TOPIC WISE MULTIPLE CHOICE OUESTIONS

6.1 VISCOUS DRAG AND STOKE'S LAW

(1) An object moving through a fluid experiance a retarding forcekn was
(a) external force
(c) drag force
(b) termina farce
(d) grevita ions force
(2) Whenthe te nneratire increases, the viscosity of the gases:
(a) decreasts
(b) remains constant
(c) increases
(d) none of these

GRW-2019 (G-II)

The $1 \backsim$ ais said to be incompressible, if its density is
LHR-2018 (G-I)
(a) zero
(b) very high
(c) very small
(d) constant
(4) The word Fluid means

SGD-2016 (G-II)
(a) to rise
(b) to fall
(c) to flow
(d) to oppose
(5) Which material has maximum viscosity:
(RWP 2015)
(a) glycerin
(b) plasma
(c) methanol
(d) water
(6) Viscosity of air at $30^{\circ} \mathrm{C}$ is:

MTN-2019 (G-II)
(a) $6.29 \mathrm{Nsm}^{-2}$
(b) $0.019 \mathrm{Nsm}^{-2}$
(c) $1.00 \mathrm{Nsm}^{-2}$
(d) $0.510 \mathrm{Nsm}^{-2}$
(7) $\quad \eta$ is denoted for
(a) coefficient of viscosity
(b) coefficient of kinetic friction
(c) coefficient of static friction
(d) coefficient of volume expansion
(8) Stoke's law is applicable on
(a) spherical surfaces
(b) rectangular surfaces
(c) surfaces of all shapes
(d) none
(9) Drag force is expressed by
(a) $3 \pi \eta r v$
(b) $6 \pi \eta r v$
(c) $\frac{2}{9 \eta} \rho r v$
(d) $6 \eta \rho r v$
(10) Substances which cannot flow easiby houd
(a) large viscosity
(c) smill viscosity
(b) zel- vidacity
(d) none of these
(11) Which of the following has the highest viscosity?
(a) Pr
(b) water
(d) re(1)anel
(d) glycerin
(1) With increases in temperature, the viscosity of the liquid
(a) increases
(b) decreases
(c) may increase or decrease
(d) no change
(13) As the speed of the object increases the drag force
(a) increases
(b) decreases
(c) remain same
(d) none of these
(14) With increase in temperature viscosity o gases
(a) increases
(c) may increase or decrease
(b) drcieases
(d) no char ge
(15) Liquid and gases hare
(b) non zero viscosity
(d) both a and b
(a) zero viscosity
(16)The rictionatect between different layers of flowing fluids is described in terms of
(6) vesesity of fluid
(b) velocity of fluid
(c) pressure of fluid
(d) acceleration of fluid
(17) The unit of co-efficient of viscosity is
(a) kgm^{-1}
(b) $\mathrm{kg}^{-1} \mathrm{~ms}^{-1}$
(c) $\mathrm{Nm}^{-2} \mathrm{~s}$
(d) $\mathrm{Nm}^{-2} \mathrm{~s}^{-2}$
(18) The dimension of coefficient of viscosity is
(a) $\left[\mathrm{MLT}^{-1}\right]$
(b) $\left[\mathrm{M}^{-1} \mathrm{~T}\right]$
(c) $\left[\mathrm{ML}^{-1} \mathrm{~T}^{-1}\right]$
(d) $\left[\mathrm{MT}^{-1}\right]$

6.2 TERMINAL VELOCITY

(19) The maximum constant velocity of an object moving through the fluid is called
(a) escape velocity
(b) drag velocity
(c) terminal velocity
(d) fluid velocity
(20) Terminal velocity v_{t} is related with the radius r of a spherical object as:

LHR-2019 (G-I)
(a) $\mathrm{v}_{\mathrm{t}} \propto \mathrm{r}^{2}$
(b) $v_{t} \propto r$
(c) $v_{t} \propto \frac{1}{r}$
(d) $\mathrm{v}_{\mathrm{t}} \propto \frac{1}{\mathrm{r}^{2}}$
(21) If the radius of droplet becomes half, then its terminal velocity will be

