Waves

TOPIC WISE MULTIPLE CHOICE QUESTIONS 8.2 PERIODIC WAVES The speed of periodic wave can be found indirectly from its (1) (b) wavelength (a) frequency (d) none of these (c) both a and b If 30 vaves per second pass inrough a medium at speed of 30 ms⁻¹, the wave-length (2) LHR-2018 (G-II) is (a) 30 m **(b)** 15 m (\mathbf{c}) m (d) 900 m The distance between two consecutive troughs is called **DGK-2018 (G-I)** (a) displacement (**b**) amplitude (c) wave length (d) wave front (4) The example of mechanical waves is MTN-2018 (G-II) (a) water waves (b) radio waves (c) infra-red waves (d) ultra-voilet waves (5) Longitudinal waves are also known as: (GRW 2015) (a) Stationary waves (b) Transverse waves (c) Compressional waves (d) Electromagnetic waves (6) In wave pattern, all parts move with (a) same speed (b) double speed (c) different speed (d) half speed (7) The crest moves one wavelength in (a) one period of oscillation (**b**) two period of oscillation (c) three period of oscillation (d) half period of oscillation When wave passes from medium to another, deviate from it's path is called (8) (a) reflection (b) refraction (c) diffraction (d) transmission (9) When two identical waves are superposed, the velocity of the resultant wave (a) decreases (**b**) increases (d) becomes zero (c) remain unchanged (10)The linear distance between two nearest points of a medium vibra ing in phase is (b) time period (a) path difference (d) frequency (c) wavelength The product of time period and frequency is (11) (a) velocity **(b)** 1 (C) 2 (d) Acceleration The portion of a wave below the mean level is called. (a) crest (b) trough (c) node (d) anti-node

	(13)	Continuous regular and rhythmic distur	hance in a medium is	called
	(13)	(a) periodic waves	(h) pulse	
		(a) periodic waves	(d) complex wave	$\pi G (0) UUU$
	(14)	What kind of waves can be setup in liquid		VGGGG
	(14)	(a) transverse waves	() lengitudinal veve	1 Che
		(a) transverse waves	(d) metter wave	5
	(15)	(c) bound and b	(u) harder waves	
	(15)	The formation of compressions and raren	(b) longitudinal ways	
		(a) clastromagnetic wave	(b) foligituullial wave	-5
	0 2 000		(a) none of these	
- 00	RA	The mod of sound depends upon		
ANN	101	(a) compressibility of fluids	(b) Inertia of fluids	
A.A.	\smile	(a) both a and b	(d) none	
	(17)	(c) both a and b Speed of sound at 0° C in air is:	(u) none	I HD 2010 (C I)
	(1)	speed of sound at 0 C, in an is: (a) 222 ms^{-1}	(b) 280 ms^{-1}	LHK-2019 (G-1)
		(a) 552 ms^{-1}	(b) 260 ms^{-1}	
	(10)	(c) 1400 IIIs	(u) 5500 IIIs	
	(18)	If the pressure of the gas is doubled, then	the speed of sound:	UD 2017 (C I)
		(a) is also doubled	GKW-2010 (G-1),L	HK-2017 (G-I)
		(a) is also doubled $(x) = \frac{1}{2} \int_{-\infty}^{\infty} \frac{1}$	(b) becomes nall	
	(10)	(c) is not affected	(d) becomes zero	
	(19)	Speed of sound in aluminum at 20°C is:	(1) 5100	LHR-2016 (G-11)
		(a) 3600 m/s	(b) 5100 m/s	
		(c) 5130 m/s	(d) 5500 m/s	
	(20)	The velocity of sound is greatest in:	/- \ -	LHR-2016 (G-II)
		(a) steel	(b) air	
		(c) iron	(d) water	
	(21)	The velocity of sound in vacuum is:		
		SGD-2016 (G-II), FS	D-2017, FSD-2019 (G	-I) LHR-2016 (G-II)
		(a) zero	(b) 332 m/s	
		(c) 280 m/s	(d) 330 m/s	
	(22)	Speed of sound in copper is:	1	RWP-2016 (G-I)
		(a) 3800ms^{-1}	(b) 3600ms^{-1}	_ran
		(c) 3500ms^{-1}	(d) 3400ms^{-1}	and COMMU
	(23)	The value of " γ " for polyatomic gas is:	1	MTN-2019 (G-II)
		(a) 1.40	(b) + 29	1 Culo
		(c) 1.67	(c) 1.19	
	(24)	If speed of sound in air at a given pressur	e is 'V' and now if p	ressure is doubled
		then new speed will be;	2	MTN-2019 (G-I)
			V	
		(a) 2V	(b) $\frac{1}{2}$	
	NR	Value	(d) 4V	
ANN	ANI.	Newton calculated speed of sound in air u	sing the process:	BWP-2019 (G-II)
VIV)	Con	(a) Adiabatic	(b) Isobaric	
0-		(c) Isochoric	(d) Isothermal	
			(a) isomorniu	

