TOPIC WISE MULTIPLE CHOICE QUESTIONS

4.1 WORK DONE BY A CONSTANT FORCE

(1) Work is the dot product of
(a) force and distance
(c) force anú energy

(b) force and velocity
(d) iorces-and displacement
(2) Work dan i masimp whenthe gle wetween force and displacement is
(a) 0°
(b) 30°
(a) 50°
(d) 90°
vork has dimensions as that of
LHR-2018 (G-I)
(a) momentum
(b) power
(c) torque
(d) force
(4) Work done will be zero when angle between \vec{F} and \vec{d} is:

LHR 2016 (G-II)
(a) 120°
(b) 90°
(c) 60°
(d) 0°
(5) Scalar product of force and velocity is:

FSD 2019 (G-I)
(a) work
(b) power
(c) energy
(d) acceleration
(6) Dimension of work is
(a) [MLT]
(b) $\left[\mathrm{ML}^{2} \mathrm{~T}^{-1}\right]$
(c) $\left[\mathrm{MLT}^{-2}\right]$
(d) $\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]$
(7) Work can be defined as
(a) $W=F d \cos \theta$
(b) $W=F d \sin \theta$
(c) $W=\vec{F} \times \vec{d}$
(d) $W=\vec{F} \cdot \vec{v}$
(8) Work done is negative if θ is

FSD-2018
(a) 30°
(b) 60°
(c) 180°
(d) 90°
(9) At which angle between force and displacement work dene D y oce is half than iis maximum
(a) 30°
(c) 60°
(b) 44°
(d)
(10) Dimencuo of vo is same that of
(a) monentum
(b) torque
(c) 10 Pen
(d) inertia
(1) The component of force in the direction of the displacement ' d ' is
(a) $\mathrm{F} \sin \theta$
(b) $\mathrm{F} \cos \theta$
(c) $\mathrm{F} \tan \theta$
(d) $\mathrm{F}(\mathrm{d} \sin \theta)$
(12) If $\theta<90^{0}$ work is said to be
(a) negative
(b) positive
(c) zero
(d) none of these
(13) When force and displacement are in oppo it dinechon then the work dome ic aken as
(a) positive
(b) Negative
(c) zero
(d) Incite
(14)

1 Joule
(b) Ns
(a) Nm
(d) $\mathrm{N} \mathrm{s}^{-1}$
(15) $\sqrt{\text { ark is a }}$
(b) vector quantity
(d) sLaiar quantity
(d) constant quantity
(16) If $\theta>90^{\circ}$ work is said to be
(a) negative
(b) positive
(c) zero
(d) none of these
(17) The work done would be zero, if the angle between force and displacement is
(a) 180°
(b) 45°
(c) 0°
(d) 90°
(18) The unit of work in CGS system is
(a) joule
(b) Newton
(c) dyne
(d) erg
(19) When a person holding a pail by the force \vec{F} is moving forward then the work being done on the pail is
(a) maximum
(b) negative
(c) minimum
(d) zero
(20) $\quad 1 \mathrm{erg}=$
(a) $10^{10} \mathrm{~J}$
(b) $10^{-7} \mathrm{~J}$
(c) $10^{7} \mathrm{~J}$
(d) $10^{-5} \mathrm{~J}$
(21) A body of mass 4 kg is moving with a velocity of $\mathbf{4 m} / \mathrm{sec}$. How much force is required to stop the body with in a distance of one meter
(a) 16 N
(b) 32 N
(c) 8 N
(d) 64 N
(22) The work is said to be $1 \mathbf{J}$ when the force of 1 N moves the body in its direction through a distance of
(a) 1 cm
(b) 1 m
(c) 1 mm
(d) 1 km
(23) Area under force displacmentrirvegires
(a) distancerovered
(b) worl'cione
(c) powe
(d) none
(24) Work cone b. a persen hoide a bag of groceries while standing still is
(a) 万osit ve
(b) negative
(c) $2 \cdot \mathrm{rO}$
(d) none of these