LHR-2018 (G-II)
(a) double
(b) half
(c) one fourth
(d) four times
(22) Terminal velocity of a particle in the fluid depends on:

RWP-2019 (G-I)
(a) Nature of fluid
(b) Acceleration of partic
(c) Force on particle
(d) angular weiocif ofpacticles
(23) A fog droplet falls vertically through air wi an acceleration:
(a) equal to ' g '
(l) le s. then 'g'
(c) zero
(d) greater than ' g '
(24) A paratropprmovercowhward with:

FSD-2017
(a) zero acceleration
(b) constant acceleration
(a) Pis it vo acclelertlou
(d) negative acceleration

Vice eric of the velocities of water in a pipe lying horizontally at two ends is $1: 4$. The ratio of diameters of pipe at these two ends is:

FSD-2016 (G-I)
(a) $1: 2$
(b) $2: 1$
(c) $1: 4$
(d) $4: 1$
(26) When body acquires terminal velocity, then its acceleration ' a ' becomes: MTN-2016 (G-II)
(a) $\mathrm{a}=0$
(b) $\mathrm{a}=\mathrm{g}$
(c) $a>g$
(d) $a<g$
(27) If the radius of the droplet becomes half, then itsternimar verocity in fiaid inl io
(a) half
(b) docole
(c) one to rtl
(d), one third
(28) Two forchoplets have actius 2:3:teir terminal velocities are in ratio of
(a) 46
(b) $4: 9$
(a) 23
(d) $4: 3$

1290 The terminal velocity of spherical object is given by
(a) $v_{t}=\frac{6 \rho^{2} g v r^{2}}{9 \eta}$
(b) $v_{t}=\frac{2 \rho^{2} g r^{2}}{9 \eta}$
(c) $v_{t}=\frac{2 \rho g r^{2}}{9 \eta}$
(d) $v_{t}=\frac{2 \rho^{2} g^{2} r^{2}}{9 \eta}$
(30) The net force acting on a body falling through the fluid is given by
(a) net force $=$ drag force - weight
(b) net force $=$ drag force + weight
(c) net force $=$ drag force $/$ weight
(d) net force $=$ weight - drag force
(31) The unit of terminal velocity is
(a) ms^{-1}
(b) ms
(c) Ns^{-1}
(d) ms^{-2}
(32) A fog droplet falls vertically through air with terminal velocity, then an acceleration is
(a) equal to g
(b) greater than g
(c) less than g
(d) equal to zero
(33) If the radius of droplet is doubled then terminal velocity would be
(a) half
(b) doubled
(c) quadrupled
(d) one fourth

6.3 FLUID FLOW

(34) The unsteady flow of the fluid is called
(a) steady flow
(b) streamline flow
(c) turbulent flow
(d) none of these
(35) The formula one cars have a
(a) steady flow designed
(b) streampined designed
(c) Turbulent designed
(36) The incompressible and worvisgut luid is called
(a) viscou fluid
(b) nen ideal fluid
(c) fluic
(d) ideal fluid
(37) The dophlins have
(a) Srea nilites lorlies
(b) turbulent bodies
(c) Unseady bodies
(d) none of these

A fluid is said to be ideal when it appears
(a) non-viscous
(b) incompressible
(c) to move with uniform speed
(d) all of these

6.4 EQUATION OF CONTINUITY

(39) Equation of continuity is given by the relation
(a) $\mathrm{A}_{1} \mathrm{P}_{2}=\mathrm{A}_{2} \mathrm{P}_{1}$
(b) $\mathrm{A}_{1} \mathrm{v}_{1}=\mathrm{A}_{2} \mathrm{v}_{2}$
(c) $\mathrm{A}_{2} \mathrm{D}_{2}=\mathrm{A}_{1} \mathrm{D}_{1}$
($\mathrm{d} \cdot \mathrm{v}, \mathrm{P}_{2} \mathrm{~V}$
(40) Equation of continuity gi e theconstralion of tt e:

LIE-2019 (G-II)
(a) ma厄s
(b) encrgy
(c) speea
(d) volume
(41) Equation of continuity gives conservation of:

FSD 2019 (G-I)
(a) energy
(b) power
(c) mass
(d) density
(42) Product of area of cross section, velocity and time gives: FSD 2019 (G-I)
(a) volume
(b) density
(c) mass
(d) weight
(43) The law of conservation of mass gives:

RWP-2016 (G-I)
(a) Bernoulli's equation
(b) Venturi relation
(c) Torricelli's theorem
(d) Equation of continuity
(44) The S.I Unit of Flow Rate of a Fluid is:

BWP-2019 (G-II)
(a) $\mathrm{m}^{2} \mathrm{~s}^{-1}$
(b) ms^{-1}
(c) $\mathrm{m}^{3} \mathrm{~s}^{-1}$
(d) $\mathrm{m}^{3} \mathrm{~s}^{-2}$
(45) The rate of flow of liquid through pipes
(a) A / v
(b) v / A
(c) Av
(d) $1 / \mathrm{Av}$
(46) The product of cross-sectional area of pipe and fluid speed is equal to
(a) pressure
(b) volume
(c) flow rate
(d) work done
(47) If area of cross-section is decreased, then fluid pressure
(a) increases
(b) decreases
(c) remain same
(d) may increase or decrease
(48) SI unit of flow rate is
(a) ms^{-2}
(b) $\mathrm{m}^{3} \mathrm{~s}^{-2}$
(c) $\mathrm{m}^{3} \mathrm{~s}^{-1}$
(49) The law of conservation of nass eves us
(a) Bernorin's equation
(b) cquation of continuity
(c) Van-ge warrs equation
(d) Einstein's equation
(50) The radius at wo ends of : P ipe is in the ratio of $2: 3$, then the speed of fluid at the twolnd in the ratio of
(a) 320
(b) $2: 3$
(c) $9: 4$
(d) $4: 9$

6.5 BERNOULLI'S EQUATION

(51) The law of conservation of energy is basis on the

BWP 2019 (G-I)
(a) equation of continuity
(b) Bernoulli's equation
(c) Einstein's equation
(d) Varicterwat's equation
(52) The unit of $\frac{1}{2} \rho v^{2}$ in Bernoulli's quationis ane at ot oi: MTN-2018 (G-II)LHR-2019 (G-I)
(a) energy
(c) Work
(b) pressure
(d) power

53 Pascal os the unit of:
GRW-2019 (G-I)
(a) pressure
(b) force
(c) tension
(d) weight
(54) The dimensions of $\rho g h$ are same as that of

MTN-2018 (G-I)
(a) work
(b) energy
(c) pressure
(d) mass
(55) Which of the following cannot be explained on the basis of Bernoulli's effect?
(a) lift of an aero plane
(b) lift of rocket
(c) swing of cricket ball
(d) working of carburetor
(56) Bernoulli's equation is applicable for
(a) swing of a cricket ball
(b) lift of an aeroplane
(c) working of spray
(d) all of these
(57) According to Bernoulli's principle, velocity and pressure are
(a) inversely proportional
(b) directly proportional
(c) have no relation
(d) none of these
(58) Bernoulli's equation is expressed as
(a) $P-\frac{1}{2} \rho v^{2}=$ constant
(b) $P+\frac{1}{2} \rho v^{2}+\rho g h=$ constant
(c) $P+\frac{1}{2} \rho v^{2}-\rho g h=$ constant
(d) $P-\frac{1}{2} \rho v^{2}-\rho g h=$ constant
(59) The effect used in perfume bottles and paint sprays is based upon.
(a) Bernoulli's theorem
(b) equation of continuity
(c) Einstein's mass energy equation
(d) Archimedes principle

(60) The fundamental equation in fluid dynamics that r att s pres sue tefinidsped and height is
(a) Bernoulli's equation
(b) equation oi continuity
(c) Stokes, av
(d) mass energy equation
(61) The vount flow per second of a Intuid is always
(a) pro
(b) constant
(d) caging continuously
(d) none of these
6.2. In Bernoulli's equation the unit of expression ' $\rho g h$ ' is same as that of
(a) force
(b) work
(c) density
(d) pressure
(63) In a pipe, water is flowing through the region in the pipe where streamlines are forced close together
(a) speed is low and pressure is low
(b) speed is hish and piessure is 1 igh
(c) speed is high and pressure is low
(Armore dithes
(64) If a pipe placed horizontally on arount timen her noulit squation an be expressed as
(a) $P-\rho g h-\frac{1}{2} \sigma v^{2}=\operatorname{constant}$
(b) $\mathrm{P}+\frac{1}{2} \rho v^{2}=$ constant
(c) $\mathrm{P}-\mathrm{pgh}=\mathrm{cons}$ ant
(d) $\mathrm{P}+\rho g h=$ constant

