TOPIC WISE MULTIPLE CHOICE QUESTIONS

7.2 SHM AND UNIFORM CIRCULAR MOTION

(1) Velocity of a body executing SHM is giv n by
(a) $\omega \sqrt{x_{o}^{2}-x^{2}}$
(c) $x_{0} \cdot\left(\omega^{2}-x^{2}\right.$
(c)
(ii) $x \sqrt{\omega^{2}-x_{o}{ }^{2}}$
(2) The prefice of periddi vaves generated by a source executing S.H.M. is represented b. 1

LHR-2017 (G-II)
(a) circle
(b) sine curve
(c) tangent curve
(d) cosine curve
(3) The distance covered during one vibration of an oscillating body in terms of amplitude ' A ' is:

LHR-2017 (G-I)
(a) $A / 2$
(b) A
(c) 2 A
(d) 4 A
(4) The velocity of a particle having SHM is v at mean position. If its amplitude is doubled then velocity at mean position will be

SGD-2016 (G-I)
(a) $v / 2$
(b) v
(c) 2 v
(d) 4 v
(5) The distance covered by a body in one complete vibration is 20 cm , what is the amplitude of the vibration:

BWP-2019 (G-II)
(a) 10 cm
(b) 80 cm
(c) 5 cm
(d) 20 cm
(6) When a particle is moving in a circular path, its projection along diameter executes

DGK-2018 (G-II)
(a) linear motion
(b) circular motion
(c) simple harmonic motion
(d) perpetual motion
(7) At what distance from mean position the energy of vibrating body is half poentian and half kinetic ($\mathrm{x}_{0}=$ amplitude)
(a) $\frac{x_{0}}{2}$

(c) $\frac{x_{0}}{\sqrt{2}}$

(d) $\sqrt{2} x_{0}$

Nhe tatal distance traveled by an object moving with SHM in a time equal to its period if its amplitude is $\mathbf{x}_{\mathbf{0}}$
(a) zero
(b) $2 \mathrm{x}_{0}$
(c) $3 x_{0}$
(d) $4 x_{0}$
(9) Maximum velocity of a body executing SHM is
(a) $v=\omega \sqrt{x_{0}{ }^{2}-x^{2}}$
(b) $v=\omega x_{0}$
(c) $v=\omega x$
(d) $y=\omega$
(10) By increasing the weights on an ailatory ing the per of oscilation would be
(a) increases
(b) decreased
(c) remain sane
(a) may increase or decrease
(11) The accelcration of projection a point on the diameter moving on a circle is
(a) $-\omega x$
(b) $-\omega x^{2}$
(6) $\omega^{2} x$
(d) ωx^{2}

When $x=x_{0}$ then the velocity of body executing SHM will be
(a) maximum
(b) minimum
(c) zero
(d) none of these
(13) The maximum displacement of a body executing SHM is represented by
(a) x
(b) x_{o}
(c) ωt
(d) $x_{0} \omega$

7.3 PHASE

(14) The phase determines the state of motion of the
(a) rotatory point
(b) translatory point
(c) random point
(d) vibratory point
(15) If the initial Phase is $\frac{\pi}{2}$ then displacement of SHO is:

BWP-2019 (G-I)
(a) $x=x^{2}{ }_{o} \operatorname{Sin} \omega t$
(b) $\mathrm{x}=\mathrm{x}_{\mathrm{o}} \operatorname{Sin} \omega \mathrm{t}$
(c) $x=x_{0} \operatorname{Cos} \omega t$
(d) zero
(16) If a body starts its motion in a circular path from its extreme position its initial phase is
(a) $\frac{\pi}{2}$
(b) $\frac{3 \pi}{2}$
(c) π
(d) $\frac{\pi}{4}$
(17) The phase angle $\boldsymbol{\theta}=\omega$ t of a body performing SHM indicates
(a) both direction and displacement
(b) only diection of disparent
(c) both magnitude and direction
(d) none of these
(18) The expression for displa em $n t \quad r=c_{0}$ in $($ att+og) ilequal to
(a) $x=$ sinat
(D) $x=x_{o} \cos \omega t$
(c) $x=-\sigma_{0}$ tap at
(d) $x=-x_{o} \cos \omega t$

19 Nae angle 10 =wt executing SHM is known as
(c) amplitude
(b) displacement
(c) phase
(d) time period

7.4 HORIZONTAL MASS SPRING SYSTEM

(20) If a mass is attached to an elastic spring then its maximum velocity $\%$
(a) $v_{o}=x_{o} \sqrt{\frac{m}{k}}$
(c) $v_{o}=x \sqrt{\frac{\sigma_{n}^{\prime}}{n}}$
$\sqrt{2}$
(21) Base unit of shrine con stands:

LHR-2019 (G-I)
(a) $R s^{-1} s^{-2}$
(b) $\mathrm{kg}^{-1} \mathrm{~ms}^{-2}$
(d) x : (1) s^{-2}
(d) $\mathrm{kg} \mathrm{s}^{-2}$

RWP-2019 (G-I)
(a) numerical value
(b) units
(c) damping
(d) time period
(23) The angular frequency is
(a) $\omega=\sqrt{\frac{m}{k}}$
(b) $\omega=\sqrt{\frac{k}{m}}$
(c) $\omega=2 \pi \sqrt{\frac{k}{m}}$
(d) $\omega=2 \pi \sqrt{\frac{m}{k}}$
(24) If four springs, each of spring constant k are connected in parallel then the resultant spring constant is
(a) k
(b) 2 k
(c) 4 k
(d) $\frac{k}{4}$
(25) Frequency of a mass spring system is given by
(a) $\frac{1}{2 \pi} \sqrt{\frac{k}{m}}$
(b) $2 \pi \sqrt{\frac{k}{m}}$
(c) $2 \pi \sqrt{\frac{m}{k}}$
(d) $\frac{1}{2 \pi} \sqrt{\frac{m}{k}}$
(26) The acceleration for a mass spring system at any instant: : given $b y$
(a) $a=\frac{k}{x} m$
(c) $a=-x$
(b) $a=\frac{k}{m}, x$
(27) The tin period f the mastering system is given by
$\sqrt{d} \sqrt{7}=\frac{1}{2 \pi} \sqrt{\frac{m}{k}}$
(b) $T=\frac{1}{2 \pi} \sqrt{\frac{k}{m}}$
(c) $T=2 \pi \sqrt{\frac{m}{k}}$
(d) $T=2 \pi \sqrt{\frac{k}{m}}$
(28) The relation between instantaneous velocity and maximum velocity is
(a) $V=V_{o} \sqrt{1-\frac{x^{2}}{v^{2}}}$
(b) $V=V_{o} \sqrt{\frac{x^{2}}{v^{2}}-1}$
(c) $V=V_{o} \sqrt{\frac{x_{0}^{2}}{x^{2}}-1}$
(d) $V=V_{o} \sqrt{1-\frac{x}{x_{0}^{2}}}$
(29) If the anplude beconer dsuble then ar meai: position the maximum velocity of mass suing, ysten vil
(a) doulle
(b) half
(d) Tlad upled
(d) becomes zero

VIGC ngiantaneous displacement " x " of mass m in "mass spring system" given by
(a) $x=x_{o} \sin \sqrt{\frac{k}{m}} t$
(b) $x=x_{o} \sin \sqrt{\frac{m}{k}} t$
(c) $x=x_{o} \cos \sqrt{\frac{k}{m}} t$
(d) $x=x_{o} \cos \sqrt{\frac{m}{k}} t$

7.5 SIMPLE PENDULUM

(31) If length of simple pendulum becomes four times, then its time period is
(a) remains same
(b) is doubled
(c) quadrupled
(d) $\sqrt{2}$ times
(32) In order to double period of a simple pendulum the length of the pendulum should be increased by:

LHR-2019 (G-II)
(a) four times
(b) three times
(c) two times
(d) eight times
(33) When the bob of simple pendulum is at extreme position then its K.E is:

GRW-2019 (G-II)
(a) maximum
(b) minimum
(c) zero
(d) small
(34) The component of the weight which balances the tension in pendulum is

DGK-2016 (G-II)LHR-2018 (G-I)
(a) $\mathrm{mg} \cos \theta$
(b) $m g \sin \theta$
(c) $\mathrm{mg} \tan \theta$
(d) $-m g \sin \theta$
(35) If amplitude of a simple pendulum is increased by 4 times the tin period wilt oe:
(a) four times
(h) nali
(c) same
(c) twotines
(36) At which piace the motion ofinpe penlu um win be slowest:

FSD-2017
(a) Kalach
(io) K-2
(c) Muree
(d) Lahore
(37) Frequercy of conds pendulum is
(b) 2 Hz
(1) 1 HC
(d) 0.99 Hz
(e) 0.5 Hz
(SGD 2015)

MTN-2018 (G-I)
(a) mass
(b) amplitude
(c) density
(d) length
(39) The frequency of Simple Pendulum is given by:
(a) $\frac{1}{2 \pi} \sqrt{\frac{g}{\ell}}$
(b) $2 \pi \sqrt{\frac{g}{\ell}}$
(c) $\frac{1}{2 \pi} \sqrt{\frac{\ell}{g}}$
(d) $2, \tau$