4SUVGKK DONE BY A VARIABLE FORCE

(25) When rocket moves away from the Earth, then work is done
(a) against centripetal force
(b) against force of gravity
(c) against magnetic force
(d) against electrostatic force
(26) Work is a quantity which can be represented by
(a) numerical value
(b) unit
(c) direction
(d) both a \& b
(27) Work done by a variable force making angl at dine rent points with displacement in moving the particle from mene point o another is ec us to the area under the curve of
(a) $\mathrm{F} \sin \theta$ versus d
(b) $F \cos \theta$ vern us a cos θ
(c) $F \cos 6$ versus d
(d) F versus $d \cos \theta$
(28) When force at ting or body is variable then work is determined by dividing
(a) force into in ervals
(b) displacement into intervals
(c) bi th or and displacement into intervals
(d) all are correct Hare e lt gravity varies as the \qquad square of distance from the Earth's center.
(a) direct
(b) inverse
(c) reverse
(d) none of these
(30) Work done by a variable force for the first interval is
(a) $\mathrm{F}_{\mathrm{n}} \cos \theta_{\mathrm{n}} \Delta \mathrm{d}_{\mathrm{n}}$
(b) $\mathrm{F}_{1} \cos \theta_{1} \Delta \mathrm{~d}_{1}$
(c) $\mathrm{F}_{2} \cos \theta_{2} \Delta \mathrm{~d}_{2}$
(d) $\mathrm{F}_{3} \cos \theta_{3} \Delta \mathrm{~d}_{3}$

4.3 WORK DONE BY GRAVITATIONAL FIIELD

(31) Which of the following is non conservative force
(a) friction
(b) air resistance
(c) tension in string
(d) all of them
(32) Which is non conservative force?

ESD 2016 (G-I)
(a) electric force
(b) magnetic force
(c) gravitational force
(d) frictional force
(33) Which one is a conservative force:

BWP-2017 (G-II)
(a) Elastic spring force
(b) Frictional force
(c) Air resistance
(d) Tension in the string
(34) A force of 10 N acts on the body and body moves 10 m distance perpendicular to it. Work done by the force on the body is
(a) 10 J
(b) 100 J
(c) zero
(d) infinite
(35) A field in which work done in moving a body in a closed path is zero is called
(a) gravitational field
(b) electric field
(c) conservative field
(d) ideal field
(36) Which one is the bigger unit of work
(a) 10 J
(b) kilo joule
(c) mega joule
(d) kilo watt hour
(37) In conservative field the work don. is madepadent of
(a) path followed by the body

(b) direction
(c) for e
(d) none of these
(38) The total on ma dosed matin gravitational field is
(a) max $m i n$
(b) constant
(c) fur o
(d) none of these

If a jour of weight w is lifted through a height ' h ' from ground, then the work done by the gravity will be
(a) wg
(b) ah
(c) $-w h$
(d) zero
(40) The field or space around the earth in which the gravitational forces acts on a body is called
(a) gravitational field
(b) electric field
(c) magnetic field
(d) ideal field

4.4 POWER

(41) Slope of work time grapl is equain
(a) force
(c) pover

(b) velocity
(a) energy
(42) 1 Kilowat houris: unit df.
(b) power
(a) Fieryy
(c) D eßue
(d) force

3 joules of work is done in $\mathbf{3}$ seconds, then power is:
MTN 2015 (G-II)
(a) 6 watt
(b) 3 watt
(c) 18 watt
(d) 1 watt
(44) Power is written by equation
(a) $\vec{F} \cdot \vec{v}$
(b) $\vec{F} \times \vec{v}$
(c) $\vec{F} \cdot \vec{d}$
(d) $\vec{F} \times \vec{d}$
(45) Kilo watt is unit of
(a) power
(b) energy
(c) torque
(d) momentum
(46) 1 MWh is equal to \qquad joule
(a) 3.6×10^{3}
(b) 3.6×10^{6}
(c) 3.6×10^{9}
(d) 3.6×10^{12}
(47) The dimension of power is
(a) $\left[\mathrm{MLT}^{-2}\right]$
(b) $\left[\mathrm{MLT}^{-3}\right]$
(c) $\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]$
(d) $\left[\mathrm{ML}^{2} \mathrm{~T}^{-3}\right]$
(48) If an agent consumes a power of 1kilo-watt in one hour, the work done is
(a) one watt
(b) one kilo-watt
(c) one kilowatt-hour
(d) zero
(49) The power needed to lift a mass of 5000 g to height of 1 m in 2 sec is
(a) 24.5 watt
(b) 2.45 watt
(c) 0.245 watt
(d) 245 wat
(50) The average power and instantareous per peoncs equal if the worn is done at
(a) variable rate
(c) averas rate
(b) uniform are
(d) high rate
(51) One kio dat 10 m is the andunt or work done in
(a) pre clay
(b) one year
(c) b)
(d) one hour
(52) Oower is one kilowatt if work is done at the rate of
(a) $1000 \mathrm{Js}^{-1}$
(b) $100 \mathrm{Js}^{-1}$
(c) 318 MJ
(d) $3.8 \mathrm{MJs}^{-1}$

4.5 \& 4.6 ENERGY, ABSOLUTE P.E, ESCAPE VELOCITY, WORK ENERGY PRINCIPLE

 \& INTERCONVERSION OF P.E AND K.E(53) The energy possessed by a body due to its motion is called
(a) P.E
(c) elastic P.E
(b) K. C
(d) GPE
(54) If the velocity of an object is dortle ther its ELEeculaes:

MLRIUR (AJK) 2015, GRW-2019 (G-II)
(a) dou*
(b) constant
(c) four times
(d) sixteen times

is nor-conservative force.