Waves

	(37) The Laplace correction in the expression for the velocity of sound is needed because sound waves				
		(a) are longitudinal	(b) propagate adiabatically		
		(c) propagate isothermally	(d) are of long wavelength		
	(38)	Velocity of sound in vacuum			
		(a) 340m/sec	(b) 3.32 m/sec		
		(c) 280 m/sec	(d) zelo		
	(39)	Velocity of sound is maximum on			
		(a) A het dry day	(b) Hot humid day		
		(c) A cool day	(d) A cool humid day		
	(40)	The ratio of the speed of sound in hydroge	The ratio of the speed of sound in hydrogen to the speed of sound oxygen is		
- nm	(NI)	(ε) 1.2	(b) 2:1		
NNI	90	(c) 1:4	(d) 4:1		
00	(41)	Audible frequency range for a normal hu	man being is		
		(a) 200 to 2000Hz	(b) 20 to 20000 Hz		
		(c) 10 to 20000Hz	(d) 200 to 200000Hz		
	(42)	Speed of sound at 1 atm pressure is 332m	h/sec, the speed of sound at 2 atm pressure		
	()	at same temperature is			
		(a) 332m /sec	(b) 664m/sec		
		(c) 166m/sec	(d) 83m/sec		
	(43)	The speed of sound is independent of			
	(10)	(a) moister	(b) temperature		
		(c) density	(d) pressure		
	(44)	For all gases			
	()		<u> </u>		
		(a) $v_t = v_0 \sqrt{1 - \frac{t}{272}}$	(b) $v_t = v_{oA} \left[1 + \frac{\iota}{272} \right]$		
		V 273	273		
		(c) $y = y \sqrt{1 + 273t}$	(d) $v = v \int_{1}^{1} \frac{273}{1}$		
		$(\mathbf{v}) v_t = v_0 \mathbf{v} 1 + 275t$	$(\mathbf{u}) \mathbf{v}_t = \mathbf{v}_o \sqrt{1 + t}$		
	(45)	Newton proposed that the speed of sound	in air is		
		(a) 333ms^{-1}	(b) 280ms^{-1}		
		(c) 330ms^{-1}	(d) 332ms^{-1}		
	(46)	Th00000e speed of sound is higher in solid	l than the gases due to high		
		(a) temperature	(b) frequency		
		(c) elasticity	(d) density		
	(47)	For small changes in temperature, the vel	ocity of sound can be find by the relation		
		(a) $v_t = v_0 + 0.61t$	$(D \cdot V) = V_{c} + 0.0511$		
	(40)	(c) $v_t = v_0 - 0.61t$	(c) $V_t = V_0 - 0.061t$		
	(48)	It speed of source becomes greater. than sp	seed of sound then it produces		
		(a) sopia koary	(d) all		
	(40)	One dource Calsing rise 's temperature in	(u) all crosses the speed of sound by		
	(49)	(s_1) 661m ⁻¹	(b) 1.62ms^{-1}		
- 00	NN	$(1)^{2} 6 \text{ ms}^{-1}$	(d) 1.67ms^{-1}		
(NNI)		The speed of sound in hydrogen at STP	(*) 1.0/110		
00		(a) 258 ms^{-1}	(b) 1286 ms^{-1}		
		(c) 332 ms^{-1}	(d) 315 ms^{-1}		

J.