F6ATINOADIONGFBERNOULLI'S EQUATION

6.). Speed of efflux of a liquid from an orifice is equal to
(a) $\sqrt{2 g}$
(b) $\sqrt{\frac{2 g}{h}}$
(c) $\sqrt{2 g h}$
(d) $\sqrt{\frac{h}{2 g}}$
(66) As the speed of object moving through a fluid increases then the drag force experienced by it:

GRW-2019 (G-I)
(a) increases
(b) decreases
(c) remains constant
(d) becomes zero
(67) Venturi meter is used to measure

LHR-2016(G-I)LHR-2017 (G-I)
(a) fluid pressure
(b) fluid density
(c) Fluid viscosity
(d) fluid speed
(68) Pressure of fluid will be low where speed of fluid is SWL-2016 (G-I), FSD-2018
(a) low
(b) high
(c) zero
(d) constant
(69) 6.0 meter high tank is full of water. A hole appears at its middle. What is the speed of efflux?
(RWP 2014)
(a) $7.66 \mathrm{~ms}^{-1}$
(b) $5.66 \mathrm{~ms}^{-1}$
(c) $6.66 \mathrm{~ms}^{-1}$
(d) $8.66 \mathrm{~ms}^{-1}$
(70) A 10 meter high tank is full of water. A hole appears at gits niddie. The speed (iin efflux will be:
(a) $5 \mathrm{~ms}^{-1}$
(c) 100 m
(d) $5.11 \mathrm{~ms}^{-1}$
(71) A 20 met thigh tinis in of water. A hole appears at its middle. The speed of efula will be:

BWP-2019 (G-I)
(d) 15 ms
(b) $14 \mathrm{~ms}^{-1}$
(c) $11.5 \mathrm{~ms}^{-1}$
(d) $9.8 \mathrm{~ms}^{-1}$
(72) Venturi relation is given as:
(a) $\mathrm{P}=\frac{1}{2} \rho \mathrm{v}^{2}$
(c) $\mathrm{P}_{1}-\mathrm{P}_{2}=\frac{1}{2} \rho \mathrm{v}_{1}^{2}$
(73) Dimension of flow rate is
(a) $\left.\left[\mathrm{L}^{3} \mathrm{~T}\right)^{1}\right]$
(c) $\left[\mathrm{L}^{2}\right]$
(d) $\left[\mathrm{L}^{-1} \mathrm{~T}^{-1}\right]$
(b) $\left[\mathrm{LI}^{-3}\right]$
(74)Tarriceli exnecsion is written as
(b) $\mathrm{P}_{1}-\mathrm{P}_{2}=\frac{1}{2} \rho \mathrm{v}_{2}^{2}$
(d) $\left.n_{2}=\sqrt{8}=\left(h_{1}-\mathrm{b}\right)_{2}\right)$
(d.) $=\sqrt{2 g\left(h_{1}-h_{2}\right)}$
(b) $v=\sqrt{2 g\left(h_{1}+h_{2}\right)}$
(c) $v=\sqrt{2 g\left(h_{2}-h_{1}\right)}$
(d) $v=\sqrt{2 \rho g\left(h_{1}-h_{2}\right)}$
(75) A 2-meter-high tank is full of water. If a hole appears at it middle then the speed of efflux is
(a) $4.42 \mathrm{~m} / \mathrm{s}$
(b) $42.4 \mathrm{~m} / \mathrm{s}$
(c) $5.42 \mathrm{~m} / \mathrm{s}$
(d) $424 \mathrm{~m} / \mathrm{s}$
(76) A man standing near a fast-moving train
(a) fall towards the train
(b) fall away from the train
(c) no effect
(d) none of these

ANSWER KEYS

(Topic Wise Multiple Choice Questions)

SHORT QUESTIONS

(From Textbook Exercise)
6.1. Explain what do you understand by the term viscosity?