GRW-2019 (G-I)
(a) eecric force
(b) magnetic force
(c) gravitational force
(d) frictional force
(56) A body of mass 1.0 kg drops form the top of a tower of height 50 m , what will be its K.E, 10 m below the top
(LHR 2014)
(a) 490 J
(b) 49 J
(c) 98 J
(d) 980 J
(57) A stone is thrown up from the surface of earth when it reaches at maximum height, its K.E. is equal to
(LHR 2013)
(a) mgh
(b) $\frac{1}{2} m v^{2}$
(c) Zero
(d) 2 mgh
(58) The energy needed to lift a mass of 5000 g to height of 1 m is
(FSD-2017)
(a) 50 J
(b) 25 J
(c) 5 J
(d) 500 J
(59) The K.E of bullet of mass 500 gm moving at a speed of $200 \mathrm{~ms}^{-1}$ is:
(MTN 2015)
(a) 250 J
(b) 125 J
(c) 2500 J
(d) $10,000 \mathrm{~J}$
(60) Energy stored in spring is:

MTN-2016 (G-II)
(a) elastic P.E.
(b) gravitational P.E.
(c) K.E.
(d) chemical P.E.
(61) One kilo watt hour is equal to:

BWP-2019 (G-I)
(a) 3.6 MJ
(b) 3.6 KJ
(c) 36 KJ
(d) 36 MJ
(62) Consumption of Energy by a 60 Watt Electric Bu市in 2 seconds is

BWP-2019 (G-II)
(a) 120 J
(b) 60 I
(c) 30%
(d) 0.5 J
(63) The woth en rigypriacipie is valia for:
(a) charge ih K.E
(b) Change in P.E
(c) llanse nEP.E
(d) All type of energies
(4) (f) velocity of a body is doubled and its mass is also doubled then K.E of the body becomes
(a) doubles
(b) four times
(c) eight times
(d) one half
(65) Basic forms of mechanical energy are
(a) 3
(b) 2
(c) 5
(d) 4
(66) A body of mass five kg has P.E 98 I . Its height fromt he ground is
(a) 10 m
(c) 2 m
(b) 5 in

When we laise tie body above the syrface of the earth its P.E within the gravitation al teld
(a) increase:
(b) decreases
(c) e conhe zers
(d) remain same
(6). If a spring is compressed, the work done on it equals the
(a) decrease in P.E
(b) increase in elastic P.E
(c) decrease in elastic P.E
(d) none of these
(69) P.E of a body increases this means work done by gravity is
(a) positive
(b) negative
(c) zero
(d) infinite
(70) If a body raised up from the earth's surface, the work done changes the
(a) gravitational P.E
(b) K.E
(c) Air resistance
(d) elastic P.E
(71) Particles of different masses have same momentum. Which of them has the highest K.E which has
(a) least mass
(b) least speed
(c) highest speed
(d) highest mass
(72) The energy stored in the spring of watch is
(a) P.E
(b) K.E
(c) elastic P.E
(d) nuclear energy
(73) In a resistive medium, the loss of P.E of any body is
(a) equal to gain in K.E plus the work done against friction
(b) equal to loss in K.E plus the work done against friction
(c) equal to gain in K.E minus the work done against friction
(d) only equal to gain in K.E
(74) A body at rest may has
(a) momentum
(b) velocity
(c) speed
(d) potential energy
(75) When two protons are brought close to tach other then their
(a) K.E increases
(b) K.E ard P E bcth inc eases
(c) P.E increases
(a) P.EAnd K.E 1 sinai 2 ame
(76) A brick a ass 2 kg faing trom heigh 10 m it velecty when its height is 5 m
(a) 10 rm
(b) $5 \mathrm{~ms}^{-1}$
(c) $2 \mathrm{~ms}^{-1}$
(d) $15 \mathrm{~ms}^{-1}$
(77) In aplosicn which energy is changed into sound energy
1a, heitencrgy
(b) nuclear energy
(c) molecular energy
(d) chemical energy
(78) The energy stored in a dam is
(a) elastic P.E
(b) gravitational P.E
(c) K.E
(d) electric energy
(79) The velocity which is given to a body to enable it to reach at infinite distance from earth is called
(a) terminal velocity
(b) orbital velocity,
(c) final velocity
(d) escane velogity
(80) If the speed of body increased by 3 times, then its K. Eis inc eased by
(a) 3 times
(b) 5 inhes