Waves

	(51)	According to Laplace sound travels in air under		
		(a) isothermal condition	(b) adiabatic conditions	
		(c) isobaric conditions	(d) isochoric conditions	
	8.6 BE	ATS	T TOWNOOD	
	(52)	Phenomenon of beats is due to		
	(0-)	(a) interference	(h) diffraction	
		(c) polarization	(d) refraction	
	(53)	Tuning fack is a source of	(GRW 2015) GRW-2019 (G-II)	
	(55)	(a) energy	(b) heat $(0.0002013), 0.0002017, (0.000)$	
		(a) in the	(d) sound	
	GAN	(c) it jut	$(\mathbf{u}) \text{ sound} \\ \mathbf{C}\mathbf{D}\mathbf{W} \text{ 2010 } (\mathbf{C} \mathbf{I})$	
R	AN N	the junier the sound, the greater will be	(b) smalltude	
U	UU	(a) wavelength	(b) amplitude	
		(c) speed	(d) frequency	
	(55)	Beats can not be recognized if difference	e of frequencies of two sounds is:	
			SWL-2017, LHR-2017 (G-II)	
		(a) less than 10 Hz	(b) more than 10 Hz	
		(c) less than 5 Hz	(d) less than 7 Hz	
	(56)	On loading the prong of tuning fork with wax	, the frequency of sound: RWP-2019 (G-I)	
		(a) increases	(b) decreases	
		(c) remains same	(d) periodic increase and decrease	
	(57)	The basic principle of beats is:	DGK-2018 (G-II)	
		(a) interference	(b) diffraction	
		(c) polarization	(d) superposition	
	(58)	Which of the following is not an applica	tion of superposition principle?	
		(a) interference	(b) beats	
		(c) stationary waves	(d) none	
	(59)	Two tuning forks A and B give four be	eats / sec. If one of the tuning fork is loaded	
		with wax then number of beats/sec		
		(a) increases	(b) decreases	
		(c) remains same	(d) may increase or decrease	
	(60)	If a tuning fork is loaded with some wax	, its frequency	
		(a) increases	(b) decreases	
		(c) may increase or decrease depending up	on frequency	
		(d) remains same		
	(61)	Two waves of frequency f_1 and f_2 (f_1)	> f_2) produces beats. The number of boats	
	(-)	produced per sec are		
		(a) $f_1 - f_2$	b f + f	
		f		
		(c) $\frac{f_1}{f_1}$	$(\mathbf{d}) \frac{J_2}{J_1}$	
		$J_2 \cap [$		
	(62)	Beats cannot be heard if the difference of	of frequencies is more than about	
		(a) 6 HZ	(b) 10Hz	
	- 0	(c) 4 Hz	(d) 9 Hz	
R	(63)	Beast are produce when		
	UU	(a) sound is heard after multiple reflection	S	
		(b) interference of two sound waves of slig	shily different frequencies take place	
		(c) sound waves enter into a highly dispers	sive medium	
		(u) interference of two sound waves of the sa	me nequency but unterent in amplitude take place	