Ans: Definition:
$n v N 1(C-1), 1(10-12(G-I I)$
"The frictional effect between different lagers of : foryng fluid is described in terms of viscosity of fluid." Visensity geastres how much tome is required to slide one layer of fluid ove the ctier layor. \cdot; glyer n, heney and thick tar has highest viscosity.
Unit: kin ${ }^{1} \mathrm{~s}$
6.2. What is neant b. drag iorce? What are the factors upon which drag force acting

An: Degition:

"When the body moves through a viscous medium, its motion is opposed by a force known as drag force."
An object moving through a fluid experience a retarding force known as drag force. According to Stoke's law, drag force is given by the relation:

$$
F_{d}=6 \pi \eta r v
$$

This relation shows that drag force depends upon the factor as:

- radius of sphere (r)
- velocity of sphere (v)
- co-efficient of viscosity of fluid (η)
6.3. Why fog droplets appear to be suspended in air?

SGD-15(G-I), FSD-15(G-I), LHR-15(G-II), DGK-16 (G-I)\&(G-II), LHR-16 (G-II), SWL-17, BWP-17 (G-I), SGD-18 (G-I), MTN-19 (G-I)
Ans: We know that as the terminal velocity of a body is directly proportional to the square of radius of a body. i.e. $v_{t} \propto r^{2}$
As, the size of the fog droplet is very small, therefore, their terminal velocity is very small and consequently, the fog droplet appears to be suspended in air.
6.4. Explain the difference between laminar flow and turbulent flow.

LHR-15(G-I), RWP-16 (G-I), FSD-17, LHR-17 (G-I), FSD-18, LHR-18 (G-II), DGK-18 (G-I), FSD-19 (G-I)
Ans:

LAMINAR FLOW

TURBULENT FLOW

- The flow is said to be stream line or laminar if every particle that passes a particular point, moves along exactly the same path, as following by the particle which passed that point earlier

- In this case-e ach particle of givid moves hions a smooth patis-a le t streamiried or laminat
- For exampies
- Frow of ya cer in wide and smooth river
if ow o gentle breeze.
How of wind around streamlined designed car.
- Flow of water around dolphins.
- The irregular or unsteady flow of the fluid is called turbulent flow.
in thubulent flow, there is great uisorder and a constantly changing flow pattern
- For examples
- Flow of water from the top of mountains.
- Flow of water in the form of water fall.
- Very strongly flowing wind
- Water flow at sea shores.
6.8. Two row boats moving parallel in the same direction are pulled towards each other. Explain.

Ans: When the two row boats moving parallel in the ame direction the the pfed of vateabenveen the boats is greater than the speed of water on he other ide of the hoats.

"Where she sped of the flyid is high the pressure will be low,"
Therefore, be press ur bet vee the boats is decreased and they are pulled towards each other.
6.9. Explain ho the eving is produced in a fast-moving cricket ball.
 (i)
tns: One side of the cricket ball is rough and the other side is shining. When the ball is delivered, then the speed of air on the shining is greater than the speed of air on the rough side.
According to result of Bernoulli's equation: $\left[P+\frac{1}{2} \rho v^{2}+\rho g h=\right.$ constant .]
"Where the speed is high, pressure will be low."
Therefore, the pressure on shiny side decreases and the ball swings towards the shiny side.
6.10. Explain the working of carburetor of a motorcar by using Bernoulli's principle.

SWL-16, SWL-18, LHR-18 (G-I)
Ans: The carburetor of a car engine uses a Venturi duct to feed the correct mixture of air and fuel (petrol) to the cylinders. Air is drawn through the duct and along the pipe to the cylinders. A tiny inlet at the side of duct is fed with petrol, the air through the duct moves very fast, creating low pressure in the duct, which draws petrol vapours into the air stream.

TOPIC WISE SHORI @UESTIFS
6.1 VISCOUS DRAG AND STOTESGTAY
(1) What is Fruid Dynaricic?