(d) $9+:$ ines
(81) All the s.ond person ent in one dav bas about the same energy as
(a) 3 liter a petro
(b) 1.3 liter of petrol
(c) 1,3 liten cf betrel
(d) $2 / 3$ liter petrol
82) The energy stored in the catapult when it pulls is
(a) elastic P.E
(b) P.E
(c) K.E
(d) all of these
(83) Mathematical form of work energy principle is
(a) $F d=\frac{1}{2} m v_{i}^{2}-\frac{1}{2} m v_{f}{ }^{2}$
(b) $F d=\frac{1}{2} m v_{f}{ }^{2}-\frac{1}{2} m v_{i}^{2}$
(c) $F d=\frac{1}{2} m v_{f}-\frac{1}{2} m v_{i}$
(d) $F d=\frac{1}{2} m v_{f}^{2}+\frac{1}{2} m v_{i}^{2}$
(84) The relation $\mathrm{P} . \mathrm{E}=\mathrm{mgh}$ is the work done by the gravitational force is true only
(a) above the surface of earth
(b) near the surface of earth
(c) below the surface of earth
(d) at the infinity
(85) The relation P.E=mgh is true only near the surface of earth where the gravitational field is
(a) zero
(b) constant
(c) maximum
(d) minimum
(86) By neglecting the air friction, then relation for free falling body is MTN-2018 (G-I)
(a) loss in P.E = gain in K.E
(b) loss in P.E < gain in K.E
(c) gain in P.E > loss in K.E
(d) none of these
(87) In the presence of air friction, the relation for free falling body is
(a) $m g h=\frac{1}{2} m v^{2}-f h$
(b) $m g h=\frac{1}{2} m v^{2}+f h$
(c) $m g h=f h-\frac{1}{2} m v^{2}$
(d) $m g h=f g+\frac{1}{2}$, mov
(88) Which of the following is mechalical end.g.
(a) P.E
(k$)$ K.E
(c) both-a mind
(d) none of these
(89) The totas mo intof enerey any anint
(a) decrea.es
(b) increases
(c) 6 main con tha
(d) zero
$90 / 1$ ho d Dode mass 5 kg has P.E 100J. Its height from the ground is
(a) 10 m
(b) 8 m
(c) 5 m
(d) 2 m
(91) The absolute P.E of the body at the earth's surface
(a) $U_{g}=-\frac{G M}{2 g R}$
(c) $U_{g}=-\frac{G M m}{g R}$
(b) $U_{g}=-\frac{G M m}{R}$
(92) In the eprtscien $=-\frac{G L m}{h}$, hy negative sign shows the earth's gravitational field for mass i:
(b) attractive
(a) zero
(d) none of these
(113) Escape velocity of a body depends upon
(a) mass of planet
(b) velocity of planet
(c) mass of body
(d) both a \& c
(94) The escape velocity of the earth is
(a) greater than moon
(b) less than moon
(c) equal to the moon
(d) none of these
(95) The relation between orbital and escape velocity is
(a) $V_{\text {esc }}=\frac{1}{\sqrt{2 V_{0}}}$
(b) $V_{\text {esc }}=\sqrt{2} V_{0}$
(c) $V_{e s c}=2 V_{0}$
(d) $V_{e s c}=\frac{1}{2 V_{0}}$
(96) The ratio of escape velocity to the orbital velocity is
(a) $\frac{1}{\sqrt{2}}$
(b) $\sqrt{2}$
(c) 1
(d) 2

4.7 CONSERVATION OF ENERGY

(97) Energy can be transformed from one kind into another but the total amount of energy
(a) changes
(b) decrease
(c) remain same
(d) all of these
(98) The conservation of energy is written as
(a) Total energy $=$ K.E + P.E
(b) total energ $y=K . E \cdot P \cdot E$
(c) K.E + total energy $=$ P.E
(d) D.E T TotTencrey $=K E$

ANSWER KEYS

(Topic Wise Multiple Choice Questions)

