(c) 8N	(d) 64N
(22)	The work is said to be 1 J when the for	rce of 1N moves the body in its direction
	through a distance of	- 76 C(0)1100
	(a) 1 cm	(b) 1m
	(c) 1mm	
(23)	Area under force displacement en rve give	s $(1 \cup 1 \cup 1 \cup 1)$
	(a) distance covered	(b) work done
	(c) power	(d) none
(24)	Work cone by a person holds a bag of gro	oceries while standing still is
	(a) positive	(b) negative
MAR	(c) zero	(d) none of these
	WK DONE BY A VARIABLE FORCE	
(25)	When rocket moves away from the Earth	, then work is done
	(a) against centripetal force	(b) against force of gravity
	(c) against magnetic force	(d) against electrostatic force

N

	(26)	Work is a quantity which can be represen	ted by
		(a) numerical value	(b) unit
		(c) direction	(d) both a & b
	(27)	Work done by a variable force making an	gles at different points with displacement in
	`	moving the particle from one point to and	her is equal to the area under the curve of
		(a) F sin θ versus d	(b) F $\cos \theta$ versus d c(s θ
		(c) F cos 6 versus d	(d) F versus d $\cos \theta$
	(28)	When force acting on body is variable the	n work is determined by dividing
		(a) force into intervals	(b) displacement into intervals
		(c) both force and displacement into intervals	(d) all are correct
5	(29)	Force eravity varies as the	quare of distance from the Earth's center.
	'UN	(a) direct	(b) inverse
J	0	(c) reverse	(d) none of these
	(30)	Work done by a variable force for the first	t interval is
	()	(a) $F_n \cos\theta_n \Delta d_n$	(b) $F_1 \cos\theta_1 \Delta d_1$
		(c) $F_2 \cos\theta_2 \Delta d_2$	(d) $F_3 \cos\theta_3 \Delta d_3$
	4.3 W	ORK DONE BY GRAVITATIONAL FIE	
	(31)	Which of the following is non conservative	e force
	(-)	(a) friction	(b) air resistance
		(c) tension in string	(d) all of them
	(32)	Which is non conservative force?	FSD 2016 (G-I)
	~ /	(a) electric force	(b) magnetic force
		(c) gravitational force	(d) frictional force
	(33)	Which one is a conservative force:	BWP-2017 (G-II)
	~ /	(a) Elastic spring force	(b) Frictional force
		(c) Air resistance	(d) Tension in the string
	(34)	A force of 10N acts on the body and bod	y moves 10m distance perpendicular to it.
		Work done by the force on the body is	
		(a) 10J	(b) 100J
		(c) zero	(d) infinite
	(35)	A field in which work done in moving a be	ody in a closed path is zero is called
		(a) gravitational field	(b) electric field
		(c) conservative field	(d) ideal field
	(36)	Which one is the bigger unit of work	
		(a) 10J	(b) kilo joule
		(c) mega joule	(d) kile watt hour
	(37)	In conservative field the work done is ind	ependent of
		(a) path followed by the body	(b) direction
		(c) force	(d) none of these
	(38)	The total work done in a closed path in gr	avitational field is
		(a) maximum	(b) constant
~	AR	(C) 26TO	(d) none of these
N	1991	If a body of weight w is lifted through a h	eight 'h' from ground, then the work done
Ľ	00	by the gravity will be	
		(a) wg	(D) WN
		(c) –wh	(a) zero

