	ANNUAL EXAM 2024 PHYSICS 11	
	QUESTION NO. 1	
1.	Suppose in a rectangular coordinate system, a vector A has its tail at the point $P(-2, -3)$ and its tip at $Q(3,9)$. Determine the distance between these two points.	ĩ
2.	Show that the three vectors $\hat{i} + \hat{j} + \hat{k}$, $2\hat{i} - 3\hat{j} + \hat{k}$ and $\hat{i}\hat{i} + \hat{j} - 5\hat{k}$ are mutually perpendicular	
3.	The line of action of force, $F = \hat{i} - 2\hat{j}$ Passes through a point whose position vector is $(-\hat{i} + \hat{k})$ Find i)	
5.	the moment of F about the origin. i) the moment of F all cut the point of which the position vector is $\hat{\iota} + \hat{k}$.	
4.	The magnitude of you and cross products of two vectors are $6\sqrt{3}$ and 6 respectively. Find the angle between the vectors.	
5.	Define rorque. Calculate to que due to force acting on a rigid body.	
m	Define scalar product with examples. Write down its any four characteristics.	
14	Define vectors product of two vectors. Also write the characteristics of vector product of two vectors.	
Ng	Derive the expression for the magnitude and direction of the resultant of two vectors, added by	
	rectangular component method.	
9.	A boy places a fire cracker of negligible mass in an empty can of $40~{ m g}$ mass. He plugs the end with a	
	wooden block of mass 200 g. After igniting the firecracker, he throws the can straight up. It explodes at	
	the top of its path. If the block shoots out with a speed of 3.0 ms^{-1} , how fast will the can be going?	
10.	An electron (m = 9.1×10^{-31} kg) travelling at 2.0×10^7 ms ⁻¹ undergoes a head on collision with a	
	hydrogen atom ($m = 1.67 \times 10^{-27}$ kg) which is initially at rest. Assuming the collision to be perfectly	
	elastic and a motion to be along a straight line, find the velocity of hydrogen atom.	
11.	A truck weighing 2500 kg and moving with a velocity of 21 ms^{-1} collides with stationary car weighing	
12	100 kg. The truck and the car move together after the impact. Calculate their common velocity.	
12.	Two blocks of masses 2.0 kg and 0.50 kg are attached at the two ends of a compressed spring. The elastic potential energy stored in the spring is 10 J. Find the velocities of the blocks if the spring delivers	
	its energy to the blocks when released.	
13.	A bomber dropped a bomb at a height of 490 m when its velocity along the horizontal was 300 kmh ⁻¹ .	
	i) How long was it in air? ii) At what distance from the point vertically below the bomber at the instant	
	the bomb was dropped, did it strike the ground?	
14.	A SLBM (submarine launched ballistic missile) is fired from a distance of 3000 km. If the Earth is	
	considered flat and the angle of launched is 45^{0} with horizontal, find the velocity with which the missile	
	is fired and the time taken by SLBM to hit the target.	
15.	Define projectile motion. Derive relation for the following terms: i) Time of flight ii) Range of flight	
16.	Define elastic and inelastic collision. Explain elastic collision in one dimension to show the relative	$\widetilde{}$
	velocities before and after collision are same. A man pushes a lawn mower with a 40 h force directed	JU
	at an angle of 20° downward from the horizontal. Find the work done by the man as he cuts a strip of	
	grass 20 m long.	
	QUESTION-NOU2UUU	
1.	Ten bricks, each $50~{ m cm}$ thick and mass $1.5~{ m kg}$ lie flat on a table. How much work is required to stack	
	them one on the top of all other?	
2.	A 1000 kg automobile at the top of an incline 10 meter high and 100 m long is released and rolls down	
	the full what is its speed at the bottom of the incline if the average retarding force due to friction is	
N		
<u> </u>	A giver weighing 750 N dives from a board 10 m above the surface of a pool of water. Use the	
,~	conservation of mechanical energy to find his speed at a point 5.0 m above the water surface,	
	neglecting friction.	