SHORT QUESTIONS

(From Textbook Exercise)
4.1. A person holds a bag of groceries while standing still. talling o triend. Aco stationary with its engine running Fron the stand oint of work, how are Lese two situations similar?
Ans: These two situations are similr brcalse in buth the sttotions, work done is zero. The reason(15 that theraimpern covered in both he cases is zero, As
$W=\vec{F} . \vec{a}$
$W=\vec{F} .0$
$(\therefore d=0)$
$y=0$
4. Calculate the work done in kilo joules in lifting a mass of 10 kg (at a steady velocity) through a vertical height of 10 m .
FSD-14(G-I), LHR-14(G-I)\&(G-II), BWP-15(G-I), SWL-16, MTN-16 (G-II), DGK-16 (G-II), LHR-16 (G-II), MTN-18 (G-I), SWL-19, RWP-19 (G-I), MTN-19 (G-II), LHR-19 (G-II)
Ans: Data Mass $=\mathrm{m}=10 \mathrm{~kg}$
Height $=\mathrm{h}=10 \mathrm{~m}$
Required
Work done $=\mathrm{W}=$?
Solution
As we know that
$\mathrm{W}=\mathrm{mgh}$
Putting values
$\mathrm{W}=10 \times 9.8 \times 10=980 \mathrm{~J}=0.98 \mathrm{KJ}$

Result

So, the work done in kilo joule is 0.98 kJ
4.4. In which case is more work done? When a 50 kg bag of books is lifted through 50 cm , or when a 50 kg crate is pushed through 2 m across the floor with a force of 50 N .

GRW-14(G-I), SGD-14(G-I), SGD-16 (G-II), MTN-16 (G-I), RWP-16 (G-I), LHR-16 (G-I), SWL-18
Ans: Case: I
Mass $=\mathrm{m}=50 \mathrm{~kg}$
Height $=\mathrm{h}=50 \mathrm{~cm}=0.5 \mathrm{~m}$
$\mathrm{W}_{1}=\mathrm{m} \times \mathrm{g} \times \mathrm{h}$
$\mathrm{W}_{1}=50 \times 9.8 \times 0.5=245 \mathrm{~J}$
$\mathbf{W}_{\mathbf{1}}=\mathbf{2 4 5} \mathbf{J}$
Case II
Mass $=\mathrm{m}=50 \mathrm{~kg}$
Distance $=\mathrm{d}=2 \mathrm{~m}$
Force $=\mathrm{F}-50 \mathrm{~N}$
$5=F C$
$V_{2}=50 \times 2$

$$
v_{2}=1005
$$

$Q_{W 2}=100 \mathrm{~J}$

Result

This shows that work done in lifting the bag of books is greater than the work done in pushing the crate.
4.5. An object has $1 \mathbf{J}$ of potential energy. Explain what does it mean?

LHR-12,LHR-13(G-I),SGD-14(G-I), RWP-14(G-I),GRW-14(G-II),BWP-15(G-I), MTN-15(~I)\&(G-IN, FSD-15(G-I),GRW-15(G-I),MIRPUR (AJK) 15, DGK-16 (G-I), BWP-16 (G-I).RWI-1], (G-I), GRW-. 6 ((T. (I).

Ans: It means that 1 J work is done in liting the lecuy thredgh some height and anis work is stored in a body as potentimergy ind he bot Las at it ity to do one joule of work.

If a bodv of veright intis ilited threchg height of one meter. Then potential energy stored in the bod is sicid to be Joule.
4.7. When a rack t re-cmers the atmosphere, its nose cone becomes very hot. Where Ines tos heat energy come from?
GRW-12, LHR-13(G-II), DGK-15(G-I), BWP-15(G-I), SGD-15(G-II), MTN-15(G-I), LHR-15(G-I), SWL-16, BWP-16 (GI), FSD-17, LHR-17(G-I), LHR-18 (G-I), BWP-19 (G-I), FSD-19 (G-I)
Ans: When a rocket re-enters the atmosphere. It has to do work against air friction. As a result, some of its kinetic energy is converted into heat energy and as a result, its nose becomes hot.
4.9. A girl drops a cup from a certain height, which breaks into pieces. What energy changes are involved?
GRW-12, GRW-13(G-I),LHR-14(G-I),RWP-14(G-I),DGK-15(G-I),SGD-15(G-I)\&(G-II),FSD-15(G-I), GRW-15(G-I), MIRPUR (AJK) 15, DGK-16 (G-I), SWL-18, DGK-18 (G-I), LHR-18 (G-II)
Ans: When a girl has a cup at certain height, cup has P.E. During the fall of cup, PE changes to KE which becomes maximum when cup hits the floor. This KE at floor breaks the cup into pieces producing sound and heat. Thus, KE changes to work done in breaking, sound and heat dissipated. Therefore, changes can be given as

$$
\text { P.E } \rightarrow \mathrm{KE} \rightarrow \text { work + sound + heat. }
$$

If air resistance is considered then

$$
\text { P.E } \rightarrow \text { work against friction }+\mathrm{KE} \rightarrow \text { work }+ \text { sound }+ \text { heat }
$$

TOPIC WISE SHORT QUESTIONS

4.1 WORK DONE BY A CONSTANT FORCE

(1) What is meant by work done by a constant force?