	(40)	The field or space around the earth in which the	he gravitational forces a	icts on a body is called					
		(a) gravitational field	(b) electric field	TO COMUL					
		(c) magnetic field	(d) ideal field						
	4.4 PO	WER		1 Culo					
	(41)	Slope of work time graph is equal to		IJ					
		(a) force	(b) velocity						
	(40)	(c) power	(a) energy						
	(42)	1 Kilowat: hour is a unit of.	(b) power	RWP 2016 (G-1)					
0	AR	(a) chergy	(d) force						
AMA		3 joules of work is done in 3 seconds, then	nower is:	MTN 2015 (G-II)					
A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.		(a) 6 watt	(b) 3 watt						
		(c) 18 watt	(d) 1 watt						
	(44)	Power is written by equation							
		(a) $\vec{F}.\vec{v}$	(b) $\vec{F} \times \vec{v}$						
		(c) $\vec{F} \vec{d}$	(d) $\vec{F} \times \vec{d}$						
	(45)	Kilo watt is unit of	(u) 1 / <i>u</i>						
	(43)	(a) power	(b) energy						
		(c) torque	(d) momentum						
	(46)	1 MWh is equal to ioule	(u) momentum						
	(10)	(a) 3.6×10^3	(b) 3.6×10^6						
		(c) 3.6×10^9	(d) 3.6×10^{12}						
	(47)	The dimension of power is							
		(a) $[MLT^{-2}]$	(b) $[MLT^{-3}]$						
		(c) $[ML^{-1}T^{-2}]$	(d) $[ML^2T^{-3}]$						
	(48)	If an agent consumes a power of 1kilo-watt in one hour, the work done is							
		(a) one watt	(b) one kilo-watt						
		(c) one kilowatt-hour	(d) zero						
	(49)	The power needed to lift a mass of 5000g to height of 1m in 2sec is							
		(a) 24.5watt	(b) 2.45watt	π (C) π					
		(c) 0.245watt	(d) 245 wett	V/(0_000					
	(50)	The average power and instantal eous per-	er becomes equal i ^e ti	e work is done at					
		(a) variable rate	(b) uniform rate	D					
	(21)	(c) average rate	(d) high rate						
	(51)	One kilo wati no ir is the ancust of work	done in						
	- 00	(a) one day	(b) one year						
MAR	MN	No, one Sub-un Power is one kilowett if work is done at th	(u) one nour						
/NN/	9-0	Fower is one knowatt if work is done at the (a) 1000 Js^{-1}	(b) 100Js^{-1}						
0		(c) 318MJ	(d) 3.8 MJs^{-1}						

4.5 & 4	4.6 ENERGY, ABSOLUTE P.E, ESCAPE V & INTERCONVERSION OF P.E AND	/ELOCITY, WORK ENERG K.E	YPRINCIPLE
(53)	The energy possessed by a body due to its	s motion is called	21 (2000)
	(a) P.E	(b) K.E	0,100
	(c) elastic P.E	(d), G P.E	
(54)	If the velocity of an object is double then	its K E becomes:	
		MIRFUR (AJK) 2015, GR	W-2019 (G-II)
	(a) dough	(b) constant	
	(c) four times	(d) sixteen times	
(55)	is nor -conservative force.	GRW-2019 (G-I)	
NIN	(a) electric force	(b) magnetic force	
NNING	(c) gravitational force	(d) frictional force	
(56)	A body of mass 1.0 kg drops form the top	of a tower of height 50m, w	hat will be its
	K.E, 10 m below the top		(LHR 2014)
	(a) 490 J	(b) 49 J	
	(c) 98 J	(d) 980 J	
(57)	A stone is thrown up from the surface of	earth when it reaches at ma	ximum height,
	its K.E. is equal to		(LHR 2013)
	(a) mgh	(b) $\frac{1}{2}mv^2$	
	(c) Zero	(d) 2mgh	
(58)	The energy needed to lift a mass of 5000g	to height of 1m is	
			(FSD-2017)
	(a) 50 J	(b) 25 J	
	(c) 5 J	(d) 500 J	
(59)	The K.E of bullet of mass 500 gm moving	g at a speed of 200 ms ⁻¹ is:	(MTN 2015)
	(a) 250 <i>J</i>	(b) 125 <i>J</i>	
	(c) 2500 <i>J</i>	(d) 10,000 <i>J</i>	
(60)	Energy stored in spring is:	M	[N-2016 (G-II)
	(a) elastic P.E.	(b) gravitational P.E.	
	(c) K.E.	(d) chemical P.E.	
(61)	One kilo watt hour is equal to:	BV	VP-2019 (G-I)
	(a) 3.6 MJ	(b) 3.6 KJ	
	(c) 36 KJ	(d) 36 MJ	216000
(62)	Consumption of Energy by a 60 Watt Ele	ectric Bulb in 2 seconds is: BV	VF-2019 (G-II)
	(a) 120 J	(1) (1)	
$(\boldsymbol{\boldsymbol{63}})$	The work on board winding is ball?	0.51	
(03)	(a) showed in K.E.	(b) Change in DE	
	(a) change in FLP	(d) All type of energies	
man	to what by of a bady is dealed a 1 '	(u) An type of energies	ZE of the bad-
	whoch you a body is doubled and its	mass is also doubled then I	N.E. OI the dody
MA A	Decomes	(b) found the set	
-	(a) doubles	(b) four times $(d) = a + b + 1f$	
	(c) eight times	(u) one nair	