If Mass Pendytun becomes uouble, then its time period will be:
(BWP 2015)
(a) dousind
(b) half
(c) one fourh
(d) remain same
(41) Tian perid a seconds pendulum on moon is
(d) $1 / 3 \mathrm{sec}$
(b) 2 sec
(c) 3 sec
(d) $\sqrt{6} \mathrm{sec}$
(42) Length of seconds pendulum is
(a) 0.996 m
(b) 0.992 m
(c) 0.99 m
(d) 0.9 m
(43) If mass length of simple pendulum becomes 4 times then its time period becomes
(a) Double
(b) half
(c) remains same
(d) four times
(44) The restoring force acting on the bob of simple pendulum of mass ' m ' is
(a) mg
(b) $\mathrm{mg} \operatorname{Sin} \theta$
(c) $-\mathrm{mg} \operatorname{Sin} \theta$
(d) $-\mathrm{mg} \operatorname{Cos} \theta$
(45) A simple pendulum is 50 cm long. Its frequency of vibration on the surface of the earth is
(a) 1 Hz
(b) 0.5 Hz
(c) 0.70 Hz
(d) 0.65 Hz
(46) The time period of simple pendulum is directly proportional to
(a) $\sqrt{\frac{m}{g}}$
(b) \sqrt{l}
(c) \sqrt{g}
(d) $\sqrt{\frac{g}{l}}$
(47) When a bob of simple pendulum is at extreme position then it has maximum
(a) K.E
(b) P.E
(c) both a and b
(d) no energy
(48) In vibratory motion of a simple pendulum, the component of force iseporsino
(a) $\mathrm{mg} \cos \theta$
(c) mg
(b) $n g$ sir θ
(49) At mean wosition, the simple peadulum hes
(a) maxinumine
(b) maximum P.E
(c) zero K E
(d) minimum K.E
(50) Ferfion in the string of simple pendulum is maximum at
de () een possition
(b) extreme positions
(c) midway between mean and extreme position (d) cannot be determined
(51) The time period of simple pendulum depends upon
(a) length of pendulum
(b) amplitude of pendulum
(c) length and gravity
(d) mass of pendulum
(52) The component of weight $m g \sin \theta$ in simple pendulum is
(a) along the center
(b) perpendicular to string
(c) along the string
(d) none of these
(53) For simple pendulum the value ois given
(a) $\omega=\sqrt{\frac{\ell}{6}}$
(b) $\omega \sqrt{\sqrt{9}-}$
(c)
$=\sqrt{-1}$
\int the val

The tive period of simple pendulum is inversely by proportional to
(a) $\sqrt{\ell}$
(b) $\sqrt{\frac{1}{\ell}}$
(c) \sqrt{g}
(d) $\sqrt{\frac{1}{g}}$
(55) The time period of simple pendulum is given by
(a) $T=\frac{1}{2 \pi} \sqrt{\frac{\ell}{g}}$
(b) $T=\frac{1}{2 \pi} \sqrt{\frac{g}{\ell}}$
(c) $T=2 \pi \sqrt{\frac{\ell}{g}}$
(d) $T=2 \pi \sqrt{\frac{g}{\ell}}$
(56) In simple pendulum the value of " g " can be calculated by
(a) $g=\frac{4 \pi^{2} \ell}{T^{2}}$
(b) $g=\frac{4 \pi^{2} \ell^{2}}{T^{2}}$
(c) $g=\frac{2 \pi \sqrt{\ell}}{T^{2}}$
(d) $g=\frac{2 \pi \sqrt{\ell}}{T}$
(57) The length of simple pendulum is given by
(a) $\ell=\frac{T^{2} g^{2}}{4 \pi^{2}}$
(b) $\ell=\frac{T^{2} g}{4 \pi^{2}}$
(c) $\ell=\frac{4 \pi^{2}}{T^{2} g^{2}}$
(d) $\ell=\frac{T g^{2}}{4 \pi^{2}}$
(58) How long must be length of a simple pendumin in order onave a periol fe second
(a) 1 m
(c) 0.25 m
(b) 50 m
(d) 1.51

7.6 ENERGYGQNSERVATION IESAM

(59) Total energy of reass spring systen is equal to
(a) (K.E) 1 nax
(b) (P.E) max
(c)
(d) neither a nor b
(o) The tocal energy of mass-spring system is independent of:

GRW-2019 (G-I)
(a) mass of the body
(b) amplitude
(c) spring constant
(d) nature of material of spring
(61) Total energy of a particle executing S.H.M. is:
(a) $\frac{1}{2} k x^{2}$
(b) $\frac{1}{2} k\left(x_{0}^{2}-x^{2}\right)$
(c) $\frac{1}{2} k x_{0}^{2}$
(d) $\frac{1}{2} k{ }^{\prime}$
(62) The P.E sor by a riass sprisg system at an extension of 2 cm is 10 J . The P.E stored bo the ame sysien at an ex er sivn of 4 cm will be

FSD-2016 (G-I)
(a) 10 J
(b) 20 J
(c) (3) J
(d) 40 J

When amplitude of oscillation is doubled, then its energy becomes:
DGK-2018 (G-I)
(a) double
(b) four times
(c) one half
(d) six times
(64) Total energy of mass spring system at displacement $x=\frac{x_{0}}{2}$ will be: BWP-2017 (G-II)
(a) $\frac{1}{2} \mathrm{kx}_{\mathrm{o}}^{2}$
(b) $\frac{1}{2} \mathrm{k}\left(\mathrm{x}_{\mathrm{o}}^{2}-\mathrm{x}^{2}\right)$
(c) kx^{2}
(d) $\frac{1}{4} \mathrm{kx}_{\mathrm{o}}^{2}$
(65) The time period of an oscillating mass spring system is $\mathbf{1 0}$ second. If mass attached to spring is doubled then time period becomes

DGK-2016 (G-I)
(a) 10 s
(b) 20 s
(c) 5 s
(d) $10 \sqrt{2} \mathrm{~s}$
(66) In oscillation
(a) P.E remains constant
(b) K.E remains constant
(c) total energy remains constant
(d) both P.E and K.E remains constant
(67) When the K.E of the mass spring system is maximum then the P.E of the system is
(a) doubled
(b) zero
(c) half
(d) maximum
(68) In mass spring system the work done in displacing the mass ' m ' through x_{0} is
(a) $\frac{1}{2} k x_{0}$
(c) $\frac{1}{2} k x_{o}{ }^{2}$
(b) $\frac{1}{2} k x$

At memposition the D.E f nob of sinple yendulum
(a) remint ar ar
(b) is maximum
(c) is minimu
(d) none of these
(70) Whenche ion of simple pendulum is at extreme position the value of K .E is
(a) maximum
(b) zero
(c) minimum
(d) none of these
(71) At any instant ' t ' if the displacement is x, then P.E at that instant is given by
(a) $P . E=\frac{1}{2} k x_{0}^{2}$
(b) $P . E=k x^{2}$
(c) $P . E=\frac{1}{2} k x^{2}$

(72) The maximum K.E of moss spring system is
(a)

(D) $K \cdot E=\frac{1}{2} k x^{2}$
(c) $\overline{\mathrm{n}} \mathrm{E}=2 k \mid x_{0}^{2}$
(d) $K . E=k x_{0}^{2}$
(73) At ale instant the K.E of vibrating mass spring system is given by
(a) $K . E=\frac{1}{2} k x_{0}^{2}\left(1-\frac{x^{2}}{x_{0}^{2}}\right)$
(b) $K \cdot E=\frac{1}{2} k x_{0}^{2}$
(c) $K . E=\frac{1}{2} k x_{0}^{2}\left(1-\frac{x_{0}^{2}}{x^{2}}\right)$
(d) $K . E=\frac{1}{2} k x_{0}^{2}\left(1-\frac{x^{2}}{x_{0}^{2}}\right)$
(74) The variation of P.E and K.E with displacement is essential for maintaining
(a) oscillations
(b) linear motion
(c) random motion
(d) translatory motion
(75) The periodic exchange of energy is a basic property of all
(a) rotational system
(b) oscillatory system
(c) translatory system
(d) rotatory system

7.7 FREE AND FORCED OSCILLATION

(76) A body is said to be free vibration when it oscillates
(a) with interference of an external force
(b) without interference of an external force
(c) with interference of an frictional force
(d) without interference of an restoring force
(77) The frequency of free vibration is known as
(a) harmonic frequency
(b) simple frequency
(c) natural frequency
(d) relative frequency
(78) If a freely oscillating system is subjected to an external force, then
(a) forced vibrations take place
(b) harmonic vibrations take place
(c) frictional force vibrations take place
(d) all of these
(79) Loud music is an example of
(a) forced vibration
(b) free vibration
(c) resonance
(d) harmonic vibration
(80) Swing is an example of
(a) free oscillations
(c) damped oscillations

(b) Forced sscillations
(c) nonc of hesel

7.8 RESONANCTI

(81) The resenancroccur when the frequeney of the applied force is equal to
(a) harmonuc irequency
(b) driven harmonic oscillator
(a) fisor anc
(d) relative frequency
(2.) The wayle used is microwave oven has frequency