Ans: The work done on a body by constant force is defined as the product of the magnitude of the displacement and the component of the force in the direction of displacement.
We define work done w by the force \vec{F} as the scalar product of \vec{F} and \vec{d}
$W=\vec{F} \cdot \vec{d}=F d \cos \theta=(F \cos \theta) d$
The quantity $(F \cos \theta)$ is the component ar the fore ne the irection of the displacement \vec{d}.
(2) When aperspn pushig the wall way, ther:bov nath work is done on the wall?

Ans: When ter on moshes the win ande hen displacement is zero $W=\vec{F} . \vec{d}$

$$
\begin{aligned}
& =F t \cos \operatorname{As} d=0 \\
& =F(0) \cos \theta \\
& \mathrm{W}=0
\end{aligned}
$$

Hence, work is zero.
(3) What is the unit and dimension of work?

Ans: Unit: S.I unit of work is Joule. 1 Joule $=1 \mathrm{~N} \times 1 \mathrm{~m}=\mathrm{Nm}$

Dimension:

$$
\begin{aligned}
W & =\vec{F} \cdot \vec{d} \\
& =F d \cos \theta
\end{aligned}
$$

Since the frictional force is always opposite to the displacement. So $\theta=180^{\circ}$

$$
\begin{aligned}
& W=F d \cos \left(180^{\circ}\right) \\
& W=-F d \quad \because \cos 180^{\circ}=-1
\end{aligned}
$$

Hence work done against the frictional force is negative.
(5) Define work. Explain when it is maximum and when it is zero.

Ans: Work: The dot product of force and displacement is called work.
$\mathrm{W}=\overrightarrow{\mathrm{F}} \cdot \overrightarrow{\mathrm{d}}$

Maximum work:

The work done has its maximum value, when force \vec{F} and displacement \vec{d} are parallel to each other.
$W=\vec{F} \cdot \vec{d}$
$=F d \cos \theta$

$$
\theta=0^{\circ}
$$

$=F d \cos \left(0^{\circ}\right)$
$W=F d$
$\because \cos 0^{\circ}=1$

Zero work:

The work done has its minimum value, when force $\overrightarrow{\mathrm{F}}$ and displacement $\overrightarrow{\mathrm{d}}$ are perpendicular to each other.

$$
\begin{aligned}
& W=\vec{F} \cdot \vec{d} \\
& =F d \cos \theta \\
& =F d \cos \left(90^{\circ}\right)
\end{aligned}
$$

$$
W=0
$$

(6) In what situation ork done pyadere on a body in positive, negative and zero?

FSD-2018
Ans. Therl done ic positive when force and displacement are in same direction.
(V) $-\mathbf{F}$.
$=\mathrm{Fd} \cos \theta$
If $\theta=0^{\circ}=\mathrm{Fd} \cos \left(0^{\circ}\right)=\mathrm{Fd}$
Work done is negative when force and displacement are opposite to each other

$$
\begin{aligned}
W & =\vec{F} \cdot \vec{d} \\
& =F d \cos \theta
\end{aligned}
$$

$$
\text { If } \theta=180^{\circ}
$$

$$
=F d \cos \left(180^{\circ}\right.
$$

When herpen pashes the wat andy hen displacement is zero

$$
\begin{aligned}
W & =\bar{F} d \\
& =F a d d a d A s d=0 \\
& =F(0) \cos \theta \\
\mathrm{W} & =0
\end{aligned}
$$

Hence work is zero.
(7) Define "Joule".

MTN-2018 (G-I)
Ans: It is defined as:
"When a force of 1 N acts on a body and it moves through a displacement of 1 m in the direction of force then 1 J of work is said to be done".
SI unit of work is joule. $1 \mathrm{~J}=1 \mathrm{Nm}$.
(8) Under what condition that work done on a body has its positive value?

Ans: Work done is given by $W=\vec{F} \cdot \vec{d}=F d \cos \theta-------$ (i)
If the angle between force \vec{F} and displacement \vec{d} is less than 90° then in this case $\cos \theta$ will have positive value.

So work will be positive according to above relation.

4.2 WORK DONE BY A VARIABLE FORCE

(9) What does the area under the force - displacement graph represent?

Ans: The area under the force - displacement graph represents the work done on the body. If a body covers some displacement \vec{d} under the application of force \vec{F} such that they are oriented at an angle θ. Then graph is drawn between d along $\mathrm{x}-$ axis and force along $\mathrm{y}-$ axis.
Area under graph $=(F \cos \theta)(\mathrm{d})$

(10) How can we calculate the work done in case of variable force?