(65	b) Basic forms of mechanical energy	y are									
	(a) 3	(b) 2									
	(c) 5	(\mathbf{d}) 4									
(66	6) A body of mass five kg has P.E 98	3. Its height from the ground is									
	(a) 10m	(b) 5h									
	(c) 2m	((d) 8n.									
(67) When we raise the body above	When we raise the body above the surface of the earth its P.E within the									
	gravitation al tiel (
	(a) increases	(b) decreases									
- 0	(c) become zero	(d) remain same									
a ANNAS) If a spring is compressed, the wor	If a spring is compressed, the work done on it equals the									
MN A	(a) decrease in P.E	(b) increase in elastic P.E									
V	(c) decrease in elastic P.E	(d) none of these									
(69	P) P.E of a body increases this mean	s work done by gravity is									
	(a) positive	(b) negative									
	(c) zero	(d) infinite									
(70) If a body raised up from the earth	h's surface, the work done changes the									
	(a) gravitational P.E	(b) K.E									
	(c) Air resistance	(d) elastic P.E									
(71) Particles of different masses hav	e same momentum. Which of them has the highest									
	K.E which has										
	(a) least mass	(b) least speed									
/	(c) highest speed	(d) highest mass									
(72	2) The energy stored in the spring o	f watch is									
	(a) P.E	(b) K.E									
(72	(c) elastic P.E $\mathbf{I}_{\mathbf{R}}$ a registive modium the loss of	(a) nuclear energy									
(75	(a) agual to gain in K E plus the work done against friction										
	(b) equal to loss in K E plus the wo	rk done against friction									
	work done against friction										
	(d) only equal to gain in K.E	voik done ugunist medon									
(74	A body at rest may has										
× ×	(a) momentum	(b) velocity									
	(c) speed	(d) potential energy (C(U))									
(75	5) When two protons are brought cl	ose to each other then their									
	(a) K.E increases	(b) K.E ar c P.E both increases									
	(c) P.E increases	(d) P.E and K.E remain same									
(76	6) A brick of n ass 2kg fails from he	ight 10m. it velocity when its height is 5m									
	(a) 10 ms^{-1}	(b) $5ms^{-1}$									
/	(c) $2ms^2$	(d) 15ms ⁻¹									
(77) In explosice which energy is char	nged into sound energy									
- ANN	(a) natenergy	(b) nuclear energy (d) chemical energy									
	The operation of the demination of the second secon	(a) chemical energy									
$\nabla \sim 0$	(a) elastic P F	(b) gravitational P F									
	(a) clasue \mathbf{r} .	(d) electric energy									
		(u) clocule chergy									