4.	Explain the inter conversion of potential energy and kinetic energy.	
5.	Define absolute gravitational P.E. derive expression for the absolute value of gravitational P.E of a body	
6	at a distance "r" from the center of the earth. When two nodes of frequencies f_1 and f_2 are sounded together, beats are formed. If $f_1 > f_2$, what will	
6.	be the frequency of beats? I) $f_1 + f_2$ ii) $1/2(f_1 + f_2)$ iii) $f_1 - f_2$ iv) $1/2(f_1 - f_2)$	
L	$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j$	

ANNUAL EXAM 2024	PHYSICS 11
7. A stationary wave is established in a string which is 120 cm	n long and fixed at both ends. The string
vibrates in four segments; at a frequency of 120 Hz. Deter	mine its wavelength and the fundamental
frequency?	
8. The frequency of the note emitted by a stretched string is	300 Hz. What will be the frequency of this
note when: a) the length of the wave is reduced by one thi	ird without charging the tension. b) the
tension is increased by one-third without changing the len	
9. Organ pipe has a length of 50 cm. rind the frequency of it.	fundamental note and the next harmonic
when it is: a) open at both ends b) closed at one end.	Car D
10. Discuss effect of temperature on speed of sound Also pro	
 Write down newton's formula for speed sound in air expla relation for speed of sound in air. 	in the Laplace correction by deriving the
12. Det ne Doppler's effect. Derive apparent frequency if:a) ob	oserver moves towards the source b) observer
noves a way from the source	
13. Explain interference. Find the conditions for i) constructive	e interference ii) destructive interference
14. What is drawback of Newton's formula for the speed of so	
Derive the Laplace's expression for the speed of sound and	also find the value of speed of sound by
using this expression.	
QUESTION NO	0.3
A disc and a hoop start moving down from the top of an inclined	plane at the same time. Which one will be
moving faster on reaching the bottom?	
A tiny laser beam is directed from the Earth to the Moon. If the b	eam is to have a diameter of 2.50 m at the
Moon, how small must divergence angle be for the beam? The di	stance of Moon from the Earth is 3.8 $ imes$
10 ⁸ m.	
Calculate the angular momentum of a star of mass $2.0 imes10^{30}~{ m kg}$; and radius $7.0 imes 10^5~{ m km}$. If it makes one
complete rotation about its axis once in 20 days. What is its kinet	ic energy? 4. Explain artificial gravity. Derive
$f = \frac{1}{2\pi} \sqrt{\frac{g}{R}}.$	
Define artificial satellite. Explain that how real and apparent weig	th in an elevator for all the cases is related?
Define rotational K.E. Also derive formula for rotational K.E of a d	isc and hoop coming down an inclined plane.
Define rotational K.E. show that a disc will be moving faster than	a hoop on reaching the bottom of an inclined
plane, when thrown at the same time.	
Calculate the angular momentum of a star of mass $2.0 imes10^{30}~{ m kg}$	and radius $7.0 imes 10^5$ km. if it makes one
complete rotation about its axis one in 20 days, what is its kinetic	
What are geostationary satellites? Derive the relation for radius of	
Certain globular protein particle has a density of 1246kgm ⁻³ . It f	
speed of 3.0 cmh^{-1} . Find the radius of the particle.	01/21/60
Water is flowing smoothly through a closed pipe system. At one r	coint the speed of vater is 3.0 ms ⁻¹ , while at
another point 3.0 m higher, the speed is 4.0 ms^{-1} . If the pressur	
pressure at the upper point?	
The radius of the ao: tais about 1.0 cm and the blood flowing the	ough it has a speed of about 30 cms^{-1} .
Calculate the average speed of the blood in the capillaries using t	
diameter of about $8 imes 10^{-4}$ cm, there are iterally millions of the	
2000 cm ²	
Define stoke's ave and show that the terminal velocity is directly object.	proportional to square of radius of the
State and prove the Bernoulli's equation in dynamic fluid that relation	ates pressure to fluid speed and height.