Ans: Work done by a variable force is computed by dividing the path into very smain displacement intervals such that during each displacement, fore remained nealy constant. Then calculate the work done dㅍing each intervat and take the sumet moin done for all displacement intervals which gjves
$W=\sum_{i=1}^{n} F_{i} \cos \theta_{i} \Delta d_{i}$

4.3 WORK DONE BY GRAVITATIONAL FIELD

(12) What is essential condition for conservative field?

Ans: A field is said to be conservative field if it follows the following sondiliens
(i) In conservative field the work done is impendent or path fell, wed.
(ii) Work done in a closed path must) je zern ih conservative fie d.
(13) Define Gravitational field. I's it sonser vative tield?

Ans: Gravitational Field:
The space arome the earth ip which its gravitational force acts on a body is called gravitat or al feld.
Yes, gravilational field is a conservative field because work done along a closed path in \$pavitatic nol field is zero. Also work done in a gravitational field is independent of path tilow.
(4) Define conservative field Give its two examples.

LHR-2016 (G-II)
Ans: "The field in which the work done in moving a body from one place to another place is independent of the path followed."
Example: Gravitational field

Electric field

(15) Define work, gravitational field.

SGD-2013
Ans: Work:
"The product of the magnitudes of the displacement and the component of force in the direction of displacement is called work".
Mathematically,

$$
\begin{aligned}
& \mathrm{W}=\overrightarrow{\mathrm{F}} \cdot \overrightarrow{\mathrm{~d}} \\
& \mathrm{~W}=\mathrm{Fdcos} \theta
\end{aligned}
$$

Gravitational Field:

"The space around the earth in which its gravitational force acts on a body is called gravitational field."
(16) Differentiate between conservative and non-conservative forces. Give examples.

FSD-2017
Ans:

Conservative Force

- Work done by conservative force is independent of path followed
- Work done by conservative force along a closed path is zero.
- Examples of conservative forces are gravitational force, elastic spring force and electric force etc.

Non Conservative Force

- Work done by non conservative force depends upon the path followed.
- Work done by non conservative force along a closed path is not zero.
- Example of non conservalive forcestro frictional force, air resistace ters on iirstrine, normal fores, oropilsichcoree of ooket or mutor.

A car is moving in a circl of radis r It cencletes four ver intions and terminates its journey ar starting point. Hov much workis done by the car? Explain. LHR-2019 (G-I)
Ans: When abo ly rove in a circle, force and displacement are perpendicular to each other $\mathrm{W}=\mathrm{F} . \mathrm{d}$
$=F(1 \cos \theta$
$=F 2 \mathrm{c}$
So total work done will be zero to complete four revolution. Also in this case, the displacement of body is equal to zero because its initial and final position is same. So, when the displacement is work done will be zero.

4.4 POWER

(18) Define average power and instantaneous power.

Ans: Average Power:
It is the ratio of total work done to (tie total timptaken by abocy. If y ork sir is done in a time interval Δt then $P_{a v}=-\Delta W$
Instantanenu: Power.
In i. def ned a. the work done in an extremely small interval of time (approaching to zuc). Pins $=\lim _{\Delta t \rightarrow 0} \frac{\Delta W}{\Delta t}$
(19) A 70 kg man runs up a long flight of stairs in 4 s . The vertical height of the stairs is 4.5 m . Calculate power output in watts.

Ans: $\quad \mathrm{m}=70 \mathrm{~kg}$
$\mathrm{h}=4.5 \mathrm{~m}$
$\mathrm{t}=4 \mathrm{sec}$
$\mathrm{P}=$?

$$
\begin{aligned}
P & =\frac{m g h}{t} \\
& =\frac{70 \times 9.8 \times 4.5}{4} \\
P & =7.7 \times 10^{2} \mathrm{~W}
\end{aligned}
$$

(20) Prove the relation $P=\vec{F} \cdot \vec{V}$

Ans: Consider a constant force \vec{F} acts on a body and it moves through a displacement $\overrightarrow{\Delta d}$ in time Δt, then instantaneous power is given by

$$
P_{i n s}=\lim _{\Delta t \rightarrow 0} \frac{\Delta W}{\Delta t}
$$

We know that $\Delta W=\vec{F} \cdot \Delta \vec{d}$

$$
\begin{aligned}
P & =\lim _{\Delta t \rightarrow 0} \frac{\vec{F} \cdot \overrightarrow{\Delta d}}{\Delta t} \\
& =\vec{F} \cdot \lim _{\Delta t \rightarrow 0} \frac{\Delta \vec{d}}{\Delta t}
\end{aligned}
$$

Since $\lim _{\Delta t \rightarrow 0} \frac{\overrightarrow{\Delta d}}{\Delta t}=\vec{V}$
(21) What ince turit of unyers Detine it.