MTN-2016 (G-I), GRW-2016 (G-I), LHR-2016 (G-I)
(a) 124502 Hz
(b) 145 MH
(c) 1425 MHz
(d) 2450 MHz
(83) Tuning of radio is the best example of:

DGK-2018(G-II), SGD-2016 (G-II) GRW $2015(\mathrm{C}-\mathrm{I}$
(a) mechanical resonance
(b) electrical resonance
(c) magnetic resonance
(d) musizalitesoncince
(84) The wavelength of waves used in microwav oven is
(a) 15 cm
(c) 10 cm
(b) 12 crl
(d) 3 cm
(85) In microwaveoren, heating isprocuced by phenomenon of
(a) resonane
(b) harmonic vibration
(c) free osciilation
(d) forced oscillation
(86) Rasonence docurs when the frequency of the applied force is \qquad to one of natural frequency
(a) equal
(b) smaller
(c) greater
(d) none of these
(87) At resonance the transfer of energy is
(a) zero
(b) minimum
(c) maximum
(d) none
(88) While tuning a radio when two frequencies (receiving and transmitting) are match, energy absorption is
(a) zero
(b) minimum
(c) maximum
(d) none of these
(89) Food is heated in microwave ovens by the effect of
(a) mechanical resonance
(b) electrical resonance
(c) sharpness of resonance
(d) none of these

ANSWER KEYS

(Topic Wise Multiple Choice Questions)

1	a	16	a	31	b	46	b	61	c	76	b
2	b	17	a	32	a	47	b	62	d	77	c
3	d	18	b	33	c	48	b	63	b	78	a
4	c	19	c	34	a	49	c	64	a	79	a
5	c	20	b	35	c	50	a	65	a	80	b
6	c	21	d	36	c	51	c	66	c	81	b
7	c	22	b	37	c	52	b	67	b	82	d
8	d	23	b	38	d	531	b	68	a	83	b
9	b	24	c	39	a	E4	e	69	1	84	b
10	c	25.	a		d	P3,	1	$7)$	1	485	a
11		26	1	41	6	56	\cdots	27	c	86	a
12	c	Ph	c	42	d	-5	b	72	a	87	c
131	b	483	d	43	c	58	c	73	a	88	c
H40	à	29	a	44	c	59	c	74	a	89	b
15	c	30	a	45	a	60	a	75	b		

SHORT QUESTIONS

(From Textbook Exercise)
7.4. What is the total distance traveled by an object moving with SHM in a tirne cque in its period, if its amplitude is \mathbf{A} ?

Ans: We know that time period is then m ecmple ne ound trip a out mean pasiticn. Therefure in $1 / \mathrm{tme}$ period, a body covers distance 4A, where 1 s the amplitu of the boat
7.5. What lappers to the peris of a simple pendulum if its length is rioultled? Thet heppens if the suspended mass is doubled?

GiN. 5 (G)\& $(G-I I), M T N-15(G-I) \&(G-I I)$, LHR-15(G-I), DGK-16 (G-I)\&(G-II), BWP-16 O(G-I), SGD-18 (G-I), GRI-18, LHR-18 (G-I), LHR-19 (G-II), RWP-19 (G-I)
(a) We know that the time period of the simple pendulum is given by
$T=2 \pi \sqrt{\frac{l}{g}}$
If the length is doubled:
$T^{\prime}=2 \pi \sqrt{\frac{2 l}{g}}$
$T^{\prime}=\sqrt{2}\left(2 \pi \sqrt{\frac{l}{g}}\right) \Rightarrow T^{\prime}=\sqrt{2} T$
This shows that the time period becomes $\sqrt{2}$ times the initial time period.
(b) As time period of a simple pendulum is independent of the mass of a bob, therefore, if the mass is doubled then the time period of simple pendulum remains same.
7.6. Does the acceleration of a simple harmonic oscillator remain constant during its motion? Is the acceleration ever zero? Explain.

BWP-15(G-I), GRW-15(G-I), LHR-16 (G-I) \& (G-II), FSD-17, BWP-19 (G-I \& II)
Ans: Acceleration of harmonic oscillator does not remain constant. It is directly proportional to the displacement from the mean position.

$$
a \alpha-x
$$

- At mean position: $\mathrm{x}=0$. Hence: $\mathrm{a}=0$
- At extreme position: $x=x_{0}$. Thus $a=$ maximum
7.7. What is meant by phase angle? Does it define angle between maximum displacomet and the driving force?

Ans: "The angle which specifies the di pracement a sivel has the direction of motion of point executing S.H.M. is called pl ase angl
No, it dors not define the angle betheenthe maximum displacement and the driving force. Iti, the mgle betveli the rotating weeror and the reference line. Phase angle is $\theta=\omega t$, vhere io is anglle rieglency and t is any instant of time.