	(79)	The velocity which is given to a body to	enable it to reach at infinite distance from							
		(a) terminal velocity	(b) orbital velocity (CO)							
		(c) final velocity	(d) escare velocity							
	(80)	If the speed of body increased by 3 times.	then its K. E is increased by							
	(00)	(a) 3 times	(b) 5 times							
		(c) 7 times	(d) 9 times							
	(81)	All the food a person eat in one day has a	bout the same energy as							
		(a) 3 liter of petrol	(b) 1.3 liter of petrol							
	0	(c) 1/3 liter of petrol	(d) 2/3 liter petrol							
nn	1821	The energy stored in the catapult when it	pulls is							
11/11/	JU	(a) elastic P.E	(b) P.E							
00	(02)	(c) K.E	(d) all of these							
	(83)	Mathematical form of work energy princi	iple is							
		(a) $Fd = \frac{1}{2}mv_{i}^{2} - \frac{1}{2}mv_{f}^{2}$	(b) $Fd = \frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2$							
		$\frac{2}{2}$ $\frac{2}{2}$								
		(c) $Fd = \frac{1}{m} m v_{f} - \frac{1}{m} m v_{i}$	(d) $Fd = \frac{1}{m}w_{f}^{2} + \frac{1}{m}w_{i}^{2}$							
	(a b)									
	(84)	The relation P.E=mgh is the work done by the gravitational force is true only								
		(a) above the surface of earth	(b) near the surface of earth							
	(95)	(c) below the surface of earth	(d) at the infinity $\mathbf{h}_{\mathbf{a}}$ and $\mathbf{h}_{\mathbf{a}}$ are the constant in the infinity							
	(85)	The relation P.E.=mgn is true only near t	ne surface of earth where the gravitational							
		(a) zero	(b) constant							
		(a) Zero	(d) minimum							
	(86)	By neglecting the air friction then relation	n for free falling body is							
	(00)	by neglecting the an includi, then relation	MTN-2018 (G-I)							
		(a) loss in P.E = gain in K.E	(b) loss in P.E $<$ gain in K.E							
		(c) gain in P.E > loss in K.E	(d) none of these							
	(87)	In the presence of air friction, the relation	n for free falling body is							
		(a) $mgh = -mv - fh$	(b) $mgh = -mv + fh$							
		(-) I (1) (2)	(1) (1) (1) (2)							
		(c) $mgh = fh - mv^2$	(a) $mgh = fg + nv$							
	(88)	Which of the following is mechanical ener	g T I I I I I I I I I I I I I I I I I I							
		(a) P.E	(b) K.E							
		(c) both a and b	(d) none of these							
	(89)	The total amount of energy at any point								
		(a) uecreates	(d) zero							
-	M	Abady of nass 5kg has P E 1001 Ite hoig	ht from the ground is							
AAA	11/1/	(a) 10m	(b) 8m							
MA ,	00	(c) 5m	(d) 2m							
\checkmark		· ·								

(91) The absolute P. E of the body at the earth's surface
(a)
$$U_x = -\frac{GM\pi}{gR}$$
 (b) $U_z = -\frac{GM\pi}{R}$
(c) $U_z = -\frac{GM\pi}{gR}$ (d) $U_z = -\frac{GM\pi}{R}$
(e) $U_z = -\frac{GM\pi}{gR}$ (e) $U_z = -\frac{GM\pi}{R}$
(f) $U_z = -\frac{GM\pi}{gR}$ (f) $U_z = -\frac{GM\pi}{gR}$
(g) In the expression $U_z = -\frac{GM\pi}{R}$ (h) $U_z = -\frac{GM\pi}{gR}$
(g) In the expression $U_z = -\frac{GM\pi}{R}$ (h) $U_z = -\frac{GM\pi}{gR}$
(g) $U_z = -\frac{GM\pi}{gR}$ (h) $U_z = -\frac{GM\pi}{gR}$
(g) In the expression $U_z = -\frac{GM\pi}{gR}$ (h) $U_z = -\frac{GM\pi}{gR}$
(g) In the expression $U_z = -\frac{GM\pi}{gR}$ (h) U_z (c) U_z (c) I_z (c) I