(64)	The pitch of sound depends upon		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	(a) frequency	(b) amplitude	
	(c) harmonics	(d) intensity	SILLOU
(65)	Two tuning forks of frequency 260 Hz a	d 257 Hz are sounded to g	ether the number
	of beats per second is: $\bigcirc \bigcirc \bigcirc$	• \[
	(a) 3	(\mathbf{b}) 2 U U U	
	(c) zero	(d) 4	
(66)	Loudness of sourd depends upon		
	(a) frequency	(b) pitch	
5	(c) unpl tu de	(d) none	
	SE STADIONARY WAVES & STATIONARY	WAVES IN A STRETCHE	DSTRING
NNI 7630	The distance between 1 st node and 4 th ant	inode is:	FSD 2017
00	(a) $\frac{7}{2}$	(b) $5\frac{\lambda}{\lambda}$	
	$(a) \frac{-\pi}{4}$	$(0) 3\frac{4}{4}$	
	$()$ 12 ^{λ}	λ	
	(c) $13 - 4$	(d) $11{4}$	
(68)	If a stretched-string is 4m and it has 4 loc	ops of stationary waves. th	en wave length is
()		LH	R-2018 (G-I)
	(a) 1m	(b) 2m	()
	(c) 3m	(d) 4m	
(69)	A stationary wave is established in a strin	ng which vibrates in four s	egments at a
	frequency of 120 Hz. Its fundamental free	quency is: LH	R-2017 (G-I)
	(a) 15 Hz	(b) 30 Hz	
	(c) 60 Hz	(d) 480 Hz	
(70)	If a string vibrates in "n" loops, the wave	length of stationary wave	will be:
			FSD 2019 (G-I)
	(a) $\frac{2\ell}{2}$	(b) $\frac{n\ell}{\ell}$	
	(a) - n	$(0) \frac{1}{2}$	
	(2) $2n$	(d) ^l	
	(c) $\frac{\ell}{\ell}$	(a) $\frac{1}{2n}$	
(71)	If a stationary wave is established along a	stretched string of length	ℓ and it
	vibrates in one loop, the wave length is eq	ual to: MT	Ъ-2919 (G-Ш)
			(C(0))
	(a) <i>l</i>	$(\mathbf{b}) = \frac{1}{2}$	6.65
			Cul
	(c) $\frac{1}{2}$	(a) 2 č	
(77)	In the stratehold string if gread of the way	a is doubled the tension w	vill bo
(72)	In the stretchen straig it speed of the way	ers doubled, the tension w	$\mathbf{DCK} \ 2018 \ (\mathbf{C} \ \mathbf{I})$
	$(\mathfrak{n})_{2}$	(b) 4	DGR-2018 (G-1)
-		(b) 4 (d) 6	
man	When a transverse wave is incident on ro	(u) (rer medium from a donco	r medium the
NNINN	nhase change will he		R-2017 (G-II)
AA A	(a) 90°	(b) 60°	$\mathbf{X}^{-} \mathbf{A} \mathbf{V} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{U}^{-} \mathbf{H} \mathbf{I} \mathbf{I} \mathbf{I}$
	$(c) 180^{\circ}$	$(d) 0^{\circ}$	

(74)	A string stretched between two rigid supp	ports is plucked from one quarter then the
	number of loops formed are	
	(a) one	(b) two
	(c) three	(d) four
(75)	The fixed ends of vibrating string are can	ed
	(a) nodes	(b) and and a
	(c) overtone	(d) none
(76)	The fundamental frequency of stationary	wave is
MAR	(2) $f = -\frac{1}{2^{T}} \int_{f}^{T}$	(b) $f = -\frac{1}{l}$
MA A -	(c) $f = \frac{1}{1} \sqrt{\frac{F}{F}}$	(d) $f = \frac{1}{1}$
5	$2l \sqrt{m}$	2vl
(77)	The product of frequency and wavelength	is equal to.
	(a) speed of wave	(b) time period (T)
	(c) force	(d) none of these
(78)	The distance between two consecutive cre	sts or troughs is called
	(a) frequency	(b) wavelength
	(c) time period	(d) amplitude
(79)	When the antinodes are all at their extreme	displacements, the energy stored is
	(a) K.E	(b) P.E
	(c) thermal energy	(d) all of these
(80)	The distance between the node and anti n	ode is
	(a) $\frac{\lambda}{\lambda}$	(b) $\frac{\lambda}{\lambda}$
	2	4
	(a)	λ
	(c) λ	$(u) \frac{1}{3}$
(81)	The fundamental frequency of stationary	wave in a stretched string is
	(a) maximum frequency	(b) minimum frequency
	(c) average frequency	(d) zero
(82)	The frequency of a string on a musical ins	trument can be changed by
	(a) changing the length	(b) changing the amplitude
	(c) changing the tension	(d) either a or b
(83)	The speed of the waves in the string is give	
	(a) $= \overline{F}$	
	\sqrt{g}	W V VF
	Quincon lin VIV	\overline{F}
	(c) $v = g \sqrt{\frac{1}{m}}$	(d) $v = \sqrt{\frac{1}{m}}$
(84)	When the string vibrates in two loops, its	frequency becomes than when it
AMAN	vibrates in one loop.	
NN NN	(a) half	(b) double
00 -	(c) 4 times	(d) remain same