Ans: Fluid Denani-s
The branch of physice vhich deals with the study of fluid in motion is called Fluid Dratmics.
Detilec-efficient of viscosity. Write its units?
($)$ ns. Co-efficient of viscosity
"The tangential force per unit area required to maintain relative velocity between its two layers is called co-efficient of viscosity and is denoted by η ". Its units is $N s m^{-2}$ or $_{\mathrm{kgm}^{-1} \mathrm{~s}^{-1}}$.
(3) What is fluid?

DGK 2014
Ans: Anything which can flow is called fluid. Thus liquid as well as gases can be teated as fle;
Examples:

- Liquids
- Gases
(4) A meteor burns into asher whente nto oute ealthe atmoshere?

Ans: A met On noving iowards the earth) a mosphee is strongly opposed by the drag force of air. This trag torce crcaies a lot of fiction between the air particles and meteor resulting an intense anount of ha burning the meteor into ashes.
(5) State the Steke's Law and write its mathematical form?

Ans: 1/ace drag force on a sphere of radius r moving slowly with speed v through a fluid of viscosity η is given by the Stoke's Law as under

$$
\mathrm{F}=6 \pi \eta r v
$$

(6) What are the main principles of fluid Dynamics?

Ans: There are two main principles of fluid Dynamics
(i) Equation of continuity
(ii) Bernoulli's Equation

The law of conservation of mass gives us the equation of continuity.
The law of conservation of energy is the basis of Bernoulli's equation.
(7) What is meant by viscosity? Write down dimensional unit of coefficient of viscosity. MTN-2018 (G-I) FSD-2012
Ans: Viscosity
The internal frictional force between different layers of a flowing fluid is called viscosity of fluid, usually denoted by Greek letter ' η '.
The dimensional unit of co-efficient of viscosity $\mathrm{kg} \mathrm{m}^{-1} \mathrm{~s}^{-1}$.
(8) Define fluid friction and state Stoke's law.

DGK-2010
Ans: Fluid Friction
An internal frictional force between different layers of a flowing fluid is called viscosity of fluid which is also known as fluid dynamics, usually denoted by Greek letter ' η '.
Stoke's law
It states that the drag force F on a spherical object of radius " r " moving slowly with speed " v " through a fluid of viscosity " η " is given by

$$
\mathrm{F}=6 \pi \eta \mathrm{rv}
$$

At high speed, the force is no longer proportional to speed
(9) What is Stoke's law and drag force?

Ans: Stocks' law "v" througha fluid of yiscosity" h " is siven by

At high speed, the fyrce s ig lo nger proportional to speed.

Dref Furce

Ahbojeg, moving through a fluid experiences a retarding force called a drag force.
Dray force depends upon the following factors;
(1) Shape, size, velocity and orientation of motion of the body.
(2) It also depends upon the nature of fluid.

6.2 TERMINAL VELOCITY

(10) Why do clouds appear floating in air?

Ans: Clouds are made of very small droplets of water since the weight of these oroplet svery small. Therefore, they possess very smat terminat verocity. Hence, they (10 pear to floating in air.
(11) Define terminal velocity.

Ans: Terminal velocity

GRW-2019 (G-II)
When the veight pe the al ing Dods and arag force acting on the body become equal in magnitude he elocity of the ody becomes maximum then the body will fall with Conslant m an in um velocity called terminal velocity. It is expressed

$$
\mathrm{v}_{\mathrm{t}}=\frac{\mathrm{mg}}{6 \pi \eta \mathrm{r}}
$$

(12) A spherical body is dropped into two different fluid its terminal velocity is found to be different. Give the reason.
Ans: We know that $v_{t}=\frac{2 g r^{2} \rho}{9 \eta}$. In this case a spherical body of the same density and size is dropped into two fluids of different viscosities, It means ρ, g and r are all constants, so $v_{t 1} \propto \frac{1}{\eta_{1}} \Rightarrow v_{t 2} \propto \frac{1}{\eta_{2}}$
As the co-efficient of viscosities is different in two fluids, therefore the terminal velocity of the sphere will be different.
(13) A tiny water droplet of radius 0.010 cm descends through air from a high building. Calculate its terminal velocity. Given that for air $=19 \times 10^{-6} \mathrm{kgm}^{-1} \mathrm{~s}^{-1}$ and density of water $=1000 \mathbf{~ k g m}^{-3}$.