7.8. Under what conditions does the addition of two simple harmonic motions produce a resultant, which is also simple harmonic?
Ans: Under the following conditions, the addition of two simple harmenic mopens pr cuces resultant, which is also simple harmonic.
- The two S.H.M are parallel.
- They have same frequenc.
- Theybave constant phate cifference.
7.11 Explain he relation petween tetas mergy, potential energy and kinetic energy for a body oscillating with ELH . BWP-15(G-I), MTN-16 (G-I), MTN-18 (G-I)
An: Wellnguthat.
(P.E.) max $=\frac{1}{2} \mathrm{k} x_{0}^{2}$
(K.E) $)_{\max }=\frac{1}{2} \mathrm{k} x_{0}^{2}$

For any displacement x , the energy is partly P.E and partly K.E Hence
Total energy $=$ P.E + K.E

$$
\begin{aligned}
& =\frac{1}{2} k x^{2}+\frac{1}{2} k x_{0}^{2}\left(1-\frac{x^{2}}{x_{0}^{2}}\right) \\
& =\frac{1}{2} \mathrm{k} x_{0}^{2}
\end{aligned}
$$

This shows that total energy during S.H.M. remains constant
7.12 Describe some common phenomena in which resonance plays an important role?

SGD-15(G-II), BWP-15(G-I), GRW-15(G-I), LHR-15(G-I), DGK-16 (G-I), GRW-18, FSD-19 (G-I)
Ans: (i) Suspension Bridge
The column of soldiers, while marching on a bridge of long span are advised to break their steps. Their rhythmic march might set up oscillations of dangerously large amplitude in the bridge structure.
(ii) Tuning a Radio

Tuning a radio is the best example of electrical resonance. When we turn the knob of a radio, to tune a station, we are changing the natural frequency of the electric circuit of the receiver, to make it equal to the transmission frequency of the radio statign. Wen fato frequencies match, energy absorption is maximum and this is theonly station we heal.
(iii) Micro Wave Oven

SWI:Q, SWL-18
The waves produced in this type ofoventinave a wavelen oft of 18 ch at a frequency of 2450 MHz . At this frequency the waveza are absorled cue to resoraice by water and fat molecties in the frod, heating hum ap ana sa cooking the food.
7.13 If a masy se nesten if fug ver tically and set into oscillations, why does the motion evente ally ston?
IOCK-5(GII), FSD. 1 Ef-II), MIRPUR (AJK) 15, MTN-16 (G-II), LHR-16 (G-I) \& (G-II), SWL-17, LHR-17 (G-I),

Ars. Lit the vertical mass spring system, the motion eventually stops due to friction and drag force, Energy is dissipated from the oscillating system, its amplitude decreases gradually and becomes smaller and eventually it stops.

TOPIC WISE SHORT QUESTIONS

7.2 SHM AND UNIFORM CIRCULAR MOTION

(90) Define S.H.M.

Ans: Such a type of vibratory motion in which the aceleration ot any instant of a budy executing S.H.M is proportional to wimp dincent and is always directed towards mean position is called S.H.M
(Matheraticains, a d $=-\vec{x}$

7.3 PHASE

(5) What is the valie of nase angle with reference to?
(i) Womple evelution
(ii) Ilat the wave length
(iii) $1 / 4$ the of a vibration

Ans: The phase angles are
For complete revolution $\theta=360^{\circ}=2 \pi$ radian
For half the wavelength $\theta=180^{\circ}=\pi$ radian
For $\frac{1}{4}$ th of a vibration $\theta=90^{\circ}=\frac{\pi}{2}$ radian
(6) Define phase angle.

Ans: The angle $\theta=\omega \mathrm{t}$ which specifies the displacement as well as the direction of motion of the point executing S.H.M is known as phase.

$$
x=x_{o} \operatorname{Sin}(\omega t+\phi) \quad \therefore \phi=\text { initial phase }
$$

(7) Define phase angle with diagram.