	(85)	For 'n' number of loops in a string the fundamental frequency is given by		
		(a) $f_1 = \frac{f_n}{2n}$	(b) $f_1 = \frac{f_n}{n}$	
		(c) $f_1 = nf_n$	$(\mathbf{d}) j = \frac{n}{f_n}$	
	(86)	When the string vibrates in the ee loops the	n the length i^{2} of the string is expressed as	
		(a) $l = \frac{33}{4}$	(b) $l = \frac{\lambda}{2}$	
ant	MA		(d) $l = \frac{2\lambda}{3}$	
MM.	QŴ	A standing-wave pattern is formed who	en the length of the string is an integral	
0 -		(a) half wavelength	(b) double wavelength	
		(c) quarter of wavelength	(d) 1/4 of wavelength	
	(88)	If tension in a string is made four times th	ien speed of wave becomes	
	()	(a) double	(b) four times	
		(c) one times	(d) none	
	(89)	The energy remains standing in the media	um.	
		(a) between nodes	(b) between antinodes	
		(c) between node and antinodes	(d) none of these	
	(90)	Stationary waves are also known as		
		(a) micro waves	(b) sound waves	
		(c) standing waves	(d) ultra sonics	
	(91)) When the string vibrate in one segment (loop) then length of string is		
		(a) $1 = \lambda$	(b) $1 = \frac{\lambda}{2}$	
		(c) $l = \frac{\lambda}{4}$	(d) $1=2\lambda$	
	8.10 S	.10 STATIONARY WAVES IN AIR COLUMN		
	(92)	In open pipe, harmonics generated are		
		(a) even	(b) odd	
	(02)	(c) both a even and odd	(d) no	
	(93)	harmonic in it is given by		
		(a) $f_n = \frac{nv}{2k\ell}$	(b) $\mathbf{f}_{n} = \frac{n\ell}{4\sqrt{2}}$	
		(c) $f_n \in \mathcal{F}_{\ell}$	(d) $f_n = \frac{nv}{4\ell}$	
	(94)	If the organ pipe is closed at one end, the	frequency of fundamental harmonic is:	
	OR	MULLU	(RWP 2015)	
AM	1/1/	(1) $f_1 = \frac{r}{2}$	(b) $f_1 = \frac{v}{4t}$	
MN,	00	$\frac{2l}{4l}$	41	
0		(c) $f_1 = \frac{4l}{2}$	(d) $f_1 = \frac{2l}{l}$	
		v	v	

	(95)	The wave length of fundamental note in o	ne end closed pipe in terms of le0ngth "l"
		of pipe is (a) 4ℓ	(b) 2 <i>l</i>
		(c) l	ALTIN CLOSE
	(96)	In resonance tube, which of the followings	s is tor med at open en 1
		(a) node	(b) antinodes
	(07)	(c) neither a nor b	(d) either a or b
	(97)	harmonics are present.	a pipe closed at one end, only
0	NR	(E) CVCD	(b) odd
$\Delta M N$	N.	(c) just multiple of 5	(d) all of these
AR A	(98)	In stationary longitudinal waves the air vi	ibrations are longitudinal along the
		(a) diameter of the pipe	(b) length of pipe
	(00)	(c) radius of pipe	(a) none of these
	())	(a)]	(b) 2]
		(c) $\frac{1}{2}$	(d) 41
	(100)	When one end of organ is closed, then t	the wave length of stationary wave of any
		harmonic in it is given by	
		(a) $\lambda n = \frac{41}{2}$	(b) $\lambda n = \frac{4n}{2}$
		n	
		(c) $\lambda n = \frac{1}{2}$	(d) $\lambda n = \frac{n}{2}$
	(101)	4n	41
	(101)	The organ pipe which is open at both ends (\mathbf{a}) weaker in harmonics	S IS (b) richer in harmonics
		(c) no harmonics produce	(d) none of these
		(c) no namones produce	
		ANSWER	KEYS
		(Topic Wise Multiple C	Choice Questions)
		1 c 16 c 31 a 46 d	61 a 76 c 91 d
		2 c 17 a 32 b 47 b	62 b 77 a 92 c
		5 C 18 C 35 a 48 C 4 b 10 b 34 c 40 c	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
		5 c 20 h 35 d 50 h	
		$\frac{5}{6}$ a 21 b $\frac{5}{6}$ c 21 b	
		7 a 22 b 33 b 51 a	61 2 81 2 97 25
		5 b 23 b 38 a 53 d	68 b 83 d 98 b
		79 c 124 c 39 c 34 b	69 d 84 b 99 a
		10 25 d 40 d 55 b	70 a 85 b 100 a
	nR	11 26 d 41 b 56 b	71 d 86 c 101 b
MAR	WI)	12 b 27 a 42 a 57 a	72 b 87 a
MA ,	5	13 a 28 b 43 d 58 d	73 d 88 a
-		14 c 29 a 44 b 59 b	74 b 89 a 75 a 90 a
		15 D 30 C 45 D 60 D	75 a 90 c