DGK-2012
Ans: $\quad \mathrm{r}=1.0 \times 10^{-4} \mathrm{~m}, \rho=1000 \mathrm{~kg} \mathrm{~m}^{-3}, \eta=19 \times 10^{-6} \mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-1}$

$$
\text { As } \begin{aligned}
\mathrm{v}_{\mathrm{t}} & =\frac{2 \mathrm{gr}^{2} \rho}{9 \eta} \\
\mathrm{v}_{\mathrm{t}} & =\frac{2 \times 9.8 \mathrm{~ms}^{-2} \times\left(1 \times 10^{-4} \mathrm{~m}\right)^{2} \times 1000 \mathrm{~kg} \mathrm{~m}^{-3}}{9 \times 19 \times 10^{-6} \mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-1}} \\
\mathrm{v}_{\mathrm{t}} & =1.1 \mathrm{~m} \mathrm{~s}^{-1}
\end{aligned}
$$

6.3 FLUID FLOW

(14) What are the properties of an ideal fluid?

Ans: Properties
(i) The fluid is non-viscous i.e. the is no internal fictiona force between adjacent layers of fluid.
(ii) The flu id is incompres sible, i.e. its lensity is constant.
(iii) Thrauid rhorion is tendy
(15) What is meant whe we say fluid is non-viscous and in compressible? GRW-2018

1) he luid is non viscous i.e. there is no internal frictional force between adjacent layers of fluid.

- The fluid is incompressible i.e. its density is constant.
(16) A liquid was passed through a pipe and it was found that the rate of influx is equal to the rate of efflux, what information do you get about the liquid.
Ans: Where rate of influx = rate of efflux
Such a fluid is an ideal fluid. This fluid gives informaion that it has n Uleccsiny and is incompressible.
(17) Describe what is an ideal fluid? Jal in ia fuid exi t in neture

DGK-2014
Ans: A fluid which satisfies hie foldowh conditions is calied an ideal fluid.
i. The Gud is 1 on isous i.e. here is 10 minternal frictional force between adjacent layers of fluid.
i. Tre fluid is incompessible i.e. its density is constant.
ii Thefuid motion is steady.
The ideal fluid does not exist in nature because all above conditions perfectly not full fill in any fluid.

6.4 EQUATION OF CONTINUITY

(18) Why the cross-sectional areas of the water decreases as it come out of the tap?

Ans: According to equation $\mathrm{Av}=$ constant, as the water falls, its speed increases and so its cross-sectional area decreases.

6.5 BERNOULLI'S EQUATION

(19) State Bernoulli's equation.

Ans: It states that the sum of pressure, Kinetic and Potential energies per unit volume in a steady flow of an incompressible fluid remains constant.
Mathematically:

$$
P+\frac{1}{2} \rho \mathrm{v}^{2}+\rho \mathrm{gh}=\mathrm{constant}
$$

6.6 APPLICATIONS OF BERNOULLI'S EQUATION

(20) Why does the pipe of paper squeezes when air is blown through it.

Ans: As air blows through the pipe, the speed of air inside it increases so its pressure decreases as compared to the pressure outside the pipe. So the increased pressure on the outside squeezes the pipe of paper.
(21) What is Venturi's effect.

BWP-2019 (G-II), FSD-2019 (G-I)
Ans: The effect of decrease in pressure with increase in speed of the fluid in a horizontal pipe is known as Venturi's effect
Mathematically, $P_{1}-P_{2}=\frac{1}{2} \rho v_{2}^{2}$
(22) What effect is used in chimney?

Ans: When air passes above the chimner, reduces tre pres ure at ore he hinney. The smoke rises up in the chimney. The ai- and shake tose the move an ay ir to the a mosphere.
(23) Explain hsiv the lift is nroduced in ar acr pane?

Ans: Liftin or an feome
To lift an heipplane same ririnclpe works i.e. where the snefi is high, he pressure will be low. The wings are designed to defiect the air so that the stream lines are closer tr getner above the wing than below it.