			(Toj	pic `	A Wise	NS Mu	WE Iltipl	R K e Cł	EY noice	S Qu	estio	ns)		a		M
	1	d	16	a	31	d	46	0	61	a	74	a	91	ħ	6 LGO	
	2	a	17	d	_32	ſ.)47	A	\Ø]	1	175	þ	92	Ъ	Cur	
	3	c	18	d	\$3,	25	748	C	68	d	78	b	93	a		
\bigcirc	伄	d	_1%_	4)	30	<u>(c</u>)	49	\a)		2	-79	d	94	a		
Y	161	b	20	<u>b</u>	135	Ś	50	H.	65	b	80	d	95	b		
	121	<u> p_ </u>	EL.	b	27	d	51	d	66	c	81	c	96 07	b		
- MANA	7r	12	2z	D h	3/ 20	a	52	a h	67	a h	82 92	a h	97 08	C		
WWWW	0	C	23 24	D C	30	C	53 54		00 60	D h	03 84	D h	90	a		
000	10	b	2 - 25	b	40	a	55	d	70	a	85	b				
	11	b	26	d	41	c	56	c	71	a	86	a				
	12	b	27	c	42	a	57	c	72	c	87	b				
	13	b	28	b	43	d	58	a	73	a	88	c				
	14	a	29	b	44	a	59	d	74	d	89	c				
	15	a	30	b	45	b	60	a	75	c	90	d				

SHORT QUESTIONS (From Textbook Exercise) 4.1. A person holds a bag of groceries while standing still, talking to a triend. A cashstationary with its engine running. From the stand point of work, how are these two situations similar? These two situations are similar because in both the situations, work done is zero. The Ans: reason is that the displacement covered in both the cases is zero, As $W = F.\mathcal{A}$ =F.0d = 0hC **Calculate the work done in kilo joules in lifting a mass of 10 kg (at a steady velocity)** through a vertical height of 10m. FSD-14(G-I), LHR-14(G-I)&(G-II), BWP-15(G-I), SWL-16, MTN-16 (G-II), DGK-16 (G-II), LHR-16 (G-II), MTN-18 (G-I), SWL-19, RWP-19 (G-I), MTN-19 (G-II), LHR-19 (G-II) Ans: Data Mass = m = 10 kgHeight = h = 10 mRequired Work done = W = ?Solution As we know that W = mghPutting values $W = 10 \times 9.8 \text{ x} \ 10 = 980 \text{ J} = 0.98 \text{ KJ}$ Result So, the work done in kilo joule is 0.98 kJ 4.4. In which case is more work done? When a 50 kg bag of books is lifted through 50 cm, or when a 50 kg crate is pushed through 2m across the floor with a force of 50 N. GRW-14(G-II), SGD-14(G-I), SGD-16 (G-II), MTN-16 (G-I), RWP-16 (G-I), LHR-16 (G-I), SWL-18 Case: I Ans: Mass = m = 50kgHeight = h = 50cm = 0.5 m $W_1 = m \times g \times h$ E].COI $W_1 = 50 \times 9.8 \ge 0.5 = 245 \text{ J}$ $W_1 = 245 J$ Case II Mass = m = 50kgDistance = d = 2mForce = F = 50 N = Fd 50 x = 100.Result

This shows that work done in lifting the bag of books is greater than the work done in pushing the crate.