Ans: SIIT it of powe is watu.
What: : $ل$ beh one joule of work is done in one second, then power is said to be one watt.
1 watt $=\frac{1 J}{1 S}$
Or 1 watt $=\mathrm{Js}^{-1}$
(22) Prove that $1 \mathrm{kWh}=3.6 \mathrm{MJ}$.

Ans: $\quad 1 \mathrm{kWh}=1000 \mathrm{~W} \times 1$ hour
$1 \mathrm{kWh}=1000 \mathrm{~W} \times 3600 \mathrm{~s}$
$1 \mathrm{kWh}=3.6 \times 10^{6} \mathrm{~J}=3.6 \mathrm{MJ}$
(23) Define power. Write its ST innit.

LHR-2012
Ans: Power is defined as the rate an vhich work is done.
Mathentanicaly, Fower $=\frac{v o r}{2} \frac{1}{2}$

Tint of porer:

The jionit of power is watt which is defined as:
If one Joule of work is done in one second then power will be one watt.

$$
\mathrm{W}=\mathrm{Js}^{-1}
$$

(24) Convert 1.4 kW into joules/second.

RWP-2019 (G-I)
Ans: 1.4 kW
$1 \mathrm{~kW}=1000 \mathrm{~W}$
$=1.4 \times 100 \mathrm{Js}^{-1} \quad \therefore \mathrm{~W}=\mathrm{Js}^{-1}$
$=1400 \mathrm{Js}^{-1}$

4.5 ENERGY AND WORK ENERGY PRINCIPLE

(25) A car is moving with constant speed along a level road with no net force acting on it. Is any work being done on the car?
Ans: When a car is moving with constant speed along a level road with no net force acting on it, the net work done on it is zero.
According to work energy principle,
Work done equals the change in its kinetic energy.
As speed of car is constant, so change in kinetic energy $=0$
Therefore, net work done will be equal to zero.
(26) Define energy and write its basic forms?

Ans: Energy: It is defined as the capacity of a body to do work is called energy.
There are two basic forms of energy.
(i) Kinetic Energy
(ii) Potential Energy

Kinetic Energy: It is possessed by a body a he to its-motion and is. given theremula $K . E=\frac{1}{2} m v^{2}$
Potent(1a) Energy. The ene py possessed by abody due to its position in a force field e.g gravitationel ticld
Matematichly P. 1 : =ngin
(27) Derineciactic P.E?

Elastic P.E: The energy stored in a compressed spring is the P.E possessed by the spring due to its compressed or stretched state is called elastic P.E.

(28) Explain Work Energy Pricnciple.

Ans This principle states that
"The work done on the body is equal to the shange in its kineticene gy"

Explanation:

Consider a body of mass n is mosing ith relocit) i. Afores ants through a distance d increases the velocity to ns, then from equation of motion.

$$
\begin{align*}
2 \mathrm{as} & =: v_{\mathrm{f}}^{2}+\mathrm{v}^{2} \\
\mathrm{~d} & =\frac{1}{2 a}\left(v_{f}^{2}-v_{i}^{2}\right) \ldots \ldots \ldots(1)
\end{align*}
$$

From $2^{\text {nd }}$ Law of motion, $\quad \mathrm{F}=\mathrm{ma}$
Multiplying eq (1) and (2) we get

$$
\begin{aligned}
& \text { F.d }=m a \cdot \frac{1}{2 a}\left(v_{f}^{2}-v_{i}^{2}\right) \\
& \text { or } \mathbf{F d}=\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{i}^{2}=\mathbf{K} \cdot \mathbf{E}_{\mathbf{f}}-\mathbf{K} \cdot \mathbf{E}_{\mathbf{i}}
\end{aligned}
$$

4.6 INTERCONVERSION OF P.E. AND K.E

(29) When an arrow is shot from its bow? It has K.E. From where does it get the kinetic Energy?
Ans: When we pull the string, we have to do some work. This work is stored in the string as its elastic potential energy.
When an arrow is shot from its bow this elastic potential energy is converted into the kinetic energy of the arrow.

4.7 CONSERVATION OF ENERGY

(30) Define law of conservation of energy.

FSD-2019 (G-I)
Ans: Law of conservation of energy states that "Energy can never be created nor be destroyed but it can be converted from one form to other, and the total amount of energy remains constant".