SGD-2018

When streamlines are forced together, speed is high pressure is low, so air travels faster on upper side of the wing than on the lower. The pressure will be lower at the top of the wing and upward thrust acts on wings which helps to lift aeroplane in air.
(24) How perfume bottles and paint spray work.

Ans: A stream of air passing over a tube dipped in a liquid will cause the liquid to rise in the tube as shown in fig. This is because of the fact that nessurn: of fast moving air becomes lesser that the air bove the pa int level. Hence paint rises through pipe due of ifferengoo of pressule.
(25) State and saplain Torvice $l i \backslash s /$ Theormen?

Ans: The speed of mint is equl to velocity gained by the fluid in falling through the distance $\left(\mathrm{l}_{1},-\mathrm{h}_{2}\right)$ under the artion of gravity.
Explanatior: Sur ose a large tank of fluid has two orifices A and B on it. 3nc. Gritices are so small, the efflux speed v_{2} and v_{3} will be much larger than v_{1}
Therefore $\mathrm{v}_{1} \approx 0$
Hence Bernoulli's equation can be written as
$P_{1}+\rho g h_{1}=P_{2}+\frac{1}{2} \rho v_{2}^{2}+\rho g h_{2}$
$P_{1}=P_{2}=$ Atmospheric Pressure
Hence, $\mathrm{v}_{2}=\sqrt{2 g\left(h_{1}-h_{2}\right)}$
(26) Define venturi effect. Also write its relation.

Ans: $\quad P_{1}-P_{2}=\frac{1}{2} \rho v_{2}^{2}$
This is called venturi relation and it is used in Venturi-meter, a device used to measure speed of liquid flow this effect is called venturi effect. We get above relation from Bernoulli's equation.
If one pipe has very small diameter than the other such that A_{2} is
 small as compared to A_{1}, then equation of continuity is

$$
\begin{aligned}
& \mathrm{A}_{1} \mathrm{v}_{1}=\mathrm{A}_{2} \mathrm{v}_{2} \\
& \mathrm{v}_{1}=\frac{\mathrm{A}_{2}}{\mathrm{~A}_{1}} \mathrm{v}_{2}
\end{aligned}
$$

If $A_{2}<A_{1}$ then $v_{1} \ll v_{2}$, so we neglect v_{1} for flow from large pipe as compared to v_{2}.
Give two application of Bernoulls equations.

Ans: Lifting, of an Aeronlane

To lift tacropanerame plitcipie norrs i.e. where the speed is high the pressure will be low. The wings are designed to deflect thevir so that the stream lines are closer together above the wing
 tr an below it.
When streamlines are forced together, speed is high pressure is low, so air travels faster on upper side of the wing than on the lower. The pressure will be lower at the top of the wing and upward thrust acts on wings which helps to lift aeroplane in air.

Swing of the Ball

LHR-2012, 2016 (G-I), GRW-2012, 2013, 2018
BWP-2016 (G-I), 2017 (G-II), DGK-2018 (G-J)
When a tennis ball is hit by a racket, it sdin as well ds moves forward, the velocity of ai op ong Ficle of the patl increases, due

(28) Write fewlines or Lind.fiow.

LHR-2012
An: Biobd coise 1 stretch like rubber hose. The volume of the blood is sufficient to keep the vessels inflated at all times. This make a tension in the walls of the blood vessels and consequently the pressure of blood inside is greater than the external atmospheric pressure.
The unit torr or mm of Hg is opted to measure the blood instead of SI unit of pressure because of its extensive use in medical equipments. The blood pressure varies from a high (systolic pressure) of 120 torr to a low (diastolic pressure) of about 75-80 torr where 1 torr $=133.3 \mathrm{Nm}^{-2}$
(29) State Torricelli's theorem. Write mathematical form. MTN-2019 (G-II),GRW-2012, LHR-2012MTN-2019 (G-II)
Ans: Torricelli's Theorem
It states that "the speed of efflux is equal to the velocity gained by the fluid in falling through the distance ($\mathrm{h}_{1}-\mathrm{h}_{2}$) under the action of gravity".
Mathematical Formula:
$\mathrm{v}_{2}=\sqrt{2 \mathrm{~g}\left(\mathrm{~h}_{1}-\mathrm{h}_{2}\right)}$