4.5.	An object has 1 J of potential energy. Explain what does it mean?
	LHR-12,LHR-13(G-I),SGD-14(G-I),RWP-14(G-I),GRW-14(G-II),BWP-15(G-I),MTN-15(G-I)&(G-I), FSD-15(G-I) GRW-15(G-I) MIRPUR (AIK) 15 DCK-16 (G-I) RWP-16 (G-I) RWI-1 (G-I) CRW-16 (G-I)
	LHR-16 (G-1) & (G-11), SWL-17, LHR-17 (G-11), FSD-18, DGK-18 (G-1), GPV-18, SRW 12 ((+1))
Ans:	It means that 1J work is done in lifting the lody through some height and this work is
	stored in a body as potential energy and the body has ability to do one joule of work. OR
	If a body of weight IN is lifted through height of one meter. Then potential energy stored in the body is said to be 1 Joule.
4.7.	When a rocket ro-enters the atmosphere, its nose cone becomes very hot. Where
MA	does this heat energy come from?
N	GRW-12, LHR-13(G-II), DGK-15(G-I), BWP-15(G-I), SGD-15(G-II), MTN-15(G-I), LHR-15(G-I), SWL-16, BWP-16 (G-I),
	FSD-17, LHR-17(G-I), LHR-18 (G-I), BWP-19 (G-I), FSD-19 (G-I)
Ans:	When a rocket re-enters the atmosphere. It has to do work against air friction. As a result,
	some of its kinetic energy is converted into heat energy and as a result, its nose becomes hot.
4.9.	A girl drops a cup from a certain height, which breaks into pieces. What energy
	changes are involved?
	GRW-12,GRW-13(G-I),LHR-14(G-I),RWP-14(G-I),DGK-15(G-I),SGD-15(G-I)&(G-II),FSD-15(G-I), CRW 15(C D) MIRRUP (A W) 15 DCK 16 (C D) SWL 18 DCK 18 (C D) LUB 18 (C D)
Ance	GRW-15(G-1), MIRPUR (AJR) 15, DGR-10 (G-1), SWL-18, DGR-18 (G-1), LHR-18 (G-1) When a girl has a cup at certain height, cup has D.E. During the fall of cup. DE changes to
A115.	KE which becomes maximum when our hits the floor. This KE at floor breaks the our
	into piecos producing sound and heat. Thus, KE changes to work done in breaking, sound
	and hast dissingted. Therefore, shanges can be given as
	and near dissipated. Therefore, changes can be given as
	$P.E \rightarrow KE \rightarrow WOrK + sound + neat.$
	If air resistance is considered then
	$P.E \rightarrow work against friction + KE \rightarrow work + sound + heat$
	TOPIC WISE SHORT QUESTIONS
4.1 W	ORK DONE BY A CONSTANT FORCE
$\overline{(1)}$	What is meant by work done by a constant force?

Ans: The work done on a body by constant force is defined as the product of the magnitude of the displacement and the component of the force in the direction of displacement.

We define work done w by the force \vec{F} as the scalar product of \vec{F} and \vec{d}

 $W = \vec{F} \cdot \vec{d} = Fd\cos\theta = (F\cos\theta)d$

The quantity $(F\cos\theta)$ is the component of the force

displacement \vec{d} .

- (2) When a person pushing the wall away, then how much work is done on the wall?
- Ans: When the person pushes the ward away then displacement is zero

 $W = \vec{F}.\vec{d}$ As d=0Faces $=F(0)\cos\theta$ W = 0Hence, work is zero.

direction of the

n the

- What is the unit and dimension of work? (3) COAns: **Unit:** S.I unit of work is Joule. 1 Joule = 1N x 1m = Nm **Dimension:** W = Fd[W] = [F][d]Where [Show that work done against frictional force is negative? $W = \vec{F} \cdot \vec{d}$ We know that $= Fd\cos\theta$ Since the frictional force is always opposite to the displacement. So $\theta = 180^{\circ}$ $W = Fd\cos(180^{\circ})$ W = -Fd $: \cos 180^\circ = -1$ Hence work done against the frictional force is negative. Define work. Explain when it is maximum and when it is zero. (5) Work: The dot product of force and displacement is called work. Ans: $W = \vec{F} \cdot \vec{d}$ Maximum work: The work done has its maximum value, when force \vec{F} and displacement \vec{d} are parallel to each other. $W = \overrightarrow{F} \cdot \overrightarrow{d}$ $= Fd\cos\theta$ $\theta = 0^{\circ}$ $= Fd\cos(0^{\circ})$ W = Fd $\therefore \cos 0^{\circ} = 1$ Zero work: The work done has its minimum value, when force \vec{F} and displacement \vec{d} are perpendicular to each other. $W = \overrightarrow{F} \cdot \overrightarrow{d}$ $= Fd\cos\theta$ $\theta = 90$ $= Fd\cos(90^{\circ})$ W = 0cos 90° (6) In what situation work done by a force on a body in positive, negative and zero? **FSD-2018** Work done is positive when force and displacement are in same direction. \ng
 - V' = **F.a** = Fd cosθ
 - If $\theta = 0^\circ = Fd \cos(0^\circ) = Fd$