Ans:

SHORT QUESTIONS

(From Textbook Exercise)

- 8.3. It is possible for two identical waves traveling in the same direction along a shing to give rise to a stationary wave? *BWP-15(G-I), FSD-15(G-I), RWP-15(G-I), SCD- 6 (G-L), FSD 17, LAR-17 (C-I), GRW-18, GRW-19 (G-II), BWP-19 (G-II)*
- Ans: No, it is not possible for two identical vaves traveling in the same direction along a string to give rise to stationary waves, because production of stationary waves requires two identical vaves traveling along a straight line in opposite direction.

8.6. Why does sound travel faster in solids than in gases?

MTN-15(G I)& (G-1), DGK-15(G-I), GRW-15(G-I), MTN-16 (G-II), DGK-16 (G-I), BWP-16 (G-I), LHR-16 (G-I), SWL-17 37 P⁻¹ (G-1) & (G-II), FSD-18, DGK-18 (G-II), GRW-18, RWP-19 (G-I), GRW-19 (G-I), MTN-19 (G-I) The velocity of sound in a medium is directly proportional to the square root of the elasticity of the medium. As by formula:

$$V = \frac{\sqrt{E}}{\sqrt{\rho}}$$
 or $V \propto \sqrt{E}$

Since, the elasticity of solids is larger than that of gases, therefore sound trav0els faster in solids than in gases.

8.7. How are beats useful in tuning musical instrument?

SGD-15(G-I) & (G-II), BWP-15 (G-I), MTN-15(G-II), SWL-16, DGK-16 (G-I)&(G-II), GRW-16 (G-I), LHR-16 (G-II), LHR-18 (G-II), SGD-18 (G-I), FSD-19 (G-I), LHR-19 (G-II), MTN-19 (G-I)

Ans: To tune a musical instrument, we compare the note of the instrument with some other note of known frequency. We know that beats are equal to the difference of frequencies, therefore we can use knowledge of beats in tuning musical instruments by adjusting the desired frequency by tightening or loosening the string until no beats are heard.

8.10. Explain why sound travels faster in warm air than in cold air. SGD-15(G-II), LHR-15(G-I), MTN-16 (G-I), DGK-16 (G-II), SGD-16 (G-I), GRW-16 (G-I), LHR-16 (G-II), DGK-18 (G-I), GRW-19 (G-II), BWP-19 (G-I)

Ans: The velocity of sound in a medium is inversely proportional to the square root of density of the medium i.e.

$$V \propto \frac{1}{\sqrt{\rho}}$$

MMM

As the density of warm air is lesser than that of cold air, therefore, sound travels faster in warm air then in cold air. More over velocity of sound increases with temperature hence in warm air the sound travels faster.

Ans:

TOPIC WISE SHORT QUESTIONS

8.2 PERIODIC WAVES

v = 400 m / s

 $\lambda = ?$

 $v = f \lambda$

(1) A wave has speed 400 m / sec. Find wavelength of a wave if frequency is 2 kHz.

 $\lambda = \frac{400}{2 \times 10^3} = 0.2 \text{ m}$

 $f = 2IH_2 = 2 \times 10^3 H_2$

8.3 SPEED OF SOUND IN AIR

- (2) Does the speed of sound according to Newton's formula differs from e0xperimental value?
- **Ans:** Yes according to Newton's formula the speed of sound comes out to be 280 m/s. But its experimental value is 332 m/s (about 16% error).

(3) What is the velocity of sound in vacuum?

- **Ans:** Sound waves are mechanical waves and it cannot travel or propagate without medium. Because mechanical waves produced due to oscillation of particles of medium. In vacuum due to absence of medium velocity of sound is zero.
- (4) How the speed of sound is effected by temperatures?