Ans: The angle $\theta=\omega t$ which specifies the displacement as well as the direction of motion of the point Executing S.H.M is known as phase.
$x=x_{o} \operatorname{Sin}(\omega t+\phi) \quad \therefore \phi=$ initial phase
7.4 A HORIZONTAL MASS SPRING SYSTEM

SGD-2016 (G-I)

(8) In a mass-spring system, if force of 10 N and displacement is 0.4 m . Find the value of spring constant.
Ans: $\mathrm{F}=10 \mathrm{~N}$
$\mathrm{x}=0.4 \mathrm{~m}$
$\mathrm{k}=$?
We know that
$\mathrm{F}=\mathrm{kx}$
$k=\frac{F}{x}=\frac{10}{C .4}$
$\mathrm{k}=25 \mathrm{~N} \mathrm{n}$

7.5 SIMPLE PENDUVM

(9) What is secind pendàum and also write its length, time period and frequency

An: Ficondleadulum

1. pendulum which complete one vibration in two seconds is called a second's pendulum

Time period 2 seconds
Length $\quad 0.99 \mathrm{~m}$ or 1 meter
Frequency $\quad 0.5 \mathrm{~Hz}$
(10) Calculate the length of a simple pendulum if its frequency is $0.5 \mathrm{C} . \mathrm{P} . \mathrm{S}\left(\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

Ans: $\quad \ell=$?
$f=0.5$ c.p.s
$g=9.8 \mathrm{~m} / \mathrm{s}^{2}$
$f=\frac{1}{2 \pi} \sqrt{\frac{g}{R}}$
taking shap onoohsides

$$
\begin{gathered}
\ell=\frac{g}{4 \pi^{2} f^{2}} \Rightarrow \ell=\frac{9.8}{4(3.14)^{2} \times(0.5)^{2}} \\
\ell=0.99 m
\end{gathered}
$$

(11) Write any three uses of simple pendulum?

Ans: (i) The value of g can be found by simple pendulum
(ii) We can find the frequency of vibrating body by simple pendulum
(iii) It may used to calculate the time period.
(12) Is the motion of a simple pendulum Isochronous? Explain.

Ans: Yes, if the time period of harmonic oscillator does not change with the amplitude, such a motion is said to be isochronous motion. For example, the motion of simple pendulum is isochronous since it is independent of its amplitude.
(13) Which force actually provides the restoring force to the simple pendulum?

Ans: The vertical component of weight provides the restoring force which is directed towards the mean position and it is actually responsible for the motion of simple pendulum.

$$
\mathrm{F}_{\mathrm{r}}=\mathrm{W}_{\mathrm{y}}=\mathrm{mg} \sin \theta
$$

(14) Which physical quantity remains constant throughout the oscillatory motion of simple pendulum?
Ans: Only the acceleration due to gravity ' g ' remains constant throughout the simple harmonic motion of the simple pendulum.
(15) Calculate the length of the simple pendulum which completes one vibration in one second.
(FSD 2014)
Ans: $\quad \ell=$?
$T=1 \mathrm{sec}$
$g=9.8 \mathrm{~m} / \mathrm{s}^{2}$
$T=2 \pi \sqrt{\frac{l}{g}}$
taking squaring on wot' side:
(T)
$\sqrt{0}$

$$
\begin{aligned}
& -T T^{2}, \\
& l=\frac{9.8(1)^{2}}{4 \pi^{2}} \\
& l=0.248 \mathrm{~m}
\end{aligned}
$$

(16) The amplitude of simple pendulum should be small why? Explain.
(FSD-2018)
Ans: The amplitude of simple pendulum should be very small so that we mav deal with linear motion instead of the circular motion because simple harmonic monde is inear noton otherwise equation of simple harmonic motion
$a=-$ const x
$a \propto-x$
is not satis $\sqrt{116} d$
(17) What is he frequency a secand rentulum?

Ans: Time perice of jecond sendw $u m=T=2$ second
F-eftien y of secor d's pendulum $=f=$?
$t=\frac{-}{T}$
$=\frac{1}{2}=0.5 \mathrm{~Hz}$

7.6 ENERGY CONSERVATION IN SHM

(18) Find the P.E of a mass attached to a spring at an amplitude of 10 cm , if k is $10 \mathrm{~N} / \mathrm{m}$

Ans: P.E =?

$$
\begin{aligned}
& \mathrm{x}_{\mathrm{o}}=10 \mathrm{~cm}=\frac{10}{100}=0.1 \mathrm{~m} \\
& k= 10 \frac{\mathrm{~N}}{\mathrm{~m}} \\
& P . E=\frac{1}{2} k x_{o}^{2} \\
& \quad=\frac{1}{2}(10)(0.1)^{2}
\end{aligned}
$$

P.E $=0.05 \mathrm{~J}$
(19) What is the law of conservation of energy in S.H.M?

LHR-2017 (G-II)
Ans: It states that the total energy of the vibrating mass and spring remains constant at every instant in its path but interconverted. This is called law of conservation of energy in S.H.M. At the extreme position oscillator have maximum P.E while at the mean position its K.E is maximum but total energy is constant at every position which depend upon amplitude of the oscillator.
(20) What will be the potential energy of a mass attached to a spring at mplitide 13 cm , if its spring constant is $10 \mathrm{Nm}^{-1}$?
P.E =?