Work done is negative when force and displacement are opposite to each other

4.3 WORK DONE BY GRAVITATIONAL FIELD

- (12) What is essential condition for conservative field?
- Ans: A field is said to be conservative field if it follows the following conditions:
 (i) In conservative field the work done is independent of the path followed.
 (ii) Work done in a closed path must be zero in conservative field.
- (13) Define Gravitational field. Is it conservative field?
- Ans: Gravitational Field:

The space around the earth in which its gravitational force acts on a body is called gravitational field.

Yes, gravitational field is a conservative field because work done along a closed path in gravitational field is zero. Also work done in a gravitational field is independent of path follow.

4) Define conservative field Give its two examples.

Ans: "The field in which the work done in moving a body from one place to another place is independent of the path followed."

Example: Gravitational field Electric field

(15) Define work, gravitational field.

Ans: Work:

"The product of the magnitudes of the displacement and the component of force in the direction of displacement is called work".

Mathematically,

 $W=Fdcos\theta$

 $W = \vec{F} \cdot \vec{d}$

Gravitational Field:

"The space around the earth in which its gravitational force acts on a body is called gravitational field."

(16) Differentiate between conservative and non-conservative forces. Give examples. FSD-2017

Ans:

Conservative Force	Non Conservative Force
• Work done by conservative force is	• Work done by non conservative force
independent of path followed	depends upon the path followed.
• Work done by conservative force	• Work done by non conservative force
along a closed path is zero.	along a closed path is not zero.
• Examples of conservative forces are	• Example of non conservative forces are
gravitational force, elastic spring force	frictional force, air resistance, ter s on in-
and electric force etc.	string, normal force, propulsion force of
	locket prinotor.

- (17) A car is moving in a circle of radius r. It completes four revolutions and terminates its journey at starting point. How much work is done by the car? Explain. LHR-2019 (G-I)
 Ans: When a body move in a circle, force and displacement are perpendicular to each other
 - W = F.d= F(1 cos θ = F(1 cos θ = 0

So total work done will be zero to complete four revolution. Also in this case, the displacement of body is equal to zero because its initial and final position is same. So, when the displacement is work done will be zero.

SGD-2013

LHR-2016 (G-II)

(0)

4.4 POWER

- Define average power and instantaneous power. (18)
- Ans: **Average Power:**

It is the ratio of total work done to the total time taken by a body. If work $\Delta W'$ is done in a time interval Δt then

$$P_{av} = \frac{\Delta W}{\Delta t}$$
Instant an equ: Power:

It is defined as the work done in an extremely small interval of time (approaching to ΔW 1:....

J.
$$P_{ins} = \prod_{\Delta t \to 0} \frac{1}{\Delta t}$$

A 70 kg man runs up a long flight of stairs in 4s. The vertical height of the stairs is 4.5m. Calculate power output in watts.

Ans:

m

(19)

m = 70kg
h = 4.5 m
t = 4sec
P =?

$$P = \frac{mgh}{t}$$

$$= \frac{70 \times 9.8 \times 4.5}{4}$$

$$P = 7.7 \times 10^2 W$$

- **Prove the relation** $P = \vec{F}.\vec{V}$ (20)
- Consider a constant force \vec{F} acts on a body and it moves through a displacement $\Delta \vec{d}$ in Ans: time Δt , then instantaneous power is given by

$$P_{ins} = \lim_{\Delta t \to 0} \frac{\Delta W}{\Delta t}$$

We know that $\Delta W = \vec{F} \cdot \Delta \vec{d}$

$$P = \lim_{\Delta t \to 0} \frac{\vec{F} \cdot \Delta \vec{d}}{\Delta t}$$

$$= \vec{F} \cdot \lim_{\Delta t \to 0} \frac{\Delta \vec{d}}{\Delta t}$$
Since $\lim_{\Delta t \to 0} \frac{\Delta \vec{d}}{\Delta t} = \vec{V}$
Hence $\vec{F} = \vec{F} \cdot \vec{V}$
What is the **S I unit of power' betine it.**
S.I unit of power is watt.
Wat': When one joule of work is done in one second, then power is said to be one watt.