LHR-2019 (G-II)

Ans: Laplace was the first man who provided evidence of effect of temperature on the speed of sound. According to him speed of sound increases by 0.61 ms⁻¹ for every 1°C rise in temperature. If speed of sound v_o at S.T.P (i.e; at 0°C) is 332ms⁻¹ then the new speed v_t at some temperature t is determined by

 $v_t = v_o + 0.61t$

 $v_t = 332 + 0.61t$

$\left[\because v_{o} = 332 \text{ms}^{-1}\right]$

- (5) The speed of sound in air at 0° C is 332 ms⁻¹. Find its speed at $20^{\circ00}$ C.
- Ans: The speed of sound varies directly proportional to temperature and can be measured by using the following equation.

```
v_t = v_0 + 0.61t
```

$$v_t = 332 + 0.61 (20)$$

$$v_t = 344.2 \text{ ms}^1$$

(6) Write the formula for speed of sound at 0° C.

Ans: Let $v_0 =$ speed of sound at 0° C

 $1 \text{ and } y_t = \text{speed of sound at } t^{\circ}C$

then the relation between them can be written as

 $v_t = v_o + 0.61t$

$$v_{o} = v_{t} - 0.61t$$

Beat Frequency

Number of beats per second is equal to difference between the frequencies of the tuning

forks. Beats frequency is given by

 $n = \pm f_1 - f_2$

8.8 STATIONART WAVES

(14) How the K.E and P.F alternates in stationary waves?

Ans: When anti-nodes are all their extreme displacements, the energy stored in wholly potertial. When they are simultaneously passing through their equilibrium position, the energy is wholly kinetic.

(15) Write characteristics of stationary waves?

Ans: (i) Distance between two consecutive nodes or anti nodes is equal to $\frac{\lambda}{2}$.

(ii) Distance between node and next anti node is $\frac{\lambda}{4}$

(iii) In stationary waves, Nodes always remain at rest, so energy cannot flow past through nodes

(iv) Amplitude is maximum at antinodes and minimum at nodes.

(v) Points of constructive interference are called antinodes while points of destructive interference are called nodes.

8.9 STATIONARY WAVES IN A STRETCHED STRING

(16) What is meant by harmonic series?

Ans: The frequency of stationary waves setup on strings will be

$$f_n = nf_1$$

 $n = 1, 2, 3, ...$

The stationary waves in any medium have discrete set of frequencies $f_1, 2f_1, ..., nf_1$. This is known as harmonic series. The fundamental frequency f_1 corresponds to the first harmonic, then $f_2 = 2f_1$ corresponds to the second harmonic as so en.

- (17) What happens to the frequency and wavelength of the vave? When a string fixed at its ends, vibrates in more than one loops.
- Ans: When the string vibrates in more and more loops its frequency increases and the wavelength gets corresponding shorter. However the product of frequency and wavelength is always, the speed of waves.

$$v = f \lambda$$

MMM

8.10 STARIONARY WAVES IN AIR COLUMNS In which type of an organ pipe, the fundamental frequency is doubled then that (18) other type? In case of open organ pipe fundamental frequency is given by Ans: $f_{open} = \frac{v}{2\ell}$ In case of closed cigan pipe from one end the fundamental frequency is given by f_{closed} = $f_{open} = 2 \times f_{closed}$ Therefore, in open organ pipe fundamental frequency is double as compared to closed organ pipe. (19) What kind of the waves are there within an organ pipe and in a stretched string. Ans: The kind of waves within an organ pipe are the longitudinal stationary waves and within a stretched string, the transverse stationary waves are produced. Why are both odd and even harmonics produced in an open pipe? (20)When the pipe is open, antinodes are produced at both ends of pipe. This is due to this Ans: reason that all the harmonics are produced in an open pipe. Which is richer in harmonics, and why: (21) (a) An open organ pipe. (b) A closed organ pipe. LHR-2017 (G-I) In case of open organ pipe the frequencies is given by Ans: $f_n = nf_1$ $n = 1, 2, 3, \dots$ In case of closed organ pipe the frequencies is given by $f_n = nf_1$

n = 1, 3, 5, ...

In case of closed organ pipe even frequencies are missing and only odd frequencies are present. So, therefore open organ pipe richer in harmonics.

60.LS