Ans: $\quad x_{0}=5 \mathrm{~cm}=\frac{5}{100}=0.05 \mathrm{~m}$
(21) Discuss the law of conservation of energy is oscillating mass-spring system along with graphical representation.

MTN-201S (frei
Ans: The total energy of the vibrating mass and spring remains congtant at every instant in its path but interconverted. This is called law of conse vation of energy in s.1.M. For Simple harmonic Ospïlator at any ulspace nent x, he cnergy is partly P.E, and partly K.E. Hence

$$
\begin{aligned}
& T \cdot E=\frac{1}{2}-\mathrm{kx}^{2}+\frac{1}{2} \mathrm{kx}_{0}^{2}\left(1-\frac{\mathrm{x}^{2}}{\mathrm{x}_{0}^{2}}\right) \\
& \mathrm{T} \cdot \mathrm{E}=\frac{1}{2} \mathrm{kx}^{2}+\frac{1}{2} \mathrm{kx}_{0}{ }^{2}-\frac{1}{2} \mathrm{kx}^{2} \\
& \mathrm{E}_{\text {total }}=\frac{1}{2} \mathrm{kx}_{0}^{2}
\end{aligned}
$$

(22) A mass-spring system is vibrating with 10 cm amplitude. Find its K.E and P.E at equilibrium position when spring constant is $20 \mathrm{Nm}^{-1}$.

LHR-2019 (G-I)
Ans: Kinetic Energy:

$$
\begin{aligned}
& \mathrm{K} . \mathrm{E}=\frac{1}{2} \mathrm{kx}_{0}^{2}\left(1-\frac{\mathrm{x}^{2}}{\mathrm{x}_{0}^{2}}\right) \\
& \mathrm{K} . \mathrm{E}=\frac{1}{2}(20)\left(10 \times 10^{-2}\right)^{2}\left(1-\frac{0^{2}}{\mathrm{x}_{0}^{2}}\right) \\
& \mathrm{K} . E=0.1 \mathrm{~J}
\end{aligned}
$$

Potential Energy:

$$
\begin{aligned}
& P . E=\frac{1}{2} k x^{2} \\
& P . E=\frac{1}{2} k 0^{2} \\
& P . E=0 J
\end{aligned}
$$

7.7 FREE AND FORCED OSCILLATION

(23) What is free and forced oscillation?

Ans: Free Oscillation:

Oscillation of a system is called fee oscillation it 0 . $11 l$ thes vithout the interference of an external force. e.g. simple nermillm when slightl. displaced irem its mean position vibrates freely with its natural frequency that derends only upon the length of the pendumen.
Forced Oscillaticr:
Iffeely or cillating system is subjected to an external force, then forced vibration will take pode, the oscillation produced are called forced oscillation. The vibrations of a lactory floor caused by the running of heavy machinery is an example of forced vibration. Another example of forced vibration is loud music produced by sounding wooden boards of strings instruments.
(24) What is driven harmonic oscillator? Give example.

Ans: Driven harmonic oscillator:

"A physical system undergoing forced vibrations is kncwn as aroer oscillator".
Examples:
(i) Vibrations of factory loor 20 af d the ruming of heavy reachinery.
(ii) In 1d music nounced by ounding woocen boards of strings instruments

7.8 RESONANA

(25) Define esonance aid give sone examples. DGK-2018 (G-I) (SGD 2015)

Ans: The] henomen of Resonance occurs when frequency of the applied force is equal to the ntationequency of vibration of force (driven) harmonic oscillator.
For example:

- Tuning of radio is an example of electrical resonance
- A swing is an example of mechanical resonance
- Heating and cooking of food by microwave oven
(26) Why the soldiers are ordered to break their steps while crossing bridge?

Ans: The soldiers are ordered to break their steps while crossing the big bridge, because if the frequency of their steps coincides with the natural frequency of bridge, the bridge may be set into vibrations of large amplitude. Thus the bridge may collapse due to resonance.
(27) How resonance is produced in tuning a radio set?

FSD-2018
Ans: Tuning a radio is the best example of electrical resonance. When we turn the knob of a radio, to tune a station, we are changing the natural frequency of the electric circuit of the receiver, to make it equal to the transmission frequency of the radio station. When the two frequencies match, energy absorption is maximum and this is the only station we hear.
(28) How cooking of food is possible in micro-wave oven?

RWP-2014
Ans: The waves produced in the microwave oven have wavelength of 12 cm and frequency of 2450 MHz . At this frequency the waves are absorbed due to resonance by water and fat molecules in the food. In this way heating and cooking occur in the microwave oven.