watt =
$$\frac{1J}{1S}$$

(21) Ans:

Or 1watt =Js⁻¹

((22)	Prove that 1kWh = 3.6 MJ.
I	Ans:	1kWh = 1000 W × 1hour
		$1 \text{kWh} = 1000 \text{W} \times 3600 \text{ s}$
		$1 \text{kWh} = 3.6 \times 10^6 \text{J} = 3.6 \text{ MJ}$
((23)	Define power. Write its S1 unit. LHR-2012
I	Ans:	Power is defined as the rate at which work is done.
		Mathematically Power = Work
		like t
		Unit: of poven:
NAA	ND	The Bl unit of power is watt which is defined as:
MN V	10	If one Joule of work is done in one second then power will be one watt.
~		$W = Js^{-1}$
(24)	Convert 1.4 kW into joules/second. RWP-2019 (G-1)
F	Ans:	1.4 KW
		$1 \times 100 \text{ J}^{-1}$
		$=1.4 \times 100 \text{ Js} \qquad \therefore \text{ W}=\text{Js}$
		=1400 Js ⁻¹
	1.5 EN (25)	lergy and work energy principle
(23)	A car is moving with constant speed along a level road with no net force acting on it.
	۱nc•	When a car is moving with constant speed along a level road with no net force acting on
ľ	1115.	it the net work done on it is zero
		According to work energy principle
		Work done equals the change in its kinetic energy.
		As speed of car is constant, so change in kinetic energy $= 0$
		Therefore, net work done will be equal to zero.
((26)	Define energy and write its basic forms?
I	Ans:	Energy: It is defined as the capacity of a body to do work is called energy.
		There are two basic forms of energy.
		(i) Kinetic Energy
		(ii) Potential Energy
		Kinetic Energy: It is possessed by a body due to its motion and is given by the fermula
		$K.E = \frac{1}{2}mv^2$
		growitational field
		Mat-amatically P.F not
(270	
NAA	AS!	Elastic P.E. The energy stored in a compressed spring is the P.E possessed by the spring
MM	0	due to its compressed or stretched state is called elastic P.E.
~		*

(28) Explain Work Energy Pricnciple.

Ans This principle states that

"The work done on the body is equal to the change in its kinetic energy?

Explanation:

INNN

Consider a body of mass n is moving with velocity v_i . A force F acts through a distance d increases the velocity to v_i , then from equation of motion.

2as =:
$$v_f^2 \cdot v_i^2$$
 (since s=d)
2ad = $v_f^2 - v_i^2$
d = $\frac{1}{2a}(v_f^2 - v_i^2)$ (1)

From 2^{nd} Law of motion, F = ma(2) Multiplying eq (1) and (2) we get

F.d = ma.
$$\frac{1}{2a}(v_f^2 - v_i^2)$$

or
$$\mathbf{Fd} = \frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2 = \mathbf{K}\cdot\mathbf{E}_{\mathbf{f}} - \mathbf{K}\cdot\mathbf{E}_{\mathbf{f}}$$

4.6 INTERCONVERSION OF P.E. AND K.E

- (29) When an arrow is shot from its bow? It has K.E. From where does it get the kinetic Energy?
- **Ans:** When we pull the string, we have to do some work. This work is stored in the string as its elastic potential energy.

When an arrow is shot from its bow this elastic potential energy is converted into the kinetic energy of the arrow.

4.7 CONSERVATION OF ENERGY

- (30) Define law of conservation of energy.
- **Ans:** Law of conservation of energy states that "Energy can never be created nor be destroyed but it can be converted from one form to other, and the total amount of energy remains constant".

V

FSD-2019 (G-I)

6