State and derive equation of continuity $A_1V_1 = A_2V_2$	
QUESTION N	0.4
1. Explain the relation between total energy, potential energy SHM.	and kinetic energy for a body oscillating with

	ANNUAL EXAM 2024 PH	IYSICS 11		
2.	A load of 15.0 g elongates a spring by 2.00 cm. If body of mass 294 g is attached to t into vibration with an amplitude of 10.0 cm, what will be its: i)period ii)spring constation speed of its vibration.	ant iii)maxir		6
3. 4.	A block of mass 4.0 kg is dropped from a height of 0.80 m on to a spring of spring at 1960Nm ⁻¹ . Find the maximum distance through which the spring will be completed A car of mass 1300 kg is constructed using a frame supported by four springs. Each st	spring has a		Π
5.	constant 20,000Nm ⁻¹ . If two people r ding in the car have a combined mass of 160 frequency of vibration of the car, when if is ciriler over a porthole in the road. Assume evenly distributed Discuss the motion of horizontal mass spring system and also derive formula for time	ne the weig		
6.	A Carnot engine utilizes an ideal gas. The source temperature is 227°C and the sink t 1.27°C. Find the efficiency of the engine and also find the heat input from the source	emperature		
Ŋ	tl e sink when 10000 J of work is done. A reversible engine works between two temperatures whose difference is 100°C. If i	t absorbs 7	46 J of	
8.	heat from the source and rejects 546 J to the sink. Calculate the temperature of the A heat engine performs 100 J of work and at the same time rejects 400 J of heat energy reservoirs. What is the efficiency of the engine?	ergy to the o	cold	
9. 10.	A Carnot engine whose low temperature reservoir is at 7°C has an efficiency of 50% increase the efficiency to 70%. By how many degrees the temperature of the source. A steam engine has a boiler that operates at 450 K. The heat changes water to steam	e be increas	ed?	
	piston. The exhaust temperature of the outside air is about 300 K. What is maximum steam engine? Define pressure of a gas. Prove that $P = \frac{2}{3}N_0 < \frac{1}{2}mv^2 > .$			
12.	 Define first law of thermodynamics. Explain isothermal and adiabatic process. What is Carnot heat engine? Show that efficiency of a Carnot heat engine depends o 	n the temp	erature of	
	the hot and cold reservoirs. Define molar specific heat and prove that $C_p - C_v = R$			
15.	 Define and explain entropy with an example. Does entropy decrease for reversible p absolute value of entropy cannot be determined? 	rocess? Wh	У	
	QUESTION NO. 5			
1.	Calculate the wavelength of light, which illuminates two slits 0.5 mm apart and prod pattern on a screen placed 200 cm away from the slits. The first bright fringe is obse 2.40 mm from the central bright image.	rved at a di	stance of	ñ
2.	A monochromatic light of $\lambda = 588 \text{ nm}$ is allowed to fall on the half silvered glass pia Michelson interferometer. If mirror M_1 is moved through 0.233 mm, how many frin, to shift?	ges will be	clserved	U
3. 4.	Blue light of wavelength 480 nm illuminates a diffraction grating. The second order is an angle of 30° from the central image. How many lines in a centimeter of the gratin 4. X-rays of wavelength 0.150 nm are observed to undergo a first order reflection at	g have bee	n ruled?	
5.	13.3 ⁰ from a quart: (SiO 2) crystal. What is the interplanar spacing of the reflecting Explain Yourie 's Double : lit experiment to study the phenomenon of interference of	light.		
6	Txp a a Young's double sit experiment. Derive the relation for position of mth bright the came, of the screen. Describe the diffraction of X-rays by crystal and derive Bragg's equation.	anu dark fi	inge from	
8.	A converging lens of focal length 5.0 cm is used as a magnifying glass. If the near poir 25 cm and the lens is held close to the eye, calculate: a)the distance of the object from angular magnification. What is the angular magnification when the final image is form	om the lens med at infir	. b)the iity?	
9.	A telescope objective has focal length 96 cm and diameter 12 cm. Calculate the foca minimum diameter of a simple eye piece lens for use with the telescope, if the linear required is 24 times and all the light transmitted by the objective from a distant point.	⁻ magnificat	ion	

ANNUAL EXAM 2024	PHYSICS 11
side away from the object. Find the position of the fi 11. A compound microscope has lenses of focal length 1	aced coaxial with the first and 26.0 cm from it on the nal image produced by the two jenses. .0 cm and 3.0 cm. An object is placed 1.2 cm from
is the maximum innit of resolution for this microscop	an opject under a microscope. If the aperture of the plution. b) using visible light of any wavelength. What be?
 Discuss Micholson's experiment for the determination What is compound microscope? Give its construction expression. What is astronomical telescope? Sketch its ray diagram 	n, working and derive the expression for the angular
MAN SAMARA	JUUW S.COR